X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;ds=sidebyside;f=gdb%2Fblockframe.c;h=4f8fa42dc6bd0508e84d0df96d73f8d5f4e316e4;hb=421d1616230a78449dc2f5abb60f03d38b96c3cf;hp=87ce8bf5d1b0fa4dd56a0dd29e3248b5c4e84f1e;hpb=43ff13b4182f3853e19e9100c84313a6e9302b70;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/blockframe.c b/gdb/blockframe.c index 87ce8bf5d1..4f8fa42dc6 100644 --- a/gdb/blockframe.c +++ b/gdb/blockframe.c @@ -1,866 +1,328 @@ -/* Get info from stack frames; - convert between frames, blocks, functions and pc values. - Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998 - Free Software Foundation, Inc. +/* Get info from stack frames; convert between frames, blocks, + functions and pc values. -This file is part of GDB. + Copyright (C) 1986-2020 Free Software Foundation, Inc. -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + This file is part of GDB. -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ #include "defs.h" #include "symtab.h" #include "bfd.h" -#include "symfile.h" #include "objfiles.h" #include "frame.h" #include "gdbcore.h" -#include "value.h" /* for read_register */ -#include "target.h" /* for target_has_stack */ -#include "inferior.h" /* for read_pc */ +#include "value.h" +#include "target.h" +#include "inferior.h" #include "annotate.h" - -/* Prototypes for exported functions. */ - -void _initialize_blockframe PARAMS ((void)); - -/* A default FRAME_CHAIN_VALID, in the form that is suitable for most - targets. If FRAME_CHAIN_VALID returns zero it means that the given - frame is the outermost one and has no caller. */ - -int -default_frame_chain_valid (chain, thisframe) - CORE_ADDR chain; - struct frame_info *thisframe; -{ - return ((chain) != 0 - && !inside_main_func ((thisframe) -> pc) - && !inside_entry_func ((thisframe) -> pc)); -} - -/* Use the alternate method of avoiding running up off the end of the - frame chain or following frames back into the startup code. See - the comments in objfiles.h. */ - -int -alternate_frame_chain_valid (chain, thisframe) - CORE_ADDR chain; - struct frame_info *thisframe; -{ - return ((chain) != 0 - && !inside_entry_file (FRAME_SAVED_PC (thisframe))); -} - -/* A very simple method of determining a valid frame */ - -int -nonnull_frame_chain_valid (chain, thisframe) - CORE_ADDR chain; - struct frame_info *thisframe; +#include "regcache.h" +#include "dummy-frame.h" +#include "command.h" +#include "gdbcmd.h" +#include "block.h" +#include "inline-frame.h" + +/* Return the innermost lexical block in execution in a specified + stack frame. The frame address is assumed valid. + + If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code + address we used to choose the block. We use this to find a source + line, to decide which macro definitions are in scope. + + The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's + PC, and may not really be a valid PC at all. For example, in the + caller of a function declared to never return, the code at the + return address will never be reached, so the call instruction may + be the very last instruction in the block. So the address we use + to choose the block is actually one byte before the return address + --- hopefully pointing us at the call instruction, or its delay + slot instruction. */ + +const struct block * +get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block) { - return ((chain) != 0); -} - -/* Is ADDR inside the startup file? Note that if your machine - has a way to detect the bottom of the stack, there is no need - to call this function from FRAME_CHAIN_VALID; the reason for - doing so is that some machines have no way of detecting bottom - of stack. - - A PC of zero is always considered to be the bottom of the stack. */ - -int -inside_entry_file (addr) - CORE_ADDR addr; -{ - if (addr == 0) - return 1; - if (symfile_objfile == 0) - return 0; - if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) - { - /* Do not stop backtracing if the pc is in the call dummy - at the entry point. */ - /* FIXME: Won't always work with zeros for the last two arguments */ - if (PC_IN_CALL_DUMMY (addr, 0, 0)) - return 0; - } - return (addr >= symfile_objfile -> ei.entry_file_lowpc && - addr < symfile_objfile -> ei.entry_file_highpc); -} - -/* Test a specified PC value to see if it is in the range of addresses - that correspond to the main() function. See comments above for why - we might want to do this. + CORE_ADDR pc; + const struct block *bl; + int inline_count; - Typically called from FRAME_CHAIN_VALID. + if (!get_frame_address_in_block_if_available (frame, &pc)) + return NULL; - A PC of zero is always considered to be the bottom of the stack. */ + if (addr_in_block) + *addr_in_block = pc; -int -inside_main_func (pc) -CORE_ADDR pc; -{ - if (pc == 0) - return 1; - if (symfile_objfile == 0) - return 0; + bl = block_for_pc (pc); + if (bl == NULL) + return NULL; - /* If the addr range is not set up at symbol reading time, set it up now. - This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because - it is unable to set it up and symbol reading time. */ + inline_count = frame_inlined_callees (frame); - if (symfile_objfile -> ei.main_func_lowpc == INVALID_ENTRY_LOWPC && - symfile_objfile -> ei.main_func_highpc == INVALID_ENTRY_HIGHPC) + while (inline_count > 0) { - struct symbol *mainsym; + if (block_inlined_p (bl)) + inline_count--; - mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL); - if (mainsym && SYMBOL_CLASS(mainsym) == LOC_BLOCK) - { - symfile_objfile->ei.main_func_lowpc = - BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym)); - symfile_objfile->ei.main_func_highpc = - BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym)); - } + bl = BLOCK_SUPERBLOCK (bl); + gdb_assert (bl != NULL); } - return (symfile_objfile -> ei.main_func_lowpc <= pc && - symfile_objfile -> ei.main_func_highpc > pc); -} -/* Test a specified PC value to see if it is in the range of addresses - that correspond to the process entry point function. See comments - in objfiles.h for why we might want to do this. - - Typically called from FRAME_CHAIN_VALID. - - A PC of zero is always considered to be the bottom of the stack. */ - -int -inside_entry_func (pc) - CORE_ADDR pc; -{ - if (pc == 0) - return 1; - if (symfile_objfile == 0) - return 0; - if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) - { - /* Do not stop backtracing if the pc is in the call dummy - at the entry point. */ - /* FIXME: Won't always work with zeros for the last two arguments */ - if (PC_IN_CALL_DUMMY (pc, 0, 0)) - return 0; - } - return (symfile_objfile -> ei.entry_func_lowpc <= pc && - symfile_objfile -> ei.entry_func_highpc > pc); -} - -/* Info about the innermost stack frame (contents of FP register) */ - -static struct frame_info *current_frame; - -/* Cache for frame addresses already read by gdb. Valid only while - inferior is stopped. Control variables for the frame cache should - be local to this module. */ - -static struct obstack frame_cache_obstack; - -void * -frame_obstack_alloc (size) - unsigned long size; -{ - return obstack_alloc (&frame_cache_obstack, size); + return bl; } -void -frame_saved_regs_zalloc (fi) - struct frame_info *fi; -{ - fi->saved_regs = (CORE_ADDR*) - frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); - memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); -} - - -/* Return the innermost (currently executing) stack frame. */ - -struct frame_info * -get_current_frame () -{ - if (current_frame == NULL) - { - if (target_has_stack) - current_frame = create_new_frame (read_fp (), read_pc ()); - else - error ("No stack."); - } - return current_frame; -} - -void -set_current_frame (frame) - struct frame_info *frame; -{ - current_frame = frame; -} - -/* Create an arbitrary (i.e. address specified by user) or innermost frame. - Always returns a non-NULL value. */ - -struct frame_info * -create_new_frame (addr, pc) - CORE_ADDR addr; - CORE_ADDR pc; -{ - struct frame_info *fi; - char *name; - - fi = (struct frame_info *) - obstack_alloc (&frame_cache_obstack, - sizeof (struct frame_info)); - - /* Arbitrary frame */ - fi->saved_regs = NULL; - fi->next = NULL; - fi->prev = NULL; - fi->frame = addr; - fi->pc = pc; - find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); - fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name); - -#ifdef INIT_EXTRA_FRAME_INFO - INIT_EXTRA_FRAME_INFO (0, fi); -#endif - - return fi; -} - -/* Return the frame that FRAME calls (NULL if FRAME is the innermost - frame). */ - -struct frame_info * -get_next_frame (frame) - struct frame_info *frame; -{ - return frame->next; -} - -/* Flush the entire frame cache. */ - -void -flush_cached_frames () -{ - /* Since we can't really be sure what the first object allocated was */ - obstack_free (&frame_cache_obstack, 0); - obstack_init (&frame_cache_obstack); - - current_frame = NULL; /* Invalidate cache */ - select_frame (NULL, -1); - annotate_frames_invalid (); -} - -/* Flush the frame cache, and start a new one if necessary. */ - -void -reinit_frame_cache () +CORE_ADDR +get_pc_function_start (CORE_ADDR pc) { - flush_cached_frames (); - - /* FIXME: The inferior_pid test is wrong if there is a corefile. */ - if (inferior_pid != 0) - { - select_frame (get_current_frame (), 0); - } -} - -/* If a machine allows frameless functions, it should define a macro - FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct - frame_info for the frame, and FRAMELESS should be set to nonzero - if it represents a frameless function invocation. */ + const struct block *bl; + struct bound_minimal_symbol msymbol; -/* Return nonzero if the function for this frame lacks a prologue. Many - machines can define FRAMELESS_FUNCTION_INVOCATION to just call this - function. */ - -int -frameless_look_for_prologue (frame) - struct frame_info *frame; -{ - CORE_ADDR func_start, after_prologue; - func_start = get_pc_function_start (frame->pc); - if (func_start) + bl = block_for_pc (pc); + if (bl) { - func_start += FUNCTION_START_OFFSET; - after_prologue = func_start; -#ifdef SKIP_PROLOGUE_FRAMELESS_P - /* This is faster, since only care whether there *is* a prologue, - not how long it is. */ - after_prologue = SKIP_PROLOGUE_FRAMELESS_P (after_prologue); -#else - after_prologue = SKIP_PROLOGUE (after_prologue); -#endif - return after_prologue == func_start; - } - else if (frame->pc == 0) - /* A frame with a zero PC is usually created by dereferencing a NULL - function pointer, normally causing an immediate core dump of the - inferior. Mark function as frameless, as the inferior has no chance - of setting up a stack frame. */ - return 1; - else - /* If we can't find the start of the function, we don't really - know whether the function is frameless, but we should be able - to get a reasonable (i.e. best we can do under the - circumstances) backtrace by saying that it isn't. */ - return 0; -} - -/* Default a few macros that people seldom redefine. */ - -#if !defined (INIT_FRAME_PC) -#define INIT_FRAME_PC(fromleaf, prev) \ - prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \ - prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); -#endif - -#ifndef FRAME_CHAIN_COMBINE -#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) -#endif - -/* Return a structure containing various interesting information - about the frame that called NEXT_FRAME. Returns NULL - if there is no such frame. */ - -struct frame_info * -get_prev_frame (next_frame) - struct frame_info *next_frame; -{ - CORE_ADDR address = 0; - struct frame_info *prev; - int fromleaf = 0; - char *name; + struct symbol *symbol = block_linkage_function (bl); - /* If the requested entry is in the cache, return it. - Otherwise, figure out what the address should be for the entry - we're about to add to the cache. */ - - if (!next_frame) - { -#if 0 - /* This screws value_of_variable, which just wants a nice clean - NULL return from block_innermost_frame if there are no frames. - I don't think I've ever seen this message happen otherwise. - And returning NULL here is a perfectly legitimate thing to do. */ - if (!current_frame) + if (symbol) { - error ("You haven't set up a process's stack to examine."); + bl = SYMBOL_BLOCK_VALUE (symbol); + return BLOCK_ENTRY_PC (bl); } -#endif - - return current_frame; } - /* If we have the prev one, return it */ - if (next_frame->prev) - return next_frame->prev; - - /* On some machines it is possible to call a function without - setting up a stack frame for it. On these machines, we - define this macro to take two args; a frameinfo pointer - identifying a frame and a variable to set or clear if it is - or isn't leafless. */ - - /* Still don't want to worry about this except on the innermost - frame. This macro will set FROMLEAF if NEXT_FRAME is a - frameless function invocation. */ - if (!(next_frame->next)) + msymbol = lookup_minimal_symbol_by_pc (pc); + if (msymbol.minsym) { - fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame); - if (fromleaf) - address = FRAME_FP (next_frame); - } + CORE_ADDR fstart = BMSYMBOL_VALUE_ADDRESS (msymbol); - if (!fromleaf) - { - /* Two macros defined in tm.h specify the machine-dependent - actions to be performed here. - First, get the frame's chain-pointer. - If that is zero, the frame is the outermost frame or a leaf - called by the outermost frame. This means that if start - calls main without a frame, we'll return 0 (which is fine - anyway). - - Nope; there's a problem. This also returns when the current - routine is a leaf of main. This is unacceptable. We move - this to after the ffi test; I'd rather have backtraces from - start go curfluy than have an abort called from main not show - main. */ - address = FRAME_CHAIN (next_frame); - if (!FRAME_CHAIN_VALID (address, next_frame)) - return 0; - address = FRAME_CHAIN_COMBINE (address, next_frame); + if (find_pc_section (fstart)) + return fstart; } - if (address == 0) - return 0; - prev = (struct frame_info *) - obstack_alloc (&frame_cache_obstack, - sizeof (struct frame_info)); - - prev->saved_regs = NULL; - if (next_frame) - next_frame->prev = prev; - prev->next = next_frame; - prev->prev = (struct frame_info *) 0; - prev->frame = address; - prev->signal_handler_caller = 0; - -/* This change should not be needed, FIXME! We should - determine whether any targets *need* INIT_FRAME_PC to happen - after INIT_EXTRA_FRAME_INFO and come up with a simple way to - express what goes on here. - - INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame - (where the PC is already set up) and here (where it isn't). - INIT_FRAME_PC is only called from here, always after - INIT_EXTRA_FRAME_INFO. - - The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC - value (which hasn't been set yet). Some other machines appear to - require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo. - - We shouldn't need INIT_FRAME_PC_FIRST to add more complication to - an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92. - - Assuming that some machines need INIT_FRAME_PC after - INIT_EXTRA_FRAME_INFO, one possible scheme: - - SETUP_INNERMOST_FRAME() - Default version is just create_new_frame (read_fp ()), - read_pc ()). Machines with extra frame info would do that (or the - local equivalent) and then set the extra fields. - SETUP_ARBITRARY_FRAME(argc, argv) - Only change here is that create_new_frame would no longer init extra - frame info; SETUP_ARBITRARY_FRAME would have to do that. - INIT_PREV_FRAME(fromleaf, prev) - Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should - also return a flag saying whether to keep the new frame, or - whether to discard it, because on some machines (e.g. mips) it - is really awkward to have FRAME_CHAIN_VALID called *before* - INIT_EXTRA_FRAME_INFO (there is no good way to get information - deduced in FRAME_CHAIN_VALID into the extra fields of the new frame). - std_frame_pc(fromleaf, prev) - This is the default setting for INIT_PREV_FRAME. It just does what - the default INIT_FRAME_PC does. Some machines will call it from - INIT_PREV_FRAME (either at the beginning, the end, or in the middle). - Some machines won't use it. - kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */ - -#ifdef INIT_FRAME_PC_FIRST - INIT_FRAME_PC_FIRST (fromleaf, prev); -#endif - -#ifdef INIT_EXTRA_FRAME_INFO - INIT_EXTRA_FRAME_INFO(fromleaf, prev); -#endif - - /* This entry is in the frame queue now, which is good since - FRAME_SAVED_PC may use that queue to figure out its value - (see tm-sparc.h). We want the pc saved in the inferior frame. */ - INIT_FRAME_PC(fromleaf, prev); - - /* If ->frame and ->pc are unchanged, we are in the process of getting - ourselves into an infinite backtrace. Some architectures check this - in FRAME_CHAIN or thereabouts, but it seems like there is no reason - this can't be an architecture-independent check. */ - if (next_frame != NULL) - { - if (prev->frame == next_frame->frame - && prev->pc == next_frame->pc) - { - next_frame->prev = NULL; - obstack_free (&frame_cache_obstack, prev); - return NULL; - } - } - - find_pc_partial_function (prev->pc, &name, - (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); - if (IN_SIGTRAMP (prev->pc, name)) - prev->signal_handler_caller = 1; - - return prev; -} - -CORE_ADDR -get_frame_pc (frame) - struct frame_info *frame; -{ - return frame->pc; -} - - -#ifdef FRAME_FIND_SAVED_REGS -/* XXX - deprecated. This is a compatibility function for targets - that do not yet implement FRAME_INIT_SAVED_REGS. */ -/* Find the addresses in which registers are saved in FRAME. */ - -void -get_frame_saved_regs (frame, saved_regs_addr) - struct frame_info *frame; - struct frame_saved_regs *saved_regs_addr; -{ - if (frame->saved_regs == NULL) - { - frame->saved_regs = (CORE_ADDR*) - frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); - } - if (saved_regs_addr == NULL) - { - struct frame_saved_regs saved_regs; - FRAME_FIND_SAVED_REGS (frame, saved_regs); - memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS); - } - else - { - FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr); - memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS); - } + return 0; } -#endif -/* Return the innermost lexical block in execution - in a specified stack frame. The frame address is assumed valid. */ +/* Return the symbol for the function executing in frame FRAME. */ -struct block * -get_frame_block (frame) - struct frame_info *frame; +struct symbol * +get_frame_function (struct frame_info *frame) { - CORE_ADDR pc; - - pc = frame->pc; - if (frame->next != 0 && frame->next->signal_handler_caller == 0) - /* We are not in the innermost frame and we were not interrupted - by a signal. We need to subtract one to get the correct block, - in case the call instruction was the last instruction of the block. - If there are any machines on which the saved pc does not point to - after the call insn, we probably want to make frame->pc point after - the call insn anyway. */ - --pc; - return block_for_pc (pc); -} + const struct block *bl = get_frame_block (frame, 0); -struct block * -get_current_block () -{ - return block_for_pc (read_pc ()); -} + if (bl == NULL) + return NULL; -CORE_ADDR -get_pc_function_start (pc) - CORE_ADDR pc; -{ - register struct block *bl; - register struct symbol *symbol; - register struct minimal_symbol *msymbol; - CORE_ADDR fstart; + while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL) + bl = BLOCK_SUPERBLOCK (bl); - if ((bl = block_for_pc (pc)) != NULL && - (symbol = block_function (bl)) != NULL) - { - bl = SYMBOL_BLOCK_VALUE (symbol); - fstart = BLOCK_START (bl); - } - else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL) - { - fstart = SYMBOL_VALUE_ADDRESS (msymbol); - } - else - { - fstart = 0; - } - return (fstart); + return BLOCK_FUNCTION (bl); } + -/* Return the symbol for the function executing in frame FRAME. */ +/* Return the function containing pc value PC in section SECTION. + Returns 0 if function is not known. */ struct symbol * -get_frame_function (frame) - struct frame_info *frame; -{ - register struct block *bl = get_frame_block (frame); - if (bl == 0) - return 0; - return block_function (bl); -} - - -/* Return the blockvector immediately containing the innermost lexical block - containing the specified pc value and section, or 0 if there is none. - PINDEX is a pointer to the index value of the block. If PINDEX - is NULL, we don't pass this information back to the caller. */ - -struct blockvector * -blockvector_for_pc_sect (pc, section, pindex, symtab) - register CORE_ADDR pc; - struct sec *section; - int *pindex; - struct symtab *symtab; - +find_pc_sect_function (CORE_ADDR pc, struct obj_section *section) { - register struct block *b; - register int bot, top, half; - struct blockvector *bl; - - if (symtab == 0) /* if no symtab specified by caller */ - { - /* First search all symtabs for one whose file contains our pc */ - if ((symtab = find_pc_sect_symtab (pc, section)) == 0) - return 0; - } + const struct block *b = block_for_pc_sect (pc, section); - bl = BLOCKVECTOR (symtab); - b = BLOCKVECTOR_BLOCK (bl, 0); - - /* Then search that symtab for the smallest block that wins. */ - /* Use binary search to find the last block that starts before PC. */ - - bot = 0; - top = BLOCKVECTOR_NBLOCKS (bl); - - while (top - bot > 1) - { - half = (top - bot + 1) >> 1; - b = BLOCKVECTOR_BLOCK (bl, bot + half); - if (BLOCK_START (b) <= pc) - bot += half; - else - top = bot + half; - } - - /* Now search backward for a block that ends after PC. */ - - while (bot >= 0) - { - b = BLOCKVECTOR_BLOCK (bl, bot); - if (BLOCK_END (b) >= pc) - { - if (pindex) - *pindex = bot; - return bl; - } - bot--; - } - return 0; + if (b == 0) + return 0; + return block_linkage_function (b); } -/* Return the blockvector immediately containing the innermost lexical block - containing the specified pc value, or 0 if there is none. - Backward compatibility, no section. */ +/* Return the function containing pc value PC. + Returns 0 if function is not known. + Backward compatibility, no section */ -struct blockvector * -blockvector_for_pc (pc, pindex) - register CORE_ADDR pc; - int *pindex; +struct symbol * +find_pc_function (CORE_ADDR pc) { - return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc), - pindex, NULL); + return find_pc_sect_function (pc, find_pc_mapped_section (pc)); } -/* Return the innermost lexical block containing the specified pc value - in the specified section, or 0 if there is none. */ +/* See symtab.h. */ -struct block * -block_for_pc_sect (pc, section) - register CORE_ADDR pc; - struct sec *section; +struct symbol * +find_pc_sect_containing_function (CORE_ADDR pc, struct obj_section *section) { - register struct blockvector *bl; - int index; + const block *bl = block_for_pc_sect (pc, section); - bl = blockvector_for_pc_sect (pc, section, &index, NULL); - if (bl) - return BLOCKVECTOR_BLOCK (bl, index); - return 0; -} - -/* Return the innermost lexical block containing the specified pc value, - or 0 if there is none. Backward compatibility, no section. */ + if (bl == nullptr) + return nullptr; -struct block * -block_for_pc (pc) - register CORE_ADDR pc; -{ - return block_for_pc_sect (pc, find_pc_mapped_section (pc)); + return block_containing_function (bl); } -/* Return the function containing pc value PC in section SECTION. - Returns 0 if function is not known. */ - -struct symbol * -find_pc_sect_function (pc, section) - CORE_ADDR pc; - struct sec *section; -{ - register struct block *b = block_for_pc_sect (pc, section); - if (b == 0) - return 0; - return block_function (b); -} +/* These variables are used to cache the most recent result of + find_pc_partial_function. -/* Return the function containing pc value PC. - Returns 0 if function is not known. Backward compatibility, no section */ + The addresses cache_pc_function_low and cache_pc_function_high + record the range in which PC was found during the most recent + successful lookup. When the function occupies a single contiguous + address range, these values correspond to the low and high + addresses of the function. (The high address is actually one byte + beyond the last byte of the function.) For a function with more + than one (non-contiguous) range, the range in which PC was found is + used to set the cache bounds. -struct symbol * -find_pc_function (pc) - CORE_ADDR pc; -{ - return find_pc_sect_function (pc, find_pc_mapped_section (pc)); -} + When determining whether or not these cached values apply to a + particular PC value, PC must be within the range specified by + cache_pc_function_low and cache_pc_function_high. In addition to + PC being in that range, cache_pc_section must also match PC's + section. See find_pc_partial_function() for details on both the + comparison as well as how PC's section is determined. -/* These variables are used to cache the most recent result - * of find_pc_partial_function. */ + The other values aren't used for determining whether the cache + applies, but are used for setting the outputs from + find_pc_partial_function. cache_pc_function_low and + cache_pc_function_high are used to set outputs as well. */ -static CORE_ADDR cache_pc_function_low = 0; -static CORE_ADDR cache_pc_function_high = 0; -static char *cache_pc_function_name = 0; -static struct sec *cache_pc_function_section = NULL; +static CORE_ADDR cache_pc_function_low = 0; +static CORE_ADDR cache_pc_function_high = 0; +static const char *cache_pc_function_name = 0; +static struct obj_section *cache_pc_function_section = NULL; +static const struct block *cache_pc_function_block = nullptr; -/* Clear cache, e.g. when symbol table is discarded. */ +/* Clear cache, e.g. when symbol table is discarded. */ void -clear_pc_function_cache() +clear_pc_function_cache (void) { cache_pc_function_low = 0; cache_pc_function_high = 0; - cache_pc_function_name = (char *)0; + cache_pc_function_name = (char *) 0; cache_pc_function_section = NULL; + cache_pc_function_block = nullptr; } -/* Finds the "function" (text symbol) that is smaller than PC but - greatest of all of the potential text symbols in SECTION. Sets - *NAME and/or *ADDRESS conditionally if that pointer is non-null. - If ENDADDR is non-null, then set *ENDADDR to be the end of the - function (exclusive), but passing ENDADDR as non-null means that - the function might cause symbols to be read. This function either - succeeds or fails (not halfway succeeds). If it succeeds, it sets - *NAME, *ADDRESS, and *ENDADDR to real information and returns 1. - If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and - returns 0. */ - -int -find_pc_sect_partial_function (pc, section, name, address, endaddr) - CORE_ADDR pc; - asection *section; - char **name; - CORE_ADDR *address; - CORE_ADDR *endaddr; +/* See symtab.h. */ + +bool +find_pc_partial_function (CORE_ADDR pc, const char **name, CORE_ADDR *address, + CORE_ADDR *endaddr, const struct block **block) { - struct partial_symtab *pst; - struct symbol *f; - struct minimal_symbol *msymbol; - struct partial_symbol *psb; - struct obj_section *osect; - int i; + struct obj_section *section; + struct symbol *f; + struct bound_minimal_symbol msymbol; + struct compunit_symtab *compunit_symtab = NULL; CORE_ADDR mapped_pc; + /* To ensure that the symbol returned belongs to the correct section + (and that the last [random] symbol from the previous section + isn't returned) try to find the section containing PC. First try + the overlay code (which by default returns NULL); and second try + the normal section code (which almost always succeeds). */ + section = find_pc_overlay (pc); + if (section == NULL) + section = find_pc_section (pc); + mapped_pc = overlay_mapped_address (pc, section); - if (mapped_pc >= cache_pc_function_low && - mapped_pc < cache_pc_function_high && - section == cache_pc_function_section) + if (mapped_pc >= cache_pc_function_low + && mapped_pc < cache_pc_function_high + && section == cache_pc_function_section) goto return_cached_value; - /* If sigtramp is in the u area, it counts as a function (especially - important for step_1). */ -#if defined SIGTRAMP_START - if (IN_SIGTRAMP (mapped_pc, (char *)NULL)) - { - cache_pc_function_low = SIGTRAMP_START (mapped_pc); - cache_pc_function_high = SIGTRAMP_END (mapped_pc); - cache_pc_function_name = ""; - cache_pc_function_section = section; - goto return_cached_value; - } -#endif - msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section); - pst = find_pc_sect_psymtab (mapped_pc, section); - if (pst) + for (objfile *objfile : current_program_space->objfiles ()) { - /* Need to read the symbols to get a good value for the end address. */ - if (endaddr != NULL && !pst->readin) + if (objfile->sf) { - /* Need to get the terminal in case symbol-reading produces - output. */ - target_terminal_ours_for_output (); - PSYMTAB_TO_SYMTAB (pst); + compunit_symtab + = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol, + mapped_pc, + section, + 0); } + if (compunit_symtab != NULL) + break; + } - if (pst->readin) + if (compunit_symtab != NULL) + { + /* Checking whether the msymbol has a larger value is for the + "pathological" case mentioned in stack.c:find_frame_funname. + + We use BLOCK_ENTRY_PC instead of BLOCK_START_PC for this + comparison because the minimal symbol should refer to the + function's entry pc which is not necessarily the lowest + address of the function. This will happen when the function + has more than one range and the entry pc is not within the + lowest range of addresses. */ + f = find_pc_sect_function (mapped_pc, section); + if (f != NULL + && (msymbol.minsym == NULL + || (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (f)) + >= BMSYMBOL_VALUE_ADDRESS (msymbol)))) { - /* Checking whether the msymbol has a larger value is for the - "pathological" case mentioned in print_frame_info. */ - f = find_pc_sect_function (mapped_pc, section); - if (f != NULL - && (msymbol == NULL - || (BLOCK_START (SYMBOL_BLOCK_VALUE (f)) - >= SYMBOL_VALUE_ADDRESS (msymbol)))) + const struct block *b = SYMBOL_BLOCK_VALUE (f); + + cache_pc_function_name = f->linkage_name (); + cache_pc_function_section = section; + cache_pc_function_block = b; + + /* For blocks occupying contiguous addresses (i.e. no gaps), + the low and high cache addresses are simply the start + and end of the block. + + For blocks with non-contiguous ranges, we have to search + for the range containing mapped_pc and then use the start + and end of that range. + + This causes the returned *ADDRESS and *ENDADDR values to + be limited to the range in which mapped_pc is found. See + comment preceding declaration of find_pc_partial_function + in symtab.h for more information. */ + + if (BLOCK_CONTIGUOUS_P (b)) { - cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f)); - cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f)); - cache_pc_function_name = SYMBOL_NAME (f); - cache_pc_function_section = section; - goto return_cached_value; + cache_pc_function_low = BLOCK_START (b); + cache_pc_function_high = BLOCK_END (b); } - } - else - { - /* Now that static symbols go in the minimal symbol table, perhaps - we could just ignore the partial symbols. But at least for now - we use the partial or minimal symbol, whichever is larger. */ - psb = find_pc_sect_psymbol (pst, mapped_pc, section); - - if (psb - && (msymbol == NULL || - (SYMBOL_VALUE_ADDRESS (psb) - >= SYMBOL_VALUE_ADDRESS (msymbol)))) + else { - /* This case isn't being cached currently. */ - if (address) - *address = SYMBOL_VALUE_ADDRESS (psb); - if (name) - *name = SYMBOL_NAME (psb); - /* endaddr non-NULL can't happen here. */ - return 1; + int i; + for (i = 0; i < BLOCK_NRANGES (b); i++) + { + if (BLOCK_RANGE_START (b, i) <= mapped_pc + && mapped_pc < BLOCK_RANGE_END (b, i)) + { + cache_pc_function_low = BLOCK_RANGE_START (b, i); + cache_pc_function_high = BLOCK_RANGE_END (b, i); + break; + } + } + /* Above loop should exit via the break. */ + gdb_assert (i < BLOCK_NRANGES (b)); } + + + goto return_cached_value; } } - /* Not in the normal symbol tables, see if the pc is in a known section. - If it's not, then give up. This ensures that anything beyond the end - of the text seg doesn't appear to be part of the last function in the - text segment. */ - - osect = find_pc_sect_section (mapped_pc, section); + /* Not in the normal symbol tables, see if the pc is in a known + section. If it's not, then give up. This ensures that anything + beyond the end of the text seg doesn't appear to be part of the + last function in the text segment. */ - if (!osect) - msymbol = NULL; + if (!section) + msymbol.minsym = NULL; /* Must be in the minimal symbol table. */ - if (msymbol == NULL) + if (msymbol.minsym == NULL) { /* No available symbol. */ if (name != NULL) @@ -869,538 +331,151 @@ find_pc_sect_partial_function (pc, section, name, address, endaddr) *address = 0; if (endaddr != NULL) *endaddr = 0; - return 0; + if (block != nullptr) + *block = nullptr; + return false; } - cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol); - cache_pc_function_name = SYMBOL_NAME (msymbol); + cache_pc_function_low = BMSYMBOL_VALUE_ADDRESS (msymbol); + cache_pc_function_name = msymbol.minsym->linkage_name (); cache_pc_function_section = section; - - /* Use the lesser of the next minimal symbol in the same section, or - the end of the section, as the end of the function. */ - - /* Step over other symbols at this same address, and symbols in - other sections, to find the next symbol in this section with - a different address. */ - - for (i=1; SYMBOL_NAME (msymbol+i) != NULL; i++) - { - if (SYMBOL_VALUE_ADDRESS (msymbol+i) != SYMBOL_VALUE_ADDRESS (msymbol) - && SYMBOL_BFD_SECTION (msymbol+i) == SYMBOL_BFD_SECTION (msymbol)) - break; - } - - if (SYMBOL_NAME (msymbol + i) != NULL - && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr) - cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i); - else - /* We got the start address from the last msymbol in the objfile. - So the end address is the end of the section. */ - cache_pc_function_high = osect->endaddr; + cache_pc_function_high = minimal_symbol_upper_bound (msymbol); + cache_pc_function_block = nullptr; return_cached_value: if (address) { if (pc_in_unmapped_range (pc, section)) - *address = overlay_unmapped_address (cache_pc_function_low, section); + *address = overlay_unmapped_address (cache_pc_function_low, section); else - *address = cache_pc_function_low; + *address = cache_pc_function_low; } - + if (name) *name = cache_pc_function_name; if (endaddr) { if (pc_in_unmapped_range (pc, section)) - { + { /* Because the high address is actually beyond the end of the function (and therefore possibly beyond the end of - the overlay), we must actually convert (high - 1) - and then add one to that. */ + the overlay), we must actually convert (high - 1) and + then add one to that. */ - *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1, + *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1, section); - } + } else - *endaddr = cache_pc_function_high; + *endaddr = cache_pc_function_high; } - return 1; -} + if (block != nullptr) + *block = cache_pc_function_block; -/* Backward compatibility, no section argument */ - -int -find_pc_partial_function (pc, name, address, endaddr) - CORE_ADDR pc; - char **name; - CORE_ADDR *address; - CORE_ADDR *endaddr; -{ - asection *section; - - section = find_pc_overlay (pc); - return find_pc_sect_partial_function (pc, section, name, address, endaddr); + return true; } -/* Return the innermost stack frame executing inside of BLOCK, - or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */ +/* See symtab.h. */ -struct frame_info * -block_innermost_frame (block) - struct block *block; +bool +find_function_entry_range_from_pc (CORE_ADDR pc, const char **name, + CORE_ADDR *address, CORE_ADDR *endaddr) { - struct frame_info *frame; - register CORE_ADDR start; - register CORE_ADDR end; - - if (block == NULL) - return NULL; - - start = BLOCK_START (block); - end = BLOCK_END (block); + const struct block *block; + bool status = find_pc_partial_function (pc, name, address, endaddr, &block); - frame = NULL; - while (1) + if (status && block != nullptr && !BLOCK_CONTIGUOUS_P (block)) { - frame = get_prev_frame (frame); - if (frame == NULL) - return NULL; - if (frame->pc >= start && frame->pc < end) - return frame; - } -} + CORE_ADDR entry_pc = BLOCK_ENTRY_PC (block); -/* Return the full FRAME which corresponds to the given CORE_ADDR - or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ + for (int i = 0; i < BLOCK_NRANGES (block); i++) + { + if (BLOCK_RANGE_START (block, i) <= entry_pc + && entry_pc < BLOCK_RANGE_END (block, i)) + { + if (address != nullptr) + *address = BLOCK_RANGE_START (block, i); -struct frame_info * -find_frame_addr_in_frame_chain (frame_addr) - CORE_ADDR frame_addr; -{ - struct frame_info *frame = NULL; + if (endaddr != nullptr) + *endaddr = BLOCK_RANGE_END (block, i); - if (frame_addr == (CORE_ADDR)0) - return NULL; + return status; + } + } - while (1) - { - frame = get_prev_frame (frame); - if (frame == NULL) - return NULL; - if (FRAME_FP (frame) == frame_addr) - return frame; + /* It's an internal error if we exit the above loop without finding + the range. */ + internal_error (__FILE__, __LINE__, + _("Entry block not found in find_function_entry_range_from_pc")); } -} - -#ifdef SIGCONTEXT_PC_OFFSET -/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */ -CORE_ADDR -sigtramp_saved_pc (frame) - struct frame_info *frame; -{ - CORE_ADDR sigcontext_addr; - char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; - int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT; - int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT; - - /* Get sigcontext address, it is the third parameter on the stack. */ - if (frame->next) - sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next) - + FRAME_ARGS_SKIP - + sigcontext_offs, - ptrbytes); - else - sigcontext_addr = read_memory_integer (read_register (SP_REGNUM) - + sigcontext_offs, - ptrbytes); - - /* Don't cause a memory_error when accessing sigcontext in case the stack - layout has changed or the stack is corrupt. */ - target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes); - return extract_unsigned_integer (buf, ptrbytes); + return status; } -#endif /* SIGCONTEXT_PC_OFFSET */ - -/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK - below is for infrun.c, which may give the macro a pc without that - subtracted out. */ +/* See symtab.h. */ -extern CORE_ADDR text_end; - -int -pc_in_call_dummy_before_text_end (pc, sp, frame_address) - CORE_ADDR pc; - CORE_ADDR sp; - CORE_ADDR frame_address; +struct type * +find_function_type (CORE_ADDR pc) { - return ((pc) >= text_end - CALL_DUMMY_LENGTH - && (pc) <= text_end + DECR_PC_AFTER_BREAK); -} + struct symbol *sym = find_pc_function (pc); -int -pc_in_call_dummy_after_text_end (pc, sp, frame_address) - CORE_ADDR pc; - CORE_ADDR sp; - CORE_ADDR frame_address; -{ - return ((pc) >= text_end - && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK); -} - -/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and - top of the stack frame which we are checking, where "bottom" and - "top" refer to some section of memory which contains the code for - the call dummy. Calls to this macro assume that the contents of - SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively, - are the things to pass. - - This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't - have that meaning, but the 29k doesn't use ON_STACK. This could be - fixed by generalizing this scheme, perhaps by passing in a frame - and adding a few fields, at least on machines which need them for - PC_IN_CALL_DUMMY. - - Something simpler, like checking for the stack segment, doesn't work, - since various programs (threads implementations, gcc nested function - stubs, etc) may either allocate stack frames in another segment, or - allocate other kinds of code on the stack. */ - -int -pc_in_call_dummy_on_stack (pc, sp, frame_address) - CORE_ADDR pc; - CORE_ADDR sp; - CORE_ADDR frame_address; -{ - return (INNER_THAN ((sp), (pc)) - && (frame_address != 0) - && INNER_THAN ((pc), (frame_address))); -} - -int -pc_in_call_dummy_at_entry_point (pc, sp, frame_address) - CORE_ADDR pc; - CORE_ADDR sp; - CORE_ADDR frame_address; -{ - return ((pc) >= CALL_DUMMY_ADDRESS () - && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK)); -} - - -/* - * GENERIC DUMMY FRAMES - * - * The following code serves to maintain the dummy stack frames for - * inferior function calls (ie. when gdb calls into the inferior via - * call_function_by_hand). This code saves the machine state before - * the call in host memory, so we must maintain an independant stack - * and keep it consistant etc. I am attempting to make this code - * generic enough to be used by many targets. - * - * The cheapest and most generic way to do CALL_DUMMY on a new target - * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to - * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember - * to define PUSH_RETURN_ADDRESS, because no call instruction will be - * being executed by the target. Also FRAME_CHAIN_VALID as - * generic_frame_chain_valid and FIX_CALL_DUMMY as - * generic_fix_call_dummy. */ - -/* Dummy frame. This saves the processor state just prior to setting - up the inferior function call. Older targets save the registers - target stack (but that really slows down function calls). */ - -struct dummy_frame -{ - struct dummy_frame *next; - - CORE_ADDR pc; - CORE_ADDR fp; - CORE_ADDR sp; - CORE_ADDR top; - char *registers; -}; - -static struct dummy_frame *dummy_frame_stack = NULL; - -/* Function: find_dummy_frame(pc, fp, sp) - Search the stack of dummy frames for one matching the given PC, FP and SP. - This is the work-horse for pc_in_call_dummy and read_register_dummy */ - -char * -generic_find_dummy_frame (pc, fp) - CORE_ADDR pc; - CORE_ADDR fp; -{ - struct dummy_frame * dummyframe; - - if (pc != entry_point_address ()) - return 0; - - for (dummyframe = dummy_frame_stack; dummyframe != NULL; - dummyframe = dummyframe->next) - if (fp == dummyframe->fp - || fp == dummyframe->sp - || fp == dummyframe->top) - /* The frame in question lies between the saved fp and sp, inclusive */ - return dummyframe->registers; - - return 0; -} - -/* Function: pc_in_call_dummy (pc, fp) - Return true if this is a dummy frame created by gdb for an inferior call */ + if (sym != NULL && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == pc) + return SYMBOL_TYPE (sym); -int -generic_pc_in_call_dummy (pc, sp, fp) - CORE_ADDR pc; - CORE_ADDR sp; - CORE_ADDR fp; -{ - /* if find_dummy_frame succeeds, then PC is in a call dummy */ - /* Note: SP and not FP is passed on. */ - return (generic_find_dummy_frame (pc, sp) != 0); -} - -/* Function: read_register_dummy - Find a saved register from before GDB calls a function in the inferior */ - -CORE_ADDR -generic_read_register_dummy (pc, fp, regno) - CORE_ADDR pc; - CORE_ADDR fp; - int regno; -{ - char *dummy_regs = generic_find_dummy_frame (pc, fp); - - if (dummy_regs) - return extract_address (&dummy_regs[REGISTER_BYTE (regno)], - REGISTER_RAW_SIZE(regno)); - else - return 0; -} - -/* Save all the registers on the dummy frame stack. Most ports save the - registers on the target stack. This results in lots of unnecessary memory - references, which are slow when debugging via a serial line. Instead, we - save all the registers internally, and never write them to the stack. The - registers get restored when the called function returns to the entry point, - where a breakpoint is laying in wait. */ - -void -generic_push_dummy_frame () -{ - struct dummy_frame *dummy_frame; - CORE_ADDR fp = (get_current_frame ())->frame; - - /* check to see if there are stale dummy frames, - perhaps left over from when a longjump took us out of a - function that was called by the debugger */ - - dummy_frame = dummy_frame_stack; - while (dummy_frame) - if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */ - { - dummy_frame_stack = dummy_frame->next; - free (dummy_frame->registers); - free (dummy_frame); - dummy_frame = dummy_frame_stack; - } - else - dummy_frame = dummy_frame->next; - - dummy_frame = xmalloc (sizeof (struct dummy_frame)); - dummy_frame->registers = xmalloc (REGISTER_BYTES); - - dummy_frame->pc = read_register (PC_REGNUM); - dummy_frame->sp = read_register (SP_REGNUM); - dummy_frame->top = dummy_frame->sp; - dummy_frame->fp = fp; - read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES); - dummy_frame->next = dummy_frame_stack; - dummy_frame_stack = dummy_frame; -} - -void -generic_save_dummy_frame_tos (sp) - CORE_ADDR sp; -{ - dummy_frame_stack->top = sp; -} - -/* Function: pop_frame - Restore the machine state from either the saved dummy stack or a - real stack frame. */ - -void -generic_pop_current_frame (pop) - void (*pop) PARAMS ((struct frame_info *frame)); -{ - struct frame_info *frame = get_current_frame (); - if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame)) - generic_pop_dummy_frame (); - else - pop (frame); + return NULL; } -/* Function: pop_dummy_frame - Restore the machine state from a saved dummy stack frame. */ +/* See symtab.h. */ -void -generic_pop_dummy_frame () +struct type * +find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr) { - struct dummy_frame *dummy_frame = dummy_frame_stack; - - /* FIXME: what if the first frame isn't the right one, eg.. - because one call-by-hand function has done a longjmp into another one? */ - - if (!dummy_frame) - error ("Can't pop dummy frame!"); - dummy_frame_stack = dummy_frame->next; - write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES); - flush_cached_frames (); - - free (dummy_frame->registers); - free (dummy_frame); -} + struct type *resolver_type = find_function_type (resolver_funaddr); + if (resolver_type != NULL) + { + /* Get the return type of the resolver. */ + struct type *resolver_ret_type + = check_typedef (TYPE_TARGET_TYPE (resolver_type)); -/* Function: frame_chain_valid - Returns true for a user frame or a call_function_by_hand dummy frame, - and false for the CRT0 start-up frame. Purpose is to terminate backtrace */ - -int -generic_frame_chain_valid (fp, fi) - CORE_ADDR fp; - struct frame_info *fi; -{ - if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp)) - return 1; /* don't prune CALL_DUMMY frames */ - else /* fall back to default algorithm (see frame.h) */ - return (fp != 0 - && (INNER_THAN (fi->frame, fp) || fi->frame == fp) - && !inside_entry_file (FRAME_SAVED_PC(fi))); -} - -/* Function: fix_call_dummy - Stub function. Generic dumy frames typically do not need to fix - the frame being created */ + /* If we found a pointer to function, then the resolved type + is the type of the pointed-to function. */ + if (TYPE_CODE (resolver_ret_type) == TYPE_CODE_PTR) + { + struct type *resolved_type + = TYPE_TARGET_TYPE (resolver_ret_type); + if (TYPE_CODE (check_typedef (resolved_type)) == TYPE_CODE_FUNC) + return resolved_type; + } + } -void -generic_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) - char *dummy; - CORE_ADDR pc; - CORE_ADDR fun; - int nargs; - struct value **args; - struct type *type; - int gcc_p; -{ - return; + return NULL; } -/* Function: get_saved_register - Find register number REGNUM relative to FRAME and put its (raw, - target format) contents in *RAW_BUFFER. - - Set *OPTIMIZED if the variable was optimized out (and thus can't be - fetched). Note that this is never set to anything other than zero - in this implementation. - - Set *LVAL to lval_memory, lval_register, or not_lval, depending on - whether the value was fetched from memory, from a register, or in a - strange and non-modifiable way (e.g. a frame pointer which was - calculated rather than fetched). We will use not_lval for values - fetched from generic dummy frames. +/* Return the innermost stack frame that is executing inside of BLOCK and is + at least as old as the selected frame. Return NULL if there is no + such frame. If BLOCK is NULL, just return NULL. */ - Set *ADDRP to the address, either in memory on as a REGISTER_BYTE - offset into the registers array. If the value is stored in a dummy - frame, set *ADDRP to zero. - - To use this implementation, define a function called - "get_saved_register" in your target code, which simply passes all - of its arguments to this function. - - The argument RAW_BUFFER must point to aligned memory. */ - -void -generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) - char *raw_buffer; - int *optimized; - CORE_ADDR *addrp; - struct frame_info *frame; - int regnum; - enum lval_type *lval; +struct frame_info * +block_innermost_frame (const struct block *block) { - if (!target_has_registers) - error ("No registers."); - - /* Normal systems don't optimize out things with register numbers. */ - if (optimized != NULL) - *optimized = 0; - - if (addrp) /* default assumption: not found in memory */ - *addrp = 0; + struct frame_info *frame; - /* Note: since the current frame's registers could only have been - saved by frames INTERIOR TO the current frame, we skip examining - the current frame itself: otherwise, we would be getting the - previous frame's registers which were saved by the current frame. */ + if (block == NULL) + return NULL; - while (frame && ((frame = frame->next) != NULL)) + frame = get_selected_frame_if_set (); + if (frame == NULL) + frame = get_current_frame (); + while (frame != NULL) { - if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) - { - if (lval) /* found it in a CALL_DUMMY frame */ - *lval = not_lval; - if (raw_buffer) - memcpy (raw_buffer, - generic_find_dummy_frame (frame->pc, frame->frame) + - REGISTER_BYTE (regnum), - REGISTER_RAW_SIZE (regnum)); - return; - } + const struct block *frame_block = get_frame_block (frame, NULL); + if (frame_block != NULL && contained_in (frame_block, block)) + return frame; - FRAME_INIT_SAVED_REGS (frame); - if (frame->saved_regs != NULL - && frame->saved_regs[regnum] != 0) - { - if (lval) /* found it saved on the stack */ - *lval = lval_memory; - if (regnum == SP_REGNUM) - { - if (raw_buffer) /* SP register treated specially */ - store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), - frame->saved_regs[regnum]); - } - else - { - if (addrp) /* any other register */ - *addrp = frame->saved_regs[regnum]; - if (raw_buffer) - read_memory (frame->saved_regs[regnum], raw_buffer, - REGISTER_RAW_SIZE (regnum)); - } - return; - } + frame = get_prev_frame (frame); } - /* If we get thru the loop to this point, it means the register was - not saved in any frame. Return the actual live-register value. */ - - if (lval) /* found it in a live register */ - *lval = lval_register; - if (addrp) - *addrp = REGISTER_BYTE (regnum); - if (raw_buffer) - read_register_gen (regnum, raw_buffer); -} - -void -_initialize_blockframe () -{ - obstack_init (&frame_cache_obstack); + return NULL; }