X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=bfd%2Fcoff-sh.c;h=a52269bbe7eecffbfcac874e1b99b2edbf341dd6;hb=1964088538cbf9483a1c9f411ad9d9054ea7be90;hp=37f92edd65269f82b623dfee4548816b5161747f;hpb=46dd06224bedb1b95700732114263ea4d4b01937;p=deliverable%2Fbinutils-gdb.git diff --git a/bfd/coff-sh.c b/bfd/coff-sh.c index 37f92edd65..a52269bbe7 100644 --- a/bfd/coff-sh.c +++ b/bfd/coff-sh.c @@ -1,186 +1,3212 @@ -/* BFD back-end for Hitachi Super-H COFF binaries. - Copyright 1993 Free Software Foundation, Inc. +/* BFD back-end for Renesas Super-H COFF binaries. + Copyright (C) 1993-2016 Free Software Foundation, Inc. Contributed by Cygnus Support. Written by Steve Chamberlain, . + Relaxing code written by Ian Lance Taylor, . -This file is part of BFD, the Binary File Descriptor library. + This file is part of BFD, the Binary File Descriptor library. -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, + MA 02110-1301, USA. */ -#include "bfd.h" #include "sysdep.h" +#include "bfd.h" +#include "libiberty.h" #include "libbfd.h" -#include "obstack.h" +#include "bfdlink.h" #include "coff/sh.h" #include "coff/internal.h" + +#undef bfd_pe_print_pdata + +#ifdef COFF_WITH_PE +#include "coff/pe.h" + +#ifndef COFF_IMAGE_WITH_PE +static bfd_boolean sh_align_load_span + (bfd *, asection *, bfd_byte *, + bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma), + void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *); + +#define _bfd_sh_align_load_span sh_align_load_span +#endif + +#define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata + +#else + +#define bfd_pe_print_pdata NULL + +#endif /* COFF_WITH_PE. */ + #include "libcoff.h" -#include "seclet.h" -extern bfd_error_vector_type bfd_error_vector; +/* Internal functions. */ + +#ifdef COFF_WITH_PE +/* Can't build import tables with 2**4 alignment. */ +#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2 +#else +/* Default section alignment to 2**4. */ +#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4 +#endif + +#ifdef COFF_IMAGE_WITH_PE +/* Align PE executables. */ +#define COFF_PAGE_SIZE 0x1000 +#endif + +/* Generate long file names. */ +#define COFF_LONG_FILENAMES + +#ifdef COFF_WITH_PE +/* Return TRUE if this relocation should + appear in the output .reloc section. */ + +static bfd_boolean +in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED, + reloc_howto_type * howto) +{ + return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE; +} +#endif + +static bfd_reloc_status_type +sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); +static bfd_boolean +sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *, + bfd_byte *, struct internal_reloc *, + struct internal_syment *, asection **); +static bfd_boolean +sh_align_loads (bfd *, asection *, struct internal_reloc *, + bfd_byte *, bfd_boolean *); + +/* The supported relocations. There are a lot of relocations defined + in coff/internal.h which we do not expect to ever see. */ +static reloc_howto_type sh_coff_howtos[] = +{ + EMPTY_HOWTO (0), + EMPTY_HOWTO (1), +#ifdef COFF_WITH_PE + /* Windows CE */ + HOWTO (R_SH_IMM32CE, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_imm32ce", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ +#else + EMPTY_HOWTO (2), +#endif + EMPTY_HOWTO (3), /* R_SH_PCREL8 */ + EMPTY_HOWTO (4), /* R_SH_PCREL16 */ + EMPTY_HOWTO (5), /* R_SH_HIGH8 */ + EMPTY_HOWTO (6), /* R_SH_IMM24 */ + EMPTY_HOWTO (7), /* R_SH_LOW16 */ + EMPTY_HOWTO (8), + EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */ + + HOWTO (R_SH_PCDISP8BY2, /* type */ + 1, /* rightshift */ + 1, /* size (0 = byte, 1 = short, 2 = long) */ + 8, /* bitsize */ + TRUE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_signed, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_pcdisp8by2", /* name */ + TRUE, /* partial_inplace */ + 0xff, /* src_mask */ + 0xff, /* dst_mask */ + TRUE), /* pcrel_offset */ + + EMPTY_HOWTO (11), /* R_SH_PCDISP8 */ + + HOWTO (R_SH_PCDISP, /* type */ + 1, /* rightshift */ + 1, /* size (0 = byte, 1 = short, 2 = long) */ + 12, /* bitsize */ + TRUE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_signed, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_pcdisp12by2", /* name */ + TRUE, /* partial_inplace */ + 0xfff, /* src_mask */ + 0xfff, /* dst_mask */ + TRUE), /* pcrel_offset */ + + EMPTY_HOWTO (13), + + HOWTO (R_SH_IMM32, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_imm32", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + EMPTY_HOWTO (15), +#ifdef COFF_WITH_PE + HOWTO (R_SH_IMAGEBASE, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "rva32", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ +#else + EMPTY_HOWTO (16), /* R_SH_IMM8 */ +#endif + EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */ + EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */ + EMPTY_HOWTO (19), /* R_SH_IMM4 */ + EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */ + EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */ + + HOWTO (R_SH_PCRELIMM8BY2, /* type */ + 1, /* rightshift */ + 1, /* size (0 = byte, 1 = short, 2 = long) */ + 8, /* bitsize */ + TRUE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_unsigned, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_pcrelimm8by2", /* name */ + TRUE, /* partial_inplace */ + 0xff, /* src_mask */ + 0xff, /* dst_mask */ + TRUE), /* pcrel_offset */ + + HOWTO (R_SH_PCRELIMM8BY4, /* type */ + 2, /* rightshift */ + 1, /* size (0 = byte, 1 = short, 2 = long) */ + 8, /* bitsize */ + TRUE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_unsigned, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_pcrelimm8by4", /* name */ + TRUE, /* partial_inplace */ + 0xff, /* src_mask */ + 0xff, /* dst_mask */ + TRUE), /* pcrel_offset */ + + HOWTO (R_SH_IMM16, /* type */ + 0, /* rightshift */ + 1, /* size (0 = byte, 1 = short, 2 = long) */ + 16, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_imm16", /* name */ + TRUE, /* partial_inplace */ + 0xffff, /* src_mask */ + 0xffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_SWITCH16, /* type */ + 0, /* rightshift */ + 1, /* size (0 = byte, 1 = short, 2 = long) */ + 16, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_switch16", /* name */ + TRUE, /* partial_inplace */ + 0xffff, /* src_mask */ + 0xffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_SWITCH32, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_switch32", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_USES, /* type */ + 0, /* rightshift */ + 1, /* size (0 = byte, 1 = short, 2 = long) */ + 16, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_uses", /* name */ + TRUE, /* partial_inplace */ + 0xffff, /* src_mask */ + 0xffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_COUNT, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_count", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_ALIGN, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_align", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_CODE, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_code", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_DATA, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_data", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_LABEL, /* type */ + 0, /* rightshift */ + 2, /* size (0 = byte, 1 = short, 2 = long) */ + 32, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_label", /* name */ + TRUE, /* partial_inplace */ + 0xffffffff, /* src_mask */ + 0xffffffff, /* dst_mask */ + FALSE), /* pcrel_offset */ + + HOWTO (R_SH_SWITCH8, /* type */ + 0, /* rightshift */ + 0, /* size (0 = byte, 1 = short, 2 = long) */ + 8, /* bitsize */ + FALSE, /* pc_relative */ + 0, /* bitpos */ + complain_overflow_bitfield, /* complain_on_overflow */ + sh_reloc, /* special_function */ + "r_switch8", /* name */ + TRUE, /* partial_inplace */ + 0xff, /* src_mask */ + 0xff, /* dst_mask */ + FALSE) /* pcrel_offset */ +}; + +#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0]) + +/* Check for a bad magic number. */ +#define BADMAG(x) SHBADMAG(x) + +/* Customize coffcode.h (this is not currently used). */ +#define SH 1 + +/* FIXME: This should not be set here. */ +#define __A_MAGIC_SET__ + +#ifndef COFF_WITH_PE +/* Swap the r_offset field in and out. */ +#define SWAP_IN_RELOC_OFFSET H_GET_32 +#define SWAP_OUT_RELOC_OFFSET H_PUT_32 + +/* Swap out extra information in the reloc structure. */ +#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \ + do \ + { \ + dst->r_stuff[0] = 'S'; \ + dst->r_stuff[1] = 'C'; \ + } \ + while (0) +#endif + +/* Get the value of a symbol, when performing a relocation. */ + +static long +get_symbol_value (asymbol *symbol) +{ + bfd_vma relocation; + + if (bfd_is_com_section (symbol->section)) + relocation = 0; + else + relocation = (symbol->value + + symbol->section->output_section->vma + + symbol->section->output_offset); + + return relocation; +} + +#ifdef COFF_WITH_PE +/* Convert an rtype to howto for the COFF backend linker. + Copied from coff-i386. */ +#define coff_rtype_to_howto coff_sh_rtype_to_howto + + +static reloc_howto_type * +coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED, + asection * sec, + struct internal_reloc * rel, + struct coff_link_hash_entry * h, + struct internal_syment * sym, + bfd_vma * addendp) +{ + reloc_howto_type * howto; + + howto = sh_coff_howtos + rel->r_type; + + *addendp = 0; + + if (howto->pc_relative) + *addendp += sec->vma; + + if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0) + { + /* This is a common symbol. The section contents include the + size (sym->n_value) as an addend. The relocate_section + function will be adding in the final value of the symbol. We + need to subtract out the current size in order to get the + correct result. */ + BFD_ASSERT (h != NULL); + } + + if (howto->pc_relative) + { + *addendp -= 4; + + /* If the symbol is defined, then the generic code is going to + add back the symbol value in order to cancel out an + adjustment it made to the addend. However, we set the addend + to 0 at the start of this function. We need to adjust here, + to avoid the adjustment the generic code will make. FIXME: + This is getting a bit hackish. */ + if (sym != NULL && sym->n_scnum != 0) + *addendp -= sym->n_value; + } + + if (rel->r_type == R_SH_IMAGEBASE) + *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase; + + return howto; +} + +#endif /* COFF_WITH_PE */ + +/* This structure is used to map BFD reloc codes to SH PE relocs. */ +struct shcoff_reloc_map +{ + bfd_reloc_code_real_type bfd_reloc_val; + unsigned char shcoff_reloc_val; +}; + +#ifdef COFF_WITH_PE +/* An array mapping BFD reloc codes to SH PE relocs. */ +static const struct shcoff_reloc_map sh_reloc_map[] = +{ + { BFD_RELOC_32, R_SH_IMM32CE }, + { BFD_RELOC_RVA, R_SH_IMAGEBASE }, + { BFD_RELOC_CTOR, R_SH_IMM32CE }, +}; +#else +/* An array mapping BFD reloc codes to SH PE relocs. */ +static const struct shcoff_reloc_map sh_reloc_map[] = +{ + { BFD_RELOC_32, R_SH_IMM32 }, + { BFD_RELOC_CTOR, R_SH_IMM32 }, +}; +#endif + +/* Given a BFD reloc code, return the howto structure for the + corresponding SH PE reloc. */ +#define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup +#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup + +static reloc_howto_type * +sh_coff_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, + bfd_reloc_code_real_type code) +{ + unsigned int i; + + for (i = ARRAY_SIZE (sh_reloc_map); i--;) + if (sh_reloc_map[i].bfd_reloc_val == code) + return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val]; + + _bfd_error_handler (_("SH Error: unknown reloc type %d"), code); + return NULL; +} + +static reloc_howto_type * +sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, + const char *r_name) +{ + unsigned int i; + + for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++) + if (sh_coff_howtos[i].name != NULL + && strcasecmp (sh_coff_howtos[i].name, r_name) == 0) + return &sh_coff_howtos[i]; + + return NULL; +} + +/* This macro is used in coffcode.h to get the howto corresponding to + an internal reloc. */ + +#define RTYPE2HOWTO(relent, internal) \ + ((relent)->howto = \ + ((internal)->r_type < SH_COFF_HOWTO_COUNT \ + ? &sh_coff_howtos[(internal)->r_type] \ + : (reloc_howto_type *) NULL)) + +/* This is the same as the macro in coffcode.h, except that it copies + r_offset into reloc_entry->addend for some relocs. */ +#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \ + { \ + coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \ + if (ptr && bfd_asymbol_bfd (ptr) != abfd) \ + coffsym = (obj_symbols (abfd) \ + + (cache_ptr->sym_ptr_ptr - symbols)); \ + else if (ptr) \ + coffsym = coff_symbol_from (ptr); \ + if (coffsym != (coff_symbol_type *) NULL \ + && coffsym->native->u.syment.n_scnum == 0) \ + cache_ptr->addend = 0; \ + else if (ptr && bfd_asymbol_bfd (ptr) == abfd \ + && ptr->section != (asection *) NULL) \ + cache_ptr->addend = - (ptr->section->vma + ptr->value); \ + else \ + cache_ptr->addend = 0; \ + if ((reloc).r_type == R_SH_SWITCH8 \ + || (reloc).r_type == R_SH_SWITCH16 \ + || (reloc).r_type == R_SH_SWITCH32 \ + || (reloc).r_type == R_SH_USES \ + || (reloc).r_type == R_SH_COUNT \ + || (reloc).r_type == R_SH_ALIGN) \ + cache_ptr->addend = (reloc).r_offset; \ + } + +/* This is the howto function for the SH relocations. */ + +static bfd_reloc_status_type +sh_reloc (bfd * abfd, + arelent * reloc_entry, + asymbol * symbol_in, + void * data, + asection * input_section, + bfd * output_bfd, + char ** error_message ATTRIBUTE_UNUSED) +{ + unsigned long insn; + bfd_vma sym_value; + unsigned short r_type; + bfd_vma addr = reloc_entry->address; + bfd_byte *hit_data = addr + (bfd_byte *) data; + + r_type = reloc_entry->howto->type; + + if (output_bfd != NULL) + { + /* Partial linking--do nothing. */ + reloc_entry->address += input_section->output_offset; + return bfd_reloc_ok; + } + + /* Almost all relocs have to do with relaxing. If any work must be + done for them, it has been done in sh_relax_section. */ + if (r_type != R_SH_IMM32 +#ifdef COFF_WITH_PE + && r_type != R_SH_IMM32CE + && r_type != R_SH_IMAGEBASE +#endif + && (r_type != R_SH_PCDISP + || (symbol_in->flags & BSF_LOCAL) != 0)) + return bfd_reloc_ok; + + if (symbol_in != NULL + && bfd_is_und_section (symbol_in->section)) + return bfd_reloc_undefined; + + sym_value = get_symbol_value (symbol_in); + + switch (r_type) + { + case R_SH_IMM32: +#ifdef COFF_WITH_PE + case R_SH_IMM32CE: +#endif + insn = bfd_get_32 (abfd, hit_data); + insn += sym_value + reloc_entry->addend; + bfd_put_32 (abfd, (bfd_vma) insn, hit_data); + break; +#ifdef COFF_WITH_PE + case R_SH_IMAGEBASE: + insn = bfd_get_32 (abfd, hit_data); + insn += sym_value + reloc_entry->addend; + insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; + bfd_put_32 (abfd, (bfd_vma) insn, hit_data); + break; +#endif + case R_SH_PCDISP: + insn = bfd_get_16 (abfd, hit_data); + sym_value += reloc_entry->addend; + sym_value -= (input_section->output_section->vma + + input_section->output_offset + + addr + + 4); + sym_value += (insn & 0xfff) << 1; + if (insn & 0x800) + sym_value -= 0x1000; + insn = (insn & 0xf000) | (sym_value & 0xfff); + bfd_put_16 (abfd, (bfd_vma) insn, hit_data); + if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000) + return bfd_reloc_overflow; + break; + default: + abort (); + break; + } + + return bfd_reloc_ok; +} + +#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match + +/* We can do relaxing. */ +#define coff_bfd_relax_section sh_relax_section + +/* We use the special COFF backend linker. */ +#define coff_relocate_section sh_relocate_section + +/* When relaxing, we need to use special code to get the relocated + section contents. */ +#define coff_bfd_get_relocated_section_contents \ + sh_coff_get_relocated_section_contents + +#include "coffcode.h" + +static bfd_boolean +sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int); + +/* This function handles relaxing on the SH. + + Function calls on the SH look like this: + + movl L1,r0 + ... + jsr @r0 + ... + L1: + .long function + + The compiler and assembler will cooperate to create R_SH_USES + relocs on the jsr instructions. The r_offset field of the + R_SH_USES reloc is the PC relative offset to the instruction which + loads the register (the r_offset field is computed as though it + were a jump instruction, so the offset value is actually from four + bytes past the instruction). The linker can use this reloc to + determine just which function is being called, and thus decide + whether it is possible to replace the jsr with a bsr. + + If multiple function calls are all based on a single register load + (i.e., the same function is called multiple times), the compiler + guarantees that each function call will have an R_SH_USES reloc. + Therefore, if the linker is able to convert each R_SH_USES reloc + which refers to that address, it can safely eliminate the register + load. + + When the assembler creates an R_SH_USES reloc, it examines it to + determine which address is being loaded (L1 in the above example). + It then counts the number of references to that address, and + creates an R_SH_COUNT reloc at that address. The r_offset field of + the R_SH_COUNT reloc will be the number of references. If the + linker is able to eliminate a register load, it can use the + R_SH_COUNT reloc to see whether it can also eliminate the function + address. + + SH relaxing also handles another, unrelated, matter. On the SH, if + a load or store instruction is not aligned on a four byte boundary, + the memory cycle interferes with the 32 bit instruction fetch, + causing a one cycle bubble in the pipeline. Therefore, we try to + align load and store instructions on four byte boundaries if we + can, by swapping them with one of the adjacent instructions. */ + +static bfd_boolean +sh_relax_section (bfd *abfd, + asection *sec, + struct bfd_link_info *link_info, + bfd_boolean *again) +{ + struct internal_reloc *internal_relocs; + bfd_boolean have_code; + struct internal_reloc *irel, *irelend; + bfd_byte *contents = NULL; + + *again = FALSE; + + if (bfd_link_relocatable (link_info) + || (sec->flags & SEC_RELOC) == 0 + || sec->reloc_count == 0) + return TRUE; + + if (coff_section_data (abfd, sec) == NULL) + { + bfd_size_type amt = sizeof (struct coff_section_tdata); + sec->used_by_bfd = bfd_zalloc (abfd, amt); + if (sec->used_by_bfd == NULL) + return FALSE; + } + + internal_relocs = (_bfd_coff_read_internal_relocs + (abfd, sec, link_info->keep_memory, + (bfd_byte *) NULL, FALSE, + (struct internal_reloc *) NULL)); + if (internal_relocs == NULL) + goto error_return; + + have_code = FALSE; + + irelend = internal_relocs + sec->reloc_count; + for (irel = internal_relocs; irel < irelend; irel++) + { + bfd_vma laddr, paddr, symval; + unsigned short insn; + struct internal_reloc *irelfn, *irelscan, *irelcount; + struct internal_syment sym; + bfd_signed_vma foff; + + if (irel->r_type == R_SH_CODE) + have_code = TRUE; + + if (irel->r_type != R_SH_USES) + continue; + + /* Get the section contents. */ + if (contents == NULL) + { + if (coff_section_data (abfd, sec)->contents != NULL) + contents = coff_section_data (abfd, sec)->contents; + else + { + if (!bfd_malloc_and_get_section (abfd, sec, &contents)) + goto error_return; + } + } + + /* The r_offset field of the R_SH_USES reloc will point us to + the register load. The 4 is because the r_offset field is + computed as though it were a jump offset, which are based + from 4 bytes after the jump instruction. */ + laddr = irel->r_vaddr - sec->vma + 4; + /* Careful to sign extend the 32-bit offset. */ + laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000; + if (laddr >= sec->size) + { + /* xgettext: c-format */ + _bfd_error_handler (_("%B: 0x%lx: warning: bad R_SH_USES offset"), + abfd, (unsigned long) irel->r_vaddr); + continue; + } + insn = bfd_get_16 (abfd, contents + laddr); + + /* If the instruction is not mov.l NN,rN, we don't know what to do. */ + if ((insn & 0xf000) != 0xd000) + { + _bfd_error_handler + /* xgettext: c-format */ + (_("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"), + abfd, (unsigned long) irel->r_vaddr, insn); + continue; + } + + /* Get the address from which the register is being loaded. The + displacement in the mov.l instruction is quadrupled. It is a + displacement from four bytes after the movl instruction, but, + before adding in the PC address, two least significant bits + of the PC are cleared. We assume that the section is aligned + on a four byte boundary. */ + paddr = insn & 0xff; + paddr *= 4; + paddr += (laddr + 4) &~ (bfd_vma) 3; + if (paddr >= sec->size) + { + _bfd_error_handler + /* xgettext: c-format */ + (_("%B: 0x%lx: warning: bad R_SH_USES load offset"), + abfd, (unsigned long) irel->r_vaddr); + continue; + } + + /* Get the reloc for the address from which the register is + being loaded. This reloc will tell us which function is + actually being called. */ + paddr += sec->vma; + for (irelfn = internal_relocs; irelfn < irelend; irelfn++) + if (irelfn->r_vaddr == paddr +#ifdef COFF_WITH_PE + && (irelfn->r_type == R_SH_IMM32 + || irelfn->r_type == R_SH_IMM32CE + || irelfn->r_type == R_SH_IMAGEBASE) + +#else + && irelfn->r_type == R_SH_IMM32 +#endif + ) + break; + if (irelfn >= irelend) + { + _bfd_error_handler + /* xgettext: c-format */ + (_("%B: 0x%lx: warning: could not find expected reloc"), + abfd, (unsigned long) paddr); + continue; + } + + /* Get the value of the symbol referred to by the reloc. */ + if (! _bfd_coff_get_external_symbols (abfd)) + goto error_return; + bfd_coff_swap_sym_in (abfd, + ((bfd_byte *) obj_coff_external_syms (abfd) + + (irelfn->r_symndx + * bfd_coff_symesz (abfd))), + &sym); + if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index) + { + _bfd_error_handler + /* xgettext: c-format */ + (_("%B: 0x%lx: warning: symbol in unexpected section"), + abfd, (unsigned long) paddr); + continue; + } + + if (sym.n_sclass != C_EXT) + { + symval = (sym.n_value + - sec->vma + + sec->output_section->vma + + sec->output_offset); + } + else + { + struct coff_link_hash_entry *h; + + h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx]; + BFD_ASSERT (h != NULL); + if (h->root.type != bfd_link_hash_defined + && h->root.type != bfd_link_hash_defweak) + { + /* This appears to be a reference to an undefined + symbol. Just ignore it--it will be caught by the + regular reloc processing. */ + continue; + } + + symval = (h->root.u.def.value + + h->root.u.def.section->output_section->vma + + h->root.u.def.section->output_offset); + } + + symval += bfd_get_32 (abfd, contents + paddr - sec->vma); + + /* See if this function call can be shortened. */ + foff = (symval + - (irel->r_vaddr + - sec->vma + + sec->output_section->vma + + sec->output_offset + + 4)); + if (foff < -0x1000 || foff >= 0x1000) + { + /* After all that work, we can't shorten this function call. */ + continue; + } + + /* Shorten the function call. */ + + /* For simplicity of coding, we are going to modify the section + contents, the section relocs, and the BFD symbol table. We + must tell the rest of the code not to free up this + information. It would be possible to instead create a table + of changes which have to be made, as is done in coff-mips.c; + that would be more work, but would require less memory when + the linker is run. */ + + coff_section_data (abfd, sec)->relocs = internal_relocs; + coff_section_data (abfd, sec)->keep_relocs = TRUE; + + coff_section_data (abfd, sec)->contents = contents; + coff_section_data (abfd, sec)->keep_contents = TRUE; + + obj_coff_keep_syms (abfd) = TRUE; + + /* Replace the jsr with a bsr. */ + + /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and + replace the jsr with a bsr. */ + irel->r_type = R_SH_PCDISP; + irel->r_symndx = irelfn->r_symndx; + if (sym.n_sclass != C_EXT) + { + /* If this needs to be changed because of future relaxing, + it will be handled here like other internal PCDISP + relocs. */ + bfd_put_16 (abfd, + (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff), + contents + irel->r_vaddr - sec->vma); + } + else + { + /* We can't fully resolve this yet, because the external + symbol value may be changed by future relaxing. We let + the final link phase handle it. */ + bfd_put_16 (abfd, (bfd_vma) 0xb000, + contents + irel->r_vaddr - sec->vma); + } + + /* See if there is another R_SH_USES reloc referring to the same + register load. */ + for (irelscan = internal_relocs; irelscan < irelend; irelscan++) + if (irelscan->r_type == R_SH_USES + && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset) + break; + if (irelscan < irelend) + { + /* Some other function call depends upon this register load, + and we have not yet converted that function call. + Indeed, we may never be able to convert it. There is + nothing else we can do at this point. */ + continue; + } + + /* Look for a R_SH_COUNT reloc on the location where the + function address is stored. Do this before deleting any + bytes, to avoid confusion about the address. */ + for (irelcount = internal_relocs; irelcount < irelend; irelcount++) + if (irelcount->r_vaddr == paddr + && irelcount->r_type == R_SH_COUNT) + break; + + /* Delete the register load. */ + if (! sh_relax_delete_bytes (abfd, sec, laddr, 2)) + goto error_return; + + /* That will change things, so, just in case it permits some + other function call to come within range, we should relax + again. Note that this is not required, and it may be slow. */ + *again = TRUE; + + /* Now check whether we got a COUNT reloc. */ + if (irelcount >= irelend) + { + _bfd_error_handler + /* xgettext: c-format */ + (_("%B: 0x%lx: warning: could not find expected COUNT reloc"), + abfd, (unsigned long) paddr); + continue; + } + + /* The number of uses is stored in the r_offset field. We've + just deleted one. */ + if (irelcount->r_offset == 0) + { + /* xgettext: c-format */ + _bfd_error_handler (_("%B: 0x%lx: warning: bad count"), + abfd, (unsigned long) paddr); + continue; + } + + --irelcount->r_offset; + + /* If there are no more uses, we can delete the address. Reload + the address from irelfn, in case it was changed by the + previous call to sh_relax_delete_bytes. */ + if (irelcount->r_offset == 0) + { + if (! sh_relax_delete_bytes (abfd, sec, + irelfn->r_vaddr - sec->vma, 4)) + goto error_return; + } + + /* We've done all we can with that function call. */ + } + + /* Look for load and store instructions that we can align on four + byte boundaries. */ + if (have_code) + { + bfd_boolean swapped; + + /* Get the section contents. */ + if (contents == NULL) + { + if (coff_section_data (abfd, sec)->contents != NULL) + contents = coff_section_data (abfd, sec)->contents; + else + { + if (!bfd_malloc_and_get_section (abfd, sec, &contents)) + goto error_return; + } + } + + if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped)) + goto error_return; + + if (swapped) + { + coff_section_data (abfd, sec)->relocs = internal_relocs; + coff_section_data (abfd, sec)->keep_relocs = TRUE; + + coff_section_data (abfd, sec)->contents = contents; + coff_section_data (abfd, sec)->keep_contents = TRUE; + + obj_coff_keep_syms (abfd) = TRUE; + } + } + + if (internal_relocs != NULL + && internal_relocs != coff_section_data (abfd, sec)->relocs) + { + if (! link_info->keep_memory) + free (internal_relocs); + else + coff_section_data (abfd, sec)->relocs = internal_relocs; + } + + if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) + { + if (! link_info->keep_memory) + free (contents); + else + /* Cache the section contents for coff_link_input_bfd. */ + coff_section_data (abfd, sec)->contents = contents; + } + + return TRUE; + + error_return: + if (internal_relocs != NULL + && internal_relocs != coff_section_data (abfd, sec)->relocs) + free (internal_relocs); + if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) + free (contents); + return FALSE; +} + +/* Delete some bytes from a section while relaxing. */ + +static bfd_boolean +sh_relax_delete_bytes (bfd *abfd, + asection *sec, + bfd_vma addr, + int count) +{ + bfd_byte *contents; + struct internal_reloc *irel, *irelend; + struct internal_reloc *irelalign; + bfd_vma toaddr; + bfd_byte *esym, *esymend; + bfd_size_type symesz; + struct coff_link_hash_entry **sym_hash; + asection *o; + + contents = coff_section_data (abfd, sec)->contents; + + /* The deletion must stop at the next ALIGN reloc for an aligment + power larger than the number of bytes we are deleting. */ + + irelalign = NULL; + toaddr = sec->size; + + irel = coff_section_data (abfd, sec)->relocs; + irelend = irel + sec->reloc_count; + for (; irel < irelend; irel++) + { + if (irel->r_type == R_SH_ALIGN + && irel->r_vaddr - sec->vma > addr + && count < (1 << irel->r_offset)) + { + irelalign = irel; + toaddr = irel->r_vaddr - sec->vma; + break; + } + } + + /* Actually delete the bytes. */ + memmove (contents + addr, contents + addr + count, + (size_t) (toaddr - addr - count)); + if (irelalign == NULL) + sec->size -= count; + else + { + int i; + +#define NOP_OPCODE (0x0009) + + BFD_ASSERT ((count & 1) == 0); + for (i = 0; i < count; i += 2) + bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); + } + + /* Adjust all the relocs. */ + for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++) + { + bfd_vma nraddr, stop; + bfd_vma start = 0; + int insn = 0; + struct internal_syment sym; + int off, adjust, oinsn; + bfd_signed_vma voff = 0; + bfd_boolean overflow; + + /* Get the new reloc address. */ + nraddr = irel->r_vaddr - sec->vma; + if ((irel->r_vaddr - sec->vma > addr + && irel->r_vaddr - sec->vma < toaddr) + || (irel->r_type == R_SH_ALIGN + && irel->r_vaddr - sec->vma == toaddr)) + nraddr -= count; + + /* See if this reloc was for the bytes we have deleted, in which + case we no longer care about it. Don't delete relocs which + represent addresses, though. */ + if (irel->r_vaddr - sec->vma >= addr + && irel->r_vaddr - sec->vma < addr + count + && irel->r_type != R_SH_ALIGN + && irel->r_type != R_SH_CODE + && irel->r_type != R_SH_DATA + && irel->r_type != R_SH_LABEL) + irel->r_type = R_SH_UNUSED; + + /* If this is a PC relative reloc, see if the range it covers + includes the bytes we have deleted. */ + switch (irel->r_type) + { + default: + break; + + case R_SH_PCDISP8BY2: + case R_SH_PCDISP: + case R_SH_PCRELIMM8BY2: + case R_SH_PCRELIMM8BY4: + start = irel->r_vaddr - sec->vma; + insn = bfd_get_16 (abfd, contents + nraddr); + break; + } + + switch (irel->r_type) + { + default: + start = stop = addr; + break; + + case R_SH_IMM32: +#ifdef COFF_WITH_PE + case R_SH_IMM32CE: + case R_SH_IMAGEBASE: +#endif + /* If this reloc is against a symbol defined in this + section, and the symbol will not be adjusted below, we + must check the addend to see it will put the value in + range to be adjusted, and hence must be changed. */ + bfd_coff_swap_sym_in (abfd, + ((bfd_byte *) obj_coff_external_syms (abfd) + + (irel->r_symndx + * bfd_coff_symesz (abfd))), + &sym); + if (sym.n_sclass != C_EXT + && sym.n_scnum == sec->target_index + && ((bfd_vma) sym.n_value <= addr + || (bfd_vma) sym.n_value >= toaddr)) + { + bfd_vma val; + + val = bfd_get_32 (abfd, contents + nraddr); + val += sym.n_value; + if (val > addr && val < toaddr) + bfd_put_32 (abfd, val - count, contents + nraddr); + } + start = stop = addr; + break; + + case R_SH_PCDISP8BY2: + off = insn & 0xff; + if (off & 0x80) + off -= 0x100; + stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); + break; + + case R_SH_PCDISP: + bfd_coff_swap_sym_in (abfd, + ((bfd_byte *) obj_coff_external_syms (abfd) + + (irel->r_symndx + * bfd_coff_symesz (abfd))), + &sym); + if (sym.n_sclass == C_EXT) + start = stop = addr; + else + { + off = insn & 0xfff; + if (off & 0x800) + off -= 0x1000; + stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); + } + break; + + case R_SH_PCRELIMM8BY2: + off = insn & 0xff; + stop = start + 4 + off * 2; + break; + + case R_SH_PCRELIMM8BY4: + off = insn & 0xff; + stop = (start &~ (bfd_vma) 3) + 4 + off * 4; + break; + + case R_SH_SWITCH8: + case R_SH_SWITCH16: + case R_SH_SWITCH32: + /* These relocs types represent + .word L2-L1 + The r_offset field holds the difference between the reloc + address and L1. That is the start of the reloc, and + adding in the contents gives us the top. We must adjust + both the r_offset field and the section contents. */ + + start = irel->r_vaddr - sec->vma; + stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset); + + if (start > addr + && start < toaddr + && (stop <= addr || stop >= toaddr)) + irel->r_offset += count; + else if (stop > addr + && stop < toaddr + && (start <= addr || start >= toaddr)) + irel->r_offset -= count; + + start = stop; + + if (irel->r_type == R_SH_SWITCH16) + voff = bfd_get_signed_16 (abfd, contents + nraddr); + else if (irel->r_type == R_SH_SWITCH8) + voff = bfd_get_8 (abfd, contents + nraddr); + else + voff = bfd_get_signed_32 (abfd, contents + nraddr); + stop = (bfd_vma) ((bfd_signed_vma) start + voff); + + break; + + case R_SH_USES: + start = irel->r_vaddr - sec->vma; + stop = (bfd_vma) ((bfd_signed_vma) start + + (long) irel->r_offset + + 4); + break; + } + + if (start > addr + && start < toaddr + && (stop <= addr || stop >= toaddr)) + adjust = count; + else if (stop > addr + && stop < toaddr + && (start <= addr || start >= toaddr)) + adjust = - count; + else + adjust = 0; + + if (adjust != 0) + { + oinsn = insn; + overflow = FALSE; + switch (irel->r_type) + { + default: + abort (); + break; + + case R_SH_PCDISP8BY2: + case R_SH_PCRELIMM8BY2: + insn += adjust / 2; + if ((oinsn & 0xff00) != (insn & 0xff00)) + overflow = TRUE; + bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); + break; + + case R_SH_PCDISP: + insn += adjust / 2; + if ((oinsn & 0xf000) != (insn & 0xf000)) + overflow = TRUE; + bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); + break; + + case R_SH_PCRELIMM8BY4: + BFD_ASSERT (adjust == count || count >= 4); + if (count >= 4) + insn += adjust / 4; + else + { + if ((irel->r_vaddr & 3) == 0) + ++insn; + } + if ((oinsn & 0xff00) != (insn & 0xff00)) + overflow = TRUE; + bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); + break; + + case R_SH_SWITCH8: + voff += adjust; + if (voff < 0 || voff >= 0xff) + overflow = TRUE; + bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr); + break; + + case R_SH_SWITCH16: + voff += adjust; + if (voff < - 0x8000 || voff >= 0x8000) + overflow = TRUE; + bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); + break; + + case R_SH_SWITCH32: + voff += adjust; + bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); + break; + + case R_SH_USES: + irel->r_offset += adjust; + break; + } + + if (overflow) + { + _bfd_error_handler + /* xgettext: c-format */ + (_("%B: 0x%lx: fatal: reloc overflow while relaxing"), + abfd, (unsigned long) irel->r_vaddr); + bfd_set_error (bfd_error_bad_value); + return FALSE; + } + } + + irel->r_vaddr = nraddr + sec->vma; + } + + /* Look through all the other sections. If there contain any IMM32 + relocs against internal symbols which we are not going to adjust + below, we may need to adjust the addends. */ + for (o = abfd->sections; o != NULL; o = o->next) + { + struct internal_reloc *internal_relocs; + struct internal_reloc *irelscan, *irelscanend; + bfd_byte *ocontents; + + if (o == sec + || (o->flags & SEC_RELOC) == 0 + || o->reloc_count == 0) + continue; + + /* We always cache the relocs. Perhaps, if info->keep_memory is + FALSE, we should free them, if we are permitted to, when we + leave sh_coff_relax_section. */ + internal_relocs = (_bfd_coff_read_internal_relocs + (abfd, o, TRUE, (bfd_byte *) NULL, FALSE, + (struct internal_reloc *) NULL)); + if (internal_relocs == NULL) + return FALSE; + + ocontents = NULL; + irelscanend = internal_relocs + o->reloc_count; + for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) + { + struct internal_syment sym; + +#ifdef COFF_WITH_PE + if (irelscan->r_type != R_SH_IMM32 + && irelscan->r_type != R_SH_IMAGEBASE + && irelscan->r_type != R_SH_IMM32CE) +#else + if (irelscan->r_type != R_SH_IMM32) +#endif + continue; + + bfd_coff_swap_sym_in (abfd, + ((bfd_byte *) obj_coff_external_syms (abfd) + + (irelscan->r_symndx + * bfd_coff_symesz (abfd))), + &sym); + if (sym.n_sclass != C_EXT + && sym.n_scnum == sec->target_index + && ((bfd_vma) sym.n_value <= addr + || (bfd_vma) sym.n_value >= toaddr)) + { + bfd_vma val; + + if (ocontents == NULL) + { + if (coff_section_data (abfd, o)->contents != NULL) + ocontents = coff_section_data (abfd, o)->contents; + else + { + if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) + return FALSE; + /* We always cache the section contents. + Perhaps, if info->keep_memory is FALSE, we + should free them, if we are permitted to, + when we leave sh_coff_relax_section. */ + coff_section_data (abfd, o)->contents = ocontents; + } + } + + val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma); + val += sym.n_value; + if (val > addr && val < toaddr) + bfd_put_32 (abfd, val - count, + ocontents + irelscan->r_vaddr - o->vma); + + coff_section_data (abfd, o)->keep_contents = TRUE; + } + } + } + + /* Adjusting the internal symbols will not work if something has + already retrieved the generic symbols. It would be possible to + make this work by adjusting the generic symbols at the same time. + However, this case should not arise in normal usage. */ + if (obj_symbols (abfd) != NULL + || obj_raw_syments (abfd) != NULL) + { + _bfd_error_handler + (_("%B: fatal: generic symbols retrieved before relaxing"), abfd); + bfd_set_error (bfd_error_invalid_operation); + return FALSE; + } + + /* Adjust all the symbols. */ + sym_hash = obj_coff_sym_hashes (abfd); + symesz = bfd_coff_symesz (abfd); + esym = (bfd_byte *) obj_coff_external_syms (abfd); + esymend = esym + obj_raw_syment_count (abfd) * symesz; + while (esym < esymend) + { + struct internal_syment isym; + + bfd_coff_swap_sym_in (abfd, esym, &isym); + + if (isym.n_scnum == sec->target_index + && (bfd_vma) isym.n_value > addr + && (bfd_vma) isym.n_value < toaddr) + { + isym.n_value -= count; + + bfd_coff_swap_sym_out (abfd, &isym, esym); + + if (*sym_hash != NULL) + { + BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined + || (*sym_hash)->root.type == bfd_link_hash_defweak); + BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr + && (*sym_hash)->root.u.def.value < toaddr); + (*sym_hash)->root.u.def.value -= count; + } + } + + esym += (isym.n_numaux + 1) * symesz; + sym_hash += isym.n_numaux + 1; + } + + /* See if we can move the ALIGN reloc forward. We have adjusted + r_vaddr for it already. */ + if (irelalign != NULL) + { + bfd_vma alignto, alignaddr; + + alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset); + alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma, + 1 << irelalign->r_offset); + if (alignto != alignaddr) + { + /* Tail recursion. */ + return sh_relax_delete_bytes (abfd, sec, alignaddr, + (int) (alignto - alignaddr)); + } + } + + return TRUE; +} + +/* This is yet another version of the SH opcode table, used to rapidly + get information about a particular instruction. */ + +/* The opcode map is represented by an array of these structures. The + array is indexed by the high order four bits in the instruction. */ + +struct sh_major_opcode +{ + /* A pointer to the instruction list. This is an array which + contains all the instructions with this major opcode. */ + const struct sh_minor_opcode *minor_opcodes; + /* The number of elements in minor_opcodes. */ + unsigned short count; +}; + +/* This structure holds information for a set of SH opcodes. The + instruction code is anded with the mask value, and the resulting + value is used to search the order opcode list. */ + +struct sh_minor_opcode +{ + /* The sorted opcode list. */ + const struct sh_opcode *opcodes; + /* The number of elements in opcodes. */ + unsigned short count; + /* The mask value to use when searching the opcode list. */ + unsigned short mask; +}; + +/* This structure holds information for an SH instruction. An array + of these structures is sorted in order by opcode. */ + +struct sh_opcode +{ + /* The code for this instruction, after it has been anded with the + mask value in the sh_major_opcode structure. */ + unsigned short opcode; + /* Flags for this instruction. */ + unsigned long flags; +}; + +/* Flag which appear in the sh_opcode structure. */ + +/* This instruction loads a value from memory. */ +#define LOAD (0x1) + +/* This instruction stores a value to memory. */ +#define STORE (0x2) + +/* This instruction is a branch. */ +#define BRANCH (0x4) + +/* This instruction has a delay slot. */ +#define DELAY (0x8) + +/* This instruction uses the value in the register in the field at + mask 0x0f00 of the instruction. */ +#define USES1 (0x10) +#define USES1_REG(x) ((x & 0x0f00) >> 8) + +/* This instruction uses the value in the register in the field at + mask 0x00f0 of the instruction. */ +#define USES2 (0x20) +#define USES2_REG(x) ((x & 0x00f0) >> 4) + +/* This instruction uses the value in register 0. */ +#define USESR0 (0x40) + +/* This instruction sets the value in the register in the field at + mask 0x0f00 of the instruction. */ +#define SETS1 (0x80) +#define SETS1_REG(x) ((x & 0x0f00) >> 8) + +/* This instruction sets the value in the register in the field at + mask 0x00f0 of the instruction. */ +#define SETS2 (0x100) +#define SETS2_REG(x) ((x & 0x00f0) >> 4) + +/* This instruction sets register 0. */ +#define SETSR0 (0x200) + +/* This instruction sets a special register. */ +#define SETSSP (0x400) + +/* This instruction uses a special register. */ +#define USESSP (0x800) + +/* This instruction uses the floating point register in the field at + mask 0x0f00 of the instruction. */ +#define USESF1 (0x1000) +#define USESF1_REG(x) ((x & 0x0f00) >> 8) + +/* This instruction uses the floating point register in the field at + mask 0x00f0 of the instruction. */ +#define USESF2 (0x2000) +#define USESF2_REG(x) ((x & 0x00f0) >> 4) + +/* This instruction uses floating point register 0. */ +#define USESF0 (0x4000) + +/* This instruction sets the floating point register in the field at + mask 0x0f00 of the instruction. */ +#define SETSF1 (0x8000) +#define SETSF1_REG(x) ((x & 0x0f00) >> 8) + +#define USESAS (0x10000) +#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2) +#define USESR8 (0x20000) +#define SETSAS (0x40000) +#define SETSAS_REG(x) USESAS_REG (x) + +#define MAP(a) a, sizeof a / sizeof a[0] + +#ifndef COFF_IMAGE_WITH_PE + +/* The opcode maps. */ + +static const struct sh_opcode sh_opcode00[] = +{ + { 0x0008, SETSSP }, /* clrt */ + { 0x0009, 0 }, /* nop */ + { 0x000b, BRANCH | DELAY | USESSP }, /* rts */ + { 0x0018, SETSSP }, /* sett */ + { 0x0019, SETSSP }, /* div0u */ + { 0x001b, 0 }, /* sleep */ + { 0x0028, SETSSP }, /* clrmac */ + { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */ + { 0x0038, USESSP | SETSSP }, /* ldtlb */ + { 0x0048, SETSSP }, /* clrs */ + { 0x0058, SETSSP } /* sets */ +}; + +static const struct sh_opcode sh_opcode01[] = +{ + { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */ + { 0x000a, SETS1 | USESSP }, /* sts mach,rn */ + { 0x001a, SETS1 | USESSP }, /* sts macl,rn */ + { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */ + { 0x0029, SETS1 | USESSP }, /* movt rn */ + { 0x002a, SETS1 | USESSP }, /* sts pr,rn */ + { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */ + { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */ + { 0x0083, LOAD | USES1 }, /* pref @rn */ + { 0x007a, SETS1 | USESSP }, /* sts a0,rn */ + { 0x008a, SETS1 | USESSP }, /* sts x0,rn */ + { 0x009a, SETS1 | USESSP }, /* sts x1,rn */ + { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */ + { 0x00ba, SETS1 | USESSP } /* sts y1,rn */ +}; + +static const struct sh_opcode sh_opcode02[] = +{ + { 0x0002, SETS1 | USESSP }, /* stc ,rn */ + { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */ + { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */ + { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */ + { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */ + { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */ + { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */ + { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */ + { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */ +}; + +static const struct sh_minor_opcode sh_opcode0[] = +{ + { MAP (sh_opcode00), 0xffff }, + { MAP (sh_opcode01), 0xf0ff }, + { MAP (sh_opcode02), 0xf00f } +}; + +static const struct sh_opcode sh_opcode10[] = +{ + { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */ +}; + +static const struct sh_minor_opcode sh_opcode1[] = +{ + { MAP (sh_opcode10), 0xf000 } +}; + +static const struct sh_opcode sh_opcode20[] = +{ + { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */ + { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */ + { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */ + { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */ + { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */ + { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */ + { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */ + { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */ + { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */ + { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */ + { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */ + { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */ + { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */ + { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */ + { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */ +}; + +static const struct sh_minor_opcode sh_opcode2[] = +{ + { MAP (sh_opcode20), 0xf00f } +}; + +static const struct sh_opcode sh_opcode30[] = +{ + { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */ + { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */ + { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */ + { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */ + { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */ + { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */ + { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */ + { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */ + { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */ + { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */ + { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */ + { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */ + { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */ + { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */ +}; + +static const struct sh_minor_opcode sh_opcode3[] = +{ + { MAP (sh_opcode30), 0xf00f } +}; + +static const struct sh_opcode sh_opcode40[] = +{ + { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */ + { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */ + { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */ + { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */ + { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */ + { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */ + { 0x4008, SETS1 | USES1 }, /* shll2 rn */ + { 0x4009, SETS1 | USES1 }, /* shlr2 rn */ + { 0x400a, SETSSP | USES1 }, /* lds rm,mach */ + { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */ + { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */ + { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */ + { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */ + { 0x4014, SETSSP | USES1 }, /* setrc rm */ + { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */ + { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */ + { 0x4018, SETS1 | USES1 }, /* shll8 rn */ + { 0x4019, SETS1 | USES1 }, /* shlr8 rn */ + { 0x401a, SETSSP | USES1 }, /* lds rm,macl */ + { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */ + { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */ + { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */ + { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */ + { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */ + { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */ + { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */ + { 0x4028, SETS1 | USES1 }, /* shll16 rn */ + { 0x4029, SETS1 | USES1 }, /* shlr16 rn */ + { 0x402a, SETSSP | USES1 }, /* lds rm,pr */ + { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */ + { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */ + { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */ + { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */ + { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */ + { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */ + { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */ + { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */ + { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */ + { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */ + { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */ + { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */ + { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */ + { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */ + { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */ + { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */ + { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */ + { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */ + { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */ + { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */ + { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */ + { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */ +}; + +static const struct sh_opcode sh_opcode41[] = +{ + { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l ,@-rn */ + { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+, */ + { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */ + { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */ + { 0x400e, SETSSP | USES1 }, /* ldc rm, */ + { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */ +}; + +static const struct sh_minor_opcode sh_opcode4[] = +{ + { MAP (sh_opcode40), 0xf0ff }, + { MAP (sh_opcode41), 0xf00f } +}; + +static const struct sh_opcode sh_opcode50[] = +{ + { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */ +}; + +static const struct sh_minor_opcode sh_opcode5[] = +{ + { MAP (sh_opcode50), 0xf000 } +}; + +static const struct sh_opcode sh_opcode60[] = +{ + { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */ + { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */ + { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */ + { 0x6003, SETS1 | USES2 }, /* mov rm,rn */ + { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */ + { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */ + { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */ + { 0x6007, SETS1 | USES2 }, /* not rm,rn */ + { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */ + { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */ + { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */ + { 0x600b, SETS1 | USES2 }, /* neg rm,rn */ + { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */ + { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */ + { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */ + { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */ +}; + +static const struct sh_minor_opcode sh_opcode6[] = +{ + { MAP (sh_opcode60), 0xf00f } +}; + +static const struct sh_opcode sh_opcode70[] = +{ + { 0x7000, SETS1 | USES1 } /* add #imm,rn */ +}; + +static const struct sh_minor_opcode sh_opcode7[] = +{ + { MAP (sh_opcode70), 0xf000 } +}; + +static const struct sh_opcode sh_opcode80[] = +{ + { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */ + { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */ + { 0x8200, SETSSP }, /* setrc #imm */ + { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */ + { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */ + { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */ + { 0x8900, BRANCH | USESSP }, /* bt label */ + { 0x8b00, BRANCH | USESSP }, /* bf label */ + { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */ + { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */ + { 0x8e00, SETSSP }, /* ldre @(disp,pc) */ + { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */ +}; + +static const struct sh_minor_opcode sh_opcode8[] = +{ + { MAP (sh_opcode80), 0xff00 } +}; + +static const struct sh_opcode sh_opcode90[] = +{ + { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */ +}; + +static const struct sh_minor_opcode sh_opcode9[] = +{ + { MAP (sh_opcode90), 0xf000 } +}; + +static const struct sh_opcode sh_opcodea0[] = +{ + { 0xa000, BRANCH | DELAY } /* bra label */ +}; + +static const struct sh_minor_opcode sh_opcodea[] = +{ + { MAP (sh_opcodea0), 0xf000 } +}; + +static const struct sh_opcode sh_opcodeb0[] = +{ + { 0xb000, BRANCH | DELAY } /* bsr label */ +}; + +static const struct sh_minor_opcode sh_opcodeb[] = +{ + { MAP (sh_opcodeb0), 0xf000 } +}; + +static const struct sh_opcode sh_opcodec0[] = +{ + { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */ + { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */ + { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */ + { 0xc300, BRANCH | USESSP }, /* trapa #imm */ + { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */ + { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */ + { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */ + { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */ + { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */ + { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */ + { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */ + { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */ + { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */ + { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */ + { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */ + { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */ +}; + +static const struct sh_minor_opcode sh_opcodec[] = +{ + { MAP (sh_opcodec0), 0xff00 } +}; + +static const struct sh_opcode sh_opcoded0[] = +{ + { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */ +}; + +static const struct sh_minor_opcode sh_opcoded[] = +{ + { MAP (sh_opcoded0), 0xf000 } +}; + +static const struct sh_opcode sh_opcodee0[] = +{ + { 0xe000, SETS1 } /* mov #imm,rn */ +}; + +static const struct sh_minor_opcode sh_opcodee[] = +{ + { MAP (sh_opcodee0), 0xf000 } +}; + +static const struct sh_opcode sh_opcodef0[] = +{ + { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */ + { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */ + { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */ + { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */ + { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */ + { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */ + { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */ + { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */ + { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */ + { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */ + { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */ + { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */ + { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */ + { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */ +}; + +static const struct sh_opcode sh_opcodef1[] = +{ + { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */ + { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */ + { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */ + { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */ + { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */ + { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */ + { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */ + { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */ + { 0xf08d, SETSF1 }, /* fldi0 fn */ + { 0xf09d, SETSF1 } /* fldi1 fn */ +}; + +static const struct sh_minor_opcode sh_opcodef[] = +{ + { MAP (sh_opcodef0), 0xf00f }, + { MAP (sh_opcodef1), 0xf0ff } +}; + +static struct sh_major_opcode sh_opcodes[] = +{ + { MAP (sh_opcode0) }, + { MAP (sh_opcode1) }, + { MAP (sh_opcode2) }, + { MAP (sh_opcode3) }, + { MAP (sh_opcode4) }, + { MAP (sh_opcode5) }, + { MAP (sh_opcode6) }, + { MAP (sh_opcode7) }, + { MAP (sh_opcode8) }, + { MAP (sh_opcode9) }, + { MAP (sh_opcodea) }, + { MAP (sh_opcodeb) }, + { MAP (sh_opcodec) }, + { MAP (sh_opcoded) }, + { MAP (sh_opcodee) }, + { MAP (sh_opcodef) } +}; + +/* The double data transfer / parallel processing insns are not + described here. This will cause sh_align_load_span to leave them alone. */ + +static const struct sh_opcode sh_dsp_opcodef0[] = +{ + { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */ + { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */ + { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */ + { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */ + { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */ + { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */ + { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */ + { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */ +}; + +static const struct sh_minor_opcode sh_dsp_opcodef[] = +{ + { MAP (sh_dsp_opcodef0), 0xfc0d } +}; + +/* Given an instruction, return a pointer to the corresponding + sh_opcode structure. Return NULL if the instruction is not + recognized. */ + +static const struct sh_opcode * +sh_insn_info (unsigned int insn) +{ + const struct sh_major_opcode *maj; + const struct sh_minor_opcode *min, *minend; + + maj = &sh_opcodes[(insn & 0xf000) >> 12]; + min = maj->minor_opcodes; + minend = min + maj->count; + for (; min < minend; min++) + { + unsigned int l; + const struct sh_opcode *op, *opend; -static reloc_howto_type r_imm32 = -HOWTO (R_SH_IMM32, 0,2, 32, false, 0, true, - true, 0, "r_imm32", false, 0x0, 0xffffffff, false); + l = insn & min->mask; + op = min->opcodes; + opend = op + min->count; + /* Since the opcodes tables are sorted, we could use a binary + search here if the count were above some cutoff value. */ + for (; op < opend; op++) + if (op->opcode == l) + return op; + } + return NULL; +} -/* Turn a howto into a reloc number */ +/* See whether an instruction uses a general purpose register. */ -static int -coff_SH_select_reloc (howto) - reloc_howto_type *howto; +static bfd_boolean +sh_insn_uses_reg (unsigned int insn, + const struct sh_opcode *op, + unsigned int reg) { - return howto->type; + unsigned int f; + + f = op->flags; + + if ((f & USES1) != 0 + && USES1_REG (insn) == reg) + return TRUE; + if ((f & USES2) != 0 + && USES2_REG (insn) == reg) + return TRUE; + if ((f & USESR0) != 0 + && reg == 0) + return TRUE; + if ((f & USESAS) && reg == USESAS_REG (insn)) + return TRUE; + if ((f & USESR8) && reg == 8) + return TRUE; + + return FALSE; } -#define SELECT_RELOC(x,howto) x= coff_SH_select_reloc(howto) +/* See whether an instruction sets a general purpose register. */ +static bfd_boolean +sh_insn_sets_reg (unsigned int insn, + const struct sh_opcode *op, + unsigned int reg) +{ + unsigned int f; -#define BADMAG(x) SHBADMAG(x) -#define SH 1 /* Customize coffcode.h */ + f = op->flags; -#define __A_MAGIC_SET__ + if ((f & SETS1) != 0 + && SETS1_REG (insn) == reg) + return TRUE; + if ((f & SETS2) != 0 + && SETS2_REG (insn) == reg) + return TRUE; + if ((f & SETSR0) != 0 + && reg == 0) + return TRUE; + if ((f & SETSAS) && reg == SETSAS_REG (insn)) + return TRUE; + + return FALSE; +} + +/* See whether an instruction uses or sets a general purpose register */ + +static bfd_boolean +sh_insn_uses_or_sets_reg (unsigned int insn, + const struct sh_opcode *op, + unsigned int reg) +{ + if (sh_insn_uses_reg (insn, op, reg)) + return TRUE; + + return sh_insn_sets_reg (insn, op, reg); +} + +/* See whether an instruction uses a floating point register. */ + +static bfd_boolean +sh_insn_uses_freg (unsigned int insn, + const struct sh_opcode *op, + unsigned int freg) +{ + unsigned int f; + + f = op->flags; + + /* We can't tell if this is a double-precision insn, so just play safe + and assume that it might be. So not only have we test FREG against + itself, but also even FREG against FREG+1 - if the using insn uses + just the low part of a double precision value - but also an odd + FREG against FREG-1 - if the setting insn sets just the low part + of a double precision value. + So what this all boils down to is that we have to ignore the lowest + bit of the register number. */ + + if ((f & USESF1) != 0 + && (USESF1_REG (insn) & 0xe) == (freg & 0xe)) + return TRUE; + if ((f & USESF2) != 0 + && (USESF2_REG (insn) & 0xe) == (freg & 0xe)) + return TRUE; + if ((f & USESF0) != 0 + && freg == 0) + return TRUE; + + return FALSE; +} + +/* See whether an instruction sets a floating point register. */ + +static bfd_boolean +sh_insn_sets_freg (unsigned int insn, + const struct sh_opcode *op, + unsigned int freg) +{ + unsigned int f; + + f = op->flags; + + /* We can't tell if this is a double-precision insn, so just play safe + and assume that it might be. So not only have we test FREG against + itself, but also even FREG against FREG+1 - if the using insn uses + just the low part of a double precision value - but also an odd + FREG against FREG-1 - if the setting insn sets just the low part + of a double precision value. + So what this all boils down to is that we have to ignore the lowest + bit of the register number. */ + + if ((f & SETSF1) != 0 + && (SETSF1_REG (insn) & 0xe) == (freg & 0xe)) + return TRUE; + + return FALSE; +} + +/* See whether an instruction uses or sets a floating point register */ + +static bfd_boolean +sh_insn_uses_or_sets_freg (unsigned int insn, + const struct sh_opcode *op, + unsigned int reg) +{ + if (sh_insn_uses_freg (insn, op, reg)) + return TRUE; + + return sh_insn_sets_freg (insn, op, reg); +} + +/* See whether instructions I1 and I2 conflict, assuming I1 comes + before I2. OP1 and OP2 are the corresponding sh_opcode structures. + This should return TRUE if there is a conflict, or FALSE if the + instructions can be swapped safely. */ + +static bfd_boolean +sh_insns_conflict (unsigned int i1, + const struct sh_opcode *op1, + unsigned int i2, + const struct sh_opcode *op2) +{ + unsigned int f1, f2; + + f1 = op1->flags; + f2 = op2->flags; + + /* Load of fpscr conflicts with floating point operations. + FIXME: shouldn't test raw opcodes here. */ + if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000) + || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000)) + return TRUE; -/* Code to swap in the reloc */ -#define SWAP_IN_RELOC_OFFSET bfd_h_get_32 -#define SWAP_OUT_RELOC_OFFSET bfd_h_put_32 -#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \ - dst->r_stuff[0] = 'S'; \ - dst->r_stuff[1] = 'C'; + if ((f1 & (BRANCH | DELAY)) != 0 + || (f2 & (BRANCH | DELAY)) != 0) + return TRUE; -/* Code to turn a r_type into a howto ptr, uses the above howto table - */ + if (((f1 | f2) & SETSSP) + && (f1 & (SETSSP | USESSP)) + && (f2 & (SETSSP | USESSP))) + return TRUE; -static void -DEFUN (rtype2howto, (internal, dst), - arelent * internal AND - struct internal_reloc *dst) + if ((f1 & SETS1) != 0 + && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1))) + return TRUE; + if ((f1 & SETS2) != 0 + && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1))) + return TRUE; + if ((f1 & SETSR0) != 0 + && sh_insn_uses_or_sets_reg (i2, op2, 0)) + return TRUE; + if ((f1 & SETSAS) + && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1))) + return TRUE; + if ((f1 & SETSF1) != 0 + && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1))) + return TRUE; + + if ((f2 & SETS1) != 0 + && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2))) + return TRUE; + if ((f2 & SETS2) != 0 + && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2))) + return TRUE; + if ((f2 & SETSR0) != 0 + && sh_insn_uses_or_sets_reg (i1, op1, 0)) + return TRUE; + if ((f2 & SETSAS) + && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2))) + return TRUE; + if ((f2 & SETSF1) != 0 + && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2))) + return TRUE; + + /* The instructions do not conflict. */ + return FALSE; +} + +/* I1 is a load instruction, and I2 is some other instruction. Return + TRUE if I1 loads a register which I2 uses. */ + +static bfd_boolean +sh_load_use (unsigned int i1, + const struct sh_opcode *op1, + unsigned int i2, + const struct sh_opcode *op2) +{ + unsigned int f1; + + f1 = op1->flags; + + if ((f1 & LOAD) == 0) + return FALSE; + + /* If both SETS1 and SETSSP are set, that means a load to a special + register using postincrement addressing mode, which we don't care + about here. */ + if ((f1 & SETS1) != 0 + && (f1 & SETSSP) == 0 + && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8)) + return TRUE; + + if ((f1 & SETSR0) != 0 + && sh_insn_uses_reg (i2, op2, 0)) + return TRUE; + + if ((f1 & SETSF1) != 0 + && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8)) + return TRUE; + + return FALSE; +} + +/* Try to align loads and stores within a span of memory. This is + called by both the ELF and the COFF sh targets. ABFD and SEC are + the BFD and section we are examining. CONTENTS is the contents of + the section. SWAP is the routine to call to swap two instructions. + RELOCS is a pointer to the internal relocation information, to be + passed to SWAP. PLABEL is a pointer to the current label in a + sorted list of labels; LABEL_END is the end of the list. START and + STOP are the range of memory to examine. If a swap is made, + *PSWAPPED is set to TRUE. */ + +#ifdef COFF_WITH_PE +static +#endif +bfd_boolean +_bfd_sh_align_load_span (bfd *abfd, + asection *sec, + bfd_byte *contents, + bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma), + void * relocs, + bfd_vma **plabel, + bfd_vma *label_end, + bfd_vma start, + bfd_vma stop, + bfd_boolean *pswapped) { - switch (dst->r_type) + int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp + || abfd->arch_info->mach == bfd_mach_sh3_dsp); + bfd_vma i; + + /* The SH4 has a Harvard architecture, hence aligning loads is not + desirable. In fact, it is counter-productive, since it interferes + with the schedules generated by the compiler. */ + if (abfd->arch_info->mach == bfd_mach_sh4) + return TRUE; + + /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP + instructions. */ + if (dsp) { - default: - fprintf (stderr, "BAD 0x%x\n", dst->r_type); - case R_SH_IMM32: - internal->howto = &r_imm32; - break; + sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef; + sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0]; + } + + /* Instructions should be aligned on 2 byte boundaries. */ + if ((start & 1) == 1) + ++start; + + /* Now look through the unaligned addresses. */ + i = start; + if ((i & 2) == 0) + i += 2; + for (; i < stop; i += 4) + { + unsigned int insn; + const struct sh_opcode *op; + unsigned int prev_insn = 0; + const struct sh_opcode *prev_op = NULL; + + insn = bfd_get_16 (abfd, contents + i); + op = sh_insn_info (insn); + if (op == NULL + || (op->flags & (LOAD | STORE)) == 0) + continue; + + /* This is a load or store which is not on a four byte boundary. */ + + while (*plabel < label_end && **plabel < i) + ++*plabel; + + if (i > start) + { + prev_insn = bfd_get_16 (abfd, contents + i - 2); + /* If INSN is the field b of a parallel processing insn, it is not + a load / store after all. Note that the test here might mistake + the field_b of a pcopy insn for the starting code of a parallel + processing insn; this might miss a swapping opportunity, but at + least we're on the safe side. */ + if (dsp && (prev_insn & 0xfc00) == 0xf800) + continue; + + /* Check if prev_insn is actually the field b of a parallel + processing insn. Again, this can give a spurious match + after a pcopy. */ + if (dsp && i - 2 > start) + { + unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4); + + if ((pprev_insn & 0xfc00) == 0xf800) + prev_op = NULL; + else + prev_op = sh_insn_info (prev_insn); + } + else + prev_op = sh_insn_info (prev_insn); + + /* If the load/store instruction is in a delay slot, we + can't swap. */ + if (prev_op == NULL + || (prev_op->flags & DELAY) != 0) + continue; + } + if (i > start + && (*plabel >= label_end || **plabel != i) + && prev_op != NULL + && (prev_op->flags & (LOAD | STORE)) == 0 + && ! sh_insns_conflict (prev_insn, prev_op, insn, op)) + { + bfd_boolean ok; + + /* The load/store instruction does not have a label, and + there is a previous instruction; PREV_INSN is not + itself a load/store instruction, and PREV_INSN and + INSN do not conflict. */ + + ok = TRUE; + + if (i >= start + 4) + { + unsigned int prev2_insn; + const struct sh_opcode *prev2_op; + + prev2_insn = bfd_get_16 (abfd, contents + i - 4); + prev2_op = sh_insn_info (prev2_insn); + + /* If the instruction before PREV_INSN has a delay + slot--that is, PREV_INSN is in a delay slot--we + can not swap. */ + if (prev2_op == NULL + || (prev2_op->flags & DELAY) != 0) + ok = FALSE; + + /* If the instruction before PREV_INSN is a load, + and it sets a register which INSN uses, then + putting INSN immediately after PREV_INSN will + cause a pipeline bubble, so there is no point to + making the swap. */ + if (ok + && (prev2_op->flags & LOAD) != 0 + && sh_load_use (prev2_insn, prev2_op, insn, op)) + ok = FALSE; + } + + if (ok) + { + if (! (*swap) (abfd, sec, relocs, contents, i - 2)) + return FALSE; + *pswapped = TRUE; + continue; + } + } + + while (*plabel < label_end && **plabel < i + 2) + ++*plabel; + + if (i + 2 < stop + && (*plabel >= label_end || **plabel != i + 2)) + { + unsigned int next_insn; + const struct sh_opcode *next_op; + + /* There is an instruction after the load/store + instruction, and it does not have a label. */ + next_insn = bfd_get_16 (abfd, contents + i + 2); + next_op = sh_insn_info (next_insn); + if (next_op != NULL + && (next_op->flags & (LOAD | STORE)) == 0 + && ! sh_insns_conflict (insn, op, next_insn, next_op)) + { + bfd_boolean ok; + + /* NEXT_INSN is not itself a load/store instruction, + and it does not conflict with INSN. */ + + ok = TRUE; + + /* If PREV_INSN is a load, and it sets a register + which NEXT_INSN uses, then putting NEXT_INSN + immediately after PREV_INSN will cause a pipeline + bubble, so there is no reason to make this swap. */ + if (prev_op != NULL + && (prev_op->flags & LOAD) != 0 + && sh_load_use (prev_insn, prev_op, next_insn, next_op)) + ok = FALSE; + + /* If INSN is a load, and it sets a register which + the insn after NEXT_INSN uses, then doing the + swap will cause a pipeline bubble, so there is no + reason to make the swap. However, if the insn + after NEXT_INSN is itself a load or store + instruction, then it is misaligned, so + optimistically hope that it will be swapped + itself, and just live with the pipeline bubble if + it isn't. */ + if (ok + && i + 4 < stop + && (op->flags & LOAD) != 0) + { + unsigned int next2_insn; + const struct sh_opcode *next2_op; + + next2_insn = bfd_get_16 (abfd, contents + i + 4); + next2_op = sh_insn_info (next2_insn); + if (next2_op == NULL + || ((next2_op->flags & (LOAD | STORE)) == 0 + && sh_load_use (insn, op, next2_insn, next2_op))) + ok = FALSE; + } + + if (ok) + { + if (! (*swap) (abfd, sec, relocs, contents, i)) + return FALSE; + *pswapped = TRUE; + continue; + } + } + } } + + return TRUE; } +#endif /* not COFF_IMAGE_WITH_PE */ -#define RTYPE2HOWTO(internal, relocentry) rtype2howto(internal,relocentry) +/* Swap two SH instructions. */ +static bfd_boolean +sh_swap_insns (bfd * abfd, + asection * sec, + void * relocs, + bfd_byte * contents, + bfd_vma addr) +{ + struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs; + unsigned short i1, i2; + struct internal_reloc *irel, *irelend; + + /* Swap the instructions themselves. */ + i1 = bfd_get_16 (abfd, contents + addr); + i2 = bfd_get_16 (abfd, contents + addr + 2); + bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); + bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); + + /* Adjust all reloc addresses. */ + irelend = internal_relocs + sec->reloc_count; + for (irel = internal_relocs; irel < irelend; irel++) + { + int type, add; + + /* There are a few special types of relocs that we don't want to + adjust. These relocs do not apply to the instruction itself, + but are only associated with the address. */ + type = irel->r_type; + if (type == R_SH_ALIGN + || type == R_SH_CODE + || type == R_SH_DATA + || type == R_SH_LABEL) + continue; + + /* If an R_SH_USES reloc points to one of the addresses being + swapped, we must adjust it. It would be incorrect to do this + for a jump, though, since we want to execute both + instructions after the jump. (We have avoided swapping + around a label, so the jump will not wind up executing an + instruction it shouldn't). */ + if (type == R_SH_USES) + { + bfd_vma off; + + off = irel->r_vaddr - sec->vma + 4 + irel->r_offset; + if (off == addr) + irel->r_offset += 2; + else if (off == addr + 2) + irel->r_offset -= 2; + } + + if (irel->r_vaddr - sec->vma == addr) + { + irel->r_vaddr += 2; + add = -2; + } + else if (irel->r_vaddr - sec->vma == addr + 2) + { + irel->r_vaddr -= 2; + add = 2; + } + else + add = 0; -/* Perform any necessaru magic to the addend in a reloc entry */ + if (add != 0) + { + bfd_byte *loc; + unsigned short insn, oinsn; + bfd_boolean overflow; + loc = contents + irel->r_vaddr - sec->vma; + overflow = FALSE; + switch (type) + { + default: + break; -#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \ - cache_ptr->addend = ext_reloc.r_offset; + case R_SH_PCDISP8BY2: + case R_SH_PCRELIMM8BY2: + insn = bfd_get_16 (abfd, loc); + oinsn = insn; + insn += add / 2; + if ((oinsn & 0xff00) != (insn & 0xff00)) + overflow = TRUE; + bfd_put_16 (abfd, (bfd_vma) insn, loc); + break; + case R_SH_PCDISP: + insn = bfd_get_16 (abfd, loc); + oinsn = insn; + insn += add / 2; + if ((oinsn & 0xf000) != (insn & 0xf000)) + overflow = TRUE; + bfd_put_16 (abfd, (bfd_vma) insn, loc); + break; -#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \ - reloc_processing(relent, reloc, symbols, abfd, section) + case R_SH_PCRELIMM8BY4: + /* This reloc ignores the least significant 3 bits of + the program counter before adding in the offset. + This means that if ADDR is at an even address, the + swap will not affect the offset. If ADDR is an at an + odd address, then the instruction will be crossing a + four byte boundary, and must be adjusted. */ + if ((addr & 3) != 0) + { + insn = bfd_get_16 (abfd, loc); + oinsn = insn; + insn += add / 2; + if ((oinsn & 0xff00) != (insn & 0xff00)) + overflow = TRUE; + bfd_put_16 (abfd, (bfd_vma) insn, loc); + } -static void -DEFUN (reloc_processing, (relent, reloc, symbols, abfd, section), - arelent * relent AND - struct internal_reloc *reloc AND - asymbol ** symbols AND - bfd * abfd AND - asection * section) + break; + } + + if (overflow) + { + _bfd_error_handler + /* xgettext: c-format */ + (_("%B: 0x%lx: fatal: reloc overflow while relaxing"), + abfd, (unsigned long) irel->r_vaddr); + bfd_set_error (bfd_error_bad_value); + return FALSE; + } + } + } + + return TRUE; +} + +/* Look for loads and stores which we can align to four byte + boundaries. See the longer comment above sh_relax_section for why + this is desirable. This sets *PSWAPPED if some instruction was + swapped. */ + +static bfd_boolean +sh_align_loads (bfd *abfd, + asection *sec, + struct internal_reloc *internal_relocs, + bfd_byte *contents, + bfd_boolean *pswapped) { - relent->address = reloc->r_vaddr; - rtype2howto (relent, reloc); + struct internal_reloc *irel, *irelend; + bfd_vma *labels = NULL; + bfd_vma *label, *label_end; + bfd_size_type amt; + + *pswapped = FALSE; + + irelend = internal_relocs + sec->reloc_count; - if (reloc->r_symndx > 0) + /* Get all the addresses with labels on them. */ + amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma); + labels = (bfd_vma *) bfd_malloc (amt); + if (labels == NULL) + goto error_return; + label_end = labels; + for (irel = internal_relocs; irel < irelend; irel++) { - relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx]; + if (irel->r_type == R_SH_LABEL) + { + *label_end = irel->r_vaddr - sec->vma; + ++label_end; + } } - else + + /* Note that the assembler currently always outputs relocs in + address order. If that ever changes, this code will need to sort + the label values and the relocs. */ + + label = labels; + + for (irel = internal_relocs; irel < irelend; irel++) { - relent->sym_ptr_ptr = &(bfd_abs_symbol); + bfd_vma start, stop; + + if (irel->r_type != R_SH_CODE) + continue; + + start = irel->r_vaddr - sec->vma; + + for (irel++; irel < irelend; irel++) + if (irel->r_type == R_SH_DATA) + break; + if (irel < irelend) + stop = irel->r_vaddr - sec->vma; + else + stop = sec->size; + + if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns, + internal_relocs, &label, + label_end, start, stop, pswapped)) + goto error_return; } + free (labels); - relent->addend = reloc->r_offset; - relent->address -= section->vma; + return TRUE; + + error_return: + if (labels != NULL) + free (labels); + return FALSE; } + +/* This is a modification of _bfd_coff_generic_relocate_section, which + will handle SH relaxing. */ -static void -extra_case (in_abfd, seclet, reloc, data, src_ptr, dst_ptr) - bfd *in_abfd; - bfd_seclet_type *seclet; - arelent *reloc; - bfd_byte *data; - unsigned int *src_ptr; - unsigned int *dst_ptr; +static bfd_boolean +sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, + struct bfd_link_info *info, + bfd *input_bfd, + asection *input_section, + bfd_byte *contents, + struct internal_reloc *relocs, + struct internal_syment *syms, + asection **sections) { - switch (reloc->howto->type) + struct internal_reloc *rel; + struct internal_reloc *relend; + + rel = relocs; + relend = rel + input_section->reloc_count; + for (; rel < relend; rel++) { - case R_SH_IMM32: - { - int v = bfd_coff_reloc16_get_value(reloc, seclet); - bfd_put_32 (in_abfd, v, data + *dst_ptr); - (*dst_ptr) +=4; - (*src_ptr)+=4;; - } - break; + long symndx; + struct coff_link_hash_entry *h; + struct internal_syment *sym; + bfd_vma addend; + bfd_vma val; + reloc_howto_type *howto; + bfd_reloc_status_type rstat; - default: - abort (); + /* Almost all relocs have to do with relaxing. If any work must + be done for them, it has been done in sh_relax_section. */ + if (rel->r_type != R_SH_IMM32 +#ifdef COFF_WITH_PE + && rel->r_type != R_SH_IMM32CE + && rel->r_type != R_SH_IMAGEBASE +#endif + && rel->r_type != R_SH_PCDISP) + continue; + + symndx = rel->r_symndx; + + if (symndx == -1) + { + h = NULL; + sym = NULL; + } + else + { + if (symndx < 0 + || (unsigned long) symndx >= obj_raw_syment_count (input_bfd)) + { + _bfd_error_handler + /* xgettext: c-format */ + (_("%B: illegal symbol index %ld in relocs"), + input_bfd, symndx); + bfd_set_error (bfd_error_bad_value); + return FALSE; + } + h = obj_coff_sym_hashes (input_bfd)[symndx]; + sym = syms + symndx; + } + + if (sym != NULL && sym->n_scnum != 0) + addend = - sym->n_value; + else + addend = 0; + + if (rel->r_type == R_SH_PCDISP) + addend -= 4; + + if (rel->r_type >= SH_COFF_HOWTO_COUNT) + howto = NULL; + else + howto = &sh_coff_howtos[rel->r_type]; + + if (howto == NULL) + { + bfd_set_error (bfd_error_bad_value); + return FALSE; + } + +#ifdef COFF_WITH_PE + if (rel->r_type == R_SH_IMAGEBASE) + addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; +#endif + + val = 0; + + if (h == NULL) + { + asection *sec; + + /* There is nothing to do for an internal PCDISP reloc. */ + if (rel->r_type == R_SH_PCDISP) + continue; + + if (symndx == -1) + { + sec = bfd_abs_section_ptr; + val = 0; + } + else + { + sec = sections[symndx]; + val = (sec->output_section->vma + + sec->output_offset + + sym->n_value + - sec->vma); + } + } + else + { + if (h->root.type == bfd_link_hash_defined + || h->root.type == bfd_link_hash_defweak) + { + asection *sec; + + sec = h->root.u.def.section; + val = (h->root.u.def.value + + sec->output_section->vma + + sec->output_offset); + } + else if (! bfd_link_relocatable (info)) + (*info->callbacks->undefined_symbol) + (info, h->root.root.string, input_bfd, input_section, + rel->r_vaddr - input_section->vma, TRUE); + } + + rstat = _bfd_final_link_relocate (howto, input_bfd, input_section, + contents, + rel->r_vaddr - input_section->vma, + val, addend); + + switch (rstat) + { + default: + abort (); + case bfd_reloc_ok: + break; + case bfd_reloc_overflow: + { + const char *name; + char buf[SYMNMLEN + 1]; + + if (symndx == -1) + name = "*ABS*"; + else if (h != NULL) + name = NULL; + else if (sym->_n._n_n._n_zeroes == 0 + && sym->_n._n_n._n_offset != 0) + name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset; + else + { + strncpy (buf, sym->_n._n_name, SYMNMLEN); + buf[SYMNMLEN] = '\0'; + name = buf; + } + + (*info->callbacks->reloc_overflow) + (info, (h ? &h->root : NULL), name, howto->name, + (bfd_vma) 0, input_bfd, input_section, + rel->r_vaddr - input_section->vma); + } + } } + + return TRUE; } -#define coff_reloc16_extra_cases extra_case +/* This is a version of bfd_generic_get_relocated_section_contents + which uses sh_relocate_section. */ -#include "coffcode.h" +static bfd_byte * +sh_coff_get_relocated_section_contents (bfd *output_bfd, + struct bfd_link_info *link_info, + struct bfd_link_order *link_order, + bfd_byte *data, + bfd_boolean relocatable, + asymbol **symbols) +{ + asection *input_section = link_order->u.indirect.section; + bfd *input_bfd = input_section->owner; + asection **sections = NULL; + struct internal_reloc *internal_relocs = NULL; + struct internal_syment *internal_syms = NULL; + + /* We only need to handle the case of relaxing, or of having a + particular set of section contents, specially. */ + if (relocatable + || coff_section_data (input_bfd, input_section) == NULL + || coff_section_data (input_bfd, input_section)->contents == NULL) + return bfd_generic_get_relocated_section_contents (output_bfd, link_info, + link_order, data, + relocatable, + symbols); + + memcpy (data, coff_section_data (input_bfd, input_section)->contents, + (size_t) input_section->size); + + if ((input_section->flags & SEC_RELOC) != 0 + && input_section->reloc_count > 0) + { + bfd_size_type symesz = bfd_coff_symesz (input_bfd); + bfd_byte *esym, *esymend; + struct internal_syment *isymp; + asection **secpp; + bfd_size_type amt; + + if (! _bfd_coff_get_external_symbols (input_bfd)) + goto error_return; + + internal_relocs = (_bfd_coff_read_internal_relocs + (input_bfd, input_section, FALSE, (bfd_byte *) NULL, + FALSE, (struct internal_reloc *) NULL)); + if (internal_relocs == NULL) + goto error_return; + + amt = obj_raw_syment_count (input_bfd); + amt *= sizeof (struct internal_syment); + internal_syms = (struct internal_syment *) bfd_malloc (amt); + if (internal_syms == NULL) + goto error_return; + + amt = obj_raw_syment_count (input_bfd); + amt *= sizeof (asection *); + sections = (asection **) bfd_malloc (amt); + if (sections == NULL) + goto error_return; + + isymp = internal_syms; + secpp = sections; + esym = (bfd_byte *) obj_coff_external_syms (input_bfd); + esymend = esym + obj_raw_syment_count (input_bfd) * symesz; + while (esym < esymend) + { + bfd_coff_swap_sym_in (input_bfd, esym, isymp); + + if (isymp->n_scnum != 0) + *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); + else + { + if (isymp->n_value == 0) + *secpp = bfd_und_section_ptr; + else + *secpp = bfd_com_section_ptr; + } + + esym += (isymp->n_numaux + 1) * symesz; + secpp += isymp->n_numaux + 1; + isymp += isymp->n_numaux + 1; + } + + if (! sh_relocate_section (output_bfd, link_info, input_bfd, + input_section, data, internal_relocs, + internal_syms, sections)) + goto error_return; + + free (sections); + sections = NULL; + free (internal_syms); + internal_syms = NULL; + free (internal_relocs); + internal_relocs = NULL; + } + + return data; + + error_return: + if (internal_relocs != NULL) + free (internal_relocs); + if (internal_syms != NULL) + free (internal_syms); + if (sections != NULL) + free (sections); + return NULL; +} + +/* The target vectors. */ + +#ifndef TARGET_SHL_SYM +CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE) +#endif + +#ifdef TARGET_SHL_SYM +#define TARGET_SYM TARGET_SHL_SYM +#else +#define TARGET_SYM sh_coff_le_vec +#endif + +#ifndef TARGET_SHL_NAME +#define TARGET_SHL_NAME "coff-shl" +#endif + +#ifdef COFF_WITH_PE +CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, + SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE); +#else +CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, + 0, '_', NULL, COFF_SWAP_TABLE) +#endif + +#ifndef TARGET_SHL_SYM + +/* Some people want versions of the SH COFF target which do not align + to 16 byte boundaries. We implement that by adding a couple of new + target vectors. These are just like the ones above, but they + change the default section alignment. To generate them in the + assembler, use -small. To use them in the linker, use -b + coff-sh{l}-small and -oformat coff-sh{l}-small. + + Yes, this is a horrible hack. A general solution for setting + section alignment in COFF is rather complex. ELF handles this + correctly. */ + +/* Only recognize the small versions if the target was not defaulted. + Otherwise we won't recognize the non default endianness. */ + +static const bfd_target * +coff_small_object_p (bfd *abfd) +{ + if (abfd->target_defaulted) + { + bfd_set_error (bfd_error_wrong_format); + return NULL; + } + return coff_object_p (abfd); +} +/* Set the section alignment for the small versions. */ -#undef coff_bfd_get_relocated_section_contents -#undef coff_bfd_relax_section -#define coff_bfd_get_relocated_section_contents bfd_coff_reloc16_get_relocated_section_contents -#define coff_bfd_relax_section bfd_coff_reloc16_relax_section +static bfd_boolean +coff_small_new_section_hook (bfd *abfd, asection *section) +{ + if (! coff_new_section_hook (abfd, section)) + return FALSE; + + /* We must align to at least a four byte boundary, because longword + accesses must be on a four byte boundary. */ + if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER) + section->alignment_power = 2; + + return TRUE; +} + +/* This is copied from bfd_coff_std_swap_table so that we can change + the default section alignment power. */ + +static bfd_coff_backend_data bfd_coff_small_swap_table = +{ + coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in, + coff_swap_aux_out, coff_swap_sym_out, + coff_swap_lineno_out, coff_swap_reloc_out, + coff_swap_filehdr_out, coff_swap_aouthdr_out, + coff_swap_scnhdr_out, + FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN, +#ifdef COFF_LONG_FILENAMES + TRUE, +#else + FALSE, +#endif + COFF_DEFAULT_LONG_SECTION_NAMES, + 2, +#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS + TRUE, +#else + FALSE, +#endif +#ifdef COFF_DEBUG_STRING_WIDE_PREFIX + 4, +#else + 2, +#endif + 32768, + coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in, + coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook, + coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook, + coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook, + coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate, + coff_classify_symbol, coff_compute_section_file_positions, + coff_start_final_link, coff_relocate_section, coff_rtype_to_howto, + coff_adjust_symndx, coff_link_add_one_symbol, + coff_link_output_has_begun, coff_final_link_postscript, + bfd_pe_print_pdata +}; + +#define coff_small_close_and_cleanup \ + coff_close_and_cleanup +#define coff_small_bfd_free_cached_info \ + coff_bfd_free_cached_info +#define coff_small_get_section_contents \ + coff_get_section_contents +#define coff_small_get_section_contents_in_window \ + coff_get_section_contents_in_window + +extern const bfd_target sh_coff_small_le_vec; + +const bfd_target sh_coff_small_vec = +{ + "coff-sh-small", /* name */ + bfd_target_coff_flavour, + BFD_ENDIAN_BIG, /* data byte order is big */ + BFD_ENDIAN_BIG, /* header byte order is big */ + + (HAS_RELOC | EXEC_P | /* object flags */ + HAS_LINENO | HAS_DEBUG | + HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), -bfd_target shcoff_vec = + (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), + '_', /* leading symbol underscore */ + '/', /* ar_pad_char */ + 15, /* ar_max_namelen */ + 0, /* match priority. */ + bfd_getb64, bfd_getb_signed_64, bfd_putb64, + bfd_getb32, bfd_getb_signed_32, bfd_putb32, + bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ + bfd_getb64, bfd_getb_signed_64, bfd_putb64, + bfd_getb32, bfd_getb_signed_32, bfd_putb32, + bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ + + {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */ + bfd_generic_archive_p, _bfd_dummy_target}, + {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */ + bfd_false}, + {bfd_false, coff_write_object_contents, /* bfd_write_contents */ + _bfd_write_archive_contents, bfd_false}, + + BFD_JUMP_TABLE_GENERIC (coff_small), + BFD_JUMP_TABLE_COPY (coff), + BFD_JUMP_TABLE_CORE (_bfd_nocore), + BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), + BFD_JUMP_TABLE_SYMBOLS (coff), + BFD_JUMP_TABLE_RELOCS (coff), + BFD_JUMP_TABLE_WRITE (coff), + BFD_JUMP_TABLE_LINK (coff), + BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), + + & sh_coff_small_le_vec, + + & bfd_coff_small_swap_table +}; + +const bfd_target sh_coff_small_le_vec = { - "coff-sh", /* name */ + "coff-shl-small", /* name */ bfd_target_coff_flavour, - true, /* data byte order is big */ - true, /* header byte order is big */ + BFD_ENDIAN_LITTLE, /* data byte order is little */ + BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/ (HAS_RELOC | EXEC_P | /* object flags */ HAS_LINENO | HAS_DEBUG | - HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT), + HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), - (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */ + (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), '_', /* leading symbol underscore */ '/', /* ar_pad_char */ 15, /* ar_max_namelen */ - 2, /* minimum section alignment */ -_do_getb64, _do_getb_signed_64, _do_putb64, - _do_getb32, _do_getb_signed_32, _do_putb32, - _do_getb16, _do_getb_signed_16, _do_putb16, /* data */ -_do_getb64, _do_getb_signed_64, _do_putb64, - _do_getb32, _do_getb_signed_32, _do_putb32, - _do_getb16, _do_getb_signed_16, _do_putb16, /* hdrs */ - - {_bfd_dummy_target, coff_object_p, /* bfd_check_format */ + 0, /* match priority. */ + bfd_getl64, bfd_getl_signed_64, bfd_putl64, + bfd_getl32, bfd_getl_signed_32, bfd_putl32, + bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ + bfd_getl64, bfd_getl_signed_64, bfd_putl64, + bfd_getl32, bfd_getl_signed_32, bfd_putl32, + bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ + + {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */ bfd_generic_archive_p, _bfd_dummy_target}, {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */ bfd_false}, - {bfd_false, coff_write_object_contents, /* bfd_write_contents */ + {bfd_false, coff_write_object_contents, /* bfd_write_contents */ _bfd_write_archive_contents, bfd_false}, - JUMP_TABLE(coff), - COFF_SWAP_TABLE, + BFD_JUMP_TABLE_GENERIC (coff_small), + BFD_JUMP_TABLE_COPY (coff), + BFD_JUMP_TABLE_CORE (_bfd_nocore), + BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), + BFD_JUMP_TABLE_SYMBOLS (coff), + BFD_JUMP_TABLE_RELOCS (coff), + BFD_JUMP_TABLE_WRITE (coff), + BFD_JUMP_TABLE_LINK (coff), + BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), + + & sh_coff_small_vec, + + & bfd_coff_small_swap_table }; +#endif