X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fblockframe.c;h=09608371f849fc51ead8f43bbc21ecf91e1e9acc;hb=800f6ec8e25806362f05460ed0e8804b60a59960;hp=c34d3e06a0e260dd242d9aa988b4c4a2c34bdfe4;hpb=9c1412c1a1a5e1fe7ffadb8a2e4cefe8bf7c4e9f;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/blockframe.c b/gdb/blockframe.c index c34d3e06a0..09608371f8 100644 --- a/gdb/blockframe.c +++ b/gdb/blockframe.c @@ -1,15 +1,15 @@ /* Get info from stack frames; convert between frames, blocks, functions and pc values. - Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, - 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software - Foundation, Inc. + Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, + 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009 + Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or + the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, @@ -18,558 +18,30 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ + along with this program. If not, see . */ #include "defs.h" #include "symtab.h" #include "bfd.h" -#include "symfile.h" #include "objfiles.h" #include "frame.h" #include "gdbcore.h" -#include "value.h" /* for read_register */ -#include "target.h" /* for target_has_stack */ -#include "inferior.h" /* for read_pc */ +#include "value.h" +#include "target.h" +#include "inferior.h" #include "annotate.h" #include "regcache.h" #include "gdb_assert.h" #include "dummy-frame.h" +#include "command.h" +#include "gdbcmd.h" +#include "block.h" +#include "inline-frame.h" /* Prototypes for exported functions. */ -static void frame_saved_regs_register_unwind (struct frame_info *frame, - void **cache, - int regnum, - int *optimized, - enum lval_type *lval, - CORE_ADDR *addrp, - int *realnum, - void *buffer); - - void _initialize_blockframe (void); -/* A default FRAME_CHAIN_VALID, in the form that is suitable for most - targets. If FRAME_CHAIN_VALID returns zero it means that the given - frame is the outermost one and has no caller. */ - -int -file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) -{ - return ((chain) != 0 - && !inside_entry_file (FRAME_SAVED_PC (thisframe))); -} - -/* Use the alternate method of avoiding running up off the end of the - frame chain or following frames back into the startup code. See - the comments in objfiles.h. */ - -int -func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) -{ - return ((chain) != 0 - && !inside_main_func ((thisframe)->pc) - && !inside_entry_func ((thisframe)->pc)); -} - -/* A very simple method of determining a valid frame */ - -int -nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) -{ - return ((chain) != 0); -} - -/* Is ADDR inside the startup file? Note that if your machine - has a way to detect the bottom of the stack, there is no need - to call this function from FRAME_CHAIN_VALID; the reason for - doing so is that some machines have no way of detecting bottom - of stack. - - A PC of zero is always considered to be the bottom of the stack. */ - -int -inside_entry_file (CORE_ADDR addr) -{ - if (addr == 0) - return 1; - if (symfile_objfile == 0) - return 0; - if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) - { - /* Do not stop backtracing if the pc is in the call dummy - at the entry point. */ - /* FIXME: Won't always work with zeros for the last two arguments */ - if (PC_IN_CALL_DUMMY (addr, 0, 0)) - return 0; - } - return (addr >= symfile_objfile->ei.entry_file_lowpc && - addr < symfile_objfile->ei.entry_file_highpc); -} - -/* Test a specified PC value to see if it is in the range of addresses - that correspond to the main() function. See comments above for why - we might want to do this. - - Typically called from FRAME_CHAIN_VALID. - - A PC of zero is always considered to be the bottom of the stack. */ - -int -inside_main_func (CORE_ADDR pc) -{ - if (pc == 0) - return 1; - if (symfile_objfile == 0) - return 0; - - /* If the addr range is not set up at symbol reading time, set it up now. - This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because - it is unable to set it up and symbol reading time. */ - - if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC && - symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC) - { - struct symbol *mainsym; - - mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL); - if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK) - { - symfile_objfile->ei.main_func_lowpc = - BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym)); - symfile_objfile->ei.main_func_highpc = - BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym)); - } - } - return (symfile_objfile->ei.main_func_lowpc <= pc && - symfile_objfile->ei.main_func_highpc > pc); -} - -/* Test a specified PC value to see if it is in the range of addresses - that correspond to the process entry point function. See comments - in objfiles.h for why we might want to do this. - - Typically called from FRAME_CHAIN_VALID. - - A PC of zero is always considered to be the bottom of the stack. */ - -int -inside_entry_func (CORE_ADDR pc) -{ - if (pc == 0) - return 1; - if (symfile_objfile == 0) - return 0; - if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) - { - /* Do not stop backtracing if the pc is in the call dummy - at the entry point. */ - /* FIXME: Won't always work with zeros for the last two arguments */ - if (PC_IN_CALL_DUMMY (pc, 0, 0)) - return 0; - } - return (symfile_objfile->ei.entry_func_lowpc <= pc && - symfile_objfile->ei.entry_func_highpc > pc); -} - -/* Info about the innermost stack frame (contents of FP register) */ - -static struct frame_info *current_frame; - -/* Cache for frame addresses already read by gdb. Valid only while - inferior is stopped. Control variables for the frame cache should - be local to this module. */ - -static struct obstack frame_cache_obstack; - -void * -frame_obstack_alloc (unsigned long size) -{ - return obstack_alloc (&frame_cache_obstack, size); -} - -void -frame_saved_regs_zalloc (struct frame_info *fi) -{ - fi->saved_regs = (CORE_ADDR *) - frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); - memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); -} - - -/* Return the innermost (currently executing) stack frame. */ - -struct frame_info * -get_current_frame (void) -{ - if (current_frame == NULL) - { - if (target_has_stack) - current_frame = create_new_frame (read_fp (), read_pc ()); - else - error ("No stack."); - } - return current_frame; -} - -void -set_current_frame (struct frame_info *frame) -{ - current_frame = frame; -} - - -/* Using the PC, select a mechanism for unwinding a frame returning - the previous frame. The register unwind function should, on - demand, initialize the ->context object. */ - -static void -set_unwind_by_pc (CORE_ADDR pc, CORE_ADDR fp, - frame_register_unwind_ftype **unwind) -{ - if (!USE_GENERIC_DUMMY_FRAMES) - /* Still need to set this to something. The ``info frame'' code - calls this function to find out where the saved registers are. - Hopefully this is robust enough to stop any core dumps and - return vaguely correct values.. */ - *unwind = frame_saved_regs_register_unwind; - else if (PC_IN_CALL_DUMMY (pc, fp, fp)) - *unwind = generic_call_dummy_register_unwind; - else - *unwind = frame_saved_regs_register_unwind; -} - -/* Create an arbitrary (i.e. address specified by user) or innermost frame. - Always returns a non-NULL value. */ - -struct frame_info * -create_new_frame (CORE_ADDR addr, CORE_ADDR pc) -{ - struct frame_info *fi; - char *name; - - fi = (struct frame_info *) - obstack_alloc (&frame_cache_obstack, - sizeof (struct frame_info)); - - /* Zero all fields by default. */ - memset (fi, 0, sizeof (struct frame_info)); - - fi->frame = addr; - fi->pc = pc; - find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); - fi->signal_handler_caller = PC_IN_SIGTRAMP (fi->pc, name); - - if (INIT_EXTRA_FRAME_INFO_P ()) - INIT_EXTRA_FRAME_INFO (0, fi); - - /* Select/initialize an unwind function. */ - set_unwind_by_pc (fi->pc, fi->frame, &fi->register_unwind); - - return fi; -} - -/* Return the frame that FRAME calls (NULL if FRAME is the innermost - frame). */ - -struct frame_info * -get_next_frame (struct frame_info *frame) -{ - return frame->next; -} - -/* Flush the entire frame cache. */ - -void -flush_cached_frames (void) -{ - /* Since we can't really be sure what the first object allocated was */ - obstack_free (&frame_cache_obstack, 0); - obstack_init (&frame_cache_obstack); - - current_frame = NULL; /* Invalidate cache */ - select_frame (NULL); - annotate_frames_invalid (); -} - -/* Flush the frame cache, and start a new one if necessary. */ - -void -reinit_frame_cache (void) -{ - flush_cached_frames (); - - /* FIXME: The inferior_ptid test is wrong if there is a corefile. */ - if (PIDGET (inferior_ptid) != 0) - { - select_frame (get_current_frame ()); - } -} - -/* Return nonzero if the function for this frame lacks a prologue. Many - machines can define FRAMELESS_FUNCTION_INVOCATION to just call this - function. */ - -int -frameless_look_for_prologue (struct frame_info *frame) -{ - CORE_ADDR func_start, after_prologue; - - func_start = get_pc_function_start (frame->pc); - if (func_start) - { - func_start += FUNCTION_START_OFFSET; - /* This is faster, since only care whether there *is* a - prologue, not how long it is. */ - return PROLOGUE_FRAMELESS_P (func_start); - } - else if (frame->pc == 0) - /* A frame with a zero PC is usually created by dereferencing a - NULL function pointer, normally causing an immediate core dump - of the inferior. Mark function as frameless, as the inferior - has no chance of setting up a stack frame. */ - return 1; - else - /* If we can't find the start of the function, we don't really - know whether the function is frameless, but we should be able - to get a reasonable (i.e. best we can do under the - circumstances) backtrace by saying that it isn't. */ - return 0; -} - -/* Return a structure containing various interesting information - about the frame that called NEXT_FRAME. Returns NULL - if there is no such frame. */ - -struct frame_info * -get_prev_frame (struct frame_info *next_frame) -{ - CORE_ADDR address = 0; - struct frame_info *prev; - int fromleaf = 0; - char *name; - - /* If the requested entry is in the cache, return it. - Otherwise, figure out what the address should be for the entry - we're about to add to the cache. */ - - if (!next_frame) - { -#if 0 - /* This screws value_of_variable, which just wants a nice clean - NULL return from block_innermost_frame if there are no frames. - I don't think I've ever seen this message happen otherwise. - And returning NULL here is a perfectly legitimate thing to do. */ - if (!current_frame) - { - error ("You haven't set up a process's stack to examine."); - } -#endif - - return current_frame; - } - - /* If we have the prev one, return it */ - if (next_frame->prev) - return next_frame->prev; - - /* On some machines it is possible to call a function without - setting up a stack frame for it. On these machines, we - define this macro to take two args; a frameinfo pointer - identifying a frame and a variable to set or clear if it is - or isn't leafless. */ - - /* Still don't want to worry about this except on the innermost - frame. This macro will set FROMLEAF if NEXT_FRAME is a - frameless function invocation. */ - if (!(next_frame->next)) - { - fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame); - if (fromleaf) - address = FRAME_FP (next_frame); - } - - if (!fromleaf) - { - /* Two macros defined in tm.h specify the machine-dependent - actions to be performed here. - First, get the frame's chain-pointer. - If that is zero, the frame is the outermost frame or a leaf - called by the outermost frame. This means that if start - calls main without a frame, we'll return 0 (which is fine - anyway). - - Nope; there's a problem. This also returns when the current - routine is a leaf of main. This is unacceptable. We move - this to after the ffi test; I'd rather have backtraces from - start go curfluy than have an abort called from main not show - main. */ - address = FRAME_CHAIN (next_frame); - - /* FIXME: cagney/2002-06-08: There should be two tests here. - The first would check for a valid frame chain based on a user - selectable policy. The default being ``stop at main'' (as - implemented by generic_func_frame_chain_valid()). Other - policies would be available - stop at NULL, .... The second - test, if provided by the target architecture, would check for - more exotic cases - most target architectures wouldn't bother - with this second case. */ - if (!FRAME_CHAIN_VALID (address, next_frame)) - return 0; - } - if (address == 0) - return 0; - - prev = (struct frame_info *) - obstack_alloc (&frame_cache_obstack, - sizeof (struct frame_info)); - - /* Zero all fields by default. */ - memset (prev, 0, sizeof (struct frame_info)); - - if (next_frame) - next_frame->prev = prev; - prev->next = next_frame; - prev->frame = address; - prev->level = next_frame->level + 1; - -/* This change should not be needed, FIXME! We should - determine whether any targets *need* INIT_FRAME_PC to happen - after INIT_EXTRA_FRAME_INFO and come up with a simple way to - express what goes on here. - - INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame - (where the PC is already set up) and here (where it isn't). - INIT_FRAME_PC is only called from here, always after - INIT_EXTRA_FRAME_INFO. - - The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC - value (which hasn't been set yet). Some other machines appear to - require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo. - - We shouldn't need INIT_FRAME_PC_FIRST to add more complication to - an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92. - - Assuming that some machines need INIT_FRAME_PC after - INIT_EXTRA_FRAME_INFO, one possible scheme: - - SETUP_INNERMOST_FRAME() - Default version is just create_new_frame (read_fp ()), - read_pc ()). Machines with extra frame info would do that (or the - local equivalent) and then set the extra fields. - SETUP_ARBITRARY_FRAME(argc, argv) - Only change here is that create_new_frame would no longer init extra - frame info; SETUP_ARBITRARY_FRAME would have to do that. - INIT_PREV_FRAME(fromleaf, prev) - Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should - also return a flag saying whether to keep the new frame, or - whether to discard it, because on some machines (e.g. mips) it - is really awkward to have FRAME_CHAIN_VALID called *before* - INIT_EXTRA_FRAME_INFO (there is no good way to get information - deduced in FRAME_CHAIN_VALID into the extra fields of the new frame). - std_frame_pc(fromleaf, prev) - This is the default setting for INIT_PREV_FRAME. It just does what - the default INIT_FRAME_PC does. Some machines will call it from - INIT_PREV_FRAME (either at the beginning, the end, or in the middle). - Some machines won't use it. - kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */ - - INIT_FRAME_PC_FIRST (fromleaf, prev); - - if (INIT_EXTRA_FRAME_INFO_P ()) - INIT_EXTRA_FRAME_INFO (fromleaf, prev); - - /* This entry is in the frame queue now, which is good since - FRAME_SAVED_PC may use that queue to figure out its value - (see tm-sparc.h). We want the pc saved in the inferior frame. */ - INIT_FRAME_PC (fromleaf, prev); - - /* If ->frame and ->pc are unchanged, we are in the process of getting - ourselves into an infinite backtrace. Some architectures check this - in FRAME_CHAIN or thereabouts, but it seems like there is no reason - this can't be an architecture-independent check. */ - if (next_frame != NULL) - { - if (prev->frame == next_frame->frame - && prev->pc == next_frame->pc) - { - next_frame->prev = NULL; - obstack_free (&frame_cache_obstack, prev); - return NULL; - } - } - - /* Initialize the code used to unwind the frame PREV based on the PC - (and probably other architectural information). The PC lets you - check things like the debug info at that point (dwarf2cfi?) and - use that to decide how the frame should be unwound. */ - set_unwind_by_pc (prev->pc, prev->frame, &prev->register_unwind); - - find_pc_partial_function (prev->pc, &name, - (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); - if (PC_IN_SIGTRAMP (prev->pc, name)) - prev->signal_handler_caller = 1; - - return prev; -} - -CORE_ADDR -get_frame_pc (struct frame_info *frame) -{ - return frame->pc; -} - -/* return the address of the PC for the given FRAME, ie the current PC value - if FRAME is the innermost frame, or the address adjusted to point to the - call instruction if not. */ - -CORE_ADDR -frame_address_in_block (struct frame_info *frame) -{ - CORE_ADDR pc = frame->pc; - - /* If we are not in the innermost frame, and we are not interrupted - by a signal, frame->pc points to the instruction following the - call. As a consequence, we need to get the address of the previous - instruction. Unfortunately, this is not straightforward to do, so - we just use the address minus one, which is a good enough - approximation. */ - if (frame->next != 0 && frame->next->signal_handler_caller == 0) - --pc; - - return pc; -} - -#ifdef FRAME_FIND_SAVED_REGS -/* XXX - deprecated. This is a compatibility function for targets - that do not yet implement FRAME_INIT_SAVED_REGS. */ -/* Find the addresses in which registers are saved in FRAME. */ - -void -get_frame_saved_regs (struct frame_info *frame, - struct frame_saved_regs *saved_regs_addr) -{ - if (frame->saved_regs == NULL) - { - frame->saved_regs = (CORE_ADDR *) - frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); - } - if (saved_regs_addr == NULL) - { - struct frame_saved_regs saved_regs; - FRAME_FIND_SAVED_REGS (frame, saved_regs); - memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS); - } - else - { - FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr); - memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS); - } -} -#endif - /* Return the innermost lexical block in execution in a specified stack frame. The frame address is assumed valid. @@ -589,164 +61,89 @@ get_frame_saved_regs (struct frame_info *frame, struct block * get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block) { - const CORE_ADDR pc = frame_address_in_block (frame); + const CORE_ADDR pc = get_frame_address_in_block (frame); + struct frame_info *next_frame; + struct block *bl; + int inline_count; if (addr_in_block) *addr_in_block = pc; - return block_for_pc (pc); -} + bl = block_for_pc (pc); + if (bl == NULL) + return NULL; -struct block * -get_current_block (CORE_ADDR *addr_in_block) -{ - CORE_ADDR pc = read_pc (); + inline_count = frame_inlined_callees (frame); - if (addr_in_block) - *addr_in_block = pc; + while (inline_count > 0) + { + if (block_inlined_p (bl)) + inline_count--; - return block_for_pc (pc); + bl = BLOCK_SUPERBLOCK (bl); + gdb_assert (bl != NULL); + } + + return bl; } CORE_ADDR get_pc_function_start (CORE_ADDR pc) { - register struct block *bl; - register struct symbol *symbol; - register struct minimal_symbol *msymbol; - CORE_ADDR fstart; + struct block *bl; + struct minimal_symbol *msymbol; - if ((bl = block_for_pc (pc)) != NULL && - (symbol = block_function (bl)) != NULL) - { - bl = SYMBOL_BLOCK_VALUE (symbol); - fstart = BLOCK_START (bl); - } - else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL) - { - fstart = SYMBOL_VALUE_ADDRESS (msymbol); - if (!find_pc_section (fstart)) - return 0; - } - else + bl = block_for_pc (pc); + if (bl) { - fstart = 0; - } - return (fstart); -} - -/* Return the symbol for the function executing in frame FRAME. */ + struct symbol *symbol = block_linkage_function (bl); -struct symbol * -get_frame_function (struct frame_info *frame) -{ - register struct block *bl = get_frame_block (frame, 0); - if (bl == 0) - return 0; - return block_function (bl); -} - - -/* Return the blockvector immediately containing the innermost lexical block - containing the specified pc value and section, or 0 if there is none. - PINDEX is a pointer to the index value of the block. If PINDEX - is NULL, we don't pass this information back to the caller. */ - -struct blockvector * -blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section, - int *pindex, struct symtab *symtab) -{ - register struct block *b; - register int bot, top, half; - struct blockvector *bl; - - if (symtab == 0) /* if no symtab specified by caller */ - { - /* First search all symtabs for one whose file contains our pc */ - if ((symtab = find_pc_sect_symtab (pc, section)) == 0) - return 0; + if (symbol) + { + bl = SYMBOL_BLOCK_VALUE (symbol); + return BLOCK_START (bl); + } } - bl = BLOCKVECTOR (symtab); - b = BLOCKVECTOR_BLOCK (bl, 0); - - /* Then search that symtab for the smallest block that wins. */ - /* Use binary search to find the last block that starts before PC. */ - - bot = 0; - top = BLOCKVECTOR_NBLOCKS (bl); - - while (top - bot > 1) + msymbol = lookup_minimal_symbol_by_pc (pc); + if (msymbol) { - half = (top - bot + 1) >> 1; - b = BLOCKVECTOR_BLOCK (bl, bot + half); - if (BLOCK_START (b) <= pc) - bot += half; - else - top = bot + half; - } - - /* Now search backward for a block that ends after PC. */ + CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol); - while (bot >= 0) - { - b = BLOCKVECTOR_BLOCK (bl, bot); - if (BLOCK_END (b) > pc) - { - if (pindex) - *pindex = bot; - return bl; - } - bot--; + if (find_pc_section (fstart)) + return fstart; } - return 0; -} - -/* Return the blockvector immediately containing the innermost lexical block - containing the specified pc value, or 0 if there is none. - Backward compatibility, no section. */ -struct blockvector * -blockvector_for_pc (register CORE_ADDR pc, int *pindex) -{ - return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc), - pindex, NULL); + return 0; } -/* Return the innermost lexical block containing the specified pc value - in the specified section, or 0 if there is none. */ +/* Return the symbol for the function executing in frame FRAME. */ -struct block * -block_for_pc_sect (register CORE_ADDR pc, struct sec *section) +struct symbol * +get_frame_function (struct frame_info *frame) { - register struct blockvector *bl; - int index; + struct block *bl = get_frame_block (frame, 0); - bl = blockvector_for_pc_sect (pc, section, &index, NULL); - if (bl) - return BLOCKVECTOR_BLOCK (bl, index); - return 0; -} + if (bl == NULL) + return NULL; -/* Return the innermost lexical block containing the specified pc value, - or 0 if there is none. Backward compatibility, no section. */ + while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL) + bl = BLOCK_SUPERBLOCK (bl); -struct block * -block_for_pc (register CORE_ADDR pc) -{ - return block_for_pc_sect (pc, find_pc_mapped_section (pc)); + return BLOCK_FUNCTION (bl); } + /* Return the function containing pc value PC in section SECTION. Returns 0 if function is not known. */ struct symbol * -find_pc_sect_function (CORE_ADDR pc, struct sec *section) +find_pc_sect_function (CORE_ADDR pc, struct obj_section *section) { - register struct block *b = block_for_pc_sect (pc, section); + struct block *b = block_for_pc_sect (pc, section); if (b == 0) return 0; - return block_function (b); + return block_linkage_function (b); } /* Return the function containing pc value PC. @@ -764,7 +161,7 @@ find_pc_function (CORE_ADDR pc) static CORE_ADDR cache_pc_function_low = 0; static CORE_ADDR cache_pc_function_high = 0; static char *cache_pc_function_name = 0; -static struct sec *cache_pc_function_section = NULL; +static struct obj_section *cache_pc_function_section = NULL; /* Clear cache, e.g. when symbol table is discarded. */ @@ -788,18 +185,29 @@ clear_pc_function_cache (void) If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and returns 0. */ +/* Backward compatibility, no section argument. */ + int -find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, - CORE_ADDR *address, CORE_ADDR *endaddr) +find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address, + CORE_ADDR *endaddr) { + struct obj_section *section; struct partial_symtab *pst; struct symbol *f; struct minimal_symbol *msymbol; struct partial_symbol *psb; - struct obj_section *osect; int i; CORE_ADDR mapped_pc; + /* To ensure that the symbol returned belongs to the correct setion + (and that the last [random] symbol from the previous section + isn't returned) try to find the section containing PC. First try + the overlay code (which by default returns NULL); and second try + the normal section code (which almost always succeeds). */ + section = find_pc_overlay (pc); + if (section == NULL) + section = find_pc_section (pc); + mapped_pc = overlay_mapped_address (pc, section); if (mapped_pc >= cache_pc_function_low @@ -807,17 +215,6 @@ find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, && section == cache_pc_function_section) goto return_cached_value; - /* If sigtramp is in the u area, it counts as a function (especially - important for step_1). */ - if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL)) - { - cache_pc_function_low = SIGTRAMP_START (mapped_pc); - cache_pc_function_high = SIGTRAMP_END (mapped_pc); - cache_pc_function_name = ""; - cache_pc_function_section = section; - goto return_cached_value; - } - msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section); pst = find_pc_sect_psymtab (mapped_pc, section); if (pst) @@ -843,7 +240,7 @@ find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, { cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f)); cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f)); - cache_pc_function_name = SYMBOL_NAME (f); + cache_pc_function_name = SYMBOL_LINKAGE_NAME (f); cache_pc_function_section = section; goto return_cached_value; } @@ -864,7 +261,7 @@ find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, if (address) *address = SYMBOL_VALUE_ADDRESS (psb); if (name) - *name = SYMBOL_NAME (psb); + *name = SYMBOL_LINKAGE_NAME (psb); /* endaddr non-NULL can't happen here. */ return 1; } @@ -876,9 +273,7 @@ find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, of the text seg doesn't appear to be part of the last function in the text segment. */ - osect = find_pc_sect_section (mapped_pc, section); - - if (!osect) + if (!section) msymbol = NULL; /* Must be in the minimal symbol table. */ @@ -895,30 +290,37 @@ find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, } cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol); - cache_pc_function_name = SYMBOL_NAME (msymbol); + cache_pc_function_name = SYMBOL_LINKAGE_NAME (msymbol); cache_pc_function_section = section; - /* Use the lesser of the next minimal symbol in the same section, or - the end of the section, as the end of the function. */ - - /* Step over other symbols at this same address, and symbols in - other sections, to find the next symbol in this section with - a different address. */ + /* If the minimal symbol has a size, use it for the cache. + Otherwise use the lesser of the next minimal symbol in the same + section, or the end of the section, as the end of the + function. */ - for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++) + if (MSYMBOL_SIZE (msymbol) != 0) + cache_pc_function_high = cache_pc_function_low + MSYMBOL_SIZE (msymbol); + else { - if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol) - && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol)) - break; - } + /* Step over other symbols at this same address, and symbols in + other sections, to find the next symbol in this section with + a different address. */ - if (SYMBOL_NAME (msymbol + i) != NULL - && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr) - cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i); - else - /* We got the start address from the last msymbol in the objfile. - So the end address is the end of the section. */ - cache_pc_function_high = osect->endaddr; + for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++) + { + if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol) + && SYMBOL_OBJ_SECTION (msymbol + i) == SYMBOL_OBJ_SECTION (msymbol)) + break; + } + + if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL + && SYMBOL_VALUE_ADDRESS (msymbol + i) < obj_section_endaddr (section)) + cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i); + else + /* We got the start address from the last msymbol in the objfile. + So the end address is the end of the section. */ + cache_pc_function_high = obj_section_endaddr (section); + } return_cached_value: @@ -952,18 +354,6 @@ find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, return 1; } -/* Backward compatibility, no section argument. */ - -int -find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address, - CORE_ADDR *endaddr) -{ - asection *section; - - section = find_pc_overlay (pc); - return find_pc_sect_partial_function (pc, section, name, address, endaddr); -} - /* Return the innermost stack frame executing inside of BLOCK, or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */ @@ -971,9 +361,8 @@ struct frame_info * block_innermost_frame (struct block *block) { struct frame_info *frame; - register CORE_ADDR start; - register CORE_ADDR end; - CORE_ADDR calling_pc; + CORE_ADDR start; + CORE_ADDR end; if (block == NULL) return NULL; @@ -981,347 +370,15 @@ block_innermost_frame (struct block *block) start = BLOCK_START (block); end = BLOCK_END (block); - frame = NULL; - while (1) + frame = get_current_frame (); + while (frame != NULL) { - frame = get_prev_frame (frame); - if (frame == NULL) - return NULL; - calling_pc = frame_address_in_block (frame); - if (calling_pc >= start && calling_pc < end) + struct block *frame_block = get_frame_block (frame, NULL); + if (frame_block != NULL && contained_in (frame_block, block)) return frame; - } -} - -/* Return the full FRAME which corresponds to the given CORE_ADDR - or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ -struct frame_info * -find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) -{ - struct frame_info *frame = NULL; - - if (frame_addr == (CORE_ADDR) 0) - return NULL; - - while (1) - { frame = get_prev_frame (frame); - if (frame == NULL) - return NULL; - if (FRAME_FP (frame) == frame_addr) - return frame; } -} - -#ifdef SIGCONTEXT_PC_OFFSET -/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */ - -CORE_ADDR -sigtramp_saved_pc (struct frame_info *frame) -{ - CORE_ADDR sigcontext_addr; - char *buf; - int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT; - int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT; - - buf = alloca (ptrbytes); - /* Get sigcontext address, it is the third parameter on the stack. */ - if (frame->next) - sigcontext_addr = read_memory_typed_address - (FRAME_ARGS_ADDRESS (frame->next) + FRAME_ARGS_SKIP + sigcontext_offs, - builtin_type_void_data_ptr); - else - sigcontext_addr = read_memory_typed_address - (read_register (SP_REGNUM) + sigcontext_offs, builtin_type_void_data_ptr); - - /* Don't cause a memory_error when accessing sigcontext in case the stack - layout has changed or the stack is corrupt. */ - target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes); - return extract_typed_address (buf, builtin_type_void_data_ptr); -} -#endif /* SIGCONTEXT_PC_OFFSET */ - - -/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK - below is for infrun.c, which may give the macro a pc without that - subtracted out. */ - -extern CORE_ADDR text_end; - -int -pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp, - CORE_ADDR frame_address) -{ - return ((pc) >= text_end - CALL_DUMMY_LENGTH - && (pc) <= text_end + DECR_PC_AFTER_BREAK); -} - -int -pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp, - CORE_ADDR frame_address) -{ - return ((pc) >= text_end - && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK); -} - -/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and - top of the stack frame which we are checking, where "bottom" and - "top" refer to some section of memory which contains the code for - the call dummy. Calls to this macro assume that the contents of - SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively, - are the things to pass. - - This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't - have that meaning, but the 29k doesn't use ON_STACK. This could be - fixed by generalizing this scheme, perhaps by passing in a frame - and adding a few fields, at least on machines which need them for - PC_IN_CALL_DUMMY. - - Something simpler, like checking for the stack segment, doesn't work, - since various programs (threads implementations, gcc nested function - stubs, etc) may either allocate stack frames in another segment, or - allocate other kinds of code on the stack. */ -int -pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address) -{ - return (INNER_THAN ((sp), (pc)) - && (frame_address != 0) - && INNER_THAN ((pc), (frame_address))); -} - -int -pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp, - CORE_ADDR frame_address) -{ - return ((pc) >= CALL_DUMMY_ADDRESS () - && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK)); -} - - -/* Function: frame_chain_valid - Returns true for a user frame or a call_function_by_hand dummy frame, - and false for the CRT0 start-up frame. Purpose is to terminate backtrace */ - -int -generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi) -{ - if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp)) - return 1; /* don't prune CALL_DUMMY frames */ - else /* fall back to default algorithm (see frame.h) */ - return (fp != 0 - && (INNER_THAN (fi->frame, fp) || fi->frame == fp) - && !inside_entry_file (FRAME_SAVED_PC (fi))); -} - -int -generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi) -{ - if (USE_GENERIC_DUMMY_FRAMES - && PC_IN_CALL_DUMMY ((fi)->pc, 0, 0)) - return 1; /* don't prune CALL_DUMMY frames */ - else /* fall back to default algorithm (see frame.h) */ - return (fp != 0 - && (INNER_THAN (fi->frame, fp) || fi->frame == fp) - && !inside_main_func ((fi)->pc) - && !inside_entry_func ((fi)->pc)); -} - -/* Return the register saved in the simplistic ``saved_regs'' cache. - If the value isn't here AND a value is needed, try the next inner - most frame. */ - -static void -frame_saved_regs_register_unwind (struct frame_info *frame, void **cache, - int regnum, int *optimizedp, - enum lval_type *lvalp, CORE_ADDR *addrp, - int *realnump, void *bufferp) -{ - /* There is always a frame at this point. And THIS is the frame - we're interested in. */ - gdb_assert (frame != NULL); - /* If we're using generic dummy frames, we'd better not be in a call - dummy. (generic_call_dummy_register_unwind ought to have been called - instead.) */ - gdb_assert (!(USE_GENERIC_DUMMY_FRAMES - && PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))); - - /* Load the saved_regs register cache. */ - if (frame->saved_regs == NULL) - FRAME_INIT_SAVED_REGS (frame); - - if (frame->saved_regs != NULL - && frame->saved_regs[regnum] != 0) - { - if (regnum == SP_REGNUM) - { - /* SP register treated specially. */ - *optimizedp = 0; - *lvalp = not_lval; - *addrp = 0; - *realnump = -1; - if (bufferp != NULL) - store_address (bufferp, REGISTER_RAW_SIZE (regnum), - frame->saved_regs[regnum]); - } - else - { - /* Any other register is saved in memory, fetch it but cache - a local copy of its value. */ - *optimizedp = 0; - *lvalp = lval_memory; - *addrp = frame->saved_regs[regnum]; - *realnump = -1; - if (bufferp != NULL) - { -#if 1 - /* Save each register value, as it is read in, in a - frame based cache. */ - void **regs = (*cache); - if (regs == NULL) - { - int sizeof_cache = ((NUM_REGS + NUM_PSEUDO_REGS) - * sizeof (void *)); - regs = frame_obstack_alloc (sizeof_cache); - memset (regs, 0, sizeof_cache); - (*cache) = regs; - } - if (regs[regnum] == NULL) - { - regs[regnum] - = frame_obstack_alloc (REGISTER_RAW_SIZE (regnum)); - read_memory (frame->saved_regs[regnum], regs[regnum], - REGISTER_RAW_SIZE (regnum)); - } - memcpy (bufferp, regs[regnum], REGISTER_RAW_SIZE (regnum)); -#else - /* Read the value in from memory. */ - read_memory (frame->saved_regs[regnum], bufferp, - REGISTER_RAW_SIZE (regnum)); -#endif - } - } - return; - } - - /* No luck, assume this and the next frame have the same register - value. If a value is needed, pass the request on down the chain; - otherwise just return an indication that the value is in the same - register as the next frame. */ - if (bufferp == NULL) - { - *optimizedp = 0; - *lvalp = lval_register; - *addrp = 0; - *realnump = regnum; - } - else - { - frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp, - realnump, bufferp); - } -} - -/* Function: get_saved_register - Find register number REGNUM relative to FRAME and put its (raw, - target format) contents in *RAW_BUFFER. - - Set *OPTIMIZED if the variable was optimized out (and thus can't be - fetched). Note that this is never set to anything other than zero - in this implementation. - - Set *LVAL to lval_memory, lval_register, or not_lval, depending on - whether the value was fetched from memory, from a register, or in a - strange and non-modifiable way (e.g. a frame pointer which was - calculated rather than fetched). We will use not_lval for values - fetched from generic dummy frames. - - Set *ADDRP to the address, either in memory or as a REGISTER_BYTE - offset into the registers array. If the value is stored in a dummy - frame, set *ADDRP to zero. - - To use this implementation, define a function called - "get_saved_register" in your target code, which simply passes all - of its arguments to this function. - - The argument RAW_BUFFER must point to aligned memory. */ - -void -deprecated_generic_get_saved_register (char *raw_buffer, int *optimized, - CORE_ADDR *addrp, - struct frame_info *frame, int regnum, - enum lval_type *lval) -{ - if (!target_has_registers) - error ("No registers."); - - /* Normal systems don't optimize out things with register numbers. */ - if (optimized != NULL) - *optimized = 0; - - if (addrp) /* default assumption: not found in memory */ - *addrp = 0; - - /* Note: since the current frame's registers could only have been - saved by frames INTERIOR TO the current frame, we skip examining - the current frame itself: otherwise, we would be getting the - previous frame's registers which were saved by the current frame. */ - - while (frame && ((frame = frame->next) != NULL)) - { - if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) - { - if (lval) /* found it in a CALL_DUMMY frame */ - *lval = not_lval; - if (raw_buffer) - /* FIXME: cagney/2002-06-26: This should be via the - gdbarch_register_read() method so that it, on the fly, - constructs either a raw or pseudo register from the raw - register cache. */ - regcache_raw_read (generic_find_dummy_frame (frame->pc, - frame->frame), - regnum, raw_buffer); - return; - } - - FRAME_INIT_SAVED_REGS (frame); - if (frame->saved_regs != NULL - && frame->saved_regs[regnum] != 0) - { - if (lval) /* found it saved on the stack */ - *lval = lval_memory; - if (regnum == SP_REGNUM) - { - if (raw_buffer) /* SP register treated specially */ - store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), - frame->saved_regs[regnum]); - } - else - { - if (addrp) /* any other register */ - *addrp = frame->saved_regs[regnum]; - if (raw_buffer) - read_memory (frame->saved_regs[regnum], raw_buffer, - REGISTER_RAW_SIZE (regnum)); - } - return; - } - } - - /* If we get thru the loop to this point, it means the register was - not saved in any frame. Return the actual live-register value. */ - - if (lval) /* found it in a live register */ - *lval = lval_register; - if (addrp) - *addrp = REGISTER_BYTE (regnum); - if (raw_buffer) - deprecated_read_register_gen (regnum, raw_buffer); -} - -void -_initialize_blockframe (void) -{ - obstack_init (&frame_cache_obstack); + return NULL; }