X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fblockframe.c;h=94ccb298d5d57039df388c9d808b720ecab14d8c;hb=93d56215df715181dba7f5275de9863f28a6c941;hp=4acac1e6f82efd76e389dffc8d57ed7e84a58ad7;hpb=3bf57d210832b28e9361990830eb722a619f031b;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/blockframe.c b/gdb/blockframe.c index 4acac1e6f8..94ccb298d5 100644 --- a/gdb/blockframe.c +++ b/gdb/blockframe.c @@ -1,212 +1,574 @@ /* Get info from stack frames; convert between frames, blocks, functions and pc values. - Copyright (C) 1986, 1987, 1988 Free Software Foundation, Inc. + Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, + 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. -GDB is distributed in the hope that it will be useful, but WITHOUT ANY -WARRANTY. No author or distributor accepts responsibility to anyone -for the consequences of using it or for whether it serves any -particular purpose or works at all, unless he says so in writing. -Refer to the GDB General Public License for full details. + This file is part of GDB. -Everyone is granted permission to copy, modify and redistribute GDB, -but only under the conditions described in the GDB General Public -License. A copy of this license is supposed to have been given to you -along with GDB so you can know your rights and responsibilities. It -should be in a file named COPYING. Among other things, the copyright -notice and this notice must be preserved on all copies. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. -In other words, go ahead and share GDB, but don't try to stop -anyone else from sharing it farther. Help stamp out software hoarding! -*/ + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ #include "defs.h" -#include "initialize.h" -#include "param.h" #include "symtab.h" +#include "bfd.h" +#include "symfile.h" +#include "objfiles.h" #include "frame.h" +#include "gdbcore.h" +#include "value.h" /* for read_register */ +#include "target.h" /* for target_has_stack */ +#include "inferior.h" /* for read_pc */ +#include "annotate.h" +#include "regcache.h" + +/* Prototypes for exported functions. */ -/* Address of end of first object file. - This file is assumed to be a startup file - and frames with pc's inside it - are treated as nonexistent. */ +void _initialize_blockframe (void); -CORE_ADDR first_object_file_end; +/* A default FRAME_CHAIN_VALID, in the form that is suitable for most + targets. If FRAME_CHAIN_VALID returns zero it means that the given + frame is the outermost one and has no caller. */ -/* Address of innermost stack frame (contents of FP register) */ +int +file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) +{ + return ((chain) != 0 + && !inside_entry_file (FRAME_SAVED_PC (thisframe))); +} -static FRAME current_frame; +/* Use the alternate method of avoiding running up off the end of the + frame chain or following frames back into the startup code. See + the comments in objfiles.h. */ -struct block *block_for_pc (); -CORE_ADDR get_pc_function_start (); +int +func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) +{ + return ((chain) != 0 + && !inside_main_func ((thisframe)->pc) + && !inside_entry_func ((thisframe)->pc)); +} -START_FILE +/* A very simple method of determining a valid frame */ -/* Return the innermost (currently executing) stack frame. */ +int +nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) +{ + return ((chain) != 0); +} + +/* Is ADDR inside the startup file? Note that if your machine + has a way to detect the bottom of the stack, there is no need + to call this function from FRAME_CHAIN_VALID; the reason for + doing so is that some machines have no way of detecting bottom + of stack. + + A PC of zero is always considered to be the bottom of the stack. */ + +int +inside_entry_file (CORE_ADDR addr) +{ + if (addr == 0) + return 1; + if (symfile_objfile == 0) + return 0; + if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) + { + /* Do not stop backtracing if the pc is in the call dummy + at the entry point. */ + /* FIXME: Won't always work with zeros for the last two arguments */ + if (PC_IN_CALL_DUMMY (addr, 0, 0)) + return 0; + } + return (addr >= symfile_objfile->ei.entry_file_lowpc && + addr < symfile_objfile->ei.entry_file_highpc); +} + +/* Test a specified PC value to see if it is in the range of addresses + that correspond to the main() function. See comments above for why + we might want to do this. + + Typically called from FRAME_CHAIN_VALID. + + A PC of zero is always considered to be the bottom of the stack. */ + +int +inside_main_func (CORE_ADDR pc) +{ + if (pc == 0) + return 1; + if (symfile_objfile == 0) + return 0; + + /* If the addr range is not set up at symbol reading time, set it up now. + This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because + it is unable to set it up and symbol reading time. */ + + if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC && + symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC) + { + struct symbol *mainsym; + + mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL); + if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK) + { + symfile_objfile->ei.main_func_lowpc = + BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym)); + symfile_objfile->ei.main_func_highpc = + BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym)); + } + } + return (symfile_objfile->ei.main_func_lowpc <= pc && + symfile_objfile->ei.main_func_highpc > pc); +} + +/* Test a specified PC value to see if it is in the range of addresses + that correspond to the process entry point function. See comments + in objfiles.h for why we might want to do this. + + Typically called from FRAME_CHAIN_VALID. + + A PC of zero is always considered to be the bottom of the stack. */ + +int +inside_entry_func (CORE_ADDR pc) +{ + if (pc == 0) + return 1; + if (symfile_objfile == 0) + return 0; + if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) + { + /* Do not stop backtracing if the pc is in the call dummy + at the entry point. */ + /* FIXME: Won't always work with zeros for the last two arguments */ + if (PC_IN_CALL_DUMMY (pc, 0, 0)) + return 0; + } + return (symfile_objfile->ei.entry_func_lowpc <= pc && + symfile_objfile->ei.entry_func_highpc > pc); +} + +/* Info about the innermost stack frame (contents of FP register) */ + +static struct frame_info *current_frame; + +/* Cache for frame addresses already read by gdb. Valid only while + inferior is stopped. Control variables for the frame cache should + be local to this module. */ + +static struct obstack frame_cache_obstack; -FRAME -get_current_frame () +void * +frame_obstack_alloc (unsigned long size) { - /* We assume its address is kept in a general register; - param.h says which register. */ + return obstack_alloc (&frame_cache_obstack, size); +} + +void +frame_saved_regs_zalloc (struct frame_info *fi) +{ + fi->saved_regs = (CORE_ADDR *) + frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); + memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); +} + +/* Return the innermost (currently executing) stack frame. */ + +struct frame_info * +get_current_frame (void) +{ + if (current_frame == NULL) + { + if (target_has_stack) + current_frame = create_new_frame (read_fp (), read_pc ()); + else + error ("No stack."); + } return current_frame; } void -set_current_frame (frame) - FRAME frame; +set_current_frame (struct frame_info *frame) { current_frame = frame; } -/* Return the frame that called FRAME. - If FRAME is the original frame (it has no caller), return 0. */ +/* Create an arbitrary (i.e. address specified by user) or innermost frame. + Always returns a non-NULL value. */ -FRAME -get_prev_frame (frame) - FRAME frame; +struct frame_info * +create_new_frame (CORE_ADDR addr, CORE_ADDR pc) { - CORE_ADDR pointer; - /* The caller of "no frame" is the innermost frame. */ - if (frame == 0) - return get_current_frame (); + struct frame_info *fi; + char *name; - /* Two macros defined in param.h specify the machine-dependent - actions to be performed here. */ - /* First, get the frame's chain-pointer. - If that is zero, the frame is the outermost frame. */ - pointer = FRAME_CHAIN (frame); - if (!FRAME_CHAIN_VALID (pointer, frame)) - return 0; - /* If frame has a caller, combine the chain pointer and the frame's own - address to get the address of the caller. */ - return FRAME_CHAIN_COMBINE (pointer, frame); + fi = (struct frame_info *) + obstack_alloc (&frame_cache_obstack, + sizeof (struct frame_info)); + + /* Arbitrary frame */ + fi->saved_regs = NULL; + fi->next = NULL; + fi->prev = NULL; + fi->frame = addr; + fi->pc = pc; + find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); + fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name); + +#ifdef INIT_EXTRA_FRAME_INFO + INIT_EXTRA_FRAME_INFO (0, fi); +#endif + + return fi; } -/* Return a structure containing various interesting information - about a specified stack frame. */ +/* Return the frame that FRAME calls (NULL if FRAME is the innermost + frame). */ -struct frame_info -get_frame_info (frame) - FRAME frame; +struct frame_info * +get_next_frame (struct frame_info *frame) { - struct frame_info val; - FRAME current = get_current_frame (); - register FRAME frame1; + return frame->next; +} + +/* Flush the entire frame cache. */ + +void +flush_cached_frames (void) +{ + /* Since we can't really be sure what the first object allocated was */ + obstack_free (&frame_cache_obstack, 0); + obstack_init (&frame_cache_obstack); + + current_frame = NULL; /* Invalidate cache */ + select_frame (NULL, -1); + annotate_frames_invalid (); +} + +/* Flush the frame cache, and start a new one if necessary. */ - val.frame = frame; +void +reinit_frame_cache (void) +{ + flush_cached_frames (); - if (frame == current) + /* FIXME: The inferior_pid test is wrong if there is a corefile. */ + if (inferior_pid != 0) { - val.pc = read_pc (); - val.next_frame = 0; + select_frame (get_current_frame (), 0); } - else - { - for (frame1 = current; frame1; frame1 = get_prev_frame (frame1)) - { - QUIT; - if (frame1 == frame) - break; +} - val.pc = FRAME_SAVED_PC (frame1); - val.next_frame = frame1; - } - } +/* Return nonzero if the function for this frame lacks a prologue. Many + machines can define FRAMELESS_FUNCTION_INVOCATION to just call this + function. */ + +int +frameless_look_for_prologue (struct frame_info *frame) +{ + CORE_ADDR func_start, after_prologue; - return val; + func_start = get_pc_function_start (frame->pc); + if (func_start) + { + func_start += FUNCTION_START_OFFSET; + /* This is faster, since only care whether there *is* a + prologue, not how long it is. */ + return PROLOGUE_FRAMELESS_P (func_start); + } + else if (frame->pc == 0) + /* A frame with a zero PC is usually created by dereferencing a + NULL function pointer, normally causing an immediate core dump + of the inferior. Mark function as frameless, as the inferior + has no chance of setting up a stack frame. */ + return 1; + else + /* If we can't find the start of the function, we don't really + know whether the function is frameless, but we should be able + to get a reasonable (i.e. best we can do under the + circumstances) backtrace by saying that it isn't. */ + return 0; } -/* Return a structure containing various interesting information - about the frame that called FRAME. +/* Default a few macros that people seldom redefine. */ + +#if !defined (INIT_FRAME_PC) +#define INIT_FRAME_PC(fromleaf, prev) \ + prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \ + prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); +#endif - This is much faster than get_frame_info (get_prev_frame (FRAME)) - because it does not need to search the entire stack - to find the frame called by the one being described -- that is FRAME. */ +#ifndef FRAME_CHAIN_COMBINE +#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) +#endif -struct frame_info -get_prev_frame_info (next_frame) - FRAME next_frame; +/* Return a structure containing various interesting information + about the frame that called NEXT_FRAME. Returns NULL + if there is no such frame. */ + +struct frame_info * +get_prev_frame (struct frame_info *next_frame) { - struct frame_info val; - register FRAME frame = get_prev_frame (next_frame); + CORE_ADDR address = 0; + struct frame_info *prev; + int fromleaf = 0; + char *name; + + /* If the requested entry is in the cache, return it. + Otherwise, figure out what the address should be for the entry + we're about to add to the cache. */ + + if (!next_frame) + { +#if 0 + /* This screws value_of_variable, which just wants a nice clean + NULL return from block_innermost_frame if there are no frames. + I don't think I've ever seen this message happen otherwise. + And returning NULL here is a perfectly legitimate thing to do. */ + if (!current_frame) + { + error ("You haven't set up a process's stack to examine."); + } +#endif + + return current_frame; + } - val.frame = frame; - val.next_frame = next_frame; + /* If we have the prev one, return it */ + if (next_frame->prev) + return next_frame->prev; - if (next_frame == 0) + /* On some machines it is possible to call a function without + setting up a stack frame for it. On these machines, we + define this macro to take two args; a frameinfo pointer + identifying a frame and a variable to set or clear if it is + or isn't leafless. */ + + /* Still don't want to worry about this except on the innermost + frame. This macro will set FROMLEAF if NEXT_FRAME is a + frameless function invocation. */ + if (!(next_frame->next)) { - val.pc = read_pc (); + fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame); + if (fromleaf) + address = FRAME_FP (next_frame); } - else + + if (!fromleaf) + { + /* Two macros defined in tm.h specify the machine-dependent + actions to be performed here. + First, get the frame's chain-pointer. + If that is zero, the frame is the outermost frame or a leaf + called by the outermost frame. This means that if start + calls main without a frame, we'll return 0 (which is fine + anyway). + + Nope; there's a problem. This also returns when the current + routine is a leaf of main. This is unacceptable. We move + this to after the ffi test; I'd rather have backtraces from + start go curfluy than have an abort called from main not show + main. */ + address = FRAME_CHAIN (next_frame); + if (!FRAME_CHAIN_VALID (address, next_frame)) + return 0; + address = FRAME_CHAIN_COMBINE (address, next_frame); + } + if (address == 0) + return 0; + + prev = (struct frame_info *) + obstack_alloc (&frame_cache_obstack, + sizeof (struct frame_info)); + + /* Zero all fields by default. */ + memset (prev, 0, sizeof (struct frame_info)); + + if (next_frame) + next_frame->prev = prev; + prev->next = next_frame; + prev->frame = address; + +/* This change should not be needed, FIXME! We should + determine whether any targets *need* INIT_FRAME_PC to happen + after INIT_EXTRA_FRAME_INFO and come up with a simple way to + express what goes on here. + + INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame + (where the PC is already set up) and here (where it isn't). + INIT_FRAME_PC is only called from here, always after + INIT_EXTRA_FRAME_INFO. + + The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC + value (which hasn't been set yet). Some other machines appear to + require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo. + + We shouldn't need INIT_FRAME_PC_FIRST to add more complication to + an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92. + + Assuming that some machines need INIT_FRAME_PC after + INIT_EXTRA_FRAME_INFO, one possible scheme: + + SETUP_INNERMOST_FRAME() + Default version is just create_new_frame (read_fp ()), + read_pc ()). Machines with extra frame info would do that (or the + local equivalent) and then set the extra fields. + SETUP_ARBITRARY_FRAME(argc, argv) + Only change here is that create_new_frame would no longer init extra + frame info; SETUP_ARBITRARY_FRAME would have to do that. + INIT_PREV_FRAME(fromleaf, prev) + Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should + also return a flag saying whether to keep the new frame, or + whether to discard it, because on some machines (e.g. mips) it + is really awkward to have FRAME_CHAIN_VALID called *before* + INIT_EXTRA_FRAME_INFO (there is no good way to get information + deduced in FRAME_CHAIN_VALID into the extra fields of the new frame). + std_frame_pc(fromleaf, prev) + This is the default setting for INIT_PREV_FRAME. It just does what + the default INIT_FRAME_PC does. Some machines will call it from + INIT_PREV_FRAME (either at the beginning, the end, or in the middle). + Some machines won't use it. + kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */ + +#ifdef INIT_FRAME_PC_FIRST + INIT_FRAME_PC_FIRST (fromleaf, prev); +#endif + +#ifdef INIT_EXTRA_FRAME_INFO + INIT_EXTRA_FRAME_INFO (fromleaf, prev); +#endif + + /* This entry is in the frame queue now, which is good since + FRAME_SAVED_PC may use that queue to figure out its value + (see tm-sparc.h). We want the pc saved in the inferior frame. */ + INIT_FRAME_PC (fromleaf, prev); + + /* If ->frame and ->pc are unchanged, we are in the process of getting + ourselves into an infinite backtrace. Some architectures check this + in FRAME_CHAIN or thereabouts, but it seems like there is no reason + this can't be an architecture-independent check. */ + if (next_frame != NULL) { - val.pc = FRAME_SAVED_PC (next_frame); + if (prev->frame == next_frame->frame + && prev->pc == next_frame->pc) + { + next_frame->prev = NULL; + obstack_free (&frame_cache_obstack, prev); + return NULL; + } } - return val; + find_pc_partial_function (prev->pc, &name, + (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); + if (IN_SIGTRAMP (prev->pc, name)) + prev->signal_handler_caller = 1; + + return prev; } CORE_ADDR -get_frame_pc (frame) - FRAME frame; +get_frame_pc (struct frame_info *frame) { - struct frame_info fi; - fi = get_frame_info (frame); - return fi.pc; + return frame->pc; } + +#ifdef FRAME_FIND_SAVED_REGS +/* XXX - deprecated. This is a compatibility function for targets + that do not yet implement FRAME_INIT_SAVED_REGS. */ /* Find the addresses in which registers are saved in FRAME. */ void -get_frame_saved_regs (frame_info_addr, saved_regs_addr) - struct frame_info *frame_info_addr; - struct frame_saved_regs *saved_regs_addr; +get_frame_saved_regs (struct frame_info *frame, + struct frame_saved_regs *saved_regs_addr) { - FRAME_FIND_SAVED_REGS (*frame_info_addr, *saved_regs_addr); + if (frame->saved_regs == NULL) + { + frame->saved_regs = (CORE_ADDR *) + frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); + } + if (saved_regs_addr == NULL) + { + struct frame_saved_regs saved_regs; + FRAME_FIND_SAVED_REGS (frame, saved_regs); + memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS); + } + else + { + FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr); + memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS); + } } +#endif /* Return the innermost lexical block in execution in a specified stack frame. The frame address is assumed valid. */ struct block * -get_frame_block (frame) - FRAME frame; +get_frame_block (struct frame_info *frame) { - struct frame_info fi; + CORE_ADDR pc; - fi = get_frame_info (frame); - return block_for_pc (fi.pc); + pc = frame->pc; + if (frame->next != 0 && frame->next->signal_handler_caller == 0) + /* We are not in the innermost frame and we were not interrupted + by a signal. We need to subtract one to get the correct block, + in case the call instruction was the last instruction of the block. + If there are any machines on which the saved pc does not point to + after the call insn, we probably want to make frame->pc point after + the call insn anyway. */ + --pc; + return block_for_pc (pc); } struct block * -get_current_block () +get_current_block (void) { return block_for_pc (read_pc ()); } CORE_ADDR -get_pc_function_start (pc) - CORE_ADDR pc; +get_pc_function_start (CORE_ADDR pc) { - register struct block *bl = block_for_pc (pc); + register struct block *bl; register struct symbol *symbol; - if (bl == 0) + register struct minimal_symbol *msymbol; + CORE_ADDR fstart; + + if ((bl = block_for_pc (pc)) != NULL && + (symbol = block_function (bl)) != NULL) { - register int misc_index = find_pc_misc_function (pc); - if (misc_index >= 0) - return misc_function_vector[misc_index].address; - return 0; + bl = SYMBOL_BLOCK_VALUE (symbol); + fstart = BLOCK_START (bl); + } + else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL) + { + fstart = SYMBOL_VALUE_ADDRESS (msymbol); + } + else + { + fstart = 0; } - symbol = block_function (bl); - bl = SYMBOL_BLOCK_VALUE (symbol); - return BLOCK_START (bl); -} + return (fstart); +} /* Return the symbol for the function executing in frame FRAME. */ struct symbol * -get_frame_function (frame) - FRAME frame; +get_frame_function (struct frame_info *frame) { register struct block *bl = get_frame_block (frame); if (bl == 0) @@ -214,31 +576,29 @@ get_frame_function (frame) return block_function (bl); } -/* Return the innermost lexical block containing the specified pc value, - or 0 if there is none. */ -struct block * -block_for_pc (pc) - register CORE_ADDR pc; +/* Return the blockvector immediately containing the innermost lexical block + containing the specified pc value and section, or 0 if there is none. + PINDEX is a pointer to the index value of the block. If PINDEX + is NULL, we don't pass this information back to the caller. */ + +struct blockvector * +blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section, + int *pindex, struct symtab *symtab) { register struct block *b; register int bot, top, half; - register struct symtab *s; struct blockvector *bl; - /* First search all symtabs for one whose file contains our pc */ - - for (s = symtab_list; s; s = s->next) + if (symtab == 0) /* if no symtab specified by caller */ { - bl = BLOCKVECTOR (s); - b = BLOCKVECTOR_BLOCK (bl, 0); - if (BLOCK_START (b) <= pc - && BLOCK_END (b) > pc) - break; + /* First search all symtabs for one whose file contains our pc */ + if ((symtab = find_pc_sect_symtab (pc, section)) == 0) + return 0; } - if (s == 0) - return 0; + bl = BLOCKVECTOR (symtab); + b = BLOCKVECTOR_BLOCK (bl, 0); /* Then search that symtab for the smallest block that wins. */ /* Use binary search to find the last block that starts before PC. */ @@ -262,92 +622,715 @@ block_for_pc (pc) { b = BLOCKVECTOR_BLOCK (bl, bot); if (BLOCK_END (b) > pc) - return b; + { + if (pindex) + *pindex = bot; + return bl; + } bot--; } + return 0; +} +/* Return the blockvector immediately containing the innermost lexical block + containing the specified pc value, or 0 if there is none. + Backward compatibility, no section. */ + +struct blockvector * +blockvector_for_pc (register CORE_ADDR pc, int *pindex) +{ + return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc), + pindex, NULL); +} + +/* Return the innermost lexical block containing the specified pc value + in the specified section, or 0 if there is none. */ + +struct block * +block_for_pc_sect (register CORE_ADDR pc, struct sec *section) +{ + register struct blockvector *bl; + int index; + + bl = blockvector_for_pc_sect (pc, section, &index, NULL); + if (bl) + return BLOCKVECTOR_BLOCK (bl, index); return 0; } -/* Return the function containing pc value PC. +/* Return the innermost lexical block containing the specified pc value, + or 0 if there is none. Backward compatibility, no section. */ + +struct block * +block_for_pc (register CORE_ADDR pc) +{ + return block_for_pc_sect (pc, find_pc_mapped_section (pc)); +} + +/* Return the function containing pc value PC in section SECTION. Returns 0 if function is not known. */ struct symbol * -find_pc_function (pc) - CORE_ADDR pc; +find_pc_sect_function (CORE_ADDR pc, struct sec *section) { - register struct block *b = block_for_pc (pc); + register struct block *b = block_for_pc_sect (pc, section); if (b == 0) return 0; return block_function (b); } -/* Find the misc function whose address is the largest - while being less than PC. Return its index in misc_function_vector. - Returns -1 if PC is not in suitable range. */ +/* Return the function containing pc value PC. + Returns 0 if function is not known. Backward compatibility, no section */ + +struct symbol * +find_pc_function (CORE_ADDR pc) +{ + return find_pc_sect_function (pc, find_pc_mapped_section (pc)); +} + +/* These variables are used to cache the most recent result + * of find_pc_partial_function. */ + +static CORE_ADDR cache_pc_function_low = 0; +static CORE_ADDR cache_pc_function_high = 0; +static char *cache_pc_function_name = 0; +static struct sec *cache_pc_function_section = NULL; + +/* Clear cache, e.g. when symbol table is discarded. */ + +void +clear_pc_function_cache (void) +{ + cache_pc_function_low = 0; + cache_pc_function_high = 0; + cache_pc_function_name = (char *) 0; + cache_pc_function_section = NULL; +} + +/* Finds the "function" (text symbol) that is smaller than PC but + greatest of all of the potential text symbols in SECTION. Sets + *NAME and/or *ADDRESS conditionally if that pointer is non-null. + If ENDADDR is non-null, then set *ENDADDR to be the end of the + function (exclusive), but passing ENDADDR as non-null means that + the function might cause symbols to be read. This function either + succeeds or fails (not halfway succeeds). If it succeeds, it sets + *NAME, *ADDRESS, and *ENDADDR to real information and returns 1. + If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and + returns 0. */ int -find_pc_misc_function (pc) - register CORE_ADDR pc; -{ - register int lo = 0; - register int hi = misc_function_count-1; - register int new; - register int distance; - - /* Note that the last thing in the vector is always _etext. */ - - /* Above statement is not *always* true - fix for case where there are */ - /* no misc functions at all (ie no symbol table has been read). */ - if (hi < 0) return -1; /* no misc functions recorded */ - - /* trivial reject range test */ - if (pc < misc_function_vector[0].address || - pc > misc_function_vector[hi].address) - return -1; - - do { - new = (lo + hi) >> 1; - distance = misc_function_vector[new].address - pc; - if (distance == 0) - return new; /* an exact match */ - else if (distance > 0) - hi = new; - else - lo = new; - } while (hi-lo != 1); +find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name, + CORE_ADDR *address, CORE_ADDR *endaddr) +{ + struct partial_symtab *pst; + struct symbol *f; + struct minimal_symbol *msymbol; + struct partial_symbol *psb; + struct obj_section *osect; + int i; + CORE_ADDR mapped_pc; + + mapped_pc = overlay_mapped_address (pc, section); + + if (mapped_pc >= cache_pc_function_low && + mapped_pc < cache_pc_function_high && + section == cache_pc_function_section) + goto return_cached_value; + + /* If sigtramp is in the u area, it counts as a function (especially + important for step_1). */ +#if defined SIGTRAMP_START + if (IN_SIGTRAMP (mapped_pc, (char *) NULL)) + { + cache_pc_function_low = SIGTRAMP_START (mapped_pc); + cache_pc_function_high = SIGTRAMP_END (mapped_pc); + cache_pc_function_name = ""; + cache_pc_function_section = section; + goto return_cached_value; + } +#endif + + msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section); + pst = find_pc_sect_psymtab (mapped_pc, section); + if (pst) + { + /* Need to read the symbols to get a good value for the end address. */ + if (endaddr != NULL && !pst->readin) + { + /* Need to get the terminal in case symbol-reading produces + output. */ + target_terminal_ours_for_output (); + PSYMTAB_TO_SYMTAB (pst); + } + + if (pst->readin) + { + /* Checking whether the msymbol has a larger value is for the + "pathological" case mentioned in print_frame_info. */ + f = find_pc_sect_function (mapped_pc, section); + if (f != NULL + && (msymbol == NULL + || (BLOCK_START (SYMBOL_BLOCK_VALUE (f)) + >= SYMBOL_VALUE_ADDRESS (msymbol)))) + { + cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f)); + cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f)); + cache_pc_function_name = SYMBOL_NAME (f); + cache_pc_function_section = section; + goto return_cached_value; + } + } + else + { + /* Now that static symbols go in the minimal symbol table, perhaps + we could just ignore the partial symbols. But at least for now + we use the partial or minimal symbol, whichever is larger. */ + psb = find_pc_sect_psymbol (pst, mapped_pc, section); + + if (psb + && (msymbol == NULL || + (SYMBOL_VALUE_ADDRESS (psb) + >= SYMBOL_VALUE_ADDRESS (msymbol)))) + { + /* This case isn't being cached currently. */ + if (address) + *address = SYMBOL_VALUE_ADDRESS (psb); + if (name) + *name = SYMBOL_NAME (psb); + /* endaddr non-NULL can't happen here. */ + return 1; + } + } + } + + /* Not in the normal symbol tables, see if the pc is in a known section. + If it's not, then give up. This ensures that anything beyond the end + of the text seg doesn't appear to be part of the last function in the + text segment. */ + + osect = find_pc_sect_section (mapped_pc, section); + + if (!osect) + msymbol = NULL; + + /* Must be in the minimal symbol table. */ + if (msymbol == NULL) + { + /* No available symbol. */ + if (name != NULL) + *name = 0; + if (address != NULL) + *address = 0; + if (endaddr != NULL) + *endaddr = 0; + return 0; + } + + cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol); + cache_pc_function_name = SYMBOL_NAME (msymbol); + cache_pc_function_section = section; + + /* Use the lesser of the next minimal symbol in the same section, or + the end of the section, as the end of the function. */ + + /* Step over other symbols at this same address, and symbols in + other sections, to find the next symbol in this section with + a different address. */ + + for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++) + { + if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol) + && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol)) + break; + } + + if (SYMBOL_NAME (msymbol + i) != NULL + && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr) + cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i); + else + /* We got the start address from the last msymbol in the objfile. + So the end address is the end of the section. */ + cache_pc_function_high = osect->endaddr; + +return_cached_value: + + if (address) + { + if (pc_in_unmapped_range (pc, section)) + *address = overlay_unmapped_address (cache_pc_function_low, section); + else + *address = cache_pc_function_low; + } + + if (name) + *name = cache_pc_function_name; + + if (endaddr) + { + if (pc_in_unmapped_range (pc, section)) + { + /* Because the high address is actually beyond the end of + the function (and therefore possibly beyond the end of + the overlay), we must actually convert (high - 1) + and then add one to that. */ + + *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1, + section); + } + else + *endaddr = cache_pc_function_high; + } + + return 1; +} + +/* Backward compatibility, no section argument */ + +int +find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address, + CORE_ADDR *endaddr) +{ + asection *section; - /* if here, we had no exact match, so return the lower choice */ - return lo; + section = find_pc_overlay (pc); + return find_pc_sect_partial_function (pc, section, name, address, endaddr); } -/* Return the innermost stack frame executing inside of the specified block, - or zero if there is no such frame. */ +/* Return the innermost stack frame executing inside of BLOCK, + or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */ -FRAME -block_innermost_frame (block) - struct block *block; +struct frame_info * +block_innermost_frame (struct block *block) { - struct frame_info fi; - register FRAME frame; - register CORE_ADDR start = BLOCK_START (block); - register CORE_ADDR end = BLOCK_END (block); + struct frame_info *frame; + register CORE_ADDR start; + register CORE_ADDR end; + + if (block == NULL) + return NULL; - frame = 0; + start = BLOCK_START (block); + end = BLOCK_END (block); + + frame = NULL; while (1) { - fi = get_prev_frame_info (frame); - frame = fi.frame; - if (frame == 0) - return 0; - if (fi.pc >= start && fi.pc < end) + frame = get_prev_frame (frame); + if (frame == NULL) + return NULL; + if (frame->pc >= start && frame->pc < end) return frame; } } -static -initialize () +/* Return the full FRAME which corresponds to the given CORE_ADDR + or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ + +struct frame_info * +find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) +{ + struct frame_info *frame = NULL; + + if (frame_addr == (CORE_ADDR) 0) + return NULL; + + while (1) + { + frame = get_prev_frame (frame); + if (frame == NULL) + return NULL; + if (FRAME_FP (frame) == frame_addr) + return frame; + } +} + +#ifdef SIGCONTEXT_PC_OFFSET +/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */ + +CORE_ADDR +sigtramp_saved_pc (struct frame_info *frame) +{ + CORE_ADDR sigcontext_addr; + char *buf; + int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT; + int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT; + + buf = alloca (ptrbytes); + /* Get sigcontext address, it is the third parameter on the stack. */ + if (frame->next) + sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next) + + FRAME_ARGS_SKIP + + sigcontext_offs, + ptrbytes); + else + sigcontext_addr = read_memory_integer (read_register (SP_REGNUM) + + sigcontext_offs, + ptrbytes); + + /* Don't cause a memory_error when accessing sigcontext in case the stack + layout has changed or the stack is corrupt. */ + target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes); + return extract_unsigned_integer (buf, ptrbytes); +} +#endif /* SIGCONTEXT_PC_OFFSET */ + + +/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK + below is for infrun.c, which may give the macro a pc without that + subtracted out. */ + +extern CORE_ADDR text_end; + +int +pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp, + CORE_ADDR frame_address) +{ + return ((pc) >= text_end - CALL_DUMMY_LENGTH + && (pc) <= text_end + DECR_PC_AFTER_BREAK); +} + +int +pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp, + CORE_ADDR frame_address) { + return ((pc) >= text_end + && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK); } -END_FILE +/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and + top of the stack frame which we are checking, where "bottom" and + "top" refer to some section of memory which contains the code for + the call dummy. Calls to this macro assume that the contents of + SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively, + are the things to pass. + + This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't + have that meaning, but the 29k doesn't use ON_STACK. This could be + fixed by generalizing this scheme, perhaps by passing in a frame + and adding a few fields, at least on machines which need them for + PC_IN_CALL_DUMMY. + + Something simpler, like checking for the stack segment, doesn't work, + since various programs (threads implementations, gcc nested function + stubs, etc) may either allocate stack frames in another segment, or + allocate other kinds of code on the stack. */ + +int +pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address) +{ + return (INNER_THAN ((sp), (pc)) + && (frame_address != 0) + && INNER_THAN ((pc), (frame_address))); +} + +int +pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp, + CORE_ADDR frame_address) +{ + return ((pc) >= CALL_DUMMY_ADDRESS () + && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK)); +} + + +/* + * GENERIC DUMMY FRAMES + * + * The following code serves to maintain the dummy stack frames for + * inferior function calls (ie. when gdb calls into the inferior via + * call_function_by_hand). This code saves the machine state before + * the call in host memory, so we must maintain an independent stack + * and keep it consistant etc. I am attempting to make this code + * generic enough to be used by many targets. + * + * The cheapest and most generic way to do CALL_DUMMY on a new target + * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to + * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember + * to define PUSH_RETURN_ADDRESS, because no call instruction will be + * being executed by the target. Also FRAME_CHAIN_VALID as + * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as + * generic_fix_call_dummy. */ + +/* Dummy frame. This saves the processor state just prior to setting + up the inferior function call. Older targets save the registers + on the target stack (but that really slows down function calls). */ + +struct dummy_frame +{ + struct dummy_frame *next; + + CORE_ADDR pc; + CORE_ADDR fp; + CORE_ADDR sp; + CORE_ADDR top; + char *registers; +}; + +static struct dummy_frame *dummy_frame_stack = NULL; + +/* Function: find_dummy_frame(pc, fp, sp) + Search the stack of dummy frames for one matching the given PC, FP and SP. + This is the work-horse for pc_in_call_dummy and read_register_dummy */ + +char * +generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp) +{ + struct dummy_frame *dummyframe; + + if (pc != entry_point_address ()) + return 0; + + for (dummyframe = dummy_frame_stack; dummyframe != NULL; + dummyframe = dummyframe->next) + if (fp == dummyframe->fp + || fp == dummyframe->sp + || fp == dummyframe->top) + /* The frame in question lies between the saved fp and sp, inclusive */ + return dummyframe->registers; + + return 0; +} + +/* Function: pc_in_call_dummy (pc, fp) + Return true if this is a dummy frame created by gdb for an inferior call */ + +int +generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp) +{ + /* if find_dummy_frame succeeds, then PC is in a call dummy */ + /* Note: SP and not FP is passed on. */ + return (generic_find_dummy_frame (pc, sp) != 0); +} + +/* Function: read_register_dummy + Find a saved register from before GDB calls a function in the inferior */ + +CORE_ADDR +generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno) +{ + char *dummy_regs = generic_find_dummy_frame (pc, fp); + + if (dummy_regs) + return extract_address (&dummy_regs[REGISTER_BYTE (regno)], + REGISTER_RAW_SIZE (regno)); + else + return 0; +} + +/* Save all the registers on the dummy frame stack. Most ports save the + registers on the target stack. This results in lots of unnecessary memory + references, which are slow when debugging via a serial line. Instead, we + save all the registers internally, and never write them to the stack. The + registers get restored when the called function returns to the entry point, + where a breakpoint is laying in wait. */ + +void +generic_push_dummy_frame (void) +{ + struct dummy_frame *dummy_frame; + CORE_ADDR fp = (get_current_frame ())->frame; + + /* check to see if there are stale dummy frames, + perhaps left over from when a longjump took us out of a + function that was called by the debugger */ + + dummy_frame = dummy_frame_stack; + while (dummy_frame) + if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */ + { + dummy_frame_stack = dummy_frame->next; + xfree (dummy_frame->registers); + xfree (dummy_frame); + dummy_frame = dummy_frame_stack; + } + else + dummy_frame = dummy_frame->next; + + dummy_frame = xmalloc (sizeof (struct dummy_frame)); + dummy_frame->registers = xmalloc (REGISTER_BYTES); + + dummy_frame->pc = read_pc (); + dummy_frame->sp = read_sp (); + dummy_frame->top = dummy_frame->sp; + dummy_frame->fp = fp; + read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES); + dummy_frame->next = dummy_frame_stack; + dummy_frame_stack = dummy_frame; +} + +void +generic_save_dummy_frame_tos (CORE_ADDR sp) +{ + dummy_frame_stack->top = sp; +} + +/* Restore the machine state from either the saved dummy stack or a + real stack frame. */ + +void +generic_pop_current_frame (void (*popper) (struct frame_info * frame)) +{ + struct frame_info *frame = get_current_frame (); + + if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) + generic_pop_dummy_frame (); + else + (*popper) (frame); +} + +/* Function: pop_dummy_frame + Restore the machine state from a saved dummy stack frame. */ + +void +generic_pop_dummy_frame (void) +{ + struct dummy_frame *dummy_frame = dummy_frame_stack; + + /* FIXME: what if the first frame isn't the right one, eg.. + because one call-by-hand function has done a longjmp into another one? */ + + if (!dummy_frame) + error ("Can't pop dummy frame!"); + dummy_frame_stack = dummy_frame->next; + write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES); + flush_cached_frames (); + + xfree (dummy_frame->registers); + xfree (dummy_frame); +} + +/* Function: frame_chain_valid + Returns true for a user frame or a call_function_by_hand dummy frame, + and false for the CRT0 start-up frame. Purpose is to terminate backtrace */ + +int +generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi) +{ + if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp)) + return 1; /* don't prune CALL_DUMMY frames */ + else /* fall back to default algorithm (see frame.h) */ + return (fp != 0 + && (INNER_THAN (fi->frame, fp) || fi->frame == fp) + && !inside_entry_file (FRAME_SAVED_PC (fi))); +} + +int +generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi) +{ + if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp)) + return 1; /* don't prune CALL_DUMMY frames */ + else /* fall back to default algorithm (see frame.h) */ + return (fp != 0 + && (INNER_THAN (fi->frame, fp) || fi->frame == fp) + && !inside_main_func ((fi)->pc) + && !inside_entry_func ((fi)->pc)); +} + +/* Function: fix_call_dummy + Stub function. Generic dumy frames typically do not need to fix + the frame being created */ + +void +generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, + struct value **args, struct type *type, int gcc_p) +{ + return; +} + +/* Function: get_saved_register + Find register number REGNUM relative to FRAME and put its (raw, + target format) contents in *RAW_BUFFER. + + Set *OPTIMIZED if the variable was optimized out (and thus can't be + fetched). Note that this is never set to anything other than zero + in this implementation. + + Set *LVAL to lval_memory, lval_register, or not_lval, depending on + whether the value was fetched from memory, from a register, or in a + strange and non-modifiable way (e.g. a frame pointer which was + calculated rather than fetched). We will use not_lval for values + fetched from generic dummy frames. + + Set *ADDRP to the address, either in memory or as a REGISTER_BYTE + offset into the registers array. If the value is stored in a dummy + frame, set *ADDRP to zero. + + To use this implementation, define a function called + "get_saved_register" in your target code, which simply passes all + of its arguments to this function. + + The argument RAW_BUFFER must point to aligned memory. */ + +void +generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, + struct frame_info *frame, int regnum, + enum lval_type *lval) +{ + if (!target_has_registers) + error ("No registers."); + + /* Normal systems don't optimize out things with register numbers. */ + if (optimized != NULL) + *optimized = 0; + + if (addrp) /* default assumption: not found in memory */ + *addrp = 0; + + /* Note: since the current frame's registers could only have been + saved by frames INTERIOR TO the current frame, we skip examining + the current frame itself: otherwise, we would be getting the + previous frame's registers which were saved by the current frame. */ + + while (frame && ((frame = frame->next) != NULL)) + { + if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) + { + if (lval) /* found it in a CALL_DUMMY frame */ + *lval = not_lval; + if (raw_buffer) + memcpy (raw_buffer, + generic_find_dummy_frame (frame->pc, frame->frame) + + REGISTER_BYTE (regnum), + REGISTER_RAW_SIZE (regnum)); + return; + } + + FRAME_INIT_SAVED_REGS (frame); + if (frame->saved_regs != NULL + && frame->saved_regs[regnum] != 0) + { + if (lval) /* found it saved on the stack */ + *lval = lval_memory; + if (regnum == SP_REGNUM) + { + if (raw_buffer) /* SP register treated specially */ + store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), + frame->saved_regs[regnum]); + } + else + { + if (addrp) /* any other register */ + *addrp = frame->saved_regs[regnum]; + if (raw_buffer) + read_memory (frame->saved_regs[regnum], raw_buffer, + REGISTER_RAW_SIZE (regnum)); + } + return; + } + } + + /* If we get thru the loop to this point, it means the register was + not saved in any frame. Return the actual live-register value. */ + + if (lval) /* found it in a live register */ + *lval = lval_register; + if (addrp) + *addrp = REGISTER_BYTE (regnum); + if (raw_buffer) + read_register_gen (regnum, raw_buffer); +} + +void +_initialize_blockframe (void) +{ + obstack_init (&frame_cache_obstack); +}