X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fgdbarch.sh;h=331eb392781eb759d38303897947e7a950b3c8dc;hb=599956cfe164ca2f4f7d04b90aee1db98930a023;hp=51b8004314c7d2f39922363f564742a5cbd09748;hpb=59837fe086d095b2ce147ac6e3539f6843007f4f;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/gdbarch.sh b/gdb/gdbarch.sh index 51b8004314..331eb39278 100755 --- a/gdb/gdbarch.sh +++ b/gdb/gdbarch.sh @@ -2,8 +2,7 @@ # Architecture commands for GDB, the GNU debugger. # -# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, -# 2008, 2009 Free Software Foundation, Inc. +# Copyright (C) 1998-2019 Free Software Foundation, Inc. # # This file is part of GDB. # @@ -22,8 +21,8 @@ # Make certain that the script is not running in an internationalized # environment. -LANG=c ; export LANG -LC_ALL=c ; export LC_ALL +LANG=C ; export LANG +LC_ALL=C ; export LC_ALL compare_new () @@ -48,7 +47,10 @@ do_read () { comment="" class="" - while read line + # On some SH's, 'read' trims leading and trailing whitespace by + # default (e.g., bash), while on others (e.g., dash), it doesn't. + # Set IFS to empty to disable the trimming everywhere. + while IFS='' read line do if test "${line}" = "" then @@ -63,11 +65,11 @@ ${line}" else # The semantics of IFS varies between different SH's. Some - # treat ``::' as three fields while some treat it as just too. - # Work around this by eliminating ``::'' .... - line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`" + # treat ``;;' as three fields while some treat it as just two. + # Work around this by eliminating ``;;'' .... + line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`" - OFS="${IFS}" ; IFS="[:]" + OFS="${IFS}" ; IFS="[;]" eval read ${read} <printable_name +i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name # -i:int:byte_order:::BFD_ENDIAN_BIG -i:int:byte_order_for_code:::BFD_ENDIAN_BIG +i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG +i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG # -i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN +i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN # -i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc) +i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc) -# The bit byte-order has to do just with numbering of bits in debugging symbols -# and such. Conceptually, it's quite separate from byte/word byte order. -v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0 - -# Number of bits in a char or unsigned char for the target machine. -# Just like CHAR_BIT in but describes the target machine. -# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0: -# # Number of bits in a short or unsigned short for the target machine. -v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0 +v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0 # Number of bits in an int or unsigned int for the target machine. -v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0 +v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0 # Number of bits in a long or unsigned long for the target machine. -v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0 +v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0 # Number of bits in a long long or unsigned long long for the target # machine. -v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0 +v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0 -# The ABI default bit-size and format for "float", "double", and "long -# double". These bit/format pairs should eventually be combined into -# a single object. For the moment, just initialize them as a pair. +# The ABI default bit-size and format for "half", "float", "double", and +# "long double". These bit/format pairs should eventually be combined +# into a single object. For the moment, just initialize them as a pair. # Each format describes both the big and little endian layouts (if # useful). -v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0 -v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format) -v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0 -v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format) -v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0 -v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format) +v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0 +v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format) +v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0 +v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format) +v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0 +v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format) +v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0 +v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format) + +# The ABI default bit-size for "wchar_t". wchar_t is a built-in type +# starting with C++11. +v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0 +# One if \`wchar_t' is signed, zero if unsigned. +v;int;wchar_signed;;;1;-1;1 + +# Returns the floating-point format to be used for values of length LENGTH. +# NAME, if non-NULL, is the type name, which may be used to distinguish +# different target formats of the same length. +m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0 # For most targets, a pointer on the target and its representation as an # address in GDB have the same size and "look the same". For such a @@ -382,96 +389,146 @@ v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::p # / addr_bit will be set from it. # # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably -# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer -# as well. +# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and +# gdbarch_address_to_pointer as well. # # ptr_bit is the size of a pointer on the target -v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0 +v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0 # addr_bit is the size of a target address as represented in gdb -v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch): +v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch); +# +# dwarf2_addr_size is the target address size as used in the Dwarf debug +# info. For .debug_frame FDEs, this is supposed to be the target address +# size from the associated CU header, and which is equivalent to the +# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end. +# Unfortunately there is no good way to determine this value. Therefore +# dwarf2_addr_size simply defaults to the target pointer size. +# +# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally +# defined using the target's pointer size so far. +# +# Note that dwarf2_addr_size only needs to be redefined by a target if the +# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size, +# and if Dwarf versions < 4 need to be supported. +v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; # # One if \`char' acts like \`signed char', zero if \`unsigned char'. -v:int:char_signed:::1:-1:1 +v;int;char_signed;;;1;-1;1 # -F:CORE_ADDR:read_pc:struct regcache *regcache:regcache -F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val +F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache +F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val # Function for getting target's idea of a frame pointer. FIXME: GDB's # whole scheme for dealing with "frames" and "frame pointers" needs a # serious shakedown. -m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0 +m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0 # -M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf -M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf +M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf +# Read a register into a new struct value. If the register is wholly +# or partly unavailable, this should call mark_value_bytes_unavailable +# as appropriate. If this is defined, then pseudo_register_read will +# never be called. +M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum +M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf # -v:int:num_regs:::0:-1 +v;int;num_regs;;;0;-1 # This macro gives the number of pseudo-registers that live in the # register namespace but do not get fetched or stored on the target. # These pseudo-registers may be aliases for other registers, # combinations of other registers, or they may be computed by GDB. -v:int:num_pseudo_regs:::0:0::0 +v;int;num_pseudo_regs;;;0;0;;0 + +# Assemble agent expression bytecode to collect pseudo-register REG. +# Return -1 if something goes wrong, 0 otherwise. +M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg + +# Assemble agent expression bytecode to push the value of pseudo-register +# REG on the interpreter stack. +# Return -1 if something goes wrong, 0 otherwise. +M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg + +# Some targets/architectures can do extra processing/display of +# segmentation faults. E.g., Intel MPX boundary faults. +# Call the architecture dependent function to handle the fault. +# UIOUT is the output stream where the handler will place information. +M;void;handle_segmentation_fault;struct ui_out *uiout;uiout # GDB's standard (or well known) register numbers. These can map onto # a real register or a pseudo (computed) register or not be defined at # all (-1). # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP. -v:int:sp_regnum:::-1:-1::0 -v:int:pc_regnum:::-1:-1::0 -v:int:ps_regnum:::-1:-1::0 -v:int:fp0_regnum:::0:-1::0 +v;int;sp_regnum;;;-1;-1;;0 +v;int;pc_regnum;;;-1;-1;;0 +v;int;ps_regnum;;;-1;-1;;0 +v;int;fp0_regnum;;;0;-1;;0 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM. -m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0 +m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0 # Provide a default mapping from a ecoff register number to a gdb REGNUM. -m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0 +m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0 # Convert from an sdb register number to an internal gdb register number. -m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0 +m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM. -m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0 -m:const char *:register_name:int regnr:regnr::0 +# Return -1 for bad REGNUM. Note: Several targets get this wrong. +m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0 +m;const char *;register_name;int regnr;regnr;;0 # Return the type of a register specified by the architecture. Only # the register cache should call this function directly; others should # use "register_type". -M:struct type *:register_type:int reg_nr:reg_nr - -# See gdbint.texinfo, and PUSH_DUMMY_CALL. -M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame +M;struct type *;register_type;int reg_nr;reg_nr + +# Generate a dummy frame_id for THIS_FRAME assuming that the frame is +# a dummy frame. A dummy frame is created before an inferior call, +# the frame_id returned here must match the frame_id that was built +# for the inferior call. Usually this means the returned frame_id's +# stack address should match the address returned by +# gdbarch_push_dummy_call, and the returned frame_id's code address +# should match the address at which the breakpoint was set in the dummy +# frame. +m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete # deprecated_fp_regnum. -v:int:deprecated_fp_regnum:::-1:-1::0 +v;int;deprecated_fp_regnum;;;-1;-1;;0 + +M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr +v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0 +M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache -# See gdbint.texinfo. See infcall.c. -M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr -v:int:call_dummy_location::::AT_ENTRY_POINT::0 -M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache +# Return true if the code of FRAME is writable. +m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0 -m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0 -M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args -M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args +m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0 +m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0 +M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args # MAP a GDB RAW register number onto a simulator register number. See # also include/...-sim.h. -m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0 -m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0 -m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0 -# setjmp/longjmp support. -F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc +m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0 +m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0 +m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0 + +# Determine the address where a longjmp will land and save this address +# in PC. Return nonzero on success. +# +# FRAME corresponds to the longjmp frame. +F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc + # -v:int:believe_pcc_promotion::::::: +v;int;believe_pcc_promotion;;;;;;; # -m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0 -f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0 -f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0 +m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0 +f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0 +f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0 # Construct a value representing the contents of register REGNUM in -# frame FRAME, interpreted as type TYPE. The routine needs to +# frame FRAME_ID, interpreted as type TYPE. The routine needs to # allocate and return a struct value with all value attributes # (but not the value contents) filled in. -f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0 +m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0 # -m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0 -m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0 -M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf +m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0 +m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0 +M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf -# Return the return-value convention that will be used by FUNCTYPE -# to return a value of type VALTYPE. FUNCTYPE may be NULL in which +# Return the return-value convention that will be used by FUNCTION +# to return a value of type VALTYPE. FUNCTION may be NULL in which # case the return convention is computed based only on VALTYPE. # # If READBUF is not NULL, extract the return value and save it in this buffer. @@ -480,16 +537,50 @@ M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf # stored into the appropriate register. This can be used when we want # to force the value returned by a function (see the "return" command # for instance). -M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf - -m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0 -M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip -f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0 -m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0: -M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr -m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0 -m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0 -v:CORE_ADDR:decr_pc_after_break:::0:::0 +M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf + +# Return true if the return value of function is stored in the first hidden +# parameter. In theory, this feature should be language-dependent, specified +# by language and its ABI, such as C++. Unfortunately, compiler may +# implement it to a target-dependent feature. So that we need such hook here +# to be aware of this in GDB. +m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0 + +m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0 +M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip +# On some platforms, a single function may provide multiple entry points, +# e.g. one that is used for function-pointer calls and a different one +# that is used for direct function calls. +# In order to ensure that breakpoints set on the function will trigger +# no matter via which entry point the function is entered, a platform +# may provide the skip_entrypoint callback. It is called with IP set +# to the main entry point of a function (as determined by the symbol table), +# and should return the address of the innermost entry point, where the +# actual breakpoint needs to be set. Note that skip_entrypoint is used +# by GDB common code even when debugging optimized code, where skip_prologue +# is not used. +M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip + +f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0 +m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0 + +# Return the breakpoint kind for this target based on *PCPTR. +m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0; + +# Return the software breakpoint from KIND. KIND can have target +# specific meaning like the Z0 kind parameter. +# SIZE is set to the software breakpoint's length in memory. +m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0 + +# Return the breakpoint kind for this target based on the current +# processor state (e.g. the current instruction mode on ARM) and the +# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc. +m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0 + +M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr +m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0 +m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0 +v;CORE_ADDR;decr_pc_after_break;;;0;;;0 # A function can be addressed by either it's "pointer" (possibly a # descriptor address) or "entry point" (first executable instruction). @@ -499,27 +590,35 @@ v:CORE_ADDR:decr_pc_after_break:::0:::0 # corresponds to the "function pointer" and the function's start # corresponds to the "function entry point" - and hence is redundant. -v:CORE_ADDR:deprecated_function_start_offset:::0:::0 +v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0 # Return the remote protocol register number associated with this # register. Normally the identity mapping. -m:int:remote_register_number:int regno:regno::default_remote_register_number::0 +m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0 # Fetch the target specific address used to represent a load module. -F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile +F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile + +# Return the thread-local address at OFFSET in the thread-local +# storage for the thread PTID and the shared library or executable +# file given by LM_ADDR. If that block of thread-local storage hasn't +# been allocated yet, this function may throw an error. LM_ADDR may +# be zero for statically linked multithreaded inferiors. + +M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset # -v:CORE_ADDR:frame_args_skip:::0:::0 -M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame -M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame +v;CORE_ADDR;frame_args_skip;;;0;;;0 +m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0 +m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame # frame-base. Enable frame-base before frame-unwind. -F:int:frame_num_args:struct frame_info *frame:frame +F;int;frame_num_args;struct frame_info *frame;frame # -M:CORE_ADDR:frame_align:CORE_ADDR address:address -m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0 -v:int:frame_red_zone_size +M;CORE_ADDR;frame_align;CORE_ADDR address;address +m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0 +v;int;frame_red_zone_size # -m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0 +m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0 # On some machines there are bits in addresses which are not really # part of the address, but are used by the kernel, the hardware, etc. # for special purposes. gdbarch_addr_bits_remove takes out any such bits so @@ -529,103 +628,168 @@ m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:a # being a few stray bits in the PC which would mislead us, not as some # sort of generic thing to handle alignment or segmentation (it's # possible it should be in TARGET_READ_PC instead). -m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0 -# It is not at all clear why gdbarch_smash_text_address is not folded into -# gdbarch_addr_bits_remove. -m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0 +m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0 + +# On some machines, not all bits of an address word are significant. +# For example, on AArch64, the top bits of an address known as the "tag" +# are ignored by the kernel, the hardware, etc. and can be regarded as +# additional data associated with the address. +v;int;significant_addr_bit;;;;;;0 # FIXME/cagney/2001-01-18: This should be split in two. A target method that # indicates if the target needs software single step. An ISA method to # implement it. # -# FIXME/cagney/2001-01-18: This should be replaced with something that inserts -# breakpoints using the breakpoint system instead of blatting memory directly -# (as with rs6000). -# # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the # target can single step. If not, then implement single step using breakpoints. # -# A return value of 1 means that the software_single_step breakpoints -# were inserted; 0 means they were not. -F:int:software_single_step:struct frame_info *frame:frame +# Return a vector of addresses on which the software single step +# breakpoints should be inserted. NULL means software single step is +# not used. +# Multiple breakpoints may be inserted for some instructions such as +# conditional branch. However, each implementation must always evaluate +# the condition and only put the breakpoint at the branch destination if +# the condition is true, so that we ensure forward progress when stepping +# past a conditional branch to self. +F;std::vector;software_single_step;struct regcache *regcache;regcache # Return non-zero if the processor is executing a delay slot and a # further single-step is needed before the instruction finishes. -M:int:single_step_through_delay:struct frame_info *frame:frame +M;int;single_step_through_delay;struct frame_info *frame;frame # FIXME: cagney/2003-08-28: Need to find a better way of selecting the # disassembler. Perhaps objdump can handle it? -f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0: -f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0 +f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0 +f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER # evaluates non-zero, this is the address where the debugger will place # a step-resume breakpoint to get us past the dynamic linker. -m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0 +m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0 # Some systems also have trampoline code for returning from shared libs. -m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0 +m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0 + +# Return true if PC lies inside an indirect branch thunk. +m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0 # A target might have problems with watchpoints as soon as the stack # frame of the current function has been destroyed. This mostly happens -# as the first action in a funtion's epilogue. in_function_epilogue_p() +# as the first action in a function's epilogue. stack_frame_destroyed_p() # is defined to return a non-zero value if either the given addr is one # instruction after the stack destroying instruction up to the trailing # return instruction or if we can figure out that the stack frame has # already been invalidated regardless of the value of addr. Targets # which don't suffer from that problem could just let this functionality # untouched. -m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0 -f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0 -f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0 -v:int:cannot_step_breakpoint:::0:0::0 -v:int:have_nonsteppable_watchpoint:::0:0::0 -F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class -M:const char *:address_class_type_flags_to_name:int type_flags:type_flags -M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr +m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0 +# Process an ELF symbol in the minimal symbol table in a backend-specific +# way. Normally this hook is supposed to do nothing, however if required, +# then this hook can be used to apply tranformations to symbols that are +# considered special in some way. For example the MIPS backend uses it +# to interpret \`st_other' information to mark compressed code symbols so +# that they can be treated in the appropriate manner in the processing of +# the main symbol table and DWARF-2 records. +F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym +f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0 +# Process a symbol in the main symbol table in a backend-specific way. +# Normally this hook is supposed to do nothing, however if required, +# then this hook can be used to apply tranformations to symbols that +# are considered special in some way. This is currently used by the +# MIPS backend to make sure compressed code symbols have the ISA bit +# set. This in turn is needed for symbol values seen in GDB to match +# the values used at the runtime by the program itself, for function +# and label references. +f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0 +# Adjust the address retrieved from a DWARF-2 record other than a line +# entry in a backend-specific way. Normally this hook is supposed to +# return the address passed unchanged, however if that is incorrect for +# any reason, then this hook can be used to fix the address up in the +# required manner. This is currently used by the MIPS backend to make +# sure addresses in FDE, range records, etc. referring to compressed +# code have the ISA bit set, matching line information and the symbol +# table. +f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0 +# Adjust the address updated by a line entry in a backend-specific way. +# Normally this hook is supposed to return the address passed unchanged, +# however in the case of inconsistencies in these records, this hook can +# be used to fix them up in the required manner. This is currently used +# by the MIPS backend to make sure all line addresses in compressed code +# are presented with the ISA bit set, which is not always the case. This +# in turn ensures breakpoint addresses are correctly matched against the +# stop PC. +f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0 +v;int;cannot_step_breakpoint;;;0;0;;0 +# See comment in target.h about continuable, steppable and +# non-steppable watchpoints. +v;int;have_nonsteppable_watchpoint;;;0;0;;0 +F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class +M;const char *;address_class_type_flags_to_name;int type_flags;type_flags +# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction. +# FS are passed from the generic execute_cfa_program function. +m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0 + +# Return the appropriate type_flags for the supplied address class. +# This function should return 1 if the address class was recognized and +# type_flags was set, zero otherwise. +M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr # Is a register in a group -m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0 +m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0 # Fetch the pointer to the ith function argument. -F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type +F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type -# Return the appropriate register set for a core file section with -# name SECT_NAME and size SECT_SIZE. -M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size +# Iterate over all supported register notes in a core file. For each +# supported register note section, the iterator must call CB and pass +# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit +# the supported register note sections based on the current register +# values. Otherwise it should enumerate all supported register note +# sections. +M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache -# When creating core dumps, some systems encode the PID in addition -# to the LWP id in core file register section names. In those cases, the -# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting -# is set to true for such architectures; false if "XXX" represents an LWP -# or thread id with no special encoding. -v:int:core_reg_section_encodes_pid:::0:0::0 +# Create core file notes +M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size -# Supported register notes in a core file. -v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections) +# Find core file memory regions +M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from -# core file into buffer READBUF with length LEN. -M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len +# core file into buffer READBUF with length LEN. Return the number of bytes read +# (zero indicates failure). +# failed, otherwise, return the red length of READBUF. +M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len + +# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared +# libraries list from core file into buffer READBUF with length LEN. +# Return the number of bytes read (zero indicates failure). +M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len + +# How the core target converts a PTID from a core file to a string. +M;std::string;core_pid_to_str;ptid_t ptid;ptid -# How the core_stratum layer converts a PTID from a core file to a -# string. -M:char *:core_pid_to_str:ptid_t ptid:ptid +# How the core target extracts the name of a thread from a core file. +M;const char *;core_thread_name;struct thread_info *thr;thr + +# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information +# from core file into buffer READBUF with length LEN. Return the number +# of bytes read (zero indicates EOF, a negative value indicates failure). +M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len # BFD target to use when generating a core file. -V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target +V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target) # If the elements of C++ vtables are in-place function descriptors rather # than normal function pointers (which may point to code or a descriptor), # set this to one. -v:int:vtable_function_descriptors:::0:0::0 +v;int;vtable_function_descriptors;;;0;0;;0 # Set if the least significant bit of the delta is used instead of the least # significant bit of the pfn for pointers to virtual member functions. -v:int:vbit_in_delta:::0:0::0 +v;int;vbit_in_delta;;;0;0;;0 # Advance PC to next instruction in order to skip a permanent breakpoint. -F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache +f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0 -# The maximum length of an instruction on this architecture. -V:ULONGEST:max_insn_length:::0:0 +# The maximum length of an instruction on this architecture in bytes. +V;ULONGEST;max_insn_length;;;0;0 # Copy the instruction at FROM to TO, and make any adjustments # necessary to single-step it at that address. @@ -649,10 +813,21 @@ V:ULONGEST:max_insn_length:::0:0 # If you do not provide this function, GDB assumes that the # architecture does not support displaced stepping. # -# If your architecture doesn't need to adjust instructions before -# single-stepping them, consider using simple_displaced_step_copy_insn -# here. -M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs +# If the instruction cannot execute out of line, return NULL. The +# core falls back to stepping past the instruction in-line instead in +# that case. +M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs + +# Return true if GDB should use hardware single-stepping to execute +# the displaced instruction identified by CLOSURE. If false, +# GDB will simply restart execution at the displaced instruction +# location, and it is up to the target to ensure GDB will receive +# control again (e.g. by placing a software breakpoint instruction +# into the displaced instruction buffer). +# +# The default implementation returns false on all targets that +# provide a gdbarch_software_single_step routine, and true otherwise. +m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0 # Fix up the state resulting from successfully single-stepping a # displaced instruction, to give the result we would have gotten from @@ -670,19 +845,7 @@ M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ # # For a general explanation of displaced stepping and how GDB uses it, # see the comments in infrun.c. -M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL - -# Free a closure returned by gdbarch_displaced_step_copy_insn. -# -# If you provide gdbarch_displaced_step_copy_insn, you must provide -# this function as well. -# -# If your architecture uses closures that don't need to be freed, then -# you can use simple_displaced_step_free_closure here. -# -# For a general explanation of displaced stepping and how GDB uses it, -# see the comments in infrun.c. -m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn) +M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL # Return the address of an appropriate place to put displaced # instructions while we step over them. There need only be one such @@ -691,51 +854,361 @@ m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closur # # For a general explanation of displaced stepping and how GDB uses it, # see the comments in infrun.c. -m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn) +m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn) + +# Relocate an instruction to execute at a different address. OLDLOC +# is the address in the inferior memory where the instruction to +# relocate is currently at. On input, TO points to the destination +# where we want the instruction to be copied (and possibly adjusted) +# to. On output, it points to one past the end of the resulting +# instruction(s). The effect of executing the instruction at TO shall +# be the same as if executing it at FROM. For example, call +# instructions that implicitly push the return address on the stack +# should be adjusted to return to the instruction after OLDLOC; +# relative branches, and other PC-relative instructions need the +# offset adjusted; etc. +M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL # Refresh overlay mapped state for section OSECT. -F:void:overlay_update:struct obj_section *osect:osect +F;void;overlay_update;struct obj_section *osect;osect -M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd +M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd # Handle special encoding of static variables in stabs debug info. -F:char *:static_transform_name:char *name:name +F;const char *;static_transform_name;const char *name;name # Set if the address in N_SO or N_FUN stabs may be zero. -v:int:sofun_address_maybe_missing:::0:0::0 +v;int;sofun_address_maybe_missing;;;0;0;;0 # Parse the instruction at ADDR storing in the record execution log # the registers REGCACHE and memory ranges that will be affected when # the instruction executes, along with their current values. # Return -1 if something goes wrong, 0 otherwise. -M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr +M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr -# Signal translation: translate inferior's signal (host's) number into -# GDB's representation. -m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0 -# Signal translation: translate GDB's signal number into inferior's host -# signal number. -m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0 +# Save process state after a signal. +# Return -1 if something goes wrong, 0 otherwise. +M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal + +# Signal translation: translate inferior's signal (target's) number +# into GDB's representation. The implementation of this method must +# be host independent. IOW, don't rely on symbols of the NAT_FILE +# header (the nm-*.h files), the host header, or similar +# headers. This is mainly used when cross-debugging core files --- +# "Live" targets hide the translation behind the target interface +# (target_wait, target_resume, etc.). +M;enum gdb_signal;gdb_signal_from_target;int signo;signo + +# Signal translation: translate the GDB's internal signal number into +# the inferior's signal (target's) representation. The implementation +# of this method must be host independent. IOW, don't rely on symbols +# of the NAT_FILE header (the nm-*.h files), the host +# header, or similar headers. +# Return the target signal number if found, or -1 if the GDB internal +# signal number is invalid. +M;int;gdb_signal_to_target;enum gdb_signal signal;signal # Extra signal info inspection. # # Return a type suitable to inspect extra signal information. -M:struct type *:get_siginfo_type:void: +M;struct type *;get_siginfo_type;void; # Record architecture-specific information from the symbol table. -M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym +M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym + +# Function for the 'catch syscall' feature. + +# Get architecture-specific system calls information from registers. +M;LONGEST;get_syscall_number;thread_info *thread;thread + +# The filename of the XML syscall for this architecture. +v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file) + +# Information about system calls from this architecture +v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info) + +# SystemTap related fields and functions. + +# A NULL-terminated array of prefixes used to mark an integer constant +# on the architecture's assembly. +# For example, on x86 integer constants are written as: +# +# \$10 ;; integer constant 10 +# +# in this case, this prefix would be the character \`\$\'. +v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes) + +# A NULL-terminated array of suffixes used to mark an integer constant +# on the architecture's assembly. +v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes) + +# A NULL-terminated array of prefixes used to mark a register name on +# the architecture's assembly. +# For example, on x86 the register name is written as: +# +# \%eax ;; register eax +# +# in this case, this prefix would be the character \`\%\'. +v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes) + +# A NULL-terminated array of suffixes used to mark a register name on +# the architecture's assembly. +v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes) + +# A NULL-terminated array of prefixes used to mark a register +# indirection on the architecture's assembly. +# For example, on x86 the register indirection is written as: +# +# \(\%eax\) ;; indirecting eax +# +# in this case, this prefix would be the charater \`\(\'. +# +# Please note that we use the indirection prefix also for register +# displacement, e.g., \`4\(\%eax\)\' on x86. +v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes) + +# A NULL-terminated array of suffixes used to mark a register +# indirection on the architecture's assembly. +# For example, on x86 the register indirection is written as: +# +# \(\%eax\) ;; indirecting eax +# +# in this case, this prefix would be the charater \`\)\'. +# +# Please note that we use the indirection suffix also for register +# displacement, e.g., \`4\(\%eax\)\' on x86. +v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes) + +# Prefix(es) used to name a register using GDB's nomenclature. +# +# For example, on PPC a register is represented by a number in the assembly +# language (e.g., \`10\' is the 10th general-purpose register). However, +# inside GDB this same register has an \`r\' appended to its name, so the 10th +# register would be represented as \`r10\' internally. +v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix) + +# Suffix used to name a register using GDB's nomenclature. +v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix) + +# Check if S is a single operand. +# +# Single operands can be: +# \- Literal integers, e.g. \`\$10\' on x86 +# \- Register access, e.g. \`\%eax\' on x86 +# \- Register indirection, e.g. \`\(\%eax\)\' on x86 +# \- Register displacement, e.g. \`4\(\%eax\)\' on x86 +# +# This function should check for these patterns on the string +# and return 1 if some were found, or zero otherwise. Please try to match +# as much info as you can from the string, i.e., if you have to match +# something like \`\(\%\', do not match just the \`\(\'. +M;int;stap_is_single_operand;const char *s;s + +# Function used to handle a "special case" in the parser. +# +# A "special case" is considered to be an unknown token, i.e., a token +# that the parser does not know how to parse. A good example of special +# case would be ARM's register displacement syntax: +# +# [R0, #4] ;; displacing R0 by 4 +# +# Since the parser assumes that a register displacement is of the form: +# +# +# +# it means that it will not be able to recognize and parse this odd syntax. +# Therefore, we should add a special case function that will handle this token. +# +# This function should generate the proper expression form of the expression +# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\' +# and so on). It should also return 1 if the parsing was successful, or zero +# if the token was not recognized as a special token (in this case, returning +# zero means that the special parser is deferring the parsing to the generic +# parser), and should advance the buffer pointer (p->arg). +M;int;stap_parse_special_token;struct stap_parse_info *p;p + +# Perform arch-dependent adjustments to a register name. +# +# In very specific situations, it may be necessary for the register +# name present in a SystemTap probe's argument to be handled in a +# special way. For example, on i386, GCC may over-optimize the +# register allocation and use smaller registers than necessary. In +# such cases, the client that is reading and evaluating the SystemTap +# probe (ourselves) will need to actually fetch values from the wider +# version of the register in question. +# +# To illustrate the example, consider the following probe argument +# (i386): +# +# 4@%ax +# +# This argument says that its value can be found at the %ax register, +# which is a 16-bit register. However, the argument's prefix says +# that its type is "uint32_t", which is 32-bit in size. Therefore, in +# this case, GDB should actually fetch the probe's value from register +# %eax, not %ax. In this scenario, this function would actually +# replace the register name from %ax to %eax. +# +# The rationale for this can be found at PR breakpoints/24541. +M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \®name, int regnum;p, regname, regnum + +# DTrace related functions. + +# The expression to compute the NARTGth+1 argument to a DTrace USDT probe. +# NARG must be >= 0. +M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg + +# True if the given ADDR does not contain the instruction sequence +# corresponding to a disabled DTrace is-enabled probe. +M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr + +# Enable a DTrace is-enabled probe at ADDR. +M;void;dtrace_enable_probe;CORE_ADDR addr;addr + +# Disable a DTrace is-enabled probe at ADDR. +M;void;dtrace_disable_probe;CORE_ADDR addr;addr # True if the list of shared libraries is one and only for all # processes, as opposed to a list of shared libraries per inferior. # This usually means that all processes, although may or may not share # an address space, will see the same set of symbols at the same # addresses. -v:int:has_global_solist:::0:0::0 +v;int;has_global_solist;;;0;0;;0 # On some targets, even though each inferior has its own private # address space, the debug interface takes care of making breakpoints # visible to all address spaces automatically. For such cases, # this property should be set to true. -v:int:has_global_breakpoints:::0:0::0 +v;int;has_global_breakpoints;;;0;0;;0 + +# True if inferiors share an address space (e.g., uClinux). +m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0 + +# True if a fast tracepoint can be set at an address. +m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0 + +# Guess register state based on tracepoint location. Used for tracepoints +# where no registers have been collected, but there's only one location, +# allowing us to guess the PC value, and perhaps some other registers. +# On entry, regcache has all registers marked as unavailable. +m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0 + +# Return the "auto" target charset. +f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0 +# Return the "auto" target wide charset. +f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0 + +# If non-empty, this is a file extension that will be opened in place +# of the file extension reported by the shared library list. +# +# This is most useful for toolchains that use a post-linker tool, +# where the names of the files run on the target differ in extension +# compared to the names of the files GDB should load for debug info. +v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension) + +# If true, the target OS has DOS-based file system semantics. That +# is, absolute paths include a drive name, and the backslash is +# considered a directory separator. +v;int;has_dos_based_file_system;;;0;0;;0 + +# Generate bytecodes to collect the return address in a frame. +# Since the bytecodes run on the target, possibly with GDB not even +# connected, the full unwinding machinery is not available, and +# typically this function will issue bytecodes for one or more likely +# places that the return address may be found. +m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0 + +# Implement the "info proc" command. +M;void;info_proc;const char *args, enum info_proc_what what;args, what + +# Implement the "info proc" command for core files. Noe that there +# are two "info_proc"-like methods on gdbarch -- one for core files, +# one for live targets. +M;void;core_info_proc;const char *args, enum info_proc_what what;args, what + +# Iterate over all objfiles in the order that makes the most sense +# for the architecture to make global symbol searches. +# +# CB is a callback function where OBJFILE is the objfile to be searched, +# and CB_DATA a pointer to user-defined data (the same data that is passed +# when calling this gdbarch method). The iteration stops if this function +# returns nonzero. +# +# CB_DATA is a pointer to some user-defined data to be passed to +# the callback. +# +# If not NULL, CURRENT_OBJFILE corresponds to the objfile being +# inspected when the symbol search was requested. +m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0 + +# Ravenscar arch-dependent ops. +v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops) + +# Return non-zero if the instruction at ADDR is a call; zero otherwise. +m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0 + +# Return non-zero if the instruction at ADDR is a return; zero otherwise. +m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0 + +# Return non-zero if the instruction at ADDR is a jump; zero otherwise. +m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0 + +# Read one auxv entry from *READPTR, not reading locations >= ENDPTR. +# Return 0 if *READPTR is already at the end of the buffer. +# Return -1 if there is insufficient buffer for a whole entry. +# Return 1 if an entry was read into *TYPEP and *VALP. +M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp + +# Print the description of a single auxv entry described by TYPE and VAL +# to FILE. +m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0 + +# Find the address range of the current inferior's vsyscall/vDSO, and +# write it to *RANGE. If the vsyscall's length can't be determined, a +# range with zero length is returned. Returns true if the vsyscall is +# found, false otherwise. +m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0 + +# Allocate SIZE bytes of PROT protected page aligned memory in inferior. +# PROT has GDB_MMAP_PROT_* bitmask format. +# Throw an error if it is not possible. Returned address is always valid. +f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0 + +# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap. +# Print a warning if it is not possible. +f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0 + +# Return string (caller has to use xfree for it) with options for GCC +# to produce code for this target, typically "-m64", "-m32" or "-m31". +# These options are put before CU's DW_AT_producer compilation options so that +# they can override it. +m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0 + +# Return a regular expression that matches names used by this +# architecture in GNU configury triplets. The result is statically +# allocated and must not be freed. The default implementation simply +# returns the BFD architecture name, which is correct in nearly every +# case. +m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0 + +# Return the size in 8-bit bytes of an addressable memory unit on this +# architecture. This corresponds to the number of 8-bit bytes associated to +# each address in memory. +m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0 + +# Functions for allowing a target to modify its disassembler options. +v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit) +v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options) +v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options) + +# Type alignment override method. Return the architecture specific +# alignment required for TYPE. If there is no special handling +# required for TYPE then return the value 0, GDB will then apply the +# default rules as laid out in gdbtypes.c:type_align. +m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0 + +# Return a string containing any flags for the given PC in the given FRAME. +f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0 + EOF } @@ -784,12 +1257,12 @@ compare_new gdbarch.log copyright () { cat <. */ @@ -816,7 +1289,7 @@ cat < +#include "frame.h" +#include "dis-asm.h" +#include "gdb_obstack.h" + struct floatformat; struct ui_file; -struct frame_info; struct value; struct objfile; struct obj_section; @@ -846,40 +1323,96 @@ struct target_ops; struct obstack; struct bp_target_info; struct target_desc; +struct symbol; struct displaced_step_closure; -struct core_regset_section; - -/* The architecture associated with the connection to the target. - - The architecture vector provides some information that is really - a property of the target: The layout of certain packets, for instance; - or the solib_ops vector. Etc. To differentiate architecture accesses - to per-target properties from per-thread/per-frame/per-objfile properties, - accesses to per-target properties should be made through target_gdbarch. - - Eventually, when support for multiple targets is implemented in - GDB, this global should be made target-specific. */ -extern struct gdbarch *target_gdbarch; +struct syscall; +struct agent_expr; +struct axs_value; +struct stap_parse_info; +struct expr_builder; +struct ravenscar_arch_ops; +struct mem_range; +struct syscalls_info; +struct thread_info; +struct ui_out; + +#include "regcache.h" + +/* The architecture associated with the inferior through the + connection to the target. + + The architecture vector provides some information that is really a + property of the inferior, accessed through a particular target: + ptrace operations; the layout of certain RSP packets; the solib_ops + vector; etc. To differentiate architecture accesses to + per-inferior/target properties from + per-thread/per-frame/per-objfile properties, accesses to + per-inferior/target properties should be made through this + gdbarch. */ + +/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */ +extern struct gdbarch *target_gdbarch (void); + +/* Callback type for the 'iterate_over_objfiles_in_search_order' + gdbarch method. */ + +typedef int (iterate_over_objfiles_in_search_order_cb_ftype) + (struct objfile *objfile, void *cb_data); + +/* Callback type for regset section iterators. The callback usually + invokes the REGSET's supply or collect method, to which it must + pass a buffer - for collects this buffer will need to be created using + COLLECT_SIZE, for supply the existing buffer being read from should + be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME + is used for diagnostic messages. CB_DATA should have been passed + unchanged through the iterator. */ + +typedef void (iterate_over_regset_sections_cb) + (const char *sect_name, int supply_size, int collect_size, + const struct regset *regset, const char *human_name, void *cb_data); + +/* For a function call, does the function return a value using a + normal value return or a structure return - passing a hidden + argument pointing to storage. For the latter, there are two + cases: language-mandated structure return and target ABI + structure return. */ + +enum function_call_return_method +{ + /* Standard value return. */ + return_method_normal = 0, + + /* Language ABI structure return. This is handled + by passing the return location as the first parameter to + the function, even preceding "this". */ + return_method_hidden_param, + + /* Target ABI struct return. This is target-specific; for instance, + on ia64 the first argument is passed in out0 but the hidden + structure return pointer would normally be passed in r8. */ + return_method_struct, +}; + EOF # function typedef's printf "\n" printf "\n" -printf "/* The following are pre-initialized by GDBARCH. */\n" +printf "/* The following are pre-initialized by GDBARCH. */\n" function_list | while do_read do if class_is_info_p then printf "\n" printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" - printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n" + printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n" fi done # function typedef's printf "\n" printf "\n" -printf "/* The following are initialized by the target dependent code. */\n" +printf "/* The following are initialized by the target dependent code. */\n" function_list | while do_read do if [ -n "${comment}" ] @@ -950,7 +1483,7 @@ extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch); data for all the various GDB components was also considered. Since GDB is built from a variable number of (fairly independent) components it was determined that the global aproach was not - applicable. */ + applicable. */ /* Register a new architectural family with GDB. @@ -984,7 +1517,7 @@ extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch); The DUMP_TDEP function shall print out all target specific values. Care should be taken to ensure that the function works in both the - multi-arch and non- multi-arch cases. */ + multi-arch and non- multi-arch cases. */ struct gdbarch_list { @@ -994,19 +1527,33 @@ struct gdbarch_list struct gdbarch_info { - /* Use default: NULL (ZERO). */ + /* Use default: NULL (ZERO). */ const struct bfd_arch_info *bfd_arch_info; /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */ - int byte_order; + enum bfd_endian byte_order; - int byte_order_for_code; + enum bfd_endian byte_order_for_code; - /* Use default: NULL (ZERO). */ + /* Use default: NULL (ZERO). */ bfd *abfd; - /* Use default: NULL (ZERO). */ - struct gdbarch_tdep_info *tdep_info; + /* Use default: NULL (ZERO). */ + union + { + /* Architecture-specific information. The generic form for targets + that have extra requirements. */ + struct gdbarch_tdep_info *tdep_info; + + /* Architecture-specific target description data. Numerous targets + need only this, so give them an easy way to hold it. */ + struct tdesc_arch_data *tdesc_data; + + /* SPU file system ID. This is a single integer, so using the + generic form would only complicate code. Other targets may + reuse this member if suitable. */ + int *id; + }; /* Use default: GDB_OSABI_UNINITIALIZED (-1). */ enum gdb_osabi osabi; @@ -1029,13 +1576,13 @@ extern void gdbarch_register (enum bfd_architecture architecture, /* Return a freshly allocated, NULL terminated, array of the valid architecture names. Since architectures are registered during the _initialize phase this function only returns useful information - once initialization has been completed. */ + once initialization has been completed. */ extern const char **gdbarch_printable_names (void); /* Helper function. Search the list of ARCHES for a GDBARCH that - matches the information provided by INFO. */ + matches the information provided by INFO. */ extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info); @@ -1043,35 +1590,45 @@ extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *ar /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform basic initialization using values obtained from the INFO and TDEP parameters. set_gdbarch_*() functions are called to complete the - initialization of the object. */ + initialization of the object. */ extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep); /* Helper function. Free a partially-constructed \`\`struct gdbarch''. It is assumed that the caller freeds the \`\`struct - gdbarch_tdep''. */ + gdbarch_tdep''. */ extern void gdbarch_free (struct gdbarch *); +/* Get the obstack owned by ARCH. */ + +extern obstack *gdbarch_obstack (gdbarch *arch); /* Helper function. Allocate memory from the \`\`struct gdbarch'' obstack. The memory is freed when the corresponding architecture is also freed. */ -extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size); -#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE))) -#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE))) +#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \ + obstack_calloc (gdbarch_obstack ((GDBARCH)), (NR)) + +#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \ + obstack_zalloc (gdbarch_obstack ((GDBARCH))) +/* Duplicate STRING, returning an equivalent string that's allocated on the + obstack associated with GDBARCH. The string is freed when the corresponding + architecture is also freed. */ -/* Helper function. Force an update of the current architecture. +extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string); + +/* Helper function. Force an update of the current architecture. The actual architecture selected is determined by INFO, \`\`(gdb) set architecture'' et.al., the existing architecture and BFD's default architecture. INFO should be initialized to zero and then selected fields should be updated. - Returns non-zero if the update succeeds */ + Returns non-zero if the update succeeds. */ extern int gdbarch_update_p (struct gdbarch_info info); @@ -1087,15 +1644,9 @@ extern int gdbarch_update_p (struct gdbarch_info info); extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info); -/* Helper function. Set the global "target_gdbarch" to "gdbarch". - - FIXME: kettenis/20031124: Of the functions that follow, only - gdbarch_from_bfd is supposed to survive. The others will - dissappear since in the future GDB will (hopefully) be truly - multi-arch. However, for now we're still stuck with the concept of - a single active architecture. */ +/* Helper function. Set the target gdbarch to "gdbarch". */ -extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch); +extern void set_target_gdbarch (struct gdbarch *gdbarch); /* Register per-architecture data-pointer. @@ -1129,7 +1680,7 @@ extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *); /* Set the dynamic target-system-dependent parameters (architecture, - byte-order, ...) using information found in the BFD */ + byte-order, ...) using information found in the BFD. */ extern void set_gdbarch_from_file (bfd *); @@ -1140,10 +1691,18 @@ extern void set_gdbarch_from_file (bfd *); extern void initialize_current_architecture (void); /* gdbarch trace variable */ -extern int gdbarch_debug; +extern unsigned int gdbarch_debug; extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file); +/* Return the number of cooked registers (raw + pseudo) for ARCH. */ + +static inline int +gdbarch_num_cooked_regs (gdbarch *arch) +{ + return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch); +} + #endif EOF exec 1>&2 @@ -1167,14 +1726,15 @@ cat <name; } +static const char * +pstring (const char *string) +{ + if (string == NULL) + return "(null)"; + return string; +} + +static const char * +pstring_ptr (char **string) +{ + if (string == NULL || *string == NULL) + return "(null)"; + return *string; +} + +/* Helper function to print a list of strings, represented as "const + char *const *". The list is printed comma-separated. */ + +static const char * +pstring_list (const char *const *list) +{ + static char ret[100]; + const char *const *p; + size_t offset = 0; + + if (list == NULL) + return "(null)"; + + ret[0] = '\0'; + for (p = list; *p != NULL && offset < sizeof (ret); ++p) + { + size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p); + offset += 2 + s; + } + + if (offset > 0) + { + gdb_assert (offset - 2 < sizeof (ret)); + ret[offset - 2] = '\0'; + } + + return ret; +} + EOF # gdbarch open the gdbarch object printf "\n" -printf "/* Maintain the struct gdbarch object */\n" +printf "/* Maintain the struct gdbarch object. */\n" printf "\n" printf "struct gdbarch\n" printf "{\n" @@ -1217,7 +1822,7 @@ printf "\n" printf " /* An obstack bound to the lifetime of the architecture. */\n" printf " struct obstack *obstack;\n" printf "\n" -printf " /* basic architectural information */\n" +printf " /* basic architectural information. */\n" function_list | while do_read do if class_is_info_p @@ -1226,17 +1831,14 @@ do fi done printf "\n" -printf " /* target specific vector. */\n" +printf " /* target specific vector. */\n" printf " struct gdbarch_tdep *tdep;\n" printf " gdbarch_dump_tdep_ftype *dump_tdep;\n" printf "\n" -printf " /* per-architecture data-pointers */\n" +printf " /* per-architecture data-pointers. */\n" printf " unsigned nr_data;\n" printf " void **data;\n" printf "\n" -printf " /* per-architecture swap-regions */\n" -printf " struct gdbarch_swap *swap;\n" -printf "\n" cat <obstack = obstack; @@ -1355,7 +1911,7 @@ do fi done printf "\n" -printf " /* Force the explicit initialization of these. */\n" +printf " /* Force the explicit initialization of these. */\n" function_list | while do_read do if class_is_function_p || class_is_variable_p @@ -1377,14 +1933,18 @@ EOF printf "\n" printf "\n" cat <obstack; +} + +/* See gdbarch.h. */ + +char * +gdbarch_obstack_strdup (struct gdbarch *arch, const char *string) { - void *data = obstack_alloc (arch->obstack, size); - memset (data, 0, size); - return data; + return obstack_strdup (arch->obstack, string); } @@ -1398,6 +1958,7 @@ void gdbarch_free (struct gdbarch *arch) { struct obstack *obstack; + gdb_assert (arch != NULL); gdb_assert (!arch->initialized_p); obstack = arch->obstack; @@ -1415,18 +1976,14 @@ cat <byte_order == BFD_ENDIAN_UNKNOWN) - fprintf_unfiltered (log, "\n\tbyte-order"); + log.puts ("\n\tbyte-order"); if (gdbarch->bfd_arch_info == NULL) - fprintf_unfiltered (log, "\n\tbfd_arch_info"); - /* Check those that need to be defined for the given multi-arch level. */ + log.puts ("\n\tbfd_arch_info"); + /* Check those that need to be defined for the given multi-arch level. */ EOF function_list | while do_read do @@ -1437,7 +1994,7 @@ do printf " /* Skip verify of ${function}, invalid_p == 0 */\n" elif class_is_predicate_p then - printf " /* Skip verify of ${function}, has predicate */\n" + printf " /* Skip verify of ${function}, has predicate. */\n" # FIXME: See do_read for potential simplification elif [ -n "${invalid_p}" -a -n "${postdefault}" ] then @@ -1454,22 +2011,19 @@ do elif [ -n "${invalid_p}" ] then printf " if (${invalid_p})\n" - printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n" + printf " log.puts (\"\\\\n\\\\t${function}\");\n" elif [ -n "${predefault}" ] then printf " if (gdbarch->${function} == ${predefault})\n" - printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n" + printf " log.puts (\"\\\\n\\\\t${function}\");\n" fi fi done cat < 0) + if (!log.empty ()) internal_error (__FILE__, __LINE__, _("verify_gdbarch: the following are invalid ...%s"), - buf); - do_cleanups (cleanups); + log.c_str ()); } EOF @@ -1477,12 +2031,13 @@ EOF printf "\n" printf "\n" cat <next); - (*curr) = XMALLOC (struct gdbarch_data_registration); + (*curr) = XNEW (struct gdbarch_data_registration); (*curr)->next = NULL; - (*curr)->data = XMALLOC (struct gdbarch_data); + (*curr)->data = XNEW (struct gdbarch_data); (*curr)->data->index = gdbarch_data_registry.nr++; (*curr)->data->pre_init = pre_init; (*curr)->data->post_init = post_init; @@ -1713,7 +2269,7 @@ gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init) return gdbarch_data_register (NULL, post_init); } -/* Create/delete the gdbarch data vector. */ +/* Create/delete the gdbarch data vector. */ static void alloc_gdbarch_data (struct gdbarch *gdbarch) @@ -1724,7 +2280,7 @@ alloc_gdbarch_data (struct gdbarch *gdbarch) } /* Initialize the current value of the specified per-architecture - data-pointer. */ + data-pointer. */ void deprecated_set_gdbarch_data (struct gdbarch *gdbarch, @@ -1738,7 +2294,7 @@ deprecated_set_gdbarch_data (struct gdbarch *gdbarch, } /* Return the current value of the specified per-architecture - data-pointer. */ + data-pointer. */ void * gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data) @@ -1777,7 +2333,7 @@ gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data) } -/* Keep a registry of the architectures known by GDB. */ +/* Keep a registry of the architectures known by GDB. */ struct gdbarch_registration { @@ -1793,7 +2349,7 @@ static struct gdbarch_registration *gdbarch_registry = NULL; static void append_name (const char ***buf, int *nr, const char *name) { - *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1)); + *buf = XRESIZEVEC (const char *, *buf, *nr + 1); (*buf)[*nr] = name; *nr += 1; } @@ -1802,11 +2358,11 @@ const char ** gdbarch_printable_names (void) { /* Accumulate a list of names based on the registed list of - architectures. */ - enum bfd_architecture a; + architectures. */ int nr_arches = 0; const char **arches = NULL; struct gdbarch_registration *rego; + for (rego = gdbarch_registry; rego != NULL; rego = rego->next) @@ -1835,22 +2391,25 @@ gdbarch_register (enum bfd_architecture bfd_architecture, { struct gdbarch_registration **curr; const struct bfd_arch_info *bfd_arch_info; + /* Check that BFD recognizes this architecture */ bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0); if (bfd_arch_info == NULL) { internal_error (__FILE__, __LINE__, - _("gdbarch: Attempt to register unknown architecture (%d)"), + _("gdbarch: Attempt to register " + "unknown architecture (%d)"), bfd_architecture); } - /* Check that we haven't seen this architecture before */ + /* Check that we haven't seen this architecture before. */ for (curr = &gdbarch_registry; (*curr) != NULL; curr = &(*curr)->next) { if (bfd_architecture == (*curr)->bfd_architecture) internal_error (__FILE__, __LINE__, - _("gdbarch: Duplicate registraration of architecture (%s)"), + _("gdbarch: Duplicate registration " + "of architecture (%s)"), bfd_arch_info->printable_name); } /* log it */ @@ -1859,7 +2418,7 @@ gdbarch_register (enum bfd_architecture bfd_architecture, bfd_arch_info->printable_name, host_address_to_string (init)); /* Append it */ - (*curr) = XMALLOC (struct gdbarch_registration); + (*curr) = XNEW (struct gdbarch_registration); (*curr)->bfd_architecture = bfd_architecture; (*curr)->init = init; (*curr)->dump_tdep = dump_tdep; @@ -1911,7 +2470,7 @@ gdbarch_find_by_info (struct gdbarch_info info) defaults. */ gdbarch_info_fill (&info); - /* Must have found some sort of architecture. */ + /* Must have found some sort of architecture. */ gdb_assert (info.bfd_arch_info != NULL); if (gdbarch_debug) @@ -1971,7 +2530,7 @@ gdbarch_find_by_info (struct gdbarch_info info) if (new_gdbarch->initialized_p) { struct gdbarch_list **list; - struct gdbarch_list *this; + struct gdbarch_list *self; if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " "Previous architecture %s (%s) selected\n", @@ -1983,12 +2542,12 @@ gdbarch_find_by_info (struct gdbarch_info info) list = &(*list)->next); /* It had better be in the list of architectures. */ gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch); - /* Unlink THIS. */ - this = (*list); - (*list) = this->next; - /* Insert THIS at the front. */ - this->next = rego->arches; - rego->arches = this; + /* Unlink SELF. */ + self = (*list); + (*list) = self->next; + /* Insert SELF at the front. */ + self->next = rego->arches; + rego->arches = self; /* Return it. */ return new_gdbarch; } @@ -2003,10 +2562,10 @@ gdbarch_find_by_info (struct gdbarch_info info) /* Insert the new architecture into the front of the architecture list (keep the list sorted Most Recently Used). */ { - struct gdbarch_list *this = XMALLOC (struct gdbarch_list); - this->next = rego->arches; - this->gdbarch = new_gdbarch; - rego->arches = this; + struct gdbarch_list *self = XNEW (struct gdbarch_list); + self->next = rego->arches; + self->gdbarch = new_gdbarch; + rego->arches = self; } /* Check that the newly installed architecture is valid. Plug in @@ -2024,23 +2583,27 @@ gdbarch_find_by_info (struct gdbarch_info info) /* Make the specified architecture current. */ void -deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch) +set_target_gdbarch (struct gdbarch *new_gdbarch) { gdb_assert (new_gdbarch != NULL); gdb_assert (new_gdbarch->initialized_p); - target_gdbarch = new_gdbarch; - observer_notify_architecture_changed (new_gdbarch); + current_inferior ()->gdbarch = new_gdbarch; + gdb::observers::architecture_changed.notify (new_gdbarch); registers_changed (); } -extern void _initialize_gdbarch (void); +/* Return the current inferior's arch. */ + +struct gdbarch * +target_gdbarch (void) +{ + return current_inferior ()->gdbarch; +} void _initialize_gdbarch (void) { - struct cmd_list_element *c; - - add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\ + add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\ Set architecture debugging."), _("\\ Show architecture debugging."), _("\\ When non-zero, architecture debugging is enabled."),