X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fh8300-tdep.c;h=e335fdb4d5db15494d3b540df1b75fe7d9a94872;hb=26144e7f66bf8314cfaeaedd3702f630da73a565;hp=21dde42e5a1199c8bc9293114562439f4875adda;hpb=0a8f9d31956322267efda7ab9ee7153cfcfdca2e;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/h8300-tdep.c b/gdb/h8300-tdep.c index 21dde42e5a..e335fdb4d5 100644 --- a/gdb/h8300-tdep.c +++ b/gdb/h8300-tdep.c @@ -1,32 +1,877 @@ +/* Target-machine dependent code for Hitachi H8/300, for GDB. + Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, + 2000, 2001 Free Software Foundation, Inc. -h8300_skip_prologue() + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +/* + Contributed by Steve Chamberlain + sac@cygnus.com + */ + +#include "defs.h" +#include "frame.h" +#include "obstack.h" +#include "symtab.h" +#include "dis-asm.h" +#include "gdbcmd.h" +#include "gdbtypes.h" +#include "gdbcore.h" +#include "gdb_string.h" +#include "value.h" +#include "regcache.h" + +extern int h8300hmode, h8300smode; + +#undef NUM_REGS +#define NUM_REGS 11 + +#define UNSIGNED_SHORT(X) ((X) & 0xffff) + +#define IS_PUSH(x) ((x & 0xfff0)==0x6df0) +#define IS_PUSH_FP(x) (x == 0x6df6) +#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6) +#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6) +#define IS_SUB2_SP(x) (x==0x1b87) +#define IS_SUB4_SP(x) (x==0x1b97) +#define IS_SUBL_SP(x) (x==0x7a37) +#define IS_MOVK_R5(x) (x==0x7905) +#define IS_SUB_R5SP(x) (x==0x1957) + + +/* The register names change depending on whether the h8300h processor + type is selected. */ + +static char *original_register_names[] = REGISTER_NAMES; + +static char *h8300h_register_names[] = +{"er0", "er1", "er2", "er3", "er4", "er5", "er6", + "sp", "ccr", "pc", "cycles", "tick", "inst"}; + +char **h8300_register_names = original_register_names; + + +/* Local function declarations. */ + +static CORE_ADDR examine_prologue (); +static void set_machine_hook (char *filename); + +CORE_ADDR +h8300_skip_prologue (CORE_ADDR start_pc) { - - printf("skip prologue\n"); - - abort(); - + short int w; + int adjust = 0; + + /* Skip past all push and stm insns. */ + while (1) + { + w = read_memory_unsigned_integer (start_pc, 2); + /* First look for push insns. */ + if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130) + { + w = read_memory_unsigned_integer (start_pc + 2, 2); + adjust = 2; + } + + if (IS_PUSH (w)) + { + start_pc += 2 + adjust; + w = read_memory_unsigned_integer (start_pc, 2); + continue; + } + adjust = 0; + break; + } + + /* Skip past a move to FP, either word or long sized */ + w = read_memory_unsigned_integer (start_pc, 2); + if (w == 0x0100) + { + w = read_memory_unsigned_integer (start_pc + 2, 2); + adjust += 2; + } + + if (IS_MOVE_FP (w)) + { + start_pc += 2 + adjust; + w = read_memory_unsigned_integer (start_pc, 2); + } + + /* Check for loading either a word constant into r5; + long versions are handled by the SUBL_SP below. */ + if (IS_MOVK_R5 (w)) + { + start_pc += 2; + w = read_memory_unsigned_integer (start_pc, 2); + } + + /* Now check for subtracting r5 from sp, word sized only. */ + if (IS_SUB_R5SP (w)) + { + start_pc += 2 + adjust; + w = read_memory_unsigned_integer (start_pc, 2); + } + + /* Check for subs #2 and subs #4. */ + while (IS_SUB2_SP (w) || IS_SUB4_SP (w)) + { + start_pc += 2 + adjust; + w = read_memory_unsigned_integer (start_pc, 2); + } + + /* Check for a 32bit subtract. */ + if (IS_SUBL_SP (w)) + start_pc += 6 + adjust; + + return start_pc; } -h8300_pop_frame() +int +gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info *info) { - printf("pop frame\n"); - + if (h8300smode) + return print_insn_h8300s (memaddr, info); + else if (h8300hmode) + return print_insn_h8300h (memaddr, info); + else + return print_insn_h8300 (memaddr, info); } -print_insn() +/* Given a GDB frame, determine the address of the calling function's frame. + This will be used to create a new GDB frame struct, and then + INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. + + For us, the frame address is its stack pointer value, so we look up + the function prologue to determine the caller's sp value, and return it. */ + +CORE_ADDR +h8300_frame_chain (struct frame_info *thisframe) { - printf("print insn\n"); - + if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame)) + { /* initialize the from_pc now */ + thisframe->from_pc = generic_read_register_dummy (thisframe->pc, + thisframe->frame, + PC_REGNUM); + return thisframe->frame; + } + h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0); + return thisframe->fsr->regs[SP_REGNUM]; } +/* Put here the code to store, into a struct frame_saved_regs, + the addresses of the saved registers of frame described by FRAME_INFO. + This includes special registers such as pc and fp saved in special + ways in the stack frame. sp is even more special: + the address we return for it IS the sp for the next frame. + We cache the result of doing this in the frame_obstack, since it is + fairly expensive. */ -FRAME_CHAIN() +void +h8300_frame_find_saved_regs (struct frame_info *fi, + struct frame_saved_regs *fsr) { - - printf("Frame chain\n"); - + register struct frame_saved_regs *cache_fsr; + CORE_ADDR ip; + struct symtab_and_line sal; + CORE_ADDR limit; + + if (!fi->fsr) + { + cache_fsr = (struct frame_saved_regs *) + frame_obstack_alloc (sizeof (struct frame_saved_regs)); + memset (cache_fsr, '\0', sizeof (struct frame_saved_regs)); + + fi->fsr = cache_fsr; + + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + { /* no more to do. */ + if (fsr) + *fsr = *fi->fsr; + return; + } + /* Find the start and end of the function prologue. If the PC + is in the function prologue, we only consider the part that + has executed already. */ + + ip = get_pc_function_start (fi->pc); + sal = find_pc_line (ip, 0); + limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc; + + /* This will fill in fields in *fi as well as in cache_fsr. */ + examine_prologue (ip, limit, fi->frame, cache_fsr, fi); + } + + if (fsr) + *fsr = *fi->fsr; +} + +/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or + is not the address of a valid instruction, the address of the next + instruction beyond ADDR otherwise. *PWORD1 receives the first word + of the instruction. */ + +CORE_ADDR +NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD *pword1) +{ + char buf[2]; + if (addr < lim + 8) + { + read_memory (addr, buf, 2); + *pword1 = extract_signed_integer (buf, 2); + + return addr + 2; + } + return 0; } +/* Examine the prologue of a function. `ip' points to the first instruction. + `limit' is the limit of the prologue (e.g. the addr of the first + linenumber, or perhaps the program counter if we're stepping through). + `frame_sp' is the stack pointer value in use in this frame. + `fsr' is a pointer to a frame_saved_regs structure into which we put + info about the registers saved by this frame. + `fi' is a struct frame_info pointer; we fill in various fields in it + to reflect the offsets of the arg pointer and the locals pointer. */ + +static CORE_ADDR +examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit, + CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr, + struct frame_info *fi) +{ + register CORE_ADDR next_ip; + int r; + int have_fp = 0; + INSN_WORD insn_word; + /* Number of things pushed onto stack, starts at 2/4, 'cause the + PC is already there */ + unsigned int reg_save_depth = h8300hmode ? 4 : 2; + + unsigned int auto_depth = 0; /* Number of bytes of autos */ + + char in_frame[11]; /* One for each reg */ + + int adjust = 0; + + memset (in_frame, 1, 11); + for (r = 0; r < 8; r++) + { + fsr->regs[r] = 0; + } + if (after_prolog_fp == 0) + { + after_prolog_fp = read_register (SP_REGNUM); + } + + /* If the PC isn't valid, quit now. */ + if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff)) + return 0; + + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + + if (insn_word == 0x0100) + { + insn_word = read_memory_unsigned_integer (ip + 2, 2); + adjust = 2; + } + + /* Skip over any fp push instructions */ + fsr->regs[6] = after_prolog_fp; + while (next_ip && IS_PUSH_FP (insn_word)) + { + ip = next_ip + adjust; + + in_frame[insn_word & 0x7] = reg_save_depth; + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + reg_save_depth += 2 + adjust; + } + + /* Is this a move into the fp */ + if (next_ip && IS_MOV_SP_FP (insn_word)) + { + ip = next_ip; + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + have_fp = 1; + } + + /* Skip over any stack adjustment, happens either with a number of + sub#2,sp or a mov #x,r5 sub r5,sp */ + + if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word))) + { + while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word))) + { + auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4; + ip = next_ip; + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + } + } + else + { + if (next_ip && IS_MOVK_R5 (insn_word)) + { + ip = next_ip; + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + auto_depth += insn_word; + + next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word); + auto_depth += insn_word; + } + if (next_ip && IS_SUBL_SP (insn_word)) + { + ip = next_ip; + auto_depth += read_memory_unsigned_integer (ip, 4); + ip += 4; + + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + } + } + + /* Now examine the push insns to determine where everything lives + on the stack. */ + while (1) + { + adjust = 0; + if (!next_ip) + break; + + if (insn_word == 0x0100) + { + ip = next_ip; + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + adjust = 2; + } + + if (IS_PUSH (insn_word)) + { + ip = next_ip; + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + fsr->regs[r] = after_prolog_fp + auto_depth; + auto_depth += 2 + adjust; + continue; + } + + /* Now check for push multiple insns. */ + if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130) + { + int count = ((insn_word >> 4) & 0xf) + 1; + int start, i; + + ip = next_ip; + next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); + start = insn_word & 0x7; + + for (i = start; i <= start + count; i++) + { + fsr->regs[i] = after_prolog_fp + auto_depth; + auto_depth += 4; + } + } + break; + } + + /* The args are always reffed based from the stack pointer */ + fi->args_pointer = after_prolog_fp; + /* Locals are always reffed based from the fp */ + fi->locals_pointer = after_prolog_fp; + /* The PC is at a known place */ + fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD); + + /* Rememeber any others too */ + in_frame[PC_REGNUM] = 0; + + if (have_fp) + /* We keep the old FP in the SP spot */ + fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD); + else + fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth; + + return (ip); +} + +void +h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi) +{ + fi->fsr = 0; /* Not yet allocated */ + fi->args_pointer = 0; /* Unknown */ + fi->locals_pointer = 0; /* Unknown */ + fi->from_pc = 0; + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + { /* anything special to do? */ + return; + } +} + +/* Return the saved PC from this frame. + + If the frame has a memory copy of SRP_REGNUM, use that. If not, + just use the register SRP_REGNUM itself. */ + +CORE_ADDR +h8300_frame_saved_pc (struct frame_info *frame) +{ + if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) + return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM); + else + return frame->from_pc; +} + +CORE_ADDR +h8300_frame_locals_address (struct frame_info *fi) +{ + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + return (CORE_ADDR) 0; /* Not sure what else to do... */ + if (!fi->locals_pointer) + { + struct frame_saved_regs ignore; + + get_frame_saved_regs (fi, &ignore); + + } + return fi->locals_pointer; +} + +/* Return the address of the argument block for the frame + described by FI. Returns 0 if the address is unknown. */ + +CORE_ADDR +h8300_frame_args_address (struct frame_info *fi) +{ + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + return (CORE_ADDR) 0; /* Not sure what else to do... */ + if (!fi->args_pointer) + { + struct frame_saved_regs ignore; + get_frame_saved_regs (fi, &ignore); + + } + + return fi->args_pointer; +} + +/* Function: push_arguments + Setup the function arguments for calling a function in the inferior. + + On the Hitachi H8/300 architecture, there are three registers (R0 to R2) + which are dedicated for passing function arguments. Up to the first + three arguments (depending on size) may go into these registers. + The rest go on the stack. + + Arguments that are smaller than WORDSIZE bytes will still take up a + whole register or a whole WORDSIZE word on the stack, and will be + right-justified in the register or the stack word. This includes + chars and small aggregate types. Note that WORDSIZE depends on the + cpu type. + + Arguments that are larger than WORDSIZE bytes will be split between + two or more registers as available, but will NOT be split between a + register and the stack. + + An exceptional case exists for struct arguments (and possibly other + aggregates such as arrays) -- if the size is larger than WORDSIZE + bytes but not a multiple of WORDSIZE bytes. In this case the + argument is never split between the registers and the stack, but + instead is copied in its entirety onto the stack, AND also copied + into as many registers as there is room for. In other words, space + in registers permitting, two copies of the same argument are passed + in. As far as I can tell, only the one on the stack is used, + although that may be a function of the level of compiler + optimization. I suspect this is a compiler bug. Arguments of + these odd sizes are left-justified within the word (as opposed to + arguments smaller than WORDSIZE bytes, which are right-justified). + + If the function is to return an aggregate type such as a struct, + the caller must allocate space into which the callee will copy the + return value. In this case, a pointer to the return value location + is passed into the callee in register R0, which displaces one of + the other arguments passed in via registers R0 to R2. */ + +CORE_ADDR +h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp, + unsigned char struct_return, CORE_ADDR struct_addr) +{ + int stack_align, stack_alloc, stack_offset; + int wordsize; + int argreg; + int argnum; + struct type *type; + CORE_ADDR regval; + char *val; + char valbuf[4]; + int len; + + if (h8300hmode || h8300smode) + { + stack_align = 3; + wordsize = 4; + } + else + { + stack_align = 1; + wordsize = 2; + } + + /* first force sp to a n-byte alignment */ + sp = sp & ~stack_align; + + /* Now make sure there's space on the stack */ + for (argnum = 0, stack_alloc = 0; + argnum < nargs; argnum++) + stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align) + & ~stack_align); + sp -= stack_alloc; /* make room on stack for args */ + /* we may over-allocate a little here, but that won't hurt anything */ + + argreg = ARG0_REGNUM; + if (struct_return) /* "struct return" pointer takes up one argreg */ + { + write_register (argreg++, struct_addr); + } + + /* Now load as many as possible of the first arguments into + registers, and push the rest onto the stack. There are 3N bytes + in three registers available. Loop thru args from first to last. */ + + for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) + { + type = VALUE_TYPE (args[argnum]); + len = TYPE_LENGTH (type); + memset (valbuf, 0, sizeof (valbuf)); + if (len < wordsize) + { + /* the purpose of this is to right-justify the value within the word */ + memcpy (valbuf + (wordsize - len), + (char *) VALUE_CONTENTS (args[argnum]), len); + val = valbuf; + } + else + val = (char *) VALUE_CONTENTS (args[argnum]); + + if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) || + (len > wordsize && (len & stack_align) != 0)) + { /* passed on the stack */ + write_memory (sp + stack_offset, val, + len < wordsize ? wordsize : len); + stack_offset += (len + stack_align) & ~stack_align; + } + /* NOTE WELL!!!!! This is not an "else if" clause!!! + That's because some *&^%$ things get passed on the stack + AND in the registers! */ + if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM)) + while (len > 0) + { /* there's room in registers */ + regval = extract_address (val, wordsize); + write_register (argreg, regval); + len -= wordsize; + val += wordsize; + argreg++; + } + } + return sp; +} + +/* Function: push_return_address + Setup the return address for a dummy frame, as called by + call_function_by_hand. Only necessary when you are using an + empty CALL_DUMMY, ie. the target will not actually be executing + a JSR/BSR instruction. */ + +CORE_ADDR +h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp) +{ + unsigned char buf[4]; + int wordsize; + + if (h8300hmode || h8300smode) + wordsize = 4; + else + wordsize = 2; + + sp -= wordsize; + store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ()); + write_memory (sp, buf, wordsize); + return sp; +} + +/* Function: h8300_pop_frame + Restore the machine to the state it had before the current frame + was created. Usually used either by the "RETURN" command, or by + call_function_by_hand after the dummy_frame is finished. */ + +void +h8300_pop_frame (void) +{ + unsigned regnum; + struct frame_saved_regs fsr; + struct frame_info *frame = get_current_frame (); + + if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) + { + generic_pop_dummy_frame (); + } + else + { + get_frame_saved_regs (frame, &fsr); + + for (regnum = 0; regnum < 8; regnum++) + { + /* Don't forget SP_REGNUM is a frame_saved_regs struct is the + actual value we want, not the address of the value we want. */ + if (fsr.regs[regnum] && regnum != SP_REGNUM) + write_register (regnum, + read_memory_integer (fsr.regs[regnum], BINWORD)); + else if (fsr.regs[regnum] && regnum == SP_REGNUM) + write_register (regnum, frame->frame + 2 * BINWORD); + } + + /* Don't forget the update the PC too! */ + write_pc (frame->from_pc); + } + flush_cached_frames (); +} + +/* Function: extract_return_value + Figure out where in REGBUF the called function has left its return value. + Copy that into VALBUF. Be sure to account for CPU type. */ + +void +h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf) +{ + int wordsize, len; + + if (h8300smode || h8300hmode) + wordsize = 4; + else + wordsize = 2; + + len = TYPE_LENGTH (type); + + switch (len) + { + case 1: /* (char) */ + case 2: /* (short), (int) */ + memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len); + break; + case 4: /* (long), (float) */ + if (h8300smode || h8300hmode) + { + memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4); + } + else + { + memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2); + memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2); + } + break; + case 8: /* (double) (doesn't seem to happen, which is good, + because this almost certainly isn't right. */ + error ("I don't know how a double is returned."); + break; + } +} + +/* Function: store_return_value + Place the appropriate value in the appropriate registers. + Primarily used by the RETURN command. */ + +void +h8300_store_return_value (struct type *type, char *valbuf) +{ + int wordsize, len, regval; + + if (h8300hmode || h8300smode) + wordsize = 4; + else + wordsize = 2; + + len = TYPE_LENGTH (type); + switch (len) + { + case 1: /* char */ + case 2: /* short, int */ + regval = extract_address (valbuf, len); + write_register (0, regval); + break; + case 4: /* long, float */ + regval = extract_address (valbuf, len); + if (h8300smode || h8300hmode) + { + write_register (0, regval); + } + else + { + write_register (0, regval >> 16); + write_register (1, regval & 0xffff); + } + break; + case 8: /* presumeably double, but doesn't seem to happen */ + error ("I don't know how to return a double."); + break; + } +} + +struct cmd_list_element *setmemorylist; + +static void +set_register_names (void) +{ + if (h8300hmode != 0) + h8300_register_names = h8300h_register_names; + else + h8300_register_names = original_register_names; +} + +static void +h8300_command (char *args, int from_tty) +{ + extern int h8300hmode; + h8300hmode = 0; + h8300smode = 0; + set_register_names (); +} + +static void +h8300h_command (char *args, int from_tty) +{ + extern int h8300hmode; + h8300hmode = 1; + h8300smode = 0; + set_register_names (); +} + +static void +h8300s_command (char *args, int from_tty) +{ + extern int h8300smode; + extern int h8300hmode; + h8300smode = 1; + h8300hmode = 1; + set_register_names (); +} + + +static void +set_machine (char *args, int from_tty) +{ + printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h"); + printf_unfiltered ("or h8300s"); + help_list (setmemorylist, "set memory ", -1, gdb_stdout); +} + +/* set_machine_hook is called as the exec file is being opened, but + before the symbol file is opened. This allows us to set the + h8300hmode flag based on the machine type specified in the exec + file. This in turn will cause subsequently defined pointer types + to be 16 or 32 bits as appropriate for the machine. */ + +static void +set_machine_hook (char *filename) +{ + if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s) + { + h8300smode = 1; + h8300hmode = 1; + } + else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h) + { + h8300smode = 0; + h8300hmode = 1; + } + else + { + h8300smode = 0; + h8300hmode = 0; + } + set_register_names (); +} + +void +_initialize_h8300m (void) +{ + add_prefix_cmd ("machine", no_class, set_machine, + "set the machine type", + &setmemorylist, "set machine ", 0, + &setlist); + + add_cmd ("h8300", class_support, h8300_command, + "Set machine to be H8/300.", &setmemorylist); + + add_cmd ("h8300h", class_support, h8300h_command, + "Set machine to be H8/300H.", &setmemorylist); + + add_cmd ("h8300s", class_support, h8300s_command, + "Set machine to be H8/300S.", &setmemorylist); + + /* Add a hook to set the machine type when we're loading a file. */ + + specify_exec_file_hook (set_machine_hook); +} + + + +void +h8300_print_register_hook (int regno) +{ + if (regno == 8) + { + /* CCR register */ + int C, Z, N, V; + unsigned char b[4]; + unsigned char l; + read_relative_register_raw_bytes (regno, b); + l = b[REGISTER_VIRTUAL_SIZE (8) - 1]; + printf_unfiltered ("\t"); + printf_unfiltered ("I-%d - ", (l & 0x80) != 0); + printf_unfiltered ("H-%d - ", (l & 0x20) != 0); + N = (l & 0x8) != 0; + Z = (l & 0x4) != 0; + V = (l & 0x2) != 0; + C = (l & 0x1) != 0; + printf_unfiltered ("N-%d ", N); + printf_unfiltered ("Z-%d ", Z); + printf_unfiltered ("V-%d ", V); + printf_unfiltered ("C-%d ", C); + if ((C | Z) == 0) + printf_unfiltered ("u> "); + if ((C | Z) == 1) + printf_unfiltered ("u<= "); + if ((C == 0)) + printf_unfiltered ("u>= "); + if (C == 1) + printf_unfiltered ("u< "); + if (Z == 0) + printf_unfiltered ("!= "); + if (Z == 1) + printf_unfiltered ("== "); + if ((N ^ V) == 0) + printf_unfiltered (">= "); + if ((N ^ V) == 1) + printf_unfiltered ("< "); + if ((Z | (N ^ V)) == 0) + printf_unfiltered ("> "); + if ((Z | (N ^ V)) == 1) + printf_unfiltered ("<= "); + } +} + +void +_initialize_h8300_tdep (void) +{ + tm_print_insn = gdb_print_insn_h8300; +}