X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fi387-tdep.c;h=334648378dfc250ecf159f36ff635c7a0d4d8bb5;hb=452f10a186cdb18091f590315c55488b871812e3;hp=3d4b39775fb5eb4160a78ae6e75a21e4f563b2a8;hpb=309367d4ccee9534101c1064f5751104225a880e;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/i387-tdep.c b/gdb/i387-tdep.c index 3d4b39775f..334648378d 100644 --- a/gdb/i387-tdep.c +++ b/gdb/i387-tdep.c @@ -1,12 +1,12 @@ /* Intel 387 floating point stuff. - Copyright 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000, - 2001, 2002 Free Software Foundation, Inc. + + Copyright (C) 1988-2020 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or + the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, @@ -15,176 +15,41 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ + along with this program. If not, see . */ #include "defs.h" #include "frame.h" +#include "gdbcore.h" #include "inferior.h" #include "language.h" -#include "value.h" -#include "gdbcore.h" -#include "floatformat.h" #include "regcache.h" -#include "gdb_assert.h" -#include "gdb_string.h" -#include "doublest.h" +#include "target-float.h" +#include "value.h" #include "i386-tdep.h" - -/* FIXME: Eliminate the next two functions when we have the time to - change all the callers. */ - -void i387_to_double (char *from, char *to); -void double_to_i387 (char *from, char *to); - -void -i387_to_double (char *from, char *to) -{ - floatformat_to_double (&floatformat_i387_ext, from, (double *) to); -} - -void -double_to_i387 (char *from, char *to) -{ - floatformat_from_double (&floatformat_i387_ext, (double *) from, to); -} - - -/* FIXME: The functions on this page are used by the old `info float' - implementations that a few of the i386 targets provide. These - functions should be removed if all of these have been converted to - use the generic implementation based on the new register file - layout. */ - -static void print_387_control_bits (unsigned int control); -static void print_387_status_bits (unsigned int status); - -static void -print_387_control_bits (unsigned int control) -{ - switch ((control >> 8) & 3) - { - case 0: - puts_unfiltered (" 24 bit; "); - break; - case 1: - puts_unfiltered (" (bad); "); - break; - case 2: - puts_unfiltered (" 53 bit; "); - break; - case 3: - puts_unfiltered (" 64 bit; "); - break; - } - switch ((control >> 10) & 3) - { - case 0: - puts_unfiltered ("NEAR; "); - break; - case 1: - puts_unfiltered ("DOWN; "); - break; - case 2: - puts_unfiltered ("UP; "); - break; - case 3: - puts_unfiltered ("CHOP; "); - break; - } - if (control & 0x3f) - { - puts_unfiltered ("mask"); - if (control & 0x0001) - puts_unfiltered (" INVAL"); - if (control & 0x0002) - puts_unfiltered (" DENOR"); - if (control & 0x0004) - puts_unfiltered (" DIVZ"); - if (control & 0x0008) - puts_unfiltered (" OVERF"); - if (control & 0x0010) - puts_unfiltered (" UNDER"); - if (control & 0x0020) - puts_unfiltered (" LOS"); - puts_unfiltered (";"); - } - - if (control & 0xe080) - warning ("\nreserved bits on: %s", - local_hex_string (control & 0xe080)); -} - -void -print_387_control_word (unsigned int control) -{ - printf_filtered ("control %s:", local_hex_string(control & 0xffff)); - print_387_control_bits (control); - puts_unfiltered ("\n"); -} - -static void -print_387_status_bits (unsigned int status) -{ - printf_unfiltered (" flags %d%d%d%d; ", - (status & 0x4000) != 0, - (status & 0x0400) != 0, - (status & 0x0200) != 0, - (status & 0x0100) != 0); - printf_unfiltered ("top %d; ", (status >> 11) & 7); - if (status & 0xff) - { - puts_unfiltered ("excep"); - if (status & 0x0001) puts_unfiltered (" INVAL"); - if (status & 0x0002) puts_unfiltered (" DENOR"); - if (status & 0x0004) puts_unfiltered (" DIVZ"); - if (status & 0x0008) puts_unfiltered (" OVERF"); - if (status & 0x0010) puts_unfiltered (" UNDER"); - if (status & 0x0020) puts_unfiltered (" LOS"); - if (status & 0x0040) puts_unfiltered (" STACK"); - } -} - -void -print_387_status_word (unsigned int status) -{ - printf_filtered ("status %s:", local_hex_string (status & 0xffff)); - print_387_status_bits (status); - puts_unfiltered ("\n"); -} - - -/* Implement the `info float' layout based on the register definitions - in `tm-i386.h'. */ +#include "i387-tdep.h" +#include "gdbsupport/x86-xstate.h" /* Print the floating point number specified by RAW. */ + static void -print_i387_value (char *raw, struct ui_file *file) +print_i387_value (struct gdbarch *gdbarch, + const gdb_byte *raw, struct ui_file *file) { - DOUBLEST value; - - /* Using extract_typed_floating here might affect the representation - of certain numbers such as NaNs, even if GDB is running natively. - This is fine since our caller already detects such special - numbers and we print the hexadecimal representation anyway. */ - value = extract_typed_floating (raw, builtin_type_i387_ext); - /* We try to print 19 digits. The last digit may or may not contain garbage, but we'd better print one too many. We need enough room to print the value, 1 position for the sign, 1 for the decimal point, 19 for the digits and 6 for the exponent adds up to 27. */ -#ifdef PRINTF_HAS_LONG_DOUBLE - fprintf_filtered (file, " %-+27.19Lg", (long double) value); -#else - fprintf_filtered (file, " %-+27.19g", (double) value); -#endif + const struct type *type = i387_ext_type (gdbarch); + std::string str = target_float_to_string (raw, type, " %-+27.19g"); + fprintf_filtered (file, "%s", str.c_str ()); } /* Print the classification for the register contents RAW. */ + static void -print_i387_ext (unsigned char *raw, struct ui_file *file) +print_i387_ext (struct gdbarch *gdbarch, + const gdb_byte *raw, struct ui_file *file) { int sign; int integer; @@ -215,11 +80,11 @@ print_i387_ext (unsigned char *raw, struct ui_file *file) } else if (exponent < 0x7fff && exponent > 0x0000 && integer) /* Normal. */ - print_i387_value (raw, file); + print_i387_value (gdbarch, raw, file); else if (exponent == 0x0000) { /* Denormal or zero. */ - print_i387_value (raw, file); + print_i387_value (gdbarch, raw, file); if (integer) /* Pseudo-denormal. */ @@ -233,12 +98,21 @@ print_i387_ext (unsigned char *raw, struct ui_file *file) fputs_filtered (" Unsupported", file); } -/* Print the status word STATUS. */ +/* Print the status word STATUS. If STATUS_P is false, then STATUS + was unavailable. */ + static void -print_i387_status_word (unsigned int status, struct ui_file *file) +print_i387_status_word (int status_p, + unsigned int status, struct ui_file *file) { - fprintf_filtered (file, "Status Word: %s", - local_hex_string_custom (status, "04")); + fprintf_filtered (file, "Status Word: "); + if (!status_p) + { + fprintf_filtered (file, "%s\n", _("")); + return; + } + + fprintf_filtered (file, "%s", hex_string_custom (status, 4)); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " "); fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " "); @@ -262,12 +136,21 @@ print_i387_status_word (unsigned int status, struct ui_file *file) " TOP: %d\n", ((status >> 11) & 7)); } -/* Print the control word CONTROL. */ +/* Print the control word CONTROL. If CONTROL_P is false, then + CONTROL was unavailable. */ + static void -print_i387_control_word (unsigned int control, struct ui_file *file) +print_i387_control_word (int control_p, + unsigned int control, struct ui_file *file) { - fprintf_filtered (file, "Control Word: %s", - local_hex_string_custom (control, "04")); + fprintf_filtered (file, "Control Word: "); + if (!control_p) + { + fprintf_filtered (file, "%s\n", _("")); + return; + } + + fprintf_filtered (file, "%s", hex_string_custom (control, 4)); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " "); fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " "); @@ -321,85 +204,203 @@ void i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, const char *args) { - unsigned int fctrl; - unsigned int fstat; - unsigned int ftag; - unsigned int fiseg; - unsigned int fioff; - unsigned int foseg; - unsigned int fooff; - unsigned int fop; + struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); + ULONGEST fctrl; + int fctrl_p; + ULONGEST fstat; + int fstat_p; + ULONGEST ftag; + int ftag_p; + ULONGEST fiseg; + int fiseg_p; + ULONGEST fioff; + int fioff_p; + ULONGEST foseg; + int foseg_p; + ULONGEST fooff; + int fooff_p; + ULONGEST fop; + int fop_p; int fpreg; int top; - fctrl = read_register (FCTRL_REGNUM); - fstat = read_register (FSTAT_REGNUM); - ftag = read_register (FTAG_REGNUM); - fiseg = read_register (FCS_REGNUM); - fioff = read_register (FCOFF_REGNUM); - foseg = read_register (FDS_REGNUM); - fooff = read_register (FDOFF_REGNUM); - fop = read_register (FOP_REGNUM); - - top = ((fstat >> 11) & 7); - - for (fpreg = 7; fpreg >= 0; fpreg--) + gdb_assert (gdbarch == get_frame_arch (frame)); + + fctrl_p = read_frame_register_unsigned (frame, + I387_FCTRL_REGNUM (tdep), &fctrl); + fstat_p = read_frame_register_unsigned (frame, + I387_FSTAT_REGNUM (tdep), &fstat); + ftag_p = read_frame_register_unsigned (frame, + I387_FTAG_REGNUM (tdep), &ftag); + fiseg_p = read_frame_register_unsigned (frame, + I387_FISEG_REGNUM (tdep), &fiseg); + fioff_p = read_frame_register_unsigned (frame, + I387_FIOFF_REGNUM (tdep), &fioff); + foseg_p = read_frame_register_unsigned (frame, + I387_FOSEG_REGNUM (tdep), &foseg); + fooff_p = read_frame_register_unsigned (frame, + I387_FOOFF_REGNUM (tdep), &fooff); + fop_p = read_frame_register_unsigned (frame, + I387_FOP_REGNUM (tdep), &fop); + + if (fstat_p) { - unsigned char raw[FPU_REG_RAW_SIZE]; - int tag = (ftag >> (fpreg * 2)) & 3; - int i; - - fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg); + top = ((fstat >> 11) & 7); - switch (tag) + for (fpreg = 7; fpreg >= 0; fpreg--) { - case 0: - fputs_filtered ("Valid ", file); - break; - case 1: - fputs_filtered ("Zero ", file); - break; - case 2: - fputs_filtered ("Special ", file); - break; - case 3: - fputs_filtered ("Empty ", file); - break; - } + struct value *regval; + int regnum; + int i; + int tag = -1; + + fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg); - read_register_gen ((fpreg + 8 - top) % 8 + FP0_REGNUM, raw); + if (ftag_p) + { + tag = (ftag >> (fpreg * 2)) & 3; - fputs_filtered ("0x", file); - for (i = 9; i >= 0; i--) - fprintf_filtered (file, "%02x", raw[i]); + switch (tag) + { + case 0: + fputs_filtered ("Valid ", file); + break; + case 1: + fputs_filtered ("Zero ", file); + break; + case 2: + fputs_filtered ("Special ", file); + break; + case 3: + fputs_filtered ("Empty ", file); + break; + } + } + else + fputs_filtered ("Unknown ", file); - if (tag != 3) - print_i387_ext (raw, file); + regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep); + regval = get_frame_register_value (frame, regnum); - fputs_filtered ("\n", file); - } + if (value_entirely_available (regval)) + { + const gdb_byte *raw = value_contents (regval); - puts_filtered ("\n"); + fputs_filtered ("0x", file); + for (i = 9; i >= 0; i--) + fprintf_filtered (file, "%02x", raw[i]); - print_i387_status_word (fstat, file); - print_i387_control_word (fctrl, file); + if (tag != -1 && tag != 3) + print_i387_ext (gdbarch, raw, file); + } + else + fprintf_filtered (file, "%s", _("")); + + fputs_filtered ("\n", file); + } + } + + fputs_filtered ("\n", file); + print_i387_status_word (fstat_p, fstat, file); + print_i387_control_word (fctrl_p, fctrl, file); fprintf_filtered (file, "Tag Word: %s\n", - local_hex_string_custom (ftag, "04")); + ftag_p ? hex_string_custom (ftag, 4) : _("")); fprintf_filtered (file, "Instruction Pointer: %s:", - local_hex_string_custom (fiseg, "02")); - fprintf_filtered (file, "%s\n", local_hex_string_custom (fioff, "08")); + fiseg_p ? hex_string_custom (fiseg, 2) : _("")); + fprintf_filtered (file, "%s\n", + fioff_p ? hex_string_custom (fioff, 8) : _("")); fprintf_filtered (file, "Operand Pointer: %s:", - local_hex_string_custom (foseg, "02")); - fprintf_filtered (file, "%s\n", local_hex_string_custom (fooff, "08")); + foseg_p ? hex_string_custom (foseg, 2) : _("")); + fprintf_filtered (file, "%s\n", + fooff_p ? hex_string_custom (fooff, 8) : _("")); fprintf_filtered (file, "Opcode: %s\n", - local_hex_string_custom (fop ? (fop | 0xd800) : 0, "04")); + fop_p + ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4)) + : _("")); +} + + +/* Return nonzero if a value of type TYPE stored in register REGNUM + needs any special handling. */ + +int +i387_convert_register_p (struct gdbarch *gdbarch, int regnum, + struct type *type) +{ + if (i386_fp_regnum_p (gdbarch, regnum)) + { + /* Floating point registers must be converted unless we are + accessing them in their hardware type or TYPE is not float. */ + if (type == i387_ext_type (gdbarch) + || TYPE_CODE (type) != TYPE_CODE_FLT) + return 0; + else + return 1; + } + + return 0; +} + +/* Read a value of type TYPE from register REGNUM in frame FRAME, and + return its contents in TO. */ + +int +i387_register_to_value (struct frame_info *frame, int regnum, + struct type *type, gdb_byte *to, + int *optimizedp, int *unavailablep) +{ + struct gdbarch *gdbarch = get_frame_arch (frame); + gdb_byte from[I386_MAX_REGISTER_SIZE]; + + gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); + + /* We only support floating-point values. */ + if (TYPE_CODE (type) != TYPE_CODE_FLT) + { + warning (_("Cannot convert floating-point register value " + "to non-floating-point type.")); + *optimizedp = *unavailablep = 0; + return 0; + } + + /* Convert to TYPE. */ + if (!get_frame_register_bytes (frame, regnum, 0, + register_size (gdbarch, regnum), + from, optimizedp, unavailablep)) + return 0; + + target_float_convert (from, i387_ext_type (gdbarch), to, type); + *optimizedp = *unavailablep = 0; + return 1; +} + +/* Write the contents FROM of a value of type TYPE into register + REGNUM in frame FRAME. */ + +void +i387_value_to_register (struct frame_info *frame, int regnum, + struct type *type, const gdb_byte *from) +{ + struct gdbarch *gdbarch = get_frame_arch (frame); + gdb_byte to[I386_MAX_REGISTER_SIZE]; + + gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); + + /* We only support floating-point values. */ + if (TYPE_CODE (type) != TYPE_CODE_FLT) + { + warning (_("Cannot convert non-floating-point type " + "to floating-point register value.")); + return; + } + + /* Convert from TYPE. */ + target_float_convert (from, type, to, i387_ext_type (gdbarch)); + put_frame_register (frame, regnum, to); } + -/* FIXME: kettenis/2000-05-21: Right now more than a few i386 targets - define their own routines to manage the floating-point registers in - GDB's register array. Most (if not all) of these targets use the - format used by the "fsave" instruction in their communication with - the OS. They should all be converted to use the routines below. */ +/* Handle FSAVE and FXSAVE formats. */ /* At fsave_offset[REGNUM] you'll find the offset to the location in the data structure used by the "fsave" instruction where GDB @@ -407,97 +408,119 @@ i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, static int fsave_offset[] = { - 28 + 0 * FPU_REG_RAW_SIZE, /* FP0_REGNUM through ... */ - 28 + 1 * FPU_REG_RAW_SIZE, - 28 + 2 * FPU_REG_RAW_SIZE, - 28 + 3 * FPU_REG_RAW_SIZE, - 28 + 4 * FPU_REG_RAW_SIZE, - 28 + 5 * FPU_REG_RAW_SIZE, - 28 + 6 * FPU_REG_RAW_SIZE, - 28 + 7 * FPU_REG_RAW_SIZE, /* ... FP7_REGNUM. */ - 0, /* FCTRL_REGNUM (16 bits). */ - 4, /* FSTAT_REGNUM (16 bits). */ - 8, /* FTAG_REGNUM (16 bits). */ - 16, /* FISEG_REGNUM (16 bits). */ - 12, /* FIOFF_REGNUM. */ - 24, /* FOSEG_REGNUM. */ - 20, /* FOOFF_REGNUM. */ - 18 /* FOP_REGNUM (bottom 11 bits). */ + 28 + 0 * 10, /* %st(0) ... */ + 28 + 1 * 10, + 28 + 2 * 10, + 28 + 3 * 10, + 28 + 4 * 10, + 28 + 5 * 10, + 28 + 6 * 10, + 28 + 7 * 10, /* ... %st(7). */ + 0, /* `fctrl' (16 bits). */ + 4, /* `fstat' (16 bits). */ + 8, /* `ftag' (16 bits). */ + 16, /* `fiseg' (16 bits). */ + 12, /* `fioff'. */ + 24, /* `foseg' (16 bits). */ + 20, /* `fooff'. */ + 18 /* `fop' (bottom 11 bits). */ }; -#define FSAVE_ADDR(fsave, regnum) (fsave + fsave_offset[regnum - FP0_REGNUM]) +#define FSAVE_ADDR(tdep, fsave, regnum) \ + (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)]) -/* Fill register REGNUM in GDB's register array with the appropriate - value from *FSAVE. This function masks off any of the reserved - bits in *FSAVE. */ +/* Fill register REGNUM in REGCACHE with the appropriate value from + *FSAVE. This function masks off any of the reserved bits in + *FSAVE. */ void -i387_supply_register (int regnum, char *fsave) +i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave) { - /* Most of the FPU control registers occupy only 16 bits in - the fsave area. Give those a special treatment. */ - if (regnum >= FPC_REGNUM - && regnum != FIOFF_REGNUM && regnum != FOOFF_REGNUM) - { - unsigned char val[4]; + struct gdbarch *gdbarch = regcache->arch (); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + const gdb_byte *regs = (const gdb_byte *) fsave; + int i; - memcpy (val, FSAVE_ADDR (fsave, regnum), 2); - val[2] = val[3] = 0; - if (regnum == FOP_REGNUM) - val[1] &= ((1 << 3) - 1); - supply_register (regnum, val); - } - else - supply_register (regnum, FSAVE_ADDR (fsave, regnum)); -} + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); -/* Fill GDB's register array with the floating-point register values - in *FSAVE. This function masks off any of the reserved - bits in *FSAVE. */ + for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + if (fsave == NULL) + { + regcache->raw_supply (i, NULL); + continue; + } -void -i387_supply_fsave (char *fsave) -{ - int i; + /* Most of the FPU control registers occupy only 16 bits in the + fsave area. Give those a special treatment. */ + if (i >= I387_FCTRL_REGNUM (tdep) + && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte val[4]; + + memcpy (val, FSAVE_ADDR (tdep, regs, i), 2); + val[2] = val[3] = 0; + if (i == I387_FOP_REGNUM (tdep)) + val[1] &= ((1 << 3) - 1); + regcache->raw_supply (i, val); + } + else + regcache->raw_supply (i, FSAVE_ADDR (tdep, regs, i)); + } + + /* Provide dummy values for the SSE registers. */ + for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + regcache->raw_supply (i, NULL); + if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep)) + { + gdb_byte buf[4]; - for (i = FP0_REGNUM; i < XMM0_REGNUM; i++) - i387_supply_register (i, fsave); + store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL); + regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf); + } } /* Fill register REGNUM (if it is a floating-point register) in *FSAVE - with the value in GDB's register array. If REGNUM is -1, do this - for all registers. This function doesn't touch any of the reserved - bits in *FSAVE. */ + with the value from REGCACHE. If REGNUM is -1, do this for all + registers. This function doesn't touch any of the reserved bits in + *FSAVE. */ void -i387_fill_fsave (char *fsave, int regnum) +i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave) { + struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); + gdb_byte *regs = (gdb_byte *) fsave; int i; - for (i = FP0_REGNUM; i < XMM0_REGNUM; i++) + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + + for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) if (regnum == -1 || regnum == i) { /* Most of the FPU control registers occupy only 16 bits in the fsave area. Give those a special treatment. */ - if (i >= FPC_REGNUM - && i != FIOFF_REGNUM && i != FOOFF_REGNUM) + if (i >= I387_FCTRL_REGNUM (tdep) + && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) { - unsigned char buf[4]; + gdb_byte buf[4]; - regcache_collect (i, buf); + regcache->raw_collect (i, buf); - if (i == FOP_REGNUM) + if (i == I387_FOP_REGNUM (tdep)) { /* The opcode occupies only 11 bits. Make sure we don't touch the other bits. */ buf[1] &= ((1 << 3) - 1); - buf[1] |= ((FSAVE_ADDR (fsave, i))[1] & ~((1 << 3) - 1)); + buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); } - memcpy (FSAVE_ADDR (fsave, i), buf, 2); + memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2); } else - regcache_collect (i, FSAVE_ADDR (fsave, i)); + regcache->raw_collect (i, FSAVE_ADDR (tdep, regs, i)); } } @@ -508,133 +531,170 @@ i387_fill_fsave (char *fsave, int regnum) static int fxsave_offset[] = { - 32, /* FP0_REGNUM through ... */ + 32, /* %st(0) through ... */ 48, 64, 80, 96, 112, 128, - 144, /* ... FP7_REGNUM (80 bits each). */ - 0, /* FCTRL_REGNUM (16 bits). */ - 2, /* FSTAT_REGNUM (16 bits). */ - 4, /* FTAG_REGNUM (16 bits). */ - 12, /* FISEG_REGNUM (16 bits). */ - 8, /* FIOFF_REGNUM. */ - 20, /* FOSEG_REGNUM (16 bits). */ - 16, /* FOOFF_REGNUM. */ - 6, /* FOP_REGNUM (bottom 11 bits). */ - 160, /* XMM0_REGNUM through ... */ - 176, - 192, - 208, - 224, - 240, - 256, - 272, /* ... XMM7_REGNUM (128 bits each). */ - 24, /* MXCSR_REGNUM. */ + 144, /* ... %st(7) (80 bits each). */ + 0, /* `fctrl' (16 bits). */ + 2, /* `fstat' (16 bits). */ + 4, /* `ftag' (16 bits). */ + 12, /* `fiseg' (16 bits). */ + 8, /* `fioff'. */ + 20, /* `foseg' (16 bits). */ + 16, /* `fooff'. */ + 6, /* `fop' (bottom 11 bits). */ + 160 + 0 * 16, /* %xmm0 through ... */ + 160 + 1 * 16, + 160 + 2 * 16, + 160 + 3 * 16, + 160 + 4 * 16, + 160 + 5 * 16, + 160 + 6 * 16, + 160 + 7 * 16, + 160 + 8 * 16, + 160 + 9 * 16, + 160 + 10 * 16, + 160 + 11 * 16, + 160 + 12 * 16, + 160 + 13 * 16, + 160 + 14 * 16, + 160 + 15 * 16, /* ... %xmm15 (128 bits each). */ }; -#define FXSAVE_ADDR(fxsave, regnum) \ - (fxsave + fxsave_offset[regnum - FP0_REGNUM]) +#define FXSAVE_ADDR(tdep, fxsave, regnum) \ + (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)]) + +/* We made an unfortunate choice in putting %mxcsr after the SSE + registers %xmm0-%xmm7 instead of before, since it makes supporting + the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we + don't include the offset for %mxcsr here above. */ + +#define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24) -static int i387_tag (unsigned char *raw); +static int i387_tag (const gdb_byte *raw); -/* Fill GDB's register array with the floating-point and SSE register - values in *FXSAVE. This function masks off any of the reserved - bits in *FXSAVE. */ +/* Fill register REGNUM in REGCACHE with the appropriate + floating-point or SSE register value from *FXSAVE. This function + masks off any of the reserved bits in *FXSAVE. */ void -i387_supply_fxsave (char *fxsave) +i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave) { - int i, last_regnum = MXCSR_REGNUM; + struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); + const gdb_byte *regs = (const gdb_byte *) fxsave; + int i; - if (gdbarch_tdep (current_gdbarch)->num_xmm_regs == 0) - last_regnum = FOP_REGNUM; + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + gdb_assert (tdep->num_xmm_regs > 0); - for (i = FP0_REGNUM; i <= last_regnum; i++) - { - /* Most of the FPU control registers occupy only 16 bits in - the fxsave area. Give those a special treatment. */ - if (i >= FPC_REGNUM && i < XMM0_REGNUM - && i != FIOFF_REGNUM && i != FOOFF_REGNUM) - { - unsigned char val[4]; + for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + if (regs == NULL) + { + regcache->raw_supply (i, NULL); + continue; + } - memcpy (val, FXSAVE_ADDR (fxsave, i), 2); - val[2] = val[3] = 0; - if (i == FOP_REGNUM) - val[1] &= ((1 << 3) - 1); - else if (i== FTAG_REGNUM) - { - /* The fxsave area contains a simplified version of the - tag word. We have to look at the actual 80-bit FP - data to recreate the traditional i387 tag word. */ + /* Most of the FPU control registers occupy only 16 bits in + the fxsave area. Give those a special treatment. */ + if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) + && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte val[4]; - unsigned long ftag = 0; - int fpreg; - int top; + memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); + val[2] = val[3] = 0; + if (i == I387_FOP_REGNUM (tdep)) + val[1] &= ((1 << 3) - 1); + else if (i== I387_FTAG_REGNUM (tdep)) + { + /* The fxsave area contains a simplified version of + the tag word. We have to look at the actual 80-bit + FP data to recreate the traditional i387 tag word. */ - top = (((FXSAVE_ADDR (fxsave, FSTAT_REGNUM))[1] >> 3) & 0x7); + unsigned long ftag = 0; + int fpreg; + int top; - for (fpreg = 7; fpreg >= 0; fpreg--) - { - int tag; + top = ((FXSAVE_ADDR (tdep, regs, + I387_FSTAT_REGNUM (tdep)))[1] >> 3); + top &= 0x7; - if (val[0] & (1 << fpreg)) - { - int regnum = (fpreg + 8 - top) % 8 + FP0_REGNUM; - tag = i387_tag (FXSAVE_ADDR (fxsave, regnum)); - } - else - tag = 3; /* Empty */ + for (fpreg = 7; fpreg >= 0; fpreg--) + { + int tag; + + if (val[0] & (1 << fpreg)) + { + int thisreg = (fpreg + 8 - top) % 8 + + I387_ST0_REGNUM (tdep); + tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg)); + } + else + tag = 3; /* Empty */ + + ftag |= tag << (2 * fpreg); + } + val[0] = ftag & 0xff; + val[1] = (ftag >> 8) & 0xff; + } + regcache->raw_supply (i, val); + } + else + regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); + } - ftag |= tag << (2 * fpreg); - } - val[0] = ftag & 0xff; - val[1] = (ftag >> 8) & 0xff; - } - supply_register (i, val); - } + if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) + { + if (regs == NULL) + regcache->raw_supply (I387_MXCSR_REGNUM (tdep), NULL); else - supply_register (i, FXSAVE_ADDR (fxsave, i)); + regcache->raw_supply (I387_MXCSR_REGNUM (tdep), + FXSAVE_MXCSR_ADDR (regs)); } } /* Fill register REGNUM (if it is a floating-point or SSE register) in - *FXSAVE with the value in GDB's register array. If REGNUM is -1, do - this for all registers. This function doesn't touch any of the - reserved bits in *FXSAVE. */ + *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for + all registers. This function doesn't touch any of the reserved + bits in *FXSAVE. */ void -i387_fill_fxsave (char *fxsave, int regnum) +i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave) { - int i, last_regnum = MXCSR_REGNUM; + struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); + gdb_byte *regs = (gdb_byte *) fxsave; + int i; - if (gdbarch_tdep (current_gdbarch)->num_xmm_regs == 0) - last_regnum = FOP_REGNUM; + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + gdb_assert (tdep->num_xmm_regs > 0); - for (i = FP0_REGNUM; i <= last_regnum; i++) + for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) if (regnum == -1 || regnum == i) { /* Most of the FPU control registers occupy only 16 bits in the fxsave area. Give those a special treatment. */ - if (i >= FPC_REGNUM && i < XMM0_REGNUM - && i != FIOFF_REGNUM && i != FDOFF_REGNUM) + if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) + && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) { - unsigned char buf[4]; + gdb_byte buf[4]; - regcache_collect (i, buf); + regcache->raw_collect (i, buf); - if (i == FOP_REGNUM) + if (i == I387_FOP_REGNUM (tdep)) { /* The opcode occupies only 11 bits. Make sure we don't touch the other bits. */ buf[1] &= ((1 << 3) - 1); - buf[1] |= ((FXSAVE_ADDR (fxsave, i))[1] & ~((1 << 3) - 1)); + buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); } - else if (i == FTAG_REGNUM) + else if (i == I387_FTAG_REGNUM (tdep)) { /* Converting back is much easier. */ @@ -653,58 +713,1253 @@ i387_fill_fxsave (char *fxsave, int regnum) buf[0] |= (1 << fpreg); } } - memcpy (FXSAVE_ADDR (fxsave, i), buf, 2); + memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2); } else - regcache_collect (i, FXSAVE_ADDR (fxsave, i)); + regcache->raw_collect (i, FXSAVE_ADDR (tdep, regs, i)); } + + if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) + regcache->raw_collect (I387_MXCSR_REGNUM (tdep), + FXSAVE_MXCSR_ADDR (regs)); } -/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in - *RAW. */ +/* `xstate_bv' is at byte offset 512. */ +#define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512) -static int -i387_tag (unsigned char *raw) +/* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in + the upper 128bit of AVX register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_avxh_offset[] = { - int integer; - unsigned int exponent; - unsigned long fraction[2]; + 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */ + 576 + 1 * 16, + 576 + 2 * 16, + 576 + 3 * 16, + 576 + 4 * 16, + 576 + 5 * 16, + 576 + 6 * 16, + 576 + 7 * 16, + 576 + 8 * 16, + 576 + 9 * 16, + 576 + 10 * 16, + 576 + 11 * 16, + 576 + 12 * 16, + 576 + 13 * 16, + 576 + 14 * 16, + 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */ +}; - integer = raw[7] & 0x80; - exponent = (((raw[9] & 0x7f) << 8) | raw[8]); - fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); - fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) - | (raw[5] << 8) | raw[4]); +#define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)]) - if (exponent == 0x7fff) - { - /* Special. */ - return (2); - } - else if (exponent == 0x0000) +/* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in + the upper 128bit of ZMM register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_ymm_avx512_offset[] = +{ + /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */ + 1664 + 16 + 0 * 64, /* %ymm16 through... */ + 1664 + 16 + 1 * 64, + 1664 + 16 + 2 * 64, + 1664 + 16 + 3 * 64, + 1664 + 16 + 4 * 64, + 1664 + 16 + 5 * 64, + 1664 + 16 + 6 * 64, + 1664 + 16 + 7 * 64, + 1664 + 16 + 8 * 64, + 1664 + 16 + 9 * 64, + 1664 + 16 + 10 * 64, + 1664 + 16 + 11 * 64, + 1664 + 16 + 12 * 64, + 1664 + 16 + 13 * 64, + 1664 + 16 + 14 * 64, + 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */ +}; + +#define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)]) + +static int xsave_xmm_avx512_offset[] = +{ + 1664 + 0 * 64, /* %ymm16 through... */ + 1664 + 1 * 64, + 1664 + 2 * 64, + 1664 + 3 * 64, + 1664 + 4 * 64, + 1664 + 5 * 64, + 1664 + 6 * 64, + 1664 + 7 * 64, + 1664 + 8 * 64, + 1664 + 9 * 64, + 1664 + 10 * 64, + 1664 + 11 * 64, + 1664 + 12 * 64, + 1664 + 13 * 64, + 1664 + 14 * 64, + 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */ +}; + +#define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)]) + +static int xsave_mpx_offset[] = { + 960 + 0 * 16, /* bnd0r...bnd3r registers. */ + 960 + 1 * 16, + 960 + 2 * 16, + 960 + 3 * 16, + 1024 + 0 * 8, /* bndcfg ... bndstatus. */ + 1024 + 1 * 8, +}; + +#define XSAVE_MPX_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)]) + + /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location + of the AVX512 opmask register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_avx512_k_offset[] = +{ + 1088 + 0 * 8, /* %k0 through... */ + 1088 + 1 * 8, + 1088 + 2 * 8, + 1088 + 3 * 8, + 1088 + 4 * 8, + 1088 + 5 * 8, + 1088 + 6 * 8, + 1088 + 7 * 8 /* %k7 (64 bits each). */ +}; + +#define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)]) + +/* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in + the upper 256bit of AVX512 ZMMH register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_avx512_zmm_h_offset[] = +{ + 1152 + 0 * 32, + 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */ + 1152 + 2 * 32, + 1152 + 3 * 32, + 1152 + 4 * 32, + 1152 + 5 * 32, + 1152 + 6 * 32, + 1152 + 7 * 32, + 1152 + 8 * 32, + 1152 + 9 * 32, + 1152 + 10 * 32, + 1152 + 11 * 32, + 1152 + 12 * 32, + 1152 + 13 * 32, + 1152 + 14 * 32, + 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */ + 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */ + 1664 + 32 + 1 * 64, + 1664 + 32 + 2 * 64, + 1664 + 32 + 3 * 64, + 1664 + 32 + 4 * 64, + 1664 + 32 + 5 * 64, + 1664 + 32 + 6 * 64, + 1664 + 32 + 7 * 64, + 1664 + 32 + 8 * 64, + 1664 + 32 + 9 * 64, + 1664 + 32 + 10 * 64, + 1664 + 32 + 11 * 64, + 1664 + 32 + 12 * 64, + 1664 + 32 + 13 * 64, + 1664 + 32 + 14 * 64, + 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */ +}; + +#define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)]) + +/* At xsave_pkeys_offset[REGNUM] you find the offset to the location + of the PKRU register data structure used by the "xsave" + instruction where GDB register REGNUM is stored. */ + +static int xsave_pkeys_offset[] = +{ +2688 + 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by + instructions and applications). */ +}; + +#define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \ + (xsave + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)]) + + +/* Extract from XSAVE a bitset of the features that are available on the + target, but which have not yet been enabled. */ + +ULONGEST +i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + const gdb_byte *regs = (const gdb_byte *) xsave; + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */ + ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), + 8, byte_order); + + /* Clear part in vector registers if its bit in xstat_bv is zero. */ + ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0; + + return clear_bv; +} + +/* Similar to i387_supply_fxsave, but use XSAVE extended state. */ + +void +i387_supply_xsave (struct regcache *regcache, int regnum, + const void *xsave) +{ + struct gdbarch *gdbarch = regcache->arch (); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + const gdb_byte *regs = (const gdb_byte *) xsave; + int i; + /* In 64-bit mode the split between "low" and "high" ZMM registers is at + ZMM16. Outside of 64-bit mode there are no "high" ZMM registers at all. + Precalculate the number to be used for the split point, with the all + registers in the "low" portion outside of 64-bit mode. */ + unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep) + + std::min (tdep->num_zmm_regs, 16); + ULONGEST clear_bv; + static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 }; + enum { - if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer) - { - /* Zero. */ - return (1); - } - else - { - /* Special. */ - return (2); - } - } + none = 0x0, + x87 = 0x1, + sse = 0x2, + avxh = 0x4, + mpx = 0x8, + avx512_k = 0x10, + avx512_zmm_h = 0x20, + avx512_ymmh_avx512 = 0x40, + avx512_xmm_avx512 = 0x80, + pkeys = 0x100, + all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h + | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys + } regclass; + + gdb_assert (regs != NULL); + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + gdb_assert (tdep->num_xmm_regs > 0); + + if (regnum == -1) + regclass = all; + else if (regnum >= I387_PKRU_REGNUM (tdep) + && regnum < I387_PKEYSEND_REGNUM (tdep)) + regclass = pkeys; + else if (regnum >= I387_ZMM0H_REGNUM (tdep) + && regnum < I387_ZMMENDH_REGNUM (tdep)) + regclass = avx512_zmm_h; + else if (regnum >= I387_K0_REGNUM (tdep) + && regnum < I387_KEND_REGNUM (tdep)) + regclass = avx512_k; + else if (regnum >= I387_YMM16H_REGNUM (tdep) + && regnum < I387_YMMH_AVX512_END_REGNUM (tdep)) + regclass = avx512_ymmh_avx512; + else if (regnum >= I387_XMM16_REGNUM (tdep) + && regnum < I387_XMM_AVX512_END_REGNUM (tdep)) + regclass = avx512_xmm_avx512; + else if (regnum >= I387_YMM0H_REGNUM (tdep) + && regnum < I387_YMMENDH_REGNUM (tdep)) + regclass = avxh; + else if (regnum >= I387_BND0R_REGNUM (tdep) + && regnum < I387_MPXEND_REGNUM (tdep)) + regclass = mpx; + else if (regnum >= I387_XMM0_REGNUM (tdep) + && regnum < I387_MXCSR_REGNUM (tdep)) + regclass = sse; + else if (regnum >= I387_ST0_REGNUM (tdep) + && regnum < I387_FCTRL_REGNUM (tdep)) + regclass = x87; else + regclass = none; + + clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave); + + /* With the delayed xsave mechanism, in between the program + starting, and the program accessing the vector registers for the + first time, the register's values are invalid. The kernel + initializes register states to zero when they are set the first + time in a program. This means that from the user-space programs' + perspective, it's the same as if the registers have always been + zero from the start of the program. Therefore, the debugger + should provide the same illusion to the user. */ + + switch (regclass) { - if (integer) - { - /* Valid. */ - return (0); - } + case none: + break; + + case pkeys: + if ((clear_bv & X86_XSTATE_PKRU)) + regcache->raw_supply (regnum, zero); else - { + regcache->raw_supply (regnum, XSAVE_PKEYS_ADDR (tdep, regs, regnum)); + return; + + case avx512_zmm_h: + if ((clear_bv & (regnum < zmm_endlo_regnum ? X86_XSTATE_ZMM_H + : X86_XSTATE_ZMM))) + regcache->raw_supply (regnum, zero); + else + regcache->raw_supply (regnum, + XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum)); + return; + + case avx512_k: + if ((clear_bv & X86_XSTATE_K)) + regcache->raw_supply (regnum, zero); + else + regcache->raw_supply (regnum, XSAVE_AVX512_K_ADDR (tdep, regs, regnum)); + return; + + case avx512_ymmh_avx512: + if ((clear_bv & X86_XSTATE_ZMM)) + regcache->raw_supply (regnum, zero); + else + regcache->raw_supply (regnum, + XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum)); + return; + + case avx512_xmm_avx512: + if ((clear_bv & X86_XSTATE_ZMM)) + regcache->raw_supply (regnum, zero); + else + regcache->raw_supply (regnum, + XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum)); + return; + + case avxh: + if ((clear_bv & X86_XSTATE_AVX)) + regcache->raw_supply (regnum, zero); + else + regcache->raw_supply (regnum, XSAVE_AVXH_ADDR (tdep, regs, regnum)); + return; + + case mpx: + if ((clear_bv & X86_XSTATE_BNDREGS)) + regcache->raw_supply (regnum, zero); + else + regcache->raw_supply (regnum, XSAVE_MPX_ADDR (tdep, regs, regnum)); + return; + + case sse: + if ((clear_bv & X86_XSTATE_SSE)) + regcache->raw_supply (regnum, zero); + else + regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum)); + return; + + case x87: + if ((clear_bv & X86_XSTATE_X87)) + regcache->raw_supply (regnum, zero); + else + regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum)); + return; + + case all: + /* Handle PKEYS registers. */ + if ((tdep->xcr0 & X86_XSTATE_PKRU)) + { + if ((clear_bv & X86_XSTATE_PKRU)) + { + for (i = I387_PKRU_REGNUM (tdep); + i < I387_PKEYSEND_REGNUM (tdep); + i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = I387_PKRU_REGNUM (tdep); + i < I387_PKEYSEND_REGNUM (tdep); + i++) + regcache->raw_supply (i, XSAVE_PKEYS_ADDR (tdep, regs, i)); + } + } + + /* Handle the upper halves of the low 8/16 ZMM registers. */ + if ((tdep->xcr0 & X86_XSTATE_ZMM_H)) + { + if ((clear_bv & X86_XSTATE_ZMM_H)) + { + for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) + regcache->raw_supply (i, + XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i)); + } + } + + /* Handle AVX512 OpMask registers. */ + if ((tdep->xcr0 & X86_XSTATE_K)) + { + if ((clear_bv & X86_XSTATE_K)) + { + for (i = I387_K0_REGNUM (tdep); + i < I387_KEND_REGNUM (tdep); + i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = I387_K0_REGNUM (tdep); + i < I387_KEND_REGNUM (tdep); + i++) + regcache->raw_supply (i, XSAVE_AVX512_K_ADDR (tdep, regs, i)); + } + } + + /* Handle the upper 16 ZMM/YMM/XMM registers (if any). */ + if ((tdep->xcr0 & X86_XSTATE_ZMM)) + { + if ((clear_bv & X86_XSTATE_ZMM)) + { + for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) + regcache->raw_supply (i, zero); + for (i = I387_YMM16H_REGNUM (tdep); + i < I387_YMMH_AVX512_END_REGNUM (tdep); + i++) + regcache->raw_supply (i, zero); + for (i = I387_XMM16_REGNUM (tdep); + i < I387_XMM_AVX512_END_REGNUM (tdep); + i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) + regcache->raw_supply (i, + XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i)); + for (i = I387_YMM16H_REGNUM (tdep); + i < I387_YMMH_AVX512_END_REGNUM (tdep); + i++) + regcache->raw_supply (i, XSAVE_YMM_AVX512_ADDR (tdep, regs, i)); + for (i = I387_XMM16_REGNUM (tdep); + i < I387_XMM_AVX512_END_REGNUM (tdep); + i++) + regcache->raw_supply (i, XSAVE_XMM_AVX512_ADDR (tdep, regs, i)); + } + } + /* Handle the upper YMM registers. */ + if ((tdep->xcr0 & X86_XSTATE_AVX)) + { + if ((clear_bv & X86_XSTATE_AVX)) + { + for (i = I387_YMM0H_REGNUM (tdep); + i < I387_YMMENDH_REGNUM (tdep); + i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = I387_YMM0H_REGNUM (tdep); + i < I387_YMMENDH_REGNUM (tdep); + i++) + regcache->raw_supply (i, XSAVE_AVXH_ADDR (tdep, regs, i)); + } + } + + /* Handle the MPX registers. */ + if ((tdep->xcr0 & X86_XSTATE_BNDREGS)) + { + if (clear_bv & X86_XSTATE_BNDREGS) + { + for (i = I387_BND0R_REGNUM (tdep); + i < I387_BNDCFGU_REGNUM (tdep); i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = I387_BND0R_REGNUM (tdep); + i < I387_BNDCFGU_REGNUM (tdep); i++) + regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i)); + } + } + + /* Handle the MPX registers. */ + if ((tdep->xcr0 & X86_XSTATE_BNDCFG)) + { + if (clear_bv & X86_XSTATE_BNDCFG) + { + for (i = I387_BNDCFGU_REGNUM (tdep); + i < I387_MPXEND_REGNUM (tdep); i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = I387_BNDCFGU_REGNUM (tdep); + i < I387_MPXEND_REGNUM (tdep); i++) + regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i)); + } + } + + /* Handle the XMM registers. */ + if ((tdep->xcr0 & X86_XSTATE_SSE)) + { + if ((clear_bv & X86_XSTATE_SSE)) + { + for (i = I387_XMM0_REGNUM (tdep); + i < I387_MXCSR_REGNUM (tdep); + i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = I387_XMM0_REGNUM (tdep); + i < I387_MXCSR_REGNUM (tdep); i++) + regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); + } + } + + /* Handle the x87 registers. */ + if ((tdep->xcr0 & X86_XSTATE_X87)) + { + if ((clear_bv & X86_XSTATE_X87)) + { + for (i = I387_ST0_REGNUM (tdep); + i < I387_FCTRL_REGNUM (tdep); + i++) + regcache->raw_supply (i, zero); + } + else + { + for (i = I387_ST0_REGNUM (tdep); + i < I387_FCTRL_REGNUM (tdep); + i++) + regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); + } + } + break; + } + + /* Only handle x87 control registers. */ + for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + if (clear_bv & X86_XSTATE_X87) + { + if (i == I387_FCTRL_REGNUM (tdep)) + { + gdb_byte buf[4]; + + store_unsigned_integer (buf, 4, byte_order, + I387_FCTRL_INIT_VAL); + regcache->raw_supply (i, buf); + } + else if (i == I387_FTAG_REGNUM (tdep)) + { + gdb_byte buf[4]; + + store_unsigned_integer (buf, 4, byte_order, 0xffff); + regcache->raw_supply (i, buf); + } + else + regcache->raw_supply (i, zero); + } + /* Most of the FPU control registers occupy only 16 bits in + the xsave extended state. Give those a special treatment. */ + else if (i != I387_FIOFF_REGNUM (tdep) + && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte val[4]; + + memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); + val[2] = val[3] = 0; + if (i == I387_FOP_REGNUM (tdep)) + val[1] &= ((1 << 3) - 1); + else if (i == I387_FTAG_REGNUM (tdep)) + { + /* The fxsave area contains a simplified version of + the tag word. We have to look at the actual 80-bit + FP data to recreate the traditional i387 tag word. */ + + unsigned long ftag = 0; + int fpreg; + int top; + + top = ((FXSAVE_ADDR (tdep, regs, + I387_FSTAT_REGNUM (tdep)))[1] >> 3); + top &= 0x7; + + for (fpreg = 7; fpreg >= 0; fpreg--) + { + int tag; + + if (val[0] & (1 << fpreg)) + { + int thisreg = (fpreg + 8 - top) % 8 + + I387_ST0_REGNUM (tdep); + tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg)); + } + else + tag = 3; /* Empty */ + + ftag |= tag << (2 * fpreg); + } + val[0] = ftag & 0xff; + val[1] = (ftag >> 8) & 0xff; + } + regcache->raw_supply (i, val); + } + else + regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); + } + + if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) + { + /* The MXCSR register is placed into the xsave buffer if either the + AVX or SSE features are enabled. */ + if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) + == (X86_XSTATE_AVX | X86_XSTATE_SSE)) + { + gdb_byte buf[4]; + + store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL); + regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf); + } + else + regcache->raw_supply (I387_MXCSR_REGNUM (tdep), + FXSAVE_MXCSR_ADDR (regs)); + } +} + +/* Similar to i387_collect_fxsave, but use XSAVE extended state. */ + +void +i387_collect_xsave (const struct regcache *regcache, int regnum, + void *xsave, int gcore) +{ + struct gdbarch *gdbarch = regcache->arch (); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + gdb_byte *p, *regs = (gdb_byte *) xsave; + gdb_byte raw[I386_MAX_REGISTER_SIZE]; + ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0; + unsigned int i; + /* See the comment in i387_supply_xsave(). */ + unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep) + + std::min (tdep->num_zmm_regs, 16); + enum + { + x87_ctrl_or_mxcsr = 0x1, + x87 = 0x2, + sse = 0x4, + avxh = 0x8, + mpx = 0x10, + avx512_k = 0x20, + avx512_zmm_h = 0x40, + avx512_ymmh_avx512 = 0x80, + avx512_xmm_avx512 = 0x100, + pkeys = 0x200, + all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h + | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys + } regclass; + + gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); + gdb_assert (tdep->num_xmm_regs > 0); + + if (regnum == -1) + regclass = all; + else if (regnum >= I387_PKRU_REGNUM (tdep) + && regnum < I387_PKEYSEND_REGNUM (tdep)) + regclass = pkeys; + else if (regnum >= I387_ZMM0H_REGNUM (tdep) + && regnum < I387_ZMMENDH_REGNUM (tdep)) + regclass = avx512_zmm_h; + else if (regnum >= I387_K0_REGNUM (tdep) + && regnum < I387_KEND_REGNUM (tdep)) + regclass = avx512_k; + else if (regnum >= I387_YMM16H_REGNUM (tdep) + && regnum < I387_YMMH_AVX512_END_REGNUM (tdep)) + regclass = avx512_ymmh_avx512; + else if (regnum >= I387_XMM16_REGNUM (tdep) + && regnum < I387_XMM_AVX512_END_REGNUM (tdep)) + regclass = avx512_xmm_avx512; + else if (regnum >= I387_YMM0H_REGNUM (tdep) + && regnum < I387_YMMENDH_REGNUM (tdep)) + regclass = avxh; + else if (regnum >= I387_BND0R_REGNUM (tdep) + && regnum < I387_MPXEND_REGNUM (tdep)) + regclass = mpx; + else if (regnum >= I387_XMM0_REGNUM (tdep) + && regnum < I387_MXCSR_REGNUM (tdep)) + regclass = sse; + else if (regnum >= I387_ST0_REGNUM (tdep) + && regnum < I387_FCTRL_REGNUM (tdep)) + regclass = x87; + else if ((regnum >= I387_FCTRL_REGNUM (tdep) + && regnum < I387_XMM0_REGNUM (tdep)) + || regnum == I387_MXCSR_REGNUM (tdep)) + regclass = x87_ctrl_or_mxcsr; + else + internal_error (__FILE__, __LINE__, _("invalid i387 regnum %d"), regnum); + + if (gcore) + { + /* Clear XSAVE extended state. */ + memset (regs, 0, X86_XSTATE_SIZE (tdep->xcr0)); + + /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */ + if (tdep->xsave_xcr0_offset != -1) + memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8); + memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8); + } + + /* The supported bits in `xstat_bv' are 8 bytes. */ + initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), + 8, byte_order); + clear_bv = (~(initial_xstate_bv)) & tdep->xcr0; + + /* The XSAVE buffer was filled lazily by the kernel. Only those + features that are enabled were written into the buffer, disabled + features left the buffer uninitialised. In order to identify if any + registers have changed we will be comparing the register cache + version to the version in the XSAVE buffer, it is important then that + at this point we initialise to the default values any features in + XSAVE that are not yet initialised. + + This could be made more efficient, we know which features (from + REGNUM) we will be potentially updating, and could limit ourselves to + only clearing that feature. However, the extra complexity does not + seem justified at this point. */ + if (clear_bv) + { + if ((clear_bv & X86_XSTATE_PKRU)) + for (i = I387_PKRU_REGNUM (tdep); + i < I387_PKEYSEND_REGNUM (tdep); i++) + memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4); + + if ((clear_bv & X86_XSTATE_BNDREGS)) + for (i = I387_BND0R_REGNUM (tdep); + i < I387_BNDCFGU_REGNUM (tdep); i++) + memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16); + + if ((clear_bv & X86_XSTATE_BNDCFG)) + for (i = I387_BNDCFGU_REGNUM (tdep); + i < I387_MPXEND_REGNUM (tdep); i++) + memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8); + + if ((clear_bv & X86_XSTATE_ZMM_H)) + for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) + memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32); + + if ((clear_bv & X86_XSTATE_K)) + for (i = I387_K0_REGNUM (tdep); + i < I387_KEND_REGNUM (tdep); i++) + memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8); + + if ((clear_bv & X86_XSTATE_ZMM)) + { + for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) + memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32); + for (i = I387_YMM16H_REGNUM (tdep); + i < I387_YMMH_AVX512_END_REGNUM (tdep); i++) + memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16); + for (i = I387_XMM16_REGNUM (tdep); + i < I387_XMM_AVX512_END_REGNUM (tdep); i++) + memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16); + } + + if ((clear_bv & X86_XSTATE_AVX)) + for (i = I387_YMM0H_REGNUM (tdep); + i < I387_YMMENDH_REGNUM (tdep); i++) + memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16); + + if ((clear_bv & X86_XSTATE_SSE)) + for (i = I387_XMM0_REGNUM (tdep); + i < I387_MXCSR_REGNUM (tdep); i++) + memset (FXSAVE_ADDR (tdep, regs, i), 0, 16); + + /* The mxcsr register is written into the xsave buffer if either AVX + or SSE is enabled, so only clear it if both of those features + require clearing. */ + if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) + == (X86_XSTATE_AVX | X86_XSTATE_SSE)) + store_unsigned_integer (FXSAVE_MXCSR_ADDR (regs), 2, byte_order, + I387_MXCSR_INIT_VAL); + + if ((clear_bv & X86_XSTATE_X87)) + { + for (i = I387_ST0_REGNUM (tdep); + i < I387_FCTRL_REGNUM (tdep); i++) + memset (FXSAVE_ADDR (tdep, regs, i), 0, 10); + + for (i = I387_FCTRL_REGNUM (tdep); + i < I387_XMM0_REGNUM (tdep); i++) + { + if (i == I387_FCTRL_REGNUM (tdep)) + store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2, + byte_order, I387_FCTRL_INIT_VAL); + else + memset (FXSAVE_ADDR (tdep, regs, i), 0, + regcache_register_size (regcache, i)); + } + } + } + + if (regclass == all) + { + /* Check if any PKEYS registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_PKRU)) + for (i = I387_PKRU_REGNUM (tdep); + i < I387_PKEYSEND_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = XSAVE_PKEYS_ADDR (tdep, regs, i); + if (memcmp (raw, p, 4) != 0) + { + xstate_bv |= X86_XSTATE_PKRU; + memcpy (p, raw, 4); + } + } + + /* Check if any ZMMH registers are changed. */ + if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM))) + for (i = I387_ZMM0H_REGNUM (tdep); + i < I387_ZMMENDH_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i); + if (memcmp (raw, p, 32) != 0) + { + xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM); + memcpy (p, raw, 32); + } + } + + /* Check if any K registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_K)) + for (i = I387_K0_REGNUM (tdep); + i < I387_KEND_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = XSAVE_AVX512_K_ADDR (tdep, regs, i); + if (memcmp (raw, p, 8) != 0) + { + xstate_bv |= X86_XSTATE_K; + memcpy (p, raw, 8); + } + } + + /* Check if any XMM or upper YMM registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_ZMM)) + { + for (i = I387_YMM16H_REGNUM (tdep); + i < I387_YMMH_AVX512_END_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16) != 0) + { + xstate_bv |= X86_XSTATE_ZMM; + memcpy (p, raw, 16); + } + } + for (i = I387_XMM16_REGNUM (tdep); + i < I387_XMM_AVX512_END_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16) != 0) + { + xstate_bv |= X86_XSTATE_ZMM; + memcpy (p, raw, 16); + } + } + } + + /* Check if any upper MPX registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_BNDREGS)) + for (i = I387_BND0R_REGNUM (tdep); + i < I387_BNDCFGU_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = XSAVE_MPX_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_BNDREGS; + memcpy (p, raw, 16); + } + } + + /* Check if any upper MPX registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_BNDCFG)) + for (i = I387_BNDCFGU_REGNUM (tdep); + i < I387_MPXEND_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = XSAVE_MPX_ADDR (tdep, regs, i); + if (memcmp (raw, p, 8)) + { + xstate_bv |= X86_XSTATE_BNDCFG; + memcpy (p, raw, 8); + } + } + + /* Check if any upper YMM registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_AVX)) + for (i = I387_YMM0H_REGNUM (tdep); + i < I387_YMMENDH_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = XSAVE_AVXH_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_AVX; + memcpy (p, raw, 16); + } + } + + /* Check if any SSE registers are changed. */ + if ((tdep->xcr0 & X86_XSTATE_SSE)) + for (i = I387_XMM0_REGNUM (tdep); + i < I387_MXCSR_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = FXSAVE_ADDR (tdep, regs, i); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_SSE; + memcpy (p, raw, 16); + } + } + + if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE)) + { + i = I387_MXCSR_REGNUM (tdep); + regcache->raw_collect (i, raw); + p = FXSAVE_MXCSR_ADDR (regs); + if (memcmp (raw, p, 4)) + { + /* Now, we need to mark one of either SSE of AVX as enabled. + We could pick either. What we do is check to see if one + of the features is already enabled, if it is then we leave + it at that, otherwise we pick SSE. */ + if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0) + xstate_bv |= X86_XSTATE_SSE; + memcpy (p, raw, 4); + } + } + + /* Check if any X87 registers are changed. Only the non-control + registers are handled here, the control registers are all handled + later on in this function. */ + if ((tdep->xcr0 & X86_XSTATE_X87)) + for (i = I387_ST0_REGNUM (tdep); + i < I387_FCTRL_REGNUM (tdep); i++) + { + regcache->raw_collect (i, raw); + p = FXSAVE_ADDR (tdep, regs, i); + if (memcmp (raw, p, 10)) + { + xstate_bv |= X86_XSTATE_X87; + memcpy (p, raw, 10); + } + } + } + else + { + /* Check if REGNUM is changed. */ + regcache->raw_collect (regnum, raw); + + switch (regclass) + { + default: + internal_error (__FILE__, __LINE__, + _("invalid i387 regclass")); + + case pkeys: + /* This is a PKEYS register. */ + p = XSAVE_PKEYS_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 4) != 0) + { + xstate_bv |= X86_XSTATE_PKRU; + memcpy (p, raw, 4); + } + break; + + case avx512_zmm_h: + /* This is a ZMM register. */ + p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 32) != 0) + { + xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM); + memcpy (p, raw, 32); + } + break; + case avx512_k: + /* This is a AVX512 mask register. */ + p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 8) != 0) + { + xstate_bv |= X86_XSTATE_K; + memcpy (p, raw, 8); + } + break; + + case avx512_ymmh_avx512: + /* This is an upper YMM16-31 register. */ + p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16) != 0) + { + xstate_bv |= X86_XSTATE_ZMM; + memcpy (p, raw, 16); + } + break; + + case avx512_xmm_avx512: + /* This is an upper XMM16-31 register. */ + p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16) != 0) + { + xstate_bv |= X86_XSTATE_ZMM; + memcpy (p, raw, 16); + } + break; + + case avxh: + /* This is an upper YMM register. */ + p = XSAVE_AVXH_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_AVX; + memcpy (p, raw, 16); + } + break; + + case mpx: + if (regnum < I387_BNDCFGU_REGNUM (tdep)) + { + regcache->raw_collect (regnum, raw); + p = XSAVE_MPX_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_BNDREGS; + memcpy (p, raw, 16); + } + } + else + { + p = XSAVE_MPX_ADDR (tdep, regs, regnum); + xstate_bv |= X86_XSTATE_BNDCFG; + memcpy (p, raw, 8); + } + break; + + case sse: + /* This is an SSE register. */ + p = FXSAVE_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 16)) + { + xstate_bv |= X86_XSTATE_SSE; + memcpy (p, raw, 16); + } + break; + + case x87: + /* This is an x87 register. */ + p = FXSAVE_ADDR (tdep, regs, regnum); + if (memcmp (raw, p, 10)) + { + xstate_bv |= X86_XSTATE_X87; + memcpy (p, raw, 10); + } + break; + + case x87_ctrl_or_mxcsr: + /* We only handle MXCSR here. All other x87 control registers + are handled separately below. */ + if (regnum == I387_MXCSR_REGNUM (tdep)) + { + p = FXSAVE_MXCSR_ADDR (regs); + if (memcmp (raw, p, 2)) + { + /* We're only setting MXCSR, so check the initial state + to see if either of AVX or SSE are already enabled. + If they are then we'll attribute this changed MXCSR to + that feature. If neither feature is enabled, then + we'll attribute this change to the SSE feature. */ + xstate_bv |= (initial_xstate_bv + & (X86_XSTATE_AVX | X86_XSTATE_SSE)); + if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0) + xstate_bv |= X86_XSTATE_SSE; + memcpy (p, raw, 2); + } + } + } + } + + /* Only handle x87 control registers. */ + for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) + if (regnum == -1 || regnum == i) + { + /* Most of the FPU control registers occupy only 16 bits in + the xsave extended state. Give those a special treatment. */ + if (i != I387_FIOFF_REGNUM (tdep) + && i != I387_FOOFF_REGNUM (tdep)) + { + gdb_byte buf[4]; + + regcache->raw_collect (i, buf); + + if (i == I387_FOP_REGNUM (tdep)) + { + /* The opcode occupies only 11 bits. Make sure we + don't touch the other bits. */ + buf[1] &= ((1 << 3) - 1); + buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); + } + else if (i == I387_FTAG_REGNUM (tdep)) + { + /* Converting back is much easier. */ + + unsigned short ftag; + int fpreg; + + ftag = (buf[1] << 8) | buf[0]; + buf[0] = 0; + buf[1] = 0; + + for (fpreg = 7; fpreg >= 0; fpreg--) + { + int tag = (ftag >> (fpreg * 2)) & 3; + + if (tag != 3) + buf[0] |= (1 << fpreg); + } + } + p = FXSAVE_ADDR (tdep, regs, i); + if (memcmp (p, buf, 2)) + { + xstate_bv |= X86_XSTATE_X87; + memcpy (p, buf, 2); + } + } + else + { + int regsize; + + regcache->raw_collect (i, raw); + regsize = regcache_register_size (regcache, i); + p = FXSAVE_ADDR (tdep, regs, i); + if (memcmp (raw, p, regsize)) + { + xstate_bv |= X86_XSTATE_X87; + memcpy (p, raw, regsize); + } + } + } + + /* Update the corresponding bits in `xstate_bv' if any + registers are changed. */ + if (xstate_bv) + { + /* The supported bits in `xstat_bv' are 8 bytes. */ + initial_xstate_bv |= xstate_bv; + store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), + 8, byte_order, + initial_xstate_bv); + } +} + +/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in + *RAW. */ + +static int +i387_tag (const gdb_byte *raw) +{ + int integer; + unsigned int exponent; + unsigned long fraction[2]; + + integer = raw[7] & 0x80; + exponent = (((raw[9] & 0x7f) << 8) | raw[8]); + fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); + fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) + | (raw[5] << 8) | raw[4]); + + if (exponent == 0x7fff) + { + /* Special. */ + return (2); + } + else if (exponent == 0x0000) + { + if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer) + { + /* Zero. */ + return (1); + } + else + { + /* Special. */ + return (2); + } + } + else + { + if (integer) + { + /* Valid. */ + return (0); + } + else + { /* Special. */ return (2); } } } + +/* Prepare the FPU stack in REGCACHE for a function return. */ + +void +i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + ULONGEST fstat; + + /* Set the top of the floating-point register stack to 7. The + actual value doesn't really matter, but 7 is what a normal + function return would end up with if the program started out with + a freshly initialized FPU. */ + regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat); + fstat |= (7 << 11); + regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat); + + /* Mark %st(1) through %st(7) as empty. Since we set the top of the + floating-point register stack to 7, the appropriate value for the + tag word is 0x3fff. */ + regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff); + +} + +/* See i387-tdep.h. */ + +void +i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + if (I387_BND0R_REGNUM (tdep) > 0) + { + gdb_byte bnd_buf[16]; + + memset (bnd_buf, 0, 16); + for (int i = 0; i < I387_NUM_BND_REGS; i++) + regcache->raw_write (I387_BND0R_REGNUM (tdep) + i, bnd_buf); + } +}