X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fmips-linux-tdep.c;h=023290fcffb0d37cd460e892b85400f83695e84d;hb=bd0cfc4d46e8ad3ddaebc2dd3d8c7f93b1da751d;hp=0725e72b6d6a3e5f06621920cb4ee792aa986c1b;hpb=d1bacddc243a8bfd9d0a70eeb7e8e5c86dc1e3ee;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/mips-linux-tdep.c b/gdb/mips-linux-tdep.c index 0725e72b6d..023290fcff 100644 --- a/gdb/mips-linux-tdep.c +++ b/gdb/mips-linux-tdep.c @@ -1,11 +1,12 @@ -/* Target-dependent code for Linux/MIPS. - Copyright 2001 Free Software Foundation, Inc. +/* Target-dependent code for GNU/Linux on MIPS processors. + + Copyright (C) 2001-2002, 2004-2012 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or + the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, @@ -14,331 +15,1535 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ + along with this program. If not, see . */ #include "defs.h" #include "gdbcore.h" #include "target.h" #include "solib-svr4.h" +#include "osabi.h" +#include "mips-tdep.h" +#include "gdb_string.h" +#include "gdb_assert.h" +#include "frame.h" +#include "regcache.h" +#include "trad-frame.h" +#include "tramp-frame.h" +#include "gdbtypes.h" +#include "solib.h" +#include "solib-svr4.h" +#include "solist.h" +#include "symtab.h" +#include "target-descriptions.h" +#include "regset.h" +#include "mips-linux-tdep.h" +#include "glibc-tdep.h" +#include "linux-tdep.h" +#include "xml-syscall.h" +#include "gdb_signals.h" -/* Copied from . */ -#define ELF_NGREG 45 -#define ELF_NFPREG 33 - -typedef unsigned char elf_greg_t[4]; -typedef elf_greg_t elf_gregset_t[ELF_NGREG]; - -typedef unsigned char elf_fpreg_t[8]; -typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG]; - -/* 0 - 31 are integer registers, 32 - 63 are fp registers. */ -#define FPR_BASE 32 -#define PC 64 -#define CAUSE 65 -#define BADVADDR 66 -#define MMHI 67 -#define MMLO 68 -#define FPC_CSR 69 -#define FPC_EIR 70 - -#define EF_REG0 6 -#define EF_REG31 37 -#define EF_LO 38 -#define EF_HI 39 -#define EF_CP0_EPC 40 -#define EF_CP0_BADVADDR 41 -#define EF_CP0_STATUS 42 -#define EF_CP0_CAUSE 43 - -#define EF_SIZE 180 +static struct target_so_ops mips_svr4_so_ops; /* Figure out where the longjmp will land. - We expect the first arg to be a pointer to the jmp_buf structure from - which we extract the pc (JB_PC) that we will land at. The pc is copied - into PC. This routine returns 1 on success. */ + We expect the first arg to be a pointer to the jmp_buf structure + from which we extract the pc (MIPS_LINUX_JB_PC) that we will land + at. The pc is copied into PC. This routine returns 1 on + success. */ -int -mips_linux_get_longjmp_target (CORE_ADDR *pc) +#define MIPS_LINUX_JB_ELEMENT_SIZE 4 +#define MIPS_LINUX_JB_PC 0 + +static int +mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) { CORE_ADDR jb_addr; - char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; + struct gdbarch *gdbarch = get_frame_arch (frame); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + char buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT]; - jb_addr = read_register (A0_REGNUM); + jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM); - if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, - TARGET_PTR_BIT / TARGET_CHAR_BIT)) + if (target_read_memory (jb_addr + + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE, + buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT)) return 0; - *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT); + *pc = extract_unsigned_integer (buf, + gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT, + byte_order); return 1; } +/* Transform the bits comprising a 32-bit register to the right size + for regcache_raw_supply(). This is needed when mips_isa_regsize() + is 8. */ + +static void +supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + gdb_byte buf[MAX_REGISTER_SIZE]; + store_signed_integer (buf, register_size (gdbarch, regnum), byte_order, + extract_signed_integer (addr, 4, byte_order)); + regcache_raw_supply (regcache, regnum, buf); +} + /* Unpack an elf_gregset_t into GDB's register cache. */ -void -supply_gregset (elf_gregset_t *gregsetp) +void +mips_supply_gregset (struct regcache *regcache, + const mips_elf_gregset_t *gregsetp) { int regi; - elf_greg_t *regp = *gregsetp; - static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; + const mips_elf_greg_t *regp = *gregsetp; + char zerobuf[MAX_REGISTER_SIZE]; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + + memset (zerobuf, 0, MAX_REGISTER_SIZE); - for (regi = EF_REG0; regi <= EF_REG31; regi++) - supply_register ((regi - EF_REG0), (char *)(regp + regi)); + for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++) + supply_32bit_reg (regcache, regi - EF_REG0, regp + regi); - supply_register (LO_REGNUM, (char *)(regp + EF_LO)); - supply_register (HI_REGNUM, (char *)(regp + EF_HI)); + if (mips_linux_restart_reg_p (gdbarch)) + supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0); - supply_register (PC_REGNUM, (char *)(regp + EF_CP0_EPC)); - supply_register (BADVADDR_REGNUM, (char *)(regp + EF_CP0_BADVADDR)); - supply_register (PS_REGNUM, (char *)(regp + EF_CP0_STATUS)); - supply_register (CAUSE_REGNUM, (char *)(regp + EF_CP0_CAUSE)); + supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO); + supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI); - /* Fill inaccessible registers with zero. */ - supply_register (FP_REGNUM, zerobuf); - supply_register (UNUSED_REGNUM, zerobuf); - for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++) - supply_register (regi, zerobuf); + supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc, + regp + EF_CP0_EPC); + supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr, + regp + EF_CP0_BADVADDR); + supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS); + supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause, + regp + EF_CP0_CAUSE); + + /* Fill the inaccessible zero register with zero. */ + regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf); +} + +static void +mips_supply_gregset_wrapper (const struct regset *regset, + struct regcache *regcache, + int regnum, const void *gregs, size_t len) +{ + gdb_assert (len == sizeof (mips_elf_gregset_t)); + + mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs); } /* Pack our registers (or one register) into an elf_gregset_t. */ void -fill_gregset (elf_gregset_t *gregsetp, int regno) +mips_fill_gregset (const struct regcache *regcache, + mips_elf_gregset_t *gregsetp, int regno) { + struct gdbarch *gdbarch = get_regcache_arch (regcache); int regaddr, regi; - elf_greg_t *regp = *gregsetp; - void *src, *dst; + mips_elf_greg_t *regp = *gregsetp; + void *dst; if (regno == -1) { - memset (regp, 0, sizeof (elf_gregset_t)); - for (regi = 0; regi < 32; regi++) - fill_gregset (gregsetp, regi); - fill_gregset (gregsetp, LO_REGNUM); - fill_gregset (gregsetp, HI_REGNUM); - fill_gregset (gregsetp, PC_REGNUM); - fill_gregset (gregsetp, BADVADDR_REGNUM); - fill_gregset (gregsetp, PS_REGNUM); - fill_gregset (gregsetp, CAUSE_REGNUM); - + memset (regp, 0, sizeof (mips_elf_gregset_t)); + for (regi = 1; regi < 32; regi++) + mips_fill_gregset (regcache, gregsetp, regi); + mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo); + mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi); + mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc); + mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr); + mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM); + mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause); + mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM); return; } - if (regno < 32) + if (regno > 0 && regno < 32) { - src = ®isters[REGISTER_BYTE (regno)]; dst = regp + regno + EF_REG0; - memcpy (dst, src, sizeof (elf_greg_t)); + regcache_raw_collect (regcache, regno, dst); return; } - regaddr = -1; - switch (regno) - { - case LO_REGNUM: - regaddr = EF_LO; - break; - case HI_REGNUM: - regaddr = EF_HI; - break; - case PC_REGNUM: - regaddr = EF_CP0_EPC; - break; - case BADVADDR_REGNUM: - regaddr = EF_CP0_BADVADDR; - break; - case PS_REGNUM: - regaddr = EF_CP0_STATUS; - break; - case CAUSE_REGNUM: - regaddr = EF_CP0_CAUSE; - break; - } + if (regno == mips_regnum (gdbarch)->lo) + regaddr = EF_LO; + else if (regno == mips_regnum (gdbarch)->hi) + regaddr = EF_HI; + else if (regno == mips_regnum (gdbarch)->pc) + regaddr = EF_CP0_EPC; + else if (regno == mips_regnum (gdbarch)->badvaddr) + regaddr = EF_CP0_BADVADDR; + else if (regno == MIPS_PS_REGNUM) + regaddr = EF_CP0_STATUS; + else if (regno == mips_regnum (gdbarch)->cause) + regaddr = EF_CP0_CAUSE; + else if (mips_linux_restart_reg_p (gdbarch) + && regno == MIPS_RESTART_REGNUM) + regaddr = EF_REG0; + else + regaddr = -1; if (regaddr != -1) { - src = ®isters[REGISTER_BYTE (regno)]; dst = regp + regaddr; - memcpy (dst, src, sizeof (elf_greg_t)); + regcache_raw_collect (regcache, regno, dst); } } +static void +mips_fill_gregset_wrapper (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *gregs, size_t len) +{ + gdb_assert (len == sizeof (mips_elf_gregset_t)); + + mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum); +} + /* Likewise, unpack an elf_fpregset_t. */ void -supply_fpregset (elf_fpregset_t *fpregsetp) +mips_supply_fpregset (struct regcache *regcache, + const mips_elf_fpregset_t *fpregsetp) { - register int regi; - static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + int regi; + char zerobuf[MAX_REGISTER_SIZE]; + + memset (zerobuf, 0, MAX_REGISTER_SIZE); for (regi = 0; regi < 32; regi++) - supply_register (FP0_REGNUM + regi, - (char *)(*fpregsetp + regi)); + regcache_raw_supply (regcache, + gdbarch_fp0_regnum (gdbarch) + regi, + *fpregsetp + regi); - supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32)); + regcache_raw_supply (regcache, + mips_regnum (gdbarch)->fp_control_status, + *fpregsetp + 32); - /* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */ - supply_register (FCRIR_REGNUM, zerobuf); + /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */ + regcache_raw_supply (regcache, + mips_regnum (gdbarch)->fp_implementation_revision, + zerobuf); +} + +static void +mips_supply_fpregset_wrapper (const struct regset *regset, + struct regcache *regcache, + int regnum, const void *gregs, size_t len) +{ + gdb_assert (len == sizeof (mips_elf_fpregset_t)); + + mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs); } /* Likewise, pack one or all floating point registers into an elf_fpregset_t. */ void -fill_fpregset (elf_fpregset_t *fpregsetp, int regno) +mips_fill_fpregset (const struct regcache *regcache, + mips_elf_fpregset_t *fpregsetp, int regno) { - char *from, *to; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + char *to; - if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32)) + if ((regno >= gdbarch_fp0_regnum (gdbarch)) + && (regno < gdbarch_fp0_regnum (gdbarch) + 32)) { - from = (char *) ®isters[REGISTER_BYTE (regno)]; - to = (char *) (*fpregsetp + regno - FP0_REGNUM); - memcpy (to, from, REGISTER_RAW_SIZE (regno - FP0_REGNUM)); + to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch)); + regcache_raw_collect (regcache, regno, to); } - else if (regno == FCRCS_REGNUM) + else if (regno == mips_regnum (gdbarch)->fp_control_status) { - from = (char *) ®isters[REGISTER_BYTE (regno)]; to = (char *) (*fpregsetp + 32); - memcpy (to, from, REGISTER_RAW_SIZE (regno)); + regcache_raw_collect (regcache, regno, to); } else if (regno == -1) { int regi; for (regi = 0; regi < 32; regi++) - fill_fpregset (fpregsetp, FP0_REGNUM + regi); - fill_fpregset(fpregsetp, FCRCS_REGNUM); + mips_fill_fpregset (regcache, fpregsetp, + gdbarch_fp0_regnum (gdbarch) + regi); + mips_fill_fpregset (regcache, fpregsetp, + mips_regnum (gdbarch)->fp_control_status); } } -/* Map gdb internal register number to ptrace ``address''. - These ``addresses'' are normally defined in . */ - -CORE_ADDR -register_addr (int regno, CORE_ADDR blockend) -{ - int regaddr; - - if (regno < 0 || regno >= NUM_REGS) - error ("Bogon register number %d.", regno); - - if (regno < 32) - regaddr = regno; - else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32)) - regaddr = FPR_BASE + (regno - FP0_REGNUM); - else if (regno == PC_REGNUM) - regaddr = PC; - else if (regno == CAUSE_REGNUM) - regaddr = CAUSE; - else if (regno == BADVADDR_REGNUM) - regaddr = BADVADDR; - else if (regno == LO_REGNUM) - regaddr = MMLO; - else if (regno == HI_REGNUM) - regaddr = MMHI; - else if (regno == FCRCS_REGNUM) - regaddr = FPC_CSR; - else if (regno == FCRIR_REGNUM) - regaddr = FPC_EIR; +static void +mips_fill_fpregset_wrapper (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *gregs, size_t len) +{ + gdb_assert (len == sizeof (mips_elf_fpregset_t)); + + mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum); +} + +/* Support for 64-bit ABIs. */ + +/* Figure out where the longjmp will land. + We expect the first arg to be a pointer to the jmp_buf structure + from which we extract the pc (MIPS_LINUX_JB_PC) that we will land + at. The pc is copied into PC. This routine returns 1 on + success. */ + +/* Details about jmp_buf. */ + +#define MIPS64_LINUX_JB_PC 0 + +static int +mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) +{ + CORE_ADDR jb_addr; + struct gdbarch *gdbarch = get_frame_arch (frame); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT); + int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8; + + jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM); + + if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size, + buf, + gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT)) + return 0; + + *pc = extract_unsigned_integer (buf, + gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT, + byte_order); + + return 1; +} + +/* Register set support functions. These operate on standard 64-bit + regsets, but work whether the target is 32-bit or 64-bit. A 32-bit + target will still use the 64-bit format for PTRACE_GETREGS. */ + +/* Supply a 64-bit register. */ + +static void +supply_64bit_reg (struct regcache *regcache, int regnum, + const gdb_byte *buf) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG + && register_size (gdbarch, regnum) == 4) + regcache_raw_supply (regcache, regnum, buf + 4); else - error ("Unknowable register number %d.", regno); + regcache_raw_supply (regcache, regnum, buf); +} + +/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */ - return regaddr; +void +mips64_supply_gregset (struct regcache *regcache, + const mips64_elf_gregset_t *gregsetp) +{ + int regi; + const mips64_elf_greg_t *regp = *gregsetp; + gdb_byte zerobuf[MAX_REGISTER_SIZE]; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + + memset (zerobuf, 0, MAX_REGISTER_SIZE); + + for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++) + supply_64bit_reg (regcache, regi - MIPS64_EF_REG0, + (const gdb_byte *)(regp + regi)); + + if (mips_linux_restart_reg_p (gdbarch)) + supply_64bit_reg (regcache, MIPS_RESTART_REGNUM, + (const gdb_byte *)(regp + MIPS64_EF_REG0)); + + supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo, + (const gdb_byte *) (regp + MIPS64_EF_LO)); + supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi, + (const gdb_byte *) (regp + MIPS64_EF_HI)); + + supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc, + (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC)); + supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr, + (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR)); + supply_64bit_reg (regcache, MIPS_PS_REGNUM, + (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS)); + supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause, + (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE)); + + /* Fill the inaccessible zero register with zero. */ + regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf); } -/* Use a local version of this function to get the correct types for - regsets, until multi-arch core support is ready. */ +static void +mips64_supply_gregset_wrapper (const struct regset *regset, + struct regcache *regcache, + int regnum, const void *gregs, size_t len) +{ + gdb_assert (len == sizeof (mips64_elf_gregset_t)); + + mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs); +} + +/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */ + +void +mips64_fill_gregset (const struct regcache *regcache, + mips64_elf_gregset_t *gregsetp, int regno) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int regaddr, regi; + mips64_elf_greg_t *regp = *gregsetp; + void *dst; + + if (regno == -1) + { + memset (regp, 0, sizeof (mips64_elf_gregset_t)); + for (regi = 1; regi < 32; regi++) + mips64_fill_gregset (regcache, gregsetp, regi); + mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo); + mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi); + mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc); + mips64_fill_gregset (regcache, gregsetp, + mips_regnum (gdbarch)->badvaddr); + mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM); + mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause); + mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM); + return; + } + + if (regno > 0 && regno < 32) + regaddr = regno + MIPS64_EF_REG0; + else if (regno == mips_regnum (gdbarch)->lo) + regaddr = MIPS64_EF_LO; + else if (regno == mips_regnum (gdbarch)->hi) + regaddr = MIPS64_EF_HI; + else if (regno == mips_regnum (gdbarch)->pc) + regaddr = MIPS64_EF_CP0_EPC; + else if (regno == mips_regnum (gdbarch)->badvaddr) + regaddr = MIPS64_EF_CP0_BADVADDR; + else if (regno == MIPS_PS_REGNUM) + regaddr = MIPS64_EF_CP0_STATUS; + else if (regno == mips_regnum (gdbarch)->cause) + regaddr = MIPS64_EF_CP0_CAUSE; + else if (mips_linux_restart_reg_p (gdbarch) + && regno == MIPS_RESTART_REGNUM) + regaddr = MIPS64_EF_REG0; + else + regaddr = -1; + + if (regaddr != -1) + { + gdb_byte buf[MAX_REGISTER_SIZE]; + LONGEST val; + + regcache_raw_collect (regcache, regno, buf); + val = extract_signed_integer (buf, register_size (gdbarch, regno), + byte_order); + dst = regp + regaddr; + store_signed_integer (dst, 8, byte_order, val); + } +} + +static void +mips64_fill_gregset_wrapper (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *gregs, size_t len) +{ + gdb_assert (len == sizeof (mips64_elf_gregset_t)); + + mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum); +} + +/* Likewise, unpack an elf_fpregset_t. */ + +void +mips64_supply_fpregset (struct regcache *regcache, + const mips64_elf_fpregset_t *fpregsetp) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + int regi; + + /* See mips_linux_o32_sigframe_init for a description of the + peculiar FP register layout. */ + if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4) + for (regi = 0; regi < 32; regi++) + { + const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1)); + if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1)) + reg_ptr += 4; + regcache_raw_supply (regcache, + gdbarch_fp0_regnum (gdbarch) + regi, + reg_ptr); + } + else + for (regi = 0; regi < 32; regi++) + regcache_raw_supply (regcache, + gdbarch_fp0_regnum (gdbarch) + regi, + (const char *)(*fpregsetp + regi)); + + supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status, + (const gdb_byte *)(*fpregsetp + 32)); + + /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't + include it - but the result of PTRACE_GETFPREGS does. The best we + can do is to assume that its value is present. */ + supply_32bit_reg (regcache, + mips_regnum (gdbarch)->fp_implementation_revision, + (const gdb_byte *)(*fpregsetp + 32) + 4); +} + +static void +mips64_supply_fpregset_wrapper (const struct regset *regset, + struct regcache *regcache, + int regnum, const void *gregs, size_t len) +{ + gdb_assert (len == sizeof (mips64_elf_fpregset_t)); + + mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs); +} + +/* Likewise, pack one or all floating point registers into an + elf_fpregset_t. */ + +void +mips64_fill_fpregset (const struct regcache *regcache, + mips64_elf_fpregset_t *fpregsetp, int regno) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + gdb_byte *to; + + if ((regno >= gdbarch_fp0_regnum (gdbarch)) + && (regno < gdbarch_fp0_regnum (gdbarch) + 32)) + { + /* See mips_linux_o32_sigframe_init for a description of the + peculiar FP register layout. */ + if (register_size (gdbarch, regno) == 4) + { + int regi = regno - gdbarch_fp0_regnum (gdbarch); + + to = (gdb_byte *) (*fpregsetp + (regi & ~1)); + if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1)) + to += 4; + regcache_raw_collect (regcache, regno, to); + } + else + { + to = (gdb_byte *) (*fpregsetp + regno + - gdbarch_fp0_regnum (gdbarch)); + regcache_raw_collect (regcache, regno, to); + } + } + else if (regno == mips_regnum (gdbarch)->fp_control_status) + { + gdb_byte buf[MAX_REGISTER_SIZE]; + LONGEST val; + + regcache_raw_collect (regcache, regno, buf); + val = extract_signed_integer (buf, register_size (gdbarch, regno), + byte_order); + to = (gdb_byte *) (*fpregsetp + 32); + store_signed_integer (to, 4, byte_order, val); + } + else if (regno == mips_regnum (gdbarch)->fp_implementation_revision) + { + gdb_byte buf[MAX_REGISTER_SIZE]; + LONGEST val; + + regcache_raw_collect (regcache, regno, buf); + val = extract_signed_integer (buf, register_size (gdbarch, regno), + byte_order); + to = (gdb_byte *) (*fpregsetp + 32) + 4; + store_signed_integer (to, 4, byte_order, val); + } + else if (regno == -1) + { + int regi; + + for (regi = 0; regi < 32; regi++) + mips64_fill_fpregset (regcache, fpregsetp, + gdbarch_fp0_regnum (gdbarch) + regi); + mips64_fill_fpregset (regcache, fpregsetp, + mips_regnum (gdbarch)->fp_control_status); + mips64_fill_fpregset (regcache, fpregsetp, + (mips_regnum (gdbarch) + ->fp_implementation_revision)); + } +} static void -fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, - int which, CORE_ADDR reg_addr) +mips64_fill_fpregset_wrapper (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *gregs, size_t len) { - elf_gregset_t gregset; - elf_fpregset_t fpregset; + gdb_assert (len == sizeof (mips64_elf_fpregset_t)); - if (which == 0) + mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum); +} + +static const struct regset * +mips_linux_regset_from_core_section (struct gdbarch *gdbarch, + const char *sect_name, size_t sect_size) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + mips_elf_gregset_t gregset; + mips_elf_fpregset_t fpregset; + mips64_elf_gregset_t gregset64; + mips64_elf_fpregset_t fpregset64; + + if (strcmp (sect_name, ".reg") == 0) { - if (core_reg_size != sizeof (gregset)) + if (sect_size == sizeof (gregset)) { - warning ("wrong size gregset struct in core file"); + if (tdep->gregset == NULL) + tdep->gregset = regset_alloc (gdbarch, + mips_supply_gregset_wrapper, + mips_fill_gregset_wrapper); + return tdep->gregset; + } + else if (sect_size == sizeof (gregset64)) + { + if (tdep->gregset64 == NULL) + tdep->gregset64 = regset_alloc (gdbarch, + mips64_supply_gregset_wrapper, + mips64_fill_gregset_wrapper); + return tdep->gregset64; } else { - memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset)); - supply_gregset (&gregset); + warning (_("wrong size gregset struct in core file")); } } - else if (which == 2) + else if (strcmp (sect_name, ".reg2") == 0) { - if (core_reg_size != sizeof (fpregset)) + if (sect_size == sizeof (fpregset)) + { + if (tdep->fpregset == NULL) + tdep->fpregset = regset_alloc (gdbarch, + mips_supply_fpregset_wrapper, + mips_fill_fpregset_wrapper); + return tdep->fpregset; + } + else if (sect_size == sizeof (fpregset64)) { - warning ("wrong size fpregset struct in core file"); + if (tdep->fpregset64 == NULL) + tdep->fpregset64 = regset_alloc (gdbarch, + mips64_supply_fpregset_wrapper, + mips64_fill_fpregset_wrapper); + return tdep->fpregset64; } else { - memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset)); - supply_fpregset (&fpregset); + warning (_("wrong size fpregset struct in core file")); } } + + return NULL; } -/* Register that we are able to handle ELF file formats using standard - procfs "regset" structures. */ +static const struct target_desc * +mips_linux_core_read_description (struct gdbarch *gdbarch, + struct target_ops *target, + bfd *abfd) +{ + asection *section = bfd_get_section_by_name (abfd, ".reg"); + if (! section) + return NULL; + + switch (bfd_section_size (abfd, section)) + { + case sizeof (mips_elf_gregset_t): + return mips_tdesc_gp32; + + case sizeof (mips64_elf_gregset_t): + return mips_tdesc_gp64; + + default: + return NULL; + } +} -static struct core_fns regset_core_fns = + +/* Check the code at PC for a dynamic linker lazy resolution stub. + Because they aren't in the .plt section, we pattern-match on the + code generated by GNU ld. They look like this: + + lw t9,0x8010(gp) + addu t7,ra + jalr t9,ra + addiu t8,zero,INDEX + + (with the appropriate doubleword instructions for N64). Also + return the dynamic symbol index used in the last instruction. */ + +static int +mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name) { - bfd_target_elf_flavour, /* core_flavour */ - default_check_format, /* check_format */ - default_core_sniffer, /* core_sniffer */ - fetch_core_registers, /* core_read_registers */ - NULL /* next */ + unsigned char buf[28], *p; + ULONGEST insn, insn1; + int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64); + enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); + + read_memory (pc - 12, buf, 28); + + if (n64) + { + /* ld t9,0x8010(gp) */ + insn1 = 0xdf998010; + } + else + { + /* lw t9,0x8010(gp) */ + insn1 = 0x8f998010; + } + + p = buf + 12; + while (p >= buf) + { + insn = extract_unsigned_integer (p, 4, byte_order); + if (insn == insn1) + break; + p -= 4; + } + if (p < buf) + return 0; + + insn = extract_unsigned_integer (p + 4, 4, byte_order); + if (n64) + { + /* daddu t7,ra */ + if (insn != 0x03e0782d) + return 0; + } + else + { + /* addu t7,ra */ + if (insn != 0x03e07821) + return 0; + } + + insn = extract_unsigned_integer (p + 8, 4, byte_order); + /* jalr t9,ra */ + if (insn != 0x0320f809) + return 0; + + insn = extract_unsigned_integer (p + 12, 4, byte_order); + if (n64) + { + /* daddiu t8,zero,0 */ + if ((insn & 0xffff0000) != 0x64180000) + return 0; + } + else + { + /* addiu t8,zero,0 */ + if ((insn & 0xffff0000) != 0x24180000) + return 0; + } + + return (insn & 0xffff); +} + +/* Return non-zero iff PC belongs to the dynamic linker resolution + code, a PLT entry, or a lazy binding stub. */ + +static int +mips_linux_in_dynsym_resolve_code (CORE_ADDR pc) +{ + /* Check whether PC is in the dynamic linker. This also checks + whether it is in the .plt section, used by non-PIC executables. */ + if (svr4_in_dynsym_resolve_code (pc)) + return 1; + + /* Pattern match for the stub. It would be nice if there were a + more efficient way to avoid this check. */ + if (mips_linux_in_dynsym_stub (pc, NULL)) + return 1; + + return 0; +} + +/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c, + and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc + implementation of this triggers at "fixup" from the same objfile as + "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at + "__dl_runtime_resolve" directly. An unresolved lazy binding + stub will point to _dl_runtime_resolve, which will first call + __dl_runtime_resolve, and then pass control to the resolved + function. */ + +static CORE_ADDR +mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + struct minimal_symbol *resolver; + + resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL); + + if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc) + return frame_unwind_caller_pc (get_current_frame ()); + + return glibc_skip_solib_resolver (gdbarch, pc); +} + +/* Signal trampoline support. There are four supported layouts for a + signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and + n64 rt_sigframe. We handle them all independently; not the most + efficient way, but simplest. First, declare all the unwinders. */ + +static void mips_linux_o32_sigframe_init (const struct tramp_frame *self, + struct frame_info *this_frame, + struct trad_frame_cache *this_cache, + CORE_ADDR func); + +static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self, + struct frame_info *this_frame, + struct trad_frame_cache *this_cache, + CORE_ADDR func); + +#define MIPS_NR_LINUX 4000 +#define MIPS_NR_N64_LINUX 5000 +#define MIPS_NR_N32_LINUX 6000 + +#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119 +#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193 +#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211 +#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211 + +#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn +#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn +#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn +#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn +#define MIPS_INST_SYSCALL 0x0000000c + +static const struct tramp_frame mips_linux_o32_sigframe = { + SIGTRAMP_FRAME, + 4, + { + { MIPS_INST_LI_V0_SIGRETURN, -1 }, + { MIPS_INST_SYSCALL, -1 }, + { TRAMP_SENTINEL_INSN, -1 } + }, + mips_linux_o32_sigframe_init +}; + +static const struct tramp_frame mips_linux_o32_rt_sigframe = { + SIGTRAMP_FRAME, + 4, + { + { MIPS_INST_LI_V0_RT_SIGRETURN, -1 }, + { MIPS_INST_SYSCALL, -1 }, + { TRAMP_SENTINEL_INSN, -1 } }, + mips_linux_o32_sigframe_init +}; + +static const struct tramp_frame mips_linux_n32_rt_sigframe = { + SIGTRAMP_FRAME, + 4, + { + { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 }, + { MIPS_INST_SYSCALL, -1 }, + { TRAMP_SENTINEL_INSN, -1 } + }, + mips_linux_n32n64_sigframe_init }; -/* Fetch (and possibly build) an appropriate link_map_offsets - structure for native Linux/MIPS targets using the struct offsets - defined in link.h (but without actual reference to that file). +static const struct tramp_frame mips_linux_n64_rt_sigframe = { + SIGTRAMP_FRAME, + 4, + { + { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 }, + { MIPS_INST_SYSCALL, -1 }, + { TRAMP_SENTINEL_INSN, -1 } + }, + mips_linux_n32n64_sigframe_init +}; + +/* *INDENT-OFF* */ +/* The unwinder for o32 signal frames. The legacy structures look + like this: + + struct sigframe { + u32 sf_ass[4]; [argument save space for o32] + u32 sf_code[2]; [signal trampoline or fill] + struct sigcontext sf_sc; + sigset_t sf_mask; + }; + + Pre-2.6.12 sigcontext: + + struct sigcontext { + unsigned int sc_regmask; [Unused] + unsigned int sc_status; + unsigned long long sc_pc; + unsigned long long sc_regs[32]; + unsigned long long sc_fpregs[32]; + unsigned int sc_ownedfp; + unsigned int sc_fpc_csr; + unsigned int sc_fpc_eir; [Unused] + unsigned int sc_used_math; + unsigned int sc_ssflags; [Unused] + [Alignment hole of four bytes] + unsigned long long sc_mdhi; + unsigned long long sc_mdlo; + + unsigned int sc_cause; [Unused] + unsigned int sc_badvaddr; [Unused] + + unsigned long sc_sigset[4]; [kernel's sigset_t] + }; + + Post-2.6.12 sigcontext (SmartMIPS/DSP support added): + + struct sigcontext { + unsigned int sc_regmask; [Unused] + unsigned int sc_status; [Unused] + unsigned long long sc_pc; + unsigned long long sc_regs[32]; + unsigned long long sc_fpregs[32]; + unsigned int sc_acx; + unsigned int sc_fpc_csr; + unsigned int sc_fpc_eir; [Unused] + unsigned int sc_used_math; + unsigned int sc_dsp; + [Alignment hole of four bytes] + unsigned long long sc_mdhi; + unsigned long long sc_mdlo; + unsigned long sc_hi1; + unsigned long sc_lo1; + unsigned long sc_hi2; + unsigned long sc_lo2; + unsigned long sc_hi3; + unsigned long sc_lo3; + }; + + The RT signal frames look like this: + + struct rt_sigframe { + u32 rs_ass[4]; [argument save space for o32] + u32 rs_code[2] [signal trampoline or fill] + struct siginfo rs_info; + struct ucontext rs_uc; + }; + + struct ucontext { + unsigned long uc_flags; + struct ucontext *uc_link; + stack_t uc_stack; + [Alignment hole of four bytes] + struct sigcontext uc_mcontext; + sigset_t uc_sigmask; + }; */ +/* *INDENT-ON* */ + +#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4) + +#define RTSIGFRAME_SIGINFO_SIZE 128 +#define STACK_T_SIZE (3 * 4) +#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4) +#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \ + + RTSIGFRAME_SIGINFO_SIZE \ + + UCONTEXT_SIGCONTEXT_OFFSET) + +#define SIGCONTEXT_PC (1 * 8) +#define SIGCONTEXT_REGS (2 * 8) +#define SIGCONTEXT_FPREGS (34 * 8) +#define SIGCONTEXT_FPCSR (66 * 8 + 4) +#define SIGCONTEXT_DSPCTL (68 * 8 + 0) +#define SIGCONTEXT_HI (69 * 8) +#define SIGCONTEXT_LO (70 * 8) +#define SIGCONTEXT_CAUSE (71 * 8 + 0) +#define SIGCONTEXT_BADVADDR (71 * 8 + 4) +#define SIGCONTEXT_HI1 (71 * 8 + 0) +#define SIGCONTEXT_LO1 (71 * 8 + 4) +#define SIGCONTEXT_HI2 (72 * 8 + 0) +#define SIGCONTEXT_LO2 (72 * 8 + 4) +#define SIGCONTEXT_HI3 (73 * 8 + 0) +#define SIGCONTEXT_LO3 (73 * 8 + 4) + +#define SIGCONTEXT_REG_SIZE 8 + +static void +mips_linux_o32_sigframe_init (const struct tramp_frame *self, + struct frame_info *this_frame, + struct trad_frame_cache *this_cache, + CORE_ADDR func) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + int ireg; + CORE_ADDR frame_sp = get_frame_sp (this_frame); + CORE_ADDR sigcontext_base; + const struct mips_regnum *regs = mips_regnum (gdbarch); + CORE_ADDR regs_base; + + if (self == &mips_linux_o32_sigframe) + sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET; + else + sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET; + + /* I'm not proud of this hack. Eventually we will have the + infrastructure to indicate the size of saved registers on a + per-frame basis, but right now we don't; the kernel saves eight + bytes but we only want four. Use regs_base to access any + 64-bit fields. */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + regs_base = sigcontext_base + 4; + else + regs_base = sigcontext_base; + + if (mips_linux_restart_reg_p (gdbarch)) + trad_frame_set_reg_addr (this_cache, + (MIPS_RESTART_REGNUM + + gdbarch_num_regs (gdbarch)), + regs_base + SIGCONTEXT_REGS); + + for (ireg = 1; ireg < 32; ireg++) + trad_frame_set_reg_addr (this_cache, + ireg + MIPS_ZERO_REGNUM + + gdbarch_num_regs (gdbarch), + regs_base + SIGCONTEXT_REGS + + ireg * SIGCONTEXT_REG_SIZE); + + /* The way that floating point registers are saved, unfortunately, + depends on the architecture the kernel is built for. For the r3000 and + tx39, four bytes of each register are at the beginning of each of the + 32 eight byte slots. For everything else, the registers are saved + using double precision; only the even-numbered slots are initialized, + and the high bits are the odd-numbered register. Assume the latter + layout, since we can't tell, and it's much more common. Which bits are + the "high" bits depends on endianness. */ + for (ireg = 0; ireg < 32; ireg++) + if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1)) + trad_frame_set_reg_addr (this_cache, + ireg + regs->fp0 + + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_FPREGS + 4 + + (ireg & ~1) * SIGCONTEXT_REG_SIZE); + else + trad_frame_set_reg_addr (this_cache, + ireg + regs->fp0 + + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_FPREGS + + (ireg & ~1) * SIGCONTEXT_REG_SIZE); + + trad_frame_set_reg_addr (this_cache, + regs->pc + gdbarch_num_regs (gdbarch), + regs_base + SIGCONTEXT_PC); + + trad_frame_set_reg_addr (this_cache, + regs->fp_control_status + + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_FPCSR); + + if (regs->dspctl != -1) + trad_frame_set_reg_addr (this_cache, + regs->dspctl + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_DSPCTL); + + trad_frame_set_reg_addr (this_cache, + regs->hi + gdbarch_num_regs (gdbarch), + regs_base + SIGCONTEXT_HI); + trad_frame_set_reg_addr (this_cache, + regs->lo + gdbarch_num_regs (gdbarch), + regs_base + SIGCONTEXT_LO); + + if (regs->dspacc != -1) + { + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 0 + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_HI1); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 1 + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_LO1); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 2 + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_HI2); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 3 + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_LO2); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 4 + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_HI3); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 5 + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_LO3); + } + else + { + trad_frame_set_reg_addr (this_cache, + regs->cause + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_CAUSE); + trad_frame_set_reg_addr (this_cache, + regs->badvaddr + gdbarch_num_regs (gdbarch), + sigcontext_base + SIGCONTEXT_BADVADDR); + } + + /* Choice of the bottom of the sigframe is somewhat arbitrary. */ + trad_frame_set_id (this_cache, frame_id_build (frame_sp, func)); +} + +/* *INDENT-OFF* */ +/* For N32/N64 things look different. There is no non-rt signal frame. + + struct rt_sigframe_n32 { + u32 rs_ass[4]; [ argument save space for o32 ] + u32 rs_code[2]; [ signal trampoline or fill ] + struct siginfo rs_info; + struct ucontextn32 rs_uc; + }; - This makes it possible to access Linux/MIPS shared libraries from a - GDB that was not built on an Linux/MIPS host (for cross debugging). */ + struct ucontextn32 { + u32 uc_flags; + s32 uc_link; + stack32_t uc_stack; + struct sigcontext uc_mcontext; + sigset_t uc_sigmask; [ mask last for extensibility ] + }; -struct link_map_offsets * -mips_linux_svr4_fetch_link_map_offsets (void) -{ - static struct link_map_offsets lmo; - static struct link_map_offsets *lmp = NULL; + struct rt_sigframe { + u32 rs_ass[4]; [ argument save space for o32 ] + u32 rs_code[2]; [ signal trampoline ] + struct siginfo rs_info; + struct ucontext rs_uc; + }; - if (lmp == NULL) - { - lmp = &lmo; + struct ucontext { + unsigned long uc_flags; + struct ucontext *uc_link; + stack_t uc_stack; + struct sigcontext uc_mcontext; + sigset_t uc_sigmask; [ mask last for extensibility ] + }; - lmo.r_debug_size = 8; /* The actual size is 20 bytes, but - this is all we need. */ - lmo.r_map_offset = 4; - lmo.r_map_size = 4; + And the sigcontext is different (this is for both n32 and n64): - lmo.link_map_size = 20; + struct sigcontext { + unsigned long long sc_regs[32]; + unsigned long long sc_fpregs[32]; + unsigned long long sc_mdhi; + unsigned long long sc_hi1; + unsigned long long sc_hi2; + unsigned long long sc_hi3; + unsigned long long sc_mdlo; + unsigned long long sc_lo1; + unsigned long long sc_lo2; + unsigned long long sc_lo3; + unsigned long long sc_pc; + unsigned int sc_fpc_csr; + unsigned int sc_used_math; + unsigned int sc_dsp; + unsigned int sc_reserved; + }; - lmo.l_addr_offset = 0; - lmo.l_addr_size = 4; + That is the post-2.6.12 definition of the 64-bit sigcontext; before + then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were + included too. */ +/* *INDENT-ON* */ - lmo.l_name_offset = 4; - lmo.l_name_size = 4; +#define N32_STACK_T_SIZE STACK_T_SIZE +#define N64_STACK_T_SIZE (2 * 8 + 4) +#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4) +#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4) +#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \ + + RTSIGFRAME_SIGINFO_SIZE \ + + N32_UCONTEXT_SIGCONTEXT_OFFSET) +#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \ + + RTSIGFRAME_SIGINFO_SIZE \ + + N64_UCONTEXT_SIGCONTEXT_OFFSET) - lmo.l_next_offset = 12; - lmo.l_next_size = 4; +#define N64_SIGCONTEXT_REGS (0 * 8) +#define N64_SIGCONTEXT_FPREGS (32 * 8) +#define N64_SIGCONTEXT_HI (64 * 8) +#define N64_SIGCONTEXT_HI1 (65 * 8) +#define N64_SIGCONTEXT_HI2 (66 * 8) +#define N64_SIGCONTEXT_HI3 (67 * 8) +#define N64_SIGCONTEXT_LO (68 * 8) +#define N64_SIGCONTEXT_LO1 (69 * 8) +#define N64_SIGCONTEXT_LO2 (70 * 8) +#define N64_SIGCONTEXT_LO3 (71 * 8) +#define N64_SIGCONTEXT_PC (72 * 8) +#define N64_SIGCONTEXT_FPCSR (73 * 8 + 0) +#define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0) - lmo.l_prev_offset = 16; - lmo.l_prev_size = 4; +#define N64_SIGCONTEXT_REG_SIZE 8 + +static void +mips_linux_n32n64_sigframe_init (const struct tramp_frame *self, + struct frame_info *this_frame, + struct trad_frame_cache *this_cache, + CORE_ADDR func) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + int ireg; + CORE_ADDR frame_sp = get_frame_sp (this_frame); + CORE_ADDR sigcontext_base; + const struct mips_regnum *regs = mips_regnum (gdbarch); + + if (self == &mips_linux_n32_rt_sigframe) + sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET; + else + sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET; + + if (mips_linux_restart_reg_p (gdbarch)) + trad_frame_set_reg_addr (this_cache, + (MIPS_RESTART_REGNUM + + gdbarch_num_regs (gdbarch)), + sigcontext_base + N64_SIGCONTEXT_REGS); + + for (ireg = 1; ireg < 32; ireg++) + trad_frame_set_reg_addr (this_cache, + ireg + MIPS_ZERO_REGNUM + + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_REGS + + ireg * N64_SIGCONTEXT_REG_SIZE); + + for (ireg = 0; ireg < 32; ireg++) + trad_frame_set_reg_addr (this_cache, + ireg + regs->fp0 + + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_FPREGS + + ireg * N64_SIGCONTEXT_REG_SIZE); + + trad_frame_set_reg_addr (this_cache, + regs->pc + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_PC); + + trad_frame_set_reg_addr (this_cache, + regs->fp_control_status + + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_FPCSR); + + trad_frame_set_reg_addr (this_cache, + regs->hi + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_HI); + trad_frame_set_reg_addr (this_cache, + regs->lo + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_LO); + + if (regs->dspacc != -1) + { + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 0 + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_HI1); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 1 + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_LO1); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 2 + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_HI2); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 3 + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_LO2); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 4 + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_HI3); + trad_frame_set_reg_addr (this_cache, + regs->dspacc + 5 + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_LO3); + } + if (regs->dspctl != -1) + trad_frame_set_reg_addr (this_cache, + regs->dspctl + gdbarch_num_regs (gdbarch), + sigcontext_base + N64_SIGCONTEXT_DSPCTL); + + /* Choice of the bottom of the sigframe is somewhat arbitrary. */ + trad_frame_set_id (this_cache, frame_id_build (frame_sp, func)); +} + +/* Implement the "write_pc" gdbarch method. */ + +static void +mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + + mips_write_pc (regcache, pc); + + /* Clear the syscall restart flag. */ + if (mips_linux_restart_reg_p (gdbarch)) + regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0); +} + +/* Return 1 if MIPS_RESTART_REGNUM is usable. */ + +int +mips_linux_restart_reg_p (struct gdbarch *gdbarch) +{ + /* If we do not have a target description with registers, then + MIPS_RESTART_REGNUM will not be included in the register set. */ + if (!tdesc_has_registers (gdbarch_target_desc (gdbarch))) + return 0; + + /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will + either be GPR-sized or missing. */ + return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0; +} + +/* When FRAME is at a syscall instruction, return the PC of the next + instruction to be executed. */ + +static CORE_ADDR +mips_linux_syscall_next_pc (struct frame_info *frame) +{ + CORE_ADDR pc = get_frame_pc (frame); + ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM); + + /* If we are about to make a sigreturn syscall, use the unwinder to + decode the signal frame. */ + if (v0 == MIPS_NR_sigreturn + || v0 == MIPS_NR_rt_sigreturn + || v0 == MIPS_NR_N64_rt_sigreturn + || v0 == MIPS_NR_N32_rt_sigreturn) + return frame_unwind_caller_pc (get_current_frame ()); + + return pc + 4; +} + +/* Return the current system call's number present in the + v0 register. When the function fails, it returns -1. */ + +static LONGEST +mips_linux_get_syscall_number (struct gdbarch *gdbarch, + ptid_t ptid) +{ + struct regcache *regcache = get_thread_regcache (ptid); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int regsize = register_size (gdbarch, MIPS_V0_REGNUM); + /* The content of a register */ + gdb_byte buf[8]; + /* The result */ + LONGEST ret; + + /* Make sure we're in a known ABI */ + gdb_assert (tdep->mips_abi == MIPS_ABI_O32 + || tdep->mips_abi == MIPS_ABI_N32 + || tdep->mips_abi == MIPS_ABI_N64); + + gdb_assert (regsize <= sizeof (buf)); + + /* Getting the system call number from the register. + syscall number is in v0 or $2. */ + regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf); + + ret = extract_signed_integer (buf, regsize, byte_order); + + return ret; +} + +/* Translate signals based on MIPS signal values. + Adapted from gdb/common/signals.c. */ + +static enum gdb_signal +mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signo) +{ + switch (signo) + { + case 0: + return GDB_SIGNAL_0; + case MIPS_SIGHUP: + return GDB_SIGNAL_HUP; + case MIPS_SIGINT: + return GDB_SIGNAL_INT; + case MIPS_SIGQUIT: + return GDB_SIGNAL_QUIT; + case MIPS_SIGILL: + return GDB_SIGNAL_ILL; + case MIPS_SIGTRAP: + return GDB_SIGNAL_TRAP; + case MIPS_SIGABRT: + return GDB_SIGNAL_ABRT; + case MIPS_SIGEMT: + return GDB_SIGNAL_EMT; + case MIPS_SIGFPE: + return GDB_SIGNAL_FPE; + case MIPS_SIGKILL: + return GDB_SIGNAL_KILL; + case MIPS_SIGBUS: + return GDB_SIGNAL_BUS; + case MIPS_SIGSEGV: + return GDB_SIGNAL_SEGV; + case MIPS_SIGSYS: + return GDB_SIGNAL_SYS; + case MIPS_SIGPIPE: + return GDB_SIGNAL_PIPE; + case MIPS_SIGALRM: + return GDB_SIGNAL_ALRM; + case MIPS_SIGTERM: + return GDB_SIGNAL_TERM; + case MIPS_SIGUSR1: + return GDB_SIGNAL_USR1; + case MIPS_SIGUSR2: + return GDB_SIGNAL_USR2; + case MIPS_SIGCHLD: + return GDB_SIGNAL_CHLD; + case MIPS_SIGPWR: + return GDB_SIGNAL_PWR; + case MIPS_SIGWINCH: + return GDB_SIGNAL_WINCH; + case MIPS_SIGURG: + return GDB_SIGNAL_URG; + case MIPS_SIGPOLL: + return GDB_SIGNAL_POLL; + case MIPS_SIGSTOP: + return GDB_SIGNAL_STOP; + case MIPS_SIGTSTP: + return GDB_SIGNAL_TSTP; + case MIPS_SIGCONT: + return GDB_SIGNAL_CONT; + case MIPS_SIGTTIN: + return GDB_SIGNAL_TTIN; + case MIPS_SIGTTOU: + return GDB_SIGNAL_TTOU; + case MIPS_SIGVTALRM: + return GDB_SIGNAL_VTALRM; + case MIPS_SIGPROF: + return GDB_SIGNAL_PROF; + case MIPS_SIGXCPU: + return GDB_SIGNAL_XCPU; + case MIPS_SIGXFSZ: + return GDB_SIGNAL_XFSZ; + } + + if (signo >= MIPS_SIGRTMIN && signo <= MIPS_SIGRTMAX) + { + /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of + the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */ + signo -= MIPS_SIGRTMIN; + if (signo == 0) + return GDB_SIGNAL_REALTIME_32; + else if (signo < 32) + return ((enum gdb_signal) (signo - 1 + (int) GDB_SIGNAL_REALTIME_33)); + else + return ((enum gdb_signal) (signo - 32 + (int) GDB_SIGNAL_REALTIME_64)); } - return lmp; + return GDB_SIGNAL_UNKNOWN; } +/* Initialize one of the GNU/Linux OS ABIs. */ + +static void +mips_linux_init_abi (struct gdbarch_info info, + struct gdbarch *gdbarch) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum mips_abi abi = mips_abi (gdbarch); + struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info; + + linux_init_abi (info, gdbarch); + + /* Get the syscall number from the arch's register. */ + set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number); + + switch (abi) + { + case MIPS_ABI_O32: + set_gdbarch_get_longjmp_target (gdbarch, + mips_linux_get_longjmp_target); + set_solib_svr4_fetch_link_map_offsets + (gdbarch, svr4_ilp32_fetch_link_map_offsets); + tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe); + tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe); + set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml"); + break; + case MIPS_ABI_N32: + set_gdbarch_get_longjmp_target (gdbarch, + mips_linux_get_longjmp_target); + set_solib_svr4_fetch_link_map_offsets + (gdbarch, svr4_ilp32_fetch_link_map_offsets); + set_gdbarch_long_double_bit (gdbarch, 128); + /* These floatformats should probably be renamed. MIPS uses + the same 128-bit IEEE floating point format that IA-64 uses, + except that the quiet/signalling NaN bit is reversed (GDB + does not distinguish between quiet and signalling NaNs). */ + set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); + tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe); + set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml"); + break; + case MIPS_ABI_N64: + set_gdbarch_get_longjmp_target (gdbarch, + mips64_linux_get_longjmp_target); + set_solib_svr4_fetch_link_map_offsets + (gdbarch, svr4_lp64_fetch_link_map_offsets); + set_gdbarch_long_double_bit (gdbarch, 128); + /* These floatformats should probably be renamed. MIPS uses + the same 128-bit IEEE floating point format that IA-64 uses, + except that the quiet/signalling NaN bit is reversed (GDB + does not distinguish between quiet and signalling NaNs). */ + set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); + tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe); + set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml"); + break; + default: + break; + } + + set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver); + + set_gdbarch_software_single_step (gdbarch, mips_software_single_step); + + /* Enable TLS support. */ + set_gdbarch_fetch_tls_load_module_address (gdbarch, + svr4_fetch_objfile_link_map); + + /* Initialize this lazily, to avoid an initialization order + dependency on solib-svr4.c's _initialize routine. */ + if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL) + { + mips_svr4_so_ops = svr4_so_ops; + mips_svr4_so_ops.in_dynsym_resolve_code + = mips_linux_in_dynsym_resolve_code; + } + set_solib_ops (gdbarch, &mips_svr4_so_ops); + + set_gdbarch_write_pc (gdbarch, mips_linux_write_pc); + + set_gdbarch_core_read_description (gdbarch, + mips_linux_core_read_description); + + set_gdbarch_regset_from_core_section (gdbarch, + mips_linux_regset_from_core_section); + + set_gdbarch_gdb_signal_from_target (gdbarch, + mips_gdb_signal_from_target); + + tdep->syscall_next_pc = mips_linux_syscall_next_pc; + + if (tdesc_data) + { + const struct tdesc_feature *feature; + + /* If we have target-described registers, then we can safely + reserve a number for MIPS_RESTART_REGNUM (whether it is + described or not). */ + gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM); + set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1); + set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1); + + /* If it's present, then assign it to the reserved number. */ + feature = tdesc_find_feature (info.target_desc, + "org.gnu.gdb.mips.linux"); + if (feature != NULL) + tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM, + "restart"); + } +} + +/* Provide a prototype to silence -Wmissing-prototypes. */ +extern initialize_file_ftype _initialize_mips_linux_tdep; + void _initialize_mips_linux_tdep (void) { - add_core_fns (®set_core_fns); + const struct bfd_arch_info *arch_info; + + for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0); + arch_info != NULL; + arch_info = arch_info->next) + { + gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, + GDB_OSABI_LINUX, + mips_linux_init_abi); + } }