X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fppc-linux-nat.c;h=18ddee79fcf99ad13e9594903bed3fc0b0e827e9;hb=7155d5780a29c29184d5794107f87a5f3b5e8517;hp=90a99192864401932cef2c498e3be72550369d2d;hpb=e2e0b3e57f11bb2539724fc955af7e22380613c1;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/ppc-linux-nat.c b/gdb/ppc-linux-nat.c index 90a9919286..18ddee79fc 100644 --- a/gdb/ppc-linux-nat.c +++ b/gdb/ppc-linux-nat.c @@ -1,13 +1,13 @@ /* PPC GNU/Linux native support. - Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, - 2003 Free Software Foundation, Inc. + Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003, + 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or + the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, @@ -16,18 +16,21 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ + along with this program. If not, see . */ #include "defs.h" #include "gdb_string.h" +#include "observer.h" #include "frame.h" #include "inferior.h" +#include "gdbthread.h" #include "gdbcore.h" #include "regcache.h" #include "gdb_assert.h" +#include "target.h" +#include "linux-nat.h" +#include #include #include #include @@ -41,17 +44,32 @@ /* Prototypes for supply_gregset etc. */ #include "gregset.h" #include "ppc-tdep.h" +#include "ppc-linux-tdep.h" -#ifndef PT_READ_U -#define PT_READ_U PTRACE_PEEKUSR +/* Required when using the AUXV. */ +#include "elf/common.h" +#include "auxv.h" + +/* This sometimes isn't defined. */ +#ifndef PT_ORIG_R3 +#define PT_ORIG_R3 34 #endif -#ifndef PT_WRITE_U -#define PT_WRITE_U PTRACE_POKEUSR +#ifndef PT_TRAP +#define PT_TRAP 40 #endif -/* Default the type of the ptrace transfer to int. */ -#ifndef PTRACE_XFER_TYPE -#define PTRACE_XFER_TYPE int +/* The PPC_FEATURE_* defines should be provided by . + If they aren't, we can provide them ourselves (their values are fixed + because they are part of the kernel ABI). They are used in the AT_HWCAP + entry of the AUXV. */ +#ifndef PPC_FEATURE_CELL +#define PPC_FEATURE_CELL 0x00010000 +#endif +#ifndef PPC_FEATURE_BOOKE +#define PPC_FEATURE_BOOKE 0x00008000 +#endif +#ifndef PPC_FEATURE_HAS_DFP +#define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */ #endif /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a @@ -70,6 +88,11 @@ #define PTRACE_SETVRREGS 19 #endif +/* PTRACE requests for POWER7 VSX registers. */ +#ifndef PTRACE_GETVSXREGS +#define PTRACE_GETVSXREGS 27 +#define PTRACE_SETVSXREGS 28 +#endif /* Similarly for the ptrace requests for getting / setting the SPE registers (ev0 -- ev31, acc, and spefscr). See the description of @@ -79,6 +102,99 @@ #define PTRACE_SETEVRREGS 21 #endif +/* Similarly for the hardware watchpoint support. These requests are used + when the BookE kernel interface is not available. */ +#ifndef PTRACE_GET_DEBUGREG +#define PTRACE_GET_DEBUGREG 25 +#endif +#ifndef PTRACE_SET_DEBUGREG +#define PTRACE_SET_DEBUGREG 26 +#endif +#ifndef PTRACE_GETSIGINFO +#define PTRACE_GETSIGINFO 0x4202 +#endif + +/* These requests are used when the BookE kernel interface is available. + It exposes the additional debug features of BookE processors, such as + ranged breakpoints and watchpoints and hardware-accelerated condition + evaluation. */ +#ifndef PPC_PTRACE_GETHWDBGINFO + +/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE + interface is not present in ptrace.h, so we'll have to pretty much include + it all here so that the code at least compiles on older systems. */ +#define PPC_PTRACE_GETHWDBGINFO 0x89 +#define PPC_PTRACE_SETHWDEBUG 0x88 +#define PPC_PTRACE_DELHWDEBUG 0x87 + +struct ppc_debug_info +{ + uint32_t version; /* Only version 1 exists to date */ + uint32_t num_instruction_bps; + uint32_t num_data_bps; + uint32_t num_condition_regs; + uint32_t data_bp_alignment; + uint32_t sizeof_condition; /* size of the DVC register */ + uint64_t features; +}; + +/* Features will have bits indicating whether there is support for: */ +#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1 +#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2 +#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4 +#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8 + +struct ppc_hw_breakpoint +{ + uint32_t version; /* currently, version must be 1 */ + uint32_t trigger_type; /* only some combinations allowed */ + uint32_t addr_mode; /* address match mode */ + uint32_t condition_mode; /* break/watchpoint condition flags */ + uint64_t addr; /* break/watchpoint address */ + uint64_t addr2; /* range end or mask */ + uint64_t condition_value; /* contents of the DVC register */ +}; + +/* Trigger type. */ +#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1 +#define PPC_BREAKPOINT_TRIGGER_READ 0x2 +#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4 +#define PPC_BREAKPOINT_TRIGGER_RW 0x6 + +/* Address mode. */ +#define PPC_BREAKPOINT_MODE_EXACT 0x0 +#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1 +#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2 +#define PPC_BREAKPOINT_MODE_MASK 0x3 + +/* Condition mode. */ +#define PPC_BREAKPOINT_CONDITION_NONE 0x0 +#define PPC_BREAKPOINT_CONDITION_AND 0x1 +#define PPC_BREAKPOINT_CONDITION_EXACT 0x1 +#define PPC_BREAKPOINT_CONDITION_OR 0x2 +#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 +#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 +#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16 +#define PPC_BREAKPOINT_CONDITION_BE(n) \ + (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) +#endif /* PPC_PTRACE_GETHWDBGINFO */ + + + +/* Similarly for the general-purpose (gp0 -- gp31) + and floating-point registers (fp0 -- fp31). */ +#ifndef PTRACE_GETREGS +#define PTRACE_GETREGS 12 +#endif +#ifndef PTRACE_SETREGS +#define PTRACE_SETREGS 13 +#endif +#ifndef PTRACE_GETFPREGS +#define PTRACE_GETFPREGS 14 +#endif +#ifndef PTRACE_SETFPREGS +#define PTRACE_SETFPREGS 15 +#endif /* This oddity is because the Linux kernel defines elf_vrregset_t as an array of 33 16 bytes long elements. I.e. it leaves out vrsave. @@ -111,16 +227,50 @@ typedef char gdb_vrregset_t[SIZEOF_VRREGS]; +/* This is the layout of the POWER7 VSX registers and the way they overlap + with the existing FPR and VMX registers. + + VSR doubleword 0 VSR doubleword 1 + ---------------------------------------------------------------- + VSR[0] | FPR[0] | | + ---------------------------------------------------------------- + VSR[1] | FPR[1] | | + ---------------------------------------------------------------- + | ... | | + | ... | | + ---------------------------------------------------------------- + VSR[30] | FPR[30] | | + ---------------------------------------------------------------- + VSR[31] | FPR[31] | | + ---------------------------------------------------------------- + VSR[32] | VR[0] | + ---------------------------------------------------------------- + VSR[33] | VR[1] | + ---------------------------------------------------------------- + | ... | + | ... | + ---------------------------------------------------------------- + VSR[62] | VR[30] | + ---------------------------------------------------------------- + VSR[63] | VR[31] | + ---------------------------------------------------------------- + + VSX has 64 128bit registers. The first 32 registers overlap with + the FP registers (doubleword 0) and hence extend them with additional + 64 bits (doubleword 1). The other 32 regs overlap with the VMX + registers. */ +#define SIZEOF_VSXREGS 32*8 + +typedef char gdb_vsxregset_t[SIZEOF_VSXREGS]; /* On PPC processors that support the the Signal Processing Extension (SPE) APU, the general-purpose registers are 64 bits long. - However, the ordinary Linux kernel PTRACE_PEEKUSR / PTRACE_POKEUSR - / PT_READ_U / PT_WRITE_U ptrace calls only access the lower half of - each register, to allow them to behave the same way they do on - non-SPE systems. There's a separate pair of calls, - PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that read and write the top - halves of all the general-purpose registers at once, along with - some SPE-specific registers. + However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER + ptrace calls only access the lower half of each register, to allow + them to behave the same way they do on non-SPE systems. There's a + separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that + read and write the top halves of all the general-purpose registers + at once, along with some SPE-specific registers. GDB itself continues to claim the general-purpose registers are 32 bits long. It has unnamed raw registers that hold the upper halves @@ -137,6 +287,12 @@ struct gdb_evrregset_t unsigned long spefscr; }; +/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and + PTRACE_SETVSXREGS requests, for reading and writing the VSX + POWER7 registers 0 through 31. Zero if we've tried one of them and + gotten an error. Note that VSX registers 32 through 63 overlap + with VR registers 0 through 31. */ +int have_ptrace_getsetvsxregs = 1; /* Non-zero if our kernel may support the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests, for reading and writing the Altivec @@ -144,19 +300,23 @@ struct gdb_evrregset_t error. */ int have_ptrace_getvrregs = 1; - /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and PTRACE_SETEVRREGS requests, for reading and writing the SPE registers. Zero if we've tried one of them and gotten an error. */ int have_ptrace_getsetevrregs = 1; +/* Non-zero if our kernel may support the PTRACE_GETREGS and + PTRACE_SETREGS requests, for reading and writing the + general-purpose registers. Zero if we've tried one of + them and gotten an error. */ +int have_ptrace_getsetregs = 1; -int -kernel_u_size (void) -{ - return (sizeof (struct user)); -} +/* Non-zero if our kernel may support the PTRACE_GETFPREGS and + PTRACE_SETFPREGS requests, for reading and writing the + floating-pointers registers. Zero if we've tried one of + them and gotten an error. */ +int have_ptrace_getsetfpregs = 1; /* *INDENT-OFF* */ /* registers layout, as presented by the ptrace interface: @@ -172,13 +332,13 @@ PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ /* *INDENT_ON * */ static int -ppc_register_u_addr (int regno) +ppc_register_u_addr (struct gdbarch *gdbarch, int regno) { int u_addr = -1; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace interface, and not the wordsize of the program's ABI. */ - int wordsize = sizeof (PTRACE_XFER_TYPE); + int wordsize = sizeof (long); /* General purpose registers occupy 1 slot each in the buffer */ if (regno >= tdep->ppc_gp0_regnum @@ -194,7 +354,7 @@ ppc_register_u_addr (int regno) u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); /* UISA special purpose registers: 1 slot each */ - if (regno == PC_REGNUM) + if (regno == gdbarch_pc_regnum (gdbarch)) u_addr = PT_NIP * wordsize; if (regno == tdep->ppc_lr_regnum) u_addr = PT_LNK * wordsize; @@ -210,6 +370,10 @@ ppc_register_u_addr (int regno) #endif if (regno == tdep->ppc_ps_regnum) u_addr = PT_MSR * wordsize; + if (regno == PPC_ORIG_R3_REGNUM) + u_addr = PT_ORIG_R3 * wordsize; + if (regno == PPC_TRAP_REGNUM) + u_addr = PT_TRAP * wordsize; if (tdep->ppc_fpscr_regnum >= 0 && regno == tdep->ppc_fpscr_regnum) { @@ -217,28 +381,63 @@ ppc_register_u_addr (int regno) kernel headers incorrectly contained the 32-bit definition of PT_FPSCR. For the 32-bit definition, floating-point registers occupy two 32-bit "slots", and the FPSCR lives in - the secondhalf of such a slot-pair (hence +1). For 64-bit, + the second half of such a slot-pair (hence +1). For 64-bit, the FPSCR instead occupies the full 64-bit 2-word-slot and hence no adjustment is necessary. Hack around this. */ if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) u_addr = (48 + 32) * wordsize; + /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit + slot and not just its second word. The PT_FPSCR supplied when + GDB is compiled as a 32-bit app doesn't reflect this. */ + else if (wordsize == 4 && register_size (gdbarch, regno) == 8 + && PT_FPSCR == (48 + 2*32 + 1)) + u_addr = (48 + 2*32) * wordsize; else u_addr = PT_FPSCR * wordsize; } return u_addr; } +/* The Linux kernel ptrace interface for POWER7 VSX registers uses the + registers set mechanism, as opposed to the interface for all the + other registers, that stores/fetches each register individually. */ +static void +fetch_vsx_register (struct regcache *regcache, int tid, int regno) +{ + int ret; + gdb_vsxregset_t regs; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); + + ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); + if (ret < 0) + { + if (errno == EIO) + { + have_ptrace_getsetvsxregs = 0; + return; + } + perror_with_name (_("Unable to fetch VSX register")); + } + + regcache_raw_supply (regcache, regno, + regs + (regno - tdep->ppc_vsr0_upper_regnum) + * vsxregsize); +} + /* The Linux kernel ptrace interface for AltiVec registers uses the registers set mechanism, as opposed to the interface for all the other registers, that stores/fetches each register individually. */ static void -fetch_altivec_register (int tid, int regno) +fetch_altivec_register (struct regcache *regcache, int tid, int regno) { int ret; int offset = 0; gdb_vrregset_t regs; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum); + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); if (ret < 0) @@ -256,9 +455,9 @@ fetch_altivec_register (int tid, int regno) vector. VRSAVE is at the end of the array in a 4 bytes slot, so there is no need to define an offset for it. */ if (regno == (tdep->ppc_vrsave_regnum - 1)) - offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum); + offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); - regcache_raw_supply (current_regcache, regno, + regcache_raw_supply (regcache, regno, regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset); } @@ -297,17 +496,18 @@ get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) be the number of an upper half register, acc, spefscr, or -1 to supply the values of all registers. */ static void -fetch_spe_register (int tid, int regno) +fetch_spe_register (struct regcache *regcache, int tid, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct gdb_evrregset_t evrregs; gdb_assert (sizeof (evrregs.evr[0]) - == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum)); + == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); gdb_assert (sizeof (evrregs.acc) - == register_size (current_gdbarch, tdep->ppc_acc_regnum)); + == register_size (gdbarch, tdep->ppc_acc_regnum)); gdb_assert (sizeof (evrregs.spefscr) - == register_size (current_gdbarch, tdep->ppc_spefscr_regnum)); + == register_size (gdbarch, tdep->ppc_spefscr_regnum)); get_spe_registers (tid, &evrregs); @@ -316,35 +516,36 @@ fetch_spe_register (int tid, int regno) int i; for (i = 0; i < ppc_num_gprs; i++) - regcache_raw_supply (current_regcache, tdep->ppc_ev0_upper_regnum + i, + regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]); } else if (tdep->ppc_ev0_upper_regnum <= regno && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) - regcache_raw_supply (current_regcache, regno, + regcache_raw_supply (regcache, regno, &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); if (regno == -1 || regno == tdep->ppc_acc_regnum) - regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc); + regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc); if (regno == -1 || regno == tdep->ppc_spefscr_regnum) - regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum, + regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum, &evrregs.spefscr); } static void -fetch_register (int tid, int regno) +fetch_register (struct regcache *regcache, int tid, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* This isn't really an address. But ptrace thinks of it as one. */ - CORE_ADDR regaddr = ppc_register_u_addr (regno); + CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); int bytes_transferred; unsigned int offset; /* Offset of registers within the u area. */ char buf[MAX_REGISTER_SIZE]; - if (altivec_register_p (regno)) + if (altivec_register_p (gdbarch, regno)) { /* If this is the first time through, or if it is not the first time through, and we have comfirmed that there is kernel @@ -352,77 +553,100 @@ fetch_register (int tid, int regno) register. */ if (have_ptrace_getvrregs) { - fetch_altivec_register (tid, regno); + fetch_altivec_register (regcache, tid, regno); return; } /* If we have discovered that there is no ptrace support for AltiVec registers, fall through and return zeroes, because regaddr will be -1 in this case. */ } - else if (spe_register_p (regno)) + if (vsx_register_p (gdbarch, regno)) + { + if (have_ptrace_getsetvsxregs) + { + fetch_vsx_register (regcache, tid, regno); + return; + } + } + else if (spe_register_p (gdbarch, regno)) { - fetch_spe_register (tid, regno); + fetch_spe_register (regcache, tid, regno); return; } if (regaddr == -1) { - memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */ - regcache_raw_supply (current_regcache, regno, buf); + memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */ + regcache_raw_supply (regcache, regno, buf); return; } - /* Read the raw register using PTRACE_XFER_TYPE sized chunks. On a + /* Read the raw register using sizeof(long) sized chunks. On a 32-bit platform, 64-bit floating-point registers will require two transfers. */ for (bytes_transferred = 0; - bytes_transferred < register_size (current_gdbarch, regno); - bytes_transferred += sizeof (PTRACE_XFER_TYPE)) + bytes_transferred < register_size (gdbarch, regno); + bytes_transferred += sizeof (long)) { errno = 0; - *(PTRACE_XFER_TYPE *) & buf[bytes_transferred] - = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) regaddr, 0); - regaddr += sizeof (PTRACE_XFER_TYPE); + *(long *) &buf[bytes_transferred] + = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); + regaddr += sizeof (long); if (errno != 0) { char message[128]; sprintf (message, "reading register %s (#%d)", - REGISTER_NAME (regno), regno); + gdbarch_register_name (gdbarch, regno), regno); perror_with_name (message); } } /* Now supply the register. Keep in mind that the regcache's idea of the register's size may not be a multiple of sizeof - (PTRACE_XFER_TYPE). */ - if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE) + (long). */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) { /* Little-endian values are always found at the left end of the bytes transferred. */ - regcache_raw_supply (current_regcache, regno, buf); + regcache_raw_supply (regcache, regno, buf); } - else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) + else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) { /* Big-endian values are found at the right end of the bytes transferred. */ - size_t padding = (bytes_transferred - - register_size (current_gdbarch, regno)); - regcache_raw_supply (current_regcache, regno, buf + padding); + size_t padding = (bytes_transferred - register_size (gdbarch, regno)); + regcache_raw_supply (regcache, regno, buf + padding); } else internal_error (__FILE__, __LINE__, _("fetch_register: unexpected byte order: %d"), - gdbarch_byte_order (current_gdbarch)); + gdbarch_byte_order (gdbarch)); +} + +static void +supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) +{ + int i; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); + + for (i = 0; i < ppc_num_vshrs; i++) + { + regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i, + *vsxregsetp + i * vsxregsize); + } } static void -supply_vrregset (gdb_vrregset_t *vrregsetp) +supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp) { int i; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; - int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum); - int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum); + int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); + int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); for (i = 0; i < num_of_vrregs; i++) { @@ -431,16 +655,35 @@ supply_vrregset (gdb_vrregset_t *vrregsetp) occupies a whole vector, while VRSAVE occupies a full 4 bytes slot. */ if (i == (num_of_vrregs - 2)) - regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i, + regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize + offset); else - regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i, + regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize); } } static void -fetch_altivec_registers (int tid) +fetch_vsx_registers (struct regcache *regcache, int tid) +{ + int ret; + gdb_vsxregset_t regs; + + ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); + if (ret < 0) + { + if (errno == EIO) + { + have_ptrace_getsetvsxregs = 0; + return; + } + perror_with_name (_("Unable to fetch VSX registers")); + } + supply_vsxregset (regcache, ®s); +} + +static void +fetch_altivec_registers (struct regcache *regcache, int tid) { int ret; gdb_vrregset_t regs; @@ -455,47 +698,161 @@ fetch_altivec_registers (int tid) } perror_with_name (_("Unable to fetch AltiVec registers")); } - supply_vrregset (®s); + supply_vrregset (regcache, ®s); } -static void -fetch_ppc_registers (int tid) +/* This function actually issues the request to ptrace, telling + it to get all general-purpose registers and put them into the + specified regset. + + If the ptrace request does not exist, this function returns 0 + and properly sets the have_ptrace_* flag. If the request fails, + this function calls perror_with_name. Otherwise, if the request + succeeds, then the regcache gets filled and 1 is returned. */ +static int +fetch_all_gp_regs (struct regcache *regcache, int tid) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + gdb_gregset_t gregset; + + if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) + { + if (errno == EIO) + { + have_ptrace_getsetregs = 0; + return 0; + } + perror_with_name (_("Couldn't get general-purpose registers.")); + } + + supply_gregset (regcache, (const gdb_gregset_t *) &gregset); + + return 1; +} + +/* This is a wrapper for the fetch_all_gp_regs function. It is + responsible for verifying if this target has the ptrace request + that can be used to fetch all general-purpose registers at one + shot. If it doesn't, then we should fetch them using the + old-fashioned way, which is to iterate over the registers and + request them one by one. */ +static void +fetch_gp_regs (struct regcache *regcache, int tid) { + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); int i; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + if (have_ptrace_getsetregs) + if (fetch_all_gp_regs (regcache, tid)) + return; + + /* If we've hit this point, it doesn't really matter which + architecture we are using. We just need to read the + registers in the "old-fashioned way". */ for (i = 0; i < ppc_num_gprs; i++) - fetch_register (tid, tdep->ppc_gp0_regnum + i); + fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); +} + +/* This function actually issues the request to ptrace, telling + it to get all floating-point registers and put them into the + specified regset. + + If the ptrace request does not exist, this function returns 0 + and properly sets the have_ptrace_* flag. If the request fails, + this function calls perror_with_name. Otherwise, if the request + succeeds, then the regcache gets filled and 1 is returned. */ +static int +fetch_all_fp_regs (struct regcache *regcache, int tid) +{ + gdb_fpregset_t fpregs; + + if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) + { + if (errno == EIO) + { + have_ptrace_getsetfpregs = 0; + return 0; + } + perror_with_name (_("Couldn't get floating-point registers.")); + } + + supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); + + return 1; +} + +/* This is a wrapper for the fetch_all_fp_regs function. It is + responsible for verifying if this target has the ptrace request + that can be used to fetch all floating-point registers at one + shot. If it doesn't, then we should fetch them using the + old-fashioned way, which is to iterate over the registers and + request them one by one. */ +static void +fetch_fp_regs (struct regcache *regcache, int tid) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int i; + + if (have_ptrace_getsetfpregs) + if (fetch_all_fp_regs (regcache, tid)) + return; + + /* If we've hit this point, it doesn't really matter which + architecture we are using. We just need to read the + registers in the "old-fashioned way". */ + for (i = 0; i < ppc_num_fprs; i++) + fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); +} + +static void +fetch_ppc_registers (struct regcache *regcache, int tid) +{ + int i; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + fetch_gp_regs (regcache, tid); if (tdep->ppc_fp0_regnum >= 0) - for (i = 0; i < ppc_num_fprs; i++) - fetch_register (tid, tdep->ppc_fp0_regnum + i); - fetch_register (tid, PC_REGNUM); + fetch_fp_regs (regcache, tid); + fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); if (tdep->ppc_ps_regnum != -1) - fetch_register (tid, tdep->ppc_ps_regnum); + fetch_register (regcache, tid, tdep->ppc_ps_regnum); if (tdep->ppc_cr_regnum != -1) - fetch_register (tid, tdep->ppc_cr_regnum); + fetch_register (regcache, tid, tdep->ppc_cr_regnum); if (tdep->ppc_lr_regnum != -1) - fetch_register (tid, tdep->ppc_lr_regnum); + fetch_register (regcache, tid, tdep->ppc_lr_regnum); if (tdep->ppc_ctr_regnum != -1) - fetch_register (tid, tdep->ppc_ctr_regnum); + fetch_register (regcache, tid, tdep->ppc_ctr_regnum); if (tdep->ppc_xer_regnum != -1) - fetch_register (tid, tdep->ppc_xer_regnum); + fetch_register (regcache, tid, tdep->ppc_xer_regnum); if (tdep->ppc_mq_regnum != -1) - fetch_register (tid, tdep->ppc_mq_regnum); + fetch_register (regcache, tid, tdep->ppc_mq_regnum); + if (ppc_linux_trap_reg_p (gdbarch)) + { + fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); + fetch_register (regcache, tid, PPC_TRAP_REGNUM); + } if (tdep->ppc_fpscr_regnum != -1) - fetch_register (tid, tdep->ppc_fpscr_regnum); + fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); if (have_ptrace_getvrregs) if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) - fetch_altivec_registers (tid); + fetch_altivec_registers (regcache, tid); + if (have_ptrace_getsetvsxregs) + if (tdep->ppc_vsr0_upper_regnum != -1) + fetch_vsx_registers (regcache, tid); if (tdep->ppc_ev0_upper_regnum >= 0) - fetch_spe_register (tid, -1); + fetch_spe_register (regcache, tid, -1); } /* Fetch registers from the child process. Fetch all registers if regno == -1, otherwise fetch all general registers or all floating point registers depending upon the value of regno. */ -void -fetch_inferior_registers (int regno) +static void +ppc_linux_fetch_inferior_registers (struct target_ops *ops, + struct regcache *regcache, int regno) { /* Overload thread id onto process id */ int tid = TIDGET (inferior_ptid); @@ -505,20 +862,50 @@ fetch_inferior_registers (int regno) tid = PIDGET (inferior_ptid); if (regno == -1) - fetch_ppc_registers (tid); + fetch_ppc_registers (regcache, tid); else - fetch_register (tid, regno); + fetch_register (regcache, tid, regno); +} + +/* Store one VSX register. */ +static void +store_vsx_register (const struct regcache *regcache, int tid, int regno) +{ + int ret; + gdb_vsxregset_t regs; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); + + ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); + if (ret < 0) + { + if (errno == EIO) + { + have_ptrace_getsetvsxregs = 0; + return; + } + perror_with_name (_("Unable to fetch VSX register")); + } + + regcache_raw_collect (regcache, regno, regs + + (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize); + + ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); + if (ret < 0) + perror_with_name (_("Unable to store VSX register")); } /* Store one register. */ static void -store_altivec_register (int tid, int regno) +store_altivec_register (const struct regcache *regcache, int tid, int regno) { int ret; int offset = 0; gdb_vrregset_t regs; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum); + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); if (ret < 0) @@ -534,9 +921,9 @@ store_altivec_register (int tid, int regno) /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes long on the hardware. */ if (regno == (tdep->ppc_vrsave_regnum - 1)) - offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum); + offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); - regcache_raw_collect (current_regcache, regno, + regcache_raw_collect (regcache, regno, regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset); ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); @@ -577,17 +964,18 @@ set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) If REGNO is -1, write the values of all the SPE-specific registers. */ static void -store_spe_register (int tid, int regno) +store_spe_register (const struct regcache *regcache, int tid, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct gdb_evrregset_t evrregs; gdb_assert (sizeof (evrregs.evr[0]) - == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum)); + == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); gdb_assert (sizeof (evrregs.acc) - == register_size (current_gdbarch, tdep->ppc_acc_regnum)); + == register_size (gdbarch, tdep->ppc_acc_regnum)); gdb_assert (sizeof (evrregs.spefscr) - == register_size (current_gdbarch, tdep->ppc_spefscr_regnum)); + == register_size (gdbarch, tdep->ppc_spefscr_regnum)); if (regno == -1) /* Since we're going to write out every register, the code below @@ -605,24 +993,24 @@ store_spe_register (int tid, int regno) int i; for (i = 0; i < ppc_num_gprs; i++) - regcache_raw_collect (current_regcache, + regcache_raw_collect (regcache, tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]); } else if (tdep->ppc_ev0_upper_regnum <= regno && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) - regcache_raw_collect (current_regcache, regno, + regcache_raw_collect (regcache, regno, &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); if (regno == -1 || regno == tdep->ppc_acc_regnum) - regcache_raw_collect (current_regcache, + regcache_raw_collect (regcache, tdep->ppc_acc_regnum, &evrregs.acc); if (regno == -1 || regno == tdep->ppc_spefscr_regnum) - regcache_raw_collect (current_regcache, + regcache_raw_collect (regcache, tdep->ppc_spefscr_regnum, &evrregs.spefscr); @@ -631,23 +1019,29 @@ store_spe_register (int tid, int regno) } static void -store_register (int tid, int regno) +store_register (const struct regcache *regcache, int tid, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* This isn't really an address. But ptrace thinks of it as one. */ - CORE_ADDR regaddr = ppc_register_u_addr (regno); + CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); int i; size_t bytes_to_transfer; char buf[MAX_REGISTER_SIZE]; - if (altivec_register_p (regno)) + if (altivec_register_p (gdbarch, regno)) + { + store_altivec_register (regcache, tid, regno); + return; + } + if (vsx_register_p (gdbarch, regno)) { - store_altivec_register (tid, regno); + store_vsx_register (regcache, tid, regno); return; } - else if (spe_register_p (regno)) + else if (spe_register_p (gdbarch, regno)) { - store_spe_register (tid, regno); + store_spe_register (regcache, tid, regno); return; } @@ -656,34 +1050,35 @@ store_register (int tid, int regno) /* First collect the register. Keep in mind that the regcache's idea of the register's size may not be a multiple of sizeof - (PTRACE_XFER_TYPE). */ + (long). */ memset (buf, 0, sizeof buf); - bytes_to_transfer = align_up (register_size (current_gdbarch, regno), - sizeof (PTRACE_XFER_TYPE)); - if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE) + bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) { /* Little-endian values always sit at the left end of the buffer. */ - regcache_raw_collect (current_regcache, regno, buf); + regcache_raw_collect (regcache, regno, buf); } - else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) { /* Big-endian values sit at the right end of the buffer. */ - size_t padding = (bytes_to_transfer - - register_size (current_gdbarch, regno)); - regcache_raw_collect (current_regcache, regno, buf + padding); + size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); + regcache_raw_collect (regcache, regno, buf + padding); } - for (i = 0; i < bytes_to_transfer; i += sizeof (PTRACE_XFER_TYPE)) + for (i = 0; i < bytes_to_transfer; i += sizeof (long)) { errno = 0; - ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr, - *(PTRACE_XFER_TYPE *) & buf[i]); - regaddr += sizeof (PTRACE_XFER_TYPE); + ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, + *(long *) &buf[i]); + regaddr += sizeof (long); if (errno == EIO - && regno == tdep->ppc_fpscr_regnum) + && (regno == tdep->ppc_fpscr_regnum + || regno == PPC_ORIG_R3_REGNUM + || regno == PPC_TRAP_REGNUM)) { - /* Some older kernel versions don't allow fpscr to be written. */ + /* Some older kernel versions don't allow fpscr, orig_r3 + or trap to be written. */ continue; } @@ -691,36 +1086,73 @@ store_register (int tid, int regno) { char message[128]; sprintf (message, "writing register %s (#%d)", - REGISTER_NAME (regno), regno); + gdbarch_register_name (gdbarch, regno), regno); perror_with_name (message); } } } static void -fill_vrregset (gdb_vrregset_t *vrregsetp) +fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) +{ + int i; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); + + for (i = 0; i < ppc_num_vshrs; i++) + regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i, + *vsxregsetp + i * vsxregsize); +} + +static void +fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp) { int i; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; - int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum); - int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum); + int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); + int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); for (i = 0; i < num_of_vrregs; i++) { /* The last 2 registers of this set are only 32 bit long, not 128, but only VSCR is fetched as a 16 bytes quantity. */ if (i == (num_of_vrregs - 2)) - regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i, + regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize + offset); else - regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i, + regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize); } } static void -store_altivec_registers (int tid) +store_vsx_registers (const struct regcache *regcache, int tid) +{ + int ret; + gdb_vsxregset_t regs; + + ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); + if (ret < 0) + { + if (errno == EIO) + { + have_ptrace_getsetvsxregs = 0; + return; + } + perror_with_name (_("Couldn't get VSX registers")); + } + + fill_vsxregset (regcache, ®s); + + if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0) + perror_with_name (_("Couldn't write VSX registers")); +} + +static void +store_altivec_registers (const struct regcache *regcache, int tid) { int ret; gdb_vrregset_t regs; @@ -736,150 +1168,1198 @@ store_altivec_registers (int tid) perror_with_name (_("Couldn't get AltiVec registers")); } - fill_vrregset (®s); + fill_vrregset (regcache, ®s); if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0) perror_with_name (_("Couldn't write AltiVec registers")); } +/* This function actually issues the request to ptrace, telling + it to store all general-purpose registers present in the specified + regset. + + If the ptrace request does not exist, this function returns 0 + and properly sets the have_ptrace_* flag. If the request fails, + this function calls perror_with_name. Otherwise, if the request + succeeds, then the regcache is stored and 1 is returned. */ +static int +store_all_gp_regs (const struct regcache *regcache, int tid, int regno) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + gdb_gregset_t gregset; + + if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) + { + if (errno == EIO) + { + have_ptrace_getsetregs = 0; + return 0; + } + perror_with_name (_("Couldn't get general-purpose registers.")); + } + + fill_gregset (regcache, &gregset, regno); + + if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) + { + if (errno == EIO) + { + have_ptrace_getsetregs = 0; + return 0; + } + perror_with_name (_("Couldn't set general-purpose registers.")); + } + + return 1; +} + +/* This is a wrapper for the store_all_gp_regs function. It is + responsible for verifying if this target has the ptrace request + that can be used to store all general-purpose registers at one + shot. If it doesn't, then we should store them using the + old-fashioned way, which is to iterate over the registers and + store them one by one. */ static void -store_ppc_registers (int tid) +store_gp_regs (const struct regcache *regcache, int tid, int regno) { + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); int i; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - + + if (have_ptrace_getsetregs) + if (store_all_gp_regs (regcache, tid, regno)) + return; + + /* If we hit this point, it doesn't really matter which + architecture we are using. We just need to store the + registers in the "old-fashioned way". */ for (i = 0; i < ppc_num_gprs; i++) - store_register (tid, tdep->ppc_gp0_regnum + i); + store_register (regcache, tid, tdep->ppc_gp0_regnum + i); +} + +/* This function actually issues the request to ptrace, telling + it to store all floating-point registers present in the specified + regset. + + If the ptrace request does not exist, this function returns 0 + and properly sets the have_ptrace_* flag. If the request fails, + this function calls perror_with_name. Otherwise, if the request + succeeds, then the regcache is stored and 1 is returned. */ +static int +store_all_fp_regs (const struct regcache *regcache, int tid, int regno) +{ + gdb_fpregset_t fpregs; + + if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) + { + if (errno == EIO) + { + have_ptrace_getsetfpregs = 0; + return 0; + } + perror_with_name (_("Couldn't get floating-point registers.")); + } + + fill_fpregset (regcache, &fpregs, regno); + + if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) + { + if (errno == EIO) + { + have_ptrace_getsetfpregs = 0; + return 0; + } + perror_with_name (_("Couldn't set floating-point registers.")); + } + + return 1; +} + +/* This is a wrapper for the store_all_fp_regs function. It is + responsible for verifying if this target has the ptrace request + that can be used to store all floating-point registers at one + shot. If it doesn't, then we should store them using the + old-fashioned way, which is to iterate over the registers and + store them one by one. */ +static void +store_fp_regs (const struct regcache *regcache, int tid, int regno) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int i; + + if (have_ptrace_getsetfpregs) + if (store_all_fp_regs (regcache, tid, regno)) + return; + + /* If we hit this point, it doesn't really matter which + architecture we are using. We just need to store the + registers in the "old-fashioned way". */ + for (i = 0; i < ppc_num_fprs; i++) + store_register (regcache, tid, tdep->ppc_fp0_regnum + i); +} + +static void +store_ppc_registers (const struct regcache *regcache, int tid) +{ + int i; + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + store_gp_regs (regcache, tid, -1); if (tdep->ppc_fp0_regnum >= 0) - for (i = 0; i < ppc_num_fprs; i++) - store_register (tid, tdep->ppc_fp0_regnum + i); - store_register (tid, PC_REGNUM); + store_fp_regs (regcache, tid, -1); + store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); if (tdep->ppc_ps_regnum != -1) - store_register (tid, tdep->ppc_ps_regnum); + store_register (regcache, tid, tdep->ppc_ps_regnum); if (tdep->ppc_cr_regnum != -1) - store_register (tid, tdep->ppc_cr_regnum); + store_register (regcache, tid, tdep->ppc_cr_regnum); if (tdep->ppc_lr_regnum != -1) - store_register (tid, tdep->ppc_lr_regnum); + store_register (regcache, tid, tdep->ppc_lr_regnum); if (tdep->ppc_ctr_regnum != -1) - store_register (tid, tdep->ppc_ctr_regnum); + store_register (regcache, tid, tdep->ppc_ctr_regnum); if (tdep->ppc_xer_regnum != -1) - store_register (tid, tdep->ppc_xer_regnum); + store_register (regcache, tid, tdep->ppc_xer_regnum); if (tdep->ppc_mq_regnum != -1) - store_register (tid, tdep->ppc_mq_regnum); + store_register (regcache, tid, tdep->ppc_mq_regnum); if (tdep->ppc_fpscr_regnum != -1) - store_register (tid, tdep->ppc_fpscr_regnum); + store_register (regcache, tid, tdep->ppc_fpscr_regnum); + if (ppc_linux_trap_reg_p (gdbarch)) + { + store_register (regcache, tid, PPC_ORIG_R3_REGNUM); + store_register (regcache, tid, PPC_TRAP_REGNUM); + } if (have_ptrace_getvrregs) if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) - store_altivec_registers (tid); + store_altivec_registers (regcache, tid); + if (have_ptrace_getsetvsxregs) + if (tdep->ppc_vsr0_upper_regnum != -1) + store_vsx_registers (regcache, tid); if (tdep->ppc_ev0_upper_regnum >= 0) - store_spe_register (tid, -1); + store_spe_register (regcache, tid, -1); } -void -store_inferior_registers (int regno) +/* Fetch the AT_HWCAP entry from the aux vector. */ +unsigned long ppc_linux_get_hwcap (void) { - /* Overload thread id onto process id */ - int tid = TIDGET (inferior_ptid); + CORE_ADDR field; - /* No thread id, just use process id */ - if (tid == 0) - tid = PIDGET (inferior_ptid); + if (target_auxv_search (¤t_target, AT_HWCAP, &field)) + return (unsigned long) field; - if (regno >= 0) - store_register (tid, regno); - else - store_ppc_registers (tid); + return 0; } -void -supply_gregset (gdb_gregset_t *gregsetp) -{ - /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace - interface, and not the wordsize of the program's ABI. */ - int wordsize = sizeof (PTRACE_XFER_TYPE); - ppc_linux_supply_gregset (current_regcache, -1, gregsetp, - sizeof (gdb_gregset_t), wordsize); -} +/* The cached DABR value, to install in new threads. + This variable is used when we are dealing with non-BookE + processors. */ +static long saved_dabr_value; -static void -right_fill_reg (int regnum, void *reg) +/* Global structure that will store information about the available + features on this BookE processor. */ +static struct ppc_debug_info booke_debug_info; + +/* Global variable that holds the maximum number of slots that the + kernel will use. This is only used when the processor is BookE. */ +static size_t max_slots_number = 0; + +struct hw_break_tuple { - /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace - interface, and not the wordsize of the program's ABI. */ - int wordsize = sizeof (PTRACE_XFER_TYPE); - /* Right fill the register. */ - regcache_raw_collect (current_regcache, regnum, - ((bfd_byte *) reg - + wordsize - - register_size (current_gdbarch, regnum))); -} + long slot; + struct ppc_hw_breakpoint *hw_break; +}; -void -fill_gregset (gdb_gregset_t *gregsetp, int regno) +/* This is an internal VEC created to store information about *points inserted + for each thread. This is used for BookE processors. */ +typedef struct thread_points + { + /* The TID to which this *point relates. */ + int tid; + /* Information about the *point, such as its address, type, etc. + + Each element inside this vector corresponds to a hardware + breakpoint or watchpoint in the thread represented by TID. The maximum + size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of + the tuple is NULL, then the position in the vector is free. */ + struct hw_break_tuple *hw_breaks; + } *thread_points_p; +DEF_VEC_P (thread_points_p); + +VEC(thread_points_p) *ppc_threads = NULL; + +/* The version of the kernel interface that we will use if the processor is + BookE. */ +#define PPC_DEBUG_CURRENT_VERSION 1 + +/* Returns non-zero if we support the ptrace interface which enables + booke debugging resources. */ +static int +have_ptrace_booke_interface (void) { - int regi; - elf_greg_t *regp = (elf_greg_t *) gregsetp; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - const int elf_ngreg = 48; + static int have_ptrace_booke_interface = -1; + if (have_ptrace_booke_interface == -1) + { + int tid; - /* Start with zeros. */ - memset (regp, 0, elf_ngreg * sizeof (*regp)); + tid = TIDGET (inferior_ptid); + if (tid == 0) + tid = PIDGET (inferior_ptid); - for (regi = 0; regi < ppc_num_gprs; regi++) - { - if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi) - right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi)); + /* Check for kernel support for BOOKE debug registers. */ + if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0) + { + have_ptrace_booke_interface = 1; + max_slots_number = booke_debug_info.num_instruction_bps + + booke_debug_info.num_data_bps + booke_debug_info.num_condition_regs; + } + else + { + /* Old school interface and no BOOKE debug registers support. */ + have_ptrace_booke_interface = 0; + memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info)); + } } - if ((regno == -1) || regno == PC_REGNUM) - right_fill_reg (PC_REGNUM, regp + PT_NIP); - if ((regno == -1) || regno == tdep->ppc_lr_regnum) - right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK); - if ((regno == -1) || regno == tdep->ppc_cr_regnum) - regcache_raw_collect (current_regcache, tdep->ppc_cr_regnum, - regp + PT_CCR); - if ((regno == -1) || regno == tdep->ppc_xer_regnum) - regcache_raw_collect (current_regcache, tdep->ppc_xer_regnum, - regp + PT_XER); - if ((regno == -1) || regno == tdep->ppc_ctr_regnum) - right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR); -#ifdef PT_MQ - if (((regno == -1) || regno == tdep->ppc_mq_regnum) - && (tdep->ppc_mq_regnum != -1)) - right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ); -#endif - if ((regno == -1) || regno == tdep->ppc_ps_regnum) - right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR); + return have_ptrace_booke_interface; } -void -supply_fpregset (gdb_fpregset_t * fpregsetp) +static int +ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot) { - ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp, - sizeof (gdb_fpregset_t)); -} + int total_hw_wp, total_hw_bp; -/* Given a pointer to a floating point register set in /proc format - (fpregset_t *), update the register specified by REGNO from gdb's - idea of the current floating point register set. If REGNO is -1, - update them all. */ -void -fill_fpregset (gdb_fpregset_t *fpregsetp, int regno) -{ - int regi; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - bfd_byte *fpp = (void *) fpregsetp; - - if (ppc_floating_point_unit_p (current_gdbarch)) + if (have_ptrace_booke_interface ()) { - for (regi = 0; regi < ppc_num_fprs; regi++) - { - if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi)) - regcache_raw_collect (current_regcache, tdep->ppc_fp0_regnum + regi, - fpp + 8 * regi); - } - if (regno == -1 || regno == tdep->ppc_fpscr_regnum) - right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32)); + /* For PPC BookE processors, the number of available hardware + watchpoints and breakpoints is stored at the booke_debug_info + struct. */ + total_hw_bp = booke_debug_info.num_instruction_bps; + total_hw_wp = booke_debug_info.num_data_bps; + } + else + { + /* For PPC server processors, we accept 1 hardware watchpoint and 0 + hardware breakpoints. */ + total_hw_bp = 0; + total_hw_wp = 1; } + + if (type == bp_hardware_watchpoint || type == bp_read_watchpoint + || type == bp_access_watchpoint || type == bp_watchpoint) + { + if (cnt > total_hw_wp) + return -1; + } + else if (type == bp_hardware_breakpoint) + { + if (cnt > total_hw_bp) + return -1; + } + + if (!have_ptrace_booke_interface ()) + { + int tid; + ptid_t ptid = inferior_ptid; + + /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether + the target has DABR. If either answer is no, the ptrace call will + return -1. Fail in that case. */ + tid = TIDGET (ptid); + if (tid == 0) + tid = PIDGET (ptid); + + if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1) + return 0; + } + + return 1; +} + +static int +ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) +{ + /* Handle sub-8-byte quantities. */ + if (len <= 0) + return 0; + + /* The new BookE ptrace interface tells if there are alignment restrictions + for watchpoints in the processors. In that case, we use that information + to determine the hardcoded watchable region for watchpoints. */ + if (have_ptrace_booke_interface ()) + { + if (booke_debug_info.data_bp_alignment + && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1)) + + booke_debug_info.data_bp_alignment)) + return 0; + } + /* addr+len must fall in the 8 byte watchable region for DABR-based + processors (i.e., server processors). Without the new BookE ptrace + interface, DAC-based processors (i.e., embedded processors) will use + addresses aligned to 4-bytes due to the way the read/write flags are + passed in the old ptrace interface. */ + else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) + && (addr + len) > (addr & ~3) + 4) + || (addr + len) > (addr & ~7) + 8) + return 0; + + return 1; +} + +/* This function compares two ppc_hw_breakpoint structs field-by-field. */ +static int +booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b) +{ + return (a->trigger_type == b->trigger_type + && a->addr_mode == b->addr_mode + && a->condition_mode == b->condition_mode + && a->addr == b->addr + && a->addr2 == b->addr2 + && a->condition_value == b->condition_value); +} + +/* This function can be used to retrieve a thread_points by the TID of the + related process/thread. If nothing has been found, and ALLOC_NEW is 0, + it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the + provided TID will be created and returned. */ +static struct thread_points * +booke_find_thread_points_by_tid (int tid, int alloc_new) +{ + int i; + struct thread_points *t; + + for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++) + if (t->tid == tid) + return t; + + t = NULL; + + /* Do we need to allocate a new point_item + if the wanted one does not exist? */ + if (alloc_new) + { + t = xmalloc (sizeof (struct thread_points)); + t->hw_breaks = xzalloc (max_slots_number * sizeof (struct hw_break_tuple)); + t->tid = tid; + VEC_safe_push (thread_points_p, ppc_threads, t); + } + + return t; +} + +/* This function is a generic wrapper that is responsible for inserting a + *point (i.e., calling `ptrace' in order to issue the request to the + kernel) and registering it internally in GDB. */ +static void +booke_insert_point (struct ppc_hw_breakpoint *b, int tid) +{ + int i; + long slot; + struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint)); + struct hw_break_tuple *hw_breaks; + struct cleanup *c = make_cleanup (xfree, p); + struct thread_points *t; + struct hw_break_tuple *tuple; + + memcpy (p, b, sizeof (struct ppc_hw_breakpoint)); + + errno = 0; + slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p); + if (slot < 0) + perror_with_name (_("Unexpected error setting breakpoint or watchpoint")); + + /* Everything went fine, so we have to register this *point. */ + t = booke_find_thread_points_by_tid (tid, 1); + gdb_assert (t != NULL); + hw_breaks = t->hw_breaks; + + /* Find a free element in the hw_breaks vector. */ + for (i = 0; i < max_slots_number; i++) + if (hw_breaks[i].hw_break == NULL) + { + hw_breaks[i].slot = slot; + hw_breaks[i].hw_break = p; + break; + } + + gdb_assert (i != max_slots_number); + + discard_cleanups (c); +} + +/* This function is a generic wrapper that is responsible for removing a + *point (i.e., calling `ptrace' in order to issue the request to the + kernel), and unregistering it internally at GDB. */ +static void +booke_remove_point (struct ppc_hw_breakpoint *b, int tid) +{ + int i; + struct hw_break_tuple *hw_breaks; + struct thread_points *t; + + t = booke_find_thread_points_by_tid (tid, 0); + gdb_assert (t != NULL); + hw_breaks = t->hw_breaks; + + for (i = 0; i < max_slots_number; i++) + if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b)) + break; + + gdb_assert (i != max_slots_number); + + /* We have to ignore ENOENT errors because the kernel implements hardware + breakpoints/watchpoints as "one-shot", that is, they are automatically + deleted when hit. */ + errno = 0; + if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0) + if (errno != ENOENT) + perror_with_name (_("Unexpected error deleting breakpoint or watchpoint")); + + xfree (hw_breaks[i].hw_break); + hw_breaks[i].hw_break = NULL; +} + +static int +ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch, + struct bp_target_info *bp_tgt) +{ + ptid_t ptid; + struct lwp_info *lp; + struct ppc_hw_breakpoint p; + + if (!have_ptrace_booke_interface ()) + return -1; + + p.version = PPC_DEBUG_CURRENT_VERSION; + p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; + p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; + p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; + p.addr = (uint64_t) bp_tgt->placed_address; + p.addr2 = 0; + p.condition_value = 0; + + ALL_LWPS (lp, ptid) + booke_insert_point (&p, TIDGET (ptid)); + + return 0; +} + +static int +ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch, + struct bp_target_info *bp_tgt) +{ + ptid_t ptid; + struct lwp_info *lp; + struct ppc_hw_breakpoint p; + + if (!have_ptrace_booke_interface ()) + return -1; + + p.version = PPC_DEBUG_CURRENT_VERSION; + p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; + p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; + p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; + p.addr = (uint64_t) bp_tgt->placed_address; + p.addr2 = 0; + p.condition_value = 0; + + ALL_LWPS (lp, ptid) + booke_remove_point (&p, TIDGET (ptid)); + + return 0; +} + +static int +get_trigger_type (int rw) +{ + int t; + + if (rw == hw_read) + t = PPC_BREAKPOINT_TRIGGER_READ; + else if (rw == hw_write) + t = PPC_BREAKPOINT_TRIGGER_WRITE; + else + t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; + + return t; +} + +/* Check whether we have at least one free DVC register. */ +static int +can_use_watchpoint_cond_accel (void) +{ + struct thread_points *p; + int tid = TIDGET (inferior_ptid); + int cnt = booke_debug_info.num_condition_regs, i; + CORE_ADDR tmp_value; + + if (!have_ptrace_booke_interface () || cnt == 0) + return 0; + + p = booke_find_thread_points_by_tid (tid, 0); + + if (p) + { + for (i = 0; i < max_slots_number; i++) + if (p->hw_breaks[i].hw_break != NULL + && (p->hw_breaks[i].hw_break->condition_mode + != PPC_BREAKPOINT_CONDITION_NONE)) + cnt--; + + /* There are no available slots now. */ + if (cnt <= 0) + return 0; + } + + return 1; +} + +/* Calculate the enable bits and the contents of the Data Value Compare + debug register present in BookE processors. + + ADDR is the address to be watched, LEN is the length of watched data + and DATA_VALUE is the value which will trigger the watchpoint. + On exit, CONDITION_MODE will hold the enable bits for the DVC, and + CONDITION_VALUE will hold the value which should be put in the + DVC register. */ +static void +calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value, + uint32_t *condition_mode, uint64_t *condition_value) +{ + int i, num_byte_enable, align_offset, num_bytes_off_dvc, + rightmost_enabled_byte; + CORE_ADDR addr_end_data, addr_end_dvc; + + /* The DVC register compares bytes within fixed-length windows which + are word-aligned, with length equal to that of the DVC register. + We need to calculate where our watch region is relative to that + window and enable comparison of the bytes which fall within it. */ + + align_offset = addr % booke_debug_info.sizeof_condition; + addr_end_data = addr + len; + addr_end_dvc = (addr - align_offset + + booke_debug_info.sizeof_condition); + num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? + addr_end_data - addr_end_dvc : 0; + num_byte_enable = len - num_bytes_off_dvc; + /* Here, bytes are numbered from right to left. */ + rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? + addr_end_dvc - addr_end_data : 0; + + *condition_mode = PPC_BREAKPOINT_CONDITION_AND; + for (i = 0; i < num_byte_enable; i++) + *condition_mode |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); + + /* Now we need to match the position within the DVC of the comparison + value with where the watch region is relative to the window + (i.e., the ALIGN_OFFSET). */ + + *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 + << rightmost_enabled_byte * 8); +} + +/* Return the number of memory locations that need to be accessed to + evaluate the expression which generated the given value chain. + Returns -1 if there's any register access involved, or if there are + other kinds of values which are not acceptable in a condition + expression (e.g., lval_computed or lval_internalvar). */ +static int +num_memory_accesses (struct value *v) +{ + int found_memory_cnt = 0; + struct value *head = v; + + /* The idea here is that evaluating an expression generates a series + of values, one holding the value of every subexpression. (The + expression a*b+c has five subexpressions: a, b, a*b, c, and + a*b+c.) GDB's values hold almost enough information to establish + the criteria given above --- they identify memory lvalues, + register lvalues, computed values, etcetera. So we can evaluate + the expression, and then scan the chain of values that leaves + behind to determine the memory locations involved in the evaluation + of an expression. + + However, I don't think that the values returned by inferior + function calls are special in any way. So this function may not + notice that an expression contains an inferior function call. + FIXME. */ + + for (; v; v = value_next (v)) + { + /* Constants and values from the history are fine. */ + if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0) + continue; + else if (VALUE_LVAL (v) == lval_memory) + { + /* A lazy memory lvalue is one that GDB never needed to fetch; + we either just used its address (e.g., `a' in `a.b') or + we never needed it at all (e.g., `a' in `a,b'). */ + if (!value_lazy (v)) + found_memory_cnt++; + } + /* Other kinds of values are not fine. */ + else + return -1; + } + + return found_memory_cnt; +} + +/* Verifies whether the expression COND can be implemented using the + DVC (Data Value Compare) register in BookE processors. The expression + must test the watch value for equality with a constant expression. + If the function returns 1, DATA_VALUE will contain the constant against + which the watch value should be compared. */ +static int +check_condition (CORE_ADDR watch_addr, struct expression *cond, + CORE_ADDR *data_value) +{ + int pc = 1, num_accesses_left, num_accesses_right; + struct value *left_val, *right_val, *left_chain, *right_chain; + + if (cond->elts[0].opcode != BINOP_EQUAL) + return 0; + + fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain); + num_accesses_left = num_memory_accesses (left_chain); + + if (left_val == NULL || num_accesses_left < 0) + { + free_value_chain (left_chain); + + return 0; + } + + fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain); + num_accesses_right = num_memory_accesses (right_chain); + + if (right_val == NULL || num_accesses_right < 0) + { + free_value_chain (left_chain); + free_value_chain (right_chain); + + return 0; + } + + if (num_accesses_left == 1 && num_accesses_right == 0 + && VALUE_LVAL (left_val) == lval_memory + && value_address (left_val) == watch_addr) + *data_value = value_as_long (right_val); + else if (num_accesses_left == 0 && num_accesses_right == 1 + && VALUE_LVAL (right_val) == lval_memory + && value_address (right_val) == watch_addr) + *data_value = value_as_long (left_val); + else + { + free_value_chain (left_chain); + free_value_chain (right_chain); + + return 0; + } + + free_value_chain (left_chain); + free_value_chain (right_chain); + + return 1; +} + +/* Return non-zero if the target is capable of using hardware to evaluate + the condition expression, thus only triggering the watchpoint when it is + true. */ +static int +ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw, + struct expression *cond) +{ + CORE_ADDR data_value; + + return (have_ptrace_booke_interface () + && booke_debug_info.num_condition_regs > 0 + && check_condition (addr, cond, &data_value)); +} + +static int +ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw, + struct expression *cond) +{ + struct lwp_info *lp; + ptid_t ptid; + int ret = -1; + + if (have_ptrace_booke_interface ()) + { + struct ppc_hw_breakpoint p; + CORE_ADDR data_value; + + if (cond && can_use_watchpoint_cond_accel () + && check_condition (addr, cond, &data_value)) + calculate_dvc (addr, len, data_value, &p.condition_mode, + &p.condition_value); + else + { + p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; + p.condition_value = 0; + } + + p.version = PPC_DEBUG_CURRENT_VERSION; + p.trigger_type = get_trigger_type (rw); + p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; + p.addr = (uint64_t) addr; + p.addr2 = 0; + + ALL_LWPS (lp, ptid) + booke_insert_point (&p, TIDGET (ptid)); + + ret = 0; + } + else + { + long dabr_value; + long read_mode, write_mode; + + if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) + { + /* PowerPC 440 requires only the read/write flags to be passed + to the kernel. */ + read_mode = 1; + write_mode = 2; + } + else + { + /* PowerPC 970 and other DABR-based processors are required to pass + the Breakpoint Translation bit together with the flags. */ + read_mode = 5; + write_mode = 6; + } + + dabr_value = addr & ~(read_mode | write_mode); + switch (rw) + { + case hw_read: + /* Set read and translate bits. */ + dabr_value |= read_mode; + break; + case hw_write: + /* Set write and translate bits. */ + dabr_value |= write_mode; + break; + case hw_access: + /* Set read, write and translate bits. */ + dabr_value |= read_mode | write_mode; + break; + } + + saved_dabr_value = dabr_value; + + ALL_LWPS (lp, ptid) + if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, + saved_dabr_value) < 0) + return -1; + + ret = 0; + } + + return ret; +} + +static int +ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw, + struct expression *cond) +{ + struct lwp_info *lp; + ptid_t ptid; + int ret = -1; + + if (have_ptrace_booke_interface ()) + { + struct ppc_hw_breakpoint p; + CORE_ADDR data_value; + + if (cond && booke_debug_info.num_condition_regs > 0 + && check_condition (addr, cond, &data_value)) + calculate_dvc (addr, len, data_value, &p.condition_mode, + &p.condition_value); + else + { + p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; + p.condition_value = 0; + } + + p.version = PPC_DEBUG_CURRENT_VERSION; + p.trigger_type = get_trigger_type (rw); + p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; + p.addr = (uint64_t) addr; + p.addr2 = 0; + + ALL_LWPS (lp, ptid) + booke_remove_point (&p, TIDGET (ptid)); + + ret = 0; + } + else + { + saved_dabr_value = 0; + ALL_LWPS (lp, ptid) + if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, + saved_dabr_value) < 0) + return -1; + + ret = 0; + } + + return ret; +} + +static void +ppc_linux_new_thread (ptid_t ptid) +{ + int tid = TIDGET (ptid); + + if (have_ptrace_booke_interface ()) + { + int i; + struct thread_points *p; + struct hw_break_tuple *hw_breaks; + + if (VEC_empty (thread_points_p, ppc_threads)) + return; + + /* Get a list of breakpoints from any thread. */ + p = VEC_last (thread_points_p, ppc_threads); + hw_breaks = p->hw_breaks; + + /* Copy that thread's breakpoints and watchpoints to the new thread. */ + for (i = 0; i < max_slots_number; i++) + if (hw_breaks[i].hw_break) + booke_insert_point (hw_breaks[i].hw_break, tid); + } + else + ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value); +} + +static void +ppc_linux_thread_exit (struct thread_info *tp, int silent) +{ + int i; + int tid = TIDGET (tp->ptid); + struct hw_break_tuple *hw_breaks; + struct thread_points *t = NULL, *p; + + if (!have_ptrace_booke_interface ()) + return; + + for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++) + if (p->tid == tid) + { + t = p; + break; + } + + if (t == NULL) + return; + + VEC_unordered_remove (thread_points_p, ppc_threads, i); + + hw_breaks = t->hw_breaks; + + for (i = 0; i < max_slots_number; i++) + if (hw_breaks[i].hw_break) + xfree (hw_breaks[i].hw_break); + + xfree (t->hw_breaks); + xfree (t); +} + +static int +ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p) +{ + struct siginfo *siginfo_p; + + siginfo_p = linux_nat_get_siginfo (inferior_ptid); + + if (siginfo_p->si_signo != SIGTRAP + || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) + return 0; + + if (have_ptrace_booke_interface ()) + { + int i; + struct thread_points *t; + struct hw_break_tuple *hw_breaks; + /* The index (or slot) of the *point is passed in the si_errno field. */ + int slot = siginfo_p->si_errno; + + t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0); + + /* Find out if this *point is a hardware breakpoint. + If so, we should return 0. */ + if (t) + { + hw_breaks = t->hw_breaks; + for (i = 0; i < max_slots_number; i++) + if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot + && hw_breaks[i].hw_break->trigger_type + == PPC_BREAKPOINT_TRIGGER_EXECUTE) + return 0; + } + } + + *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr; + return 1; +} + +static int +ppc_linux_stopped_by_watchpoint (void) +{ + CORE_ADDR addr; + return ppc_linux_stopped_data_address (¤t_target, &addr); +} + +static int +ppc_linux_watchpoint_addr_within_range (struct target_ops *target, + CORE_ADDR addr, + CORE_ADDR start, int length) +{ + int mask; + + if (have_ptrace_booke_interface () + && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) + return start <= addr && start + length >= addr; + else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) + mask = 3; + else + mask = 7; + + addr &= ~mask; + + /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */ + return start <= addr + mask && start + length - 1 >= addr; +} + +static void +ppc_linux_store_inferior_registers (struct target_ops *ops, + struct regcache *regcache, int regno) +{ + /* Overload thread id onto process id */ + int tid = TIDGET (inferior_ptid); + + /* No thread id, just use process id */ + if (tid == 0) + tid = PIDGET (inferior_ptid); + + if (regno >= 0) + store_register (regcache, tid, regno); + else + store_ppc_registers (regcache, tid); +} + +/* Functions for transferring registers between a gregset_t or fpregset_t + (see sys/ucontext.h) and gdb's regcache. The word size is that used + by the ptrace interface, not the current program's ABI. eg. If a + powerpc64-linux gdb is being used to debug a powerpc32-linux app, we + read or write 64-bit gregsets. This is to suit the host libthread_db. */ + +void +supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) +{ + const struct regset *regset = ppc_linux_gregset (sizeof (long)); + + ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); +} + +void +fill_gregset (const struct regcache *regcache, + gdb_gregset_t *gregsetp, int regno) +{ + const struct regset *regset = ppc_linux_gregset (sizeof (long)); + + if (regno == -1) + memset (gregsetp, 0, sizeof (*gregsetp)); + ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); +} + +void +supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) +{ + const struct regset *regset = ppc_linux_fpregset (); + + ppc_supply_fpregset (regset, regcache, -1, + fpregsetp, sizeof (*fpregsetp)); +} + +void +fill_fpregset (const struct regcache *regcache, + gdb_fpregset_t *fpregsetp, int regno) +{ + const struct regset *regset = ppc_linux_fpregset (); + + ppc_collect_fpregset (regset, regcache, regno, + fpregsetp, sizeof (*fpregsetp)); +} + +static int +ppc_linux_target_wordsize (void) +{ + int wordsize = 4; + + /* Check for 64-bit inferior process. This is the case when the host is + 64-bit, and in addition the top bit of the MSR register is set. */ +#ifdef __powerpc64__ + long msr; + + int tid = TIDGET (inferior_ptid); + if (tid == 0) + tid = PIDGET (inferior_ptid); + + errno = 0; + msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0); + if (errno == 0 && msr < 0) + wordsize = 8; +#endif + + return wordsize; +} + +static int +ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr, + gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) +{ + int sizeof_auxv_field = ppc_linux_target_wordsize (); + enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); + gdb_byte *ptr = *readptr; + + if (endptr == ptr) + return 0; + + if (endptr - ptr < sizeof_auxv_field * 2) + return -1; + + *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); + ptr += sizeof_auxv_field; + *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); + ptr += sizeof_auxv_field; + + *readptr = ptr; + return 1; +} + +static const struct target_desc * +ppc_linux_read_description (struct target_ops *ops) +{ + int altivec = 0; + int vsx = 0; + int isa205 = 0; + int cell = 0; + + int tid = TIDGET (inferior_ptid); + if (tid == 0) + tid = PIDGET (inferior_ptid); + + if (have_ptrace_getsetevrregs) + { + struct gdb_evrregset_t evrregset; + + if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) + return tdesc_powerpc_e500l; + + /* EIO means that the PTRACE_GETEVRREGS request isn't supported. + Anything else needs to be reported. */ + else if (errno != EIO) + perror_with_name (_("Unable to fetch SPE registers")); + } + + if (have_ptrace_getsetvsxregs) + { + gdb_vsxregset_t vsxregset; + + if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) + vsx = 1; + + /* EIO means that the PTRACE_GETVSXREGS request isn't supported. + Anything else needs to be reported. */ + else if (errno != EIO) + perror_with_name (_("Unable to fetch VSX registers")); + } + + if (have_ptrace_getvrregs) + { + gdb_vrregset_t vrregset; + + if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) + altivec = 1; + + /* EIO means that the PTRACE_GETVRREGS request isn't supported. + Anything else needs to be reported. */ + else if (errno != EIO) + perror_with_name (_("Unable to fetch AltiVec registers")); + } + + /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases + the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this + ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only + PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher + half of the register are for Decimal Floating Point, we check if that + feature is available to decide the size of the FPSCR. */ + if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP) + isa205 = 1; + + if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL) + cell = 1; + + if (ppc_linux_target_wordsize () == 8) + { + if (cell) + return tdesc_powerpc_cell64l; + else if (vsx) + return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l; + else if (altivec) + return isa205? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l; + + return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l; + } + + if (cell) + return tdesc_powerpc_cell32l; + else if (vsx) + return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l; + else if (altivec) + return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l; + + return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l; +} + +void _initialize_ppc_linux_nat (void); + +void +_initialize_ppc_linux_nat (void) +{ + struct target_ops *t; + + /* Fill in the generic GNU/Linux methods. */ + t = linux_target (); + + /* Add our register access methods. */ + t->to_fetch_registers = ppc_linux_fetch_inferior_registers; + t->to_store_registers = ppc_linux_store_inferior_registers; + + /* Add our breakpoint/watchpoint methods. */ + t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint; + t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint; + t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint; + t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint; + t->to_insert_watchpoint = ppc_linux_insert_watchpoint; + t->to_remove_watchpoint = ppc_linux_remove_watchpoint; + t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint; + t->to_stopped_data_address = ppc_linux_stopped_data_address; + t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range; + t->to_can_accel_watchpoint_condition = ppc_linux_can_accel_watchpoint_condition; + + t->to_read_description = ppc_linux_read_description; + t->to_auxv_parse = ppc_linux_auxv_parse; + + observer_attach_thread_exit (ppc_linux_thread_exit); + + /* Register the target. */ + linux_nat_add_target (t); + linux_nat_set_new_thread (t, ppc_linux_new_thread); }