X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Frs6000-tdep.c;h=09c7f8ff9c4fdadb95720c54efe4aa8de4d33948;hb=90f62196288735e7fd88336b5cc86bbb2cdd3249;hp=f133b78823ab9113c8449dbb1a8de1f39e45e22d;hpb=06caf7d297df7c596ca98678c1569e031f7c893e;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/rs6000-tdep.c b/gdb/rs6000-tdep.c index f133b78823..09c7f8ff9c 100644 --- a/gdb/rs6000-tdep.c +++ b/gdb/rs6000-tdep.c @@ -1,8 +1,8 @@ /* Target-dependent code for GDB, the GNU debugger. Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, - 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 - Free Software Foundation, Inc. + 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, + 2010 Free Software Foundation, Inc. This file is part of GDB. @@ -49,6 +49,7 @@ #include "libxcoff.h" #include "elf-bfd.h" +#include "elf/ppc.h" #include "solib-svr4.h" #include "ppc-tdep.h" @@ -60,33 +61,66 @@ #include "frame-unwind.h" #include "frame-base.h" -#include "rs6000-tdep.h" - #include "features/rs6000/powerpc-32.c" +#include "features/rs6000/powerpc-altivec32.c" +#include "features/rs6000/powerpc-vsx32.c" #include "features/rs6000/powerpc-403.c" #include "features/rs6000/powerpc-403gc.c" +#include "features/rs6000/powerpc-405.c" #include "features/rs6000/powerpc-505.c" #include "features/rs6000/powerpc-601.c" #include "features/rs6000/powerpc-602.c" #include "features/rs6000/powerpc-603.c" #include "features/rs6000/powerpc-604.c" #include "features/rs6000/powerpc-64.c" +#include "features/rs6000/powerpc-altivec64.c" +#include "features/rs6000/powerpc-vsx64.c" #include "features/rs6000/powerpc-7400.c" #include "features/rs6000/powerpc-750.c" #include "features/rs6000/powerpc-860.c" #include "features/rs6000/powerpc-e500.c" #include "features/rs6000/rs6000.c" -/* If the kernel has to deliver a signal, it pushes a sigcontext - structure on the stack and then calls the signal handler, passing - the address of the sigcontext in an argument register. Usually - the signal handler doesn't save this register, so we have to - access the sigcontext structure via an offset from the signal handler - frame. - The following constants were determined by experimentation on AIX 3.2. */ -#define SIG_FRAME_PC_OFFSET 96 -#define SIG_FRAME_LR_OFFSET 108 -#define SIG_FRAME_FP_OFFSET 284 +/* Determine if regnum is an SPE pseudo-register. */ +#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \ + && (regnum) >= (tdep)->ppc_ev0_regnum \ + && (regnum) < (tdep)->ppc_ev0_regnum + 32) + +/* Determine if regnum is a decimal float pseudo-register. */ +#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \ + && (regnum) >= (tdep)->ppc_dl0_regnum \ + && (regnum) < (tdep)->ppc_dl0_regnum + 16) + +/* Determine if regnum is a POWER7 VSX register. */ +#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \ + && (regnum) >= (tdep)->ppc_vsr0_regnum \ + && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs) + +/* Determine if regnum is a POWER7 Extended FP register. */ +#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \ + && (regnum) >= (tdep)->ppc_efpr0_regnum \ + && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs) + +/* The list of available "set powerpc ..." and "show powerpc ..." + commands. */ +static struct cmd_list_element *setpowerpccmdlist = NULL; +static struct cmd_list_element *showpowerpccmdlist = NULL; + +static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO; + +/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */ +static const char *powerpc_vector_strings[] = +{ + "auto", + "generic", + "altivec", + "spe", + NULL +}; + +/* A variable that can be configured by the user. */ +static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO; +static const char *powerpc_vector_abi_string = "auto"; /* To be used by skip_prologue. */ @@ -96,53 +130,42 @@ struct rs6000_framedata by which we decrement sp to allocate the frame */ int saved_gpr; /* smallest # of saved gpr */ + unsigned int gpr_mask; /* Each bit is an individual saved GPR. */ int saved_fpr; /* smallest # of saved fpr */ int saved_vr; /* smallest # of saved vr */ int saved_ev; /* smallest # of saved ev */ int alloca_reg; /* alloca register number (frame ptr) */ char frameless; /* true if frameless functions. */ char nosavedpc; /* true if pc not saved. */ + char used_bl; /* true if link register clobbered */ int gpr_offset; /* offset of saved gprs from prev sp */ int fpr_offset; /* offset of saved fprs from prev sp */ int vr_offset; /* offset of saved vrs from prev sp */ int ev_offset; /* offset of saved evs from prev sp */ int lr_offset; /* offset of saved lr */ + int lr_register; /* register of saved lr, if trustworthy */ int cr_offset; /* offset of saved cr */ int vrsave_offset; /* offset of saved vrsave register */ }; -/* Description of a single register. */ - -struct reg - { - char *name; /* name of register */ - unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */ - unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */ - unsigned char fpr; /* whether register is floating-point */ - unsigned char pseudo; /* whether register is pseudo */ - int spr_num; /* PowerPC SPR number, or -1 if not an SPR. - This is an ISA SPR number, not a GDB - register number. */ - }; - -/* Hook for determining the TOC address when calling functions in the - inferior under AIX. The initialization code in rs6000-nat.c sets - this hook to point to find_toc_address. */ - -CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; - -/* Static function prototypes */ -static CORE_ADDR branch_dest (struct frame_info *frame, int opcode, - int instr, CORE_ADDR pc, CORE_ADDR safety); -static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, - struct rs6000_framedata *); +/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */ +int +vsx_register_p (struct gdbarch *gdbarch, int regno) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + if (tdep->ppc_vsr0_regnum < 0) + return 0; + else + return (regno >= tdep->ppc_vsr0_upper_regnum && regno + <= tdep->ppc_vsr0_upper_regnum + 31); +} /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ int -altivec_register_p (int regno) +altivec_register_p (struct gdbarch *gdbarch, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) return 0; else @@ -152,14 +175,12 @@ altivec_register_p (int regno) /* Return true if REGNO is an SPE register, false otherwise. */ int -spe_register_p (int regno) +spe_register_p (struct gdbarch *gdbarch, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* Is it a reference to EV0 -- EV31, and do we have those? */ - if (tdep->ppc_ev0_regnum >= 0 - && tdep->ppc_ev31_regnum >= 0 - && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum) + if (IS_SPE_PSEUDOREG (tdep, regno)) return 1; /* Is it a reference to one of the raw upper GPR halves? */ @@ -194,6 +215,16 @@ ppc_floating_point_unit_p (struct gdbarch *gdbarch) && tdep->ppc_fpscr_regnum >= 0); } +/* Return non-zero if the architecture described by GDBARCH has + VSX registers (vsr0 --- vsr63). */ +static int +ppc_vsx_support_p (struct gdbarch *gdbarch) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + return tdep->ppc_vsr0_regnum >= 0; +} + /* Return non-zero if the architecture described by GDBARCH has Altivec registers (vr0 --- vr31, vrsave and vscr). */ int @@ -320,17 +351,17 @@ init_sim_regno_table (struct gdbarch *arch) /* Given a GDB register number REG, return the corresponding SIM register number. */ static int -rs6000_register_sim_regno (int reg) +rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); int sim_regno; if (tdep->sim_regno == NULL) - init_sim_regno_table (current_gdbarch); + init_sim_regno_table (gdbarch); gdb_assert (0 <= reg - && reg <= gdbarch_num_regs (current_gdbarch) - + gdbarch_num_pseudo_regs (current_gdbarch)); + && reg <= gdbarch_num_regs (gdbarch) + + gdbarch_num_pseudo_regs (gdbarch)); sim_regno = tdep->sim_regno[reg]; if (sim_regno >= 0) @@ -346,7 +377,7 @@ rs6000_register_sim_regno (int reg) /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide. Write the register to REGCACHE. */ -static void +void ppc_supply_reg (struct regcache *regcache, int regnum, const gdb_byte *regs, size_t offset, int regsize) { @@ -367,7 +398,7 @@ ppc_supply_reg (struct regcache *regcache, int regnum, /* Read register REGNUM from REGCACHE and store to REGS + OFFSET in a field REGSIZE wide. Zero pad as necessary. */ -static void +void ppc_collect_reg (const struct regcache *regcache, int regnum, gdb_byte *regs, size_t offset, int regsize) { @@ -546,6 +577,37 @@ ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); } +/* Supply register REGNUM in the VSX register set REGSET + from the buffer specified by VSXREGS and LEN to register cache + REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ + +void +ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache, + int regnum, const void *vsxregs, size_t len) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep; + + if (!ppc_vsx_support_p (gdbarch)) + return; + + tdep = gdbarch_tdep (gdbarch); + + if (regnum == -1) + { + int i; + + for (i = tdep->ppc_vsr0_upper_regnum; + i < tdep->ppc_vsr0_upper_regnum + 32; + i++) + ppc_supply_reg (regcache, i, vsxregs, 0, 8); + + return; + } + else + ppc_supply_reg (regcache, regnum, vsxregs, 0, 8); +} + /* Supply register REGNUM in the Altivec register set REGSET from the buffer specified by VRREGS and LEN to register cache REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ @@ -676,6 +738,40 @@ ppc_collect_fpregset (const struct regset *regset, regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); } +/* Collect register REGNUM in the VSX register set + REGSET from register cache REGCACHE into the buffer specified by + VSXREGS and LEN. If REGNUM is -1, do this for all registers in + REGSET. */ + +void +ppc_collect_vsxregset (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *vsxregs, size_t len) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep; + + if (!ppc_vsx_support_p (gdbarch)) + return; + + tdep = gdbarch_tdep (gdbarch); + + if (regnum == -1) + { + int i; + + for (i = tdep->ppc_vsr0_upper_regnum; + i < tdep->ppc_vsr0_upper_regnum + 32; + i++) + ppc_collect_reg (regcache, i, vsxregs, 0, 8); + + return; + } + else + ppc_collect_reg (regcache, regnum, vsxregs, 0, 8); +} + + /* Collect register REGNUM in the Altivec register set REGSET from register cache REGCACHE into the buffer specified by VRREGS and LEN. If REGNUM is -1, do this for all registers in @@ -723,44 +819,6 @@ ppc_collect_vrregset (const struct regset *regset, } -/* Read a LEN-byte address from debugged memory address MEMADDR. */ - -static CORE_ADDR -read_memory_addr (CORE_ADDR memaddr, int len) -{ - return read_memory_unsigned_integer (memaddr, len); -} - -static CORE_ADDR -rs6000_skip_prologue (CORE_ADDR pc) -{ - struct rs6000_framedata frame; - CORE_ADDR limit_pc, func_addr; - - /* See if we can determine the end of the prologue via the symbol table. - If so, then return either PC, or the PC after the prologue, whichever - is greater. */ - if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) - { - CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr); - if (post_prologue_pc != 0) - return max (pc, post_prologue_pc); - } - - /* Can't determine prologue from the symbol table, need to examine - instructions. */ - - /* Find an upper limit on the function prologue using the debug - information. If the debug information could not be used to provide - that bound, then use an arbitrary large number as the upper bound. */ - limit_pc = skip_prologue_using_sal (pc); - if (limit_pc == 0) - limit_pc = pc + 100; /* Magic. */ - - pc = skip_prologue (pc, limit_pc, &frame); - return pc; -} - static int insn_changes_sp_or_jumps (unsigned long insn) { @@ -816,6 +874,8 @@ insn_changes_sp_or_jumps (unsigned long insn) static int rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) { + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); bfd_byte insn_buf[PPC_INSN_SIZE]; CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end; unsigned long insn; @@ -840,9 +900,20 @@ rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) { if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) return 0; - insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE); + insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order); if (insn == 0x4e800020) break; + /* Assume a bctr is a tail call unless it points strictly within + this function. */ + if (insn == 0x4e800420) + { + CORE_ADDR ctr = get_frame_register_unsigned (curfrm, + tdep->ppc_ctr_regnum); + if (ctr > func_start && ctr < func_end) + return 0; + else + break; + } if (insn_changes_sp_or_jumps (insn)) return 0; } @@ -855,7 +926,7 @@ rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) { if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) return 0; - insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE); + insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order); if (insn_changes_sp_or_jumps (insn)) return 1; } @@ -871,90 +942,131 @@ rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, return get_frame_register_unsigned (frame, 3 + argi); } -/* Calculate the destination of a branch/jump. Return -1 if not a branch. */ +/* Sequence of bytes for breakpoint instruction. */ -static CORE_ADDR -branch_dest (struct frame_info *frame, int opcode, int instr, - CORE_ADDR pc, CORE_ADDR safety) +const static unsigned char * +rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, + int *bp_size) { - struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); - CORE_ADDR dest; - int immediate; - int absolute; - int ext_op; + static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; + static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; + *bp_size = 4; + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + return big_breakpoint; + else + return little_breakpoint; +} - absolute = (int) ((instr >> 1) & 1); +/* Instruction masks for displaced stepping. */ +#define BRANCH_MASK 0xfc000000 +#define BP_MASK 0xFC0007FE +#define B_INSN 0x48000000 +#define BC_INSN 0x40000000 +#define BXL_INSN 0x4c000000 +#define BP_INSN 0x7C000008 - switch (opcode) - { - case 18: - immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ - if (absolute) - dest = immediate; - else - dest = pc + immediate; - break; +/* Fix up the state of registers and memory after having single-stepped + a displaced instruction. */ +static void +ppc_displaced_step_fixup (struct gdbarch *gdbarch, + struct displaced_step_closure *closure, + CORE_ADDR from, CORE_ADDR to, + struct regcache *regs) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + /* Since we use simple_displaced_step_copy_insn, our closure is a + copy of the instruction. */ + ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure, + PPC_INSN_SIZE, byte_order); + ULONGEST opcode = 0; + /* Offset for non PC-relative instructions. */ + LONGEST offset = PPC_INSN_SIZE; - case 16: - immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ - if (absolute) - dest = immediate; - else - dest = pc + immediate; - break; + opcode = insn & BRANCH_MASK; - case 19: - ext_op = (instr >> 1) & 0x3ff; + if (debug_displaced) + fprintf_unfiltered (gdb_stdlog, + "displaced: (ppc) fixup (%s, %s)\n", + paddress (gdbarch, from), paddress (gdbarch, to)); - if (ext_op == 16) /* br conditional register */ + + /* Handle PC-relative branch instructions. */ + if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN) + { + ULONGEST current_pc; + + /* Read the current PC value after the instruction has been executed + in a displaced location. Calculate the offset to be applied to the + original PC value before the displaced stepping. */ + regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch), + ¤t_pc); + offset = current_pc - to; + + if (opcode != BXL_INSN) + { + /* Check for AA bit indicating whether this is an absolute + addressing or PC-relative (1: absolute, 0: relative). */ + if (!(insn & 0x2)) + { + /* PC-relative addressing is being used in the branch. */ + if (debug_displaced) + fprintf_unfiltered + (gdb_stdlog, + "displaced: (ppc) branch instruction: %s\n" + "displaced: (ppc) adjusted PC from %s to %s\n", + paddress (gdbarch, insn), paddress (gdbarch, current_pc), + paddress (gdbarch, from + offset)); + + regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), + from + offset); + } + } + else { - dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; - - /* If we are about to return from a signal handler, dest is - something like 0x3c90. The current frame is a signal handler - caller frame, upon completion of the sigreturn system call - execution will return to the saved PC in the frame. */ - if (dest < tdep->text_segment_base) - dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, - tdep->wordsize); + /* If we're here, it means we have a branch to LR or CTR. If the + branch was taken, the offset is probably greater than 4 (the next + instruction), so it's safe to assume that an offset of 4 means we + did not take the branch. */ + if (offset == PPC_INSN_SIZE) + regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), + from + PPC_INSN_SIZE); } - else if (ext_op == 528) /* br cond to count reg */ + /* Check for LK bit indicating whether we should set the link + register to point to the next instruction + (1: Set, 0: Don't set). */ + if (insn & 0x1) { - dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3; + /* Link register needs to be set to the next instruction's PC. */ + regcache_cooked_write_unsigned (regs, + gdbarch_tdep (gdbarch)->ppc_lr_regnum, + from + PPC_INSN_SIZE); + if (debug_displaced) + fprintf_unfiltered (gdb_stdlog, + "displaced: (ppc) adjusted LR to %s\n", + paddress (gdbarch, from + PPC_INSN_SIZE)); - /* If we are about to execute a system call, dest is something - like 0x22fc or 0x3b00. Upon completion the system call - will return to the address in the link register. */ - if (dest < tdep->text_segment_base) - dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; } - else - return -1; - break; - - default: - return -1; } - return (dest < tdep->text_segment_base) ? safety : dest; + /* Check for breakpoints in the inferior. If we've found one, place the PC + right at the breakpoint instruction. */ + else if ((insn & BP_MASK) == BP_INSN) + regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from); + else + /* Handle any other instructions that do not fit in the categories above. */ + regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), + from + offset); } - -/* Sequence of bytes for breakpoint instruction. */ - -const static unsigned char * -rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) +/* Always use hardware single-stepping to execute the + displaced instruction. */ +static int +ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch, + struct displaced_step_closure *closure) { - static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; - static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; - *bp_size = 4; - if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) - return big_breakpoint; - else - return little_breakpoint; + return 1; } - /* Instruction masks used during single-stepping of atomic sequences. */ #define LWARX_MASK 0xfc0007fe #define LWARX_INSTRUCTION 0x7c000028 @@ -962,23 +1074,23 @@ rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) #define STWCX_MASK 0xfc0007ff #define STWCX_INSTRUCTION 0x7c00012d #define STDCX_INSTRUCTION 0x7c0001ad -#define BC_MASK 0xfc000000 -#define BC_INSTRUCTION 0x40000000 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX instruction and ending with a STWCX/STDCX instruction. If such a sequence is found, attempt to step through it. A breakpoint is placed at the end of the sequence. */ -static int -deal_with_atomic_sequence (struct frame_info *frame) +int +ppc_deal_with_atomic_sequence (struct frame_info *frame) { + struct gdbarch *gdbarch = get_frame_arch (frame); + struct address_space *aspace = get_frame_address_space (frame); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR pc = get_frame_pc (frame); CORE_ADDR breaks[2] = {-1, -1}; CORE_ADDR loc = pc; - CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */ CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */ - int insn = read_memory_integer (loc, PPC_INSN_SIZE); + int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order); int insn_count; int index; int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ @@ -996,26 +1108,27 @@ deal_with_atomic_sequence (struct frame_info *frame) for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) { loc += PPC_INSN_SIZE; - insn = read_memory_integer (loc, PPC_INSN_SIZE); + insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order); /* Assume that there is at most one conditional branch in the atomic sequence. If a conditional branch is found, put a breakpoint in its destination address. */ - if ((insn & BC_MASK) == BC_INSTRUCTION) + if ((insn & BRANCH_MASK) == BC_INSN) { + int immediate = ((insn & ~3) << 16) >> 16; + int absolute = ((insn >> 1) & 1); + if (bc_insn_count >= 1) return 0; /* More than one conditional branch found, fallback to the standard single-step code. */ - - opcode = insn >> 26; - branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]); - - if (branch_bp != -1) - { - breaks[1] = branch_bp; - bc_insn_count++; - last_breakpoint++; - } + + if (absolute) + breaks[1] = immediate; + else + breaks[1] = pc + immediate; + + bc_insn_count++; + last_breakpoint++; } if ((insn & STWCX_MASK) == STWCX_INSTRUCTION @@ -1030,7 +1143,7 @@ deal_with_atomic_sequence (struct frame_info *frame) closing_insn = loc; loc += PPC_INSN_SIZE; - insn = read_memory_integer (loc, PPC_INSN_SIZE); + insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order); /* Insert a breakpoint right after the end of the atomic sequence. */ breaks[0] = loc; @@ -1045,49 +1158,8 @@ deal_with_atomic_sequence (struct frame_info *frame) /* Effectively inserts the breakpoints. */ for (index = 0; index <= last_breakpoint; index++) - insert_single_step_breakpoint (breaks[index]); - - return 1; -} - -/* AIX does not support PT_STEP. Simulate it. */ - -int -rs6000_software_single_step (struct frame_info *frame) -{ - CORE_ADDR dummy; - int breakp_sz; - const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); - int ii, insn; - CORE_ADDR loc; - CORE_ADDR breaks[2]; - int opcode; - - loc = get_frame_pc (frame); + insert_single_step_breakpoint (gdbarch, aspace, breaks[index]); - insn = read_memory_integer (loc, 4); - - if (deal_with_atomic_sequence (frame)) - return 1; - - breaks[0] = loc + breakp_sz; - opcode = insn >> 26; - breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]); - - /* Don't put two breakpoints on the same address. */ - if (breaks[1] == breaks[0]) - breaks[1] = -1; - - for (ii = 0; ii < 2; ++ii) - { - /* ignore invalid breakpoint. */ - if (breaks[ii] == -1) - continue; - insert_single_step_breakpoint (breaks[ii]); - } - - errno = 0; /* FIXME, don't ignore errors! */ - /* What errors? {read,write}_memory call error(). */ return 1; } @@ -1182,7 +1254,7 @@ store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg) they can use to access PIC data using PC-relative offsets. */ static int -bl_to_blrl_insn_p (CORE_ADDR pc, int insn) +bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order) { CORE_ADDR dest; int immediate; @@ -1196,13 +1268,209 @@ bl_to_blrl_insn_p (CORE_ADDR pc, int insn) else dest = pc + immediate; - dest_insn = read_memory_integer (dest, 4); + dest_insn = read_memory_integer (dest, 4, byte_order); if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */ return 1; return 0; } +/* Masks for decoding a branch-and-link (bl) instruction. + + BL_MASK and BL_INSTRUCTION are used in combination with each other. + The former is anded with the opcode in question; if the result of + this masking operation is equal to BL_INSTRUCTION, then the opcode in + question is a ``bl'' instruction. + + BL_DISPLACMENT_MASK is anded with the opcode in order to extract + the branch displacement. */ + +#define BL_MASK 0xfc000001 +#define BL_INSTRUCTION 0x48000001 +#define BL_DISPLACEMENT_MASK 0x03fffffc + +static unsigned long +rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + gdb_byte buf[4]; + unsigned long op; + + /* Fetch the instruction and convert it to an integer. */ + if (target_read_memory (pc, buf, 4)) + return 0; + op = extract_unsigned_integer (buf, 4, byte_order); + + return op; +} + +/* GCC generates several well-known sequences of instructions at the begining + of each function prologue when compiling with -fstack-check. If one of + such sequences starts at START_PC, then return the address of the + instruction immediately past this sequence. Otherwise, return START_PC. */ + +static CORE_ADDR +rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc) +{ + CORE_ADDR pc = start_pc; + unsigned long op = rs6000_fetch_instruction (gdbarch, pc); + + /* First possible sequence: A small number of probes. + stw 0, -(1) + [repeat this instruction any (small) number of times] + */ + + if ((op & 0xffff0000) == 0x90010000) + { + while ((op & 0xffff0000) == 0x90010000) + { + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + } + return pc; + } + + /* Second sequence: A probing loop. + addi 12,1,- + lis 0,- + [possibly ori 0,0,] + add 0,12,0 + cmpw 0,12,0 + beq 0, + addi 12,12,- + stw 0,0(12) + b + [possibly one last probe: stw 0,(12)] + */ + + while (1) + { + /* addi 12,1,- */ + if ((op & 0xffff0000) != 0x39810000) + break; + + /* lis 0,- */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xffff0000) != 0x3c000000) + break; + + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + /* [possibly ori 0,0,] */ + if ((op & 0xffff0000) == 0x60000000) + { + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + } + /* add 0,12,0 */ + if (op != 0x7c0c0214) + break; + + /* cmpw 0,12,0 */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if (op != 0x7c0c0000) + break; + + /* beq 0, */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xff9f0001) != 0x41820000) + break; + + /* addi 12,12,- */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xffff0000) != 0x398c0000) + break; + + /* stw 0,0(12) */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if (op != 0x900c0000) + break; + + /* b */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xfc000001) != 0x48000000) + break; + + /* [possibly one last probe: stw 0,(12)] */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xffff0000) == 0x900c0000) + { + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + } + + /* We found a valid stack-check sequence, return the new PC. */ + return pc; + } + + /* Third sequence: No probe; instead, a comparizon between the stack size + limit (saved in a run-time global variable) and the current stack + pointer: + + addi 0,1,- + lis 12,__gnat_stack_limit@ha + lwz 12,__gnat_stack_limit@l(12) + twllt 0,12 + + or, with a small variant in the case of a bigger stack frame: + addis 0,1, + addic 0,0,- + lis 12,__gnat_stack_limit@ha + lwz 12,__gnat_stack_limit@l(12) + twllt 0,12 + */ + while (1) + { + /* addi 0,1,- */ + if ((op & 0xffff0000) != 0x38010000) + { + /* small stack frame variant not recognized; try the + big stack frame variant: */ + + /* addis 0,1, */ + if ((op & 0xffff0000) != 0x3c010000) + break; + + /* addic 0,0,- */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xffff0000) != 0x30000000) + break; + } + + /* lis 12, */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xffff0000) != 0x3d800000) + break; + + /* lwz 12,(12) */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xffff0000) != 0x818c0000) + break; + + /* twllt 0,12 */ + pc = pc + 4; + op = rs6000_fetch_instruction (gdbarch, pc); + if ((op & 0xfffffffe) != 0x7c406008) + break; + + /* We found a valid stack-check sequence, return the new PC. */ + return pc; + } + + /* No stack check code in our prologue, return the start_pc. */ + return start_pc; +} + /* return pc value after skipping a function prologue and also return information about a function frame. @@ -1227,7 +1495,8 @@ bl_to_blrl_insn_p (CORE_ADDR pc, int insn) */ static CORE_ADDR -skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) +skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc, + struct rs6000_framedata *fdata) { CORE_ADDR orig_pc = pc; CORE_ADDR last_prologue_pc = pc; @@ -1248,8 +1517,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) int prev_insn_was_prologue_insn = 1; int num_skip_non_prologue_insns = 0; int r0_contains_arg = 0; - const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); memset (fdata, 0, sizeof (struct rs6000_framedata)); fdata->saved_gpr = -1; @@ -1259,6 +1529,11 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) fdata->alloca_reg = -1; fdata->frameless = 1; fdata->nosavedpc = 1; + fdata->lr_register = -1; + + pc = rs6000_skip_stack_check (gdbarch, pc); + if (pc >= lim_pc) + pc = lim_pc; for (;; pc += 4) { @@ -1278,7 +1553,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) /* Fetch the instruction and convert it to an integer. */ if (target_read_memory (pc, buf, 4)) break; - op = extract_unsigned_integer (buf, 4); + op = extract_unsigned_integer (buf, 4, byte_order); if ((op & 0xfc1fffff) == 0x7c0802a6) { /* mflr Rx */ @@ -1300,7 +1575,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) remember just the first one, but skip over additional ones. */ if (lr_reg == -1) - lr_reg = (op & 0x03e00000); + lr_reg = (op & 0x03e00000) >> 21; if (lr_reg == 0) r0_contains_arg = 0; continue; @@ -1331,6 +1606,10 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) { reg = GET_SRC_REG (op); + if ((op & 0xfc1f0000) == 0xbc010000) + fdata->gpr_mask |= ~((1U << reg) - 1); + else + fdata->gpr_mask |= 1U << reg; if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) { fdata->saved_gpr = reg; @@ -1422,6 +1701,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) else if (op == 0x48000005) { /* bl .+4 used in -mrelocatable */ + fdata->used_bl = 1; continue; } @@ -1445,8 +1725,11 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) /* If the return address has already been saved, we can skip calls to blrl (for PIC). */ - if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op)) - continue; + if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order)) + { + fdata->used_bl = 1; + continue; + } /* Don't skip over the subroutine call if it is not within the first three instructions of the prologue and either @@ -1462,7 +1745,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) break; } - op = read_memory_integer (pc + 4, 4); + op = read_memory_integer (pc + 4, 4, byte_order); /* At this point, make sure this is not a trampoline function (a function that simply calls another functions, @@ -1472,8 +1755,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ break; /* don't skip over this branch */ - continue; + fdata->used_bl = 1; + continue; } /* update stack pointer */ else if ((op & 0xfc1f0000) == 0x94010000) @@ -1734,11 +2018,15 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) else { + unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1); + /* Not a recognized prologue instruction. Handle optimizer code motions into the prologue by continuing the search if we have no valid frame yet or if the return - address is not yet saved in the frame. */ - if (fdata->frameless == 0 && fdata->nosavedpc == 0) + address is not yet saved in the frame. Also skip instructions + if some of the GPRs expected to be saved are not yet saved. */ + if (fdata->frameless == 0 && fdata->nosavedpc == 0 + && (fdata->gpr_mask & all_mask) == all_mask) break; if (op == 0x4e800020 /* blr */ @@ -1775,7 +2063,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */ - op = read_memory_integer (pc + 4, 4); + op = read_memory_integer (pc + 4, 4, byte_order); if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */ @@ -1791,394 +2079,86 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) } #endif /* 0 */ + if (pc == lim_pc && lr_reg >= 0) + fdata->lr_register = lr_reg; + fdata->offset = -fdata->offset; return last_prologue_pc; } - -/************************************************************************* - Support for creating pushing a dummy frame into the stack, and popping - frames, etc. -*************************************************************************/ - - -/* All the ABI's require 16 byte alignment. */ static CORE_ADDR -rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) +rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) { - return (addr & -16); -} - -/* Pass the arguments in either registers, or in the stack. In RS/6000, - the first eight words of the argument list (that might be less than - eight parameters if some parameters occupy more than one word) are - passed in r3..r10 registers. float and double parameters are - passed in fpr's, in addition to that. Rest of the parameters if any - are passed in user stack. There might be cases in which half of the - parameter is copied into registers, the other half is pushed into - stack. - - Stack must be aligned on 64-bit boundaries when synthesizing - function calls. - - If the function is returning a structure, then the return address is passed - in r3, then the first 7 words of the parameters can be passed in registers, - starting from r4. */ - -static CORE_ADDR -rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, - struct regcache *regcache, CORE_ADDR bp_addr, - int nargs, struct value **args, CORE_ADDR sp, - int struct_return, CORE_ADDR struct_addr) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - int ii; - int len = 0; - int argno; /* current argument number */ - int argbytes; /* current argument byte */ - gdb_byte tmp_buffer[50]; - int f_argno = 0; /* current floating point argno */ - int wordsize = gdbarch_tdep (gdbarch)->wordsize; - CORE_ADDR func_addr = find_function_addr (function, NULL); - - struct value *arg = 0; - struct type *type; - - ULONGEST saved_sp; - - /* The calling convention this function implements assumes the - processor has floating-point registers. We shouldn't be using it - on PPC variants that lack them. */ - gdb_assert (ppc_floating_point_unit_p (gdbarch)); - - /* The first eight words of ther arguments are passed in registers. - Copy them appropriately. */ - ii = 0; - - /* If the function is returning a `struct', then the first word - (which will be passed in r3) is used for struct return address. - In that case we should advance one word and start from r4 - register to copy parameters. */ - if (struct_return) - { - regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, - struct_addr); - ii++; - } - -/* - effectively indirect call... gcc does... - - return_val example( float, int); - - eabi: - float in fp0, int in r3 - offset of stack on overflow 8/16 - for varargs, must go by type. - power open: - float in r3&r4, int in r5 - offset of stack on overflow different - both: - return in r3 or f0. If no float, must study how gcc emulates floats; - pay attention to arg promotion. - User may have to cast\args to handle promotion correctly - since gdb won't know if prototype supplied or not. - */ + struct rs6000_framedata frame; + CORE_ADDR limit_pc, func_addr; - for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) + /* See if we can determine the end of the prologue via the symbol table. + If so, then return either PC, or the PC after the prologue, whichever + is greater. */ + if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) { - int reg_size = register_size (gdbarch, ii + 3); - - arg = args[argno]; - type = check_typedef (value_type (arg)); - len = TYPE_LENGTH (type); - - if (TYPE_CODE (type) == TYPE_CODE_FLT) - { - - /* Floating point arguments are passed in fpr's, as well as gpr's. - There are 13 fpr's reserved for passing parameters. At this point - there is no way we would run out of them. */ - - gdb_assert (len <= 8); - - regcache_cooked_write (regcache, - tdep->ppc_fp0_regnum + 1 + f_argno, - value_contents (arg)); - ++f_argno; - } - - if (len > reg_size) - { - - /* Argument takes more than one register. */ - while (argbytes < len) - { - gdb_byte word[MAX_REGISTER_SIZE]; - memset (word, 0, reg_size); - memcpy (word, - ((char *) value_contents (arg)) + argbytes, - (len - argbytes) > reg_size - ? reg_size : len - argbytes); - regcache_cooked_write (regcache, - tdep->ppc_gp0_regnum + 3 + ii, - word); - ++ii, argbytes += reg_size; - - if (ii >= 8) - goto ran_out_of_registers_for_arguments; - } - argbytes = 0; - --ii; - } - else - { - /* Argument can fit in one register. No problem. */ - int adj = gdbarch_byte_order (gdbarch) - == BFD_ENDIAN_BIG ? reg_size - len : 0; - gdb_byte word[MAX_REGISTER_SIZE]; - - memset (word, 0, reg_size); - memcpy (word, value_contents (arg), len); - regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); - } - ++argno; + CORE_ADDR post_prologue_pc + = skip_prologue_using_sal (gdbarch, func_addr); + if (post_prologue_pc != 0) + return max (pc, post_prologue_pc); } -ran_out_of_registers_for_arguments: - - regcache_cooked_read_unsigned (regcache, - gdbarch_sp_regnum (gdbarch), - &saved_sp); - - /* Location for 8 parameters are always reserved. */ - sp -= wordsize * 8; - - /* Another six words for back chain, TOC register, link register, etc. */ - sp -= wordsize * 6; - - /* Stack pointer must be quadword aligned. */ - sp &= -16; - - /* If there are more arguments, allocate space for them in - the stack, then push them starting from the ninth one. */ - - if ((argno < nargs) || argbytes) - { - int space = 0, jj; - - if (argbytes) - { - space += ((len - argbytes + 3) & -4); - jj = argno + 1; - } - else - jj = argno; - - for (; jj < nargs; ++jj) - { - struct value *val = args[jj]; - space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; - } - - /* Add location required for the rest of the parameters. */ - space = (space + 15) & -16; - sp -= space; - - /* This is another instance we need to be concerned about - securing our stack space. If we write anything underneath %sp - (r1), we might conflict with the kernel who thinks he is free - to use this area. So, update %sp first before doing anything - else. */ - - regcache_raw_write_signed (regcache, - gdbarch_sp_regnum (gdbarch), sp); - - /* If the last argument copied into the registers didn't fit there - completely, push the rest of it into stack. */ - - if (argbytes) - { - write_memory (sp + 24 + (ii * 4), - value_contents (arg) + argbytes, - len - argbytes); - ++argno; - ii += ((len - argbytes + 3) & -4) / 4; - } - - /* Push the rest of the arguments into stack. */ - for (; argno < nargs; ++argno) - { - - arg = args[argno]; - type = check_typedef (value_type (arg)); - len = TYPE_LENGTH (type); - - - /* Float types should be passed in fpr's, as well as in the - stack. */ - if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) - { + /* Can't determine prologue from the symbol table, need to examine + instructions. */ - gdb_assert (len <= 8); + /* Find an upper limit on the function prologue using the debug + information. If the debug information could not be used to provide + that bound, then use an arbitrary large number as the upper bound. */ + limit_pc = skip_prologue_using_sal (gdbarch, pc); + if (limit_pc == 0) + limit_pc = pc + 100; /* Magic. */ - regcache_cooked_write (regcache, - tdep->ppc_fp0_regnum + 1 + f_argno, - value_contents (arg)); - ++f_argno; - } + pc = skip_prologue (gdbarch, pc, limit_pc, &frame); + return pc; +} - write_memory (sp + 24 + (ii * 4), value_contents (arg), len); - ii += ((len + 3) & -4) / 4; - } - } +/* When compiling for EABI, some versions of GCC emit a call to __eabi + in the prologue of main(). - /* Set the stack pointer. According to the ABI, the SP is meant to - be set _before_ the corresponding stack space is used. On AIX, - this even applies when the target has been completely stopped! - Not doing this can lead to conflicts with the kernel which thinks - that it still has control over this not-yet-allocated stack - region. */ - regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); + The function below examines the code pointed at by PC and checks to + see if it corresponds to a call to __eabi. If so, it returns the + address of the instruction following that call. Otherwise, it simply + returns PC. */ - /* Set back chain properly. */ - store_unsigned_integer (tmp_buffer, wordsize, saved_sp); - write_memory (sp, tmp_buffer, wordsize); +static CORE_ADDR +rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + gdb_byte buf[4]; + unsigned long op; - /* Point the inferior function call's return address at the dummy's - breakpoint. */ - regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); + if (target_read_memory (pc, buf, 4)) + return pc; + op = extract_unsigned_integer (buf, 4, byte_order); - /* Set the TOC register, get the value from the objfile reader - which, in turn, gets it from the VMAP table. */ - if (rs6000_find_toc_address_hook != NULL) + if ((op & BL_MASK) == BL_INSTRUCTION) { - CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); - regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); + CORE_ADDR displ = op & BL_DISPLACEMENT_MASK; + CORE_ADDR call_dest = pc + 4 + displ; + struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest); + + /* We check for ___eabi (three leading underscores) in addition + to __eabi in case the GCC option "-fleading-underscore" was + used to compile the program. */ + if (s != NULL + && SYMBOL_LINKAGE_NAME (s) != NULL + && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0 + || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0)) + pc += 4; } - - target_store_registers (regcache, -1); - return sp; + return pc; } -static enum return_value_convention -rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype, - struct regcache *regcache, gdb_byte *readbuf, - const gdb_byte *writebuf) +/* All the ABI's require 16 byte alignment. */ +static CORE_ADDR +rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) { - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - gdb_byte buf[8]; - - /* The calling convention this function implements assumes the - processor has floating-point registers. We shouldn't be using it - on PowerPC variants that lack them. */ - gdb_assert (ppc_floating_point_unit_p (gdbarch)); - - /* AltiVec extension: Functions that declare a vector data type as a - return value place that return value in VR2. */ - if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype) - && TYPE_LENGTH (valtype) == 16) - { - if (readbuf) - regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); - if (writebuf) - regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); - - return RETURN_VALUE_REGISTER_CONVENTION; - } - - /* If the called subprogram returns an aggregate, there exists an - implicit first argument, whose value is the address of a caller- - allocated buffer into which the callee is assumed to store its - return value. All explicit parameters are appropriately - relabeled. */ - if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT - || TYPE_CODE (valtype) == TYPE_CODE_UNION - || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) - return RETURN_VALUE_STRUCT_CONVENTION; - - /* Scalar floating-point values are returned in FPR1 for float or - double, and in FPR1:FPR2 for quadword precision. Fortran - complex*8 and complex*16 are returned in FPR1:FPR2, and - complex*32 is returned in FPR1:FPR4. */ - if (TYPE_CODE (valtype) == TYPE_CODE_FLT - && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) - { - struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); - gdb_byte regval[8]; - - /* FIXME: kettenis/2007-01-01: Add support for quadword - precision and complex. */ - - if (readbuf) - { - regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); - convert_typed_floating (regval, regtype, readbuf, valtype); - } - if (writebuf) - { - convert_typed_floating (writebuf, valtype, regval, regtype); - regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); - } - - return RETURN_VALUE_REGISTER_CONVENTION; - } - - /* Values of the types int, long, short, pointer, and char (length - is less than or equal to four bytes), as well as bit values of - lengths less than or equal to 32 bits, must be returned right - justified in GPR3 with signed values sign extended and unsigned - values zero extended, as necessary. */ - if (TYPE_LENGTH (valtype) <= tdep->wordsize) - { - if (readbuf) - { - ULONGEST regval; - - /* For reading we don't have to worry about sign extension. */ - regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, - ®val); - store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); - } - if (writebuf) - { - /* For writing, use unpack_long since that should handle any - required sign extension. */ - regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, - unpack_long (valtype, writebuf)); - } - - return RETURN_VALUE_REGISTER_CONVENTION; - } - - /* Eight-byte non-floating-point scalar values must be returned in - GPR3:GPR4. */ - - if (TYPE_LENGTH (valtype) == 8) - { - gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT); - gdb_assert (tdep->wordsize == 4); - - if (readbuf) - { - gdb_byte regval[8]; - - regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval); - regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, - regval + 4); - memcpy (readbuf, regval, 8); - } - if (writebuf) - { - regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); - regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, - writebuf + 4); - } - - return RETURN_VALUE_REGISTER_CONVENTION; - } - - return RETURN_VALUE_STRUCT_CONVENTION; + return (addr & -16); } /* Return whether handle_inferior_event() should proceed through code @@ -2204,8 +2184,9 @@ rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype, gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past @FIX code. */ -int -rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) +static int +rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch, + CORE_ADDR pc, char *name) { return name && !strncmp (name, "@FIX", 4); } @@ -2224,9 +2205,12 @@ rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) Result is desired PC to step until, or NULL if we are not in code that should be skipped. */ -CORE_ADDR +static CORE_ADDR rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) { + struct gdbarch *gdbarch = get_frame_arch (frame); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); unsigned int ii, op; int rel; CORE_ADDR solib_target_pc; @@ -2247,11 +2231,11 @@ rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) /* Check for bigtoc fixup code. */ msymbol = lookup_minimal_symbol_by_pc (pc); if (msymbol - && rs6000_in_solib_return_trampoline (pc, - DEPRECATED_SYMBOL_NAME (msymbol))) + && rs6000_in_solib_return_trampoline (gdbarch, pc, + SYMBOL_LINKAGE_NAME (msymbol))) { /* Double-check that the third instruction from PC is relative "b". */ - op = read_memory_integer (pc + 8, 4); + op = read_memory_integer (pc + 8, 4, byte_order); if ((op & 0xfc000003) == 0x48000000) { /* Extract bits 6-29 as a signed 24-bit relative word address and @@ -2268,13 +2252,12 @@ rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) for (ii = 0; trampoline_code[ii]; ++ii) { - op = read_memory_integer (pc + (ii * 4), 4); + op = read_memory_integer (pc + (ii * 4), 4, byte_order); if (op != trampoline_code[ii]) return 0; } ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */ - pc = read_memory_addr (ii, - gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */ + pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order); return pc; } @@ -2287,6 +2270,8 @@ rs6000_builtin_type_vec64 (struct gdbarch *gdbarch) if (!tdep->ppc_builtin_type_vec64) { + const struct builtin_type *bt = builtin_type (gdbarch); + /* The type we're building is this: */ #if 0 union __gdb_builtin_type_vec64 @@ -2301,18 +2286,19 @@ rs6000_builtin_type_vec64 (struct gdbarch *gdbarch) struct type *t; - t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION); - append_composite_type_field (t, "uint64", builtin_type_int64); + t = arch_composite_type (gdbarch, + "__ppc_builtin_type_vec64", TYPE_CODE_UNION); + append_composite_type_field (t, "uint64", bt->builtin_int64); append_composite_type_field (t, "v2_float", - init_vector_type (builtin_type_float, 2)); + init_vector_type (bt->builtin_float, 2)); append_composite_type_field (t, "v2_int32", - init_vector_type (builtin_type_int32, 2)); + init_vector_type (bt->builtin_int32, 2)); append_composite_type_field (t, "v4_int16", - init_vector_type (builtin_type_int16, 4)); + init_vector_type (bt->builtin_int16, 4)); append_composite_type_field (t, "v8_int8", - init_vector_type (builtin_type_int8, 8)); + init_vector_type (bt->builtin_int8, 8)); - TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR; + TYPE_VECTOR (t) = 1; TYPE_NAME (t) = "ppc_builtin_type_vec64"; tdep->ppc_builtin_type_vec64 = t; } @@ -2320,22 +2306,60 @@ rs6000_builtin_type_vec64 (struct gdbarch *gdbarch) return tdep->ppc_builtin_type_vec64; } -/* Return the size of register REG when words are WORDSIZE bytes long. If REG - isn't available with that word size, return 0. */ +/* Vector 128 type. */ -static int -regsize (const struct reg *reg, int wordsize) +static struct type * +rs6000_builtin_type_vec128 (struct gdbarch *gdbarch) { - return wordsize == 8 ? reg->sz64 : reg->sz32; + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + if (!tdep->ppc_builtin_type_vec128) + { + const struct builtin_type *bt = builtin_type (gdbarch); + + /* The type we're building is this + + type = union __ppc_builtin_type_vec128 { + uint128_t uint128; + double v2_double[2]; + float v4_float[4]; + int32_t v4_int32[4]; + int16_t v8_int16[8]; + int8_t v16_int8[16]; + } + */ + + struct type *t; + + t = arch_composite_type (gdbarch, + "__ppc_builtin_type_vec128", TYPE_CODE_UNION); + append_composite_type_field (t, "uint128", bt->builtin_uint128); + append_composite_type_field (t, "v2_double", + init_vector_type (bt->builtin_double, 2)); + append_composite_type_field (t, "v4_float", + init_vector_type (bt->builtin_float, 4)); + append_composite_type_field (t, "v4_int32", + init_vector_type (bt->builtin_int32, 4)); + append_composite_type_field (t, "v8_int16", + init_vector_type (bt->builtin_int16, 8)); + append_composite_type_field (t, "v16_int8", + init_vector_type (bt->builtin_int8, 16)); + + TYPE_VECTOR (t) = 1; + TYPE_NAME (t) = "ppc_builtin_type_vec128"; + tdep->ppc_builtin_type_vec128 = t; + } + + return tdep->ppc_builtin_type_vec128; } /* Return the name of register number REGNO, or the empty string if it is an anonymous register. */ static const char * -rs6000_register_name (int regno) +rs6000_register_name (struct gdbarch *gdbarch, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* The upper half "registers" have names in the XML description, but we present only the low GPRs and the full 64-bit registers @@ -2345,10 +2369,14 @@ rs6000_register_name (int regno) && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) return ""; + /* Hide the upper halves of the vs0~vs31 registers. */ + if (tdep->ppc_vsr0_regnum >= 0 + && tdep->ppc_vsr0_upper_regnum <= regno + && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs) + return ""; + /* Check if the SPE pseudo registers are available. */ - if (tdep->ppc_ev0_regnum >= 0 - && tdep->ppc_ev0_regnum <= regno - && regno < tdep->ppc_ev0_regnum + ppc_num_gprs) + if (IS_SPE_PSEUDOREG (tdep, regno)) { static const char *const spe_regnames[] = { "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7", @@ -2359,7 +2387,49 @@ rs6000_register_name (int regno) return spe_regnames[regno - tdep->ppc_ev0_regnum]; } - return tdesc_register_name (regno); + /* Check if the decimal128 pseudo-registers are available. */ + if (IS_DFP_PSEUDOREG (tdep, regno)) + { + static const char *const dfp128_regnames[] = { + "dl0", "dl1", "dl2", "dl3", + "dl4", "dl5", "dl6", "dl7", + "dl8", "dl9", "dl10", "dl11", + "dl12", "dl13", "dl14", "dl15" + }; + return dfp128_regnames[regno - tdep->ppc_dl0_regnum]; + } + + /* Check if this is a VSX pseudo-register. */ + if (IS_VSX_PSEUDOREG (tdep, regno)) + { + static const char *const vsx_regnames[] = { + "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7", + "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14", + "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21", + "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28", + "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35", + "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42", + "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49", + "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56", + "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63" + }; + return vsx_regnames[regno - tdep->ppc_vsr0_regnum]; + } + + /* Check if the this is a Extended FP pseudo-register. */ + if (IS_EFP_PSEUDOREG (tdep, regno)) + { + static const char *const efpr_regnames[] = { + "f32", "f33", "f34", "f35", "f36", "f37", "f38", + "f39", "f40", "f41", "f42", "f43", "f44", "f45", + "f46", "f47", "f48", "f49", "f50", "f51", + "f52", "f53", "f54", "f55", "f56", "f57", + "f58", "f59", "f60", "f61", "f62", "f63" + }; + return efpr_regnames[regno - tdep->ppc_efpr0_regnum]; + } + + return tdesc_register_name (gdbarch, regno); } /* Return the GDB type object for the "standard" data type of data in @@ -2371,11 +2441,23 @@ rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum) struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* These are the only pseudo-registers we support. */ - gdb_assert (tdep->ppc_ev0_regnum >= 0 - && regnum >= tdep->ppc_ev0_regnum - && regnum < tdep->ppc_ev0_regnum + 32); - - return rs6000_builtin_type_vec64 (gdbarch); + gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum) + || IS_DFP_PSEUDOREG (tdep, regnum) + || IS_VSX_PSEUDOREG (tdep, regnum) + || IS_EFP_PSEUDOREG (tdep, regnum)); + + /* These are the e500 pseudo-registers. */ + if (IS_SPE_PSEUDOREG (tdep, regnum)) + return rs6000_builtin_type_vec64 (gdbarch); + else if (IS_DFP_PSEUDOREG (tdep, regnum)) + /* PPC decimal128 pseudo-registers. */ + return builtin_type (gdbarch)->builtin_declong; + else if (IS_VSX_PSEUDOREG (tdep, regnum)) + /* POWER7 VSX pseudo-registers. */ + return rs6000_builtin_type_vec128 (gdbarch); + else + /* POWER7 Extended FP pseudo-registers. */ + return builtin_type (gdbarch)->builtin_double; } /* Is REGNUM a member of REGGROUP? */ @@ -2386,29 +2468,34 @@ rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* These are the only pseudo-registers we support. */ - gdb_assert (tdep->ppc_ev0_regnum >= 0 - && regnum >= tdep->ppc_ev0_regnum - && regnum < tdep->ppc_ev0_regnum + 32); - - if (group == all_reggroup || group == vector_reggroup) - return 1; + gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum) + || IS_DFP_PSEUDOREG (tdep, regnum) + || IS_VSX_PSEUDOREG (tdep, regnum) + || IS_EFP_PSEUDOREG (tdep, regnum)); + + /* These are the e500 pseudo-registers or the POWER7 VSX registers. */ + if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum)) + return group == all_reggroup || group == vector_reggroup; else - return 0; + /* PPC decimal128 or Extended FP pseudo-registers. */ + return group == all_reggroup || group == float_reggroup; } /* The register format for RS/6000 floating point registers is always double, we need a conversion if the memory format is float. */ static int -rs6000_convert_register_p (int regnum, struct type *type) +rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum, + struct type *type) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); return (tdep->ppc_fp0_regnum >= 0 && regnum >= tdep->ppc_fp0_regnum && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs && TYPE_CODE (type) == TYPE_CODE_FLT - && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double)); + && TYPE_LENGTH (type) + != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double)); } static void @@ -2417,12 +2504,14 @@ rs6000_register_to_value (struct frame_info *frame, struct type *type, gdb_byte *to) { + struct gdbarch *gdbarch = get_frame_arch (frame); gdb_byte from[MAX_REGISTER_SIZE]; gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); get_frame_register (frame, regnum, from); - convert_typed_floating (from, builtin_type_double, to, type); + convert_typed_floating (from, builtin_type (gdbarch)->builtin_double, + to, type); } static void @@ -2431,11 +2520,13 @@ rs6000_value_to_register (struct frame_info *frame, struct type *type, const gdb_byte *from) { + struct gdbarch *gdbarch = get_frame_arch (frame); gdb_byte to[MAX_REGISTER_SIZE]; gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); - convert_typed_floating (from, type, to, builtin_type_double); + convert_typed_floating (from, type, + to, builtin_type (gdbarch)->builtin_double); put_frame_register (frame, regnum, to); } @@ -2473,8 +2564,7 @@ e500_move_ev_register (void (*move) (struct regcache *regcache, int reg_index; gdb_byte *byte_buffer = buffer; - gdb_assert (tdep->ppc_ev0_regnum <= ev_reg - && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs); + gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg)); reg_index = ev_reg - tdep->ppc_ev0_regnum; @@ -2493,48 +2583,210 @@ e500_move_ev_register (void (*move) (struct regcache *regcache, static void e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, int reg_nr, gdb_byte *buffer) +{ + e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer); +} + +static void +e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, const gdb_byte *buffer) +{ + e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *)) + regcache_raw_write, + regcache, reg_nr, (gdb_byte *) buffer); +} + +/* Read method for DFP pseudo-registers. */ +static void +dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, gdb_byte *buffer) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int reg_index = reg_nr - tdep->ppc_dl0_regnum; + + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + /* Read two FP registers to form a whole dl register. */ + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index, buffer); + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index + 1, buffer + 8); + } + else + { + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index + 1, buffer + 8); + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index, buffer); + } +} + +/* Write method for DFP pseudo-registers. */ +static void +dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, const gdb_byte *buffer) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int reg_index = reg_nr - tdep->ppc_dl0_regnum; + + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + /* Write each half of the dl register into a separate + FP register. */ + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index, buffer); + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index + 1, buffer + 8); + } + else + { + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index + 1, buffer + 8); + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index, buffer); + } +} + +/* Read method for POWER7 VSX pseudo-registers. */ +static void +vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, gdb_byte *buffer) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int reg_index = reg_nr - tdep->ppc_vsr0_regnum; + + /* Read the portion that overlaps the VMX registers. */ + if (reg_index > 31) + regcache_raw_read (regcache, tdep->ppc_vr0_regnum + + reg_index - 32, buffer); + else + /* Read the portion that overlaps the FPR registers. */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + reg_index, buffer); + regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum + + reg_index, buffer + 8); + } + else + { + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + reg_index, buffer + 8); + regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum + + reg_index, buffer); + } +} + +/* Write method for POWER7 VSX pseudo-registers. */ +static void +vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, const gdb_byte *buffer) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int reg_index = reg_nr - tdep->ppc_vsr0_regnum; + + /* Write the portion that overlaps the VMX registers. */ + if (reg_index > 31) + regcache_raw_write (regcache, tdep->ppc_vr0_regnum + + reg_index - 32, buffer); + else + /* Write the portion that overlaps the FPR registers. */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + reg_index, buffer); + regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum + + reg_index, buffer + 8); + } + else + { + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + reg_index, buffer + 8); + regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum + + reg_index, buffer); + } +} + +/* Read method for POWER7 Extended FP pseudo-registers. */ +static void +efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, gdb_byte *buffer) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int reg_index = reg_nr - tdep->ppc_efpr0_regnum; + + /* Read the portion that overlaps the VMX registers. */ + regcache_raw_read (regcache, tdep->ppc_vr0_regnum + + reg_index, buffer); +} + +/* Write method for POWER7 Extended FP pseudo-registers. */ +static void +efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, const gdb_byte *buffer) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int reg_index = reg_nr - tdep->ppc_efpr0_regnum; + + /* Write the portion that overlaps the VMX registers. */ + regcache_raw_write (regcache, tdep->ppc_vr0_regnum + + reg_index, buffer); +} + +static void +rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, gdb_byte *buffer) { struct gdbarch *regcache_arch = get_regcache_arch (regcache); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); gdb_assert (regcache_arch == gdbarch); - - if (tdep->ppc_ev0_regnum <= reg_nr - && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs) - e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer); + + if (IS_SPE_PSEUDOREG (tdep, reg_nr)) + e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); + else if (IS_DFP_PSEUDOREG (tdep, reg_nr)) + dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); + else if (IS_VSX_PSEUDOREG (tdep, reg_nr)) + vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); + else if (IS_EFP_PSEUDOREG (tdep, reg_nr)) + efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); else internal_error (__FILE__, __LINE__, - _("e500_pseudo_register_read: " - "called on unexpected register '%s' (%d)"), - gdbarch_register_name (gdbarch, reg_nr), reg_nr); + _("rs6000_pseudo_register_read: " + "called on unexpected register '%s' (%d)"), + gdbarch_register_name (gdbarch, reg_nr), reg_nr); } static void -e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, - int reg_nr, const gdb_byte *buffer) +rs6000_pseudo_register_write (struct gdbarch *gdbarch, + struct regcache *regcache, + int reg_nr, const gdb_byte *buffer) { struct gdbarch *regcache_arch = get_regcache_arch (regcache); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); gdb_assert (regcache_arch == gdbarch); - - if (tdep->ppc_ev0_regnum <= reg_nr - && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs) - e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *)) - regcache_raw_write, - regcache, reg_nr, (gdb_byte *) buffer); + + if (IS_SPE_PSEUDOREG (tdep, reg_nr)) + e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); + else if (IS_DFP_PSEUDOREG (tdep, reg_nr)) + dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); + else if (IS_VSX_PSEUDOREG (tdep, reg_nr)) + vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); + else if (IS_EFP_PSEUDOREG (tdep, reg_nr)) + efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); else internal_error (__FILE__, __LINE__, - _("e500_pseudo_register_read: " - "called on unexpected register '%s' (%d)"), - gdbarch_register_name (gdbarch, reg_nr), reg_nr); + _("rs6000_pseudo_register_write: " + "called on unexpected register '%s' (%d)"), + gdbarch_register_name (gdbarch, reg_nr), reg_nr); } /* Convert a DBX STABS register number to a GDB register number. */ static int -rs6000_stab_reg_to_regnum (int num) +rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (0 <= num && num <= 31) return tdep->ppc_gp0_regnum + num; @@ -2574,9 +2826,9 @@ rs6000_stab_reg_to_regnum (int num) /* Convert a Dwarf 2 register number to a GDB register number. */ static int -rs6000_dwarf2_reg_to_regnum (int num) +rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (0 <= num && num <= 31) return tdep->ppc_gp0_regnum + num; @@ -2679,40 +2931,6 @@ rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) } } -/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). - - Usually a function pointer's representation is simply the address - of the function. On the RS/6000 however, a function pointer is - represented by a pointer to an OPD entry. This OPD entry contains - three words, the first word is the address of the function, the - second word is the TOC pointer (r2), and the third word is the - static chain value. Throughout GDB it is currently assumed that a - function pointer contains the address of the function, which is not - easy to fix. In addition, the conversion of a function address to - a function pointer would require allocation of an OPD entry in the - inferior's memory space, with all its drawbacks. To be able to - call C++ virtual methods in the inferior (which are called via - function pointers), find_function_addr uses this function to get the - function address from a function pointer. */ - -/* Return real function address if ADDR (a function pointer) is in the data - space and is therefore a special function pointer. */ - -static CORE_ADDR -rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, - CORE_ADDR addr, - struct target_ops *targ) -{ - struct obj_section *s; - - s = find_pc_section (addr); - if (s && s->the_bfd_section->flags & SEC_CODE) - return addr; - - /* ADDR is in the data space, so it's a special function pointer. */ - return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize); -} - /* Handling the various POWER/PowerPC variants. */ @@ -2739,11 +2957,13 @@ struct variant static struct variant variants[] = { {"powerpc", "PowerPC user-level", bfd_arch_powerpc, - bfd_mach_ppc, &tdesc_powerpc_32}, + bfd_mach_ppc, &tdesc_powerpc_altivec32}, {"power", "POWER user-level", bfd_arch_rs6000, bfd_mach_rs6k, &tdesc_rs6000}, {"403", "IBM PowerPC 403", bfd_arch_powerpc, bfd_mach_ppc_403, &tdesc_powerpc_403}, + {"405", "IBM PowerPC 405", bfd_arch_powerpc, + bfd_mach_ppc_405, &tdesc_powerpc_405}, {"601", "Motorola PowerPC 601", bfd_arch_powerpc, bfd_mach_ppc_601, &tdesc_powerpc_601}, {"602", "Motorola PowerPC 602", bfd_arch_powerpc, @@ -2767,7 +2987,7 @@ static struct variant variants[] = /* 64-bit */ {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, - bfd_mach_ppc64, &tdesc_powerpc_64}, + bfd_mach_ppc64, &tdesc_powerpc_altivec64}, {"620", "Motorola PowerPC 620", bfd_arch_powerpc, bfd_mach_ppc_620, &tdesc_powerpc_64}, {"630", "Motorola PowerPC 630", bfd_arch_powerpc, @@ -2811,7 +3031,7 @@ gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) if (!info->disassembler_options) info->disassembler_options = "any"; - if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) + if (info->endian == BFD_ENDIAN_BIG) return print_insn_big_powerpc (memaddr, info); else return print_insn_little_powerpc (memaddr, info); @@ -2825,11 +3045,11 @@ rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) } static struct frame_id -rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) +rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) { - return frame_id_build (frame_unwind_register_unsigned - (next_frame, gdbarch_sp_regnum (gdbarch)), - frame_pc_unwind (next_frame)); + return frame_id_build (get_frame_register_unsigned + (this_frame, gdbarch_sp_regnum (gdbarch)), + get_frame_pc (this_frame)); } struct rs6000_frame_cache @@ -2840,11 +3060,12 @@ struct rs6000_frame_cache }; static struct rs6000_frame_cache * -rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) +rs6000_frame_cache (struct frame_info *this_frame, void **this_cache) { struct rs6000_frame_cache *cache; - struct gdbarch *gdbarch = get_frame_arch (next_frame); + struct gdbarch *gdbarch = get_frame_arch (this_frame); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); struct rs6000_framedata fdata; int wordsize = tdep->wordsize; CORE_ADDR func, pc; @@ -2853,11 +3074,11 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) return (*this_cache); cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); (*this_cache) = cache; - cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); + cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); - func = frame_func_unwind (next_frame, NORMAL_FRAME); - pc = frame_pc_unwind (next_frame); - skip_prologue (func, pc, &fdata); + func = get_frame_func (this_frame); + pc = get_frame_pc (this_frame); + skip_prologue (gdbarch, func, pc, &fdata); /* Figure out the parent's stack pointer. */ @@ -2866,13 +3087,13 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) ->frame pointed to the outer-most address of the frame. In the mean time, the address of the prev frame is used as the base address of this frame. */ - cache->base = frame_unwind_register_unsigned - (next_frame, gdbarch_sp_regnum (gdbarch)); + cache->base = get_frame_register_unsigned + (this_frame, gdbarch_sp_regnum (gdbarch)); /* If the function appears to be frameless, check a couple of likely indicators that we have simply failed to find the frame setup. Two common cases of this are missing symbols (i.e. - frame_func_unwind returns the wrong address or 0), and assembly + get_frame_func returns the wrong address or 0), and assembly stubs which have a fast exit path but set up a frame on the slow path. @@ -2883,8 +3104,7 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) CORE_ADDR saved_lr; int make_frame = 0; - saved_lr = frame_unwind_register_unsigned (next_frame, - tdep->ppc_lr_regnum); + saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum); if (func == 0 && saved_lr == pc) make_frame = 1; else if (func != 0) @@ -2903,7 +3123,8 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) if (!fdata.frameless) /* Frameless really means stackless. */ - cache->base = read_memory_addr (cache->base, wordsize); + cache->base + = read_memory_unsigned_integer (cache->base, wordsize, byte_order); trad_frame_set_value (cache->saved_regs, gdbarch_sp_regnum (gdbarch), cache->base); @@ -2929,7 +3150,8 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) } /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. - All gpr's from saved_gpr to gpr31 are saved. */ + All gpr's from saved_gpr to gpr31 are saved (except during the + prologue). */ if (fdata.saved_gpr >= 0) { @@ -2937,7 +3159,8 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset; for (i = fdata.saved_gpr; i < ppc_num_gprs; i++) { - cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; + if (fdata.gpr_mask & (1U << i)) + cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; gpr_addr += wordsize; } } @@ -2960,7 +3183,7 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) /* if != -1, fdata.saved_ev is the smallest number of saved_ev. All vr's from saved_ev to ev31 are saved. ????? */ - if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) + if (tdep->ppc_ev0_regnum != -1) { if (fdata.saved_ev >= 0) { @@ -2984,6 +3207,8 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) holds the LR. */ if (fdata.lr_offset != 0) cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset; + else if (fdata.lr_register != -1) + cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register; /* The PC is found in the link register. */ cache->saved_regs[gdbarch_pc_regnum (gdbarch)] = cache->saved_regs[tdep->ppc_lr_regnum]; @@ -2996,58 +3221,51 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) if (fdata.alloca_reg < 0) /* If no alloca register used, then fi->frame is the value of the %sp for this frame, and it is good enough. */ - cache->initial_sp = frame_unwind_register_unsigned - (next_frame, gdbarch_sp_regnum (gdbarch)); + cache->initial_sp + = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch)); else - cache->initial_sp = frame_unwind_register_unsigned (next_frame, - fdata.alloca_reg); + cache->initial_sp + = get_frame_register_unsigned (this_frame, fdata.alloca_reg); return cache; } static void -rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache, +rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) { - struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, + struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, this_cache); - (*this_id) = frame_id_build (info->base, - frame_func_unwind (next_frame, NORMAL_FRAME)); + /* This marks the outermost frame. */ + if (info->base == 0) + return; + + (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); } -static void -rs6000_frame_prev_register (struct frame_info *next_frame, - void **this_cache, - int regnum, int *optimizedp, - enum lval_type *lvalp, CORE_ADDR *addrp, - int *realnump, gdb_byte *valuep) +static struct value * +rs6000_frame_prev_register (struct frame_info *this_frame, + void **this_cache, int regnum) { - struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, + struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, this_cache); - trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, - optimizedp, lvalp, addrp, realnump, valuep); + return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); } static const struct frame_unwind rs6000_frame_unwind = { NORMAL_FRAME, rs6000_frame_this_id, - rs6000_frame_prev_register + rs6000_frame_prev_register, + NULL, + default_frame_sniffer }; - -static const struct frame_unwind * -rs6000_frame_sniffer (struct frame_info *next_frame) -{ - return &rs6000_frame_unwind; -} - static CORE_ADDR -rs6000_frame_base_address (struct frame_info *next_frame, - void **this_cache) +rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache) { - struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, + struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, this_cache); return info->initial_sp; } @@ -3060,7 +3278,7 @@ static const struct frame_base rs6000_frame_base = { }; static const struct frame_base * -rs6000_frame_base_sniffer (struct frame_info *next_frame) +rs6000_frame_base_sniffer (struct frame_info *this_frame) { return &rs6000_frame_base; } @@ -3071,7 +3289,7 @@ rs6000_frame_base_sniffer (struct frame_info *next_frame) static void ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, struct dwarf2_frame_state_reg *reg, - struct frame_info *next_frame) + struct frame_info *this_frame) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); @@ -3120,9 +3338,9 @@ ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, } /* Handle PC register and Stack Pointer correctly. */ - if (regnum == gdbarch_pc_regnum (current_gdbarch)) + if (regnum == gdbarch_pc_regnum (gdbarch)) reg->how = DWARF2_FRAME_REG_RA; - else if (regnum == gdbarch_sp_regnum (current_gdbarch)) + else if (regnum == gdbarch_sp_regnum (gdbarch)) reg->how = DWARF2_FRAME_REG_CFA; } @@ -3143,13 +3361,27 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) enum bfd_architecture arch; unsigned long mach; bfd abfd; - int sysv_abi; asection *sect; - int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0; + enum auto_boolean soft_float_flag = powerpc_soft_float_global; + int soft_float; + enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global; + int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0, + have_vsx = 0; int tdesc_wordsize = -1; const struct target_desc *tdesc = info.target_desc; struct tdesc_arch_data *tdesc_data = NULL; - int num_sprs = 0; + int num_pseudoregs = 0; + int cur_reg; + + /* INFO may refer to a binary that is not of the PowerPC architecture, + e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system. + In this case, we must not attempt to infer properties of the (PowerPC + side) of the target system from properties of that executable. Trust + the target description instead. */ + if (info.abfd + && bfd_get_arch (info.abfd) != bfd_arch_powerpc + && bfd_get_arch (info.abfd) != bfd_arch_rs6000) + info.abfd = NULL; from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; @@ -3157,8 +3389,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) from_elf_exec = info.abfd && info.abfd->format == bfd_object && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; - sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; - /* Check word size. If INFO is from a binary file, infer it from that, else choose a likely default. */ if (from_xcoff_exec) @@ -3186,18 +3416,9 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) wordsize = 4; } - if (!from_xcoff_exec) - { - arch = info.bfd_arch_info->arch; - mach = info.bfd_arch_info->mach; - } - else - { - arch = bfd_arch_powerpc; - bfd_default_set_arch_mach (&abfd, arch, 0); - info.bfd_arch_info = bfd_get_arch_info (&abfd); - mach = info.bfd_arch_info->mach; - } + /* Get the architecture and machine from the BFD. */ + arch = info.bfd_arch_info->arch; + mach = info.bfd_arch_info->mach; /* For e500 executables, the apuinfo section is of help here. Such section contains the identifier and revision number of each @@ -3320,6 +3541,10 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) else have_fpu = 0; + /* The DFP pseudo-registers will be available when there are floating + point registers. */ + have_dfp = have_fpu; + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.power.altivec"); if (feature != NULL) @@ -3351,6 +3576,38 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) else have_altivec = 0; + /* Check for POWER7 VSX registers support. */ + feature = tdesc_find_feature (tdesc, + "org.gnu.gdb.power.vsx"); + + if (feature != NULL) + { + static const char *const vsx_regs[] = { + "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h", + "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h", + "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h", + "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h", + "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h", + "vs30h", "vs31h" + }; + + valid_p = 1; + + for (i = 0; i < ppc_num_vshrs; i++) + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_VSR0_UPPER_REGNUM + i, + vsx_regs[i]); + if (!valid_p) + { + tdesc_data_cleanup (tdesc_data); + return NULL; + } + + have_vsx = 1; + } + else + have_vsx = 0; + /* On machines supporting the SPE APU, the general-purpose registers are 64 bits long. There are SIMD vector instructions to treat them as pairs of floats, but the rest of the instruction set treats them @@ -3417,6 +3674,76 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) return NULL; } +#ifdef HAVE_ELF + if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec) + { + switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, + Tag_GNU_Power_ABI_FP)) + { + case 1: + soft_float_flag = AUTO_BOOLEAN_FALSE; + break; + case 2: + soft_float_flag = AUTO_BOOLEAN_TRUE; + break; + default: + break; + } + } + + if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec) + { + switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, + Tag_GNU_Power_ABI_Vector)) + { + case 1: + vector_abi = POWERPC_VEC_GENERIC; + break; + case 2: + vector_abi = POWERPC_VEC_ALTIVEC; + break; + case 3: + vector_abi = POWERPC_VEC_SPE; + break; + default: + break; + } + } +#endif + + if (soft_float_flag == AUTO_BOOLEAN_TRUE) + soft_float = 1; + else if (soft_float_flag == AUTO_BOOLEAN_FALSE) + soft_float = 0; + else + soft_float = !have_fpu; + + /* If we have a hard float binary or setting but no floating point + registers, downgrade to soft float anyway. We're still somewhat + useful in this scenario. */ + if (!soft_float && !have_fpu) + soft_float = 1; + + /* Similarly for vector registers. */ + if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec) + vector_abi = POWERPC_VEC_GENERIC; + + if (vector_abi == POWERPC_VEC_SPE && !have_spe) + vector_abi = POWERPC_VEC_GENERIC; + + if (vector_abi == POWERPC_VEC_AUTO) + { + if (have_altivec) + vector_abi = POWERPC_VEC_ALTIVEC; + else if (have_spe) + vector_abi = POWERPC_VEC_SPE; + else + vector_abi = POWERPC_VEC_GENERIC; + } + + /* Do not limit the vector ABI based on available hardware, since we + do not yet know what hardware we'll decide we have. Yuck! FIXME! */ + /* Find a candidate among extant architectures. */ for (arches = gdbarch_list_lookup_by_info (arches, &info); arches != NULL; @@ -3426,6 +3753,10 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform separate word size check. */ tdep = gdbarch_tdep (arches->gdbarch); + if (tdep && tdep->soft_float != soft_float) + continue; + if (tdep && tdep->vector_abi != vector_abi) + continue; if (tdep && tdep->wordsize == wordsize) { if (tdesc_data != NULL) @@ -3444,6 +3775,8 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) tdep = XCALLOC (1, struct gdbarch_tdep); tdep->wordsize = wordsize; + tdep->soft_float = soft_float; + tdep->vector_abi = vector_abi; gdbarch = gdbarch_alloc (&info, tdep); @@ -3458,6 +3791,7 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1; tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1; + tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1; tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1; tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1; tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1; @@ -3475,25 +3809,21 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) alias. */ set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum); - if (sysv_abi && wordsize == 8) + if (wordsize == 8) set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); - else if (sysv_abi && wordsize == 4) - set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); else - set_gdbarch_return_value (gdbarch, rs6000_return_value); + set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); /* Set lr_frame_offset. */ if (wordsize == 8) tdep->lr_frame_offset = 16; - else if (sysv_abi) - tdep->lr_frame_offset = 4; else - tdep->lr_frame_offset = 8; + tdep->lr_frame_offset = 4; - if (have_spe) + if (have_spe || have_dfp || have_vsx) { - set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); - set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); + set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write); } set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); @@ -3504,8 +3834,17 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) else set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); - set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS + num_sprs); - set_gdbarch_num_pseudo_regs (gdbarch, have_spe ? 32 : 0); + set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS); + + if (have_spe) + num_pseudoregs += 32; + if (have_dfp) + num_pseudoregs += 16; + if (have_vsx) + /* Include both VSX and Extended FP registers. */ + num_pseudoregs += 96; + + set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs); set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); @@ -3514,22 +3853,13 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); - if (sysv_abi) - set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); - else - set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); + set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); set_gdbarch_char_signed (gdbarch, 0); set_gdbarch_frame_align (gdbarch, rs6000_frame_align); - if (sysv_abi && wordsize == 8) + if (wordsize == 8) /* PPC64 SYSV. */ set_gdbarch_frame_red_zone_size (gdbarch, 288); - else if (!sysv_abi && wordsize == 4) - /* PowerOpen / AIX 32 bit. The saved area or red zone consists of - 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. - Problem is, 220 isn't frame (16 byte) aligned. Round it up to - 224. */ - set_gdbarch_frame_red_zone_size (gdbarch, 224); set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); @@ -3538,15 +3868,14 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); - if (sysv_abi && wordsize == 4) + if (wordsize == 4) set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); - else if (sysv_abi && wordsize == 8) + else if (wordsize == 8) set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); - else - set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p); + set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue); set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); @@ -3556,28 +3885,11 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) set_gdbarch_sofun_address_maybe_missing (gdbarch, 1); /* Handles single stepping of atomic sequences. */ - set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence); + set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence); - /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN" - for the descriptor and ".FN" for the entry-point -- a user - specifying "break FN" will unexpectedly end up with a breakpoint - on the descriptor and not the function. This architecture method - transforms any breakpoints on descriptors into breakpoints on the - corresponding entry point. */ - if (sysv_abi && wordsize == 8) - set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address); - /* Not sure on this. FIXMEmgo */ set_gdbarch_frame_args_skip (gdbarch, 8); - if (!sysv_abi) - { - /* Handle RS/6000 function pointers (which are really function - descriptors). */ - set_gdbarch_convert_from_func_ptr_addr (gdbarch, - rs6000_convert_from_func_ptr_addr); - } - /* Helpers for function argument information. */ set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); @@ -3587,13 +3899,28 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code); /* Hook in the DWARF CFI frame unwinder. */ - frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); + dwarf2_append_unwinders (gdbarch); dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum); /* Frame handling. */ dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg); + /* Setup displaced stepping. */ + set_gdbarch_displaced_step_copy_insn (gdbarch, + simple_displaced_step_copy_insn); + set_gdbarch_displaced_step_hw_singlestep (gdbarch, + ppc_displaced_step_hw_singlestep); + set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup); + set_gdbarch_displaced_step_free_closure (gdbarch, + simple_displaced_step_free_closure); + set_gdbarch_displaced_step_location (gdbarch, + displaced_step_at_entry_point); + + set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE); + /* Hook in ABI-specific overrides, if they have been registered. */ + info.target_desc = tdesc; + info.tdep_info = (void *) tdesc_data; gdbarch_init_osabi (info, gdbarch); switch (info.osabi) @@ -3603,16 +3930,16 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) case GDB_OSABI_NETBSD_ELF: case GDB_OSABI_UNKNOWN: set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); - frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); - set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); + frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind); + set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id); frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); break; default: set_gdbarch_believe_pcc_promotion (gdbarch, 1); set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); - frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); - set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); + frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind); + set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id); frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); } @@ -3625,9 +3952,34 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) halves anonymous. */ set_gdbarch_register_name (gdbarch, rs6000_register_name); - /* Recording the numbering of pseudo registers. */ - tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1; - tdep->ppc_ev31_regnum = have_spe ? tdep->ppc_ev0_regnum + 31 : -1; + /* Choose register numbers for all supported pseudo-registers. */ + tdep->ppc_ev0_regnum = -1; + tdep->ppc_dl0_regnum = -1; + tdep->ppc_vsr0_regnum = -1; + tdep->ppc_efpr0_regnum = -1; + + cur_reg = gdbarch_num_regs (gdbarch); + + if (have_spe) + { + tdep->ppc_ev0_regnum = cur_reg; + cur_reg += 32; + } + if (have_dfp) + { + tdep->ppc_dl0_regnum = cur_reg; + cur_reg += 16; + } + if (have_vsx) + { + tdep->ppc_vsr0_regnum = cur_reg; + cur_reg += 64; + tdep->ppc_efpr0_regnum = cur_reg; + cur_reg += 32; + } + + gdb_assert (gdbarch_num_regs (gdbarch) + + gdbarch_num_pseudo_regs (gdbarch) == cur_reg); return gdbarch; } @@ -3643,6 +3995,61 @@ rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) /* FIXME: Dump gdbarch_tdep. */ } +/* PowerPC-specific commands. */ + +static void +set_powerpc_command (char *args, int from_tty) +{ + printf_unfiltered (_("\ +\"set powerpc\" must be followed by an appropriate subcommand.\n")); + help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout); +} + +static void +show_powerpc_command (char *args, int from_tty) +{ + cmd_show_list (showpowerpccmdlist, from_tty, ""); +} + +static void +powerpc_set_soft_float (char *args, int from_tty, + struct cmd_list_element *c) +{ + struct gdbarch_info info; + + /* Update the architecture. */ + gdbarch_info_init (&info); + if (!gdbarch_update_p (info)) + internal_error (__FILE__, __LINE__, "could not update architecture"); +} + +static void +powerpc_set_vector_abi (char *args, int from_tty, + struct cmd_list_element *c) +{ + struct gdbarch_info info; + enum powerpc_vector_abi vector_abi; + + for (vector_abi = POWERPC_VEC_AUTO; + vector_abi != POWERPC_VEC_LAST; + vector_abi++) + if (strcmp (powerpc_vector_abi_string, + powerpc_vector_strings[vector_abi]) == 0) + { + powerpc_vector_abi_global = vector_abi; + break; + } + + if (vector_abi == POWERPC_VEC_LAST) + internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."), + powerpc_vector_abi_string); + + /* Update the architecture. */ + gdbarch_info_init (&info); + if (!gdbarch_update_p (info)) + internal_error (__FILE__, __LINE__, "could not update architecture"); +} + /* Initialization code. */ extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */ @@ -3655,17 +4062,48 @@ _initialize_rs6000_tdep (void) /* Initialize the standard target descriptions. */ initialize_tdesc_powerpc_32 (); + initialize_tdesc_powerpc_altivec32 (); + initialize_tdesc_powerpc_vsx32 (); initialize_tdesc_powerpc_403 (); initialize_tdesc_powerpc_403gc (); + initialize_tdesc_powerpc_405 (); initialize_tdesc_powerpc_505 (); initialize_tdesc_powerpc_601 (); initialize_tdesc_powerpc_602 (); initialize_tdesc_powerpc_603 (); initialize_tdesc_powerpc_604 (); initialize_tdesc_powerpc_64 (); + initialize_tdesc_powerpc_altivec64 (); + initialize_tdesc_powerpc_vsx64 (); initialize_tdesc_powerpc_7400 (); initialize_tdesc_powerpc_750 (); initialize_tdesc_powerpc_860 (); initialize_tdesc_powerpc_e500 (); initialize_tdesc_rs6000 (); + + /* Add root prefix command for all "set powerpc"/"show powerpc" + commands. */ + add_prefix_cmd ("powerpc", no_class, set_powerpc_command, + _("Various PowerPC-specific commands."), + &setpowerpccmdlist, "set powerpc ", 0, &setlist); + + add_prefix_cmd ("powerpc", no_class, show_powerpc_command, + _("Various PowerPC-specific commands."), + &showpowerpccmdlist, "show powerpc ", 0, &showlist); + + /* Add a command to allow the user to force the ABI. */ + add_setshow_auto_boolean_cmd ("soft-float", class_support, + &powerpc_soft_float_global, + _("Set whether to use a soft-float ABI."), + _("Show whether to use a soft-float ABI."), + NULL, + powerpc_set_soft_float, NULL, + &setpowerpccmdlist, &showpowerpccmdlist); + + add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings, + &powerpc_vector_abi_string, + _("Set the vector ABI."), + _("Show the vector ABI."), + NULL, powerpc_set_vector_abi, NULL, + &setpowerpccmdlist, &showpowerpccmdlist); }