X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Frs6000-tdep.c;h=20a6cb5ea87cde68afb20c2d11ce3cc70d892465;hb=ac3d490a1a910c3055e0ecefb312196de25f1436;hp=352843471c7498665a1b9b3e9fcba8f63c1e67e5;hpb=f2db237aa14bae7e5e7a7c4c85e4c2c84b11a30e;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/rs6000-tdep.c b/gdb/rs6000-tdep.c index 352843471c..20a6cb5ea8 100644 --- a/gdb/rs6000-tdep.c +++ b/gdb/rs6000-tdep.c @@ -1,7 +1,7 @@ /* Target-dependent code for GDB, the GNU debugger. Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, - 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 + 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This file is part of GDB. @@ -39,6 +39,8 @@ #include "gdb/sim-ppc.h" #include "reggroups.h" #include "dwarf2-frame.h" +#include "target-descriptions.h" +#include "user-regs.h" #include "libbfd.h" /* for bfd_default_set_arch_mach */ #include "coff/internal.h" /* for libcoff.h */ @@ -47,6 +49,7 @@ #include "libxcoff.h" #include "elf-bfd.h" +#include "elf/ppc.h" #include "solib-svr4.h" #include "ppc-tdep.h" @@ -58,18 +61,53 @@ #include "frame-unwind.h" #include "frame-base.h" -#include "rs6000-tdep.h" +#include "features/rs6000/powerpc-32.c" +#include "features/rs6000/powerpc-altivec32.c" +#include "features/rs6000/powerpc-403.c" +#include "features/rs6000/powerpc-403gc.c" +#include "features/rs6000/powerpc-505.c" +#include "features/rs6000/powerpc-601.c" +#include "features/rs6000/powerpc-602.c" +#include "features/rs6000/powerpc-603.c" +#include "features/rs6000/powerpc-604.c" +#include "features/rs6000/powerpc-64.c" +#include "features/rs6000/powerpc-altivec64.c" +#include "features/rs6000/powerpc-7400.c" +#include "features/rs6000/powerpc-750.c" +#include "features/rs6000/powerpc-860.c" +#include "features/rs6000/powerpc-e500.c" +#include "features/rs6000/rs6000.c" + +/* Determine if regnum is an SPE pseudo-register. */ +#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \ + && (regnum) >= (tdep)->ppc_ev0_regnum \ + && (regnum) < (tdep)->ppc_ev0_regnum + 32) + +/* Determine if regnum is a decimal float pseudo-register. */ +#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \ + && (regnum) >= (tdep)->ppc_dl0_regnum \ + && (regnum) < (tdep)->ppc_dl0_regnum + 16) + +/* The list of available "set powerpc ..." and "show powerpc ..." + commands. */ +static struct cmd_list_element *setpowerpccmdlist = NULL; +static struct cmd_list_element *showpowerpccmdlist = NULL; + +static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO; + +/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */ +static const char *powerpc_vector_strings[] = +{ + "auto", + "generic", + "altivec", + "spe", + NULL +}; -/* If the kernel has to deliver a signal, it pushes a sigcontext - structure on the stack and then calls the signal handler, passing - the address of the sigcontext in an argument register. Usually - the signal handler doesn't save this register, so we have to - access the sigcontext structure via an offset from the signal handler - frame. - The following constants were determined by experimentation on AIX 3.2. */ -#define SIG_FRAME_PC_OFFSET 96 -#define SIG_FRAME_LR_OFFSET 108 -#define SIG_FRAME_FP_OFFSET 284 +/* A variable that can be configured by the user. */ +static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO; +static const char *powerpc_vector_abi_string = "auto"; /* To be used by skip_prologue. */ @@ -94,38 +132,12 @@ struct rs6000_framedata int vrsave_offset; /* offset of saved vrsave register */ }; -/* Description of a single register. */ - -struct reg - { - char *name; /* name of register */ - unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */ - unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */ - unsigned char fpr; /* whether register is floating-point */ - unsigned char pseudo; /* whether register is pseudo */ - int spr_num; /* PowerPC SPR number, or -1 if not an SPR. - This is an ISA SPR number, not a GDB - register number. */ - }; - -/* Hook for determining the TOC address when calling functions in the - inferior under AIX. The initialization code in rs6000-nat.c sets - this hook to point to find_toc_address. */ - -CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; - -/* Static function prototypes */ - -static CORE_ADDR branch_dest (struct frame_info *frame, int opcode, - int instr, CORE_ADDR pc, CORE_ADDR safety); -static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, - struct rs6000_framedata *); /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ int -altivec_register_p (int regno) +altivec_register_p (struct gdbarch *gdbarch, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) return 0; else @@ -135,14 +147,12 @@ altivec_register_p (int regno) /* Return true if REGNO is an SPE register, false otherwise. */ int -spe_register_p (int regno) +spe_register_p (struct gdbarch *gdbarch, int regno) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* Is it a reference to EV0 -- EV31, and do we have those? */ - if (tdep->ppc_ev0_regnum >= 0 - && tdep->ppc_ev31_regnum >= 0 - && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum) + if (IS_SPE_PSEUDOREG (tdep, regno)) return 1; /* Is it a reference to one of the raw upper GPR halves? */ @@ -177,6 +187,16 @@ ppc_floating_point_unit_p (struct gdbarch *gdbarch) && tdep->ppc_fpscr_regnum >= 0); } +/* Return non-zero if the architecture described by GDBARCH has + Altivec registers (vr0 --- vr31, vrsave and vscr). */ +int +ppc_altivec_support_p (struct gdbarch *gdbarch) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + return (tdep->ppc_vr0_regnum >= 0 + && tdep->ppc_vrsave_regnum >= 0); +} /* Check that TABLE[GDB_REGNO] is not already initialized, and then set it to SIM_REGNO. @@ -202,10 +222,13 @@ static void init_sim_regno_table (struct gdbarch *arch) { struct gdbarch_tdep *tdep = gdbarch_tdep (arch); - int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch); - const struct reg *regs = tdep->regs; + int total_regs = gdbarch_num_regs (arch); int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int); int i; + static const char *const segment_regs[] = { + "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", + "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" + }; /* Presume that all registers not explicitly mentioned below are unavailable from the sim. */ @@ -230,11 +253,14 @@ init_sim_regno_table (struct gdbarch *arch) set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum); /* Segment registers. */ - if (tdep->ppc_sr0_regnum >= 0) - for (i = 0; i < ppc_num_srs; i++) - set_sim_regno (sim_regno, - tdep->ppc_sr0_regnum + i, - sim_ppc_sr0_regnum + i); + for (i = 0; i < ppc_num_srs; i++) + { + int gdb_regno; + + gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1); + if (gdb_regno >= 0) + set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i); + } /* Altivec registers. */ if (tdep->ppc_vr0_regnum >= 0) @@ -253,11 +279,6 @@ init_sim_regno_table (struct gdbarch *arch) /* vsave is a special-purpose register, so the code below handles it. */ /* SPE APU (E500) registers. */ - if (tdep->ppc_ev0_regnum >= 0) - for (i = 0; i < ppc_num_gprs; i++) - set_sim_regno (sim_regno, - tdep->ppc_ev0_regnum + i, - sim_ppc_ev0_regnum + i); if (tdep->ppc_ev0_upper_regnum >= 0) for (i = 0; i < ppc_num_gprs; i++) set_sim_regno (sim_regno, @@ -267,12 +288,22 @@ init_sim_regno_table (struct gdbarch *arch) set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum); /* spefscr is a special-purpose register, so the code below handles it. */ +#ifdef WITH_SIM /* Now handle all special-purpose registers. Verify that they haven't mistakenly been assigned numbers by any of the above - code). */ - for (i = 0; i < total_regs; i++) - if (regs[i].spr_num >= 0) - set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum); + code. */ + for (i = 0; i < sim_ppc_num_sprs; i++) + { + const char *spr_name = sim_spr_register_name (i); + int gdb_regno = -1; + + if (spr_name != NULL) + gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1); + + if (gdb_regno != -1) + set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i); + } +#endif /* Drop the initialized array into place. */ tdep->sim_regno = sim_regno; @@ -282,14 +313,17 @@ init_sim_regno_table (struct gdbarch *arch) /* Given a GDB register number REG, return the corresponding SIM register number. */ static int -rs6000_register_sim_regno (int reg) +rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); int sim_regno; + if (tdep->sim_regno == NULL) + init_sim_regno_table (gdbarch); + gdb_assert (0 <= reg - && reg <= gdbarch_num_regs (current_gdbarch) - + gdbarch_num_pseudo_regs (current_gdbarch)); + && reg <= gdbarch_num_regs (gdbarch) + + gdbarch_num_pseudo_regs (gdbarch)); sim_regno = tdep->sim_regno[reg]; if (sim_regno >= 0) @@ -305,7 +339,7 @@ rs6000_register_sim_regno (int reg) /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide. Write the register to REGCACHE. */ -static void +void ppc_supply_reg (struct regcache *regcache, int regnum, const gdb_byte *regs, size_t offset, int regsize) { @@ -326,7 +360,7 @@ ppc_supply_reg (struct regcache *regcache, int regnum, /* Read register REGNUM from REGCACHE and store to REGS + OFFSET in a field REGSIZE wide. Zero pad as necessary. */ -static void +void ppc_collect_reg (const struct regcache *regcache, int regnum, gdb_byte *regs, size_t offset, int regsize) { @@ -405,6 +439,24 @@ ppc_fpreg_offset (struct gdbarch_tdep *tdep, return -1; } +static int +ppc_vrreg_offset (struct gdbarch_tdep *tdep, + const struct ppc_reg_offsets *offsets, + int regnum) +{ + if (regnum >= tdep->ppc_vr0_regnum + && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs) + return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16; + + if (regnum == tdep->ppc_vrsave_regnum - 1) + return offsets->vscr_offset; + + if (regnum == tdep->ppc_vrsave_regnum) + return offsets->vrsave_offset; + + return -1; +} + /* Supply register REGNUM in the general-purpose register set REGSET from the buffer specified by GREGS and LEN to register cache REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ @@ -487,6 +539,50 @@ ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); } +/* Supply register REGNUM in the Altivec register set REGSET + from the buffer specified by VRREGS and LEN to register cache + REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ + +void +ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache, + int regnum, const void *vrregs, size_t len) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep; + const struct ppc_reg_offsets *offsets; + size_t offset; + + if (!ppc_altivec_support_p (gdbarch)) + return; + + tdep = gdbarch_tdep (gdbarch); + offsets = regset->descr; + if (regnum == -1) + { + int i; + + for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset; + i < tdep->ppc_vr0_regnum + ppc_num_vrs; + i++, offset += 16) + ppc_supply_reg (regcache, i, vrregs, offset, 16); + + ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1), + vrregs, offsets->vscr_offset, 4); + + ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum, + vrregs, offsets->vrsave_offset, 4); + return; + } + + offset = ppc_vrreg_offset (tdep, offsets, regnum); + if (regnum != tdep->ppc_vrsave_regnum + && regnum != tdep->ppc_vrsave_regnum - 1) + ppc_supply_reg (regcache, regnum, vrregs, offset, 16); + else + ppc_supply_reg (regcache, regnum, + vrregs, offset, 4); +} + /* Collect register REGNUM in the general-purpose register set REGSET from register cache REGCACHE into the buffer specified by GREGS and LEN. If REGNUM is -1, do this for all registers in @@ -572,45 +668,53 @@ ppc_collect_fpregset (const struct regset *regset, ppc_collect_reg (regcache, regnum, fpregs, offset, regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); } - -/* Read a LEN-byte address from debugged memory address MEMADDR. */ +/* Collect register REGNUM in the Altivec register set + REGSET from register cache REGCACHE into the buffer specified by + VRREGS and LEN. If REGNUM is -1, do this for all registers in + REGSET. */ -static CORE_ADDR -read_memory_addr (CORE_ADDR memaddr, int len) +void +ppc_collect_vrregset (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *vrregs, size_t len) { - return read_memory_unsigned_integer (memaddr, len); -} + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep; + const struct ppc_reg_offsets *offsets; + size_t offset; -static CORE_ADDR -rs6000_skip_prologue (CORE_ADDR pc) -{ - struct rs6000_framedata frame; - CORE_ADDR limit_pc, func_addr; + if (!ppc_altivec_support_p (gdbarch)) + return; - /* See if we can determine the end of the prologue via the symbol table. - If so, then return either PC, or the PC after the prologue, whichever - is greater. */ - if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) + tdep = gdbarch_tdep (gdbarch); + offsets = regset->descr; + if (regnum == -1) { - CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr); - if (post_prologue_pc != 0) - return max (pc, post_prologue_pc); - } + int i; - /* Can't determine prologue from the symbol table, need to examine - instructions. */ + for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset; + i < tdep->ppc_vr0_regnum + ppc_num_vrs; + i++, offset += 16) + ppc_collect_reg (regcache, i, vrregs, offset, 16); - /* Find an upper limit on the function prologue using the debug - information. If the debug information could not be used to provide - that bound, then use an arbitrary large number as the upper bound. */ - limit_pc = skip_prologue_using_sal (pc); - if (limit_pc == 0) - limit_pc = pc + 100; /* Magic. */ + ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1), + vrregs, offsets->vscr_offset, 4); - pc = skip_prologue (pc, limit_pc, &frame); - return pc; + ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum, + vrregs, offsets->vrsave_offset, 4); + return; + } + + offset = ppc_vrreg_offset (tdep, offsets, regnum); + if (regnum != tdep->ppc_vrsave_regnum + && regnum != tdep->ppc_vrsave_regnum - 1) + ppc_collect_reg (regcache, regnum, vrregs, offset, 16); + else + ppc_collect_reg (regcache, regnum, + vrregs, offset, 4); } + static int insn_changes_sp_or_jumps (unsigned long insn) @@ -722,90 +826,121 @@ rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, return get_frame_register_unsigned (frame, 3 + argi); } -/* Calculate the destination of a branch/jump. Return -1 if not a branch. */ +/* Sequence of bytes for breakpoint instruction. */ -static CORE_ADDR -branch_dest (struct frame_info *frame, int opcode, int instr, - CORE_ADDR pc, CORE_ADDR safety) +const static unsigned char * +rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, + int *bp_size) { - struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); - CORE_ADDR dest; - int immediate; - int absolute; - int ext_op; + static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; + static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; + *bp_size = 4; + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + return big_breakpoint; + else + return little_breakpoint; +} - absolute = (int) ((instr >> 1) & 1); +/* Instruction masks for displaced stepping. */ +#define BRANCH_MASK 0xfc000000 +#define BP_MASK 0xFC0007FE +#define B_INSN 0x48000000 +#define BC_INSN 0x40000000 +#define BXL_INSN 0x4c000000 +#define BP_INSN 0x7C000008 - switch (opcode) - { - case 18: - immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ - if (absolute) - dest = immediate; - else - dest = pc + immediate; - break; +/* Fix up the state of registers and memory after having single-stepped + a displaced instruction. */ +void +ppc_displaced_step_fixup (struct gdbarch *gdbarch, + struct displaced_step_closure *closure, + CORE_ADDR from, CORE_ADDR to, + struct regcache *regs) +{ + /* Since we use simple_displaced_step_copy_insn, our closure is a + copy of the instruction. */ + ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure, + PPC_INSN_SIZE); + ULONGEST opcode = 0; + /* Offset for non PC-relative instructions. */ + LONGEST offset = PPC_INSN_SIZE; - case 16: - immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ - if (absolute) - dest = immediate; - else - dest = pc + immediate; - break; + opcode = insn & BRANCH_MASK; + + if (debug_displaced) + fprintf_unfiltered (gdb_stdlog, + "displaced: (ppc) fixup (0x%s, 0x%s)\n", + paddr_nz (from), paddr_nz (to)); + + + /* Handle PC-relative branch instructions. */ + if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN) + { + ULONGEST current_pc; - case 19: - ext_op = (instr >> 1) & 0x3ff; + /* Read the current PC value after the instruction has been executed + in a displaced location. Calculate the offset to be applied to the + original PC value before the displaced stepping. */ + regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch), + ¤t_pc); + offset = current_pc - to; - if (ext_op == 16) /* br conditional register */ + if (opcode != BXL_INSN) + { + /* Check for AA bit indicating whether this is an absolute + addressing or PC-relative (1: absolute, 0: relative). */ + if (!(insn & 0x2)) + { + /* PC-relative addressing is being used in the branch. */ + if (debug_displaced) + fprintf_unfiltered + (gdb_stdlog, + "displaced: (ppc) branch instruction: 0x%s\n" + "displaced: (ppc) adjusted PC from 0x%s to 0x%s\n", + paddr_nz (insn), paddr_nz (current_pc), + paddr_nz (from + offset)); + + regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), + from + offset); + } + } + else { - dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; - - /* If we are about to return from a signal handler, dest is - something like 0x3c90. The current frame is a signal handler - caller frame, upon completion of the sigreturn system call - execution will return to the saved PC in the frame. */ - if (dest < tdep->text_segment_base) - dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, - tdep->wordsize); + /* If we're here, it means we have a branch to LR or CTR. If the + branch was taken, the offset is probably greater than 4 (the next + instruction), so it's safe to assume that an offset of 4 means we + did not take the branch. */ + if (offset == PPC_INSN_SIZE) + regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), + from + PPC_INSN_SIZE); } - else if (ext_op == 528) /* br cond to count reg */ + /* Check for LK bit indicating whether we should set the link + register to point to the next instruction + (1: Set, 0: Don't set). */ + if (insn & 0x1) { - dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3; + /* Link register needs to be set to the next instruction's PC. */ + regcache_cooked_write_unsigned (regs, + gdbarch_tdep (gdbarch)->ppc_lr_regnum, + from + PPC_INSN_SIZE); + if (debug_displaced) + fprintf_unfiltered (gdb_stdlog, + "displaced: (ppc) adjusted LR to 0x%s\n", + paddr_nz (from + PPC_INSN_SIZE)); - /* If we are about to execute a system call, dest is something - like 0x22fc or 0x3b00. Upon completion the system call - will return to the address in the link register. */ - if (dest < tdep->text_segment_base) - dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; } - else - return -1; - break; - - default: - return -1; } - return (dest < tdep->text_segment_base) ? safety : dest; -} - - -/* Sequence of bytes for breakpoint instruction. */ - -const static unsigned char * -rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) -{ - static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; - static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; - *bp_size = 4; - if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) - return big_breakpoint; + /* Check for breakpoints in the inferior. If we've found one, place the PC + right at the breakpoint instruction. */ + else if ((insn & BP_MASK) == BP_INSN) + regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from); else - return little_breakpoint; + /* Handle any other instructions that do not fit in the categories above. */ + regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), + from + offset); } - /* Instruction masks used during single-stepping of atomic sequences. */ #define LWARX_MASK 0xfc0007fe #define LWARX_INSTRUCTION 0x7c000028 @@ -813,21 +948,18 @@ rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) #define STWCX_MASK 0xfc0007ff #define STWCX_INSTRUCTION 0x7c00012d #define STDCX_INSTRUCTION 0x7c0001ad -#define BC_MASK 0xfc000000 -#define BC_INSTRUCTION 0x40000000 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX instruction and ending with a STWCX/STDCX instruction. If such a sequence is found, attempt to step through it. A breakpoint is placed at the end of the sequence. */ -static int -deal_with_atomic_sequence (struct frame_info *frame) +int +ppc_deal_with_atomic_sequence (struct frame_info *frame) { CORE_ADDR pc = get_frame_pc (frame); CORE_ADDR breaks[2] = {-1, -1}; CORE_ADDR loc = pc; - CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */ CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */ int insn = read_memory_integer (loc, PPC_INSN_SIZE); int insn_count; @@ -852,21 +984,22 @@ deal_with_atomic_sequence (struct frame_info *frame) /* Assume that there is at most one conditional branch in the atomic sequence. If a conditional branch is found, put a breakpoint in its destination address. */ - if ((insn & BC_MASK) == BC_INSTRUCTION) + if ((insn & BRANCH_MASK) == BC_INSN) { + int immediate = ((insn & ~3) << 16) >> 16; + int absolute = ((insn >> 1) & 1); + if (bc_insn_count >= 1) return 0; /* More than one conditional branch found, fallback to the standard single-step code. */ - - opcode = insn >> 26; - branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]); - - if (branch_bp != -1) - { - breaks[1] = branch_bp; - bc_insn_count++; - last_breakpoint++; - } + + if (absolute) + breaks[1] = immediate; + else + breaks[1] = pc + immediate; + + bc_insn_count++; + last_breakpoint++; } if ((insn & STWCX_MASK) == STWCX_INSTRUCTION @@ -901,70 +1034,6 @@ deal_with_atomic_sequence (struct frame_info *frame) return 1; } -/* AIX does not support PT_STEP. Simulate it. */ - -int -rs6000_software_single_step (struct frame_info *frame) -{ - CORE_ADDR dummy; - int breakp_sz; - const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); - int ii, insn; - CORE_ADDR loc; - CORE_ADDR breaks[2]; - int opcode; - - loc = get_frame_pc (frame); - - insn = read_memory_integer (loc, 4); - - if (deal_with_atomic_sequence (frame)) - return 1; - - breaks[0] = loc + breakp_sz; - opcode = insn >> 26; - breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]); - - /* Don't put two breakpoints on the same address. */ - if (breaks[1] == breaks[0]) - breaks[1] = -1; - - for (ii = 0; ii < 2; ++ii) - { - /* ignore invalid breakpoint. */ - if (breaks[ii] == -1) - continue; - insert_single_step_breakpoint (breaks[ii]); - } - - errno = 0; /* FIXME, don't ignore errors! */ - /* What errors? {read,write}_memory call error(). */ - return 1; -} - - -/* return pc value after skipping a function prologue and also return - information about a function frame. - - in struct rs6000_framedata fdata: - - frameless is TRUE, if function does not have a frame. - - nosavedpc is TRUE, if function does not save %pc value in its frame. - - offset is the initial size of this stack frame --- the amount by - which we decrement the sp to allocate the frame. - - saved_gpr is the number of the first saved gpr. - - saved_fpr is the number of the first saved fpr. - - saved_vr is the number of the first saved vr. - - saved_ev is the number of the first saved ev. - - alloca_reg is the number of the register used for alloca() handling. - Otherwise -1. - - gpr_offset is the offset of the first saved gpr from the previous frame. - - fpr_offset is the offset of the first saved fpr from the previous frame. - - vr_offset is the offset of the first saved vr from the previous frame. - - ev_offset is the offset of the first saved ev from the previous frame. - - lr_offset is the offset of the saved lr - - cr_offset is the offset of the saved cr - - vrsave_offset is the offset of the saved vrsave register - */ #define SIGNED_SHORT(x) \ ((sizeof (short) == 2) \ @@ -1077,8 +1146,32 @@ bl_to_blrl_insn_p (CORE_ADDR pc, int insn) return 0; } +/* return pc value after skipping a function prologue and also return + information about a function frame. + + in struct rs6000_framedata fdata: + - frameless is TRUE, if function does not have a frame. + - nosavedpc is TRUE, if function does not save %pc value in its frame. + - offset is the initial size of this stack frame --- the amount by + which we decrement the sp to allocate the frame. + - saved_gpr is the number of the first saved gpr. + - saved_fpr is the number of the first saved fpr. + - saved_vr is the number of the first saved vr. + - saved_ev is the number of the first saved ev. + - alloca_reg is the number of the register used for alloca() handling. + Otherwise -1. + - gpr_offset is the offset of the first saved gpr from the previous frame. + - fpr_offset is the offset of the first saved fpr from the previous frame. + - vr_offset is the offset of the first saved vr from the previous frame. + - ev_offset is the offset of the first saved ev from the previous frame. + - lr_offset is the offset of the saved lr + - cr_offset is the offset of the saved cr + - vrsave_offset is the offset of the saved vrsave register + */ + static CORE_ADDR -skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) +skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc, + struct rs6000_framedata *fdata) { CORE_ADDR orig_pc = pc; CORE_ADDR last_prologue_pc = pc; @@ -1099,8 +1192,8 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) int prev_insn_was_prologue_insn = 1; int num_skip_non_prologue_insns = 0; int r0_contains_arg = 0; - const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); memset (fdata, 0, sizeof (struct rs6000_framedata)); fdata->saved_gpr = -1; @@ -1646,11 +1739,35 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) return last_prologue_pc; } +static CORE_ADDR +rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + struct rs6000_framedata frame; + CORE_ADDR limit_pc, func_addr; + + /* See if we can determine the end of the prologue via the symbol table. + If so, then return either PC, or the PC after the prologue, whichever + is greater. */ + if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) + { + CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr); + if (post_prologue_pc != 0) + return max (pc, post_prologue_pc); + } + + /* Can't determine prologue from the symbol table, need to examine + instructions. */ + + /* Find an upper limit on the function prologue using the debug + information. If the debug information could not be used to provide + that bound, then use an arbitrary large number as the upper bound. */ + limit_pc = skip_prologue_using_sal (pc); + if (limit_pc == 0) + limit_pc = pc + 100; /* Magic. */ -/************************************************************************* - Support for creating pushing a dummy frame into the stack, and popping - frames, etc. -*************************************************************************/ + pc = skip_prologue (gdbarch, pc, limit_pc, &frame); + return pc; +} /* All the ABI's require 16 byte alignment. */ @@ -1660,378 +1777,6 @@ rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) return (addr & -16); } -/* Pass the arguments in either registers, or in the stack. In RS/6000, - the first eight words of the argument list (that might be less than - eight parameters if some parameters occupy more than one word) are - passed in r3..r10 registers. float and double parameters are - passed in fpr's, in addition to that. Rest of the parameters if any - are passed in user stack. There might be cases in which half of the - parameter is copied into registers, the other half is pushed into - stack. - - Stack must be aligned on 64-bit boundaries when synthesizing - function calls. - - If the function is returning a structure, then the return address is passed - in r3, then the first 7 words of the parameters can be passed in registers, - starting from r4. */ - -static CORE_ADDR -rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, - struct regcache *regcache, CORE_ADDR bp_addr, - int nargs, struct value **args, CORE_ADDR sp, - int struct_return, CORE_ADDR struct_addr) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - int ii; - int len = 0; - int argno; /* current argument number */ - int argbytes; /* current argument byte */ - gdb_byte tmp_buffer[50]; - int f_argno = 0; /* current floating point argno */ - int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; - CORE_ADDR func_addr = find_function_addr (function, NULL); - - struct value *arg = 0; - struct type *type; - - ULONGEST saved_sp; - - /* The calling convention this function implements assumes the - processor has floating-point registers. We shouldn't be using it - on PPC variants that lack them. */ - gdb_assert (ppc_floating_point_unit_p (current_gdbarch)); - - /* The first eight words of ther arguments are passed in registers. - Copy them appropriately. */ - ii = 0; - - /* If the function is returning a `struct', then the first word - (which will be passed in r3) is used for struct return address. - In that case we should advance one word and start from r4 - register to copy parameters. */ - if (struct_return) - { - regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, - struct_addr); - ii++; - } - -/* - effectively indirect call... gcc does... - - return_val example( float, int); - - eabi: - float in fp0, int in r3 - offset of stack on overflow 8/16 - for varargs, must go by type. - power open: - float in r3&r4, int in r5 - offset of stack on overflow different - both: - return in r3 or f0. If no float, must study how gcc emulates floats; - pay attention to arg promotion. - User may have to cast\args to handle promotion correctly - since gdb won't know if prototype supplied or not. - */ - - for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) - { - int reg_size = register_size (current_gdbarch, ii + 3); - - arg = args[argno]; - type = check_typedef (value_type (arg)); - len = TYPE_LENGTH (type); - - if (TYPE_CODE (type) == TYPE_CODE_FLT) - { - - /* Floating point arguments are passed in fpr's, as well as gpr's. - There are 13 fpr's reserved for passing parameters. At this point - there is no way we would run out of them. */ - - gdb_assert (len <= 8); - - regcache_cooked_write (regcache, - tdep->ppc_fp0_regnum + 1 + f_argno, - value_contents (arg)); - ++f_argno; - } - - if (len > reg_size) - { - - /* Argument takes more than one register. */ - while (argbytes < len) - { - gdb_byte word[MAX_REGISTER_SIZE]; - memset (word, 0, reg_size); - memcpy (word, - ((char *) value_contents (arg)) + argbytes, - (len - argbytes) > reg_size - ? reg_size : len - argbytes); - regcache_cooked_write (regcache, - tdep->ppc_gp0_regnum + 3 + ii, - word); - ++ii, argbytes += reg_size; - - if (ii >= 8) - goto ran_out_of_registers_for_arguments; - } - argbytes = 0; - --ii; - } - else - { - /* Argument can fit in one register. No problem. */ - int adj = gdbarch_byte_order (current_gdbarch) - == BFD_ENDIAN_BIG ? reg_size - len : 0; - gdb_byte word[MAX_REGISTER_SIZE]; - - memset (word, 0, reg_size); - memcpy (word, value_contents (arg), len); - regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); - } - ++argno; - } - -ran_out_of_registers_for_arguments: - - regcache_cooked_read_unsigned (regcache, - gdbarch_sp_regnum (current_gdbarch), - &saved_sp); - - /* Location for 8 parameters are always reserved. */ - sp -= wordsize * 8; - - /* Another six words for back chain, TOC register, link register, etc. */ - sp -= wordsize * 6; - - /* Stack pointer must be quadword aligned. */ - sp &= -16; - - /* If there are more arguments, allocate space for them in - the stack, then push them starting from the ninth one. */ - - if ((argno < nargs) || argbytes) - { - int space = 0, jj; - - if (argbytes) - { - space += ((len - argbytes + 3) & -4); - jj = argno + 1; - } - else - jj = argno; - - for (; jj < nargs; ++jj) - { - struct value *val = args[jj]; - space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; - } - - /* Add location required for the rest of the parameters. */ - space = (space + 15) & -16; - sp -= space; - - /* This is another instance we need to be concerned about - securing our stack space. If we write anything underneath %sp - (r1), we might conflict with the kernel who thinks he is free - to use this area. So, update %sp first before doing anything - else. */ - - regcache_raw_write_signed (regcache, - gdbarch_sp_regnum (current_gdbarch), sp); - - /* If the last argument copied into the registers didn't fit there - completely, push the rest of it into stack. */ - - if (argbytes) - { - write_memory (sp + 24 + (ii * 4), - value_contents (arg) + argbytes, - len - argbytes); - ++argno; - ii += ((len - argbytes + 3) & -4) / 4; - } - - /* Push the rest of the arguments into stack. */ - for (; argno < nargs; ++argno) - { - - arg = args[argno]; - type = check_typedef (value_type (arg)); - len = TYPE_LENGTH (type); - - - /* Float types should be passed in fpr's, as well as in the - stack. */ - if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) - { - - gdb_assert (len <= 8); - - regcache_cooked_write (regcache, - tdep->ppc_fp0_regnum + 1 + f_argno, - value_contents (arg)); - ++f_argno; - } - - write_memory (sp + 24 + (ii * 4), value_contents (arg), len); - ii += ((len + 3) & -4) / 4; - } - } - - /* Set the stack pointer. According to the ABI, the SP is meant to - be set _before_ the corresponding stack space is used. On AIX, - this even applies when the target has been completely stopped! - Not doing this can lead to conflicts with the kernel which thinks - that it still has control over this not-yet-allocated stack - region. */ - regcache_raw_write_signed (regcache, gdbarch_sp_regnum (current_gdbarch), sp); - - /* Set back chain properly. */ - store_unsigned_integer (tmp_buffer, wordsize, saved_sp); - write_memory (sp, tmp_buffer, wordsize); - - /* Point the inferior function call's return address at the dummy's - breakpoint. */ - regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); - - /* Set the TOC register, get the value from the objfile reader - which, in turn, gets it from the VMAP table. */ - if (rs6000_find_toc_address_hook != NULL) - { - CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); - regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); - } - - target_store_registers (regcache, -1); - return sp; -} - -static enum return_value_convention -rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype, - struct regcache *regcache, gdb_byte *readbuf, - const gdb_byte *writebuf) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - gdb_byte buf[8]; - - /* The calling convention this function implements assumes the - processor has floating-point registers. We shouldn't be using it - on PowerPC variants that lack them. */ - gdb_assert (ppc_floating_point_unit_p (current_gdbarch)); - - /* AltiVec extension: Functions that declare a vector data type as a - return value place that return value in VR2. */ - if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype) - && TYPE_LENGTH (valtype) == 16) - { - if (readbuf) - regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); - if (writebuf) - regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); - - return RETURN_VALUE_REGISTER_CONVENTION; - } - - /* If the called subprogram returns an aggregate, there exists an - implicit first argument, whose value is the address of a caller- - allocated buffer into which the callee is assumed to store its - return value. All explicit parameters are appropriately - relabeled. */ - if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT - || TYPE_CODE (valtype) == TYPE_CODE_UNION - || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) - return RETURN_VALUE_STRUCT_CONVENTION; - - /* Scalar floating-point values are returned in FPR1 for float or - double, and in FPR1:FPR2 for quadword precision. Fortran - complex*8 and complex*16 are returned in FPR1:FPR2, and - complex*32 is returned in FPR1:FPR4. */ - if (TYPE_CODE (valtype) == TYPE_CODE_FLT - && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) - { - struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); - gdb_byte regval[8]; - - /* FIXME: kettenis/2007-01-01: Add support for quadword - precision and complex. */ - - if (readbuf) - { - regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); - convert_typed_floating (regval, regtype, readbuf, valtype); - } - if (writebuf) - { - convert_typed_floating (writebuf, valtype, regval, regtype); - regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); - } - - return RETURN_VALUE_REGISTER_CONVENTION; - } - - /* Values of the types int, long, short, pointer, and char (length - is less than or equal to four bytes), as well as bit values of - lengths less than or equal to 32 bits, must be returned right - justified in GPR3 with signed values sign extended and unsigned - values zero extended, as necessary. */ - if (TYPE_LENGTH (valtype) <= tdep->wordsize) - { - if (readbuf) - { - ULONGEST regval; - - /* For reading we don't have to worry about sign extension. */ - regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, - ®val); - store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); - } - if (writebuf) - { - /* For writing, use unpack_long since that should handle any - required sign extension. */ - regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, - unpack_long (valtype, writebuf)); - } - - return RETURN_VALUE_REGISTER_CONVENTION; - } - - /* Eight-byte non-floating-point scalar values must be returned in - GPR3:GPR4. */ - - if (TYPE_LENGTH (valtype) == 8) - { - gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT); - gdb_assert (tdep->wordsize == 4); - - if (readbuf) - { - gdb_byte regval[8]; - - regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval); - regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, - regval + 4); - memcpy (readbuf, regval, 8); - } - if (writebuf) - { - regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); - regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, - writebuf + 4); - } - - return RETURN_VALUE_REGISTER_CONVENTION; - } - - return RETURN_VALUE_STRUCT_CONVENTION; -} - /* Return whether handle_inferior_event() should proceed through code starting at PC in function NAME when stepping. @@ -2078,6 +1823,7 @@ rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) CORE_ADDR rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) { + struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); unsigned int ii, op; int rel; CORE_ADDR solib_target_pc; @@ -2098,8 +1844,7 @@ rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) /* Check for bigtoc fixup code. */ msymbol = lookup_minimal_symbol_by_pc (pc); if (msymbol - && rs6000_in_solib_return_trampoline (pc, - DEPRECATED_SYMBOL_NAME (msymbol))) + && rs6000_in_solib_return_trampoline (pc, SYMBOL_LINKAGE_NAME (msymbol))) { /* Double-check that the third instruction from PC is relative "b". */ op = read_memory_integer (pc + 8, 4); @@ -2124,7 +1869,7 @@ rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) return 0; } ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */ - pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ + pc = read_memory_unsigned_integer (ii, tdep->wordsize); /* (r11) value */ return pc; } @@ -2170,171 +1915,102 @@ rs6000_builtin_type_vec64 (struct gdbarch *gdbarch) return tdep->ppc_builtin_type_vec64; } -static struct type * -rs6000_builtin_type_vec128 (struct gdbarch *gdbarch) +/* Return the name of register number REGNO, or the empty string if it + is an anonymous register. */ + +static const char * +rs6000_register_name (struct gdbarch *gdbarch, int regno) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - if (!tdep->ppc_builtin_type_vec128) - { - /* The type we're building is this: */ -#if 0 - union __gdb_builtin_type_vec128 - { - int128_t uint128; - float v4_float[4]; - int32_t v4_int32[4]; - int16_t v8_int16[8]; - int8_t v16_int8[16]; - }; -#endif - - struct type *t; - - t = init_composite_type ("__ppc_builtin_type_vec128", TYPE_CODE_UNION); - append_composite_type_field (t, "uint128", builtin_type_int128); - append_composite_type_field (t, "v4_float", - init_vector_type (builtin_type_float, 4)); - append_composite_type_field (t, "v4_int32", - init_vector_type (builtin_type_int32, 4)); - append_composite_type_field (t, "v8_int16", - init_vector_type (builtin_type_int16, 8)); - append_composite_type_field (t, "v16_int8", - init_vector_type (builtin_type_int8, 16)); + /* The upper half "registers" have names in the XML description, + but we present only the low GPRs and the full 64-bit registers + to the user. */ + if (tdep->ppc_ev0_upper_regnum >= 0 + && tdep->ppc_ev0_upper_regnum <= regno + && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) + return ""; - TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR; - TYPE_NAME (t) = "ppc_builtin_type_vec128"; - tdep->ppc_builtin_type_vec128 = t; + /* Check if the SPE pseudo registers are available. */ + if (IS_SPE_PSEUDOREG (tdep, regno)) + { + static const char *const spe_regnames[] = { + "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7", + "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15", + "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23", + "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31", + }; + return spe_regnames[regno - tdep->ppc_ev0_regnum]; } - return tdep->ppc_builtin_type_vec128; -} - -/* Return the size of register REG when words are WORDSIZE bytes long. If REG - isn't available with that word size, return 0. */ - -static int -regsize (const struct reg *reg, int wordsize) -{ - return wordsize == 8 ? reg->sz64 : reg->sz32; -} - -/* Return the name of register number N, or null if no such register exists - in the current architecture. */ - -static const char * -rs6000_register_name (int n) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - const struct reg *reg = tdep->regs + n; + /* Check if the decimal128 pseudo-registers are available. */ + if (IS_DFP_PSEUDOREG (tdep, regno)) + { + static const char *const dfp128_regnames[] = { + "dl0", "dl1", "dl2", "dl3", + "dl4", "dl5", "dl6", "dl7", + "dl8", "dl9", "dl10", "dl11", + "dl12", "dl13", "dl14", "dl15" + }; + return dfp128_regnames[regno - tdep->ppc_dl0_regnum]; + } - if (!regsize (reg, tdep->wordsize)) - return NULL; - return reg->name; + return tdesc_register_name (gdbarch, regno); } -/* Return the GDB type object for the "standard" data type - of data in register N. */ +/* Return the GDB type object for the "standard" data type of data in + register N. */ static struct type * -rs6000_register_type (struct gdbarch *gdbarch, int n) +rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - const struct reg *reg = tdep->regs + n; - if (reg->fpr) - return builtin_type_double; + /* These are the only pseudo-registers we support. */ + gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum) + || IS_DFP_PSEUDOREG (tdep, regnum)); + + /* These are the e500 pseudo-registers. */ + if (IS_SPE_PSEUDOREG (tdep, regnum)) + return rs6000_builtin_type_vec64 (gdbarch); else - { - int size = regsize (reg, tdep->wordsize); - switch (size) - { - case 0: - return builtin_type_int0; - case 4: - return builtin_type_uint32; - case 8: - if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum) - return rs6000_builtin_type_vec64 (gdbarch); - else - return builtin_type_uint64; - break; - case 16: - return rs6000_builtin_type_vec128 (gdbarch); - break; - default: - internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"), - n, size); - } - } + /* Could only be the ppc decimal128 pseudo-registers. */ + return builtin_type (gdbarch)->builtin_declong; } /* Is REGNUM a member of REGGROUP? */ static int -rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum, - struct reggroup *group) +rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, + struct reggroup *group) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - int float_p; - int vector_p; - int general_p; - if (gdbarch_register_name (current_gdbarch, regnum) == NULL - || *gdbarch_register_name (current_gdbarch, regnum) == '\0') - return 0; - if (group == all_reggroup) - return 1; + /* These are the only pseudo-registers we support. */ + gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum) + || IS_DFP_PSEUDOREG (tdep, regnum)); - float_p = (regnum == tdep->ppc_fpscr_regnum - || (regnum >= tdep->ppc_fp0_regnum - && regnum < tdep->ppc_fp0_regnum + 32)); - if (group == float_reggroup) - return float_p; - - vector_p = ((tdep->ppc_vr0_regnum >= 0 - && regnum >= tdep->ppc_vr0_regnum - && regnum < tdep->ppc_vr0_regnum + 32) - || (tdep->ppc_ev0_regnum >= 0 - && regnum >= tdep->ppc_ev0_regnum - && regnum < tdep->ppc_ev0_regnum + 32) - || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */ - || regnum == tdep->ppc_vrsave_regnum - || regnum == tdep->ppc_acc_regnum - || regnum == tdep->ppc_spefscr_regnum); - if (group == vector_reggroup) - return vector_p; - - /* Note that PS aka MSR isn't included - it's a system register (and - besides, due to GCC's CFI foobar you do not want to restore - it). */ - general_p = ((regnum >= tdep->ppc_gp0_regnum - && regnum < tdep->ppc_gp0_regnum + 32) - || regnum == tdep->ppc_toc_regnum - || regnum == tdep->ppc_cr_regnum - || regnum == tdep->ppc_lr_regnum - || regnum == tdep->ppc_ctr_regnum - || regnum == tdep->ppc_xer_regnum - || regnum == gdbarch_pc_regnum (current_gdbarch)); - if (group == general_reggroup) - return general_p; - - if (group == save_reggroup || group == restore_reggroup) - return general_p || vector_p || float_p; - - return 0; + /* These are the e500 pseudo-registers. */ + if (IS_SPE_PSEUDOREG (tdep, regnum)) + return group == all_reggroup || group == vector_reggroup; + else + /* Could only be the ppc decimal128 pseudo-registers. */ + return group == all_reggroup || group == float_reggroup; } /* The register format for RS/6000 floating point registers is always double, we need a conversion if the memory format is float. */ static int -rs6000_convert_register_p (int regnum, struct type *type) +rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum, + struct type *type) { - const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; - - return (reg->fpr - && TYPE_CODE (type) == TYPE_CODE_FLT - && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double)); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + return (tdep->ppc_fp0_regnum >= 0 + && regnum >= tdep->ppc_fp0_regnum + && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs + && TYPE_CODE (type) == TYPE_CODE_FLT + && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double)); } static void @@ -2343,10 +2019,8 @@ rs6000_register_to_value (struct frame_info *frame, struct type *type, gdb_byte *to) { - const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; gdb_byte from[MAX_REGISTER_SIZE]; - gdb_assert (reg->fpr); gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); get_frame_register (frame, regnum, from); @@ -2359,10 +2033,8 @@ rs6000_value_to_register (struct frame_info *frame, struct type *type, const gdb_byte *from) { - const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; gdb_byte to[MAX_REGISTER_SIZE]; - gdb_assert (reg->fpr); gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); convert_typed_floating (from, type, to, builtin_type_double); @@ -2403,12 +2075,11 @@ e500_move_ev_register (void (*move) (struct regcache *regcache, int reg_index; gdb_byte *byte_buffer = buffer; - gdb_assert (tdep->ppc_ev0_regnum <= ev_reg - && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs); + gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg)); reg_index = ev_reg - tdep->ppc_ev0_regnum; - if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) + if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) { move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer); move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4); @@ -2424,69 +2095,117 @@ static void e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, int reg_nr, gdb_byte *buffer) { - struct gdbarch *regcache_arch = get_regcache_arch (regcache); - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer); +} - gdb_assert (regcache_arch == gdbarch); - - if (tdep->ppc_ev0_regnum <= reg_nr - && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs) - e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer); +static void +e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, const gdb_byte *buffer) +{ + e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *)) + regcache_raw_write, + regcache, reg_nr, (gdb_byte *) buffer); +} + +/* Read method for PPC pseudo-registers. Currently this is handling the + 16 decimal128 registers that map into 16 pairs of FP registers. */ +static void +ppc_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, gdb_byte *buffer) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int reg_index = reg_nr - tdep->ppc_dl0_regnum; + + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + /* Read two FP registers to form a whole dl register. */ + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index, buffer); + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index + 1, buffer + 8); + } else - internal_error (__FILE__, __LINE__, - _("e500_pseudo_register_read: " - "called on unexpected register '%s' (%d)"), - gdbarch_register_name (gdbarch, reg_nr), reg_nr); + { + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index + 1, buffer + 8); + regcache_raw_read (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index, buffer); + } } +/* Write method for PPC pseudo-registers. Currently this is handling the + 16 decimal128 registers that map into 16 pairs of FP registers. */ static void -e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, +ppc_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, int reg_nr, const gdb_byte *buffer) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int reg_index = reg_nr - tdep->ppc_dl0_regnum; + + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + /* Write each half of the dl register into a separate + FP register. */ + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index, buffer); + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index + 1, buffer + 8); + } + else + { + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index + 1, buffer + 8); + regcache_raw_write (regcache, tdep->ppc_fp0_regnum + + 2 * reg_index, buffer); + } +} + +static void +rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int reg_nr, gdb_byte *buffer) { struct gdbarch *regcache_arch = get_regcache_arch (regcache); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); gdb_assert (regcache_arch == gdbarch); - - if (tdep->ppc_ev0_regnum <= reg_nr - && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs) - e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *)) - regcache_raw_write, - regcache, reg_nr, (gdb_byte *) buffer); + + if (IS_SPE_PSEUDOREG (tdep, reg_nr)) + e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); + else if (IS_DFP_PSEUDOREG (tdep, reg_nr)) + ppc_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); else internal_error (__FILE__, __LINE__, - _("e500_pseudo_register_read: " - "called on unexpected register '%s' (%d)"), - gdbarch_register_name (gdbarch, reg_nr), reg_nr); + _("rs6000_pseudo_register_read: " + "called on unexpected register '%s' (%d)"), + gdbarch_register_name (gdbarch, reg_nr), reg_nr); } -/* The E500 needs a custom reggroup function: it has anonymous raw - registers, and default_register_reggroup_p assumes that anonymous - registers are not members of any reggroup. */ -static int -e500_register_reggroup_p (struct gdbarch *gdbarch, - int regnum, - struct reggroup *group) +static void +rs6000_pseudo_register_write (struct gdbarch *gdbarch, + struct regcache *regcache, + int reg_nr, const gdb_byte *buffer) { - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + struct gdbarch *regcache_arch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - /* The save and restore register groups need to include the - upper-half registers, even though they're anonymous. */ - if ((group == save_reggroup - || group == restore_reggroup) - && (tdep->ppc_ev0_upper_regnum <= regnum - && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)) - return 1; + gdb_assert (regcache_arch == gdbarch); - /* In all other regards, the default reggroup definition is fine. */ - return default_register_reggroup_p (gdbarch, regnum, group); + if (IS_SPE_PSEUDOREG (tdep, reg_nr)) + e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); + else if (IS_DFP_PSEUDOREG (tdep, reg_nr)) + ppc_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); + else + internal_error (__FILE__, __LINE__, + _("rs6000_pseudo_register_write: " + "called on unexpected register '%s' (%d)"), + gdbarch_register_name (gdbarch, reg_nr), reg_nr); } /* Convert a DBX STABS register number to a GDB register number. */ static int -rs6000_stab_reg_to_regnum (int num) +rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (0 <= num && num <= 31) return tdep->ppc_gp0_regnum + num; @@ -2526,9 +2245,9 @@ rs6000_stab_reg_to_regnum (int num) /* Convert a Dwarf 2 register number to a GDB register number. */ static int -rs6000_dwarf2_reg_to_regnum (int num) +rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (0 <= num && num <= 31) return tdep->ppc_gp0_regnum + num; @@ -2631,407 +2350,9 @@ rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) } } -/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). - - Usually a function pointer's representation is simply the address - of the function. On the RS/6000 however, a function pointer is - represented by a pointer to an OPD entry. This OPD entry contains - three words, the first word is the address of the function, the - second word is the TOC pointer (r2), and the third word is the - static chain value. Throughout GDB it is currently assumed that a - function pointer contains the address of the function, which is not - easy to fix. In addition, the conversion of a function address to - a function pointer would require allocation of an OPD entry in the - inferior's memory space, with all its drawbacks. To be able to - call C++ virtual methods in the inferior (which are called via - function pointers), find_function_addr uses this function to get the - function address from a function pointer. */ - -/* Return real function address if ADDR (a function pointer) is in the data - space and is therefore a special function pointer. */ - -static CORE_ADDR -rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, - CORE_ADDR addr, - struct target_ops *targ) -{ - struct obj_section *s; - - s = find_pc_section (addr); - if (s && s->the_bfd_section->flags & SEC_CODE) - return addr; - - /* ADDR is in the data space, so it's a special function pointer. */ - return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize); -} - /* Handling the various POWER/PowerPC variants. */ - -/* The arrays here called registers_MUMBLE hold information about available - registers. - - For each family of PPC variants, I've tried to isolate out the - common registers and put them up front, so that as long as you get - the general family right, GDB will correctly identify the registers - common to that family. The common register sets are: - - For the 60x family: hid0 hid1 iabr dabr pir - - For the 505 and 860 family: eie eid nri - - For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi - tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 - pbu1 pbl2 pbu2 - - Most of these register groups aren't anything formal. I arrived at - them by looking at the registers that occurred in more than one - processor. - - Note: kevinb/2002-04-30: Support for the fpscr register was added - during April, 2002. Slot 70 is being used for PowerPC and slot 71 - for Power. For PowerPC, slot 70 was unused and was already in the - PPC_UISA_SPRS which is ideally where fpscr should go. For Power, - slot 70 was being used for "mq", so the next available slot (71) - was chosen. It would have been nice to be able to make the - register numbers the same across processor cores, but this wasn't - possible without either 1) renumbering some registers for some - processors or 2) assigning fpscr to a really high slot that's - larger than any current register number. Doing (1) is bad because - existing stubs would break. Doing (2) is undesirable because it - would introduce a really large gap between fpscr and the rest of - the registers for most processors. */ - -/* Convenience macros for populating register arrays. */ - -/* Within another macro, convert S to a string. */ - -#define STR(s) #s - -/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems - and 64 bits on 64-bit systems. */ -#define R(name) { STR(name), 4, 8, 0, 0, -1 } - -/* Return a struct reg defining register NAME that's 32 bits on all - systems. */ -#define R4(name) { STR(name), 4, 4, 0, 0, -1 } - -/* Return a struct reg defining register NAME that's 64 bits on all - systems. */ -#define R8(name) { STR(name), 8, 8, 0, 0, -1 } - -/* Return a struct reg defining register NAME that's 128 bits on all - systems. */ -#define R16(name) { STR(name), 16, 16, 0, 0, -1 } - -/* Return a struct reg defining floating-point register NAME. */ -#define F(name) { STR(name), 8, 8, 1, 0, -1 } - -/* Return a struct reg defining a pseudo register NAME that is 64 bits - long on all systems. */ -#define P8(name) { STR(name), 8, 8, 0, 1, -1 } - -/* Return a struct reg defining register NAME that's 32 bits on 32-bit - systems and that doesn't exist on 64-bit systems. */ -#define R32(name) { STR(name), 4, 0, 0, 0, -1 } - -/* Return a struct reg defining register NAME that's 64 bits on 64-bit - systems and that doesn't exist on 32-bit systems. */ -#define R64(name) { STR(name), 0, 8, 0, 0, -1 } - -/* Return a struct reg placeholder for a register that doesn't exist. */ -#define R0 { 0, 0, 0, 0, 0, -1 } - -/* Return a struct reg defining an anonymous raw register that's 32 - bits on all systems. */ -#define A4 { 0, 4, 4, 0, 0, -1 } - -/* Return a struct reg defining an SPR named NAME that is 32 bits on - 32-bit systems and 64 bits on 64-bit systems. */ -#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name } - -/* Return a struct reg defining an SPR named NAME that is 32 bits on - all systems. */ -#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name } - -/* Return a struct reg defining an SPR named NAME that is 32 bits on - all systems, and whose SPR number is NUMBER. */ -#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) } - -/* Return a struct reg defining an SPR named NAME that's 64 bits on - 64-bit systems and that doesn't exist on 32-bit systems. */ -#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name } - -/* UISA registers common across all architectures, including POWER. */ - -#define COMMON_UISA_REGS \ - /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ - /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ - /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ - /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ - /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ - /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ - /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ - /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ - /* 64 */ R(pc), R(ps) - -/* UISA-level SPRs for PowerPC. */ -#define PPC_UISA_SPRS \ - /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr) - -/* UISA-level SPRs for PowerPC without floating point support. */ -#define PPC_UISA_NOFP_SPRS \ - /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0 - -/* Segment registers, for PowerPC. */ -#define PPC_SEGMENT_REGS \ - /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ - /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ - /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ - /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) - -/* OEA SPRs for PowerPC. */ -#define PPC_OEA_SPRS \ - /* 87 */ S4(pvr), \ - /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \ - /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \ - /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \ - /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \ - /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \ - /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \ - /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \ - /* 116 */ S4(dec), S(dabr), S4(ear) - -/* AltiVec registers. */ -#define PPC_ALTIVEC_REGS \ - /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ - /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ - /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ - /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ - /*151*/R4(vscr), R4(vrsave) - - -/* On machines supporting the SPE APU, the general-purpose registers - are 64 bits long. There are SIMD vector instructions to treat them - as pairs of floats, but the rest of the instruction set treats them - as 32-bit registers, and only operates on their lower halves. - - In the GDB regcache, we treat their high and low halves as separate - registers. The low halves we present as the general-purpose - registers, and then we have pseudo-registers that stitch together - the upper and lower halves and present them as pseudo-registers. */ - -/* SPE GPR lower halves --- raw registers. */ -#define PPC_SPE_GP_REGS \ - /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \ - /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \ - /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \ - /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31) - -/* SPE GPR upper halves --- anonymous raw registers. */ -#define PPC_SPE_UPPER_GP_REGS \ - /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \ - /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \ - /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \ - /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4 - -/* SPE GPR vector registers --- pseudo registers based on underlying - gprs and the anonymous upper half raw registers. */ -#define PPC_EV_PSEUDO_REGS \ -/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \ -/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\ -/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\ -/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31) - -/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover - user-level SPR's. */ -static const struct reg registers_power[] = -{ - COMMON_UISA_REGS, - /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq), - /* 71 */ R4(fpscr) -}; - -/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only - view of the PowerPC. */ -static const struct reg registers_powerpc[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_ALTIVEC_REGS -}; - -/* IBM PowerPC 403. - - Some notes about the "tcr" special-purpose register: - - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the - 403's programmable interval timer, fixed interval timer, and - watchdog timer. - - On the 602, SPR 984 is named "tcr", and it controls the 602's - watchdog timer, and nothing else. - - Some of the fields are similar between the two, but they're not - compatible with each other. Since the two variants have different - registers, with different numbers, but the same name, we can't - splice the register name to get the SPR number. */ -static const struct reg registers_403[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr), - /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit), - /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3), - /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2), - /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr), - /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2) -}; - -/* IBM PowerPC 403GC. - See the comments about 'tcr' for the 403, above. */ -static const struct reg registers_403GC[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr), - /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit), - /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3), - /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2), - /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr), - /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2), - /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr), - /* 147 */ S(tbhu), S(tblu) -}; - -/* Motorola PowerPC 505. */ -static const struct reg registers_505[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(eie), S(eid), S(nri) -}; - -/* Motorola PowerPC 860 or 850. */ -static const struct reg registers_860[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(eie), S(eid), S(nri), S(cmpa), - /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr), - /* 127 */ S(der), S(counta), S(countb), S(cmpe), - /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1), - /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst), - /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr), - /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr), - /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc), - /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap), - /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn), - /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1), - /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1) -}; - -/* Motorola PowerPC 601. Note that the 601 has different register numbers - for reading and writing RTCU and RTCL. However, how one reads and writes a - register is the stub's problem. */ -static const struct reg registers_601[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), - /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl) -}; - -/* Motorola PowerPC 602. - See the notes under the 403 about 'tcr'. */ -static const struct reg registers_602[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(hid0), S(hid1), S(iabr), R0, - /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr), - /* 127 */ S(sebr), S(ser), S(sp), S(lt) -}; - -/* Motorola/IBM PowerPC 603 or 603e. */ -static const struct reg registers_603[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(hid0), S(hid1), S(iabr), R0, - /* 123 */ R0, S(dmiss), S(dcmp), S(hash1), - /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa) -}; - -/* Motorola PowerPC 604 or 604e. */ -static const struct reg registers_604[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), - /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2), - /* 127 */ S(sia), S(sda) -}; - -/* Motorola/IBM PowerPC 750 or 740. */ -static const struct reg registers_750[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), - /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2), - /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4), - /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia), - /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr), - /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3) -}; - - -/* Motorola PowerPC 7400. */ -static const struct reg registers_7400[] = -{ - /* gpr0-gpr31, fpr0-fpr31 */ - COMMON_UISA_REGS, - /* cr, lr, ctr, xer, fpscr */ - PPC_UISA_SPRS, - /* sr0-sr15 */ - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* vr0-vr31, vrsave, vscr */ - PPC_ALTIVEC_REGS - /* FIXME? Add more registers? */ -}; - -/* Motorola e500. */ -static const struct reg registers_e500[] = -{ - /* 0 .. 31 */ PPC_SPE_GP_REGS, - /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS, - /* 64 .. 65 */ R(pc), R(ps), - /* 66 .. 70 */ PPC_UISA_NOFP_SPRS, - /* 71 .. 72 */ R8(acc), S4(spefscr), - /* NOTE: Add new registers here the end of the raw register - list and just before the first pseudo register. */ - /* 73 .. 104 */ PPC_EV_PSEUDO_REGS -}; - /* Information about a particular processor variant. */ struct variant @@ -3048,151 +2369,64 @@ struct variant /* bfd_arch_info.mach corresponding to variant. */ unsigned long mach; - /* Number of real registers. */ - int nregs; - - /* Number of pseudo registers. */ - int npregs; - - /* Number of total registers (the sum of nregs and npregs). */ - int num_tot_regs; - - /* Table of register names; registers[R] is the name of the register - number R. */ - const struct reg *regs; + /* Target description for this variant. */ + struct target_desc **tdesc; }; -#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) - -static int -num_registers (const struct reg *reg_list, int num_tot_regs) -{ - int i; - int nregs = 0; - - for (i = 0; i < num_tot_regs; i++) - if (!reg_list[i].pseudo) - nregs++; - - return nregs; -} - -static int -num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) -{ - int i; - int npregs = 0; - - for (i = 0; i < num_tot_regs; i++) - if (reg_list[i].pseudo) - npregs ++; - - return npregs; -} - -/* Information in this table comes from the following web sites: - IBM: http://www.chips.ibm.com:80/products/embedded/ - Motorola: http://www.mot.com/SPS/PowerPC/ - - I'm sure I've got some of the variant descriptions not quite right. - Please report any inaccuracies you find to GDB's maintainer. - - If you add entries to this table, please be sure to allow the new - value as an argument to the --with-cpu flag, in configure.in. */ - static struct variant variants[] = { - {"powerpc", "PowerPC user-level", bfd_arch_powerpc, - bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, + bfd_mach_ppc, &tdesc_powerpc_altivec32}, {"power", "POWER user-level", bfd_arch_rs6000, - bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), - registers_power}, + bfd_mach_rs6k, &tdesc_rs6000}, {"403", "IBM PowerPC 403", bfd_arch_powerpc, - bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), - registers_403}, + bfd_mach_ppc_403, &tdesc_powerpc_403}, {"601", "Motorola PowerPC 601", bfd_arch_powerpc, - bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), - registers_601}, + bfd_mach_ppc_601, &tdesc_powerpc_601}, {"602", "Motorola PowerPC 602", bfd_arch_powerpc, - bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), - registers_602}, + bfd_mach_ppc_602, &tdesc_powerpc_602}, {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, - bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), - registers_603}, + bfd_mach_ppc_603, &tdesc_powerpc_603}, {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, - 604, -1, -1, tot_num_registers (registers_604), - registers_604}, + 604, &tdesc_powerpc_604}, {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, - bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), - registers_403GC}, + bfd_mach_ppc_403gc, &tdesc_powerpc_403gc}, {"505", "Motorola PowerPC 505", bfd_arch_powerpc, - bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), - registers_505}, + bfd_mach_ppc_505, &tdesc_powerpc_505}, {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, - bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), - registers_860}, + bfd_mach_ppc_860, &tdesc_powerpc_860}, {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, - bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), - registers_750}, + bfd_mach_ppc_750, &tdesc_powerpc_750}, {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, - bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), - registers_7400}, + bfd_mach_ppc_7400, &tdesc_powerpc_7400}, {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, - bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500), - registers_e500}, + bfd_mach_ppc_e500, &tdesc_powerpc_e500}, /* 64-bit */ {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, - bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, + bfd_mach_ppc64, &tdesc_powerpc_altivec64}, {"620", "Motorola PowerPC 620", bfd_arch_powerpc, - bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, + bfd_mach_ppc_620, &tdesc_powerpc_64}, {"630", "Motorola PowerPC 630", bfd_arch_powerpc, - bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, + bfd_mach_ppc_630, &tdesc_powerpc_64}, {"a35", "PowerPC A35", bfd_arch_powerpc, - bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, + bfd_mach_ppc_a35, &tdesc_powerpc_64}, {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, - bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, + bfd_mach_ppc_rs64ii, &tdesc_powerpc_64}, {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, - bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, + bfd_mach_ppc_rs64iii, &tdesc_powerpc_64}, /* FIXME: I haven't checked the register sets of the following. */ {"rs1", "IBM POWER RS1", bfd_arch_rs6000, - bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), - registers_power}, + bfd_mach_rs6k_rs1, &tdesc_rs6000}, {"rsc", "IBM POWER RSC", bfd_arch_rs6000, - bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), - registers_power}, + bfd_mach_rs6k_rsc, &tdesc_rs6000}, {"rs2", "IBM POWER RS2", bfd_arch_rs6000, - bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), - registers_power}, + bfd_mach_rs6k_rs2, &tdesc_rs6000}, - {0, 0, 0, 0, 0, 0, 0, 0} + {0, 0, 0, 0, 0} }; -/* Initialize the number of registers and pseudo registers in each variant. */ - -static void -init_variants (void) -{ - struct variant *v; - - for (v = variants; v->name; v++) - { - if (v->nregs == -1) - v->nregs = num_registers (v->regs, v->num_tot_regs); - if (v->npregs == -1) - v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); - } -} - /* Return the variant corresponding to architecture ARCH and machine number MACH. If no such variant exists, return null. */ @@ -3214,7 +2448,7 @@ gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) if (!info->disassembler_options) info->disassembler_options = "any"; - if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) + if (info->endian == BFD_ENDIAN_BIG) return print_insn_big_powerpc (memaddr, info); else return print_insn_little_powerpc (memaddr, info); @@ -3224,15 +2458,15 @@ static CORE_ADDR rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) { return frame_unwind_register_unsigned (next_frame, - gdbarch_pc_regnum (current_gdbarch)); + gdbarch_pc_regnum (gdbarch)); } static struct frame_id -rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) +rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) { - return frame_id_build (frame_unwind_register_unsigned - (next_frame, gdbarch_sp_regnum (current_gdbarch)), - frame_pc_unwind (next_frame)); + return frame_id_build (get_frame_register_unsigned + (this_frame, gdbarch_sp_regnum (gdbarch)), + get_frame_pc (this_frame)); } struct rs6000_frame_cache @@ -3243,10 +2477,10 @@ struct rs6000_frame_cache }; static struct rs6000_frame_cache * -rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) +rs6000_frame_cache (struct frame_info *this_frame, void **this_cache) { struct rs6000_frame_cache *cache; - struct gdbarch *gdbarch = get_frame_arch (next_frame); + struct gdbarch *gdbarch = get_frame_arch (this_frame); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct rs6000_framedata fdata; int wordsize = tdep->wordsize; @@ -3256,11 +2490,11 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) return (*this_cache); cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); (*this_cache) = cache; - cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); + cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); - func = frame_func_unwind (next_frame, NORMAL_FRAME); - pc = frame_pc_unwind (next_frame); - skip_prologue (func, pc, &fdata); + func = get_frame_func (this_frame); + pc = get_frame_pc (this_frame); + skip_prologue (gdbarch, func, pc, &fdata); /* Figure out the parent's stack pointer. */ @@ -3269,8 +2503,8 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) ->frame pointed to the outer-most address of the frame. In the mean time, the address of the prev frame is used as the base address of this frame. */ - cache->base = frame_unwind_register_unsigned - (next_frame, gdbarch_sp_regnum (current_gdbarch)); + cache->base = get_frame_register_unsigned + (this_frame, gdbarch_sp_regnum (gdbarch)); /* If the function appears to be frameless, check a couple of likely indicators that we have simply failed to find the frame setup. @@ -3286,8 +2520,7 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) CORE_ADDR saved_lr; int make_frame = 0; - saved_lr = frame_unwind_register_unsigned (next_frame, - tdep->ppc_lr_regnum); + saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum); if (func == 0 && saved_lr == pc) make_frame = 1; else if (func != 0) @@ -3306,10 +2539,10 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) if (!fdata.frameless) /* Frameless really means stackless. */ - cache->base = read_memory_addr (cache->base, wordsize); + cache->base = read_memory_unsigned_integer (cache->base, wordsize); trad_frame_set_value (cache->saved_regs, - gdbarch_sp_regnum (current_gdbarch), cache->base); + gdbarch_sp_regnum (gdbarch), cache->base); /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. All fpr's from saved_fpr to fp31 are saved. */ @@ -3363,7 +2596,7 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) /* if != -1, fdata.saved_ev is the smallest number of saved_ev. All vr's from saved_ev to ev31 are saved. ????? */ - if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) + if (tdep->ppc_ev0_regnum != -1) { if (fdata.saved_ev >= 0) { @@ -3388,7 +2621,7 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) if (fdata.lr_offset != 0) cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset; /* The PC is found in the link register. */ - cache->saved_regs[gdbarch_pc_regnum (current_gdbarch)] = + cache->saved_regs[gdbarch_pc_regnum (gdbarch)] = cache->saved_regs[tdep->ppc_lr_regnum]; /* If != 0, fdata.vrsave_offset is the offset from the frame that @@ -3399,58 +2632,51 @@ rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) if (fdata.alloca_reg < 0) /* If no alloca register used, then fi->frame is the value of the %sp for this frame, and it is good enough. */ - cache->initial_sp = frame_unwind_register_unsigned - (next_frame, gdbarch_sp_regnum (current_gdbarch)); + cache->initial_sp + = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch)); else - cache->initial_sp = frame_unwind_register_unsigned (next_frame, - fdata.alloca_reg); + cache->initial_sp + = get_frame_register_unsigned (this_frame, fdata.alloca_reg); return cache; } static void -rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache, +rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) { - struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, + struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, this_cache); - (*this_id) = frame_id_build (info->base, - frame_func_unwind (next_frame, NORMAL_FRAME)); + /* This marks the outermost frame. */ + if (info->base == 0) + return; + + (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); } -static void -rs6000_frame_prev_register (struct frame_info *next_frame, - void **this_cache, - int regnum, int *optimizedp, - enum lval_type *lvalp, CORE_ADDR *addrp, - int *realnump, gdb_byte *valuep) +static struct value * +rs6000_frame_prev_register (struct frame_info *this_frame, + void **this_cache, int regnum) { - struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, + struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, this_cache); - trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, - optimizedp, lvalp, addrp, realnump, valuep); + return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); } static const struct frame_unwind rs6000_frame_unwind = { NORMAL_FRAME, rs6000_frame_this_id, - rs6000_frame_prev_register + rs6000_frame_prev_register, + NULL, + default_frame_sniffer }; - -static const struct frame_unwind * -rs6000_frame_sniffer (struct frame_info *next_frame) -{ - return &rs6000_frame_unwind; -} - static CORE_ADDR -rs6000_frame_base_address (struct frame_info *next_frame, - void **this_cache) +rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache) { - struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, + struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, this_cache); return info->initial_sp; } @@ -3463,11 +2689,73 @@ static const struct frame_base rs6000_frame_base = { }; static const struct frame_base * -rs6000_frame_base_sniffer (struct frame_info *next_frame) +rs6000_frame_base_sniffer (struct frame_info *this_frame) { return &rs6000_frame_base; } +/* DWARF-2 frame support. Used to handle the detection of + clobbered registers during function calls. */ + +static void +ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, + struct dwarf2_frame_state_reg *reg, + struct frame_info *this_frame) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + /* PPC32 and PPC64 ABI's are the same regarding volatile and + non-volatile registers. We will use the same code for both. */ + + /* Call-saved GP registers. */ + if ((regnum >= tdep->ppc_gp0_regnum + 14 + && regnum <= tdep->ppc_gp0_regnum + 31) + || (regnum == tdep->ppc_gp0_regnum + 1)) + reg->how = DWARF2_FRAME_REG_SAME_VALUE; + + /* Call-clobbered GP registers. */ + if ((regnum >= tdep->ppc_gp0_regnum + 3 + && regnum <= tdep->ppc_gp0_regnum + 12) + || (regnum == tdep->ppc_gp0_regnum)) + reg->how = DWARF2_FRAME_REG_UNDEFINED; + + /* Deal with FP registers, if supported. */ + if (tdep->ppc_fp0_regnum >= 0) + { + /* Call-saved FP registers. */ + if ((regnum >= tdep->ppc_fp0_regnum + 14 + && regnum <= tdep->ppc_fp0_regnum + 31)) + reg->how = DWARF2_FRAME_REG_SAME_VALUE; + + /* Call-clobbered FP registers. */ + if ((regnum >= tdep->ppc_fp0_regnum + && regnum <= tdep->ppc_fp0_regnum + 13)) + reg->how = DWARF2_FRAME_REG_UNDEFINED; + } + + /* Deal with ALTIVEC registers, if supported. */ + if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0) + { + /* Call-saved Altivec registers. */ + if ((regnum >= tdep->ppc_vr0_regnum + 20 + && regnum <= tdep->ppc_vr0_regnum + 31) + || regnum == tdep->ppc_vrsave_regnum) + reg->how = DWARF2_FRAME_REG_SAME_VALUE; + + /* Call-clobbered Altivec registers. */ + if ((regnum >= tdep->ppc_vr0_regnum + && regnum <= tdep->ppc_vr0_regnum + 19)) + reg->how = DWARF2_FRAME_REG_UNDEFINED; + } + + /* Handle PC register and Stack Pointer correctly. */ + if (regnum == gdbarch_pc_regnum (gdbarch)) + reg->how = DWARF2_FRAME_REG_RA; + else if (regnum == gdbarch_sp_regnum (gdbarch)) + reg->how = DWARF2_FRAME_REG_CFA; +} + + /* Initialize the current architecture based on INFO. If possible, re-use an architecture from ARCHES, which is a list of architectures already created during this debugging session. @@ -3480,14 +2768,19 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { struct gdbarch *gdbarch; struct gdbarch_tdep *tdep; - int wordsize, from_xcoff_exec, from_elf_exec, i, off; - struct reg *regs; - const struct variant *v; + int wordsize, from_xcoff_exec, from_elf_exec; enum bfd_architecture arch; unsigned long mach; bfd abfd; - int sysv_abi; asection *sect; + enum auto_boolean soft_float_flag = powerpc_soft_float_global; + int soft_float; + enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global; + int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0; + int tdesc_wordsize = -1; + const struct target_desc *tdesc = info.target_desc; + struct tdesc_arch_data *tdesc_data = NULL; + int num_pseudoregs = 0; from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; @@ -3495,8 +2788,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) from_elf_exec = info.abfd && info.abfd->format == bfd_object && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; - sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; - /* Check word size. If INFO is from a binary file, infer it from that, else choose a likely default. */ if (from_xcoff_exec) @@ -3513,6 +2804,8 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) else wordsize = 4; } + else if (tdesc_has_registers (tdesc)) + wordsize = -1; else { if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) @@ -3522,6 +2815,302 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) wordsize = 4; } + /* Get the architecture and machine from the BFD. */ + arch = info.bfd_arch_info->arch; + mach = info.bfd_arch_info->mach; + + /* For e500 executables, the apuinfo section is of help here. Such + section contains the identifier and revision number of each + Application-specific Processing Unit that is present on the + chip. The content of the section is determined by the assembler + which looks at each instruction and determines which unit (and + which version of it) can execute it. In our case we just look for + the existance of the section. */ + + if (info.abfd) + { + sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); + if (sect) + { + arch = info.bfd_arch_info->arch; + mach = bfd_mach_ppc_e500; + bfd_default_set_arch_mach (&abfd, arch, mach); + info.bfd_arch_info = bfd_get_arch_info (&abfd); + } + } + + /* Find a default target description which describes our register + layout, if we do not already have one. */ + if (! tdesc_has_registers (tdesc)) + { + const struct variant *v; + + /* Choose variant. */ + v = find_variant_by_arch (arch, mach); + if (!v) + return NULL; + + tdesc = *v->tdesc; + } + + gdb_assert (tdesc_has_registers (tdesc)); + + /* Check any target description for validity. */ + if (tdesc_has_registers (tdesc)) + { + static const char *const gprs[] = { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", + "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", + "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" + }; + static const char *const segment_regs[] = { + "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", + "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" + }; + const struct tdesc_feature *feature; + int i, valid_p; + static const char *const msr_names[] = { "msr", "ps" }; + static const char *const cr_names[] = { "cr", "cnd" }; + static const char *const ctr_names[] = { "ctr", "cnt" }; + + feature = tdesc_find_feature (tdesc, + "org.gnu.gdb.power.core"); + if (feature == NULL) + return NULL; + + tdesc_data = tdesc_data_alloc (); + + valid_p = 1; + for (i = 0; i < ppc_num_gprs; i++) + valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]); + valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM, + "pc"); + valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM, + "lr"); + valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM, + "xer"); + + /* Allow alternate names for these registers, to accomodate GDB's + historic naming. */ + valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, + PPC_MSR_REGNUM, msr_names); + valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, + PPC_CR_REGNUM, cr_names); + valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, + PPC_CTR_REGNUM, ctr_names); + + if (!valid_p) + { + tdesc_data_cleanup (tdesc_data); + return NULL; + } + + have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM, + "mq"); + + tdesc_wordsize = tdesc_register_size (feature, "pc") / 8; + if (wordsize == -1) + wordsize = tdesc_wordsize; + + feature = tdesc_find_feature (tdesc, + "org.gnu.gdb.power.fpu"); + if (feature != NULL) + { + static const char *const fprs[] = { + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", + "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", + "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31" + }; + valid_p = 1; + for (i = 0; i < ppc_num_fprs; i++) + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_F0_REGNUM + i, fprs[i]); + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_FPSCR_REGNUM, "fpscr"); + + if (!valid_p) + { + tdesc_data_cleanup (tdesc_data); + return NULL; + } + have_fpu = 1; + } + else + have_fpu = 0; + + /* The DFP pseudo-registers will be available when there are floating + point registers. */ + have_dfp = have_fpu; + + feature = tdesc_find_feature (tdesc, + "org.gnu.gdb.power.altivec"); + if (feature != NULL) + { + static const char *const vector_regs[] = { + "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", + "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", + "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", + "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31" + }; + + valid_p = 1; + for (i = 0; i < ppc_num_gprs; i++) + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_VR0_REGNUM + i, + vector_regs[i]); + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_VSCR_REGNUM, "vscr"); + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_VRSAVE_REGNUM, "vrsave"); + + if (have_spe || !valid_p) + { + tdesc_data_cleanup (tdesc_data); + return NULL; + } + have_altivec = 1; + } + else + have_altivec = 0; + + /* On machines supporting the SPE APU, the general-purpose registers + are 64 bits long. There are SIMD vector instructions to treat them + as pairs of floats, but the rest of the instruction set treats them + as 32-bit registers, and only operates on their lower halves. + + In the GDB regcache, we treat their high and low halves as separate + registers. The low halves we present as the general-purpose + registers, and then we have pseudo-registers that stitch together + the upper and lower halves and present them as pseudo-registers. + + Thus, the target description is expected to supply the upper + halves separately. */ + + feature = tdesc_find_feature (tdesc, + "org.gnu.gdb.power.spe"); + if (feature != NULL) + { + static const char *const upper_spe[] = { + "ev0h", "ev1h", "ev2h", "ev3h", + "ev4h", "ev5h", "ev6h", "ev7h", + "ev8h", "ev9h", "ev10h", "ev11h", + "ev12h", "ev13h", "ev14h", "ev15h", + "ev16h", "ev17h", "ev18h", "ev19h", + "ev20h", "ev21h", "ev22h", "ev23h", + "ev24h", "ev25h", "ev26h", "ev27h", + "ev28h", "ev29h", "ev30h", "ev31h" + }; + + valid_p = 1; + for (i = 0; i < ppc_num_gprs; i++) + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_SPE_UPPER_GP0_REGNUM + i, + upper_spe[i]); + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_SPE_ACC_REGNUM, "acc"); + valid_p &= tdesc_numbered_register (feature, tdesc_data, + PPC_SPE_FSCR_REGNUM, "spefscr"); + + if (have_mq || have_fpu || !valid_p) + { + tdesc_data_cleanup (tdesc_data); + return NULL; + } + have_spe = 1; + } + else + have_spe = 0; + } + + /* If we have a 64-bit binary on a 32-bit target, complain. Also + complain for a 32-bit binary on a 64-bit target; we do not yet + support that. For instance, the 32-bit ABI routines expect + 32-bit GPRs. + + As long as there isn't an explicit target description, we'll + choose one based on the BFD architecture and get a word size + matching the binary (probably powerpc:common or + powerpc:common64). So there is only trouble if a 64-bit target + supplies a 64-bit description while debugging a 32-bit + binary. */ + if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize) + { + tdesc_data_cleanup (tdesc_data); + return NULL; + } + +#ifdef HAVE_ELF + if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec) + { + switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, + Tag_GNU_Power_ABI_FP)) + { + case 1: + soft_float_flag = AUTO_BOOLEAN_FALSE; + break; + case 2: + soft_float_flag = AUTO_BOOLEAN_TRUE; + break; + default: + break; + } + } + + if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec) + { + switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, + Tag_GNU_Power_ABI_Vector)) + { + case 1: + vector_abi = POWERPC_VEC_GENERIC; + break; + case 2: + vector_abi = POWERPC_VEC_ALTIVEC; + break; + case 3: + vector_abi = POWERPC_VEC_SPE; + break; + default: + break; + } + } +#endif + + if (soft_float_flag == AUTO_BOOLEAN_TRUE) + soft_float = 1; + else if (soft_float_flag == AUTO_BOOLEAN_FALSE) + soft_float = 0; + else + soft_float = !have_fpu; + + /* If we have a hard float binary or setting but no floating point + registers, downgrade to soft float anyway. We're still somewhat + useful in this scenario. */ + if (!soft_float && !have_fpu) + soft_float = 1; + + /* Similarly for vector registers. */ + if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec) + vector_abi = POWERPC_VEC_GENERIC; + + if (vector_abi == POWERPC_VEC_SPE && !have_spe) + vector_abi = POWERPC_VEC_GENERIC; + + if (vector_abi == POWERPC_VEC_AUTO) + { + if (have_altivec) + vector_abi = POWERPC_VEC_ALTIVEC; + else if (have_spe) + vector_abi = POWERPC_VEC_SPE; + else + vector_abi = POWERPC_VEC_GENERIC; + } + + /* Do not limit the vector ABI based on available hardware, since we + do not yet know what hardware we'll decide we have. Yuck! FIXME! */ + /* Find a candidate among extant architectures. */ for (arches = gdbarch_list_lookup_by_info (arches, &info); arches != NULL; @@ -3531,8 +3120,16 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform separate word size check. */ tdep = gdbarch_tdep (arches->gdbarch); + if (tdep && tdep->soft_float != soft_float) + continue; + if (tdep && tdep->vector_abi != vector_abi) + continue; if (tdep && tdep->wordsize == wordsize) - return arches->gdbarch; + { + if (tdesc_data != NULL) + tdesc_data_cleanup (tdesc_data); + return arches->gdbarch; + } } /* None found, create a new architecture from INFO, whose bfd_arch_info @@ -3543,157 +3140,74 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) - "set arch" trust blindly - GDB startup useless but harmless */ - if (!from_xcoff_exec) - { - arch = info.bfd_arch_info->arch; - mach = info.bfd_arch_info->mach; - } - else - { - arch = bfd_arch_powerpc; - bfd_default_set_arch_mach (&abfd, arch, 0); - info.bfd_arch_info = bfd_get_arch_info (&abfd); - mach = info.bfd_arch_info->mach; - } tdep = XCALLOC (1, struct gdbarch_tdep); tdep->wordsize = wordsize; - - /* For e500 executables, the apuinfo section is of help here. Such - section contains the identifier and revision number of each - Application-specific Processing Unit that is present on the - chip. The content of the section is determined by the assembler - which looks at each instruction and determines which unit (and - which version of it) can execute it. In our case we just look for - the existance of the section. */ - - if (info.abfd) - { - sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); - if (sect) - { - arch = info.bfd_arch_info->arch; - mach = bfd_mach_ppc_e500; - bfd_default_set_arch_mach (&abfd, arch, mach); - info.bfd_arch_info = bfd_get_arch_info (&abfd); - } - } + tdep->soft_float = soft_float; + tdep->vector_abi = vector_abi; gdbarch = gdbarch_alloc (&info, tdep); - /* Initialize the number of real and pseudo registers in each variant. */ - init_variants (); - - /* Choose variant. */ - v = find_variant_by_arch (arch, mach); - if (!v) - return NULL; - - tdep->regs = v->regs; - - tdep->ppc_gp0_regnum = 0; - tdep->ppc_toc_regnum = 2; - tdep->ppc_ps_regnum = 65; - tdep->ppc_cr_regnum = 66; - tdep->ppc_lr_regnum = 67; - tdep->ppc_ctr_regnum = 68; - tdep->ppc_xer_regnum = 69; - if (v->mach == bfd_mach_ppc_601) - tdep->ppc_mq_regnum = 124; - else if (arch == bfd_arch_rs6000) - tdep->ppc_mq_regnum = 70; - else - tdep->ppc_mq_regnum = -1; - tdep->ppc_fp0_regnum = 32; - tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70; - tdep->ppc_sr0_regnum = 71; - tdep->ppc_vr0_regnum = -1; - tdep->ppc_vrsave_regnum = -1; - tdep->ppc_ev0_upper_regnum = -1; - tdep->ppc_ev0_regnum = -1; - tdep->ppc_ev31_regnum = -1; - tdep->ppc_acc_regnum = -1; - tdep->ppc_spefscr_regnum = -1; - - set_gdbarch_pc_regnum (gdbarch, 64); - set_gdbarch_sp_regnum (gdbarch, 1); - set_gdbarch_deprecated_fp_regnum (gdbarch, 1); - set_gdbarch_fp0_regnum (gdbarch, 32); + tdep->ppc_gp0_regnum = PPC_R0_REGNUM; + tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2; + tdep->ppc_ps_regnum = PPC_MSR_REGNUM; + tdep->ppc_cr_regnum = PPC_CR_REGNUM; + tdep->ppc_lr_regnum = PPC_LR_REGNUM; + tdep->ppc_ctr_regnum = PPC_CTR_REGNUM; + tdep->ppc_xer_regnum = PPC_XER_REGNUM; + tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1; + + tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1; + tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1; + tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1; + tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1; + tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1; + tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1; + tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1; + + set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM); + set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1); + set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1); + set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum); set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno); - if (sysv_abi && wordsize == 8) + + /* The XML specification for PowerPC sensibly calls the MSR "msr". + GDB traditionally called it "ps", though, so let GDB add an + alias. */ + set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum); + + if (wordsize == 8) set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); - else if (sysv_abi && wordsize == 4) - set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); else - set_gdbarch_return_value (gdbarch, rs6000_return_value); + set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); /* Set lr_frame_offset. */ if (wordsize == 8) tdep->lr_frame_offset = 16; - else if (sysv_abi) - tdep->lr_frame_offset = 4; else - tdep->lr_frame_offset = 8; - - if (v->arch == bfd_arch_rs6000) - tdep->ppc_sr0_regnum = -1; - else if (v->arch == bfd_arch_powerpc) - switch (v->mach) - { - case bfd_mach_ppc: - tdep->ppc_sr0_regnum = -1; - tdep->ppc_vr0_regnum = 71; - tdep->ppc_vrsave_regnum = 104; - break; - case bfd_mach_ppc_7400: - tdep->ppc_vr0_regnum = 119; - tdep->ppc_vrsave_regnum = 152; - break; - case bfd_mach_ppc_e500: - tdep->ppc_toc_regnum = -1; - tdep->ppc_ev0_upper_regnum = 32; - tdep->ppc_ev0_regnum = 73; - tdep->ppc_ev31_regnum = 104; - tdep->ppc_acc_regnum = 71; - tdep->ppc_spefscr_regnum = 72; - tdep->ppc_fp0_regnum = -1; - tdep->ppc_fpscr_regnum = -1; - tdep->ppc_sr0_regnum = -1; - set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); - set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); - set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p); - break; + tdep->lr_frame_offset = 4; - case bfd_mach_ppc64: - case bfd_mach_ppc_620: - case bfd_mach_ppc_630: - case bfd_mach_ppc_a35: - case bfd_mach_ppc_rs64ii: - case bfd_mach_ppc_rs64iii: - /* These processor's register sets don't have segment registers. */ - tdep->ppc_sr0_regnum = -1; - break; - } - else - internal_error (__FILE__, __LINE__, - _("rs6000_gdbarch_init: " - "received unexpected BFD 'arch' value")); + if (have_spe || have_dfp) + { + set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write); + } set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); - /* Sanity check on registers. */ - gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0); - /* Select instruction printer. */ if (arch == bfd_arch_rs6000) set_gdbarch_print_insn (gdbarch, print_insn_rs6000); else set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); - set_gdbarch_num_regs (gdbarch, v->nregs); - set_gdbarch_num_pseudo_regs (gdbarch, v->npregs); - set_gdbarch_register_name (gdbarch, rs6000_register_name); - set_gdbarch_register_type (gdbarch, rs6000_register_type); - set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p); + set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS); + + if (have_spe) + num_pseudoregs += 32; + if (have_dfp) + num_pseudoregs += 16; + + set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs); set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); @@ -3702,22 +3216,13 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); - if (sysv_abi) - set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); - else - set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); + set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); set_gdbarch_char_signed (gdbarch, 0); set_gdbarch_frame_align (gdbarch, rs6000_frame_align); - if (sysv_abi && wordsize == 8) + if (wordsize == 8) /* PPC64 SYSV. */ set_gdbarch_frame_red_zone_size (gdbarch, 288); - else if (!sysv_abi && wordsize == 4) - /* PowerOpen / AIX 32 bit. The saved area or red zone consists of - 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. - Problem is, 220 isn't frame (16 byte) aligned. Round it up to - 224. */ - set_gdbarch_frame_red_zone_size (gdbarch, 224); set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); @@ -3726,12 +3231,10 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); - if (sysv_abi && wordsize == 4) + if (wordsize == 4) set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); - else if (sysv_abi && wordsize == 8) + else if (wordsize == 8) set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); - else - set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p); @@ -3739,29 +3242,16 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); + /* The value of symbols of type N_SO and N_FUN maybe null when + it shouldn't be. */ + set_gdbarch_sofun_address_maybe_missing (gdbarch, 1); + /* Handles single stepping of atomic sequences. */ - set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence); + set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence); - /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN" - for the descriptor and ".FN" for the entry-point -- a user - specifying "break FN" will unexpectedly end up with a breakpoint - on the descriptor and not the function. This architecture method - transforms any breakpoints on descriptors into breakpoints on the - corresponding entry point. */ - if (sysv_abi && wordsize == 8) - set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address); - /* Not sure on this. FIXMEmgo */ set_gdbarch_frame_args_skip (gdbarch, 8); - if (!sysv_abi) - { - /* Handle RS/6000 function pointers (which are really function - descriptors). */ - set_gdbarch_convert_from_func_ptr_addr (gdbarch, - rs6000_convert_from_func_ptr_addr); - } - /* Helpers for function argument information. */ set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); @@ -3771,52 +3261,74 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code); /* Hook in the DWARF CFI frame unwinder. */ - frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); + dwarf2_append_unwinders (gdbarch); dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum); + /* Frame handling. */ + dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg); + /* Hook in ABI-specific overrides, if they have been registered. */ + info.target_desc = tdesc; + info.tdep_info = (void *) tdesc_data; gdbarch_init_osabi (info, gdbarch); switch (info.osabi) { case GDB_OSABI_LINUX: - /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems - have altivec registers. If not, ptrace will fail the first time it's - called to access one and will not be called again. This wart will - be removed when Daniel Jacobowitz's proposal for autodetecting target - registers is implemented. */ - if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64)) - { - tdep->ppc_vr0_regnum = 71; - tdep->ppc_vrsave_regnum = 104; - } - /* Fall Thru */ case GDB_OSABI_NETBSD_AOUT: case GDB_OSABI_NETBSD_ELF: case GDB_OSABI_UNKNOWN: set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); - frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); - set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); + frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind); + set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id); frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); break; default: set_gdbarch_believe_pcc_promotion (gdbarch, 1); set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); - frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); - set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); + frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind); + set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id); frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); } - init_sim_regno_table (gdbarch); + set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type); + set_tdesc_pseudo_register_reggroup_p (gdbarch, + rs6000_pseudo_register_reggroup_p); + tdesc_use_registers (gdbarch, tdesc, tdesc_data); + + /* Override the normal target description method to make the SPE upper + halves anonymous. */ + set_gdbarch_register_name (gdbarch, rs6000_register_name); + + /* Recording the numbering of pseudo registers. */ + tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1; + + /* Set the register number for _Decimal128 pseudo-registers. */ + tdep->ppc_dl0_regnum = have_dfp? gdbarch_num_regs (gdbarch) : -1; + + if (have_dfp && have_spe) + /* Put the _Decimal128 pseudo-registers after the SPE registers. */ + tdep->ppc_dl0_regnum += 32; + + /* Setup displaced stepping. */ + set_gdbarch_displaced_step_copy_insn (gdbarch, + simple_displaced_step_copy_insn); + set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup); + set_gdbarch_displaced_step_free_closure (gdbarch, + simple_displaced_step_free_closure); + set_gdbarch_displaced_step_location (gdbarch, + displaced_step_at_entry_point); + + set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE); return gdbarch; } static void -rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) +rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (tdep == NULL) return; @@ -3824,6 +3336,61 @@ rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) /* FIXME: Dump gdbarch_tdep. */ } +/* PowerPC-specific commands. */ + +static void +set_powerpc_command (char *args, int from_tty) +{ + printf_unfiltered (_("\ +\"set powerpc\" must be followed by an appropriate subcommand.\n")); + help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout); +} + +static void +show_powerpc_command (char *args, int from_tty) +{ + cmd_show_list (showpowerpccmdlist, from_tty, ""); +} + +static void +powerpc_set_soft_float (char *args, int from_tty, + struct cmd_list_element *c) +{ + struct gdbarch_info info; + + /* Update the architecture. */ + gdbarch_info_init (&info); + if (!gdbarch_update_p (info)) + internal_error (__FILE__, __LINE__, "could not update architecture"); +} + +static void +powerpc_set_vector_abi (char *args, int from_tty, + struct cmd_list_element *c) +{ + struct gdbarch_info info; + enum powerpc_vector_abi vector_abi; + + for (vector_abi = POWERPC_VEC_AUTO; + vector_abi != POWERPC_VEC_LAST; + vector_abi++) + if (strcmp (powerpc_vector_abi_string, + powerpc_vector_strings[vector_abi]) == 0) + { + powerpc_vector_abi_global = vector_abi; + break; + } + + if (vector_abi == POWERPC_VEC_LAST) + internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."), + powerpc_vector_abi_string); + + /* Update the architecture. */ + gdbarch_info_init (&info); + if (!gdbarch_update_p (info)) + internal_error (__FILE__, __LINE__, "could not update architecture"); +} + /* Initialization code. */ extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */ @@ -3833,4 +3400,48 @@ _initialize_rs6000_tdep (void) { gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); + + /* Initialize the standard target descriptions. */ + initialize_tdesc_powerpc_32 (); + initialize_tdesc_powerpc_altivec32 (); + initialize_tdesc_powerpc_403 (); + initialize_tdesc_powerpc_403gc (); + initialize_tdesc_powerpc_505 (); + initialize_tdesc_powerpc_601 (); + initialize_tdesc_powerpc_602 (); + initialize_tdesc_powerpc_603 (); + initialize_tdesc_powerpc_604 (); + initialize_tdesc_powerpc_64 (); + initialize_tdesc_powerpc_altivec64 (); + initialize_tdesc_powerpc_7400 (); + initialize_tdesc_powerpc_750 (); + initialize_tdesc_powerpc_860 (); + initialize_tdesc_powerpc_e500 (); + initialize_tdesc_rs6000 (); + + /* Add root prefix command for all "set powerpc"/"show powerpc" + commands. */ + add_prefix_cmd ("powerpc", no_class, set_powerpc_command, + _("Various PowerPC-specific commands."), + &setpowerpccmdlist, "set powerpc ", 0, &setlist); + + add_prefix_cmd ("powerpc", no_class, show_powerpc_command, + _("Various PowerPC-specific commands."), + &showpowerpccmdlist, "show powerpc ", 0, &showlist); + + /* Add a command to allow the user to force the ABI. */ + add_setshow_auto_boolean_cmd ("soft-float", class_support, + &powerpc_soft_float_global, + _("Set whether to use a soft-float ABI."), + _("Show whether to use a soft-float ABI."), + NULL, + powerpc_set_soft_float, NULL, + &setpowerpccmdlist, &showpowerpccmdlist); + + add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings, + &powerpc_vector_abi_string, + _("Set the vector ABI."), + _("Show the vector ABI."), + NULL, powerpc_set_vector_abi, NULL, + &setpowerpccmdlist, &showpowerpccmdlist); }