X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fvalarith.c;h=79b148602bb54945756e84afaec90c0c1223e521;hb=0c0adcc52478ebb707ed780173e18262df6eab7e;hp=aefa1d4de1145997a10a553ebc09ed1f22e72ff1;hpb=088c3a0b74c7431d31ec5d095f4e68bdd2d90c0b;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/valarith.c b/gdb/valarith.c index aefa1d4de1..79b148602b 100644 --- a/gdb/valarith.c +++ b/gdb/valarith.c @@ -1,171 +1,268 @@ /* Perform arithmetic and other operations on values, for GDB. - Copyright 1986, 1989, 1991 Free Software Foundation, Inc. -This file is part of GDB. + Copyright (C) 1986-2020 Free Software Foundation, Inc. -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + This file is part of GDB. -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -#include + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ #include "defs.h" #include "value.h" #include "symtab.h" +#include "gdbtypes.h" #include "expression.h" #include "target.h" -#include +#include "language.h" +#include "target-float.h" +#include "infcall.h" +#include "gdbsupport/byte-vector.h" +#include "gdbarch.h" -static value -value_subscripted_rvalue PARAMS ((value, value)); +/* Define whether or not the C operator '/' truncates towards zero for + differently signed operands (truncation direction is undefined in C). */ - -value -value_add (arg1, arg2) - value arg1, arg2; +#ifndef TRUNCATION_TOWARDS_ZERO +#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) +#endif + +/* Given a pointer, return the size of its target. + If the pointer type is void *, then return 1. + If the target type is incomplete, then error out. + This isn't a general purpose function, but just a + helper for value_ptradd. */ + +static LONGEST +find_size_for_pointer_math (struct type *ptr_type) { - register value valint, valptr; - register int len; + LONGEST sz = -1; + struct type *ptr_target; - COERCE_ARRAY (arg1); - COERCE_ARRAY (arg2); + gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR); + ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type)); - if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR - || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) - && - (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT - || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT)) - /* Exactly one argument is a pointer, and one is an integer. */ + sz = type_length_units (ptr_target); + if (sz == 0) { - if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) - { - valptr = arg1; - valint = arg2; - } + if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID) + sz = 1; else { - valptr = arg2; - valint = arg1; + const char *name; + + name = TYPE_NAME (ptr_target); + if (name == NULL) + error (_("Cannot perform pointer math on incomplete types, " + "try casting to a known type, or void *.")); + else + error (_("Cannot perform pointer math on incomplete type \"%s\", " + "try casting to a known type, or void *."), name); } - len = TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (valptr))); - if (len == 0) len = 1; /* For (void *) */ - return value_from_longest (VALUE_TYPE (valptr), - value_as_long (valptr) - + (len * value_as_long (valint))); } + return sz; +} + +/* Given a pointer ARG1 and an integral value ARG2, return the + result of C-style pointer arithmetic ARG1 + ARG2. */ - return value_binop (arg1, arg2, BINOP_ADD); +struct value * +value_ptradd (struct value *arg1, LONGEST arg2) +{ + struct type *valptrtype; + LONGEST sz; + struct value *result; + + arg1 = coerce_array (arg1); + valptrtype = check_typedef (value_type (arg1)); + sz = find_size_for_pointer_math (valptrtype); + + result = value_from_pointer (valptrtype, + value_as_address (arg1) + sz * arg2); + if (VALUE_LVAL (result) != lval_internalvar) + set_value_component_location (result, arg1); + return result; } -value -value_sub (arg1, arg2) - value arg1, arg2; +/* Given two compatible pointer values ARG1 and ARG2, return the + result of C-style pointer arithmetic ARG1 - ARG2. */ + +LONGEST +value_ptrdiff (struct value *arg1, struct value *arg2) { + struct type *type1, *type2; + LONGEST sz; - COERCE_ARRAY (arg1); - COERCE_ARRAY (arg2); + arg1 = coerce_array (arg1); + arg2 = coerce_array (arg2); + type1 = check_typedef (value_type (arg1)); + type2 = check_typedef (value_type (arg2)); - if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) + gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR); + gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR); + + if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) + != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) + error (_("First argument of `-' is a pointer and " + "second argument is neither\n" + "an integer nor a pointer of the same type.")); + + sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1))); + if (sz == 0) { - if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT) - { - /* pointer - integer. */ - return value_from_longest - (VALUE_TYPE (arg1), - value_as_long (arg1) - - (TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) - * value_as_long (arg2))); - } - else if (VALUE_TYPE (arg1) == VALUE_TYPE (arg2)) - { - /* pointer to - pointer to . */ - return value_from_longest - (builtin_type_long, /* FIXME -- should be ptrdiff_t */ - (value_as_long (arg1) - value_as_long (arg2)) - / TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)))); - } - else - { - error ("\ -First argument of `-' is a pointer and second argument is neither\n\ -an integer nor a pointer of the same type."); - } + warning (_("Type size unknown, assuming 1. " + "Try casting to a known type, or void *.")); + sz = 1; } - return value_binop (arg1, arg2, BINOP_SUB); + return (value_as_long (arg1) - value_as_long (arg2)) / sz; } -/* Return the value of ARRAY[IDX]. */ +/* Return the value of ARRAY[IDX]. + + ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the + current language supports C-style arrays, it may also be TYPE_CODE_PTR. -value -value_subscript (array, idx) - value array, idx; + See comments in value_coerce_array() for rationale for reason for + doing lower bounds adjustment here rather than there. + FIXME: Perhaps we should validate that the index is valid and if + verbosity is set, warn about invalid indices (but still use them). */ + +struct value * +value_subscript (struct value *array, LONGEST index) { - if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_ARRAY - && VALUE_LVAL (array) != lval_memory) - return value_subscripted_rvalue (array, idx); + int c_style = current_language->c_style_arrays; + struct type *tarray; + + array = coerce_ref (array); + tarray = check_typedef (value_type (array)); + + if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY + || TYPE_CODE (tarray) == TYPE_CODE_STRING) + { + struct type *range_type = TYPE_INDEX_TYPE (tarray); + LONGEST lowerbound, upperbound; + + get_discrete_bounds (range_type, &lowerbound, &upperbound); + if (VALUE_LVAL (array) != lval_memory) + return value_subscripted_rvalue (array, index, lowerbound); + + if (c_style == 0) + { + if (index >= lowerbound && index <= upperbound) + return value_subscripted_rvalue (array, index, lowerbound); + /* Emit warning unless we have an array of unknown size. + An array of unknown size has lowerbound 0 and upperbound -1. */ + if (upperbound > -1) + warning (_("array or string index out of range")); + /* fall doing C stuff */ + c_style = 1; + } + + index -= lowerbound; + array = value_coerce_array (array); + } + + if (c_style) + return value_ind (value_ptradd (array, index)); else - return value_ind (value_add (array, idx)); + error (_("not an array or string")); } /* Return the value of EXPR[IDX], expr an aggregate rvalue (eg, a vector register). This routine used to promote floats to doubles, but no longer does. */ -static value -value_subscripted_rvalue (array, idx) - value array, idx; +struct value * +value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound) { - struct type *elt_type = TYPE_TARGET_TYPE (VALUE_TYPE (array)); - int elt_size = TYPE_LENGTH (elt_type); - int elt_offs = elt_size * longest_to_int (value_as_long (idx)); - value v; + struct type *array_type = check_typedef (value_type (array)); + struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); + ULONGEST elt_size = type_length_units (elt_type); + + /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits + in a byte. */ + LONGEST stride = TYPE_ARRAY_BIT_STRIDE (array_type); + if (stride != 0) + { + struct gdbarch *arch = get_type_arch (elt_type); + int unit_size = gdbarch_addressable_memory_unit_size (arch); + elt_size = stride / (unit_size * 8); + } - if (elt_offs >= TYPE_LENGTH (VALUE_TYPE (array))) - error ("no such vector element"); + ULONGEST elt_offs = elt_size * (index - lowerbound); - v = allocate_value (elt_type); - bcopy (VALUE_CONTENTS (array) + elt_offs, VALUE_CONTENTS (v), elt_size); + if (index < lowerbound + || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type) + && elt_offs >= type_length_units (array_type)) + || (VALUE_LVAL (array) != lval_memory + && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type))) + { + if (type_not_associated (array_type)) + error (_("no such vector element (vector not associated)")); + else if (type_not_allocated (array_type)) + error (_("no such vector element (vector not allocated)")); + else + error (_("no such vector element")); + } - if (VALUE_LVAL (array) == lval_internalvar) - VALUE_LVAL (v) = lval_internalvar_component; - else - VALUE_LVAL (v) = not_lval; - VALUE_ADDRESS (v) = VALUE_ADDRESS (array); - VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs; - VALUE_BITSIZE (v) = elt_size * 8; - return v; + if (is_dynamic_type (elt_type)) + { + CORE_ADDR address; + + address = value_address (array) + elt_offs; + elt_type = resolve_dynamic_type (elt_type, NULL, address); + } + + return value_from_component (array, elt_type, elt_offs); } + -/* Check to see if either argument is a structure. This is called so - we know whether to go ahead with the normal binop or look for a - user defined function instead. +/* Check to see if either argument is a structure, or a reference to + one. This is called so we know whether to go ahead with the normal + binop or look for a user defined function instead. For now, we do not overload the `=' operator. */ int -binop_user_defined_p (op, arg1, arg2) - enum exp_opcode op; - value arg1, arg2; +binop_types_user_defined_p (enum exp_opcode op, + struct type *type1, struct type *type2) { - if (op == BINOP_ASSIGN) + if (op == BINOP_ASSIGN || op == BINOP_CONCAT) return 0; - return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT - || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_STRUCT - || (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF - && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT) - || (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_REF - && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_STRUCT)); + + type1 = check_typedef (type1); + if (TYPE_IS_REFERENCE (type1)) + type1 = check_typedef (TYPE_TARGET_TYPE (type1)); + + type2 = check_typedef (type2); + if (TYPE_IS_REFERENCE (type2)) + type2 = check_typedef (TYPE_TARGET_TYPE (type2)); + + return (TYPE_CODE (type1) == TYPE_CODE_STRUCT + || TYPE_CODE (type2) == TYPE_CODE_STRUCT); +} + +/* Check to see if either argument is a structure, or a reference to + one. This is called so we know whether to go ahead with the normal + binop or look for a user defined function instead. + + For now, we do not overload the `=' operator. */ + +int +binop_user_defined_p (enum exp_opcode op, + struct value *arg1, struct value *arg2) +{ + return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2)); } /* Check to see if argument is a structure. This is called so @@ -174,15 +271,74 @@ binop_user_defined_p (op, arg1, arg2) For now, we do not overload the `&' operator. */ -int unop_user_defined_p (op, arg1) - enum exp_opcode op; - value arg1; +int +unop_user_defined_p (enum exp_opcode op, struct value *arg1) { + struct type *type1; + if (op == UNOP_ADDR) return 0; - return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT - || (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF - && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT)); + type1 = check_typedef (value_type (arg1)); + if (TYPE_IS_REFERENCE (type1)) + type1 = check_typedef (TYPE_TARGET_TYPE (type1)); + return TYPE_CODE (type1) == TYPE_CODE_STRUCT; +} + +/* Try to find an operator named OPERATOR which takes NARGS arguments + specified in ARGS. If the operator found is a static member operator + *STATIC_MEMFUNP will be set to 1, and otherwise 0. + The search if performed through find_overload_match which will handle + member operators, non member operators, operators imported implicitly or + explicitly, and perform correct overload resolution in all of the above + situations or combinations thereof. */ + +static struct value * +value_user_defined_cpp_op (gdb::array_view args, char *oper, + int *static_memfuncp, enum noside noside) +{ + + struct symbol *symp = NULL; + struct value *valp = NULL; + + find_overload_match (args, oper, BOTH /* could be method */, + &args[0] /* objp */, + NULL /* pass NULL symbol since symbol is unknown */, + &valp, &symp, static_memfuncp, 0, noside); + + if (valp) + return valp; + + if (symp) + { + /* This is a non member function and does not + expect a reference as its first argument + rather the explicit structure. */ + args[0] = value_ind (args[0]); + return value_of_variable (symp, 0); + } + + error (_("Could not find %s."), oper); +} + +/* Lookup user defined operator NAME. Return a value representing the + function, otherwise return NULL. */ + +static struct value * +value_user_defined_op (struct value **argp, gdb::array_view args, + char *name, int *static_memfuncp, enum noside noside) +{ + struct value *result = NULL; + + if (current_language->la_language == language_cplus) + { + result = value_user_defined_cpp_op (args, name, static_memfuncp, + noside); + } + else + result = value_struct_elt (argp, args.data (), name, static_memfuncp, + "structure"); + + return result; } /* We know either arg1 or arg2 is a structure, so try to find the right @@ -190,379 +346,1092 @@ int unop_user_defined_p (op, arg1) arg1.operator @ (arg1,arg2) and return that value (where '@' is any binary operator which is legal for GNU C++). - OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP + OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP is the opcode saying how to modify it. Otherwise, OTHEROP is unused. */ -value -value_x_binop (arg1, arg2, op, otherop) - value arg1, arg2; - enum exp_opcode op, otherop; +struct value * +value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, + enum exp_opcode otherop, enum noside noside) { - value * argvec; char *ptr; char tstr[13]; int static_memfuncp; - COERCE_REF (arg1); - COERCE_REF (arg2); - COERCE_ENUM (arg1); - COERCE_ENUM (arg2); + arg1 = coerce_ref (arg1); + arg2 = coerce_ref (arg2); /* now we know that what we have to do is construct our arg vector and find the right function to call it with. */ - if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT) - error ("Can't do that binary op on that type"); /* FIXME be explicit */ + if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) + error (_("Can't do that binary op on that type")); /* FIXME be explicit */ + + value *argvec_storage[3]; + gdb::array_view argvec = argvec_storage; - argvec = (value *) alloca (sizeof (value) * 4); argvec[1] = value_addr (arg1); argvec[2] = arg2; - argvec[3] = 0; - /* make the right function name up */ - strcpy(tstr, "operator__"); - ptr = tstr+8; + /* Make the right function name up. */ + strcpy (tstr, "operator__"); + ptr = tstr + 8; switch (op) { - case BINOP_ADD: strcpy(ptr,"+"); break; - case BINOP_SUB: strcpy(ptr,"-"); break; - case BINOP_MUL: strcpy(ptr,"*"); break; - case BINOP_DIV: strcpy(ptr,"/"); break; - case BINOP_REM: strcpy(ptr,"%"); break; - case BINOP_LSH: strcpy(ptr,"<<"); break; - case BINOP_RSH: strcpy(ptr,">>"); break; - case BINOP_LOGAND: strcpy(ptr,"&"); break; - case BINOP_LOGIOR: strcpy(ptr,"|"); break; - case BINOP_LOGXOR: strcpy(ptr,"^"); break; - case BINOP_AND: strcpy(ptr,"&&"); break; - case BINOP_OR: strcpy(ptr,"||"); break; - case BINOP_MIN: strcpy(ptr,"?"); break; - case BINOP_ASSIGN: strcpy(ptr,"="); break; - case BINOP_ASSIGN_MODIFY: + case BINOP_ADD: + strcpy (ptr, "+"); + break; + case BINOP_SUB: + strcpy (ptr, "-"); + break; + case BINOP_MUL: + strcpy (ptr, "*"); + break; + case BINOP_DIV: + strcpy (ptr, "/"); + break; + case BINOP_REM: + strcpy (ptr, "%"); + break; + case BINOP_LSH: + strcpy (ptr, "<<"); + break; + case BINOP_RSH: + strcpy (ptr, ">>"); + break; + case BINOP_BITWISE_AND: + strcpy (ptr, "&"); + break; + case BINOP_BITWISE_IOR: + strcpy (ptr, "|"); + break; + case BINOP_BITWISE_XOR: + strcpy (ptr, "^"); + break; + case BINOP_LOGICAL_AND: + strcpy (ptr, "&&"); + break; + case BINOP_LOGICAL_OR: + strcpy (ptr, "||"); + break; + case BINOP_MIN: + strcpy (ptr, "?"); + break; + case BINOP_ASSIGN: + strcpy (ptr, "="); + break; + case BINOP_ASSIGN_MODIFY: switch (otherop) { - case BINOP_ADD: strcpy(ptr,"+="); break; - case BINOP_SUB: strcpy(ptr,"-="); break; - case BINOP_MUL: strcpy(ptr,"*="); break; - case BINOP_DIV: strcpy(ptr,"/="); break; - case BINOP_REM: strcpy(ptr,"%="); break; - case BINOP_LOGAND: strcpy(ptr,"&="); break; - case BINOP_LOGIOR: strcpy(ptr,"|="); break; - case BINOP_LOGXOR: strcpy(ptr,"^="); break; + case BINOP_ADD: + strcpy (ptr, "+="); + break; + case BINOP_SUB: + strcpy (ptr, "-="); + break; + case BINOP_MUL: + strcpy (ptr, "*="); + break; + case BINOP_DIV: + strcpy (ptr, "/="); + break; + case BINOP_REM: + strcpy (ptr, "%="); + break; + case BINOP_BITWISE_AND: + strcpy (ptr, "&="); + break; + case BINOP_BITWISE_IOR: + strcpy (ptr, "|="); + break; + case BINOP_BITWISE_XOR: + strcpy (ptr, "^="); + break; + case BINOP_MOD: /* invalid */ default: - error ("Invalid binary operation specified."); + error (_("Invalid binary operation specified.")); } break; - case BINOP_SUBSCRIPT: strcpy(ptr,"[]"); break; - case BINOP_EQUAL: strcpy(ptr,"=="); break; - case BINOP_NOTEQUAL: strcpy(ptr,"!="); break; - case BINOP_LESS: strcpy(ptr,"<"); break; - case BINOP_GTR: strcpy(ptr,">"); break; - case BINOP_GEQ: strcpy(ptr,">="); break; - case BINOP_LEQ: strcpy(ptr,"<="); break; + case BINOP_SUBSCRIPT: + strcpy (ptr, "[]"); + break; + case BINOP_EQUAL: + strcpy (ptr, "=="); + break; + case BINOP_NOTEQUAL: + strcpy (ptr, "!="); + break; + case BINOP_LESS: + strcpy (ptr, "<"); + break; + case BINOP_GTR: + strcpy (ptr, ">"); + break; + case BINOP_GEQ: + strcpy (ptr, ">="); + break; + case BINOP_LEQ: + strcpy (ptr, "<="); + break; + case BINOP_MOD: /* invalid */ default: - error ("Invalid binary operation specified."); + error (_("Invalid binary operation specified.")); } - argvec[0] = value_struct_elt (&arg1, argvec+1, tstr, &static_memfuncp, "structure"); + + argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr, + &static_memfuncp, noside); + if (argvec[0]) { if (static_memfuncp) { argvec[1] = argvec[0]; - argvec++; + argvec = argvec.slice (1); + } + if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) + { + /* Static xmethods are not supported yet. */ + gdb_assert (static_memfuncp == 0); + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + struct type *return_type + = result_type_of_xmethod (argvec[0], argvec.slice (1)); + + if (return_type == NULL) + error (_("Xmethod is missing return type.")); + return value_zero (return_type, VALUE_LVAL (arg1)); + } + return call_xmethod (argvec[0], argvec.slice (1)); + } + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + struct type *return_type; + + return_type + = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); + return value_zero (return_type, VALUE_LVAL (arg1)); } - return target_call_function (argvec[0], 2 - static_memfuncp, argvec + 1); + return call_function_by_hand (argvec[0], NULL, + argvec.slice (1, 2 - static_memfuncp)); } - error ("member function %s not found", tstr); -#ifdef lint - return target_call_function (argvec[0], 2 - static_memfuncp, argvec + 1); -#endif + throw_error (NOT_FOUND_ERROR, + _("member function %s not found"), tstr); } /* We know that arg1 is a structure, so try to find a unary user - defined operator that matches the operator in question. + defined operator that matches the operator in question. Create an argument vector that calls arg1.operator @ (arg1) and return that value (where '@' is (almost) any unary operator which is legal for GNU C++). */ -value -value_x_unop (arg1, op) - value arg1; - enum exp_opcode op; +struct value * +value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) { - value * argvec; + struct gdbarch *gdbarch = get_type_arch (value_type (arg1)); char *ptr; - char tstr[13]; - int static_memfuncp; + char tstr[13], mangle_tstr[13]; + int static_memfuncp, nargs; - COERCE_ENUM (arg1); + arg1 = coerce_ref (arg1); /* now we know that what we have to do is construct our arg vector and find the right function to call it with. */ - if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT) - error ("Can't do that unary op on that type"); /* FIXME be explicit */ + if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) + error (_("Can't do that unary op on that type")); /* FIXME be explicit */ + + value *argvec_storage[3]; + gdb::array_view argvec = argvec_storage; - argvec = (value *) alloca (sizeof (value) * 3); argvec[1] = value_addr (arg1); argvec[2] = 0; - /* make the right function name up */ - strcpy(tstr,"operator__"); - ptr = tstr+8; + nargs = 1; + + /* Make the right function name up. */ + strcpy (tstr, "operator__"); + ptr = tstr + 8; + strcpy (mangle_tstr, "__"); switch (op) { - case UNOP_PREINCREMENT: strcpy(ptr,"++"); break; - case UNOP_PREDECREMENT: strcpy(ptr,"++"); break; - case UNOP_POSTINCREMENT: strcpy(ptr,"++"); break; - case UNOP_POSTDECREMENT: strcpy(ptr,"++"); break; - case UNOP_ZEROP: strcpy(ptr,"!"); break; - case UNOP_LOGNOT: strcpy(ptr,"~"); break; - case UNOP_NEG: strcpy(ptr,"-"); break; + case UNOP_PREINCREMENT: + strcpy (ptr, "++"); + break; + case UNOP_PREDECREMENT: + strcpy (ptr, "--"); + break; + case UNOP_POSTINCREMENT: + strcpy (ptr, "++"); + argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); + nargs ++; + break; + case UNOP_POSTDECREMENT: + strcpy (ptr, "--"); + argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); + nargs ++; + break; + case UNOP_LOGICAL_NOT: + strcpy (ptr, "!"); + break; + case UNOP_COMPLEMENT: + strcpy (ptr, "~"); + break; + case UNOP_NEG: + strcpy (ptr, "-"); + break; + case UNOP_PLUS: + strcpy (ptr, "+"); + break; + case UNOP_IND: + strcpy (ptr, "*"); + break; + case STRUCTOP_PTR: + strcpy (ptr, "->"); + break; default: - error ("Invalid binary operation specified."); + error (_("Invalid unary operation specified.")); } - argvec[0] = value_struct_elt (&arg1, argvec+1, tstr, &static_memfuncp, "structure"); + + argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr, + &static_memfuncp, noside); + if (argvec[0]) { if (static_memfuncp) { argvec[1] = argvec[0]; - argvec++; + argvec = argvec.slice (1); + } + if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) + { + /* Static xmethods are not supported yet. */ + gdb_assert (static_memfuncp == 0); + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + struct type *return_type + = result_type_of_xmethod (argvec[0], argvec[1]); + + if (return_type == NULL) + error (_("Xmethod is missing return type.")); + return value_zero (return_type, VALUE_LVAL (arg1)); + } + return call_xmethod (argvec[0], argvec[1]); + } + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + struct type *return_type; + + return_type + = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); + return value_zero (return_type, VALUE_LVAL (arg1)); + } + return call_function_by_hand (argvec[0], NULL, + argvec.slice (1, nargs)); + } + throw_error (NOT_FOUND_ERROR, + _("member function %s not found"), tstr); +} + + +/* Concatenate two values with the following conditions: + + (1) Both values must be either bitstring values or character string + values and the resulting value consists of the concatenation of + ARG1 followed by ARG2. + + or + + One value must be an integer value and the other value must be + either a bitstring value or character string value, which is + to be repeated by the number of times specified by the integer + value. + + + (2) Boolean values are also allowed and are treated as bit string + values of length 1. + + (3) Character values are also allowed and are treated as character + string values of length 1. */ + +struct value * +value_concat (struct value *arg1, struct value *arg2) +{ + struct value *inval1; + struct value *inval2; + struct value *outval = NULL; + int inval1len, inval2len; + int count, idx; + char inchar; + struct type *type1 = check_typedef (value_type (arg1)); + struct type *type2 = check_typedef (value_type (arg2)); + struct type *char_type; + + /* First figure out if we are dealing with two values to be concatenated + or a repeat count and a value to be repeated. INVAL1 is set to the + first of two concatenated values, or the repeat count. INVAL2 is set + to the second of the two concatenated values or the value to be + repeated. */ + + if (TYPE_CODE (type2) == TYPE_CODE_INT) + { + struct type *tmp = type1; + + type1 = tmp; + tmp = type2; + inval1 = arg2; + inval2 = arg1; + } + else + { + inval1 = arg1; + inval2 = arg2; + } + + /* Now process the input values. */ + + if (TYPE_CODE (type1) == TYPE_CODE_INT) + { + /* We have a repeat count. Validate the second value and then + construct a value repeated that many times. */ + if (TYPE_CODE (type2) == TYPE_CODE_STRING + || TYPE_CODE (type2) == TYPE_CODE_CHAR) + { + count = longest_to_int (value_as_long (inval1)); + inval2len = TYPE_LENGTH (type2); + std::vector ptr (count * inval2len); + if (TYPE_CODE (type2) == TYPE_CODE_CHAR) + { + char_type = type2; + + inchar = (char) unpack_long (type2, + value_contents (inval2)); + for (idx = 0; idx < count; idx++) + { + ptr[idx] = inchar; + } + } + else + { + char_type = TYPE_TARGET_TYPE (type2); + + for (idx = 0; idx < count; idx++) + { + memcpy (&ptr[idx * inval2len], value_contents (inval2), + inval2len); + } + } + outval = value_string (ptr.data (), count * inval2len, char_type); + } + else if (TYPE_CODE (type2) == TYPE_CODE_BOOL) + { + error (_("unimplemented support for boolean repeats")); + } + else + { + error (_("can't repeat values of that type")); + } + } + else if (TYPE_CODE (type1) == TYPE_CODE_STRING + || TYPE_CODE (type1) == TYPE_CODE_CHAR) + { + /* We have two character strings to concatenate. */ + if (TYPE_CODE (type2) != TYPE_CODE_STRING + && TYPE_CODE (type2) != TYPE_CODE_CHAR) + { + error (_("Strings can only be concatenated with other strings.")); + } + inval1len = TYPE_LENGTH (type1); + inval2len = TYPE_LENGTH (type2); + std::vector ptr (inval1len + inval2len); + if (TYPE_CODE (type1) == TYPE_CODE_CHAR) + { + char_type = type1; + + ptr[0] = (char) unpack_long (type1, value_contents (inval1)); + } + else + { + char_type = TYPE_TARGET_TYPE (type1); + + memcpy (ptr.data (), value_contents (inval1), inval1len); + } + if (TYPE_CODE (type2) == TYPE_CODE_CHAR) + { + ptr[inval1len] = + (char) unpack_long (type2, value_contents (inval2)); + } + else + { + memcpy (&ptr[inval1len], value_contents (inval2), inval2len); + } + outval = value_string (ptr.data (), inval1len + inval2len, char_type); + } + else if (TYPE_CODE (type1) == TYPE_CODE_BOOL) + { + /* We have two bitstrings to concatenate. */ + if (TYPE_CODE (type2) != TYPE_CODE_BOOL) + { + error (_("Booleans can only be concatenated " + "with other bitstrings or booleans.")); } - return target_call_function (argvec[0], 1 - static_memfuncp, argvec + 1); + error (_("unimplemented support for boolean concatenation.")); } - error ("member function %s not found", tstr); - return 0; /* For lint -- never reached */ + else + { + /* We don't know how to concatenate these operands. */ + error (_("illegal operands for concatenation.")); + } + return (outval); } -/* Perform a binary operation on two integers or two floats. +/* Integer exponentiation: V1**V2, where both arguments are + integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ + +static LONGEST +integer_pow (LONGEST v1, LONGEST v2) +{ + if (v2 < 0) + { + if (v1 == 0) + error (_("Attempt to raise 0 to negative power.")); + else + return 0; + } + else + { + /* The Russian Peasant's Algorithm. */ + LONGEST v; + + v = 1; + for (;;) + { + if (v2 & 1L) + v *= v1; + v2 >>= 1; + if (v2 == 0) + return v; + v1 *= v1; + } + } +} + +/* Integer exponentiation: V1**V2, where both arguments are + integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ + +static ULONGEST +uinteger_pow (ULONGEST v1, LONGEST v2) +{ + if (v2 < 0) + { + if (v1 == 0) + error (_("Attempt to raise 0 to negative power.")); + else + return 0; + } + else + { + /* The Russian Peasant's Algorithm. */ + ULONGEST v; + + v = 1; + for (;;) + { + if (v2 & 1L) + v *= v1; + v2 >>= 1; + if (v2 == 0) + return v; + v1 *= v1; + } + } +} + +/* Obtain argument values for binary operation, converting from + other types if one of them is not floating point. */ +static void +value_args_as_target_float (struct value *arg1, struct value *arg2, + gdb_byte *x, struct type **eff_type_x, + gdb_byte *y, struct type **eff_type_y) +{ + struct type *type1, *type2; + + type1 = check_typedef (value_type (arg1)); + type2 = check_typedef (value_type (arg2)); + + /* At least one of the arguments must be of floating-point type. */ + gdb_assert (is_floating_type (type1) || is_floating_type (type2)); + + if (is_floating_type (type1) && is_floating_type (type2) + && TYPE_CODE (type1) != TYPE_CODE (type2)) + /* The DFP extension to the C language does not allow mixing of + * decimal float types with other float types in expressions + * (see WDTR 24732, page 12). */ + error (_("Mixing decimal floating types with " + "other floating types is not allowed.")); + + /* Obtain value of arg1, converting from other types if necessary. */ + + if (is_floating_type (type1)) + { + *eff_type_x = type1; + memcpy (x, value_contents (arg1), TYPE_LENGTH (type1)); + } + else if (is_integral_type (type1)) + { + *eff_type_x = type2; + if (TYPE_UNSIGNED (type1)) + target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1)); + else + target_float_from_longest (x, *eff_type_x, value_as_long (arg1)); + } + else + error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), + TYPE_NAME (type2)); + + /* Obtain value of arg2, converting from other types if necessary. */ + + if (is_floating_type (type2)) + { + *eff_type_y = type2; + memcpy (y, value_contents (arg2), TYPE_LENGTH (type2)); + } + else if (is_integral_type (type2)) + { + *eff_type_y = type1; + if (TYPE_UNSIGNED (type2)) + target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2)); + else + target_float_from_longest (y, *eff_type_y, value_as_long (arg2)); + } + else + error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), + TYPE_NAME (type2)); +} + +/* Perform a binary operation on two operands which have reasonable + representations as integers or floats. This includes booleans, + characters, integers, or floats. Does not support addition and subtraction on pointers; - use value_add or value_sub if you want to handle those possibilities. */ + use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */ -value -value_binop (arg1, arg2, op) - value arg1, arg2; - enum exp_opcode op; +static struct value * +scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) { - register value val; - - COERCE_ENUM (arg1); - COERCE_ENUM (arg2); - - if ((TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT - && - TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT) - || - (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_FLT - && - TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT)) - error ("Argument to arithmetic operation not a number."); - - if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FLT - || - TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FLT) - { - double v1, v2, v; - v1 = value_as_double (arg1); - v2 = value_as_double (arg2); + struct value *val; + struct type *type1, *type2, *result_type; + + arg1 = coerce_ref (arg1); + arg2 = coerce_ref (arg2); + + type1 = check_typedef (value_type (arg1)); + type2 = check_typedef (value_type (arg2)); + + if ((!is_floating_value (arg1) && !is_integral_type (type1)) + || (!is_floating_value (arg2) && !is_integral_type (type2))) + error (_("Argument to arithmetic operation not a number or boolean.")); + + if (is_floating_type (type1) || is_floating_type (type2)) + { + /* If only one type is floating-point, use its type. + Otherwise use the bigger type. */ + if (!is_floating_type (type1)) + result_type = type2; + else if (!is_floating_type (type2)) + result_type = type1; + else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) + result_type = type2; + else + result_type = type1; + + val = allocate_value (result_type); + + struct type *eff_type_v1, *eff_type_v2; + gdb::byte_vector v1, v2; + v1.resize (TYPE_LENGTH (result_type)); + v2.resize (TYPE_LENGTH (result_type)); + + value_args_as_target_float (arg1, arg2, + v1.data (), &eff_type_v1, + v2.data (), &eff_type_v2); + target_float_binop (op, v1.data (), eff_type_v1, + v2.data (), eff_type_v2, + value_contents_raw (val), result_type); + } + else if (TYPE_CODE (type1) == TYPE_CODE_BOOL + || TYPE_CODE (type2) == TYPE_CODE_BOOL) + { + LONGEST v1, v2, v = 0; + + v1 = value_as_long (arg1); + v2 = value_as_long (arg2); + switch (op) { - case BINOP_ADD: - v = v1 + v2; - break; - - case BINOP_SUB: - v = v1 - v2; + case BINOP_BITWISE_AND: + v = v1 & v2; break; - case BINOP_MUL: - v = v1 * v2; + case BINOP_BITWISE_IOR: + v = v1 | v2; break; - case BINOP_DIV: - v = v1 / v2; + case BINOP_BITWISE_XOR: + v = v1 ^ v2; + break; + + case BINOP_EQUAL: + v = v1 == v2; + break; + + case BINOP_NOTEQUAL: + v = v1 != v2; break; default: - error ("Integer-only operation on floating point number."); + error (_("Invalid operation on booleans.")); } - val = allocate_value (builtin_type_double); - SWAP_TARGET_AND_HOST (&v, sizeof (v)); - *(double *) VALUE_CONTENTS_RAW (val) = v; + result_type = type1; + + val = allocate_value (result_type); + store_signed_integer (value_contents_raw (val), + TYPE_LENGTH (result_type), + type_byte_order (result_type), + v); } else /* Integral operations here. */ { - /* Should we promote to unsigned longest? */ - if ((TYPE_UNSIGNED (VALUE_TYPE (arg1)) - || TYPE_UNSIGNED (VALUE_TYPE (arg2))) - && (TYPE_LENGTH (VALUE_TYPE (arg1)) >= sizeof (unsigned LONGEST) - || TYPE_LENGTH (VALUE_TYPE (arg1)) >= sizeof (unsigned LONGEST))) + /* Determine type length of the result, and if the operation should + be done unsigned. For exponentiation and shift operators, + use the length and type of the left operand. Otherwise, + use the signedness of the operand with the greater length. + If both operands are of equal length, use unsigned operation + if one of the operands is unsigned. */ + if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP) + result_type = type1; + else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) + result_type = type1; + else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) + result_type = type2; + else if (TYPE_UNSIGNED (type1)) + result_type = type1; + else if (TYPE_UNSIGNED (type2)) + result_type = type2; + else + result_type = type1; + + if (TYPE_UNSIGNED (result_type)) { - unsigned LONGEST v1, v2, v; - v1 = (unsigned LONGEST) value_as_long (arg1); - v2 = (unsigned LONGEST) value_as_long (arg2); - + LONGEST v2_signed = value_as_long (arg2); + ULONGEST v1, v2, v = 0; + + v1 = (ULONGEST) value_as_long (arg1); + v2 = (ULONGEST) v2_signed; + switch (op) { case BINOP_ADD: v = v1 + v2; break; - + case BINOP_SUB: v = v1 - v2; break; - + case BINOP_MUL: v = v1 * v2; break; - + case BINOP_DIV: - v = v1 / v2; + case BINOP_INTDIV: + if (v2 != 0) + v = v1 / v2; + else + error (_("Division by zero")); + break; + + case BINOP_EXP: + v = uinteger_pow (v1, v2_signed); break; - + case BINOP_REM: - v = v1 % v2; + if (v2 != 0) + v = v1 % v2; + else + error (_("Division by zero")); + break; + + case BINOP_MOD: + /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, + v1 mod 0 has a defined value, v1. */ + if (v2 == 0) + { + v = v1; + } + else + { + v = v1 / v2; + /* Note floor(v1/v2) == v1/v2 for unsigned. */ + v = v1 - (v2 * v); + } break; - + case BINOP_LSH: v = v1 << v2; break; - + case BINOP_RSH: v = v1 >> v2; break; - - case BINOP_LOGAND: + + case BINOP_BITWISE_AND: v = v1 & v2; break; - - case BINOP_LOGIOR: + + case BINOP_BITWISE_IOR: v = v1 | v2; break; - - case BINOP_LOGXOR: + + case BINOP_BITWISE_XOR: v = v1 ^ v2; break; - - case BINOP_AND: + + case BINOP_LOGICAL_AND: v = v1 && v2; break; - - case BINOP_OR: + + case BINOP_LOGICAL_OR: v = v1 || v2; break; - + case BINOP_MIN: v = v1 < v2 ? v1 : v2; break; - + case BINOP_MAX: v = v1 > v2 ? v1 : v2; break; - + + case BINOP_EQUAL: + v = v1 == v2; + break; + + case BINOP_NOTEQUAL: + v = v1 != v2; + break; + + case BINOP_LESS: + v = v1 < v2; + break; + + case BINOP_GTR: + v = v1 > v2; + break; + + case BINOP_LEQ: + v = v1 <= v2; + break; + + case BINOP_GEQ: + v = v1 >= v2; + break; + default: - error ("Invalid binary operation on numbers."); + error (_("Invalid binary operation on numbers.")); } - val = allocate_value (BUILTIN_TYPE_UNSIGNED_LONGEST); - SWAP_TARGET_AND_HOST (&v, sizeof (v)); - *(unsigned LONGEST *) VALUE_CONTENTS_RAW (val) = v; + val = allocate_value (result_type); + store_unsigned_integer (value_contents_raw (val), + TYPE_LENGTH (value_type (val)), + type_byte_order (result_type), + v); } else { - LONGEST v1, v2, v; + LONGEST v1, v2, v = 0; + v1 = value_as_long (arg1); v2 = value_as_long (arg2); - + switch (op) { case BINOP_ADD: v = v1 + v2; break; - + case BINOP_SUB: v = v1 - v2; break; - + case BINOP_MUL: v = v1 * v2; break; - + case BINOP_DIV: - v = v1 / v2; + case BINOP_INTDIV: + if (v2 != 0) + v = v1 / v2; + else + error (_("Division by zero")); + break; + + case BINOP_EXP: + v = integer_pow (v1, v2); break; - + case BINOP_REM: - v = v1 % v2; + if (v2 != 0) + v = v1 % v2; + else + error (_("Division by zero")); break; - + + case BINOP_MOD: + /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, + X mod 0 has a defined value, X. */ + if (v2 == 0) + { + v = v1; + } + else + { + v = v1 / v2; + /* Compute floor. */ + if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) + { + v--; + } + v = v1 - (v2 * v); + } + break; + case BINOP_LSH: v = v1 << v2; break; - + case BINOP_RSH: v = v1 >> v2; break; - - case BINOP_LOGAND: + + case BINOP_BITWISE_AND: v = v1 & v2; break; - - case BINOP_LOGIOR: + + case BINOP_BITWISE_IOR: v = v1 | v2; break; - - case BINOP_LOGXOR: + + case BINOP_BITWISE_XOR: v = v1 ^ v2; break; - - case BINOP_AND: + + case BINOP_LOGICAL_AND: v = v1 && v2; break; - - case BINOP_OR: + + case BINOP_LOGICAL_OR: v = v1 || v2; break; - + case BINOP_MIN: v = v1 < v2 ? v1 : v2; break; - + case BINOP_MAX: v = v1 > v2 ? v1 : v2; break; - + + case BINOP_EQUAL: + v = v1 == v2; + break; + + case BINOP_NOTEQUAL: + v = v1 != v2; + break; + + case BINOP_LESS: + v = v1 < v2; + break; + + case BINOP_GTR: + v = v1 > v2; + break; + + case BINOP_LEQ: + v = v1 <= v2; + break; + + case BINOP_GEQ: + v = v1 >= v2; + break; + default: - error ("Invalid binary operation on numbers."); + error (_("Invalid binary operation on numbers.")); } - - val = allocate_value (BUILTIN_TYPE_LONGEST); - SWAP_TARGET_AND_HOST (&v, sizeof (v)); - *(LONGEST *) VALUE_CONTENTS_RAW (val) = v; + + val = allocate_value (result_type); + store_signed_integer (value_contents_raw (val), + TYPE_LENGTH (value_type (val)), + type_byte_order (result_type), + v); } } return val; } + +/* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by + replicating SCALAR_VALUE for each element of the vector. Only scalar + types that can be cast to the type of one element of the vector are + acceptable. The newly created vector value is returned upon success, + otherwise an error is thrown. */ + +struct value * +value_vector_widen (struct value *scalar_value, struct type *vector_type) +{ + /* Widen the scalar to a vector. */ + struct type *eltype, *scalar_type; + struct value *val, *elval; + LONGEST low_bound, high_bound; + int i; + + vector_type = check_typedef (vector_type); + + gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY + && TYPE_VECTOR (vector_type)); + + if (!get_array_bounds (vector_type, &low_bound, &high_bound)) + error (_("Could not determine the vector bounds")); + + eltype = check_typedef (TYPE_TARGET_TYPE (vector_type)); + elval = value_cast (eltype, scalar_value); + + scalar_type = check_typedef (value_type (scalar_value)); + + /* If we reduced the length of the scalar then check we didn't loose any + important bits. */ + if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type) + && !value_equal (elval, scalar_value)) + error (_("conversion of scalar to vector involves truncation")); + + val = allocate_value (vector_type); + for (i = 0; i < high_bound - low_bound + 1; i++) + /* Duplicate the contents of elval into the destination vector. */ + memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)), + value_contents_all (elval), TYPE_LENGTH (eltype)); + + return val; +} + +/* Performs a binary operation on two vector operands by calling scalar_binop + for each pair of vector components. */ + +static struct value * +vector_binop (struct value *val1, struct value *val2, enum exp_opcode op) +{ + struct value *val, *tmp, *mark; + struct type *type1, *type2, *eltype1, *eltype2; + int t1_is_vec, t2_is_vec, elsize, i; + LONGEST low_bound1, high_bound1, low_bound2, high_bound2; + + type1 = check_typedef (value_type (val1)); + type2 = check_typedef (value_type (val2)); + + t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY + && TYPE_VECTOR (type1)) ? 1 : 0; + t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY + && TYPE_VECTOR (type2)) ? 1 : 0; + + if (!t1_is_vec || !t2_is_vec) + error (_("Vector operations are only supported among vectors")); + + if (!get_array_bounds (type1, &low_bound1, &high_bound1) + || !get_array_bounds (type2, &low_bound2, &high_bound2)) + error (_("Could not determine the vector bounds")); + + eltype1 = check_typedef (TYPE_TARGET_TYPE (type1)); + eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)); + elsize = TYPE_LENGTH (eltype1); + + if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2) + || elsize != TYPE_LENGTH (eltype2) + || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2) + || low_bound1 != low_bound2 || high_bound1 != high_bound2) + error (_("Cannot perform operation on vectors with different types")); + + val = allocate_value (type1); + mark = value_mark (); + for (i = 0; i < high_bound1 - low_bound1 + 1; i++) + { + tmp = value_binop (value_subscript (val1, i), + value_subscript (val2, i), op); + memcpy (value_contents_writeable (val) + i * elsize, + value_contents_all (tmp), + elsize); + } + value_free_to_mark (mark); + + return val; +} + +/* Perform a binary operation on two operands. */ + +struct value * +value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) +{ + struct value *val; + struct type *type1 = check_typedef (value_type (arg1)); + struct type *type2 = check_typedef (value_type (arg2)); + int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY + && TYPE_VECTOR (type1)); + int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY + && TYPE_VECTOR (type2)); + + if (!t1_is_vec && !t2_is_vec) + val = scalar_binop (arg1, arg2, op); + else if (t1_is_vec && t2_is_vec) + val = vector_binop (arg1, arg2, op); + else + { + /* Widen the scalar operand to a vector. */ + struct value **v = t1_is_vec ? &arg2 : &arg1; + struct type *t = t1_is_vec ? type2 : type1; + + if (TYPE_CODE (t) != TYPE_CODE_FLT + && TYPE_CODE (t) != TYPE_CODE_DECFLOAT + && !is_integral_type (t)) + error (_("Argument to operation not a number or boolean.")); + + /* Replicate the scalar value to make a vector value. */ + *v = value_vector_widen (*v, t1_is_vec ? type1 : type2); + + val = vector_binop (arg1, arg2, op); + } + + return val; +} -/* Simulate the C operator ! -- return 1 if ARG1 contains zeros. */ +/* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ int -value_zerop (arg1) - value arg1; +value_logical_not (struct value *arg1) { - register int len; - register char *p; + int len; + const gdb_byte *p; + struct type *type1; + + arg1 = coerce_array (arg1); + type1 = check_typedef (value_type (arg1)); - COERCE_ARRAY (arg1); + if (is_floating_value (arg1)) + return target_float_is_zero (value_contents (arg1), type1); - len = TYPE_LENGTH (VALUE_TYPE (arg1)); - p = VALUE_CONTENTS (arg1); + len = TYPE_LENGTH (type1); + p = value_contents (arg1); while (--len >= 0) { @@ -573,44 +1442,92 @@ value_zerop (arg1) return len < 0; } +/* Perform a comparison on two string values (whose content are not + necessarily null terminated) based on their length. */ + +static int +value_strcmp (struct value *arg1, struct value *arg2) +{ + int len1 = TYPE_LENGTH (value_type (arg1)); + int len2 = TYPE_LENGTH (value_type (arg2)); + const gdb_byte *s1 = value_contents (arg1); + const gdb_byte *s2 = value_contents (arg2); + int i, len = len1 < len2 ? len1 : len2; + + for (i = 0; i < len; i++) + { + if (s1[i] < s2[i]) + return -1; + else if (s1[i] > s2[i]) + return 1; + else + continue; + } + + if (len1 < len2) + return -1; + else if (len1 > len2) + return 1; + else + return 0; +} + /* Simulate the C operator == by returning a 1 iff ARG1 and ARG2 have equal contents. */ int -value_equal (arg1, arg2) - register value arg1, arg2; - +value_equal (struct value *arg1, struct value *arg2) { - register int len; - register char *p1, *p2; + int len; + const gdb_byte *p1; + const gdb_byte *p2; + struct type *type1, *type2; enum type_code code1; enum type_code code2; + int is_int1, is_int2; + + arg1 = coerce_array (arg1); + arg2 = coerce_array (arg2); + + type1 = check_typedef (value_type (arg1)); + type2 = check_typedef (value_type (arg2)); + code1 = TYPE_CODE (type1); + code2 = TYPE_CODE (type2); + is_int1 = is_integral_type (type1); + is_int2 = is_integral_type (type2); + + if (is_int1 && is_int2) + return longest_to_int (value_as_long (value_binop (arg1, arg2, + BINOP_EQUAL))); + else if ((is_floating_value (arg1) || is_int1) + && (is_floating_value (arg2) || is_int2)) + { + struct type *eff_type_v1, *eff_type_v2; + gdb::byte_vector v1, v2; + v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); + v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); - COERCE_ARRAY (arg1); - COERCE_ARRAY (arg2); - - code1 = TYPE_CODE (VALUE_TYPE (arg1)); - code2 = TYPE_CODE (VALUE_TYPE (arg2)); + value_args_as_target_float (arg1, arg2, + v1.data (), &eff_type_v1, + v2.data (), &eff_type_v2); - if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT) - return value_as_long (arg1) == value_as_long (arg2); - else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT) - && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT)) - return value_as_double (arg1) == value_as_double (arg2); + return target_float_compare (v1.data (), eff_type_v1, + v2.data (), eff_type_v2) == 0; + } /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever is bigger. */ - else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT) - return value_as_pointer (arg1) == (CORE_ADDR) value_as_long (arg2); - else if (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT) - return (CORE_ADDR) value_as_long (arg1) == value_as_pointer (arg2); + else if (code1 == TYPE_CODE_PTR && is_int2) + return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2); + else if (code2 == TYPE_CODE_PTR && is_int1) + return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2); else if (code1 == code2 - && ((len = TYPE_LENGTH (VALUE_TYPE (arg1))) - == TYPE_LENGTH (VALUE_TYPE (arg2)))) + && ((len = (int) TYPE_LENGTH (type1)) + == (int) TYPE_LENGTH (type2))) { - p1 = VALUE_CONTENTS (arg1); - p2 = VALUE_CONTENTS (arg2); + p1 = value_contents (arg1); + p2 = value_contents (arg2); while (--len >= 0) { if (*p1++ != *p2++) @@ -618,89 +1535,218 @@ value_equal (arg1, arg2) } return len < 0; } - else + else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) { - error ("Invalid type combination in equality test."); - return 0; /* For lint -- never reached */ + return value_strcmp (arg1, arg2) == 0; } + else + error (_("Invalid type combination in equality test.")); } -/* Simulate the C operator < by returning 1 - iff ARG1's contents are less than ARG2's. */ +/* Compare values based on their raw contents. Useful for arrays since + value_equal coerces them to pointers, thus comparing just the address + of the array instead of its contents. */ int -value_less (arg1, arg2) - register value arg1, arg2; +value_equal_contents (struct value *arg1, struct value *arg2) { - register enum type_code code1; - register enum type_code code2; + struct type *type1, *type2; - COERCE_ARRAY (arg1); - COERCE_ARRAY (arg2); + type1 = check_typedef (value_type (arg1)); + type2 = check_typedef (value_type (arg2)); - code1 = TYPE_CODE (VALUE_TYPE (arg1)); - code2 = TYPE_CODE (VALUE_TYPE (arg2)); + return (TYPE_CODE (type1) == TYPE_CODE (type2) + && TYPE_LENGTH (type1) == TYPE_LENGTH (type2) + && memcmp (value_contents (arg1), value_contents (arg2), + TYPE_LENGTH (type1)) == 0); +} - if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT) +/* Simulate the C operator < by returning 1 + iff ARG1's contents are less than ARG2's. */ + +int +value_less (struct value *arg1, struct value *arg2) +{ + enum type_code code1; + enum type_code code2; + struct type *type1, *type2; + int is_int1, is_int2; + + arg1 = coerce_array (arg1); + arg2 = coerce_array (arg2); + + type1 = check_typedef (value_type (arg1)); + type2 = check_typedef (value_type (arg2)); + code1 = TYPE_CODE (type1); + code2 = TYPE_CODE (type2); + is_int1 = is_integral_type (type1); + is_int2 = is_integral_type (type2); + + if (is_int1 && is_int2) + return longest_to_int (value_as_long (value_binop (arg1, arg2, + BINOP_LESS))); + else if ((is_floating_value (arg1) || is_int1) + && (is_floating_value (arg2) || is_int2)) { - if (TYPE_UNSIGNED (VALUE_TYPE (arg1)) - || TYPE_UNSIGNED (VALUE_TYPE (arg2))) - return ((unsigned LONGEST) value_as_long (arg1) - < (unsigned LONGEST) value_as_long (arg2)); - else - return value_as_long (arg1) < value_as_long (arg2); + struct type *eff_type_v1, *eff_type_v2; + gdb::byte_vector v1, v2; + v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); + v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); + + value_args_as_target_float (arg1, arg2, + v1.data (), &eff_type_v1, + v2.data (), &eff_type_v2); + + return target_float_compare (v1.data (), eff_type_v1, + v2.data (), eff_type_v2) == -1; } - else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT) - && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT)) - return value_as_double (arg1) < value_as_double (arg2); else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) - return value_as_pointer (arg1) < value_as_pointer (arg2); + return value_as_address (arg1) < value_as_address (arg2); /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever is bigger. */ - else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT) - return value_as_pointer (arg1) < (CORE_ADDR) value_as_long (arg2); - else if (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT) - return (CORE_ADDR) value_as_long (arg1) < value_as_pointer (arg2); - + else if (code1 == TYPE_CODE_PTR && is_int2) + return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2); + else if (code2 == TYPE_CODE_PTR && is_int1) + return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2); + else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) + return value_strcmp (arg1, arg2) < 0; else { - error ("Invalid type combination in ordering comparison."); + error (_("Invalid type combination in ordering comparison.")); return 0; } } -/* The unary operators - and ~. Both free the argument ARG1. */ +/* The unary operators +, - and ~. They free the argument ARG1. */ -value -value_neg (arg1) - register value arg1; +struct value * +value_pos (struct value *arg1) { - register struct type *type; + struct type *type; - COERCE_ENUM (arg1); + arg1 = coerce_ref (arg1); + type = check_typedef (value_type (arg1)); - type = VALUE_TYPE (arg1); + if (is_integral_type (type) || is_floating_value (arg1) + || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))) + return value_from_contents (type, value_contents (arg1)); + else + error (_("Argument to positive operation not a number.")); +} - if (TYPE_CODE (type) == TYPE_CODE_FLT) - return value_from_double (type, - value_as_double (arg1)); - else if (TYPE_CODE (type) == TYPE_CODE_INT) - return value_from_longest (type, - value_as_long (arg1)); - else { - error ("Argument to negate operation not a number."); - return 0; /* For lint -- never reached */ - } +struct value * +value_neg (struct value *arg1) +{ + struct type *type; + + arg1 = coerce_ref (arg1); + type = check_typedef (value_type (arg1)); + + if (is_integral_type (type) || is_floating_type (type)) + return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB); + else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) + { + struct value *tmp, *val = allocate_value (type); + struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); + int i; + LONGEST low_bound, high_bound; + + if (!get_array_bounds (type, &low_bound, &high_bound)) + error (_("Could not determine the vector bounds")); + + for (i = 0; i < high_bound - low_bound + 1; i++) + { + tmp = value_neg (value_subscript (arg1, i)); + memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), + value_contents_all (tmp), TYPE_LENGTH (eltype)); + } + return val; + } + else + error (_("Argument to negate operation not a number.")); } -value -value_lognot (arg1) - register value arg1; +struct value * +value_complement (struct value *arg1) { - COERCE_ENUM (arg1); + struct type *type; + struct value *val; - if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT) - error ("Argument to complement operation not an integer."); + arg1 = coerce_ref (arg1); + type = check_typedef (value_type (arg1)); - return value_from_longest (VALUE_TYPE (arg1), ~ value_as_long (arg1)); + if (is_integral_type (type)) + val = value_from_longest (type, ~value_as_long (arg1)); + else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) + { + struct value *tmp; + struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); + int i; + LONGEST low_bound, high_bound; + + if (!get_array_bounds (type, &low_bound, &high_bound)) + error (_("Could not determine the vector bounds")); + + val = allocate_value (type); + for (i = 0; i < high_bound - low_bound + 1; i++) + { + tmp = value_complement (value_subscript (arg1, i)); + memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), + value_contents_all (tmp), TYPE_LENGTH (eltype)); + } + } + else + error (_("Argument to complement operation not an integer, boolean.")); + + return val; } +/* The INDEX'th bit of SET value whose value_type is TYPE, + and whose value_contents is valaddr. + Return -1 if out of range, -2 other error. */ + +int +value_bit_index (struct type *type, const gdb_byte *valaddr, int index) +{ + struct gdbarch *gdbarch = get_type_arch (type); + LONGEST low_bound, high_bound; + LONGEST word; + unsigned rel_index; + struct type *range = TYPE_INDEX_TYPE (type); + + if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) + return -2; + if (index < low_bound || index > high_bound) + return -1; + rel_index = index - low_bound; + word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1, + type_byte_order (type)); + rel_index %= TARGET_CHAR_BIT; + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + rel_index = TARGET_CHAR_BIT - 1 - rel_index; + return (word >> rel_index) & 1; +} + +int +value_in (struct value *element, struct value *set) +{ + int member; + struct type *settype = check_typedef (value_type (set)); + struct type *eltype = check_typedef (value_type (element)); + + if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) + eltype = TYPE_TARGET_TYPE (eltype); + if (TYPE_CODE (settype) != TYPE_CODE_SET) + error (_("Second argument of 'IN' has wrong type")); + if (TYPE_CODE (eltype) != TYPE_CODE_INT + && TYPE_CODE (eltype) != TYPE_CODE_CHAR + && TYPE_CODE (eltype) != TYPE_CODE_ENUM + && TYPE_CODE (eltype) != TYPE_CODE_BOOL) + error (_("First argument of 'IN' has wrong type")); + member = value_bit_index (settype, value_contents (set), + value_as_long (element)); + if (member < 0) + error (_("First argument of 'IN' not in range")); + return member; +}