X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=gdb%2Fvalarith.c;h=82e63a33cbbd1fe9f28e3a5a72ccea69cd25415b;hb=refs%2Fheads%2Fconcurrent-displaced-stepping-2020-04-01;hp=4920cfc18a606bce21ddea4890b1845bc55c4022;hpb=5bbd8269fa8d138e8ea1dd3c8cdf42412c1dfa41;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/valarith.c b/gdb/valarith.c index 4920cfc18a..82e63a33cb 100644 --- a/gdb/valarith.c +++ b/gdb/valarith.c @@ -1,6 +1,6 @@ /* Perform arithmetic and other operations on values, for GDB. - Copyright (C) 1986-2019 Free Software Foundation, Inc. + Copyright (C) 1986-2020 Free Software Foundation, Inc. This file is part of GDB. @@ -48,19 +48,19 @@ find_size_for_pointer_math (struct type *ptr_type) LONGEST sz = -1; struct type *ptr_target; - gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR); + gdb_assert (ptr_type->code () == TYPE_CODE_PTR); ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type)); sz = type_length_units (ptr_target); if (sz == 0) { - if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID) + if (ptr_type->code () == TYPE_CODE_VOID) sz = 1; else { const char *name; - name = TYPE_NAME (ptr_target); + name = ptr_target->name (); if (name == NULL) error (_("Cannot perform pointer math on incomplete types, " "try casting to a known type, or void *.")); @@ -107,8 +107,8 @@ value_ptrdiff (struct value *arg1, struct value *arg2) type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); - gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR); - gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR); + gdb_assert (type1->code () == TYPE_CODE_PTR); + gdb_assert (type2->code () == TYPE_CODE_PTR); if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) @@ -146,8 +146,8 @@ value_subscript (struct value *array, LONGEST index) array = coerce_ref (array); tarray = check_typedef (value_type (array)); - if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY - || TYPE_CODE (tarray) == TYPE_CODE_STRING) + if (tarray->code () == TYPE_CODE_ARRAY + || tarray->code () == TYPE_CODE_STRING) { struct type *range_type = TYPE_INDEX_TYPE (tarray); LONGEST lowerbound, upperbound; @@ -187,7 +187,7 @@ value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound { struct type *array_type = check_typedef (value_type (array)); struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); - ULONGEST elt_size = type_length_units (elt_type); + LONGEST elt_size = type_length_units (elt_type); /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits in a byte. */ @@ -199,7 +199,7 @@ value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound elt_size = stride / (unit_size * 8); } - ULONGEST elt_offs = elt_size * (index - lowerbound); + LONGEST elt_offs = elt_size * (index - lowerbound); if (index < lowerbound || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type) @@ -220,7 +220,7 @@ value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound CORE_ADDR address; address = value_address (array) + elt_offs; - elt_type = resolve_dynamic_type (elt_type, NULL, address); + elt_type = resolve_dynamic_type (elt_type, {}, address); } return value_from_component (array, elt_type, elt_offs); @@ -248,8 +248,8 @@ binop_types_user_defined_p (enum exp_opcode op, if (TYPE_IS_REFERENCE (type2)) type2 = check_typedef (TYPE_TARGET_TYPE (type2)); - return (TYPE_CODE (type1) == TYPE_CODE_STRUCT - || TYPE_CODE (type2) == TYPE_CODE_STRUCT); + return (type1->code () == TYPE_CODE_STRUCT + || type2->code () == TYPE_CODE_STRUCT); } /* Check to see if either argument is a structure, or a reference to @@ -281,7 +281,7 @@ unop_user_defined_p (enum exp_opcode op, struct value *arg1) type1 = check_typedef (value_type (arg1)); if (TYPE_IS_REFERENCE (type1)) type1 = check_typedef (TYPE_TARGET_TYPE (type1)); - return TYPE_CODE (type1) == TYPE_CODE_STRUCT; + return type1->code () == TYPE_CODE_STRUCT; } /* Try to find an operator named OPERATOR which takes NARGS arguments @@ -364,7 +364,7 @@ value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, /* now we know that what we have to do is construct our arg vector and find the right function to call it with. */ - if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) + if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT) error (_("Can't do that binary op on that type")); /* FIXME be explicit */ value *argvec_storage[3]; @@ -491,7 +491,7 @@ value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, argvec[1] = argvec[0]; argvec = argvec.slice (1); } - if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) + if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD) { /* Static xmethods are not supported yet. */ gdb_assert (static_memfuncp == 0); @@ -540,7 +540,7 @@ value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) /* now we know that what we have to do is construct our arg vector and find the right function to call it with. */ - if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) + if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT) error (_("Can't do that unary op on that type")); /* FIXME be explicit */ value *argvec_storage[3]; @@ -605,7 +605,7 @@ value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) argvec[1] = argvec[0]; argvec = argvec.slice (1); } - if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) + if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD) { /* Static xmethods are not supported yet. */ gdb_assert (static_memfuncp == 0); @@ -675,7 +675,7 @@ value_concat (struct value *arg1, struct value *arg2) to the second of the two concatenated values or the value to be repeated. */ - if (TYPE_CODE (type2) == TYPE_CODE_INT) + if (type2->code () == TYPE_CODE_INT) { struct type *tmp = type1; @@ -692,17 +692,17 @@ value_concat (struct value *arg1, struct value *arg2) /* Now process the input values. */ - if (TYPE_CODE (type1) == TYPE_CODE_INT) + if (type1->code () == TYPE_CODE_INT) { /* We have a repeat count. Validate the second value and then construct a value repeated that many times. */ - if (TYPE_CODE (type2) == TYPE_CODE_STRING - || TYPE_CODE (type2) == TYPE_CODE_CHAR) + if (type2->code () == TYPE_CODE_STRING + || type2->code () == TYPE_CODE_CHAR) { count = longest_to_int (value_as_long (inval1)); inval2len = TYPE_LENGTH (type2); std::vector ptr (count * inval2len); - if (TYPE_CODE (type2) == TYPE_CODE_CHAR) + if (type2->code () == TYPE_CODE_CHAR) { char_type = type2; @@ -725,7 +725,7 @@ value_concat (struct value *arg1, struct value *arg2) } outval = value_string (ptr.data (), count * inval2len, char_type); } - else if (TYPE_CODE (type2) == TYPE_CODE_BOOL) + else if (type2->code () == TYPE_CODE_BOOL) { error (_("unimplemented support for boolean repeats")); } @@ -734,19 +734,19 @@ value_concat (struct value *arg1, struct value *arg2) error (_("can't repeat values of that type")); } } - else if (TYPE_CODE (type1) == TYPE_CODE_STRING - || TYPE_CODE (type1) == TYPE_CODE_CHAR) + else if (type1->code () == TYPE_CODE_STRING + || type1->code () == TYPE_CODE_CHAR) { /* We have two character strings to concatenate. */ - if (TYPE_CODE (type2) != TYPE_CODE_STRING - && TYPE_CODE (type2) != TYPE_CODE_CHAR) + if (type2->code () != TYPE_CODE_STRING + && type2->code () != TYPE_CODE_CHAR) { error (_("Strings can only be concatenated with other strings.")); } inval1len = TYPE_LENGTH (type1); inval2len = TYPE_LENGTH (type2); std::vector ptr (inval1len + inval2len); - if (TYPE_CODE (type1) == TYPE_CODE_CHAR) + if (type1->code () == TYPE_CODE_CHAR) { char_type = type1; @@ -758,7 +758,7 @@ value_concat (struct value *arg1, struct value *arg2) memcpy (ptr.data (), value_contents (inval1), inval1len); } - if (TYPE_CODE (type2) == TYPE_CODE_CHAR) + if (type2->code () == TYPE_CODE_CHAR) { ptr[inval1len] = (char) unpack_long (type2, value_contents (inval2)); @@ -769,10 +769,10 @@ value_concat (struct value *arg1, struct value *arg2) } outval = value_string (ptr.data (), inval1len + inval2len, char_type); } - else if (TYPE_CODE (type1) == TYPE_CODE_BOOL) + else if (type1->code () == TYPE_CODE_BOOL) { /* We have two bitstrings to concatenate. */ - if (TYPE_CODE (type2) != TYPE_CODE_BOOL) + if (type2->code () != TYPE_CODE_BOOL) { error (_("Booleans can only be concatenated " "with other bitstrings or booleans.")); @@ -865,7 +865,7 @@ value_args_as_target_float (struct value *arg1, struct value *arg2, gdb_assert (is_floating_type (type1) || is_floating_type (type2)); if (is_floating_type (type1) && is_floating_type (type2) - && TYPE_CODE (type1) != TYPE_CODE (type2)) + && type1->code () != type2->code ()) /* The DFP extension to the C language does not allow mixing of * decimal float types with other float types in expressions * (see WDTR 24732, page 12). */ @@ -888,8 +888,8 @@ value_args_as_target_float (struct value *arg1, struct value *arg2, target_float_from_longest (x, *eff_type_x, value_as_long (arg1)); } else - error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), - TYPE_NAME (type2)); + error (_("Don't know how to convert from %s to %s."), type1->name (), + type2->name ()); /* Obtain value of arg2, converting from other types if necessary. */ @@ -907,8 +907,159 @@ value_args_as_target_float (struct value *arg1, struct value *arg2, target_float_from_longest (y, *eff_type_y, value_as_long (arg2)); } else - error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), - TYPE_NAME (type2)); + error (_("Don't know how to convert from %s to %s."), type1->name (), + type2->name ()); +} + +/* A helper function that finds the type to use for a binary operation + involving TYPE1 and TYPE2. */ + +static struct type * +promotion_type (struct type *type1, struct type *type2) +{ + struct type *result_type; + + if (is_floating_type (type1) || is_floating_type (type2)) + { + /* If only one type is floating-point, use its type. + Otherwise use the bigger type. */ + if (!is_floating_type (type1)) + result_type = type2; + else if (!is_floating_type (type2)) + result_type = type1; + else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) + result_type = type2; + else + result_type = type1; + } + else + { + /* Integer types. */ + if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) + result_type = type1; + else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) + result_type = type2; + else if (TYPE_UNSIGNED (type1)) + result_type = type1; + else if (TYPE_UNSIGNED (type2)) + result_type = type2; + else + result_type = type1; + } + + return result_type; +} + +static struct value *scalar_binop (struct value *arg1, struct value *arg2, + enum exp_opcode op); + +/* Perform a binary operation on complex operands. */ + +static struct value * +complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) +{ + struct type *arg1_type = check_typedef (value_type (arg1)); + struct type *arg2_type = check_typedef (value_type (arg2)); + + struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag; + if (arg1_type->code () == TYPE_CODE_COMPLEX) + { + arg1_real = value_real_part (arg1); + arg1_imag = value_imaginary_part (arg1); + } + else + { + arg1_real = arg1; + arg1_imag = value_zero (arg1_type, not_lval); + } + if (arg2_type->code () == TYPE_CODE_COMPLEX) + { + arg2_real = value_real_part (arg2); + arg2_imag = value_imaginary_part (arg2); + } + else + { + arg2_real = arg2; + arg2_imag = value_zero (arg2_type, not_lval); + } + + struct type *comp_type = promotion_type (value_type (arg1_real), + value_type (arg2_real)); + arg1_real = value_cast (comp_type, arg1_real); + arg1_imag = value_cast (comp_type, arg1_imag); + arg2_real = value_cast (comp_type, arg2_real); + arg2_imag = value_cast (comp_type, arg2_imag); + + struct type *result_type = init_complex_type (nullptr, comp_type); + + struct value *result_real, *result_imag; + switch (op) + { + case BINOP_ADD: + case BINOP_SUB: + result_real = scalar_binop (arg1_real, arg2_real, op); + result_imag = scalar_binop (arg1_imag, arg2_imag, op); + break; + + case BINOP_MUL: + { + struct value *x1 = scalar_binop (arg1_real, arg2_real, op); + struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op); + result_real = scalar_binop (x1, x2, BINOP_SUB); + + x1 = scalar_binop (arg1_real, arg2_imag, op); + x2 = scalar_binop (arg1_imag, arg2_real, op); + result_imag = scalar_binop (x1, x2, BINOP_ADD); + } + break; + + case BINOP_DIV: + { + if (arg2_type->code () == TYPE_CODE_COMPLEX) + { + struct value *conjugate = value_complement (arg2); + /* We have to reconstruct ARG1, in case the type was + promoted. */ + arg1 = value_literal_complex (arg1_real, arg1_imag, result_type); + + struct value *numerator = scalar_binop (arg1, conjugate, + BINOP_MUL); + arg1_real = value_real_part (numerator); + arg1_imag = value_imaginary_part (numerator); + + struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL); + struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL); + arg2_real = scalar_binop (x1, x2, BINOP_ADD); + } + + result_real = scalar_binop (arg1_real, arg2_real, op); + result_imag = scalar_binop (arg1_imag, arg2_real, op); + } + break; + + case BINOP_EQUAL: + case BINOP_NOTEQUAL: + { + struct value *x1 = scalar_binop (arg1_real, arg2_real, op); + struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op); + + LONGEST v1 = value_as_long (x1); + LONGEST v2 = value_as_long (x2); + + if (op == BINOP_EQUAL) + v1 = v1 && v2; + else + v1 = v1 || v2; + + return value_from_longest (value_type (x1), v1); + } + break; + + default: + error (_("Invalid binary operation on numbers.")); + } + + return value_literal_complex (result_real, result_imag, result_type); } /* Perform a binary operation on two operands which have reasonable @@ -929,23 +1080,17 @@ scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); + if (type1->code () == TYPE_CODE_COMPLEX + || type2->code () == TYPE_CODE_COMPLEX) + return complex_binop (arg1, arg2, op); + if ((!is_floating_value (arg1) && !is_integral_type (type1)) || (!is_floating_value (arg2) && !is_integral_type (type2))) error (_("Argument to arithmetic operation not a number or boolean.")); if (is_floating_type (type1) || is_floating_type (type2)) { - /* If only one type is floating-point, use its type. - Otherwise use the bigger type. */ - if (!is_floating_type (type1)) - result_type = type2; - else if (!is_floating_type (type2)) - result_type = type1; - else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) - result_type = type2; - else - result_type = type1; - + result_type = promotion_type (type1, type2); val = allocate_value (result_type); struct type *eff_type_v1, *eff_type_v2; @@ -960,8 +1105,8 @@ scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) v2.data (), eff_type_v2, value_contents_raw (val), result_type); } - else if (TYPE_CODE (type1) == TYPE_CODE_BOOL - || TYPE_CODE (type2) == TYPE_CODE_BOOL) + else if (type1->code () == TYPE_CODE_BOOL + || type2->code () == TYPE_CODE_BOOL) { LONGEST v1, v2, v = 0; @@ -1013,16 +1158,8 @@ scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) if one of the operands is unsigned. */ if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP) result_type = type1; - else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) - result_type = type1; - else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) - result_type = type2; - else if (TYPE_UNSIGNED (type1)) - result_type = type1; - else if (TYPE_UNSIGNED (type2)) - result_type = type2; else - result_type = type1; + result_type = promotion_type (type1, type2); if (TYPE_UNSIGNED (result_type)) { @@ -1301,7 +1438,7 @@ value_vector_widen (struct value *scalar_value, struct type *vector_type) vector_type = check_typedef (vector_type); - gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY + gdb_assert (vector_type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (vector_type)); if (!get_array_bounds (vector_type, &low_bound, &high_bound)) @@ -1341,9 +1478,9 @@ vector_binop (struct value *val1, struct value *val2, enum exp_opcode op) type1 = check_typedef (value_type (val1)); type2 = check_typedef (value_type (val2)); - t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY + t1_is_vec = (type1->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)) ? 1 : 0; - t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY + t2_is_vec = (type2->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)) ? 1 : 0; if (!t1_is_vec || !t2_is_vec) @@ -1357,7 +1494,7 @@ vector_binop (struct value *val1, struct value *val2, enum exp_opcode op) eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)); elsize = TYPE_LENGTH (eltype1); - if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2) + if (eltype1->code () != eltype2->code () || elsize != TYPE_LENGTH (eltype2) || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2) || low_bound1 != low_bound2 || high_bound1 != high_bound2) @@ -1386,9 +1523,9 @@ value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) struct value *val; struct type *type1 = check_typedef (value_type (arg1)); struct type *type2 = check_typedef (value_type (arg2)); - int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY + int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)); - int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY + int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)); if (!t1_is_vec && !t2_is_vec) @@ -1401,8 +1538,8 @@ value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) struct value **v = t1_is_vec ? &arg2 : &arg1; struct type *t = t1_is_vec ? type2 : type1; - if (TYPE_CODE (t) != TYPE_CODE_FLT - && TYPE_CODE (t) != TYPE_CODE_DECFLOAT + if (t->code () != TYPE_CODE_FLT + && t->code () != TYPE_CODE_DECFLOAT && !is_integral_type (t)) error (_("Argument to operation not a number or boolean.")); @@ -1491,8 +1628,8 @@ value_equal (struct value *arg1, struct value *arg2) type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); - code1 = TYPE_CODE (type1); - code2 = TYPE_CODE (type2); + code1 = type1->code (); + code2 = type2->code (); is_int1 = is_integral_type (type1); is_int2 = is_integral_type (type2); @@ -1555,7 +1692,7 @@ value_equal_contents (struct value *arg1, struct value *arg2) type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); - return (TYPE_CODE (type1) == TYPE_CODE (type2) + return (type1->code () == type2->code () && TYPE_LENGTH (type1) == TYPE_LENGTH (type2) && memcmp (value_contents (arg1), value_contents (arg2), TYPE_LENGTH (type1)) == 0); @@ -1577,8 +1714,8 @@ value_less (struct value *arg1, struct value *arg2) type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); - code1 = TYPE_CODE (type1); - code2 = TYPE_CODE (type2); + code1 = type1->code (); + code2 = type2->code (); is_int1 = is_integral_type (type1); is_int2 = is_integral_type (type2); @@ -1629,7 +1766,8 @@ value_pos (struct value *arg1) type = check_typedef (value_type (arg1)); if (is_integral_type (type) || is_floating_value (arg1) - || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))) + || (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) + || type->code () == TYPE_CODE_COMPLEX) return value_from_contents (type, value_contents (arg1)); else error (_("Argument to positive operation not a number.")); @@ -1645,7 +1783,7 @@ value_neg (struct value *arg1) if (is_integral_type (type) || is_floating_type (type)) return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB); - else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) + else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) { struct value *tmp, *val = allocate_value (type); struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); @@ -1663,6 +1801,15 @@ value_neg (struct value *arg1) } return val; } + else if (type->code () == TYPE_CODE_COMPLEX) + { + struct value *real = value_real_part (arg1); + struct value *imag = value_imaginary_part (arg1); + + real = value_neg (real); + imag = value_neg (imag); + return value_literal_complex (real, imag, type); + } else error (_("Argument to negate operation not a number.")); } @@ -1678,7 +1825,7 @@ value_complement (struct value *arg1) if (is_integral_type (type)) val = value_from_longest (type, ~value_as_long (arg1)); - else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) + else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) { struct value *tmp; struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); @@ -1696,6 +1843,16 @@ value_complement (struct value *arg1) value_contents_all (tmp), TYPE_LENGTH (eltype)); } } + else if (type->code () == TYPE_CODE_COMPLEX) + { + /* GCC has an extension that treats ~complex as the complex + conjugate. */ + struct value *real = value_real_part (arg1); + struct value *imag = value_imaginary_part (arg1); + + imag = value_neg (imag); + return value_literal_complex (real, imag, type); + } else error (_("Argument to complement operation not an integer, boolean.")); @@ -1723,7 +1880,7 @@ value_bit_index (struct type *type, const gdb_byte *valaddr, int index) word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1, type_byte_order (type)); rel_index %= TARGET_CHAR_BIT; - if (gdbarch_bits_big_endian (gdbarch)) + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) rel_index = TARGET_CHAR_BIT - 1 - rel_index; return (word >> rel_index) & 1; } @@ -1735,14 +1892,14 @@ value_in (struct value *element, struct value *set) struct type *settype = check_typedef (value_type (set)); struct type *eltype = check_typedef (value_type (element)); - if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) + if (eltype->code () == TYPE_CODE_RANGE) eltype = TYPE_TARGET_TYPE (eltype); - if (TYPE_CODE (settype) != TYPE_CODE_SET) + if (settype->code () != TYPE_CODE_SET) error (_("Second argument of 'IN' has wrong type")); - if (TYPE_CODE (eltype) != TYPE_CODE_INT - && TYPE_CODE (eltype) != TYPE_CODE_CHAR - && TYPE_CODE (eltype) != TYPE_CODE_ENUM - && TYPE_CODE (eltype) != TYPE_CODE_BOOL) + if (eltype->code () != TYPE_CODE_INT + && eltype->code () != TYPE_CODE_CHAR + && eltype->code () != TYPE_CODE_ENUM + && eltype->code () != TYPE_CODE_BOOL) error (_("First argument of 'IN' has wrong type")); member = value_bit_index (settype, value_contents (set), value_as_long (element));