X-Git-Url: http://git.efficios.com/?a=blobdiff_plain;f=sim%2Fmips%2Fsim-main.h;h=990573996bb96ffa4ce6a84d7140bc0fc224e00f;hb=f9a4d54332f9e1f75701ba43249a03cc631ec736;hp=776e0b3d80d63655fa82b568c7ac759c976b8aa4;hpb=2fd7c40770dcffcd04ced03080a8a7986b823433;p=deliverable%2Fbinutils-gdb.git diff --git a/sim/mips/sim-main.h b/sim/mips/sim-main.h index 776e0b3d80..990573996b 100644 --- a/sim/mips/sim-main.h +++ b/sim/mips/sim-main.h @@ -1,53 +1,36 @@ /* MIPS Simulator definition. - Copyright (C) 1997 Free Software Foundation, Inc. + Copyright (C) 1997-2021 Free Software Foundation, Inc. Contributed by Cygnus Support. -This file is part of GDB, the GNU debugger. +This file is part of the MIPS sim. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. +the Free Software Foundation; either version 3 of the License, or +(at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. -You should have received a copy of the GNU General Public License along -with this program; if not, write to the Free Software Foundation, Inc., -59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ +You should have received a copy of the GNU General Public License +along with this program. If not, see . */ #ifndef SIM_MAIN_H #define SIM_MAIN_H -/* This simulator doesn't cache the Current Instruction Address */ -/* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */ -/* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */ +/* MIPS uses an unusual format for floating point quiet NaNs. */ +#define SIM_QUIET_NAN_NEGATED -#define SIM_HAVE_BIENDIAN - - -/* hobble some common features for moment */ -#define WITH_WATCHPOINTS 1 -#define WITH_MODULO_MEMORY 1 +#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \ +mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR)) #include "sim-basics.h" - -typedef address_word sim_cia; - -#if (WITH_IGEN) -/* Get the number of instructions. FIXME: must be a more elegant way - of doing this. */ -#include "itable.h" -#define MAX_INSNS (nr_itable_entries) -#define INSN_NAME(i) itable[(i)].name -#endif - #include "sim-base.h" +#include "bfd.h" - -/* Depreciated macros and types for manipulating 64bit values. Use +/* Deprecated macros and types for manipulating 64bit values. Use ../common/sim-bits.h and ../common/sim-endian.h macros instead. */ typedef signed64 word64; @@ -60,23 +43,29 @@ typedef unsigned64 uword64; #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l)))) #define UWORD64(h,l) (SET64HI(h)|SET64LO(l)) -/* Sign-extend the given value (e) as a value (b) bits long. We cannot - assume the HI32bits of the operand are zero, so we must perform a - mask to ensure we can use the simple subtraction to sign-extend. */ -#define SIGNEXTEND(e,b) \ - ((unsigned_word) \ - (((e) & ((uword64) 1 << ((b) - 1))) \ - ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \ - : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1)))) - /* Check if a value will fit within a halfword: */ #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1)) +typedef enum { + cp0_dmfc0, + cp0_dmtc0, + cp0_mfc0, + cp0_mtc0, + cp0_tlbr, + cp0_tlbwi, + cp0_tlbwr, + cp0_tlbp, + cp0_cache, + cp0_eret, + cp0_deret, + cp0_rfe +} CP0_operation; /* Floating-point operations: */ #include "sim-fpu.h" +#include "cp1.h" /* FPU registers must be one of the following types. All other values are reserved (and undefined). */ @@ -85,88 +74,57 @@ typedef enum { fmt_double = 1, fmt_word = 4, fmt_long = 5, + fmt_ps = 6, /* The following are well outside the normal acceptable format range, and are used in the register status vector. */ fmt_unknown = 0x10000000, fmt_uninterpreted = 0x20000000, fmt_uninterpreted_32 = 0x40000000, - fmt_uninterpreted_64 = 0x80000000, + fmt_uninterpreted_64 = 0x80000000U, } FP_formats; -unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats)); -#define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT)) - -void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value)); -#define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE)) - -int NaN PARAMS ((unsigned64 op, FP_formats fmt)); -int Infinity PARAMS ((unsigned64 op, FP_formats fmt)); -int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt)); -unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt)); -unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt)); -unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt)); -unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to)); -#define Convert(rm,op,from,to) \ -convert (SD, CPU, cia, rm, op, from, to) - -/* Macro to update FPSR condition-code field. This is complicated by - the fact that there is a hole in the index range of the bits within - the FCSR register. Also, the number of bits visible depends on the - MIPS ISA version being supported. */ - -#define SETFCC(cc,v) {\ - int bit = ((cc == 0) ? 23 : (24 + (cc)));\ - FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\ -} -#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0) +/* For paired word (pw) operations, the opcode representation is fmt_word, + but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */ +#define fmt_pw fmt_long /* This should be the COC1 value at the start of the preceding instruction: */ #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0) -#if 1 -#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE) +#ifdef TARGET_ENABLE_FR +/* FIXME: this should be enabled for all targets, but needs testing first. */ +#define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \ + ? ((SR & status_FR) ? 64 : 32) \ + : (WITH_TARGET_FLOATING_POINT_BITSIZE)) #else -/* They depend on the CPU being simulated */ -#define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32) +#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE) #endif -/* Standard FCRS bits: */ -#define IR (0) /* Inexact Result */ -#define UF (1) /* UnderFlow */ -#define OF (2) /* OverFlow */ -#define DZ (3) /* Division by Zero */ -#define IO (4) /* Invalid Operation */ -#define UO (5) /* Unimplemented Operation */ - -/* Get masks for individual flags: */ -#if 1 /* SAFE version */ -#define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0) -#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0) -#define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0) -#else -#define FP_FLAGS(b) (1 << ((b) + 2)) -#define FP_ENABLE(b) (1 << ((b) + 7)) -#define FP_CAUSE(b) (1 << ((b) + 12)) -#endif -#define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */ -#define FP_MASK_RM (0x3) -#define FP_SH_RM (0) -#define FP_RM_NEAREST (0) /* Round to nearest (Round) */ -#define FP_RM_TOZERO (1) /* Round to zero (Trunc) */ -#define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */ -#define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */ -#define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM) + + +/* HI/LO register accesses */ + +/* For some MIPS targets, the HI/LO registers have certain timing + restrictions in that, for instance, a read of a HI register must be + separated by at least three instructions from a preceeding read. + + The struct below is used to record the last access by each of A MT, + MF or other OP instruction to a HI/LO register. See mips.igen for + more details. */ + +typedef struct _hilo_access { + signed64 timestamp; + address_word cia; +} hilo_access; + +typedef struct _hilo_history { + hilo_access mt; + hilo_access mf; + hilo_access op; +} hilo_history; + @@ -177,7 +135,7 @@ convert (SD, CPU, cia, rm, op, from, to) #define ALU32_END(ANS) \ if (ALU32_HAD_OVERFLOW) \ SignalExceptionIntegerOverflow (); \ - (ANS) = ALU32_OVERFLOW_RESULT + (ANS) = (signed32) ALU32_OVERFLOW_RESULT #define ALU64_END(ANS) \ @@ -186,167 +144,6 @@ convert (SD, CPU, cia, rm, op, from, to) (ANS) = ALU64_OVERFLOW_RESULT; -/* start-sanitize-r5900 */ - -/* Figure 10-5 FPU Control/Status Register. - Note: some of these bits are different to what is found in a - standard MIPS manual. */ -enum { - R5900_FCSR_C = BIT (23), /* OK */ - R5900_FCSR_I = BIT (17), - R5900_FCSR_D = BIT (16), - R5900_FCSR_O = BIT (15), - R5900_FCSR_U = BIT (14), - R5900_FCSR_CAUSE = MASK (16,14), - R5900_FCSR_SI = BIT (6), - R5900_FCSR_SD = BIT (5), - R5900_FCSR_SO = BIT (4), - R5900_FCSR_SU = BIT (3), -}; - -typedef struct _sim_r5900_cpu { - - /* The R5900 has 32 x 128bit general purpose registers. - Fortunatly, the high 64 bits are only touched by multimedia (MMI) - instructions. The normal mips instructions just use the lower 64 - bits. To avoid changing the older parts of the simulator to - handle this weirdness, the high 64 bits of each register are kept - in a separate array (registers1). The high 64 bits of any - register are by convention refered by adding a '1' to the end of - the normal register's name. So LO still refers to the low 64 - bits of the LO register, LO1 refers to the high 64 bits of that - same register. */ - signed_word gpr1[32]; -#define GPR1 ((CPU)->r5900.gpr1) - signed_word lo1; - signed_word hi1; -#define LO1 ((CPU)->r5900.lo1) -#define HI1 ((CPU)->r5900.hi1) - - /* The R5900 defines a shift amount register, that controls the - amount of certain shift instructions */ - unsigned_word sa; /* the shift amount register */ -#define REGISTER_SA (124) /* GET RID IF THIS! */ -#define SA ((CPU)->r5900.sa) - - /* The R5900, in addition to the (almost) standard floating point - registers, defines a 32 bit accumulator. This is used in - multiply/accumulate style instructions */ - fp_word acc; /* floating-point accumulator */ -#define ACC ((CPU)->r5900.acc) - - /* See comments below about needing to count cycles between updating - and setting HI/LO registers */ - int hi1access; - int lo1access; -#define HI1ACCESS ((CPU)->r5900.hi1access) -#define LO1ACCESS ((CPU)->r5900.lo1access) -#if 0 -#define CHECKHILO(s) {\ - if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\ - sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\ -} -#endif - -} sim_r5900_cpu; - -#define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word)) -#define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2) -#define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4) -#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8) - -#define BYTES_IN_MIPS_REGS (sizeof(signed_word)) -#define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2) -#define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4) -#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8) - -/* SUB_REG_FETCH - return as lvalue some sub-part of a "register" - T - type of the sub part - TC - # of T's in the mips part of the "register" - I - index (from 0) of desired sub part - A - low part of "register" - A1 - high part of register -*/ -#define SUB_REG_FETCH(T,TC,A,A1,I) \ -(*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \ - + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \ - ? ((TC) - 1 - (I) % (TC)) \ - : ((I) % (TC)) \ - ) \ - ) \ - ) - -/* -GPR_(R,I) - return, as lvalue, the I'th of general register R - where has two letters: - 1 is S=signed or U=unsigned - 2 is B=byte H=halfword W=word D=doubleword -*/ - -#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I) - -#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I) - -#define GPR_SB(R,I) SUB_REG_SB(&GPR[R], &GPR1[R], I) -#define GPR_SH(R,I) SUB_REG_SH(&GPR[R], &GPR1[R], I) -#define GPR_SW(R,I) SUB_REG_SW(&GPR[R], &GPR1[R], I) -#define GPR_SD(R,I) SUB_REG_SD(&GPR[R], &GPR1[R], I) - -#define GPR_UB(R,I) SUB_REG_UB(&GPR[R], &GPR1[R], I) -#define GPR_UH(R,I) SUB_REG_UH(&GPR[R], &GPR1[R], I) -#define GPR_UW(R,I) SUB_REG_UW(&GPR[R], &GPR1[R], I) -#define GPR_UD(R,I) SUB_REG_UD(&GPR[R], &GPR1[R], I) - - -#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I) -#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I) -#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I) -#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I) - -#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I) -#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I) -#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I) -#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I) - -#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I) -#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I) -#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I) -#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I) - -#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I) -#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I) -#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I) -#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I) - - - -#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I) -#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I) -#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I) -#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I) - -#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I) -#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I) -#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I) -#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I) - -#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I) -#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I) -#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I) -#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I) - -#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I) -#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I) -#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I) -#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I) - -/* end-sanitize-r5900 */ @@ -376,7 +173,7 @@ typedef struct _pending_write_queue { #define PENDING_OUT ((CPU)->pending.out) #define PENDING_TOTAL ((CPU)->pending.total) #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size) -#define PENDING_SLOT_BIT ((CPU)->pending.slot_size) +#define PENDING_SLOT_BIT ((CPU)->pending.slot_bit) #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay) #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest) #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value) @@ -399,12 +196,17 @@ memset (&(CPU)->pending, 0, sizeof ((CPU)->pending)) sim_engine_abort (SD, CPU, cia, \ "PENDING_SCHED - buffer overflow\n"); \ if (PENDING_TRACE) \ - sim_io_printf (SD, "PENDING_SCHED - dest 0x%lx, val 0x%lx, pending_in %d, pending_out %d, pending_total %d\n", (unsigned long) (DEST), (unsigned long) (VAL), PENDING_IN, PENDING_OUT, PENDING_TOTAL); \ + sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \ + (unsigned long) cia, (unsigned long) &(DEST), \ + (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\ + PENDING_IN, PENDING_OUT, PENDING_TOTAL); \ PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \ PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \ PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \ PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \ PENDING_SLOT_BIT[PENDING_IN] = (BIT); \ + PENDING_IN = (PENDING_IN + 1) % PSLOTS; \ + PENDING_TOTAL += 1; \ } while (0) #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1) @@ -417,45 +219,52 @@ memset (&(CPU)->pending, 0, sizeof ((CPU)->pending)) /* For backward compatibility */ #define PENDING_FILL(R,VAL) \ -{ \ - if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \ - PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 2, -1); \ +do { \ + if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \ + { \ + PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \ + PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \ + } \ else \ - PENDING_SCHED(GPR[(R)], VAL, 2, -1); \ -} + PENDING_SCHED(GPR[(R)], VAL, 1, -1); \ +} while (0) + +enum float_operation + { + FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD, + FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS, + FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23 + }; +/* The internal representation of an MDMX accumulator. + Note that 24 and 48 bit accumulator elements are represented in + 32 or 64 bits. Since the accumulators are 2's complement with + overflow suppressed, high-order bits can be ignored in most contexts. */ + +typedef signed32 signed24; +typedef signed64 signed48; + +typedef union { + signed24 ob[8]; + signed48 qh[4]; +} MDMX_accumulator; + + +/* Conventional system arguments. */ +#define SIM_STATE sim_cpu *cpu, address_word cia +#define SIM_ARGS CPU, cia + struct _sim_cpu { /* The following are internal simulator state variables: */ -#define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0) -#define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA)) address_word dspc; /* delay-slot PC */ #define DSPC ((CPU)->dspc) - /* Issue a delay slot instruction immediatly by re-calling - idecode_issue */ -#define DELAY_SLOT(TARGET) \ - do { \ - address_word target = (TARGET); \ - instruction_word delay_insn; \ - sim_events_slip (SD, 1); \ - CIA = CIA + 4; /* NOTE not mips16 */ \ - STATE |= simDELAYSLOT; \ - delay_insn = IMEM32 (CIA); /* NOTE not mips16 */ \ - idecode_issue (CPU_, delay_insn, (CIA)); \ - STATE &= ~simDELAYSLOT; \ - NIA = target; \ - } while (0) -#define NULLIFY_NEXT_INSTRUCTION() \ - do { \ - sim_events_slip (SD, 1); \ - dotrace (SD, CPU, tracefh, 2, NIA, 4, "load instruction"); \ - NIA = CIA + 8; \ - } while (0) - +#define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET)) +#define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_) /* State of the simulator */ @@ -475,6 +284,7 @@ struct _sim_cpu { #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */ #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */ +#ifndef ENGINE_ISSUE_PREFIX_HOOK #define ENGINE_ISSUE_PREFIX_HOOK() \ { \ /* Perform any pending writes */ \ @@ -490,6 +300,7 @@ struct _sim_cpu { else \ STATE &= ~simPCOC0; \ } +#endif /* ENGINE_ISSUE_PREFIX_HOOK */ /* This is nasty, since we have to rely on matching the register @@ -500,53 +311,27 @@ struct _sim_cpu { state. */ #ifndef TM_MIPS_H -#define LAST_EMBED_REGNUM (89) +#define LAST_EMBED_REGNUM (96) #define NUM_REGS (LAST_EMBED_REGNUM + 1) -/* start-sanitize-r5900 */ -#undef NUM_REGS -#define NUM_REGS (128) -/* end-sanitize-r5900 */ -#endif - -/* start-sanitize-sky */ -#ifdef TARGET_SKY -#ifndef TM_TXVU_H - -/* Number of machine registers */ -#define NUM_VU_REGS 153 -#define NUM_VU_INTEGER_REGS 16 - -#define NUM_VIF_REGS 25 -#define FIRST_VEC_REG 25 -#define NUM_R5900_REGS 128 - -#undef NUM_REGS -#define NUM_REGS (NUM_R5900_REGS + 2*(NUM_VU_REGS) + 2*(NUM_VIF_REGS)) -#endif /* no tm-txvu.h */ +#define FP0_REGNUM 38 /* Floating point register 0 (single float) */ +#define FCRCS_REGNUM 70 /* FP control/status */ +#define FCRIR_REGNUM 71 /* FP implementation/revision */ #endif -/* end-sanitize-sky */ + /* To keep this default simulator simple, and fast, we use a direct vector of registers. The internal simulator engine then uses manifests to access the correct slot. */ unsigned_word registers[LAST_EMBED_REGNUM + 1]; + int register_widths[NUM_REGS]; #define REGISTERS ((CPU)->registers) #define GPR (®ISTERS[0]) #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL)) - /* While space is allocated for the floating point registers in the - main registers array, they are stored separatly. This is because - their size may not necessarily match the size of either the - general-purpose or system specific registers */ -#define NR_FGR (32) -#define FGRIDX (38) - fp_word fgr[NR_FGR]; -#define FGR ((CPU)->fgr) - #define LO (REGISTERS[33]) #define HI (REGISTERS[34]) #define PCIDX 37 @@ -562,7 +347,62 @@ struct _sim_cpu { #define Debug (REGISTERS[86]) #define DEPC (REGISTERS[87]) #define EPC (REGISTERS[88]) -#define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */ +#define ACX (REGISTERS[89]) + +#define AC0LOIDX (33) /* Must be the same register as LO */ +#define AC0HIIDX (34) /* Must be the same register as HI */ +#define AC1LOIDX (90) +#define AC1HIIDX (91) +#define AC2LOIDX (92) +#define AC2HIIDX (93) +#define AC3LOIDX (94) +#define AC3HIIDX (95) + +#define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]]) +#define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]]) + +#define DSPCRIDX (96) /* DSP control register */ +#define DSPCR (REGISTERS[DSPCRIDX]) + +#define DSPCR_POS_SHIFT (0) +#define DSPCR_POS_MASK (0x3f) +#define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT) + +#define DSPCR_SCOUNT_SHIFT (7) +#define DSPCR_SCOUNT_MASK (0x3f) +#define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT) + +#define DSPCR_CARRY_SHIFT (13) +#define DSPCR_CARRY_MASK (1) +#define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT) +#define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT) + +#define DSPCR_EFI_SHIFT (14) +#define DSPCR_EFI_MASK (1) +#define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT) +#define DSPCR_EFI (1 << DSPCR_EFI_MASK) + +#define DSPCR_OUFLAG_SHIFT (16) +#define DSPCR_OUFLAG_MASK (0xff) +#define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT) +#define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4)) +#define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5)) +#define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6)) +#define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7)) + +#define DSPCR_CCOND_SHIFT (24) +#define DSPCR_CCOND_MASK (0xf) +#define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT) + + /* All internal state modified by signal_exception() that may need to be + rolled back for passing moment-of-exception image back to gdb. */ + unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1]; + unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1]; + int exc_suspended; + +#define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA) +#define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC) +#define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC) unsigned_word c0_config_reg; #define C0_CONFIG ((CPU)->c0_config_reg) @@ -574,8 +414,30 @@ struct _sim_cpu { #define A1 (REGISTERS[5]) #define A2 (REGISTERS[6]) #define A3 (REGISTERS[7]) -#define SP (REGISTERS[29]) -#define RA (REGISTERS[31]) +#define T8IDX 24 +#define T8 (REGISTERS[T8IDX]) +#define SPIDX 29 +#define SP (REGISTERS[SPIDX]) +#define RAIDX 31 +#define RA (REGISTERS[RAIDX]) + + /* While space is allocated in the main registers arrray for some of + the COP0 registers, that space isn't sufficient. Unknown COP0 + registers overflow into the array below */ + +#define NR_COP0_GPR 32 + unsigned_word cop0_gpr[NR_COP0_GPR]; +#define COP0_GPR ((CPU)->cop0_gpr) +#define COP0_BADVADDR (COP0_GPR[8]) + + /* While space is allocated for the floating point registers in the + main registers array, they are stored separatly. This is because + their size may not necessarily match the size of either the + general-purpose or system specific registers. */ +#define NR_FGR (32) +#define FGR_BASE FP0_REGNUM + fp_word fgr[NR_FGR]; +#define FGR ((CPU)->fgr) /* Keep the current format state for each register: */ FP_formats fpr_state[32]; @@ -583,6 +445,10 @@ struct _sim_cpu { pending_write_queue pending; + /* The MDMX accumulator (used only for MDMX ASE). */ + MDMX_accumulator acc; +#define ACC ((CPU)->acc) + /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic read-write instructions. It is set when a linked load occurs. It is tested and cleared by the conditional store. It is cleared @@ -593,75 +459,28 @@ struct _sim_cpu { #define LLBIT ((CPU)->llbit) -/* The HIACCESS and LOACCESS counts are used to ensure that - corruptions caused by using the HI or LO register to close to a - following operation are spotted. */ - - int hiaccess; - int loaccess; -#define HIACCESS ((CPU)->hiaccess) -#define LOACCESS ((CPU)->loaccess) - -#if 0 - unsigned_word HLPC; - /* If either of the preceding two instructions have accessed the HI - or LO registers, then the values they see should be - undefined. However, to keep the simulator world simple, we just - let them use the value read and raise a warning to notify the - user: */ -#define CHECKHILO(s) {\ - if ((HIACCESS != 0) || (LOACCESS != 0)) \ - sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\ -} -#endif - -#if !defined CHECKHILO - /* The 4300 and a few other processors have interlocks on hi/lo - register reads, and hence do not have this problem. To avoid - spurious warnings, we just disable this always. */ -#define CHECKHILO(s) -#endif - - /* start-sanitize-r5900 */ - sim_r5900_cpu r5900; +/* The HIHISTORY and LOHISTORY timestamps are used to ensure that + corruptions caused by using the HI or LO register too close to a + following operation is spotted. See mips.igen for more details. */ - /* end-sanitize-r5900 */ - /* start-sanitize-vr5400 */ + hilo_history hi_history; +#define HIHISTORY (&(CPU)->hi_history) + hilo_history lo_history; +#define LOHISTORY (&(CPU)->lo_history) - /* The MDMX ISA has a very very large accumulator */ - unsigned8 acc[3 * 8]; - /* end-sanitize-vr5400 */ sim_cpu_base base; }; - -/* MIPS specific simulator watch config */ - -void watch_options_install PARAMS ((SIM_DESC sd)); - -struct swatch { - sim_event *pc; - sim_event *clock; - sim_event *cycles; -}; - +extern void mips_sim_close (SIM_DESC sd, int quitting); +#define SIM_CLOSE_HOOK(...) mips_sim_close (__VA_ARGS__) /* FIXME: At present much of the simulator is still static */ -struct sim_state { - - struct swatch watch; - - sim_cpu cpu[MAX_NR_PROCESSORS]; -#if (WITH_SMP) -#define STATE_CPU(sd,n) (&(sd)->cpu[n]) -#else -#define STATE_CPU(sd,n) (&(sd)->cpu[0]) -#endif - - sim_state_base base; +struct mips_sim_state { + /* microMIPS ISA mode. */ + int isa_mode; }; - +#define MIPS_SIM_STATE(sd) ((struct mips_sim_state *) STATE_ARCH_DATA (sd)) /* Status information: */ @@ -669,14 +488,17 @@ struct sim_state { /* TODO : these should be the bitmasks for these bits within the status register. At the moment the following are VR4300 bit-positions: */ -#define status_KSU_mask (0x3) /* mask for KSU bits */ +#define status_KSU_mask (0x18) /* mask for KSU bits */ #define status_KSU_shift (3) /* shift for field */ #define ksu_kernel (0x0) #define ksu_supervisor (0x1) #define ksu_user (0x2) #define ksu_unknown (0x3) +#define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift) + #define status_IE (1 << 0) /* Interrupt enable */ +#define status_EIE (1 << 16) /* Enable Interrupt Enable */ #define status_EXL (1 << 1) /* Exception level */ #define status_RE (1 << 25) /* Reverse Endian in user mode */ #define status_FR (1 << 26) /* enables MIPS III additional FP registers */ @@ -684,14 +506,57 @@ struct sim_state { #define status_BEV (1 << 22) /* Location of general exception vectors */ #define status_TS (1 << 21) /* TLB shutdown has occurred */ #define status_ERL (1 << 2) /* Error level */ +#define status_IM7 (1 << 15) /* Timer Interrupt Mask */ #define status_RP (1 << 27) /* Reduced Power mode */ -/* begin-sanitize-r5900 */ -#define status_CU0 (1 << 28) /* COP0 usable */ -#define status_CU1 (1 << 29) /* COP1 usable */ -#define status_CU2 (1 << 30) /* COP2 usable */ -/* begin-sanitize-r5900 */ -#define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */ +/* Specializations for TX39 family */ +#define status_IEc (1 << 0) /* Interrupt enable (current) */ +#define status_KUc (1 << 1) /* Kernel/User mode */ +#define status_IEp (1 << 2) /* Interrupt enable (previous) */ +#define status_KUp (1 << 3) /* Kernel/User mode */ +#define status_IEo (1 << 4) /* Interrupt enable (old) */ +#define status_KUo (1 << 5) /* Kernel/User mode */ +#define status_IM_mask (0xff) /* Interrupt mask */ +#define status_IM_shift (8) +#define status_NMI (1 << 20) /* NMI */ +#define status_NMI (1 << 20) /* NMI */ + +/* Status bits used by MIPS32/MIPS64. */ +#define status_UX (1 << 5) /* 64-bit user addrs */ +#define status_SX (1 << 6) /* 64-bit supervisor addrs */ +#define status_KX (1 << 7) /* 64-bit kernel addrs */ +#define status_TS (1 << 21) /* TLB shutdown has occurred */ +#define status_PX (1 << 23) /* Enable 64 bit operations */ +#define status_MX (1 << 24) /* Enable MDMX resources */ +#define status_CU0 (1 << 28) /* Coprocessor 0 usable */ +#define status_CU1 (1 << 29) /* Coprocessor 1 usable */ +#define status_CU2 (1 << 30) /* Coprocessor 2 usable */ +#define status_CU3 (1 << 31) /* Coprocessor 3 usable */ +/* Bits reserved for implementations: */ +#define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */ + +#define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */ +#define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */ +#define cause_CE_mask 0x30000000 /* Coprocessor exception */ +#define cause_CE_shift 28 +#define cause_EXC2_mask 0x00070000 +#define cause_EXC2_shift 16 +#define cause_IP7 (1 << 15) /* Interrupt pending */ +#define cause_SIOP (1 << 12) /* SIO pending */ +#define cause_IP3 (1 << 11) /* Int 0 pending */ +#define cause_IP2 (1 << 10) /* Int 1 pending */ + +#define cause_EXC_mask (0x1c) /* Exception code */ +#define cause_EXC_shift (2) + +#define cause_SW0 (1 << 8) /* Software interrupt 0 */ +#define cause_SW1 (1 << 9) /* Software interrupt 1 */ +#define cause_IP_mask (0x3f) /* Interrupt pending field */ +#define cause_IP_shift (10) + +#define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask) +#define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask) + /* NOTE: We keep the following status flags as bit values (1 for true, 0 for false). This allows them to be used in binary boolean @@ -699,13 +564,17 @@ struct sim_state { value is. */ /* UserMode */ -#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0) +#ifdef SUBTARGET_R3900 +#define UserMode ((SR & status_KUc) ? 1 : 0) +#else +#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0) +#endif /* SUBTARGET_R3900 */ /* BigEndianMem */ /* Hardware configuration. Affects endianness of LoadMemory and StoreMemory and the endianness of Kernel and Supervisor mode execution. The value is 0 for little-endian; 1 for big-endian. */ -#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) +#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) /*(state & simBE) ? 1 : 0)*/ /* ReverseEndian */ @@ -727,47 +596,88 @@ struct sim_state { /* NOTE: These numbers depend on the processor architecture being simulated: */ -#define Interrupt (0) -#define TLBModification (1) -#define TLBLoad (2) -#define TLBStore (3) -#define AddressLoad (4) -#define AddressStore (5) -#define InstructionFetch (6) -#define DataReference (7) -#define SystemCall (8) -#define BreakPoint (9) -#define ReservedInstruction (10) -#define CoProcessorUnusable (11) -#define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */ -#define Trap (13) -#define FPE (15) -#define DebugBreakPoint (16) -#define Watch (23) +enum ExceptionCause { + Interrupt = 0, + TLBModification = 1, + TLBLoad = 2, + TLBStore = 3, + AddressLoad = 4, + AddressStore = 5, + InstructionFetch = 6, + DataReference = 7, + SystemCall = 8, + BreakPoint = 9, + ReservedInstruction = 10, + CoProcessorUnusable = 11, + IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */ + Trap = 13, + FPE = 15, + DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */ + MDMX = 22, + Watch = 23, + MCheck = 24, + CacheErr = 30, + NMIReset = 31, /* Reserved in MIPS32/MIPS64. */ + /* The following exception code is actually private to the simulator world. It is *NOT* a processor feature, and is used to signal run-time errors in the simulator. */ -#define SimulatorFault (0xFFFFFFFF) + SimulatorFault = 0xFFFFFFFF +}; + +#define TLB_REFILL (0) +#define TLB_INVALID (1) + + +/* The following break instructions are reserved for use by the + simulator. The first is used to halt the simulation. The second + is used by gdb for break-points. NOTE: Care must be taken, since + this value may be used in later revisions of the MIPS ISA. */ +#define HALT_INSTRUCTION_MASK (0x03FFFFC0) + +#define HALT_INSTRUCTION (0x03ff000d) +#define HALT_INSTRUCTION2 (0x0000ffcd) + + +#define BREAKPOINT_INSTRUCTION (0x0005000d) +#define BREAKPOINT_INSTRUCTION2 (0x0000014d) + + + +void interrupt_event (SIM_DESC sd, void *data); void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...); #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction)) -#define SignalExceptionInterrupt() signal_exception (SD, CPU, NULL_CIA, Interrupt) +#define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level) #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch) #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore) #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad) +#define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference) #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf) #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE) #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow) -#define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable) - +#define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable) +#define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset) +#define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL) +#define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL) +#define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID) +#define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID) +#define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification) +#define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX) +#define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch) +#define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck) +#define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr) /* Co-processor accesses */ -void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword)); -void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword)); -unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg)); -uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg)); +/* XXX FIXME: For now, assume that FPU (cp1) is always usable. */ +#define COP_Usable(coproc_num) (coproc_num == 1) + +void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword); +void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword); +unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg); +uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg); #define COP_LW(coproc_num,coproc_reg,memword) \ cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword) @@ -778,22 +688,200 @@ cop_sw (SD, CPU, cia, coproc_num, coproc_reg) #define COP_SD(coproc_num,coproc_reg) \ cop_sd (SD, CPU, cia, coproc_num, coproc_reg) -/* start-sanitize-sky */ -#ifdef TARGET_SKY -void cop_lq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, - int coproc_num, int coproc_reg, unsigned128 memword)); -unsigned128 cop_sq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, - int coproc_num, int coproc_reg)); -#define COP_LQ(coproc_num,coproc_reg,memword) \ -cop_lq (SD, CPU, cia, coproc_num, coproc_reg, memword) -#define COP_SQ(coproc_num,coproc_reg) \ -cop_sq (SD, CPU, cia, coproc_num, coproc_reg) -#endif /* TARGET_SKY */ -/* end-sanitize-sky */ -void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction)); -#define DecodeCoproc(instruction) \ -decode_coproc (SD, CPU, cia, (instruction)) +void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia, + unsigned int instruction, int coprocnum, CP0_operation op, + int rt, int rd, int sel); +#define DecodeCoproc(instruction,coprocnum,op,rt,rd,sel) \ + decode_coproc (SD, CPU, cia, (instruction), (coprocnum), (op), \ + (rt), (rd), (sel)) + +int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg); + + +/* FPR access. */ +unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats); +#define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT)) +void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value); +#define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE)) +unsigned64 ps_lower (SIM_STATE, unsigned64 op); +#define PSLower(op) ps_lower (SIM_ARGS, op) +unsigned64 ps_upper (SIM_STATE, unsigned64 op); +#define PSUpper(op) ps_upper (SIM_ARGS, op) +unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from); +#define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single) + + +/* FCR access. */ +unsigned_word value_fcr (SIM_STATE, int fcr); +#define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR)) +void store_fcr (SIM_STATE, int fcr, unsigned_word value); +#define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE)) +void test_fcsr (SIM_STATE); +#define TestFCSR() test_fcsr (SIM_ARGS) + + +/* FPU operations. */ +void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc); +#define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc) +unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt); +#define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt) +unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt); +#define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt) +unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); +#define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt) +unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); +#define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt) +unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); +#define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt) +unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); +#define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt) +unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt); +#define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt) +unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt); +#define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt) +unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt); +#define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt) +unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2, + unsigned64 op3, FP_formats fmt); +#define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt) +unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2, + unsigned64 op3, FP_formats fmt); +#define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt) +unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2, + unsigned64 op3, FP_formats fmt); +#define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt) +unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2, + unsigned64 op3, FP_formats fmt); +#define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt) +unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to); +#define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to) +unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from, + FP_formats to); +#define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to) + + +/* MIPS-3D ASE operations. */ +#define CompareAbs(op1,op2,fmt,cond,cc) \ +fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc) +unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); +#define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt) +unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); +#define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt) +unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt); +#define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt) +unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); +#define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt) +unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt); +#define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt) +unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt); +#define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt) + + +/* MDMX access. */ + +typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */ +#define ob_fmtsel(sel) (((sel)<<1)|0x0) +#define qh_fmtsel(sel) (((sel)<<2)|0x1) + +#define fmt_mdmx fmt_uninterpreted + +#define MX_VECT_AND (0) +#define MX_VECT_NOR (1) +#define MX_VECT_OR (2) +#define MX_VECT_XOR (3) +#define MX_VECT_SLL (4) +#define MX_VECT_SRL (5) +#define MX_VECT_ADD (6) +#define MX_VECT_SUB (7) +#define MX_VECT_MIN (8) +#define MX_VECT_MAX (9) +#define MX_VECT_MUL (10) +#define MX_VECT_MSGN (11) +#define MX_VECT_SRA (12) +#define MX_VECT_ABSD (13) /* SB-1 only. */ +#define MX_VECT_AVG (14) /* SB-1 only. */ + +unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel); +#define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel) +#define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel) +#define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel) +#define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel) +#define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel) +#define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel) +#define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel) +#define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel) +#define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel) +#define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel) +#define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel) +#define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel) +#define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel) +#define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel) +#define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel) + +#define MX_C_EQ 0x1 +#define MX_C_LT 0x4 + +void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel); +#define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel) + +unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel); +#define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel) + +#define MX_VECT_ADDA (0) +#define MX_VECT_ADDL (1) +#define MX_VECT_MULA (2) +#define MX_VECT_MULL (3) +#define MX_VECT_MULS (4) +#define MX_VECT_MULSL (5) +#define MX_VECT_SUBA (6) +#define MX_VECT_SUBL (7) +#define MX_VECT_ABSDA (8) /* SB-1 only. */ + +void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel); +#define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel) +#define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel) +#define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel) +#define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel) +#define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel) +#define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel) +#define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel) +#define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel) +#define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel) + +#define MX_FMT_OB (0) +#define MX_FMT_QH (1) + +/* The following codes chosen to indicate the units of shift. */ +#define MX_RAC_L (0) +#define MX_RAC_M (1) +#define MX_RAC_H (2) + +unsigned64 mdmx_rac_op (SIM_STATE, int, int); +#define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt) + +void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64); +#define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt) +void mdmx_wach (SIM_STATE, int, unsigned64); +#define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs) + +#define MX_RND_AS (0) +#define MX_RND_AU (1) +#define MX_RND_ES (2) +#define MX_RND_EU (3) +#define MX_RND_ZS (4) +#define MX_RND_ZU (5) + +unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel); +#define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt) +#define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt) +#define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt) +#define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt) +#define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt) +#define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt) + +unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64); +#define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2) @@ -802,12 +890,6 @@ decode_coproc (SD, CPU, cia, (instruction)) /* The following are generic to all versions of the MIPS architecture to date: */ -/* Memory Access Types (for CCA): */ -#define Uncached (0) -#define CachedNoncoherent (1) -#define CachedCoherent (2) -#define Cached (3) - #define isINSTRUCTION (1 == 0) /* FALSE */ #define isDATA (1 == 1) /* TRUE */ #define isLOAD (1 == 0) /* FALSE */ @@ -830,64 +912,99 @@ decode_coproc (SD, CPU, cia, (instruction)) #define AccessLength_DOUBLEWORD (7) #define AccessLength_QUADWORD (15) -#if (WITH_IGEN) #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \ ? AccessLength_DOUBLEWORD /*7*/ \ : AccessLength_WORD /*3*/) #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE) -#endif - -/* start-sanitize-sky */ -#ifdef OOPS_THIS_DOESN_T_WORK -#ifdef TARGET_SKY - /* 128-bit accesses are allowed */ -#undef LOADDRMASK -#define LOADDRMASK AccessLength_QUADWORD -#undef PSIZE -#define PSIZE (WITH_TARGET_ADDRESS_BITSIZE) -#endif /* TARGET_SKY */ -#endif -/* end-sanitize-sky */ -INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw)); -#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \ -address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw) +INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD); +#define LoadMemory(memvalp,memval1p,AccessLength,pAddr,vAddr,IorD,raw) \ +load_memory (SD, CPU, cia, memvalp, memval1p, 0, AccessLength, pAddr, vAddr, IorD) -INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD)); -#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \ -load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD) +INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr); +#define StoreMemory(AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \ +store_memory (SD, CPU, cia, 0, AccessLength, MemElem, MemElem1, pAddr, vAddr) -INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr)); -#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \ -store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr) - -INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction)); +INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction); #define CacheOp(op,pAddr,vAddr,instruction) \ cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction) -INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype)); +INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype); #define SyncOperation(stype) \ sync_operation (SD, CPU, cia, (stype)) -INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint)); -#define Prefetch(CCA,pAddr,vAddr,DATA,hint) \ -prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint) +void unpredictable_action (sim_cpu *cpu, address_word cia); +#define NotWordValue(val) not_word_value (SD_, (val)) +#define Unpredictable() unpredictable (SD_) +#define UnpredictableResult() /* For now, do nothing. */ -INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr)); +INLINE_SIM_MAIN (unsigned32) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr); #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA)) -unsigned16 ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr)); -#define IMEM16(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR)) +INLINE_SIM_MAIN (unsigned16) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr); +#define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1)) #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR)) +#define IMEM32_MICROMIPS(CIA) \ + (ifetch16 (SD, CPU, (CIA), (CIA)) << 16 | ifetch16 (SD, CPU, (CIA + 2), \ + (CIA + 2))) +#define IMEM16_MICROMIPS(CIA) ifetch16 (SD, CPU, (CIA), ((CIA))) + +#define MICROMIPS_MINOR_OPCODE(INSN) ((INSN & 0x1C00) >> 10) + +#define MICROMIPS_DELAYSLOT_SIZE_ANY 0 +#define MICROMIPS_DELAYSLOT_SIZE_16 2 +#define MICROMIPS_DELAYSLOT_SIZE_32 4 + +extern int isa_mode; + +#define ISA_MODE_MIPS32 0 +#define ISA_MODE_MICROMIPS 1 + +address_word micromips_instruction_decode (SIM_DESC sd, sim_cpu * cpu, + address_word cia, + int instruction_size); + +#if WITH_TRACE_ANY_P +void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, const char *comment, ...) ATTRIBUTE_PRINTF (7, 8); +extern FILE *tracefh; +#else +#define dotrace(sd, cpu, tracefh, type, address, width, comment, ...) +#endif + +extern int DSPLO_REGNUM[4]; +extern int DSPHI_REGNUM[4]; + +INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia); +extern SIM_CORE_SIGNAL_FN mips_core_signal; + +char* pr_addr (SIM_ADDR addr); +char* pr_uword64 (uword64 addr); + + +#define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0) + +void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc); +void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception); +void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception); + +#ifdef MIPS_MACH_MULTI +extern int mips_mach_multi(SIM_DESC sd); +#define MIPS_MACH(SD) mips_mach_multi(SD) +#else +#define MIPS_MACH(SD) MIPS_MACH_DEFAULT +#endif -void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...)); -FILE *tracefh; +/* Macros for determining whether a MIPS IV or MIPS V part is subject + to the hi/lo restrictions described in mips.igen. */ -INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia)); +#define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \ + (MIPS_MACH (SD) != bfd_mach_mips5500) -char* pr_addr PARAMS ((SIM_ADDR addr)); -char* pr_uword64 PARAMS ((uword64 addr)); +#define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \ + (MIPS_MACH (SD) != bfd_mach_mips5500) +#define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \ + (MIPS_MACH (SD) != bfd_mach_mips5500) #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE) #include "sim-main.c"