private File fTempFile;
private final String fName;
+ private final String fShortName;
private final int fNbAttrib;
private final int fNbAvgIntervals;
private final int fNbLoops;
*
* @param name
* The name of the test
+ * @param shortName
+ * A short name for this scenario (at most 40 characters,
+ * otherwise it will be truncated in the DB)
* @param nbAttrib
* The number of attributes
* @param nbAvgIntervals
* A distribution method that will return the next interval
* duration according to an algorithm
*/
- public HistoryTreeBackendBenchmark(String name, int nbAttrib, int nbAvgIntervals, int nbLoops, HTBValues values, IIntervalDistribution distributionMethod) {
+ public HistoryTreeBackendBenchmark(String name, String shortName, int nbAttrib, int nbAvgIntervals, int nbLoops, HTBValues values, IIntervalDistribution distributionMethod) {
fName = name;
+ fShortName = shortName;
fNbAttrib = nbAttrib;
fNbAvgIntervals = nbAvgIntervals;
fNbLoops = nbLoops;
@Parameters(name = "{index}: {0}")
public static Iterable<Object[]> getParameters() {
return Arrays.asList(new Object[][] {
- { "Average case: 1500 attributes, integers, interval duration random around limit l with 75% within [0.5l, 1.5l]", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.INTEGERS, CLOSER_TO_LIMIT },
- { "Vertical scaling (more attributes)", 3500, DEFAULT_NB_INTERVALS, 5, HTBValues.INTEGERS, CLOSER_TO_LIMIT },
- { "Horizontal scaling (more intervals/attribute)", DEFAULT_NB_ATTRIB, 20000, 10, HTBValues.INTEGERS, CLOSER_TO_LIMIT },
- { "Interval durations uniformly distributed within [1, 2l]", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.INTEGERS, UNIFORM },
- { "Interval durations with 10% outliers > 2l", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.INTEGERS, CLOSER_TO_LIMIT_10_PERCENT_OUTLIERS },
- { "Data type: strings", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.STRINGS, CLOSER_TO_LIMIT },
- { "Data type: longs", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.LONGS, CLOSER_TO_LIMIT },
- { "Data type: doubles", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.DOUBLES, CLOSER_TO_LIMIT },
+ { "Average case: 1500 attributes, integers, interval duration random around limit l with 75 percent within [0.5l, 1.5l]", "Average case", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.INTEGERS, CLOSER_TO_LIMIT },
+ { "Vertical scaling (more attributes)", "Vertical scaling", 3500, DEFAULT_NB_INTERVALS, 5, HTBValues.INTEGERS, CLOSER_TO_LIMIT },
+ { "Horizontal scaling (more intervals/attribute)", "Horizontal scaling", DEFAULT_NB_ATTRIB, 20000, 10, HTBValues.INTEGERS, CLOSER_TO_LIMIT },
+ { "Interval durations uniformly distributed within [1, 2l]", "Uniform distribution of intervals", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.INTEGERS, UNIFORM },
+ { "Interval durations with 10 percent outliers > 2l", "Distribution with outliers", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.INTEGERS, CLOSER_TO_LIMIT_10_PERCENT_OUTLIERS },
+ { "Data type: strings", "Data type: strings", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.STRINGS, CLOSER_TO_LIMIT },
+ { "Data type: longs", "Data type: longs", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.LONGS, CLOSER_TO_LIMIT },
+ { "Data type: doubles", "Data type: doubles", DEFAULT_NB_ATTRIB, DEFAULT_NB_INTERVALS, DEFAULT_LOOP_COUNT, HTBValues.DOUBLES, CLOSER_TO_LIMIT },
});
}
Performance perf = Performance.getDefault();
PerformanceMeter pmBuild = perf.createPerformanceMeter(TEST_PREFIX + TEST_BUILDING_ID + fName);
- perf.tagAsSummary(pmBuild, TEST_BUILDING_ID + fName, Dimension.CPU_TIME);
+ perf.tagAsSummary(pmBuild, TEST_BUILDING_ID + fShortName, Dimension.CPU_TIME);
PerformanceMeter pmSingleQuery = perf.createPerformanceMeter(TEST_PREFIX + TEST_SINGLE_QUERY_ID + fName);
- perf.tagAsSummary(pmSingleQuery, TEST_SINGLE_QUERY_ID + fName, Dimension.CPU_TIME);
+ perf.tagAsSummary(pmSingleQuery, TEST_SINGLE_QUERY_ID + fShortName, Dimension.CPU_TIME);
PerformanceMeter pmFullQuery = perf.createPerformanceMeter(TEST_PREFIX + TEST_FULL_QUERY_ID + fName);
- perf.tagAsSummary(pmFullQuery, TEST_FULL_QUERY_ID + fName, Dimension.CPU_TIME);
+ perf.tagAsSummary(pmFullQuery, TEST_FULL_QUERY_ID + fShortName, Dimension.CPU_TIME);
PerformanceMeter pmRangeQuery = perf.createPerformanceMeter(TEST_PREFIX + TEST_QUERY_RANGE_ID + fName);
- perf.tagAsSummary(pmRangeQuery, TEST_QUERY_RANGE_ID + fName, Dimension.CPU_TIME);
+ perf.tagAsSummary(pmRangeQuery, TEST_QUERY_RANGE_ID + fShortName, Dimension.CPU_TIME);
for (int i = 0; i < fNbLoops; i++) {
try {