gdb: rename displaced_step_closure to displaced_step_copy_insn_closure
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
f9e9243a
UW
328# The ABI default bit-size and format for "half", "float", "double", and
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
ea480a30
SM
334v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 342
53375380
PA
343# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344# starting with C++11.
ea480a30 345v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 346# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 347v;int;wchar_signed;;;1;-1;1
53375380 348
9b790ce7
UW
349# Returns the floating-point format to be used for values of length LENGTH.
350# NAME, if non-NULL, is the type name, which may be used to distinguish
351# different target formats of the same length.
ea480a30 352m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 353
52204a0b
DT
354# For most targets, a pointer on the target and its representation as an
355# address in GDB have the same size and "look the same". For such a
17a912b6 356# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
357# / addr_bit will be set from it.
358#
17a912b6 359# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
360# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361# gdbarch_address_to_pointer as well.
52204a0b
DT
362#
363# ptr_bit is the size of a pointer on the target
ea480a30 364v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 365# addr_bit is the size of a target address as represented in gdb
ea480a30 366v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 367#
8da614df
CV
368# dwarf2_addr_size is the target address size as used in the Dwarf debug
369# info. For .debug_frame FDEs, this is supposed to be the target address
370# size from the associated CU header, and which is equivalent to the
371# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372# Unfortunately there is no good way to determine this value. Therefore
373# dwarf2_addr_size simply defaults to the target pointer size.
374#
375# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376# defined using the target's pointer size so far.
377#
378# Note that dwarf2_addr_size only needs to be redefined by a target if the
379# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380# and if Dwarf versions < 4 need to be supported.
ea480a30 381v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 382#
4e409299 383# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 384v;int;char_signed;;;1;-1;1
4e409299 385#
c113ed0c 386F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 387F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
388# Function for getting target's idea of a frame pointer. FIXME: GDB's
389# whole scheme for dealing with "frames" and "frame pointers" needs a
390# serious shakedown.
ea480a30 391m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 392#
849d0ba8 393M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
394# Read a register into a new struct value. If the register is wholly
395# or partly unavailable, this should call mark_value_bytes_unavailable
396# as appropriate. If this is defined, then pseudo_register_read will
397# never be called.
849d0ba8 398M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 399M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 400#
ea480a30 401v;int;num_regs;;;0;-1
0aba1244
EZ
402# This macro gives the number of pseudo-registers that live in the
403# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
404# These pseudo-registers may be aliases for other registers,
405# combinations of other registers, or they may be computed by GDB.
ea480a30 406v;int;num_pseudo_regs;;;0;0;;0
c2169756 407
175ff332
HZ
408# Assemble agent expression bytecode to collect pseudo-register REG.
409# Return -1 if something goes wrong, 0 otherwise.
ea480a30 410M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
411
412# Assemble agent expression bytecode to push the value of pseudo-register
413# REG on the interpreter stack.
414# Return -1 if something goes wrong, 0 otherwise.
ea480a30 415M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 416
012b3a21
WT
417# Some targets/architectures can do extra processing/display of
418# segmentation faults. E.g., Intel MPX boundary faults.
419# Call the architecture dependent function to handle the fault.
420# UIOUT is the output stream where the handler will place information.
ea480a30 421M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 422
c2169756
AC
423# GDB's standard (or well known) register numbers. These can map onto
424# a real register or a pseudo (computed) register or not be defined at
1200cd6e 425# all (-1).
3e8c568d 426# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
427v;int;sp_regnum;;;-1;-1;;0
428v;int;pc_regnum;;;-1;-1;;0
429v;int;ps_regnum;;;-1;-1;;0
430v;int;fp0_regnum;;;0;-1;;0
88c72b7d 431# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 432m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 433# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 434m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 435# Convert from an sdb register number to an internal gdb register number.
ea480a30 436m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 437# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 438# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
439m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
440m;const char *;register_name;int regnr;regnr;;0
9c04cab7 441
7b9ee6a8
DJ
442# Return the type of a register specified by the architecture. Only
443# the register cache should call this function directly; others should
444# use "register_type".
ea480a30 445M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 446
8bcb5208
AB
447# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
448# a dummy frame. A dummy frame is created before an inferior call,
449# the frame_id returned here must match the frame_id that was built
450# for the inferior call. Usually this means the returned frame_id's
451# stack address should match the address returned by
452# gdbarch_push_dummy_call, and the returned frame_id's code address
453# should match the address at which the breakpoint was set in the dummy
454# frame.
455m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 456# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 457# deprecated_fp_regnum.
ea480a30 458v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 459
cf84fa6b 460M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
461v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
462M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 463
7eb89530 464# Return true if the code of FRAME is writable.
ea480a30 465m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 466
ea480a30
SM
467m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
468m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
469M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
470# MAP a GDB RAW register number onto a simulator register number. See
471# also include/...-sim.h.
ea480a30
SM
472m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
473m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
474m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
475
476# Determine the address where a longjmp will land and save this address
477# in PC. Return nonzero on success.
478#
479# FRAME corresponds to the longjmp frame.
ea480a30 480F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 481
104c1213 482#
ea480a30 483v;int;believe_pcc_promotion;;;;;;;
104c1213 484#
ea480a30
SM
485m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
486f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
487f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 488# Construct a value representing the contents of register REGNUM in
2ed3c037 489# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
490# allocate and return a struct value with all value attributes
491# (but not the value contents) filled in.
ea480a30 492m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 493#
ea480a30
SM
494m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
495m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
496M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 497
6a3a010b
MR
498# Return the return-value convention that will be used by FUNCTION
499# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
500# case the return convention is computed based only on VALTYPE.
501#
502# If READBUF is not NULL, extract the return value and save it in this buffer.
503#
504# If WRITEBUF is not NULL, it contains a return value which will be
505# stored into the appropriate register. This can be used when we want
506# to force the value returned by a function (see the "return" command
507# for instance).
ea480a30 508M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 509
18648a37
YQ
510# Return true if the return value of function is stored in the first hidden
511# parameter. In theory, this feature should be language-dependent, specified
512# by language and its ABI, such as C++. Unfortunately, compiler may
513# implement it to a target-dependent feature. So that we need such hook here
514# to be aware of this in GDB.
ea480a30 515m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 516
ea480a30
SM
517m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
518M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
519# On some platforms, a single function may provide multiple entry points,
520# e.g. one that is used for function-pointer calls and a different one
521# that is used for direct function calls.
522# In order to ensure that breakpoints set on the function will trigger
523# no matter via which entry point the function is entered, a platform
524# may provide the skip_entrypoint callback. It is called with IP set
525# to the main entry point of a function (as determined by the symbol table),
526# and should return the address of the innermost entry point, where the
527# actual breakpoint needs to be set. Note that skip_entrypoint is used
528# by GDB common code even when debugging optimized code, where skip_prologue
529# is not used.
ea480a30 530M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 531
ea480a30
SM
532f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
533m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
534
535# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 536m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
537
538# Return the software breakpoint from KIND. KIND can have target
539# specific meaning like the Z0 kind parameter.
540# SIZE is set to the software breakpoint's length in memory.
ea480a30 541m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 542
833b7ab5
YQ
543# Return the breakpoint kind for this target based on the current
544# processor state (e.g. the current instruction mode on ARM) and the
545# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 546m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 547
ea480a30
SM
548M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
549m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
550m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
551v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
552
553# A function can be addressed by either it's "pointer" (possibly a
554# descriptor address) or "entry point" (first executable instruction).
555# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 556# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
557# a simplified subset of that functionality - the function's address
558# corresponds to the "function pointer" and the function's start
559# corresponds to the "function entry point" - and hence is redundant.
560
ea480a30 561v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 562
123dc839
DJ
563# Return the remote protocol register number associated with this
564# register. Normally the identity mapping.
ea480a30 565m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 566
b2756930 567# Fetch the target specific address used to represent a load module.
ea480a30 568F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
569
570# Return the thread-local address at OFFSET in the thread-local
571# storage for the thread PTID and the shared library or executable
572# file given by LM_ADDR. If that block of thread-local storage hasn't
573# been allocated yet, this function may throw an error. LM_ADDR may
574# be zero for statically linked multithreaded inferiors.
575
576M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 577#
ea480a30 578v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
579m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
580m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
581# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582# frame-base. Enable frame-base before frame-unwind.
ea480a30 583F;int;frame_num_args;struct frame_info *frame;frame
104c1213 584#
ea480a30
SM
585M;CORE_ADDR;frame_align;CORE_ADDR address;address
586m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
587v;int;frame_red_zone_size
f0d4cc9e 588#
ea480a30 589m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
590# On some machines there are bits in addresses which are not really
591# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 592# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
593# we get a "real" address such as one would find in a symbol table.
594# This is used only for addresses of instructions, and even then I'm
595# not sure it's used in all contexts. It exists to deal with there
596# being a few stray bits in the PC which would mislead us, not as some
597# sort of generic thing to handle alignment or segmentation (it's
598# possible it should be in TARGET_READ_PC instead).
ea480a30 599m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 600
a738ea1d
YQ
601# On some machines, not all bits of an address word are significant.
602# For example, on AArch64, the top bits of an address known as the "tag"
603# are ignored by the kernel, the hardware, etc. and can be regarded as
604# additional data associated with the address.
5969f0db 605v;int;significant_addr_bit;;;;;;0
a738ea1d 606
e6590a1b
UW
607# FIXME/cagney/2001-01-18: This should be split in two. A target method that
608# indicates if the target needs software single step. An ISA method to
609# implement it.
610#
e6590a1b
UW
611# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612# target can single step. If not, then implement single step using breakpoints.
64c4637f 613#
93f9a11f
YQ
614# Return a vector of addresses on which the software single step
615# breakpoints should be inserted. NULL means software single step is
616# not used.
617# Multiple breakpoints may be inserted for some instructions such as
618# conditional branch. However, each implementation must always evaluate
619# the condition and only put the breakpoint at the branch destination if
620# the condition is true, so that we ensure forward progress when stepping
621# past a conditional branch to self.
a0ff9e1a 622F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 623
3352ef37
AC
624# Return non-zero if the processor is executing a delay slot and a
625# further single-step is needed before the instruction finishes.
ea480a30 626M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 627# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 628# disassembler. Perhaps objdump can handle it?
39503f82 629f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 630f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
631
632
cfd8ab24 633# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
634# evaluates non-zero, this is the address where the debugger will place
635# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 636m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 637# Some systems also have trampoline code for returning from shared libs.
ea480a30 638m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 639
1d509aa6
MM
640# Return true if PC lies inside an indirect branch thunk.
641m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
642
c12260ac
CV
643# A target might have problems with watchpoints as soon as the stack
644# frame of the current function has been destroyed. This mostly happens
c9cf6e20 645# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
646# is defined to return a non-zero value if either the given addr is one
647# instruction after the stack destroying instruction up to the trailing
648# return instruction or if we can figure out that the stack frame has
649# already been invalidated regardless of the value of addr. Targets
650# which don't suffer from that problem could just let this functionality
651# untouched.
ea480a30 652m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
653# Process an ELF symbol in the minimal symbol table in a backend-specific
654# way. Normally this hook is supposed to do nothing, however if required,
655# then this hook can be used to apply tranformations to symbols that are
656# considered special in some way. For example the MIPS backend uses it
657# to interpret \`st_other' information to mark compressed code symbols so
658# that they can be treated in the appropriate manner in the processing of
659# the main symbol table and DWARF-2 records.
ea480a30
SM
660F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
661f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
662# Process a symbol in the main symbol table in a backend-specific way.
663# Normally this hook is supposed to do nothing, however if required,
664# then this hook can be used to apply tranformations to symbols that
665# are considered special in some way. This is currently used by the
666# MIPS backend to make sure compressed code symbols have the ISA bit
667# set. This in turn is needed for symbol values seen in GDB to match
668# the values used at the runtime by the program itself, for function
669# and label references.
ea480a30 670f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
671# Adjust the address retrieved from a DWARF-2 record other than a line
672# entry in a backend-specific way. Normally this hook is supposed to
673# return the address passed unchanged, however if that is incorrect for
674# any reason, then this hook can be used to fix the address up in the
675# required manner. This is currently used by the MIPS backend to make
676# sure addresses in FDE, range records, etc. referring to compressed
677# code have the ISA bit set, matching line information and the symbol
678# table.
ea480a30 679f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
680# Adjust the address updated by a line entry in a backend-specific way.
681# Normally this hook is supposed to return the address passed unchanged,
682# however in the case of inconsistencies in these records, this hook can
683# be used to fix them up in the required manner. This is currently used
684# by the MIPS backend to make sure all line addresses in compressed code
685# are presented with the ISA bit set, which is not always the case. This
686# in turn ensures breakpoint addresses are correctly matched against the
687# stop PC.
ea480a30
SM
688f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
689v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
690# See comment in target.h about continuable, steppable and
691# non-steppable watchpoints.
ea480a30
SM
692v;int;have_nonsteppable_watchpoint;;;0;0;;0
693F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
694M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
695# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
696# FS are passed from the generic execute_cfa_program function.
ea480a30 697m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
698
699# Return the appropriate type_flags for the supplied address class.
700# This function should return 1 if the address class was recognized and
701# type_flags was set, zero otherwise.
ea480a30 702M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 703# Is a register in a group
ea480a30 704m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 705# Fetch the pointer to the ith function argument.
ea480a30 706F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 707
5aa82d05
AA
708# Iterate over all supported register notes in a core file. For each
709# supported register note section, the iterator must call CB and pass
710# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
711# the supported register note sections based on the current register
712# values. Otherwise it should enumerate all supported register note
713# sections.
ea480a30 714M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 715
6432734d 716# Create core file notes
ea480a30 717M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 718
35c2fab7 719# Find core file memory regions
ea480a30 720M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 721
de584861 722# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
723# core file into buffer READBUF with length LEN. Return the number of bytes read
724# (zero indicates failure).
725# failed, otherwise, return the red length of READBUF.
ea480a30 726M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 727
356a5233
JB
728# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
729# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 730# Return the number of bytes read (zero indicates failure).
ea480a30 731M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 732
c0edd9ed 733# How the core target converts a PTID from a core file to a string.
a068643d 734M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 735
4dfc5dbc 736# How the core target extracts the name of a thread from a core file.
ea480a30 737M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 738
382b69bb
JB
739# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
740# from core file into buffer READBUF with length LEN. Return the number
741# of bytes read (zero indicates EOF, a negative value indicates failure).
742M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
743
a78c2d62 744# BFD target to use when generating a core file.
ea480a30 745V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 746
0d5de010
DJ
747# If the elements of C++ vtables are in-place function descriptors rather
748# than normal function pointers (which may point to code or a descriptor),
749# set this to one.
ea480a30 750v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
751
752# Set if the least significant bit of the delta is used instead of the least
753# significant bit of the pfn for pointers to virtual member functions.
ea480a30 754v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
755
756# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 757f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 758
1668ae25 759# The maximum length of an instruction on this architecture in bytes.
ea480a30 760V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
761
762# Copy the instruction at FROM to TO, and make any adjustments
763# necessary to single-step it at that address.
764#
765# REGS holds the state the thread's registers will have before
766# executing the copied instruction; the PC in REGS will refer to FROM,
767# not the copy at TO. The caller should update it to point at TO later.
768#
769# Return a pointer to data of the architecture's choice to be passed
770# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
771# the instruction's effects have been completely simulated, with the
772# resulting state written back to REGS.
773#
774# For a general explanation of displaced stepping and how GDB uses it,
775# see the comments in infrun.c.
776#
777# The TO area is only guaranteed to have space for
778# gdbarch_max_insn_length (arch) bytes, so this function must not
779# write more bytes than that to that area.
780#
781# If you do not provide this function, GDB assumes that the
782# architecture does not support displaced stepping.
783#
7f03bd92
PA
784# If the instruction cannot execute out of line, return NULL. The
785# core falls back to stepping past the instruction in-line instead in
786# that case.
588de28a 787M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 788
99e40580
UW
789# Return true if GDB should use hardware single-stepping to execute
790# the displaced instruction identified by CLOSURE. If false,
791# GDB will simply restart execution at the displaced instruction
792# location, and it is up to the target to ensure GDB will receive
793# control again (e.g. by placing a software breakpoint instruction
794# into the displaced instruction buffer).
795#
796# The default implementation returns false on all targets that
797# provide a gdbarch_software_single_step routine, and true otherwise.
588de28a 798m;int;displaced_step_hw_singlestep;struct displaced_step_copy_insn_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 799
237fc4c9
PA
800# Fix up the state resulting from successfully single-stepping a
801# displaced instruction, to give the result we would have gotten from
802# stepping the instruction in its original location.
803#
804# REGS is the register state resulting from single-stepping the
805# displaced instruction.
806#
807# CLOSURE is the result from the matching call to
808# gdbarch_displaced_step_copy_insn.
809#
810# If you provide gdbarch_displaced_step_copy_insn.but not this
811# function, then GDB assumes that no fixup is needed after
812# single-stepping the instruction.
813#
814# For a general explanation of displaced stepping and how GDB uses it,
815# see the comments in infrun.c.
588de28a 816M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 817
237fc4c9
PA
818# Return the address of an appropriate place to put displaced
819# instructions while we step over them. There need only be one such
820# place, since we're only stepping one thread over a breakpoint at a
821# time.
822#
823# For a general explanation of displaced stepping and how GDB uses it,
824# see the comments in infrun.c.
ea480a30 825m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 826
dde08ee1
PA
827# Relocate an instruction to execute at a different address. OLDLOC
828# is the address in the inferior memory where the instruction to
829# relocate is currently at. On input, TO points to the destination
830# where we want the instruction to be copied (and possibly adjusted)
831# to. On output, it points to one past the end of the resulting
832# instruction(s). The effect of executing the instruction at TO shall
833# be the same as if executing it at FROM. For example, call
834# instructions that implicitly push the return address on the stack
835# should be adjusted to return to the instruction after OLDLOC;
836# relative branches, and other PC-relative instructions need the
837# offset adjusted; etc.
ea480a30 838M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 839
1c772458 840# Refresh overlay mapped state for section OSECT.
ea480a30 841F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 842
ea480a30 843M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
844
845# Handle special encoding of static variables in stabs debug info.
ea480a30 846F;const char *;static_transform_name;const char *name;name
203c3895 847# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 848v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 849
0508c3ec
HZ
850# Parse the instruction at ADDR storing in the record execution log
851# the registers REGCACHE and memory ranges that will be affected when
852# the instruction executes, along with their current values.
853# Return -1 if something goes wrong, 0 otherwise.
ea480a30 854M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 855
3846b520
HZ
856# Save process state after a signal.
857# Return -1 if something goes wrong, 0 otherwise.
ea480a30 858M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 859
22203bbf 860# Signal translation: translate inferior's signal (target's) number
86b49880
PA
861# into GDB's representation. The implementation of this method must
862# be host independent. IOW, don't rely on symbols of the NAT_FILE
863# header (the nm-*.h files), the host <signal.h> header, or similar
864# headers. This is mainly used when cross-debugging core files ---
865# "Live" targets hide the translation behind the target interface
1f8cf220 866# (target_wait, target_resume, etc.).
ea480a30 867M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 868
eb14d406
SDJ
869# Signal translation: translate the GDB's internal signal number into
870# the inferior's signal (target's) representation. The implementation
871# of this method must be host independent. IOW, don't rely on symbols
872# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
873# header, or similar headers.
874# Return the target signal number if found, or -1 if the GDB internal
875# signal number is invalid.
ea480a30 876M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 877
4aa995e1
PA
878# Extra signal info inspection.
879#
880# Return a type suitable to inspect extra signal information.
ea480a30 881M;struct type *;get_siginfo_type;void;
4aa995e1 882
60c5725c 883# Record architecture-specific information from the symbol table.
ea480a30 884M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 885
a96d9b2e
SDJ
886# Function for the 'catch syscall' feature.
887
888# Get architecture-specific system calls information from registers.
00431a78 889M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 890
458c8db8 891# The filename of the XML syscall for this architecture.
ea480a30 892v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
893
894# Information about system calls from this architecture
ea480a30 895v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 896
55aa24fb
SDJ
897# SystemTap related fields and functions.
898
05c0465e
SDJ
899# A NULL-terminated array of prefixes used to mark an integer constant
900# on the architecture's assembly.
55aa24fb
SDJ
901# For example, on x86 integer constants are written as:
902#
903# \$10 ;; integer constant 10
904#
905# in this case, this prefix would be the character \`\$\'.
ea480a30 906v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 907
05c0465e
SDJ
908# A NULL-terminated array of suffixes used to mark an integer constant
909# on the architecture's assembly.
ea480a30 910v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 911
05c0465e
SDJ
912# A NULL-terminated array of prefixes used to mark a register name on
913# the architecture's assembly.
55aa24fb
SDJ
914# For example, on x86 the register name is written as:
915#
916# \%eax ;; register eax
917#
918# in this case, this prefix would be the character \`\%\'.
ea480a30 919v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 920
05c0465e
SDJ
921# A NULL-terminated array of suffixes used to mark a register name on
922# the architecture's assembly.
ea480a30 923v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 924
05c0465e
SDJ
925# A NULL-terminated array of prefixes used to mark a register
926# indirection on the architecture's assembly.
55aa24fb
SDJ
927# For example, on x86 the register indirection is written as:
928#
929# \(\%eax\) ;; indirecting eax
930#
931# in this case, this prefix would be the charater \`\(\'.
932#
933# Please note that we use the indirection prefix also for register
934# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 935v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 936
05c0465e
SDJ
937# A NULL-terminated array of suffixes used to mark a register
938# indirection on the architecture's assembly.
55aa24fb
SDJ
939# For example, on x86 the register indirection is written as:
940#
941# \(\%eax\) ;; indirecting eax
942#
943# in this case, this prefix would be the charater \`\)\'.
944#
945# Please note that we use the indirection suffix also for register
946# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 947v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 948
05c0465e 949# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
950#
951# For example, on PPC a register is represented by a number in the assembly
952# language (e.g., \`10\' is the 10th general-purpose register). However,
953# inside GDB this same register has an \`r\' appended to its name, so the 10th
954# register would be represented as \`r10\' internally.
ea480a30 955v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
956
957# Suffix used to name a register using GDB's nomenclature.
ea480a30 958v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
959
960# Check if S is a single operand.
961#
962# Single operands can be:
963# \- Literal integers, e.g. \`\$10\' on x86
964# \- Register access, e.g. \`\%eax\' on x86
965# \- Register indirection, e.g. \`\(\%eax\)\' on x86
966# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
967#
968# This function should check for these patterns on the string
969# and return 1 if some were found, or zero otherwise. Please try to match
970# as much info as you can from the string, i.e., if you have to match
971# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 972M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
973
974# Function used to handle a "special case" in the parser.
975#
976# A "special case" is considered to be an unknown token, i.e., a token
977# that the parser does not know how to parse. A good example of special
978# case would be ARM's register displacement syntax:
979#
980# [R0, #4] ;; displacing R0 by 4
981#
982# Since the parser assumes that a register displacement is of the form:
983#
984# <number> <indirection_prefix> <register_name> <indirection_suffix>
985#
986# it means that it will not be able to recognize and parse this odd syntax.
987# Therefore, we should add a special case function that will handle this token.
988#
989# This function should generate the proper expression form of the expression
990# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
991# and so on). It should also return 1 if the parsing was successful, or zero
992# if the token was not recognized as a special token (in this case, returning
993# zero means that the special parser is deferring the parsing to the generic
994# parser), and should advance the buffer pointer (p->arg).
ea480a30 995M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 996
7d7571f0
SDJ
997# Perform arch-dependent adjustments to a register name.
998#
999# In very specific situations, it may be necessary for the register
1000# name present in a SystemTap probe's argument to be handled in a
1001# special way. For example, on i386, GCC may over-optimize the
1002# register allocation and use smaller registers than necessary. In
1003# such cases, the client that is reading and evaluating the SystemTap
1004# probe (ourselves) will need to actually fetch values from the wider
1005# version of the register in question.
1006#
1007# To illustrate the example, consider the following probe argument
1008# (i386):
1009#
1010# 4@%ax
1011#
1012# This argument says that its value can be found at the %ax register,
1013# which is a 16-bit register. However, the argument's prefix says
1014# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1015# this case, GDB should actually fetch the probe's value from register
1016# %eax, not %ax. In this scenario, this function would actually
1017# replace the register name from %ax to %eax.
1018#
1019# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1020M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1021
8b367e17
JM
1022# DTrace related functions.
1023
1024# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1025# NARG must be >= 0.
37eedb39 1026M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1027
1028# True if the given ADDR does not contain the instruction sequence
1029# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1030M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1031
1032# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1033M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1034
1035# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1036M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1037
50c71eaf
PA
1038# True if the list of shared libraries is one and only for all
1039# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1040# This usually means that all processes, although may or may not share
1041# an address space, will see the same set of symbols at the same
1042# addresses.
ea480a30 1043v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1044
1045# On some targets, even though each inferior has its own private
1046# address space, the debug interface takes care of making breakpoints
1047# visible to all address spaces automatically. For such cases,
1048# this property should be set to true.
ea480a30 1049v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1050
1051# True if inferiors share an address space (e.g., uClinux).
ea480a30 1052m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1053
1054# True if a fast tracepoint can be set at an address.
281d762b 1055m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1056
5f034a78
MK
1057# Guess register state based on tracepoint location. Used for tracepoints
1058# where no registers have been collected, but there's only one location,
1059# allowing us to guess the PC value, and perhaps some other registers.
1060# On entry, regcache has all registers marked as unavailable.
ea480a30 1061m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1062
f870a310 1063# Return the "auto" target charset.
ea480a30 1064f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1065# Return the "auto" target wide charset.
ea480a30 1066f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1067
1068# If non-empty, this is a file extension that will be opened in place
1069# of the file extension reported by the shared library list.
1070#
1071# This is most useful for toolchains that use a post-linker tool,
1072# where the names of the files run on the target differ in extension
1073# compared to the names of the files GDB should load for debug info.
ea480a30 1074v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1075
1076# If true, the target OS has DOS-based file system semantics. That
1077# is, absolute paths include a drive name, and the backslash is
1078# considered a directory separator.
ea480a30 1079v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1080
1081# Generate bytecodes to collect the return address in a frame.
1082# Since the bytecodes run on the target, possibly with GDB not even
1083# connected, the full unwinding machinery is not available, and
1084# typically this function will issue bytecodes for one or more likely
1085# places that the return address may be found.
ea480a30 1086m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1087
3030c96e 1088# Implement the "info proc" command.
ea480a30 1089M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1090
451b7c33
TT
1091# Implement the "info proc" command for core files. Noe that there
1092# are two "info_proc"-like methods on gdbarch -- one for core files,
1093# one for live targets.
ea480a30 1094M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1095
19630284
JB
1096# Iterate over all objfiles in the order that makes the most sense
1097# for the architecture to make global symbol searches.
1098#
1099# CB is a callback function where OBJFILE is the objfile to be searched,
1100# and CB_DATA a pointer to user-defined data (the same data that is passed
1101# when calling this gdbarch method). The iteration stops if this function
1102# returns nonzero.
1103#
1104# CB_DATA is a pointer to some user-defined data to be passed to
1105# the callback.
1106#
1107# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1108# inspected when the symbol search was requested.
ea480a30 1109m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1110
7e35103a 1111# Ravenscar arch-dependent ops.
ea480a30 1112v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1113
1114# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1115m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1116
1117# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1118m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1119
1120# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1121m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1122
5133a315
LM
1123# Return true if there's a program/permanent breakpoint planted in
1124# memory at ADDRESS, return false otherwise.
1125m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1126
27a48a92
MK
1127# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1128# Return 0 if *READPTR is already at the end of the buffer.
1129# Return -1 if there is insufficient buffer for a whole entry.
1130# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1131M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1132
2faa3447
JB
1133# Print the description of a single auxv entry described by TYPE and VAL
1134# to FILE.
ea480a30 1135m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1136
3437254d
PA
1137# Find the address range of the current inferior's vsyscall/vDSO, and
1138# write it to *RANGE. If the vsyscall's length can't be determined, a
1139# range with zero length is returned. Returns true if the vsyscall is
1140# found, false otherwise.
ea480a30 1141m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1142
1143# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1144# PROT has GDB_MMAP_PROT_* bitmask format.
1145# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1146f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1147
7f361056
JK
1148# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1149# Print a warning if it is not possible.
ea480a30 1150f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1151
f208eee0
JK
1152# Return string (caller has to use xfree for it) with options for GCC
1153# to produce code for this target, typically "-m64", "-m32" or "-m31".
1154# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1155# they can override it.
1156m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1157
1158# Return a regular expression that matches names used by this
1159# architecture in GNU configury triplets. The result is statically
1160# allocated and must not be freed. The default implementation simply
1161# returns the BFD architecture name, which is correct in nearly every
1162# case.
ea480a30 1163m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1164
1165# Return the size in 8-bit bytes of an addressable memory unit on this
1166# architecture. This corresponds to the number of 8-bit bytes associated to
1167# each address in memory.
ea480a30 1168m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1169
65b48a81 1170# Functions for allowing a target to modify its disassembler options.
471b9d15 1171v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1172v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1173v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1174
5561fc30
AB
1175# Type alignment override method. Return the architecture specific
1176# alignment required for TYPE. If there is no special handling
1177# required for TYPE then return the value 0, GDB will then apply the
1178# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1179m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1180
aa7ca1bb
AH
1181# Return a string containing any flags for the given PC in the given FRAME.
1182f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1183
104c1213 1184EOF
104c1213
JM
1185}
1186
0b8f9e4d
AC
1187#
1188# The .log file
1189#
41a77cba 1190exec > gdbarch.log
34620563 1191function_list | while do_read
0b8f9e4d
AC
1192do
1193 cat <<EOF
1207375d 1194${class} ${returntype:-} ${function} (${formal:-})
104c1213 1195EOF
3d9a5942
AC
1196 for r in ${read}
1197 do
a6fc5ffc 1198 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1199 done
f0d4cc9e 1200 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1201 then
66d659b1 1202 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1203 kill $$
1204 exit 1
1205 fi
759cea5e 1206 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1207 then
1208 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1209 kill $$
1210 exit 1
1211 fi
a72293e2
AC
1212 if class_is_multiarch_p
1213 then
1214 if class_is_predicate_p ; then :
1215 elif test "x${predefault}" = "x"
1216 then
2f9b146e 1217 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1218 kill $$
1219 exit 1
1220 fi
1221 fi
3d9a5942 1222 echo ""
0b8f9e4d
AC
1223done
1224
1225exec 1>&2
0b8f9e4d 1226
104c1213
JM
1227
1228copyright ()
1229{
1230cat <<EOF
c4bfde41
JK
1231/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1232/* vi:set ro: */
59233f88 1233
104c1213 1234/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1235
e5d78223 1236 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1237
1238 This file is part of GDB.
1239
1240 This program is free software; you can redistribute it and/or modify
1241 it under the terms of the GNU General Public License as published by
50efebf8 1242 the Free Software Foundation; either version 3 of the License, or
104c1213 1243 (at your option) any later version.
618f726f 1244
104c1213
JM
1245 This program is distributed in the hope that it will be useful,
1246 but WITHOUT ANY WARRANTY; without even the implied warranty of
1247 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1248 GNU General Public License for more details.
618f726f 1249
104c1213 1250 You should have received a copy of the GNU General Public License
50efebf8 1251 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1252
41a77cba 1253/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1254
1255EOF
1256}
1257
1258#
1259# The .h file
1260#
1261
1262exec > new-gdbarch.h
1263copyright
1264cat <<EOF
1265#ifndef GDBARCH_H
1266#define GDBARCH_H
1267
a0ff9e1a 1268#include <vector>
eb7a547a 1269#include "frame.h"
65b48a81 1270#include "dis-asm.h"
284a0e3c 1271#include "gdb_obstack.h"
fdb61c6c 1272#include "infrun.h"
fe4b2ee6 1273#include "osabi.h"
eb7a547a 1274
da3331ec
AC
1275struct floatformat;
1276struct ui_file;
104c1213 1277struct value;
b6af0555 1278struct objfile;
1c772458 1279struct obj_section;
a2cf933a 1280struct minimal_symbol;
049ee0e4 1281struct regcache;
b59ff9d5 1282struct reggroup;
6ce6d90f 1283struct regset;
a89aa300 1284struct disassemble_info;
e2d0e7eb 1285struct target_ops;
030f20e1 1286struct obstack;
8181d85f 1287struct bp_target_info;
424163ea 1288struct target_desc;
3e29f34a 1289struct symbol;
a96d9b2e 1290struct syscall;
175ff332 1291struct agent_expr;
6710bf39 1292struct axs_value;
55aa24fb 1293struct stap_parse_info;
37eedb39 1294struct expr_builder;
7e35103a 1295struct ravenscar_arch_ops;
3437254d 1296struct mem_range;
458c8db8 1297struct syscalls_info;
4dfc5dbc 1298struct thread_info;
012b3a21 1299struct ui_out;
104c1213 1300
8a526fa6
PA
1301#include "regcache.h"
1302
6ecd4729
PA
1303/* The architecture associated with the inferior through the
1304 connection to the target.
1305
1306 The architecture vector provides some information that is really a
1307 property of the inferior, accessed through a particular target:
1308 ptrace operations; the layout of certain RSP packets; the solib_ops
1309 vector; etc. To differentiate architecture accesses to
1310 per-inferior/target properties from
1311 per-thread/per-frame/per-objfile properties, accesses to
1312 per-inferior/target properties should be made through this
1313 gdbarch. */
1314
1315/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1316extern struct gdbarch *target_gdbarch (void);
6ecd4729 1317
19630284
JB
1318/* Callback type for the 'iterate_over_objfiles_in_search_order'
1319 gdbarch method. */
1320
1321typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1322 (struct objfile *objfile, void *cb_data);
5aa82d05 1323
1528345d
AA
1324/* Callback type for regset section iterators. The callback usually
1325 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1326 pass a buffer - for collects this buffer will need to be created using
1327 COLLECT_SIZE, for supply the existing buffer being read from should
1328 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1329 is used for diagnostic messages. CB_DATA should have been passed
1330 unchanged through the iterator. */
1528345d 1331
5aa82d05 1332typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1333 (const char *sect_name, int supply_size, int collect_size,
1334 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1335
1336/* For a function call, does the function return a value using a
1337 normal value return or a structure return - passing a hidden
1338 argument pointing to storage. For the latter, there are two
1339 cases: language-mandated structure return and target ABI
1340 structure return. */
1341
1342enum function_call_return_method
1343{
1344 /* Standard value return. */
1345 return_method_normal = 0,
1346
1347 /* Language ABI structure return. This is handled
1348 by passing the return location as the first parameter to
1349 the function, even preceding "this". */
1350 return_method_hidden_param,
1351
1352 /* Target ABI struct return. This is target-specific; for instance,
1353 on ia64 the first argument is passed in out0 but the hidden
1354 structure return pointer would normally be passed in r8. */
1355 return_method_struct,
1356};
1357
104c1213
JM
1358EOF
1359
1360# function typedef's
3d9a5942
AC
1361printf "\n"
1362printf "\n"
0963b4bd 1363printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1364function_list | while do_read
104c1213 1365do
2ada493a
AC
1366 if class_is_info_p
1367 then
3d9a5942 1368 printf "\n"
8d113d13
SM
1369 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1370 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1371 fi
104c1213
JM
1372done
1373
1374# function typedef's
3d9a5942
AC
1375printf "\n"
1376printf "\n"
0963b4bd 1377printf "/* The following are initialized by the target dependent code. */\n"
34620563 1378function_list | while do_read
104c1213 1379do
72e74a21 1380 if [ -n "${comment}" ]
34620563
AC
1381 then
1382 echo "${comment}" | sed \
1383 -e '2 s,#,/*,' \
1384 -e '3,$ s,#, ,' \
1385 -e '$ s,$, */,'
1386 fi
412d5987
AC
1387
1388 if class_is_predicate_p
2ada493a 1389 then
412d5987 1390 printf "\n"
8d113d13 1391 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1392 fi
2ada493a
AC
1393 if class_is_variable_p
1394 then
3d9a5942 1395 printf "\n"
8d113d13
SM
1396 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1397 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1398 fi
1399 if class_is_function_p
1400 then
3d9a5942 1401 printf "\n"
72e74a21 1402 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1403 then
8d113d13 1404 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1405 elif class_is_multiarch_p
1406 then
8d113d13 1407 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1408 else
8d113d13 1409 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1410 fi
72e74a21 1411 if [ "x${formal}" = "xvoid" ]
104c1213 1412 then
8d113d13 1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1414 else
8d113d13 1415 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1416 fi
8d113d13 1417 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1418 fi
104c1213
JM
1419done
1420
1421# close it off
1422cat <<EOF
1423
1424extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1425
1426
1427/* Mechanism for co-ordinating the selection of a specific
1428 architecture.
1429
1430 GDB targets (*-tdep.c) can register an interest in a specific
1431 architecture. Other GDB components can register a need to maintain
1432 per-architecture data.
1433
1434 The mechanisms below ensures that there is only a loose connection
1435 between the set-architecture command and the various GDB
0fa6923a 1436 components. Each component can independently register their need
104c1213
JM
1437 to maintain architecture specific data with gdbarch.
1438
1439 Pragmatics:
1440
1441 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1442 didn't scale.
1443
1444 The more traditional mega-struct containing architecture specific
1445 data for all the various GDB components was also considered. Since
0fa6923a 1446 GDB is built from a variable number of (fairly independent)
104c1213 1447 components it was determined that the global aproach was not
0963b4bd 1448 applicable. */
104c1213
JM
1449
1450
1451/* Register a new architectural family with GDB.
1452
1453 Register support for the specified ARCHITECTURE with GDB. When
1454 gdbarch determines that the specified architecture has been
1455 selected, the corresponding INIT function is called.
1456
1457 --
1458
1459 The INIT function takes two parameters: INFO which contains the
1460 information available to gdbarch about the (possibly new)
1461 architecture; ARCHES which is a list of the previously created
1462 \`\`struct gdbarch'' for this architecture.
1463
0f79675b 1464 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1465 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1466
1467 The ARCHES parameter is a linked list (sorted most recently used)
1468 of all the previously created architures for this architecture
1469 family. The (possibly NULL) ARCHES->gdbarch can used to access
1470 values from the previously selected architecture for this
59837fe0 1471 architecture family.
104c1213
JM
1472
1473 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1474 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1475 gdbarch'' from the ARCHES list - indicating that the new
1476 architecture is just a synonym for an earlier architecture (see
1477 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1478 - that describes the selected architecture (see gdbarch_alloc()).
1479
1480 The DUMP_TDEP function shall print out all target specific values.
1481 Care should be taken to ensure that the function works in both the
0963b4bd 1482 multi-arch and non- multi-arch cases. */
104c1213
JM
1483
1484struct gdbarch_list
1485{
1486 struct gdbarch *gdbarch;
1487 struct gdbarch_list *next;
1488};
1489
1490struct gdbarch_info
1491{
0963b4bd 1492 /* Use default: NULL (ZERO). */
104c1213
JM
1493 const struct bfd_arch_info *bfd_arch_info;
1494
428721aa 1495 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1496 enum bfd_endian byte_order;
104c1213 1497
94123b4f 1498 enum bfd_endian byte_order_for_code;
9d4fde75 1499
0963b4bd 1500 /* Use default: NULL (ZERO). */
104c1213
JM
1501 bfd *abfd;
1502
0963b4bd 1503 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1504 union
1505 {
1506 /* Architecture-specific information. The generic form for targets
1507 that have extra requirements. */
1508 struct gdbarch_tdep_info *tdep_info;
1509
1510 /* Architecture-specific target description data. Numerous targets
1511 need only this, so give them an easy way to hold it. */
1512 struct tdesc_arch_data *tdesc_data;
1513
1514 /* SPU file system ID. This is a single integer, so using the
1515 generic form would only complicate code. Other targets may
1516 reuse this member if suitable. */
1517 int *id;
1518 };
4be87837
DJ
1519
1520 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1521 enum gdb_osabi osabi;
424163ea
DJ
1522
1523 /* Use default: NULL (ZERO). */
1524 const struct target_desc *target_desc;
104c1213
JM
1525};
1526
1527typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1528typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1529
4b9b3959 1530/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1531extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1532
4b9b3959
AC
1533extern void gdbarch_register (enum bfd_architecture architecture,
1534 gdbarch_init_ftype *,
1535 gdbarch_dump_tdep_ftype *);
1536
104c1213 1537
b4a20239
AC
1538/* Return a freshly allocated, NULL terminated, array of the valid
1539 architecture names. Since architectures are registered during the
1540 _initialize phase this function only returns useful information
0963b4bd 1541 once initialization has been completed. */
b4a20239
AC
1542
1543extern const char **gdbarch_printable_names (void);
1544
1545
104c1213 1546/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1547 matches the information provided by INFO. */
104c1213 1548
424163ea 1549extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1550
1551
1552/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1553 basic initialization using values obtained from the INFO and TDEP
104c1213 1554 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1555 initialization of the object. */
104c1213
JM
1556
1557extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1558
1559
4b9b3959
AC
1560/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1561 It is assumed that the caller freeds the \`\`struct
0963b4bd 1562 gdbarch_tdep''. */
4b9b3959 1563
058f20d5
JB
1564extern void gdbarch_free (struct gdbarch *);
1565
284a0e3c
SM
1566/* Get the obstack owned by ARCH. */
1567
1568extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1569
aebd7893
AC
1570/* Helper function. Allocate memory from the \`\`struct gdbarch''
1571 obstack. The memory is freed when the corresponding architecture
1572 is also freed. */
1573
284a0e3c
SM
1574#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1575 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1576
1577#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1578 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1579
6c214e7c
PP
1580/* Duplicate STRING, returning an equivalent string that's allocated on the
1581 obstack associated with GDBARCH. The string is freed when the corresponding
1582 architecture is also freed. */
1583
1584extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1585
0963b4bd 1586/* Helper function. Force an update of the current architecture.
104c1213 1587
b732d07d
AC
1588 The actual architecture selected is determined by INFO, \`\`(gdb) set
1589 architecture'' et.al., the existing architecture and BFD's default
1590 architecture. INFO should be initialized to zero and then selected
1591 fields should be updated.
104c1213 1592
0963b4bd 1593 Returns non-zero if the update succeeds. */
16f33e29
AC
1594
1595extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1596
1597
ebdba546
AC
1598/* Helper function. Find an architecture matching info.
1599
1600 INFO should be initialized using gdbarch_info_init, relevant fields
1601 set, and then finished using gdbarch_info_fill.
1602
1603 Returns the corresponding architecture, or NULL if no matching
59837fe0 1604 architecture was found. */
ebdba546
AC
1605
1606extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1607
1608
aff68abb 1609/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1610
aff68abb 1611extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1612
104c1213
JM
1613
1614/* Register per-architecture data-pointer.
1615
1616 Reserve space for a per-architecture data-pointer. An identifier
1617 for the reserved data-pointer is returned. That identifer should
95160752 1618 be saved in a local static variable.
104c1213 1619
fcc1c85c
AC
1620 Memory for the per-architecture data shall be allocated using
1621 gdbarch_obstack_zalloc. That memory will be deleted when the
1622 corresponding architecture object is deleted.
104c1213 1623
95160752
AC
1624 When a previously created architecture is re-selected, the
1625 per-architecture data-pointer for that previous architecture is
76860b5f 1626 restored. INIT() is not re-called.
104c1213
JM
1627
1628 Multiple registrarants for any architecture are allowed (and
1629 strongly encouraged). */
1630
95160752 1631struct gdbarch_data;
104c1213 1632
030f20e1
AC
1633typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1634extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1635typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1636extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1637extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1638 struct gdbarch_data *data,
1639 void *pointer);
104c1213 1640
451fbdda 1641extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1642
1643
0fa6923a 1644/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1645 byte-order, ...) using information found in the BFD. */
104c1213
JM
1646
1647extern void set_gdbarch_from_file (bfd *);
1648
1649
e514a9d6
JM
1650/* Initialize the current architecture to the "first" one we find on
1651 our list. */
1652
1653extern void initialize_current_architecture (void);
1654
104c1213 1655/* gdbarch trace variable */
ccce17b0 1656extern unsigned int gdbarch_debug;
104c1213 1657
4b9b3959 1658extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1659
f6efe3f8
SM
1660/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1661
1662static inline int
1663gdbarch_num_cooked_regs (gdbarch *arch)
1664{
1665 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1666}
1667
104c1213
JM
1668#endif
1669EOF
1670exec 1>&2
41a77cba
SM
1671../move-if-change new-gdbarch.h gdbarch.h
1672rm -f new-gdbarch.h
104c1213
JM
1673
1674
1675#
1676# C file
1677#
1678
1679exec > new-gdbarch.c
1680copyright
1681cat <<EOF
1682
1683#include "defs.h"
7355ddba 1684#include "arch-utils.h"
104c1213 1685
104c1213 1686#include "gdbcmd.h"
faaf634c 1687#include "inferior.h"
104c1213
JM
1688#include "symcat.h"
1689
f0d4cc9e 1690#include "floatformat.h"
b59ff9d5 1691#include "reggroups.h"
4be87837 1692#include "osabi.h"
aebd7893 1693#include "gdb_obstack.h"
0bee6dd4 1694#include "observable.h"
a3ecef73 1695#include "regcache.h"
19630284 1696#include "objfiles.h"
2faa3447 1697#include "auxv.h"
8bcb5208
AB
1698#include "frame-unwind.h"
1699#include "dummy-frame.h"
95160752 1700
104c1213
JM
1701/* Static function declarations */
1702
b3cc3077 1703static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1704
104c1213
JM
1705/* Non-zero if we want to trace architecture code. */
1706
1707#ifndef GDBARCH_DEBUG
1708#define GDBARCH_DEBUG 0
1709#endif
ccce17b0 1710unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1711static void
1712show_gdbarch_debug (struct ui_file *file, int from_tty,
1713 struct cmd_list_element *c, const char *value)
1714{
1715 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1716}
104c1213 1717
456fcf94 1718static const char *
8da61cc4 1719pformat (const struct floatformat **format)
456fcf94
AC
1720{
1721 if (format == NULL)
1722 return "(null)";
1723 else
8da61cc4
DJ
1724 /* Just print out one of them - this is only for diagnostics. */
1725 return format[0]->name;
456fcf94
AC
1726}
1727
08105857
PA
1728static const char *
1729pstring (const char *string)
1730{
1731 if (string == NULL)
1732 return "(null)";
1733 return string;
05c0465e
SDJ
1734}
1735
a121b7c1 1736static const char *
f7bb4e3a
PB
1737pstring_ptr (char **string)
1738{
1739 if (string == NULL || *string == NULL)
1740 return "(null)";
1741 return *string;
1742}
1743
05c0465e
SDJ
1744/* Helper function to print a list of strings, represented as "const
1745 char *const *". The list is printed comma-separated. */
1746
a121b7c1 1747static const char *
05c0465e
SDJ
1748pstring_list (const char *const *list)
1749{
1750 static char ret[100];
1751 const char *const *p;
1752 size_t offset = 0;
1753
1754 if (list == NULL)
1755 return "(null)";
1756
1757 ret[0] = '\0';
1758 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1759 {
1760 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1761 offset += 2 + s;
1762 }
1763
1764 if (offset > 0)
1765 {
1766 gdb_assert (offset - 2 < sizeof (ret));
1767 ret[offset - 2] = '\0';
1768 }
1769
1770 return ret;
08105857
PA
1771}
1772
104c1213
JM
1773EOF
1774
1775# gdbarch open the gdbarch object
3d9a5942 1776printf "\n"
0963b4bd 1777printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1778printf "\n"
1779printf "struct gdbarch\n"
1780printf "{\n"
76860b5f
AC
1781printf " /* Has this architecture been fully initialized? */\n"
1782printf " int initialized_p;\n"
aebd7893
AC
1783printf "\n"
1784printf " /* An obstack bound to the lifetime of the architecture. */\n"
1785printf " struct obstack *obstack;\n"
1786printf "\n"
0963b4bd 1787printf " /* basic architectural information. */\n"
34620563 1788function_list | while do_read
104c1213 1789do
2ada493a
AC
1790 if class_is_info_p
1791 then
8d113d13 1792 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1793 fi
104c1213 1794done
3d9a5942 1795printf "\n"
0963b4bd 1796printf " /* target specific vector. */\n"
3d9a5942
AC
1797printf " struct gdbarch_tdep *tdep;\n"
1798printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1799printf "\n"
0963b4bd 1800printf " /* per-architecture data-pointers. */\n"
95160752 1801printf " unsigned nr_data;\n"
3d9a5942
AC
1802printf " void **data;\n"
1803printf "\n"
104c1213
JM
1804cat <<EOF
1805 /* Multi-arch values.
1806
1807 When extending this structure you must:
1808
1809 Add the field below.
1810
1811 Declare set/get functions and define the corresponding
1812 macro in gdbarch.h.
1813
1814 gdbarch_alloc(): If zero/NULL is not a suitable default,
1815 initialize the new field.
1816
1817 verify_gdbarch(): Confirm that the target updated the field
1818 correctly.
1819
7e73cedf 1820 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1821 field is dumped out
1822
104c1213
JM
1823 get_gdbarch(): Implement the set/get functions (probably using
1824 the macro's as shortcuts).
1825
1826 */
1827
1828EOF
34620563 1829function_list | while do_read
104c1213 1830do
2ada493a
AC
1831 if class_is_variable_p
1832 then
8d113d13 1833 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1834 elif class_is_function_p
1835 then
8d113d13 1836 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1837 fi
104c1213 1838done
3d9a5942 1839printf "};\n"
104c1213 1840
104c1213 1841# Create a new gdbarch struct
104c1213 1842cat <<EOF
7de2341d 1843
66b43ecb 1844/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1845 \`\`struct gdbarch_info''. */
104c1213 1846EOF
3d9a5942 1847printf "\n"
104c1213
JM
1848cat <<EOF
1849struct gdbarch *
1850gdbarch_alloc (const struct gdbarch_info *info,
1851 struct gdbarch_tdep *tdep)
1852{
be7811ad 1853 struct gdbarch *gdbarch;
aebd7893
AC
1854
1855 /* Create an obstack for allocating all the per-architecture memory,
1856 then use that to allocate the architecture vector. */
70ba0933 1857 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1858 obstack_init (obstack);
8d749320 1859 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1860 memset (gdbarch, 0, sizeof (*gdbarch));
1861 gdbarch->obstack = obstack;
85de9627 1862
be7811ad 1863 alloc_gdbarch_data (gdbarch);
85de9627 1864
be7811ad 1865 gdbarch->tdep = tdep;
104c1213 1866EOF
3d9a5942 1867printf "\n"
34620563 1868function_list | while do_read
104c1213 1869do
2ada493a
AC
1870 if class_is_info_p
1871 then
8d113d13 1872 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1873 fi
104c1213 1874done
3d9a5942 1875printf "\n"
0963b4bd 1876printf " /* Force the explicit initialization of these. */\n"
34620563 1877function_list | while do_read
104c1213 1878do
2ada493a
AC
1879 if class_is_function_p || class_is_variable_p
1880 then
759cea5e 1881 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1882 then
8d113d13 1883 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1884 fi
2ada493a 1885 fi
104c1213
JM
1886done
1887cat <<EOF
1888 /* gdbarch_alloc() */
1889
be7811ad 1890 return gdbarch;
104c1213
JM
1891}
1892EOF
1893
058f20d5 1894# Free a gdbarch struct.
3d9a5942
AC
1895printf "\n"
1896printf "\n"
058f20d5 1897cat <<EOF
aebd7893 1898
284a0e3c 1899obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1900{
284a0e3c 1901 return arch->obstack;
aebd7893
AC
1902}
1903
6c214e7c
PP
1904/* See gdbarch.h. */
1905
1906char *
1907gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1908{
1909 return obstack_strdup (arch->obstack, string);
1910}
1911
aebd7893 1912
058f20d5
JB
1913/* Free a gdbarch struct. This should never happen in normal
1914 operation --- once you've created a gdbarch, you keep it around.
1915 However, if an architecture's init function encounters an error
1916 building the structure, it may need to clean up a partially
1917 constructed gdbarch. */
4b9b3959 1918
058f20d5
JB
1919void
1920gdbarch_free (struct gdbarch *arch)
1921{
aebd7893 1922 struct obstack *obstack;
05c547f6 1923
95160752 1924 gdb_assert (arch != NULL);
aebd7893
AC
1925 gdb_assert (!arch->initialized_p);
1926 obstack = arch->obstack;
1927 obstack_free (obstack, 0); /* Includes the ARCH. */
1928 xfree (obstack);
058f20d5
JB
1929}
1930EOF
1931
104c1213 1932# verify a new architecture
104c1213 1933cat <<EOF
db446970
AC
1934
1935
1936/* Ensure that all values in a GDBARCH are reasonable. */
1937
104c1213 1938static void
be7811ad 1939verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1940{
d7e74731 1941 string_file log;
05c547f6 1942
104c1213 1943 /* fundamental */
be7811ad 1944 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1945 log.puts ("\n\tbyte-order");
be7811ad 1946 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1947 log.puts ("\n\tbfd_arch_info");
0963b4bd 1948 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1949EOF
34620563 1950function_list | while do_read
104c1213 1951do
2ada493a
AC
1952 if class_is_function_p || class_is_variable_p
1953 then
72e74a21 1954 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1955 then
8d113d13 1956 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1957 elif class_is_predicate_p
1958 then
8d113d13 1959 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1960 # FIXME: See do_read for potential simplification
759cea5e 1961 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1962 then
8d113d13
SM
1963 printf " if (%s)\n" "$invalid_p"
1964 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1965 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1966 then
8d113d13
SM
1967 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1969 elif [ -n "${postdefault}" ]
f0d4cc9e 1970 then
8d113d13
SM
1971 printf " if (gdbarch->%s == 0)\n" "$function"
1972 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1973 elif [ -n "${invalid_p}" ]
104c1213 1974 then
8d113d13
SM
1975 printf " if (%s)\n" "$invalid_p"
1976 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 1977 elif [ -n "${predefault}" ]
104c1213 1978 then
8d113d13
SM
1979 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1980 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 1981 fi
2ada493a 1982 fi
104c1213
JM
1983done
1984cat <<EOF
d7e74731 1985 if (!log.empty ())
f16a1923 1986 internal_error (__FILE__, __LINE__,
85c07804 1987 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1988 log.c_str ());
104c1213
JM
1989}
1990EOF
1991
1992# dump the structure
3d9a5942
AC
1993printf "\n"
1994printf "\n"
104c1213 1995cat <<EOF
0963b4bd 1996/* Print out the details of the current architecture. */
4b9b3959 1997
104c1213 1998void
be7811ad 1999gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2000{
b78960be 2001 const char *gdb_nm_file = "<not-defined>";
05c547f6 2002
b78960be
AC
2003#if defined (GDB_NM_FILE)
2004 gdb_nm_file = GDB_NM_FILE;
2005#endif
2006 fprintf_unfiltered (file,
2007 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2008 gdb_nm_file);
104c1213 2009EOF
ea480a30 2010function_list | sort '-t;' -k 3 | while do_read
104c1213 2011do
1e9f55d0
AC
2012 # First the predicate
2013 if class_is_predicate_p
2014 then
7996bcec 2015 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2016 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2017 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2018 fi
48f7351b 2019 # Print the corresponding value.
283354d8 2020 if class_is_function_p
4b9b3959 2021 then
7996bcec 2022 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2023 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2024 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2025 else
48f7351b 2026 # It is a variable
2f9b146e
AC
2027 case "${print}:${returntype}" in
2028 :CORE_ADDR )
0b1553bc
UW
2029 fmt="%s"
2030 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2031 ;;
2f9b146e 2032 :* )
48f7351b 2033 fmt="%s"
623d3eb1 2034 print="plongest (gdbarch->${function})"
48f7351b
AC
2035 ;;
2036 * )
2f9b146e 2037 fmt="%s"
48f7351b
AC
2038 ;;
2039 esac
3d9a5942 2040 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2041 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2042 printf " %s);\n" "$print"
2ada493a 2043 fi
104c1213 2044done
381323f4 2045cat <<EOF
be7811ad
MD
2046 if (gdbarch->dump_tdep != NULL)
2047 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2048}
2049EOF
104c1213
JM
2050
2051
2052# GET/SET
3d9a5942 2053printf "\n"
104c1213
JM
2054cat <<EOF
2055struct gdbarch_tdep *
2056gdbarch_tdep (struct gdbarch *gdbarch)
2057{
2058 if (gdbarch_debug >= 2)
3d9a5942 2059 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2060 return gdbarch->tdep;
2061}
2062EOF
3d9a5942 2063printf "\n"
34620563 2064function_list | while do_read
104c1213 2065do
2ada493a
AC
2066 if class_is_predicate_p
2067 then
3d9a5942
AC
2068 printf "\n"
2069 printf "int\n"
8d113d13 2070 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2071 printf "{\n"
8de9bdc4 2072 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2073 printf " return %s;\n" "$predicate"
3d9a5942 2074 printf "}\n"
2ada493a
AC
2075 fi
2076 if class_is_function_p
2077 then
3d9a5942 2078 printf "\n"
8d113d13 2079 printf "%s\n" "$returntype"
72e74a21 2080 if [ "x${formal}" = "xvoid" ]
104c1213 2081 then
8d113d13 2082 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2083 else
8d113d13 2084 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2085 fi
3d9a5942 2086 printf "{\n"
8de9bdc4 2087 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2088 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2089 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2090 then
2091 # Allow a call to a function with a predicate.
8d113d13 2092 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2093 fi
3d9a5942 2094 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2095 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2096 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2097 then
2098 if class_is_multiarch_p
2099 then
2100 params="gdbarch"
2101 else
2102 params=""
2103 fi
2104 else
2105 if class_is_multiarch_p
2106 then
2107 params="gdbarch, ${actual}"
2108 else
2109 params="${actual}"
2110 fi
2111 fi
72e74a21 2112 if [ "x${returntype}" = "xvoid" ]
104c1213 2113 then
8d113d13 2114 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2115 else
8d113d13 2116 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2117 fi
3d9a5942
AC
2118 printf "}\n"
2119 printf "\n"
2120 printf "void\n"
8d113d13 2121 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2122 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2123 printf "{\n"
8d113d13 2124 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2125 printf "}\n"
2ada493a
AC
2126 elif class_is_variable_p
2127 then
3d9a5942 2128 printf "\n"
8d113d13
SM
2129 printf "%s\n" "$returntype"
2130 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2131 printf "{\n"
8de9bdc4 2132 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2133 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2134 then
8d113d13 2135 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2136 elif [ -n "${invalid_p}" ]
104c1213 2137 then
956ac328 2138 printf " /* Check variable is valid. */\n"
8d113d13 2139 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2140 elif [ -n "${predefault}" ]
104c1213 2141 then
956ac328 2142 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2143 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2144 fi
3d9a5942 2145 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2146 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2147 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2148 printf "}\n"
2149 printf "\n"
2150 printf "void\n"
8d113d13 2151 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2152 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2153 printf "{\n"
8d113d13 2154 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2155 printf "}\n"
2ada493a
AC
2156 elif class_is_info_p
2157 then
3d9a5942 2158 printf "\n"
8d113d13
SM
2159 printf "%s\n" "$returntype"
2160 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2161 printf "{\n"
8de9bdc4 2162 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2163 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2164 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2165 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2166 printf "}\n"
2ada493a 2167 fi
104c1213
JM
2168done
2169
2170# All the trailing guff
2171cat <<EOF
2172
2173
f44c642f 2174/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2175 modules. */
104c1213
JM
2176
2177struct gdbarch_data
2178{
95160752 2179 unsigned index;
76860b5f 2180 int init_p;
030f20e1
AC
2181 gdbarch_data_pre_init_ftype *pre_init;
2182 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2183};
2184
2185struct gdbarch_data_registration
2186{
104c1213
JM
2187 struct gdbarch_data *data;
2188 struct gdbarch_data_registration *next;
2189};
2190
f44c642f 2191struct gdbarch_data_registry
104c1213 2192{
95160752 2193 unsigned nr;
104c1213
JM
2194 struct gdbarch_data_registration *registrations;
2195};
2196
f44c642f 2197struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2198{
2199 0, NULL,
2200};
2201
030f20e1
AC
2202static struct gdbarch_data *
2203gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2204 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2205{
2206 struct gdbarch_data_registration **curr;
05c547f6
MS
2207
2208 /* Append the new registration. */
f44c642f 2209 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2210 (*curr) != NULL;
2211 curr = &(*curr)->next);
70ba0933 2212 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2213 (*curr)->next = NULL;
70ba0933 2214 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2215 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2216 (*curr)->data->pre_init = pre_init;
2217 (*curr)->data->post_init = post_init;
76860b5f 2218 (*curr)->data->init_p = 1;
104c1213
JM
2219 return (*curr)->data;
2220}
2221
030f20e1
AC
2222struct gdbarch_data *
2223gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2224{
2225 return gdbarch_data_register (pre_init, NULL);
2226}
2227
2228struct gdbarch_data *
2229gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2230{
2231 return gdbarch_data_register (NULL, post_init);
2232}
104c1213 2233
0963b4bd 2234/* Create/delete the gdbarch data vector. */
95160752
AC
2235
2236static void
b3cc3077 2237alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2238{
b3cc3077
JB
2239 gdb_assert (gdbarch->data == NULL);
2240 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2241 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2242}
3c875b6f 2243
76860b5f 2244/* Initialize the current value of the specified per-architecture
0963b4bd 2245 data-pointer. */
b3cc3077 2246
95160752 2247void
030f20e1
AC
2248deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2249 struct gdbarch_data *data,
2250 void *pointer)
95160752
AC
2251{
2252 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2253 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2254 gdb_assert (data->pre_init == NULL);
95160752
AC
2255 gdbarch->data[data->index] = pointer;
2256}
2257
104c1213 2258/* Return the current value of the specified per-architecture
0963b4bd 2259 data-pointer. */
104c1213
JM
2260
2261void *
451fbdda 2262gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2263{
451fbdda 2264 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2265 if (gdbarch->data[data->index] == NULL)
76860b5f 2266 {
030f20e1
AC
2267 /* The data-pointer isn't initialized, call init() to get a
2268 value. */
2269 if (data->pre_init != NULL)
2270 /* Mid architecture creation: pass just the obstack, and not
2271 the entire architecture, as that way it isn't possible for
2272 pre-init code to refer to undefined architecture
2273 fields. */
2274 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2275 else if (gdbarch->initialized_p
2276 && data->post_init != NULL)
2277 /* Post architecture creation: pass the entire architecture
2278 (as all fields are valid), but be careful to also detect
2279 recursive references. */
2280 {
2281 gdb_assert (data->init_p);
2282 data->init_p = 0;
2283 gdbarch->data[data->index] = data->post_init (gdbarch);
2284 data->init_p = 1;
2285 }
2286 else
2287 /* The architecture initialization hasn't completed - punt -
2288 hope that the caller knows what they are doing. Once
2289 deprecated_set_gdbarch_data has been initialized, this can be
2290 changed to an internal error. */
2291 return NULL;
76860b5f
AC
2292 gdb_assert (gdbarch->data[data->index] != NULL);
2293 }
451fbdda 2294 return gdbarch->data[data->index];
104c1213
JM
2295}
2296
2297
0963b4bd 2298/* Keep a registry of the architectures known by GDB. */
104c1213 2299
4b9b3959 2300struct gdbarch_registration
104c1213
JM
2301{
2302 enum bfd_architecture bfd_architecture;
2303 gdbarch_init_ftype *init;
4b9b3959 2304 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2305 struct gdbarch_list *arches;
4b9b3959 2306 struct gdbarch_registration *next;
104c1213
JM
2307};
2308
f44c642f 2309static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2310
b4a20239
AC
2311static void
2312append_name (const char ***buf, int *nr, const char *name)
2313{
1dc7a623 2314 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2315 (*buf)[*nr] = name;
2316 *nr += 1;
2317}
2318
2319const char **
2320gdbarch_printable_names (void)
2321{
7996bcec 2322 /* Accumulate a list of names based on the registed list of
0963b4bd 2323 architectures. */
7996bcec
AC
2324 int nr_arches = 0;
2325 const char **arches = NULL;
2326 struct gdbarch_registration *rego;
05c547f6 2327
7996bcec
AC
2328 for (rego = gdbarch_registry;
2329 rego != NULL;
2330 rego = rego->next)
b4a20239 2331 {
7996bcec
AC
2332 const struct bfd_arch_info *ap;
2333 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2334 if (ap == NULL)
2335 internal_error (__FILE__, __LINE__,
85c07804 2336 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2337 do
2338 {
2339 append_name (&arches, &nr_arches, ap->printable_name);
2340 ap = ap->next;
2341 }
2342 while (ap != NULL);
b4a20239 2343 }
7996bcec
AC
2344 append_name (&arches, &nr_arches, NULL);
2345 return arches;
b4a20239
AC
2346}
2347
2348
104c1213 2349void
4b9b3959
AC
2350gdbarch_register (enum bfd_architecture bfd_architecture,
2351 gdbarch_init_ftype *init,
2352 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2353{
4b9b3959 2354 struct gdbarch_registration **curr;
104c1213 2355 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2356
ec3d358c 2357 /* Check that BFD recognizes this architecture */
104c1213
JM
2358 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2359 if (bfd_arch_info == NULL)
2360 {
8e65ff28 2361 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2362 _("gdbarch: Attempt to register "
2363 "unknown architecture (%d)"),
8e65ff28 2364 bfd_architecture);
104c1213 2365 }
0963b4bd 2366 /* Check that we haven't seen this architecture before. */
f44c642f 2367 for (curr = &gdbarch_registry;
104c1213
JM
2368 (*curr) != NULL;
2369 curr = &(*curr)->next)
2370 {
2371 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2372 internal_error (__FILE__, __LINE__,
64b9b334 2373 _("gdbarch: Duplicate registration "
0963b4bd 2374 "of architecture (%s)"),
8e65ff28 2375 bfd_arch_info->printable_name);
104c1213
JM
2376 }
2377 /* log it */
2378 if (gdbarch_debug)
30737ed9 2379 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2380 bfd_arch_info->printable_name,
30737ed9 2381 host_address_to_string (init));
104c1213 2382 /* Append it */
70ba0933 2383 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2384 (*curr)->bfd_architecture = bfd_architecture;
2385 (*curr)->init = init;
4b9b3959 2386 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2387 (*curr)->arches = NULL;
2388 (*curr)->next = NULL;
4b9b3959
AC
2389}
2390
2391void
2392register_gdbarch_init (enum bfd_architecture bfd_architecture,
2393 gdbarch_init_ftype *init)
2394{
2395 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2396}
104c1213
JM
2397
2398
424163ea 2399/* Look for an architecture using gdbarch_info. */
104c1213
JM
2400
2401struct gdbarch_list *
2402gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2403 const struct gdbarch_info *info)
2404{
2405 for (; arches != NULL; arches = arches->next)
2406 {
2407 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2408 continue;
2409 if (info->byte_order != arches->gdbarch->byte_order)
2410 continue;
4be87837
DJ
2411 if (info->osabi != arches->gdbarch->osabi)
2412 continue;
424163ea
DJ
2413 if (info->target_desc != arches->gdbarch->target_desc)
2414 continue;
104c1213
JM
2415 return arches;
2416 }
2417 return NULL;
2418}
2419
2420
ebdba546 2421/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2422 architecture if needed. Return that new architecture. */
104c1213 2423
59837fe0
UW
2424struct gdbarch *
2425gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2426{
2427 struct gdbarch *new_gdbarch;
4b9b3959 2428 struct gdbarch_registration *rego;
104c1213 2429
b732d07d 2430 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2431 sources: "set ..."; INFOabfd supplied; and the global
2432 defaults. */
2433 gdbarch_info_fill (&info);
4be87837 2434
0963b4bd 2435 /* Must have found some sort of architecture. */
b732d07d 2436 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2437
2438 if (gdbarch_debug)
2439 {
2440 fprintf_unfiltered (gdb_stdlog,
59837fe0 2441 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2442 (info.bfd_arch_info != NULL
2443 ? info.bfd_arch_info->printable_name
2444 : "(null)"));
2445 fprintf_unfiltered (gdb_stdlog,
59837fe0 2446 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2447 info.byte_order,
d7449b42 2448 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2449 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2450 : "default"));
4be87837 2451 fprintf_unfiltered (gdb_stdlog,
59837fe0 2452 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2453 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2454 fprintf_unfiltered (gdb_stdlog,
59837fe0 2455 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2456 host_address_to_string (info.abfd));
104c1213 2457 fprintf_unfiltered (gdb_stdlog,
59837fe0 2458 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2459 host_address_to_string (info.tdep_info));
104c1213
JM
2460 }
2461
ebdba546 2462 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2463 for (rego = gdbarch_registry;
2464 rego != NULL;
2465 rego = rego->next)
2466 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2467 break;
2468 if (rego == NULL)
2469 {
2470 if (gdbarch_debug)
59837fe0 2471 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2472 "No matching architecture\n");
b732d07d
AC
2473 return 0;
2474 }
2475
ebdba546 2476 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2477 new_gdbarch = rego->init (info, rego->arches);
2478
ebdba546
AC
2479 /* Did the tdep code like it? No. Reject the change and revert to
2480 the old architecture. */
104c1213
JM
2481 if (new_gdbarch == NULL)
2482 {
2483 if (gdbarch_debug)
59837fe0 2484 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2485 "Target rejected architecture\n");
2486 return NULL;
104c1213
JM
2487 }
2488
ebdba546
AC
2489 /* Is this a pre-existing architecture (as determined by already
2490 being initialized)? Move it to the front of the architecture
2491 list (keeping the list sorted Most Recently Used). */
2492 if (new_gdbarch->initialized_p)
104c1213 2493 {
ebdba546 2494 struct gdbarch_list **list;
fe978cb0 2495 struct gdbarch_list *self;
104c1213 2496 if (gdbarch_debug)
59837fe0 2497 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2498 "Previous architecture %s (%s) selected\n",
2499 host_address_to_string (new_gdbarch),
104c1213 2500 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2501 /* Find the existing arch in the list. */
2502 for (list = &rego->arches;
2503 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2504 list = &(*list)->next);
2505 /* It had better be in the list of architectures. */
2506 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2507 /* Unlink SELF. */
2508 self = (*list);
2509 (*list) = self->next;
2510 /* Insert SELF at the front. */
2511 self->next = rego->arches;
2512 rego->arches = self;
ebdba546
AC
2513 /* Return it. */
2514 return new_gdbarch;
104c1213
JM
2515 }
2516
ebdba546
AC
2517 /* It's a new architecture. */
2518 if (gdbarch_debug)
59837fe0 2519 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2520 "New architecture %s (%s) selected\n",
2521 host_address_to_string (new_gdbarch),
ebdba546
AC
2522 new_gdbarch->bfd_arch_info->printable_name);
2523
2524 /* Insert the new architecture into the front of the architecture
2525 list (keep the list sorted Most Recently Used). */
0f79675b 2526 {
fe978cb0
PA
2527 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2528 self->next = rego->arches;
2529 self->gdbarch = new_gdbarch;
2530 rego->arches = self;
0f79675b 2531 }
104c1213 2532
4b9b3959
AC
2533 /* Check that the newly installed architecture is valid. Plug in
2534 any post init values. */
2535 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2536 verify_gdbarch (new_gdbarch);
ebdba546 2537 new_gdbarch->initialized_p = 1;
104c1213 2538
4b9b3959 2539 if (gdbarch_debug)
ebdba546
AC
2540 gdbarch_dump (new_gdbarch, gdb_stdlog);
2541
2542 return new_gdbarch;
2543}
2544
e487cc15 2545/* Make the specified architecture current. */
ebdba546
AC
2546
2547void
aff68abb 2548set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2549{
2550 gdb_assert (new_gdbarch != NULL);
ebdba546 2551 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2552 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2553 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2554 registers_changed ();
ebdba546 2555}
104c1213 2556
f5656ead 2557/* Return the current inferior's arch. */
6ecd4729
PA
2558
2559struct gdbarch *
f5656ead 2560target_gdbarch (void)
6ecd4729
PA
2561{
2562 return current_inferior ()->gdbarch;
2563}
2564
a1237872 2565void _initialize_gdbarch ();
104c1213 2566void
a1237872 2567_initialize_gdbarch ()
104c1213 2568{
ccce17b0 2569 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2570Set architecture debugging."), _("\\
2571Show architecture debugging."), _("\\
2572When non-zero, architecture debugging is enabled."),
2573 NULL,
920d2a44 2574 show_gdbarch_debug,
85c07804 2575 &setdebuglist, &showdebuglist);
104c1213
JM
2576}
2577EOF
2578
2579# close things off
2580exec 1>&2
41a77cba
SM
2581../move-if-change new-gdbarch.c gdbarch.c
2582rm -f new-gdbarch.c
This page took 1.79816 seconds and 4 git commands to generate.