gdb: rename displaced_step_closure to displaced_step_copy_insn_closure
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
b811d2c2 3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
82ca8957 25#include "dwarf2/frame.h"
c906108c 26#include "frame.h"
acd5c798
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
c906108c 29#include "inferior.h"
45741a9c 30#include "infrun.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
3b2ca824 42#include "target-float.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
268a13a5 49#include "gdbsupport/x86-xstate.h"
1d509aa6 50#include "x86-tdep.h"
d2a7c97a 51
7ad10968 52#include "record.h"
d02ed0bb 53#include "record-full.h"
22916b07
YQ
54#include "target-descriptions.h"
55#include "arch/i386.h"
90884b2b 56
6710bf39
SS
57#include "ax.h"
58#include "ax-gdb.h"
59
55aa24fb
SDJ
60#include "stap-probe.h"
61#include "user-regs.h"
62#include "cli/cli-utils.h"
63#include "expression.h"
64#include "parser-defs.h"
65#include <ctype.h>
325fac50 66#include <algorithm>
7d7571f0 67#include <unordered_set>
55aa24fb 68
c4fc7f1b 69/* Register names. */
c40e1eab 70
90884b2b 71static const char *i386_register_names[] =
fc633446
MK
72{
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84};
85
01f9f808
MS
86static const char *i386_zmm_names[] =
87{
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90};
91
92static const char *i386_zmmh_names[] =
93{
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96};
97
98static const char *i386_k_names[] =
99{
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102};
103
c131fcee
L
104static const char *i386_ymm_names[] =
105{
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108};
109
110static const char *i386_ymmh_names[] =
111{
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114};
115
1dbcd68c
WT
116static const char *i386_mpx_names[] =
117{
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119};
120
51547df6
MS
121static const char* i386_pkeys_names[] =
122{
123 "pkru"
124};
125
1dbcd68c
WT
126/* Register names for MPX pseudo-registers. */
127
128static const char *i386_bnd_names[] =
129{
130 "bnd0", "bnd1", "bnd2", "bnd3"
131};
132
c4fc7f1b 133/* Register names for MMX pseudo-registers. */
28fc6740 134
90884b2b 135static const char *i386_mmx_names[] =
28fc6740
AC
136{
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139};
c40e1eab 140
1ba53b71
L
141/* Register names for byte pseudo-registers. */
142
143static const char *i386_byte_names[] =
144{
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147};
148
149/* Register names for word pseudo-registers. */
150
151static const char *i386_word_names[] =
152{
153 "ax", "cx", "dx", "bx",
9cad29ac 154 "", "bp", "si", "di"
1ba53b71
L
155};
156
01f9f808
MS
157/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161const int num_lower_zmm_regs = 16;
162
1ba53b71 163/* MMX register? */
c40e1eab 164
28fc6740 165static int
5716833c 166i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 167{
1ba53b71
L
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
170
171 if (mm0_regnum < 0)
172 return 0;
173
1ba53b71
L
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176}
177
178/* Byte register? */
179
180int
181i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182{
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187}
188
189/* Word register? */
190
191int
192i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198}
199
200/* Dword register? */
201
202int
203i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204{
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
213}
214
01f9f808
MS
215/* AVX512 register? */
216
217int
218i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219{
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228}
229
230int
231i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232{
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241}
242
243int
244i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245{
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254}
255
9191d390 256static int
c131fcee
L
257i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258{
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267}
268
269/* AVX register? */
270
271int
272i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273{
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282}
283
01f9f808
MS
284static int
285i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286{
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295}
296
297int
298i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299{
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308}
309
1dbcd68c
WT
310/* BND register? */
311
312int
313i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314{
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323}
324
5716833c 325/* SSE register? */
23a34459 326
c131fcee
L
327int
328i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 329{
5716833c 330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 332
c131fcee 333 if (num_xmm_regs == 0)
5716833c
MK
334 return 0;
335
c131fcee
L
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
338}
339
01f9f808
MS
340/* XMM_512 register? */
341
342int
343i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344{
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353}
354
5716833c
MK
355static int
356i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 357{
5716833c
MK
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
20a6ec49 360 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
361 return 0;
362
20a6ec49 363 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
364}
365
5716833c 366/* FP register? */
23a34459
AC
367
368int
20a6ec49 369i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 370{
20a6ec49
MD
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
374 return 0;
375
20a6ec49
MD
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
378}
379
380int
20a6ec49 381i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 382{
20a6ec49
MD
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
386 return 0;
387
20a6ec49
MD
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
390}
391
1dbcd68c
WT
392/* BNDr (raw) register? */
393
394static int
395i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396{
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404}
405
406/* BND control register? */
407
408static int
409i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410{
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418}
419
51547df6
MS
420/* PKRU register? */
421
422bool
423i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424{
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 int pkru_regnum = tdep->pkru_regnum;
427
428 if (pkru_regnum < 0)
429 return false;
430
431 regnum -= pkru_regnum;
432 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
433}
434
c131fcee
L
435/* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
437
438static const char *
439i386_register_name (struct gdbarch *gdbarch, int regnum)
440{
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch, regnum))
443 return "";
444
01f9f808
MS
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch, regnum))
451 return "";
452
c131fcee
L
453 return tdesc_register_name (gdbarch, regnum);
454}
455
30b0e2d8 456/* Return the name of register REGNUM. */
fc633446 457
1ba53b71 458const char *
90884b2b 459i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 460{
1ba53b71 461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
462 if (i386_bnd_regnum_p (gdbarch, regnum))
463 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
464 if (i386_mmx_regnum_p (gdbarch, regnum))
465 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
466 else if (i386_ymm_regnum_p (gdbarch, regnum))
467 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
468 else if (i386_zmm_regnum_p (gdbarch, regnum))
469 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
470 else if (i386_byte_regnum_p (gdbarch, regnum))
471 return i386_byte_names[regnum - tdep->al_regnum];
472 else if (i386_word_regnum_p (gdbarch, regnum))
473 return i386_word_names[regnum - tdep->ax_regnum];
474
475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
476}
477
c4fc7f1b 478/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
479 number used by GDB. */
480
8201327c 481static int
d3f73121 482i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 483{
20a6ec49
MD
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485
c4fc7f1b
MK
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
488
85540d8c
MK
489 if (reg >= 0 && reg <= 7)
490 {
9872ad24
JB
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
493 if (reg == 4)
494 return 5;
495 else if (reg == 5)
496 return 4;
497 else return reg;
85540d8c
MK
498 }
499 else if (reg >= 12 && reg <= 19)
500 {
501 /* Floating-point registers. */
20a6ec49 502 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
503 }
504 else if (reg >= 21 && reg <= 28)
505 {
506 /* SSE registers. */
c131fcee
L
507 int ymm0_regnum = tdep->ymm0_regnum;
508
509 if (ymm0_regnum >= 0
510 && i386_xmm_regnum_p (gdbarch, reg))
511 return reg - 21 + ymm0_regnum;
512 else
513 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
514 }
515 else if (reg >= 29 && reg <= 36)
516 {
517 /* MMX registers. */
20a6ec49 518 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
519 }
520
521 /* This will hopefully provoke a warning. */
f6efe3f8 522 return gdbarch_num_cooked_regs (gdbarch);
85540d8c
MK
523}
524
0fde2c53 525/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 526 used by GDB. */
85540d8c 527
8201327c 528static int
0fde2c53 529i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 530{
20a6ec49
MD
531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532
c4fc7f1b
MK
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535
536 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
537 numbers the floating point registers differently. */
538 if (reg >= 0 && reg <= 9)
539 {
acd5c798 540 /* General-purpose registers. */
85540d8c
MK
541 return reg;
542 }
543 else if (reg >= 11 && reg <= 18)
544 {
545 /* Floating-point registers. */
20a6ec49 546 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 547 }
c6f4c129 548 else if (reg >= 21 && reg <= 36)
85540d8c 549 {
c4fc7f1b 550 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 551 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
552 }
553
c6f4c129
JB
554 switch (reg)
555 {
20a6ec49
MD
556 case 37: return I387_FCTRL_REGNUM (tdep);
557 case 38: return I387_FSTAT_REGNUM (tdep);
558 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
559 case 40: return I386_ES_REGNUM;
560 case 41: return I386_CS_REGNUM;
561 case 42: return I386_SS_REGNUM;
562 case 43: return I386_DS_REGNUM;
563 case 44: return I386_FS_REGNUM;
564 case 45: return I386_GS_REGNUM;
565 }
566
0fde2c53
DE
567 return -1;
568}
569
570/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
572
8f10c932 573int
0fde2c53
DE
574i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575{
576 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
577
578 if (regnum == -1)
f6efe3f8 579 return gdbarch_num_cooked_regs (gdbarch);
0fde2c53 580 return regnum;
85540d8c 581}
5716833c 582
fc338970 583\f
917317f4 584
fc338970
MK
585/* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
53904c9e
AC
587static const char att_flavor[] = "att";
588static const char intel_flavor[] = "intel";
40478521 589static const char *const valid_flavors[] =
c5aa993b 590{
c906108c
SS
591 att_flavor,
592 intel_flavor,
593 NULL
594};
53904c9e 595static const char *disassembly_flavor = att_flavor;
acd5c798 596\f
c906108c 597
acd5c798
MK
598/* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
c906108c 603
acd5c798
MK
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
c906108c 606
acd5c798 607 This function is 64-bit safe. */
63c0089f 608
04180708
YQ
609constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610
611typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 612
237fc4c9
PA
613\f
614/* Displaced instruction handling. */
615
1903f0e6
DE
616/* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
621
622static gdb_byte *
623i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624{
625 gdb_byte *end = insn + max_len;
626
627 while (insn < end)
628 {
629 switch (*insn)
630 {
631 case DATA_PREFIX_OPCODE:
632 case ADDR_PREFIX_OPCODE:
633 case CS_PREFIX_OPCODE:
634 case DS_PREFIX_OPCODE:
635 case ES_PREFIX_OPCODE:
636 case FS_PREFIX_OPCODE:
637 case GS_PREFIX_OPCODE:
638 case SS_PREFIX_OPCODE:
639 case LOCK_PREFIX_OPCODE:
640 case REPE_PREFIX_OPCODE:
641 case REPNE_PREFIX_OPCODE:
642 ++insn;
643 continue;
644 default:
645 return insn;
646 }
647 }
648
649 return NULL;
650}
237fc4c9
PA
651
652static int
1903f0e6 653i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 654{
1777feb0 655 /* jmp far (absolute address in operand). */
237fc4c9
PA
656 if (insn[0] == 0xea)
657 return 1;
658
659 if (insn[0] == 0xff)
660 {
1777feb0 661 /* jump near, absolute indirect (/4). */
237fc4c9
PA
662 if ((insn[1] & 0x38) == 0x20)
663 return 1;
664
1777feb0 665 /* jump far, absolute indirect (/5). */
237fc4c9
PA
666 if ((insn[1] & 0x38) == 0x28)
667 return 1;
668 }
669
670 return 0;
671}
672
c2170eef
MM
673/* Return non-zero if INSN is a jump, zero otherwise. */
674
675static int
676i386_jmp_p (const gdb_byte *insn)
677{
678 /* jump short, relative. */
679 if (insn[0] == 0xeb)
680 return 1;
681
682 /* jump near, relative. */
683 if (insn[0] == 0xe9)
684 return 1;
685
686 return i386_absolute_jmp_p (insn);
687}
688
237fc4c9 689static int
1903f0e6 690i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 691{
1777feb0 692 /* call far, absolute. */
237fc4c9
PA
693 if (insn[0] == 0x9a)
694 return 1;
695
696 if (insn[0] == 0xff)
697 {
1777feb0 698 /* Call near, absolute indirect (/2). */
237fc4c9
PA
699 if ((insn[1] & 0x38) == 0x10)
700 return 1;
701
1777feb0 702 /* Call far, absolute indirect (/3). */
237fc4c9
PA
703 if ((insn[1] & 0x38) == 0x18)
704 return 1;
705 }
706
707 return 0;
708}
709
710static int
1903f0e6 711i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
712{
713 switch (insn[0])
714 {
1777feb0 715 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 716 case 0xc3: /* ret near */
1777feb0 717 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
720 return 1;
721
722 default:
723 return 0;
724 }
725}
726
727static int
1903f0e6 728i386_call_p (const gdb_byte *insn)
237fc4c9
PA
729{
730 if (i386_absolute_call_p (insn))
731 return 1;
732
1777feb0 733 /* call near, relative. */
237fc4c9
PA
734 if (insn[0] == 0xe8)
735 return 1;
736
737 return 0;
738}
739
237fc4c9
PA
740/* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
1903f0e6 742
237fc4c9 743static int
b55078be 744i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 745{
9a7f938f
JK
746 /* Is it 'int $0x80'? */
747 if ((insn[0] == 0xcd && insn[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn[0] == 0x0f && insn[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
752 {
753 *lengthp = 2;
754 return 1;
755 }
756
757 return 0;
758}
759
c2170eef
MM
760/* The gdbarch insn_is_call method. */
761
762static int
763i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764{
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_call_p (insn);
771}
772
773/* The gdbarch insn_is_ret method. */
774
775static int
776i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777{
778 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779
780 read_code (addr, buf, I386_MAX_INSN_LEN);
781 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782
783 return i386_ret_p (insn);
784}
785
786/* The gdbarch insn_is_jump method. */
787
788static int
789i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790{
791 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792
793 read_code (addr, buf, I386_MAX_INSN_LEN);
794 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795
796 return i386_jmp_p (insn);
797}
798
c2508e90 799/* Some kernels may run one past a syscall insn, so we have to cope. */
b55078be 800
588de28a 801displaced_step_copy_insn_closure_up
b55078be
DE
802i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805{
806 size_t len = gdbarch_max_insn_length (gdbarch);
588de28a
SM
807 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
808 (new i386_displaced_step_copy_insn_closure (len));
cfba9872 809 gdb_byte *buf = closure->buf.data ();
b55078be
DE
810
811 read_memory (from, buf, len);
812
813 /* GDB may get control back after the insn after the syscall.
814 Presumably this is a kernel bug.
815 If this is a syscall, make sure there's a nop afterwards. */
816 {
817 int syscall_length;
818 gdb_byte *insn;
819
820 insn = i386_skip_prefixes (buf, len);
821 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
822 insn[syscall_length] = NOP_OPCODE;
823 }
824
825 write_memory (to, buf, len);
826
827 if (debug_displaced)
828 {
829 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
830 paddress (gdbarch, from), paddress (gdbarch, to));
831 displaced_step_dump_bytes (gdb_stdlog, buf, len);
832 }
833
6d0cf446 834 /* This is a work around for a problem with g++ 4.8. */
588de28a 835 return displaced_step_copy_insn_closure_up (closure.release ());
b55078be
DE
836}
837
237fc4c9
PA
838/* Fix up the state of registers and memory after having single-stepped
839 a displaced instruction. */
1903f0e6 840
237fc4c9
PA
841void
842i386_displaced_step_fixup (struct gdbarch *gdbarch,
588de28a 843 struct displaced_step_copy_insn_closure *closure_,
237fc4c9
PA
844 CORE_ADDR from, CORE_ADDR to,
845 struct regcache *regs)
846{
e17a4113
UW
847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
848
237fc4c9
PA
849 /* The offset we applied to the instruction's address.
850 This could well be negative (when viewed as a signed 32-bit
851 value), but ULONGEST won't reflect that, so take care when
852 applying it. */
853 ULONGEST insn_offset = to - from;
854
588de28a
SM
855 i386_displaced_step_copy_insn_closure *closure
856 = (i386_displaced_step_copy_insn_closure *) closure_;
cfba9872 857 gdb_byte *insn = closure->buf.data ();
1903f0e6
DE
858 /* The start of the insn, needed in case we see some prefixes. */
859 gdb_byte *insn_start = insn;
237fc4c9
PA
860
861 if (debug_displaced)
862 fprintf_unfiltered (gdb_stdlog,
5af949e3 863 "displaced: fixup (%s, %s), "
237fc4c9 864 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
865 paddress (gdbarch, from), paddress (gdbarch, to),
866 insn[0], insn[1]);
237fc4c9
PA
867
868 /* The list of issues to contend with here is taken from
869 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
870 Yay for Free Software! */
871
872 /* Relocate the %eip, if necessary. */
873
1903f0e6
DE
874 /* The instruction recognizers we use assume any leading prefixes
875 have been skipped. */
876 {
877 /* This is the size of the buffer in closure. */
878 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
879 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
880 /* If there are too many prefixes, just ignore the insn.
881 It will fault when run. */
882 if (opcode != NULL)
883 insn = opcode;
884 }
885
237fc4c9
PA
886 /* Except in the case of absolute or indirect jump or call
887 instructions, or a return instruction, the new eip is relative to
888 the displaced instruction; make it relative. Well, signal
889 handler returns don't need relocation either, but we use the
890 value of %eip to recognize those; see below. */
891 if (! i386_absolute_jmp_p (insn)
892 && ! i386_absolute_call_p (insn)
893 && ! i386_ret_p (insn))
894 {
895 ULONGEST orig_eip;
b55078be 896 int insn_len;
237fc4c9
PA
897
898 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
899
900 /* A signal trampoline system call changes the %eip, resuming
901 execution of the main program after the signal handler has
902 returned. That makes them like 'return' instructions; we
903 shouldn't relocate %eip.
904
905 But most system calls don't, and we do need to relocate %eip.
906
907 Our heuristic for distinguishing these cases: if stepping
908 over the system call instruction left control directly after
909 the instruction, the we relocate --- control almost certainly
910 doesn't belong in the displaced copy. Otherwise, we assume
911 the instruction has put control where it belongs, and leave
912 it unrelocated. Goodness help us if there are PC-relative
913 system calls. */
914 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
915 && orig_eip != to + (insn - insn_start) + insn_len
916 /* GDB can get control back after the insn after the syscall.
917 Presumably this is a kernel bug.
918 i386_displaced_step_copy_insn ensures its a nop,
919 we add one to the length for it. */
920 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
921 {
922 if (debug_displaced)
923 fprintf_unfiltered (gdb_stdlog,
924 "displaced: syscall changed %%eip; "
925 "not relocating\n");
926 }
927 else
928 {
929 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
930
1903f0e6
DE
931 /* If we just stepped over a breakpoint insn, we don't backup
932 the pc on purpose; this is to match behaviour without
933 stepping. */
237fc4c9
PA
934
935 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
939 "displaced: "
5af949e3
UW
940 "relocated %%eip from %s to %s\n",
941 paddress (gdbarch, orig_eip),
942 paddress (gdbarch, eip));
237fc4c9
PA
943 }
944 }
945
946 /* If the instruction was PUSHFL, then the TF bit will be set in the
947 pushed value, and should be cleared. We'll leave this for later,
948 since GDB already messes up the TF flag when stepping over a
949 pushfl. */
950
951 /* If the instruction was a call, the return address now atop the
952 stack is the address following the copied instruction. We need
953 to make it the address following the original instruction. */
954 if (i386_call_p (insn))
955 {
956 ULONGEST esp;
957 ULONGEST retaddr;
958 const ULONGEST retaddr_len = 4;
959
960 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 961 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 962 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 963 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
964
965 if (debug_displaced)
966 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
967 "displaced: relocated return addr at %s to %s\n",
968 paddress (gdbarch, esp),
969 paddress (gdbarch, retaddr));
237fc4c9
PA
970 }
971}
dde08ee1
PA
972
973static void
974append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
975{
976 target_write_memory (*to, buf, len);
977 *to += len;
978}
979
980static void
981i386_relocate_instruction (struct gdbarch *gdbarch,
982 CORE_ADDR *to, CORE_ADDR oldloc)
983{
984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
985 gdb_byte buf[I386_MAX_INSN_LEN];
986 int offset = 0, rel32, newrel;
987 int insn_length;
988 gdb_byte *insn = buf;
989
990 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
991
992 insn_length = gdb_buffered_insn_length (gdbarch, insn,
993 I386_MAX_INSN_LEN, oldloc);
994
995 /* Get past the prefixes. */
996 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
997
998 /* Adjust calls with 32-bit relative addresses as push/jump, with
999 the address pushed being the location where the original call in
1000 the user program would return to. */
1001 if (insn[0] == 0xe8)
1002 {
1003 gdb_byte push_buf[16];
1004 unsigned int ret_addr;
1005
1006 /* Where "ret" in the original code will return to. */
1007 ret_addr = oldloc + insn_length;
1777feb0 1008 push_buf[0] = 0x68; /* pushq $... */
144db827 1009 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
1010 /* Push the push. */
1011 append_insns (to, 5, push_buf);
1012
1013 /* Convert the relative call to a relative jump. */
1014 insn[0] = 0xe9;
1015
1016 /* Adjust the destination offset. */
1017 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1018 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1019 store_signed_integer (insn + 1, 4, byte_order, newrel);
1020
1021 if (debug_displaced)
1022 fprintf_unfiltered (gdb_stdlog,
1023 "Adjusted insn rel32=%s at %s to"
1024 " rel32=%s at %s\n",
1025 hex_string (rel32), paddress (gdbarch, oldloc),
1026 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1027
1028 /* Write the adjusted jump into its displaced location. */
1029 append_insns (to, 5, insn);
1030 return;
1031 }
1032
1033 /* Adjust jumps with 32-bit relative addresses. Calls are already
1034 handled above. */
1035 if (insn[0] == 0xe9)
1036 offset = 1;
1037 /* Adjust conditional jumps. */
1038 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1039 offset = 2;
1040
1041 if (offset)
1042 {
1043 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1044 newrel = (oldloc - *to) + rel32;
f4a1794a 1045 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1046 if (debug_displaced)
1047 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1048 "Adjusted insn rel32=%s at %s to"
1049 " rel32=%s at %s\n",
dde08ee1
PA
1050 hex_string (rel32), paddress (gdbarch, oldloc),
1051 hex_string (newrel), paddress (gdbarch, *to));
1052 }
1053
1054 /* Write the adjusted instructions into their displaced
1055 location. */
1056 append_insns (to, insn_length, buf);
1057}
1058
fc338970 1059\f
acd5c798
MK
1060#ifdef I386_REGNO_TO_SYMMETRY
1061#error "The Sequent Symmetry is no longer supported."
1062#endif
c906108c 1063
acd5c798
MK
1064/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1065 and %esp "belong" to the calling function. Therefore these
1066 registers should be saved if they're going to be modified. */
c906108c 1067
acd5c798
MK
1068/* The maximum number of saved registers. This should include all
1069 registers mentioned above, and %eip. */
a3386186 1070#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1071
1072struct i386_frame_cache
c906108c 1073{
acd5c798
MK
1074 /* Base address. */
1075 CORE_ADDR base;
8fbca658 1076 int base_p;
772562f8 1077 LONGEST sp_offset;
acd5c798
MK
1078 CORE_ADDR pc;
1079
fd13a04a
AC
1080 /* Saved registers. */
1081 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1082 CORE_ADDR saved_sp;
e0c62198 1083 int saved_sp_reg;
acd5c798
MK
1084 int pc_in_eax;
1085
1086 /* Stack space reserved for local variables. */
1087 long locals;
1088};
1089
1090/* Allocate and initialize a frame cache. */
1091
1092static struct i386_frame_cache *
fd13a04a 1093i386_alloc_frame_cache (void)
acd5c798
MK
1094{
1095 struct i386_frame_cache *cache;
1096 int i;
1097
1098 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1099
1100 /* Base address. */
8fbca658 1101 cache->base_p = 0;
acd5c798
MK
1102 cache->base = 0;
1103 cache->sp_offset = -4;
1104 cache->pc = 0;
1105
fd13a04a
AC
1106 /* Saved registers. We initialize these to -1 since zero is a valid
1107 offset (that's where %ebp is supposed to be stored). */
1108 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1109 cache->saved_regs[i] = -1;
acd5c798 1110 cache->saved_sp = 0;
e0c62198 1111 cache->saved_sp_reg = -1;
acd5c798
MK
1112 cache->pc_in_eax = 0;
1113
1114 /* Frameless until proven otherwise. */
1115 cache->locals = -1;
1116
1117 return cache;
1118}
c906108c 1119
acd5c798
MK
1120/* If the instruction at PC is a jump, return the address of its
1121 target. Otherwise, return PC. */
c906108c 1122
acd5c798 1123static CORE_ADDR
e17a4113 1124i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1125{
e17a4113 1126 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1127 gdb_byte op;
acd5c798
MK
1128 long delta = 0;
1129 int data16 = 0;
c906108c 1130
0865b04a 1131 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1132 return pc;
1133
acd5c798 1134 if (op == 0x66)
c906108c 1135 {
c906108c 1136 data16 = 1;
0865b04a
YQ
1137
1138 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1139 }
1140
acd5c798 1141 switch (op)
c906108c
SS
1142 {
1143 case 0xe9:
fc338970 1144 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1145 if (data16)
1146 {
e17a4113 1147 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1148
fc338970
MK
1149 /* Include the size of the jmp instruction (including the
1150 0x66 prefix). */
acd5c798 1151 delta += 4;
c906108c
SS
1152 }
1153 else
1154 {
e17a4113 1155 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1156
acd5c798
MK
1157 /* Include the size of the jmp instruction. */
1158 delta += 5;
c906108c
SS
1159 }
1160 break;
1161 case 0xeb:
fc338970 1162 /* Relative jump, disp8 (ignore data16). */
e17a4113 1163 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1164
acd5c798 1165 delta += data16 + 2;
c906108c
SS
1166 break;
1167 }
c906108c 1168
acd5c798
MK
1169 return pc + delta;
1170}
fc338970 1171
acd5c798
MK
1172/* Check whether PC points at a prologue for a function returning a
1173 structure or union. If so, it updates CACHE and returns the
1174 address of the first instruction after the code sequence that
1175 removes the "hidden" argument from the stack or CURRENT_PC,
1176 whichever is smaller. Otherwise, return PC. */
c906108c 1177
acd5c798
MK
1178static CORE_ADDR
1179i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1180 struct i386_frame_cache *cache)
c906108c 1181{
acd5c798
MK
1182 /* Functions that return a structure or union start with:
1183
1184 popl %eax 0x58
1185 xchgl %eax, (%esp) 0x87 0x04 0x24
1186 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1187
1188 (the System V compiler puts out the second `xchg' instruction,
1189 and the assembler doesn't try to optimize it, so the 'sib' form
1190 gets generated). This sequence is used to get the address of the
1191 return buffer for a function that returns a structure. */
63c0089f
MK
1192 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1193 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1194 gdb_byte buf[4];
1195 gdb_byte op;
c906108c 1196
acd5c798
MK
1197 if (current_pc <= pc)
1198 return pc;
1199
0865b04a 1200 if (target_read_code (pc, &op, 1))
3dcabaa8 1201 return pc;
c906108c 1202
acd5c798
MK
1203 if (op != 0x58) /* popl %eax */
1204 return pc;
c906108c 1205
0865b04a 1206 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1207 return pc;
1208
acd5c798
MK
1209 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1210 return pc;
c906108c 1211
acd5c798 1212 if (current_pc == pc)
c906108c 1213 {
acd5c798
MK
1214 cache->sp_offset += 4;
1215 return current_pc;
c906108c
SS
1216 }
1217
acd5c798 1218 if (current_pc == pc + 1)
c906108c 1219 {
acd5c798
MK
1220 cache->pc_in_eax = 1;
1221 return current_pc;
1222 }
1223
1224 if (buf[1] == proto1[1])
1225 return pc + 4;
1226 else
1227 return pc + 5;
1228}
1229
1230static CORE_ADDR
1231i386_skip_probe (CORE_ADDR pc)
1232{
1233 /* A function may start with
fc338970 1234
acd5c798
MK
1235 pushl constant
1236 call _probe
1237 addl $4, %esp
fc338970 1238
acd5c798
MK
1239 followed by
1240
1241 pushl %ebp
fc338970 1242
acd5c798 1243 etc. */
63c0089f
MK
1244 gdb_byte buf[8];
1245 gdb_byte op;
fc338970 1246
0865b04a 1247 if (target_read_code (pc, &op, 1))
3dcabaa8 1248 return pc;
acd5c798
MK
1249
1250 if (op == 0x68 || op == 0x6a)
1251 {
1252 int delta;
c906108c 1253
acd5c798
MK
1254 /* Skip past the `pushl' instruction; it has either a one-byte or a
1255 four-byte operand, depending on the opcode. */
c906108c 1256 if (op == 0x68)
acd5c798 1257 delta = 5;
c906108c 1258 else
acd5c798 1259 delta = 2;
c906108c 1260
acd5c798
MK
1261 /* Read the following 8 bytes, which should be `call _probe' (6
1262 bytes) followed by `addl $4,%esp' (2 bytes). */
1263 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1264 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1265 pc += delta + sizeof (buf);
c906108c
SS
1266 }
1267
acd5c798
MK
1268 return pc;
1269}
1270
92dd43fa
MK
1271/* GCC 4.1 and later, can put code in the prologue to realign the
1272 stack pointer. Check whether PC points to such code, and update
1273 CACHE accordingly. Return the first instruction after the code
1274 sequence or CURRENT_PC, whichever is smaller. If we don't
1275 recognize the code, return PC. */
1276
1277static CORE_ADDR
1278i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1279 struct i386_frame_cache *cache)
1280{
e0c62198
L
1281 /* There are 2 code sequences to re-align stack before the frame
1282 gets set up:
1283
1284 1. Use a caller-saved saved register:
1285
1286 leal 4(%esp), %reg
1287 andl $-XXX, %esp
1288 pushl -4(%reg)
1289
1290 2. Use a callee-saved saved register:
1291
1292 pushl %reg
1293 leal 8(%esp), %reg
1294 andl $-XXX, %esp
1295 pushl -4(%reg)
1296
1297 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1298
1299 0x83 0xe4 0xf0 andl $-16, %esp
1300 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1301 */
1302
1303 gdb_byte buf[14];
1304 int reg;
1305 int offset, offset_and;
1306 static int regnums[8] = {
1307 I386_EAX_REGNUM, /* %eax */
1308 I386_ECX_REGNUM, /* %ecx */
1309 I386_EDX_REGNUM, /* %edx */
1310 I386_EBX_REGNUM, /* %ebx */
1311 I386_ESP_REGNUM, /* %esp */
1312 I386_EBP_REGNUM, /* %ebp */
1313 I386_ESI_REGNUM, /* %esi */
1314 I386_EDI_REGNUM /* %edi */
92dd43fa 1315 };
92dd43fa 1316
0865b04a 1317 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1318 return pc;
1319
1320 /* Check caller-saved saved register. The first instruction has
1321 to be "leal 4(%esp), %reg". */
1322 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1323 {
1324 /* MOD must be binary 10 and R/M must be binary 100. */
1325 if ((buf[1] & 0xc7) != 0x44)
1326 return pc;
1327
1328 /* REG has register number. */
1329 reg = (buf[1] >> 3) & 7;
1330 offset = 4;
1331 }
1332 else
1333 {
1334 /* Check callee-saved saved register. The first instruction
1335 has to be "pushl %reg". */
1336 if ((buf[0] & 0xf8) != 0x50)
1337 return pc;
1338
1339 /* Get register. */
1340 reg = buf[0] & 0x7;
1341
1342 /* The next instruction has to be "leal 8(%esp), %reg". */
1343 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1344 return pc;
1345
1346 /* MOD must be binary 10 and R/M must be binary 100. */
1347 if ((buf[2] & 0xc7) != 0x44)
1348 return pc;
1349
1350 /* REG has register number. Registers in pushl and leal have to
1351 be the same. */
1352 if (reg != ((buf[2] >> 3) & 7))
1353 return pc;
1354
1355 offset = 5;
1356 }
1357
1358 /* Rigister can't be %esp nor %ebp. */
1359 if (reg == 4 || reg == 5)
1360 return pc;
1361
1362 /* The next instruction has to be "andl $-XXX, %esp". */
1363 if (buf[offset + 1] != 0xe4
1364 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1365 return pc;
1366
1367 offset_and = offset;
1368 offset += buf[offset] == 0x81 ? 6 : 3;
1369
1370 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1371 0xfc. REG must be binary 110 and MOD must be binary 01. */
1372 if (buf[offset] != 0xff
1373 || buf[offset + 2] != 0xfc
1374 || (buf[offset + 1] & 0xf8) != 0x70)
1375 return pc;
1376
1377 /* R/M has register. Registers in leal and pushl have to be the
1378 same. */
1379 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1380 return pc;
1381
e0c62198
L
1382 if (current_pc > pc + offset_and)
1383 cache->saved_sp_reg = regnums[reg];
92dd43fa 1384
325fac50 1385 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1386}
1387
37bdc87e 1388/* Maximum instruction length we need to handle. */
237fc4c9 1389#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1390
1391/* Instruction description. */
1392struct i386_insn
1393{
1394 size_t len;
237fc4c9
PA
1395 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1396 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1397};
1398
a3fcb948 1399/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1400
a3fcb948
JG
1401static int
1402i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1403{
63c0089f 1404 gdb_byte op;
37bdc87e 1405
0865b04a 1406 if (target_read_code (pc, &op, 1))
a3fcb948 1407 return 0;
37bdc87e 1408
a3fcb948 1409 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1410 {
a3fcb948
JG
1411 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1412 int insn_matched = 1;
1413 size_t i;
37bdc87e 1414
a3fcb948
JG
1415 gdb_assert (pattern.len > 1);
1416 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1417
0865b04a 1418 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1419 return 0;
613e8135 1420
a3fcb948
JG
1421 for (i = 1; i < pattern.len; i++)
1422 {
1423 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1424 insn_matched = 0;
37bdc87e 1425 }
a3fcb948
JG
1426 return insn_matched;
1427 }
1428 return 0;
1429}
1430
1431/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1432 the first instruction description that matches. Otherwise, return
1433 NULL. */
1434
1435static struct i386_insn *
1436i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1437{
1438 struct i386_insn *pattern;
1439
1440 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1441 {
1442 if (i386_match_pattern (pc, *pattern))
1443 return pattern;
37bdc87e
MK
1444 }
1445
1446 return NULL;
1447}
1448
a3fcb948
JG
1449/* Return whether PC points inside a sequence of instructions that
1450 matches INSN_PATTERNS. */
1451
1452static int
1453i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1454{
1455 CORE_ADDR current_pc;
1456 int ix, i;
a3fcb948
JG
1457 struct i386_insn *insn;
1458
1459 insn = i386_match_insn (pc, insn_patterns);
1460 if (insn == NULL)
1461 return 0;
1462
8bbdd3f4 1463 current_pc = pc;
a3fcb948
JG
1464 ix = insn - insn_patterns;
1465 for (i = ix - 1; i >= 0; i--)
1466 {
8bbdd3f4
MK
1467 current_pc -= insn_patterns[i].len;
1468
a3fcb948
JG
1469 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1470 return 0;
a3fcb948
JG
1471 }
1472
1473 current_pc = pc + insn->len;
1474 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1475 {
1476 if (!i386_match_pattern (current_pc, *insn))
1477 return 0;
1478
1479 current_pc += insn->len;
1480 }
1481
1482 return 1;
1483}
1484
37bdc87e
MK
1485/* Some special instructions that might be migrated by GCC into the
1486 part of the prologue that sets up the new stack frame. Because the
1487 stack frame hasn't been setup yet, no registers have been saved
1488 yet, and only the scratch registers %eax, %ecx and %edx can be
1489 touched. */
1490
1491struct i386_insn i386_frame_setup_skip_insns[] =
1492{
1777feb0 1493 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1494
1495 ??? Should we handle 16-bit operand-sizes here? */
1496
1497 /* `movb imm8, %al' and `movb imm8, %ah' */
1498 /* `movb imm8, %cl' and `movb imm8, %ch' */
1499 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1500 /* `movb imm8, %dl' and `movb imm8, %dh' */
1501 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1502 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1503 { 5, { 0xb8 }, { 0xfe } },
1504 /* `movl imm32, %edx' */
1505 { 5, { 0xba }, { 0xff } },
1506
1507 /* Check for `mov imm32, r32'. Note that there is an alternative
1508 encoding for `mov m32, %eax'.
1509
85102364 1510 ??? Should we handle SIB addressing here?
37bdc87e
MK
1511 ??? Should we handle 16-bit operand-sizes here? */
1512
1513 /* `movl m32, %eax' */
1514 { 5, { 0xa1 }, { 0xff } },
1515 /* `movl m32, %eax' and `mov; m32, %ecx' */
1516 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1517 /* `movl m32, %edx' */
1518 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1519
1520 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1521 Because of the symmetry, there are actually two ways to encode
1522 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1523 opcode bytes 0x31 and 0x33 for `xorl'. */
1524
1525 /* `subl %eax, %eax' */
1526 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1527 /* `subl %ecx, %ecx' */
1528 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1529 /* `subl %edx, %edx' */
1530 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1531 /* `xorl %eax, %eax' */
1532 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1533 /* `xorl %ecx, %ecx' */
1534 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1535 /* `xorl %edx, %edx' */
1536 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1537 { 0 }
1538};
1539
e11481da
PM
1540
1541/* Check whether PC points to a no-op instruction. */
1542static CORE_ADDR
1543i386_skip_noop (CORE_ADDR pc)
1544{
1545 gdb_byte op;
1546 int check = 1;
1547
0865b04a 1548 if (target_read_code (pc, &op, 1))
3dcabaa8 1549 return pc;
e11481da
PM
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
0865b04a 1558 if (target_read_code (pc, &op, 1))
3dcabaa8 1559 return pc;
e11481da
PM
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
0865b04a 1575 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1576 return pc;
1577
e11481da
PM
1578 if (op == 0xff)
1579 {
1580 pc += 2;
0865b04a 1581 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1582 return pc;
1583
e11481da
PM
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589}
1590
acd5c798
MK
1591/* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1595
1596static CORE_ADDR
e17a4113
UW
1597i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1599 struct i386_frame_cache *cache)
1600{
e17a4113 1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1602 struct i386_insn *insn;
63c0089f 1603 gdb_byte op;
26604a34 1604 int skip = 0;
acd5c798 1605
37bdc87e
MK
1606 if (limit <= pc)
1607 return limit;
acd5c798 1608
0865b04a 1609 if (target_read_code (pc, &op, 1))
3dcabaa8 1610 return pc;
acd5c798 1611
c906108c 1612 if (op == 0x55) /* pushl %ebp */
c5aa993b 1613 {
acd5c798
MK
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
fd13a04a 1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1617 cache->sp_offset += 4;
37bdc87e 1618 pc++;
acd5c798
MK
1619
1620 /* If that's all, return now. */
37bdc87e
MK
1621 if (limit <= pc)
1622 return limit;
26604a34 1623
b4632131 1624 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
30baf67b 1627 %ecx and %edx, so while the number of possibilities is sheer,
37bdc87e 1628 it is limited.
5daa5b4e 1629
26604a34
MK
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1632 while (pc + skip < limit)
26604a34 1633 {
37bdc87e
MK
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
b4632131 1637
37bdc87e 1638 skip += insn->len;
26604a34
MK
1639 }
1640
37bdc87e
MK
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
0865b04a 1645 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1646 return pc + skip;
37bdc87e 1647
30f8135b
YQ
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
acd5c798 1662 switch (op)
c906108c 1663 {
30f8135b 1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1665 case 0x8b:
0865b04a 1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1667 != 0xec)
37bdc87e 1668 return pc;
30f8135b 1669 pc += (skip + 2);
c906108c
SS
1670 break;
1671 case 0x89:
0865b04a 1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1673 != 0xe5)
37bdc87e 1674 return pc;
30f8135b
YQ
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
c906108c
SS
1682 break;
1683 default:
37bdc87e 1684 return pc;
c906108c 1685 }
acd5c798 1686
26604a34
MK
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
acd5c798
MK
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
37bdc87e
MK
1694 if (limit <= pc)
1695 return limit;
acd5c798 1696
fc338970
MK
1697 /* Check for stack adjustment
1698
acd5c798 1699 subl $XXX, %esp
30f8135b
YQ
1700 or
1701 lea -XXX(%esp),%esp
fc338970 1702
fd35795f 1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1704 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1705 if (target_read_code (pc, &op, 1))
3dcabaa8 1706 return pc;
c906108c
SS
1707 if (op == 0x83)
1708 {
fd35795f 1709 /* `subl' with 8-bit immediate. */
0865b04a 1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1711 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1712 return pc;
acd5c798 1713
37bdc87e
MK
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
0865b04a 1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1717 return pc + 3;
c906108c
SS
1718 }
1719 else if (op == 0x81)
1720 {
fd35795f 1721 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1723 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1724 return pc;
acd5c798 1725
fd35795f 1726 /* It is `subl' with a 32-bit immediate. */
0865b04a 1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1728 return pc + 6;
c906108c 1729 }
30f8135b
YQ
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
0865b04a 1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
0865b04a 1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1737 return pc + 4;
1738 }
c906108c
SS
1739 else
1740 {
30f8135b 1741 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1742 return pc;
c906108c
SS
1743 }
1744 }
37bdc87e 1745 else if (op == 0xc8) /* enter */
c906108c 1746 {
0865b04a 1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1748 return pc + 4;
c906108c 1749 }
21d0e8a4 1750
acd5c798 1751 return pc;
21d0e8a4
MK
1752}
1753
acd5c798
MK
1754/* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
6bff26de
MK
1758
1759static CORE_ADDR
acd5c798
MK
1760i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
6bff26de 1762{
99ab4326 1763 CORE_ADDR offset = 0;
63c0089f 1764 gdb_byte op;
99ab4326 1765 int i;
c0d1d883 1766
99ab4326
MK
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
0865b04a 1771 if (target_read_code (pc, &op, 1))
3dcabaa8 1772 return pc;
99ab4326
MK
1773 if (op < 0x50 || op > 0x57)
1774 break;
0d17c81d 1775
99ab4326
MK
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
6bff26de
MK
1780 }
1781
acd5c798 1782 return pc;
22797942
AC
1783}
1784
acd5c798
MK
1785/* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
ed84f6c1 1788
fc338970
MK
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
c906108c 1811
acd5c798 1812static CORE_ADDR
e17a4113
UW
1813i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1815 struct i386_frame_cache *cache)
c906108c 1816{
e11481da 1817 pc = i386_skip_noop (pc);
e17a4113 1818 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1819 pc = i386_analyze_struct_return (pc, current_pc, cache);
1820 pc = i386_skip_probe (pc);
92dd43fa 1821 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1822 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1823 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1824}
1825
fc338970 1826/* Return PC of first real instruction. */
c906108c 1827
3a1e71e3 1828static CORE_ADDR
6093d2eb 1829i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1830{
e17a4113
UW
1831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1832
63c0089f 1833 static gdb_byte pic_pat[6] =
acd5c798
MK
1834 {
1835 0xe8, 0, 0, 0, 0, /* call 0x0 */
1836 0x5b, /* popl %ebx */
c5aa993b 1837 };
acd5c798
MK
1838 struct i386_frame_cache cache;
1839 CORE_ADDR pc;
63c0089f 1840 gdb_byte op;
acd5c798 1841 int i;
56bf0743 1842 CORE_ADDR func_addr;
4e879fc2 1843
56bf0743
KB
1844 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1845 {
1846 CORE_ADDR post_prologue_pc
1847 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1848 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1849
1850 /* Clang always emits a line note before the prologue and another
1851 one after. We trust clang to emit usable line notes. */
1852 if (post_prologue_pc
43f3e411
DE
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 1855 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 1856 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1857 }
1858
e0f33b1f 1859 cache.locals = -1;
e17a4113 1860 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1861 if (cache.locals < 0)
1862 return start_pc;
c5aa993b 1863
acd5c798 1864 /* Found valid frame setup. */
c906108c 1865
fc338970
MK
1866 /* The native cc on SVR4 in -K PIC mode inserts the following code
1867 to get the address of the global offset table (GOT) into register
acd5c798
MK
1868 %ebx:
1869
fc338970
MK
1870 call 0x0
1871 popl %ebx
1872 movl %ebx,x(%ebp) (optional)
1873 addl y,%ebx
1874
c906108c
SS
1875 This code is with the rest of the prologue (at the end of the
1876 function), so we have to skip it to get to the first real
1877 instruction at the start of the function. */
c5aa993b 1878
c906108c
SS
1879 for (i = 0; i < 6; i++)
1880 {
0865b04a 1881 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1882 return pc;
1883
c5aa993b 1884 if (pic_pat[i] != op)
c906108c
SS
1885 break;
1886 }
1887 if (i == 6)
1888 {
acd5c798
MK
1889 int delta = 6;
1890
0865b04a 1891 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1892 return pc;
c906108c 1893
c5aa993b 1894 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1895 {
0865b04a 1896 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1897
fc338970 1898 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1899 delta += 3;
fc338970 1900 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1901 delta += 6;
fc338970 1902 else /* Unexpected instruction. */
acd5c798
MK
1903 delta = 0;
1904
0865b04a 1905 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1906 return pc;
c906108c 1907 }
acd5c798 1908
c5aa993b 1909 /* addl y,%ebx */
acd5c798 1910 if (delta > 0 && op == 0x81
0865b04a 1911 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1912 == 0xc3)
c906108c 1913 {
acd5c798 1914 pc += delta + 6;
c906108c
SS
1915 }
1916 }
c5aa993b 1917
e63bbc88
MK
1918 /* If the function starts with a branch (to startup code at the end)
1919 the last instruction should bring us back to the first
1920 instruction of the real code. */
e17a4113
UW
1921 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1922 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1923
1924 return pc;
c906108c
SS
1925}
1926
4309257c
PM
1927/* Check that the code pointed to by PC corresponds to a call to
1928 __main, skip it if so. Return PC otherwise. */
1929
1930CORE_ADDR
1931i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1932{
e17a4113 1933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1934 gdb_byte op;
1935
0865b04a 1936 if (target_read_code (pc, &op, 1))
3dcabaa8 1937 return pc;
4309257c
PM
1938 if (op == 0xe8)
1939 {
1940 gdb_byte buf[4];
1941
0865b04a 1942 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1943 {
1944 /* Make sure address is computed correctly as a 32bit
1945 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1946 struct bound_minimal_symbol s;
e17a4113 1947 CORE_ADDR call_dest;
4309257c 1948
e17a4113 1949 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1950 call_dest = call_dest & 0xffffffffU;
1951 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1952 if (s.minsym != NULL
c9d95fa3
CB
1953 && s.minsym->linkage_name () != NULL
1954 && strcmp (s.minsym->linkage_name (), "__main") == 0)
4309257c
PM
1955 pc += 5;
1956 }
1957 }
1958
1959 return pc;
1960}
1961
acd5c798 1962/* This function is 64-bit safe. */
93924b6b 1963
acd5c798
MK
1964static CORE_ADDR
1965i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1966{
63c0089f 1967 gdb_byte buf[8];
acd5c798 1968
875f8d0e 1969 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1970 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1971}
acd5c798 1972\f
93924b6b 1973
acd5c798 1974/* Normal frames. */
c5aa993b 1975
8fbca658
PA
1976static void
1977i386_frame_cache_1 (struct frame_info *this_frame,
1978 struct i386_frame_cache *cache)
a7769679 1979{
e17a4113
UW
1980 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1982 gdb_byte buf[4];
acd5c798
MK
1983 int i;
1984
8fbca658 1985 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1986
1987 /* In principle, for normal frames, %ebp holds the frame pointer,
1988 which holds the base address for the current stack frame.
1989 However, for functions that don't need it, the frame pointer is
1990 optional. For these "frameless" functions the frame pointer is
1991 actually the frame pointer of the calling frame. Signal
1992 trampolines are just a special case of a "frameless" function.
1993 They (usually) share their frame pointer with the frame that was
1994 in progress when the signal occurred. */
1995
10458914 1996 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1997 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1998 if (cache->base == 0)
620fa63a
PA
1999 {
2000 cache->base_p = 1;
2001 return;
2002 }
acd5c798
MK
2003
2004 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2005 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2006
acd5c798 2007 if (cache->pc != 0)
e17a4113
UW
2008 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2009 cache);
acd5c798
MK
2010
2011 if (cache->locals < 0)
2012 {
2013 /* We didn't find a valid frame, which means that CACHE->base
2014 currently holds the frame pointer for our calling frame. If
2015 we're at the start of a function, or somewhere half-way its
2016 prologue, the function's frame probably hasn't been fully
2017 setup yet. Try to reconstruct the base address for the stack
2018 frame by looking at the stack pointer. For truly "frameless"
2019 functions this might work too. */
2020
e0c62198 2021 if (cache->saved_sp_reg != -1)
92dd43fa 2022 {
8fbca658
PA
2023 /* Saved stack pointer has been saved. */
2024 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2025 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2026
92dd43fa
MK
2027 /* We're halfway aligning the stack. */
2028 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2029 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2030
2031 /* This will be added back below. */
2032 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2033 }
7618e12b 2034 else if (cache->pc != 0
0865b04a 2035 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2036 {
7618e12b
DJ
2037 /* We're in a known function, but did not find a frame
2038 setup. Assume that the function does not use %ebp.
2039 Alternatively, we may have jumped to an invalid
2040 address; in that case there is definitely no new
2041 frame in %ebp. */
10458914 2042 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2043 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2044 + cache->sp_offset;
92dd43fa 2045 }
7618e12b
DJ
2046 else
2047 /* We're in an unknown function. We could not find the start
2048 of the function to analyze the prologue; our best option is
2049 to assume a typical frame layout with the caller's %ebp
2050 saved. */
2051 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2052 }
2053
8fbca658
PA
2054 if (cache->saved_sp_reg != -1)
2055 {
2056 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2057 register may be unavailable). */
2058 if (cache->saved_sp == 0
ca9d61b9
JB
2059 && deprecated_frame_register_read (this_frame,
2060 cache->saved_sp_reg, buf))
8fbca658
PA
2061 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2062 }
acd5c798
MK
2063 /* Now that we have the base address for the stack frame we can
2064 calculate the value of %esp in the calling frame. */
8fbca658 2065 else if (cache->saved_sp == 0)
92dd43fa 2066 cache->saved_sp = cache->base + 8;
a7769679 2067
acd5c798
MK
2068 /* Adjust all the saved registers such that they contain addresses
2069 instead of offsets. */
2070 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2071 if (cache->saved_regs[i] != -1)
2072 cache->saved_regs[i] += cache->base;
acd5c798 2073
8fbca658
PA
2074 cache->base_p = 1;
2075}
2076
2077static struct i386_frame_cache *
2078i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2079{
8fbca658
PA
2080 struct i386_frame_cache *cache;
2081
2082 if (*this_cache)
9a3c8263 2083 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2084
2085 cache = i386_alloc_frame_cache ();
2086 *this_cache = cache;
2087
a70b8144 2088 try
8fbca658
PA
2089 {
2090 i386_frame_cache_1 (this_frame, cache);
2091 }
230d2906 2092 catch (const gdb_exception_error &ex)
7556d4a4
PA
2093 {
2094 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2095 throw;
7556d4a4 2096 }
8fbca658 2097
acd5c798 2098 return cache;
a7769679
MK
2099}
2100
3a1e71e3 2101static void
10458914 2102i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2103 struct frame_id *this_id)
c906108c 2104{
10458914 2105 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2106
5ce0145d
PA
2107 if (!cache->base_p)
2108 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2109 else if (cache->base == 0)
2110 {
2111 /* This marks the outermost frame. */
2112 }
2113 else
2114 {
2115 /* See the end of i386_push_dummy_call. */
2116 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2117 }
acd5c798
MK
2118}
2119
8fbca658
PA
2120static enum unwind_stop_reason
2121i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2122 void **this_cache)
2123{
2124 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125
2126 if (!cache->base_p)
2127 return UNWIND_UNAVAILABLE;
2128
2129 /* This marks the outermost frame. */
2130 if (cache->base == 0)
2131 return UNWIND_OUTERMOST;
2132
2133 return UNWIND_NO_REASON;
2134}
2135
10458914
DJ
2136static struct value *
2137i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2138 int regnum)
acd5c798 2139{
10458914 2140 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2141
2142 gdb_assert (regnum >= 0);
2143
2144 /* The System V ABI says that:
2145
2146 "The flags register contains the system flags, such as the
2147 direction flag and the carry flag. The direction flag must be
2148 set to the forward (that is, zero) direction before entry and
2149 upon exit from a function. Other user flags have no specified
2150 role in the standard calling sequence and are not preserved."
2151
2152 To guarantee the "upon exit" part of that statement we fake a
2153 saved flags register that has its direction flag cleared.
2154
2155 Note that GCC doesn't seem to rely on the fact that the direction
2156 flag is cleared after a function return; it always explicitly
2157 clears the flag before operations where it matters.
2158
2159 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2160 right thing to do. The way we fake the flags register here makes
2161 it impossible to change it. */
2162
2163 if (regnum == I386_EFLAGS_REGNUM)
2164 {
10458914 2165 ULONGEST val;
c5aa993b 2166
10458914
DJ
2167 val = get_frame_register_unsigned (this_frame, regnum);
2168 val &= ~(1 << 10);
2169 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2170 }
1211c4e4 2171
acd5c798 2172 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2173 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2174
fcf250e2
UW
2175 if (regnum == I386_ESP_REGNUM
2176 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2177 {
2178 /* If the SP has been saved, but we don't know where, then this
2179 means that SAVED_SP_REG register was found unavailable back
2180 when we built the cache. */
fcf250e2 2181 if (cache->saved_sp == 0)
8fbca658
PA
2182 return frame_unwind_got_register (this_frame, regnum,
2183 cache->saved_sp_reg);
2184 else
2185 return frame_unwind_got_constant (this_frame, regnum,
2186 cache->saved_sp);
2187 }
acd5c798 2188
fd13a04a 2189 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2190 return frame_unwind_got_memory (this_frame, regnum,
2191 cache->saved_regs[regnum]);
fd13a04a 2192
10458914 2193 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2194}
2195
2196static const struct frame_unwind i386_frame_unwind =
2197{
2198 NORMAL_FRAME,
8fbca658 2199 i386_frame_unwind_stop_reason,
acd5c798 2200 i386_frame_this_id,
10458914
DJ
2201 i386_frame_prev_register,
2202 NULL,
2203 default_frame_sniffer
acd5c798 2204};
06da04c6
MS
2205
2206/* Normal frames, but in a function epilogue. */
2207
c9cf6e20
MG
2208/* Implement the stack_frame_destroyed_p gdbarch method.
2209
2210 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2211 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2212 the function's stack frame. */
2213
2214static int
c9cf6e20 2215i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2216{
2217 gdb_byte insn;
43f3e411 2218 struct compunit_symtab *cust;
e0d00bc7 2219
43f3e411
DE
2220 cust = find_pc_compunit_symtab (pc);
2221 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2222 return 0;
06da04c6
MS
2223
2224 if (target_read_memory (pc, &insn, 1))
2225 return 0; /* Can't read memory at pc. */
2226
2227 if (insn != 0xc3) /* 'ret' instruction. */
2228 return 0;
2229
2230 return 1;
2231}
2232
2233static int
2234i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2235 struct frame_info *this_frame,
2236 void **this_prologue_cache)
2237{
2238 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2239 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2240 get_frame_pc (this_frame));
06da04c6
MS
2241 else
2242 return 0;
2243}
2244
2245static struct i386_frame_cache *
2246i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2247{
06da04c6 2248 struct i386_frame_cache *cache;
0d6c2135 2249 CORE_ADDR sp;
06da04c6
MS
2250
2251 if (*this_cache)
9a3c8263 2252 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2253
2254 cache = i386_alloc_frame_cache ();
2255 *this_cache = cache;
2256
a70b8144 2257 try
8fbca658 2258 {
0d6c2135 2259 cache->pc = get_frame_func (this_frame);
06da04c6 2260
0d6c2135
MK
2261 /* At this point the stack looks as if we just entered the
2262 function, with the return address at the top of the
2263 stack. */
2264 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2265 cache->base = sp + cache->sp_offset;
8fbca658 2266 cache->saved_sp = cache->base + 8;
8fbca658 2267 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2268
8fbca658
PA
2269 cache->base_p = 1;
2270 }
230d2906 2271 catch (const gdb_exception_error &ex)
7556d4a4
PA
2272 {
2273 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2274 throw;
7556d4a4 2275 }
06da04c6
MS
2276
2277 return cache;
2278}
2279
8fbca658
PA
2280static enum unwind_stop_reason
2281i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2282 void **this_cache)
2283{
0d6c2135
MK
2284 struct i386_frame_cache *cache =
2285 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2286
2287 if (!cache->base_p)
2288 return UNWIND_UNAVAILABLE;
2289
2290 return UNWIND_NO_REASON;
2291}
2292
06da04c6
MS
2293static void
2294i386_epilogue_frame_this_id (struct frame_info *this_frame,
2295 void **this_cache,
2296 struct frame_id *this_id)
2297{
0d6c2135
MK
2298 struct i386_frame_cache *cache =
2299 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2300
8fbca658 2301 if (!cache->base_p)
5ce0145d
PA
2302 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2303 else
2304 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2305}
2306
0d6c2135
MK
2307static struct value *
2308i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2309 void **this_cache, int regnum)
2310{
2311 /* Make sure we've initialized the cache. */
2312 i386_epilogue_frame_cache (this_frame, this_cache);
2313
2314 return i386_frame_prev_register (this_frame, this_cache, regnum);
2315}
2316
06da04c6
MS
2317static const struct frame_unwind i386_epilogue_frame_unwind =
2318{
2319 NORMAL_FRAME,
8fbca658 2320 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2321 i386_epilogue_frame_this_id,
0d6c2135 2322 i386_epilogue_frame_prev_register,
06da04c6
MS
2323 NULL,
2324 i386_epilogue_frame_sniffer
2325};
acd5c798
MK
2326\f
2327
a3fcb948
JG
2328/* Stack-based trampolines. */
2329
2330/* These trampolines are used on cross x86 targets, when taking the
2331 address of a nested function. When executing these trampolines,
2332 no stack frame is set up, so we are in a similar situation as in
2333 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334
2335/* Static chain passed in register. */
2336
2337struct i386_insn i386_tramp_chain_in_reg_insns[] =
2338{
2339 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2340 { 5, { 0xb8 }, { 0xfe } },
2341
2342 /* `jmp imm32' */
2343 { 5, { 0xe9 }, { 0xff } },
2344
2345 {0}
2346};
2347
2348/* Static chain passed on stack (when regparm=3). */
2349
2350struct i386_insn i386_tramp_chain_on_stack_insns[] =
2351{
2352 /* `push imm32' */
2353 { 5, { 0x68 }, { 0xff } },
2354
2355 /* `jmp imm32' */
2356 { 5, { 0xe9 }, { 0xff } },
2357
2358 {0}
2359};
2360
2361/* Return whether PC points inside a stack trampoline. */
2362
2363static int
6df81a63 2364i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2365{
2366 gdb_byte insn;
2c02bd72 2367 const char *name;
a3fcb948
JG
2368
2369 /* A stack trampoline is detected if no name is associated
2370 to the current pc and if it points inside a trampoline
2371 sequence. */
2372
2373 find_pc_partial_function (pc, &name, NULL, NULL);
2374 if (name)
2375 return 0;
2376
2377 if (target_read_memory (pc, &insn, 1))
2378 return 0;
2379
2380 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2381 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2382 return 0;
2383
2384 return 1;
2385}
2386
2387static int
2388i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2389 struct frame_info *this_frame,
2390 void **this_cache)
a3fcb948
JG
2391{
2392 if (frame_relative_level (this_frame) == 0)
6df81a63 2393 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2394 else
2395 return 0;
2396}
2397
2398static const struct frame_unwind i386_stack_tramp_frame_unwind =
2399{
2400 NORMAL_FRAME,
2401 i386_epilogue_frame_unwind_stop_reason,
2402 i386_epilogue_frame_this_id,
0d6c2135 2403 i386_epilogue_frame_prev_register,
a3fcb948
JG
2404 NULL,
2405 i386_stack_tramp_frame_sniffer
2406};
2407\f
6710bf39
SS
2408/* Generate a bytecode expression to get the value of the saved PC. */
2409
2410static void
2411i386_gen_return_address (struct gdbarch *gdbarch,
2412 struct agent_expr *ax, struct axs_value *value,
2413 CORE_ADDR scope)
2414{
2415 /* The following sequence assumes the traditional use of the base
2416 register. */
2417 ax_reg (ax, I386_EBP_REGNUM);
2418 ax_const_l (ax, 4);
2419 ax_simple (ax, aop_add);
2420 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2421 value->kind = axs_lvalue_memory;
2422}
2423\f
a3fcb948 2424
acd5c798
MK
2425/* Signal trampolines. */
2426
2427static struct i386_frame_cache *
10458914 2428i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2429{
e17a4113
UW
2430 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2433 struct i386_frame_cache *cache;
acd5c798 2434 CORE_ADDR addr;
63c0089f 2435 gdb_byte buf[4];
acd5c798
MK
2436
2437 if (*this_cache)
9a3c8263 2438 return (struct i386_frame_cache *) *this_cache;
acd5c798 2439
fd13a04a 2440 cache = i386_alloc_frame_cache ();
acd5c798 2441
a70b8144 2442 try
a3386186 2443 {
8fbca658
PA
2444 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2445 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2446
8fbca658
PA
2447 addr = tdep->sigcontext_addr (this_frame);
2448 if (tdep->sc_reg_offset)
2449 {
2450 int i;
a3386186 2451
8fbca658
PA
2452 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2453
2454 for (i = 0; i < tdep->sc_num_regs; i++)
2455 if (tdep->sc_reg_offset[i] != -1)
2456 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2457 }
2458 else
2459 {
2460 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2461 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2462 }
2463
2464 cache->base_p = 1;
a3386186 2465 }
230d2906 2466 catch (const gdb_exception_error &ex)
7556d4a4
PA
2467 {
2468 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2469 throw;
7556d4a4 2470 }
acd5c798
MK
2471
2472 *this_cache = cache;
2473 return cache;
2474}
2475
8fbca658
PA
2476static enum unwind_stop_reason
2477i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 void **this_cache)
2479{
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 return UNWIND_UNAVAILABLE;
2485
2486 return UNWIND_NO_REASON;
2487}
2488
acd5c798 2489static void
10458914 2490i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2491 struct frame_id *this_id)
2492{
2493 struct i386_frame_cache *cache =
10458914 2494 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2495
8fbca658 2496 if (!cache->base_p)
5ce0145d
PA
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 else
2499 {
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 }
acd5c798
MK
2503}
2504
10458914
DJ
2505static struct value *
2506i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
acd5c798
MK
2508{
2509 /* Make sure we've initialized the cache. */
10458914 2510 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2511
10458914 2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2513}
c0d1d883 2514
10458914
DJ
2515static int
2516i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
acd5c798 2519{
10458914 2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2521
911bc6ee
MK
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 handler. */
2524 if (tdep->sigcontext_addr == NULL)
10458914 2525 return 0;
1c3545ae 2526
911bc6ee
MK
2527 if (tdep->sigtramp_p != NULL)
2528 {
10458914
DJ
2529 if (tdep->sigtramp_p (this_frame))
2530 return 1;
911bc6ee
MK
2531 }
2532
2533 if (tdep->sigtramp_start != 0)
2534 {
10458914 2535 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2536
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2539 return 1;
911bc6ee 2540 }
acd5c798 2541
10458914 2542 return 0;
acd5c798 2543}
10458914
DJ
2544
2545static const struct frame_unwind i386_sigtramp_frame_unwind =
2546{
2547 SIGTRAMP_FRAME,
8fbca658 2548 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2551 NULL,
2552 i386_sigtramp_frame_sniffer
2553};
acd5c798
MK
2554\f
2555
2556static CORE_ADDR
10458914 2557i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2558{
10458914 2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2560
2561 return cache->base;
2562}
2563
2564static const struct frame_base i386_frame_base =
2565{
2566 &i386_frame_unwind,
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2570};
2571
acd5c798 2572static struct frame_id
10458914 2573i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2574{
acd5c798
MK
2575 CORE_ADDR fp;
2576
10458914 2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2578
3e210248 2579 /* See the end of i386_push_dummy_call. */
10458914 2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2581}
e04e5beb
JM
2582
2583/* _Decimal128 function return values need 16-byte alignment on the
2584 stack. */
2585
2586static CORE_ADDR
2587i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588{
2589 return sp & -(CORE_ADDR)16;
2590}
fc338970 2591\f
c906108c 2592
fc338970
MK
2593/* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2595 structure from which we extract the address that we will land at.
28bcfd30 2596 This address is copied into PC. This routine returns non-zero on
436675d3 2597 success. */
c906108c 2598
8201327c 2599static int
60ade65d 2600i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2601{
436675d3 2602 gdb_byte buf[4];
c906108c 2603 CORE_ADDR sp, jb_addr;
20a6ec49 2604 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2607
8201327c
MK
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
c906108c
SS
2611 return 0;
2612
436675d3 2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2614 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2615 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2616 return 0;
2617
e17a4113 2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2620 return 0;
c906108c 2621
e17a4113 2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2623 return 1;
2624}
fc338970 2625\f
c906108c 2626
7ccc1c74
JM
2627/* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2631
2632static int
2633i386_16_byte_align_p (struct type *type)
2634{
2635 type = check_typedef (type);
78134374
SM
2636 if ((type->code () == TYPE_CODE_DECFLOAT
2637 || (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
7ccc1c74
JM
2638 && TYPE_LENGTH (type) == 16)
2639 return 1;
78134374 2640 if (type->code () == TYPE_CODE_ARRAY)
7ccc1c74 2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
78134374
SM
2642 if (type->code () == TYPE_CODE_STRUCT
2643 || type->code () == TYPE_CODE_UNION)
7ccc1c74
JM
2644 {
2645 int i;
1f704f76 2646 for (i = 0; i < type->num_fields (); i++)
7ccc1c74
JM
2647 {
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2649 return 1;
2650 }
2651 }
2652 return 0;
2653}
2654
a9b8d892
JK
2655/* Implementation for set_gdbarch_push_dummy_code. */
2656
2657static CORE_ADDR
2658i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2662{
2663 /* Use 0xcc breakpoint - 1 byte. */
2664 *bp_addr = sp - 1;
2665 *real_pc = funaddr;
2666
2667 /* Keep the stack aligned. */
2668 return sp - 16;
2669}
2670
627c7fb8
HD
2671/* The "push_dummy_call" gdbarch method, optionally with the thiscall
2672 calling convention. */
2673
2674CORE_ADDR
2675i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2676 struct regcache *regcache, CORE_ADDR bp_addr,
2677 int nargs, struct value **args, CORE_ADDR sp,
2678 function_call_return_method return_method,
2679 CORE_ADDR struct_addr, bool thiscall)
22f8ba57 2680{
e17a4113 2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2682 gdb_byte buf[4];
acd5c798 2683 int i;
7ccc1c74
JM
2684 int write_pass;
2685 int args_space = 0;
acd5c798 2686
4a612d6f
WT
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2693
7ccc1c74
JM
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2697
2698 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2699 {
7ccc1c74 2700 int args_space_used = 0;
7ccc1c74 2701
cf84fa6b 2702 if (return_method == return_method_struct)
7ccc1c74
JM
2703 {
2704 if (write_pass)
2705 {
2706 /* Push value address. */
e17a4113 2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2710 }
2711 else
2712 args_space += 4;
2713 }
2714
627c7fb8 2715 for (i = thiscall ? 1 : 0; i < nargs; i++)
7ccc1c74
JM
2716 {
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2718
7ccc1c74
JM
2719 if (write_pass)
2720 {
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
acd5c798 2723
7ccc1c74
JM
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
acd5c798 2727
7ccc1c74
JM
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
22f8ba57 2731
7ccc1c74
JM
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2734 }
2735 else
2736 {
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2738 args_space = align_up (args_space, 16);
7ccc1c74
JM
2739 args_space += align_up (len, 4);
2740 }
2741 }
2742
2743 if (!write_pass)
2744 {
7ccc1c74 2745 sp -= args_space;
284c5a60
MK
2746
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2751 sp &= ~0xf;
7ccc1c74 2752 }
22f8ba57
MK
2753 }
2754
acd5c798
MK
2755 /* Store return address. */
2756 sp -= 4;
e17a4113 2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2758 write_memory (sp, buf, 4);
2759
2760 /* Finally, update the stack pointer... */
e17a4113 2761 store_unsigned_integer (buf, 4, byte_order, sp);
b66f5587 2762 regcache->cooked_write (I386_ESP_REGNUM, buf);
acd5c798
MK
2763
2764 /* ...and fake a frame pointer. */
b66f5587 2765 regcache->cooked_write (I386_EBP_REGNUM, buf);
acd5c798 2766
627c7fb8
HD
2767 /* The 'this' pointer needs to be in ECX. */
2768 if (thiscall)
2769 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2770
3e210248
AC
2771 /* MarkK wrote: This "+ 8" is all over the place:
2772 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2773 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2774 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2775 definition of the stack address of a frame. Otherwise frame id
2776 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2777 stack address *before* the function call as a frame's CFA. On
2778 the i386, when %ebp is used as a frame pointer, the offset
2779 between the contents %ebp and the CFA as defined by GCC. */
2780 return sp + 8;
22f8ba57
MK
2781}
2782
627c7fb8
HD
2783/* Implement the "push_dummy_call" gdbarch method. */
2784
2785static CORE_ADDR
2786i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2787 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2788 struct value **args, CORE_ADDR sp,
2789 function_call_return_method return_method,
2790 CORE_ADDR struct_addr)
2791{
2792 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2793 nargs, args, sp, return_method,
2794 struct_addr, false);
2795}
2796
1a309862
MK
2797/* These registers are used for returning integers (and on some
2798 targets also for returning `struct' and `union' values when their
ef9dff19 2799 size and alignment match an integer type). */
acd5c798
MK
2800#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2801#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2802
c5e656c1
MK
2803/* Read, for architecture GDBARCH, a function return value of TYPE
2804 from REGCACHE, and copy that into VALBUF. */
1a309862 2805
3a1e71e3 2806static void
c5e656c1 2807i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2808 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2809{
c5e656c1 2810 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2811 int len = TYPE_LENGTH (type);
63c0089f 2812 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2813
78134374 2814 if (type->code () == TYPE_CODE_FLT)
c906108c 2815 {
5716833c 2816 if (tdep->st0_regnum < 0)
1a309862 2817 {
8a3fe4f8 2818 warning (_("Cannot find floating-point return value."));
1a309862 2819 memset (valbuf, 0, len);
ef9dff19 2820 return;
1a309862
MK
2821 }
2822
c6ba6f0d
MK
2823 /* Floating-point return values can be found in %st(0). Convert
2824 its contents to the desired type. This is probably not
2825 exactly how it would happen on the target itself, but it is
2826 the best we can do. */
0b883586 2827 regcache->raw_read (I386_ST0_REGNUM, buf);
3b2ca824 2828 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2829 }
2830 else
c5aa993b 2831 {
875f8d0e
UW
2832 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2833 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2834
2835 if (len <= low_size)
00f8375e 2836 {
0b883586 2837 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e
MK
2838 memcpy (valbuf, buf, len);
2839 }
d4f3574e
SS
2840 else if (len <= (low_size + high_size))
2841 {
0b883586 2842 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e 2843 memcpy (valbuf, buf, low_size);
0b883586 2844 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
63c0089f 2845 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2846 }
2847 else
8e65ff28 2848 internal_error (__FILE__, __LINE__,
1777feb0
MS
2849 _("Cannot extract return value of %d bytes long."),
2850 len);
c906108c
SS
2851 }
2852}
2853
c5e656c1
MK
2854/* Write, for architecture GDBARCH, a function return value of TYPE
2855 from VALBUF into REGCACHE. */
ef9dff19 2856
3a1e71e3 2857static void
c5e656c1 2858i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2859 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2860{
c5e656c1 2861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2862 int len = TYPE_LENGTH (type);
2863
78134374 2864 if (type->code () == TYPE_CODE_FLT)
ef9dff19 2865 {
3d7f4f49 2866 ULONGEST fstat;
63c0089f 2867 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2868
5716833c 2869 if (tdep->st0_regnum < 0)
ef9dff19 2870 {
8a3fe4f8 2871 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2872 return;
2873 }
2874
635b0cc1
MK
2875 /* Returning floating-point values is a bit tricky. Apart from
2876 storing the return value in %st(0), we have to simulate the
2877 state of the FPU at function return point. */
2878
c6ba6f0d
MK
2879 /* Convert the value found in VALBUF to the extended
2880 floating-point format used by the FPU. This is probably
2881 not exactly how it would happen on the target itself, but
2882 it is the best we can do. */
3b2ca824 2883 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
10eaee5f 2884 regcache->raw_write (I386_ST0_REGNUM, buf);
ccb945b8 2885
635b0cc1
MK
2886 /* Set the top of the floating-point register stack to 7. The
2887 actual value doesn't really matter, but 7 is what a normal
2888 function return would end up with if the program started out
2889 with a freshly initialized FPU. */
20a6ec49 2890 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2891 fstat |= (7 << 11);
20a6ec49 2892 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2893
635b0cc1
MK
2894 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2895 the floating-point register stack to 7, the appropriate value
2896 for the tag word is 0x3fff. */
20a6ec49 2897 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2898 }
2899 else
2900 {
875f8d0e
UW
2901 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2902 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2903
2904 if (len <= low_size)
4f0420fd 2905 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2906 else if (len <= (low_size + high_size))
2907 {
10eaee5f 2908 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
4f0420fd
SM
2909 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2910 valbuf + low_size);
ef9dff19
MK
2911 }
2912 else
8e65ff28 2913 internal_error (__FILE__, __LINE__,
e2e0b3e5 2914 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2915 }
2916}
fc338970 2917\f
ef9dff19 2918
8201327c
MK
2919/* This is the variable that is set with "set struct-convention", and
2920 its legitimate values. */
2921static const char default_struct_convention[] = "default";
2922static const char pcc_struct_convention[] = "pcc";
2923static const char reg_struct_convention[] = "reg";
40478521 2924static const char *const valid_conventions[] =
8201327c
MK
2925{
2926 default_struct_convention,
2927 pcc_struct_convention,
2928 reg_struct_convention,
2929 NULL
2930};
2931static const char *struct_convention = default_struct_convention;
2932
0e4377e1
JB
2933/* Return non-zero if TYPE, which is assumed to be a structure,
2934 a union type, or an array type, should be returned in registers
2935 for architecture GDBARCH. */
c5e656c1 2936
8201327c 2937static int
c5e656c1 2938i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2939{
c5e656c1 2940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78134374 2941 enum type_code code = type->code ();
c5e656c1 2942 int len = TYPE_LENGTH (type);
8201327c 2943
0e4377e1
JB
2944 gdb_assert (code == TYPE_CODE_STRUCT
2945 || code == TYPE_CODE_UNION
2946 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2947
2948 if (struct_convention == pcc_struct_convention
2949 || (struct_convention == default_struct_convention
2950 && tdep->struct_return == pcc_struct_return))
2951 return 0;
2952
9edde48e
MK
2953 /* Structures consisting of a single `float', `double' or 'long
2954 double' member are returned in %st(0). */
1f704f76 2955 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
9edde48e
MK
2956 {
2957 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
78134374 2958 if (type->code () == TYPE_CODE_FLT)
9edde48e
MK
2959 return (len == 4 || len == 8 || len == 12);
2960 }
2961
c5e656c1
MK
2962 return (len == 1 || len == 2 || len == 4 || len == 8);
2963}
2964
2965/* Determine, for architecture GDBARCH, how a return value of TYPE
2966 should be returned. If it is supposed to be returned in registers,
2967 and READBUF is non-zero, read the appropriate value from REGCACHE,
2968 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2969 from WRITEBUF into REGCACHE. */
2970
2971static enum return_value_convention
6a3a010b 2972i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2973 struct type *type, struct regcache *regcache,
2974 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1 2975{
78134374 2976 enum type_code code = type->code ();
c5e656c1 2977
5daa78cc
TJB
2978 if (((code == TYPE_CODE_STRUCT
2979 || code == TYPE_CODE_UNION
2980 || code == TYPE_CODE_ARRAY)
2981 && !i386_reg_struct_return_p (gdbarch, type))
405feb71 2982 /* Complex double and long double uses the struct return convention. */
2445fd7b
MK
2983 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2984 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2985 /* 128-bit decimal float uses the struct return convention. */
2986 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2987 {
2988 /* The System V ABI says that:
2989
2990 "A function that returns a structure or union also sets %eax
2991 to the value of the original address of the caller's area
2992 before it returns. Thus when the caller receives control
2993 again, the address of the returned object resides in register
2994 %eax and can be used to access the object."
2995
2996 So the ABI guarantees that we can always find the return
2997 value just after the function has returned. */
2998
0e4377e1
JB
2999 /* Note that the ABI doesn't mention functions returning arrays,
3000 which is something possible in certain languages such as Ada.
3001 In this case, the value is returned as if it was wrapped in
3002 a record, so the convention applied to records also applies
3003 to arrays. */
3004
31db7b6c
MK
3005 if (readbuf)
3006 {
3007 ULONGEST addr;
3008
3009 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3010 read_memory (addr, readbuf, TYPE_LENGTH (type));
3011 }
3012
3013 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3014 }
c5e656c1
MK
3015
3016 /* This special case is for structures consisting of a single
9edde48e
MK
3017 `float', `double' or 'long double' member. These structures are
3018 returned in %st(0). For these structures, we call ourselves
3019 recursively, changing TYPE into the type of the first member of
3020 the structure. Since that should work for all structures that
3021 have only one member, we don't bother to check the member's type
3022 here. */
1f704f76 3023 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
c5e656c1
MK
3024 {
3025 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 3026 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3027 readbuf, writebuf);
c5e656c1
MK
3028 }
3029
3030 if (readbuf)
3031 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3032 if (writebuf)
3033 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3034
c5e656c1 3035 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3036}
3037\f
3038
27067745
UW
3039struct type *
3040i387_ext_type (struct gdbarch *gdbarch)
3041{
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044 if (!tdep->i387_ext_type)
90884b2b
L
3045 {
3046 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3047 gdb_assert (tdep->i387_ext_type != NULL);
3048 }
27067745
UW
3049
3050 return tdep->i387_ext_type;
3051}
3052
1dbcd68c
WT
3053/* Construct type for pseudo BND registers. We can't use
3054 tdesc_find_type since a complement of one value has to be used
3055 to describe the upper bound. */
3056
3057static struct type *
3058i386_bnd_type (struct gdbarch *gdbarch)
3059{
3060 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3061
3062
3063 if (!tdep->i386_bnd_type)
3064 {
870f88f7 3065 struct type *t;
1dbcd68c
WT
3066 const struct builtin_type *bt = builtin_type (gdbarch);
3067
3068 /* The type we're building is described bellow: */
3069#if 0
3070 struct __bound128
3071 {
3072 void *lbound;
3073 void *ubound; /* One complement of raw ubound field. */
3074 };
3075#endif
3076
3077 t = arch_composite_type (gdbarch,
3078 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3079
3080 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3081 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3082
d0e39ea2 3083 t->set_name ("builtin_type_bound128");
1dbcd68c
WT
3084 tdep->i386_bnd_type = t;
3085 }
3086
3087 return tdep->i386_bnd_type;
3088}
3089
01f9f808
MS
3090/* Construct vector type for pseudo ZMM registers. We can't use
3091 tdesc_find_type since ZMM isn't described in target description. */
3092
3093static struct type *
3094i386_zmm_type (struct gdbarch *gdbarch)
3095{
3096 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3097
3098 if (!tdep->i386_zmm_type)
3099 {
3100 const struct builtin_type *bt = builtin_type (gdbarch);
3101
3102 /* The type we're building is this: */
3103#if 0
3104 union __gdb_builtin_type_vec512i
3105 {
3106 int128_t uint128[4];
3107 int64_t v4_int64[8];
3108 int32_t v8_int32[16];
3109 int16_t v16_int16[32];
3110 int8_t v32_int8[64];
3111 double v4_double[8];
3112 float v8_float[16];
3113 };
3114#endif
3115
3116 struct type *t;
3117
3118 t = arch_composite_type (gdbarch,
3119 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3120 append_composite_type_field (t, "v16_float",
3121 init_vector_type (bt->builtin_float, 16));
3122 append_composite_type_field (t, "v8_double",
3123 init_vector_type (bt->builtin_double, 8));
3124 append_composite_type_field (t, "v64_int8",
3125 init_vector_type (bt->builtin_int8, 64));
3126 append_composite_type_field (t, "v32_int16",
3127 init_vector_type (bt->builtin_int16, 32));
3128 append_composite_type_field (t, "v16_int32",
3129 init_vector_type (bt->builtin_int32, 16));
3130 append_composite_type_field (t, "v8_int64",
3131 init_vector_type (bt->builtin_int64, 8));
3132 append_composite_type_field (t, "v4_int128",
3133 init_vector_type (bt->builtin_int128, 4));
3134
3135 TYPE_VECTOR (t) = 1;
d0e39ea2 3136 t->set_name ("builtin_type_vec512i");
01f9f808
MS
3137 tdep->i386_zmm_type = t;
3138 }
3139
3140 return tdep->i386_zmm_type;
3141}
3142
c131fcee
L
3143/* Construct vector type for pseudo YMM registers. We can't use
3144 tdesc_find_type since YMM isn't described in target description. */
3145
3146static struct type *
3147i386_ymm_type (struct gdbarch *gdbarch)
3148{
3149 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3150
3151 if (!tdep->i386_ymm_type)
3152 {
3153 const struct builtin_type *bt = builtin_type (gdbarch);
3154
3155 /* The type we're building is this: */
3156#if 0
3157 union __gdb_builtin_type_vec256i
3158 {
3159 int128_t uint128[2];
3160 int64_t v2_int64[4];
3161 int32_t v4_int32[8];
3162 int16_t v8_int16[16];
3163 int8_t v16_int8[32];
3164 double v2_double[4];
3165 float v4_float[8];
3166 };
3167#endif
3168
3169 struct type *t;
3170
3171 t = arch_composite_type (gdbarch,
3172 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3173 append_composite_type_field (t, "v8_float",
3174 init_vector_type (bt->builtin_float, 8));
3175 append_composite_type_field (t, "v4_double",
3176 init_vector_type (bt->builtin_double, 4));
3177 append_composite_type_field (t, "v32_int8",
3178 init_vector_type (bt->builtin_int8, 32));
3179 append_composite_type_field (t, "v16_int16",
3180 init_vector_type (bt->builtin_int16, 16));
3181 append_composite_type_field (t, "v8_int32",
3182 init_vector_type (bt->builtin_int32, 8));
3183 append_composite_type_field (t, "v4_int64",
3184 init_vector_type (bt->builtin_int64, 4));
3185 append_composite_type_field (t, "v2_int128",
3186 init_vector_type (bt->builtin_int128, 2));
3187
3188 TYPE_VECTOR (t) = 1;
d0e39ea2 3189 t->set_name ("builtin_type_vec256i");
c131fcee
L
3190 tdep->i386_ymm_type = t;
3191 }
3192
3193 return tdep->i386_ymm_type;
3194}
3195
794ac428 3196/* Construct vector type for MMX registers. */
90884b2b 3197static struct type *
794ac428
UW
3198i386_mmx_type (struct gdbarch *gdbarch)
3199{
3200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3201
3202 if (!tdep->i386_mmx_type)
3203 {
df4df182
UW
3204 const struct builtin_type *bt = builtin_type (gdbarch);
3205
794ac428
UW
3206 /* The type we're building is this: */
3207#if 0
3208 union __gdb_builtin_type_vec64i
3209 {
3210 int64_t uint64;
3211 int32_t v2_int32[2];
3212 int16_t v4_int16[4];
3213 int8_t v8_int8[8];
3214 };
3215#endif
3216
3217 struct type *t;
3218
e9bb382b
UW
3219 t = arch_composite_type (gdbarch,
3220 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3221
3222 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3223 append_composite_type_field (t, "v2_int32",
df4df182 3224 init_vector_type (bt->builtin_int32, 2));
794ac428 3225 append_composite_type_field (t, "v4_int16",
df4df182 3226 init_vector_type (bt->builtin_int16, 4));
794ac428 3227 append_composite_type_field (t, "v8_int8",
df4df182 3228 init_vector_type (bt->builtin_int8, 8));
794ac428 3229
876cecd0 3230 TYPE_VECTOR (t) = 1;
d0e39ea2 3231 t->set_name ("builtin_type_vec64i");
794ac428
UW
3232 tdep->i386_mmx_type = t;
3233 }
3234
3235 return tdep->i386_mmx_type;
3236}
3237
d7a0d72c 3238/* Return the GDB type object for the "standard" data type of data in
1777feb0 3239 register REGNUM. */
d7a0d72c 3240
fff4548b 3241struct type *
90884b2b 3242i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3243{
1dbcd68c
WT
3244 if (i386_bnd_regnum_p (gdbarch, regnum))
3245 return i386_bnd_type (gdbarch);
1ba53b71
L
3246 if (i386_mmx_regnum_p (gdbarch, regnum))
3247 return i386_mmx_type (gdbarch);
c131fcee
L
3248 else if (i386_ymm_regnum_p (gdbarch, regnum))
3249 return i386_ymm_type (gdbarch);
01f9f808
MS
3250 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3251 return i386_ymm_type (gdbarch);
3252 else if (i386_zmm_regnum_p (gdbarch, regnum))
3253 return i386_zmm_type (gdbarch);
1ba53b71
L
3254 else
3255 {
3256 const struct builtin_type *bt = builtin_type (gdbarch);
3257 if (i386_byte_regnum_p (gdbarch, regnum))
3258 return bt->builtin_int8;
3259 else if (i386_word_regnum_p (gdbarch, regnum))
3260 return bt->builtin_int16;
3261 else if (i386_dword_regnum_p (gdbarch, regnum))
3262 return bt->builtin_int32;
01f9f808
MS
3263 else if (i386_k_regnum_p (gdbarch, regnum))
3264 return bt->builtin_int64;
1ba53b71
L
3265 }
3266
3267 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3268}
3269
28fc6740 3270/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3271 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3272
3273static int
849d0ba8 3274i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
28fc6740 3275{
ac7936df 3276 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
5716833c 3277 int mmxreg, fpreg;
28fc6740
AC
3278 ULONGEST fstat;
3279 int tos;
c86c27af 3280
5716833c 3281 mmxreg = regnum - tdep->mm0_regnum;
03f50fc8 3282 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3283 tos = (fstat >> 11) & 0x7;
5716833c
MK
3284 fpreg = (mmxreg + tos) % 8;
3285
20a6ec49 3286 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3287}
3288
3543a589
TT
3289/* A helper function for us by i386_pseudo_register_read_value and
3290 amd64_pseudo_register_read_value. It does all the work but reads
3291 the data into an already-allocated value. */
3292
3293void
3294i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
849d0ba8 3295 readable_regcache *regcache,
3543a589
TT
3296 int regnum,
3297 struct value *result_value)
28fc6740 3298{
975c21ab 3299 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3300 enum register_status status;
3543a589 3301 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3302
5716833c 3303 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3304 {
c86c27af
MK
3305 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3306
28fc6740 3307 /* Extract (always little endian). */
03f50fc8 3308 status = regcache->raw_read (fpnum, raw_buf);
05d1431c 3309 if (status != REG_VALID)
3543a589
TT
3310 mark_value_bytes_unavailable (result_value, 0,
3311 TYPE_LENGTH (value_type (result_value)));
3312 else
3313 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3314 }
3315 else
1ba53b71
L
3316 {
3317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3318 if (i386_bnd_regnum_p (gdbarch, regnum))
3319 {
3320 regnum -= tdep->bnd0_regnum;
1ba53b71 3321
1dbcd68c 3322 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3323 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3324 raw_buf);
1dbcd68c
WT
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 16);
3327 else
3328 {
3329 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3330 LONGEST upper, lower;
3331 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3332
3333 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3334 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3335 upper = ~upper;
3336
3337 memcpy (buf, &lower, size);
3338 memcpy (buf + size, &upper, size);
3339 }
3340 }
01f9f808
MS
3341 else if (i386_k_regnum_p (gdbarch, regnum))
3342 {
3343 regnum -= tdep->k0_regnum;
3344
3345 /* Extract (always little endian). */
03f50fc8 3346 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
01f9f808
MS
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 8);
3349 else
3350 memcpy (buf, raw_buf, 8);
3351 }
3352 else if (i386_zmm_regnum_p (gdbarch, regnum))
3353 {
3354 regnum -= tdep->zmm0_regnum;
3355
3356 if (regnum < num_lower_zmm_regs)
3357 {
3358 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3359 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3360 raw_buf);
01f9f808
MS
3361 if (status != REG_VALID)
3362 mark_value_bytes_unavailable (result_value, 0, 16);
3363 else
3364 memcpy (buf, raw_buf, 16);
3365
3366 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3367 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3368 raw_buf);
01f9f808
MS
3369 if (status != REG_VALID)
3370 mark_value_bytes_unavailable (result_value, 16, 16);
3371 else
3372 memcpy (buf + 16, raw_buf, 16);
3373 }
3374 else
3375 {
3376 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3377 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3378 - num_lower_zmm_regs,
3379 raw_buf);
01f9f808
MS
3380 if (status != REG_VALID)
3381 mark_value_bytes_unavailable (result_value, 0, 16);
3382 else
3383 memcpy (buf, raw_buf, 16);
3384
3385 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3386 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3387 - num_lower_zmm_regs,
3388 raw_buf);
01f9f808
MS
3389 if (status != REG_VALID)
3390 mark_value_bytes_unavailable (result_value, 16, 16);
3391 else
3392 memcpy (buf + 16, raw_buf, 16);
3393 }
3394
3395 /* Read upper 256bits. */
03f50fc8
YQ
3396 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3397 raw_buf);
01f9f808
MS
3398 if (status != REG_VALID)
3399 mark_value_bytes_unavailable (result_value, 32, 32);
3400 else
3401 memcpy (buf + 32, raw_buf, 32);
3402 }
1dbcd68c 3403 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3404 {
3405 regnum -= tdep->ymm0_regnum;
3406
1777feb0 3407 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3408 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3409 raw_buf);
05d1431c 3410 if (status != REG_VALID)
3543a589
TT
3411 mark_value_bytes_unavailable (result_value, 0, 16);
3412 else
3413 memcpy (buf, raw_buf, 16);
c131fcee 3414 /* Read upper 128bits. */
03f50fc8
YQ
3415 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3416 raw_buf);
05d1431c 3417 if (status != REG_VALID)
3543a589
TT
3418 mark_value_bytes_unavailable (result_value, 16, 32);
3419 else
3420 memcpy (buf + 16, raw_buf, 16);
c131fcee 3421 }
01f9f808
MS
3422 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3423 {
3424 regnum -= tdep->ymm16_regnum;
3425 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3426 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3427 raw_buf);
01f9f808
MS
3428 if (status != REG_VALID)
3429 mark_value_bytes_unavailable (result_value, 0, 16);
3430 else
3431 memcpy (buf, raw_buf, 16);
3432 /* Read upper 128bits. */
03f50fc8
YQ
3433 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3434 raw_buf);
01f9f808
MS
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 16, 16);
3437 else
3438 memcpy (buf + 16, raw_buf, 16);
3439 }
c131fcee 3440 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3441 {
3442 int gpnum = regnum - tdep->ax_regnum;
3443
3444 /* Extract (always little endian). */
03f50fc8 3445 status = regcache->raw_read (gpnum, raw_buf);
05d1431c 3446 if (status != REG_VALID)
3543a589
TT
3447 mark_value_bytes_unavailable (result_value, 0,
3448 TYPE_LENGTH (value_type (result_value)));
3449 else
3450 memcpy (buf, raw_buf, 2);
1ba53b71
L
3451 }
3452 else if (i386_byte_regnum_p (gdbarch, regnum))
3453 {
1ba53b71
L
3454 int gpnum = regnum - tdep->al_regnum;
3455
3456 /* Extract (always little endian). We read both lower and
3457 upper registers. */
03f50fc8 3458 status = regcache->raw_read (gpnum % 4, raw_buf);
05d1431c 3459 if (status != REG_VALID)
3543a589
TT
3460 mark_value_bytes_unavailable (result_value, 0,
3461 TYPE_LENGTH (value_type (result_value)));
3462 else if (gpnum >= 4)
1ba53b71
L
3463 memcpy (buf, raw_buf + 1, 1);
3464 else
3465 memcpy (buf, raw_buf, 1);
3466 }
3467 else
3468 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3469 }
3543a589
TT
3470}
3471
3472static struct value *
3473i386_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 3474 readable_regcache *regcache,
3543a589
TT
3475 int regnum)
3476{
3477 struct value *result;
3478
3479 result = allocate_value (register_type (gdbarch, regnum));
3480 VALUE_LVAL (result) = lval_register;
3481 VALUE_REGNUM (result) = regnum;
3482
3483 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3484
3543a589 3485 return result;
28fc6740
AC
3486}
3487
1ba53b71 3488void
28fc6740 3489i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3490 int regnum, const gdb_byte *buf)
28fc6740 3491{
975c21ab 3492 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3493
5716833c 3494 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3495 {
c86c27af
MK
3496 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3497
28fc6740 3498 /* Read ... */
0b883586 3499 regcache->raw_read (fpnum, raw_buf);
28fc6740 3500 /* ... Modify ... (always little endian). */
1ba53b71 3501 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3502 /* ... Write. */
10eaee5f 3503 regcache->raw_write (fpnum, raw_buf);
28fc6740
AC
3504 }
3505 else
1ba53b71
L
3506 {
3507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3508
1dbcd68c
WT
3509 if (i386_bnd_regnum_p (gdbarch, regnum))
3510 {
3511 ULONGEST upper, lower;
3512 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3513 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3514
3515 /* New values from input value. */
3516 regnum -= tdep->bnd0_regnum;
3517 lower = extract_unsigned_integer (buf, size, byte_order);
3518 upper = extract_unsigned_integer (buf + size, size, byte_order);
3519
3520 /* Fetching register buffer. */
0b883586
SM
3521 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3522 raw_buf);
1dbcd68c
WT
3523
3524 upper = ~upper;
3525
3526 /* Set register bits. */
3527 memcpy (raw_buf, &lower, 8);
3528 memcpy (raw_buf + 8, &upper, 8);
3529
10eaee5f 3530 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
1dbcd68c 3531 }
01f9f808
MS
3532 else if (i386_k_regnum_p (gdbarch, regnum))
3533 {
3534 regnum -= tdep->k0_regnum;
3535
10eaee5f 3536 regcache->raw_write (tdep->k0_regnum + regnum, buf);
01f9f808
MS
3537 }
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->zmm0_regnum;
3541
3542 if (regnum < num_lower_zmm_regs)
3543 {
3544 /* Write lower 128bits. */
10eaee5f 3545 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
01f9f808 3546 /* Write upper 128bits. */
10eaee5f 3547 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
01f9f808
MS
3548 }
3549 else
3550 {
3551 /* Write lower 128bits. */
10eaee5f
SM
3552 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3553 - num_lower_zmm_regs, buf);
01f9f808 3554 /* Write upper 128bits. */
10eaee5f
SM
3555 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3556 - num_lower_zmm_regs, buf + 16);
01f9f808
MS
3557 }
3558 /* Write upper 256bits. */
10eaee5f 3559 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
01f9f808 3560 }
1dbcd68c 3561 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3562 {
3563 regnum -= tdep->ymm0_regnum;
3564
3565 /* ... Write lower 128bits. */
10eaee5f 3566 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
c131fcee 3567 /* ... Write upper 128bits. */
10eaee5f 3568 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
c131fcee 3569 }
01f9f808
MS
3570 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3571 {
3572 regnum -= tdep->ymm16_regnum;
3573
3574 /* ... Write lower 128bits. */
10eaee5f 3575 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
01f9f808 3576 /* ... Write upper 128bits. */
10eaee5f 3577 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
01f9f808 3578 }
c131fcee 3579 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3580 {
3581 int gpnum = regnum - tdep->ax_regnum;
3582
3583 /* Read ... */
0b883586 3584 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
3585 /* ... Modify ... (always little endian). */
3586 memcpy (raw_buf, buf, 2);
3587 /* ... Write. */
10eaee5f 3588 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
3589 }
3590 else if (i386_byte_regnum_p (gdbarch, regnum))
3591 {
1ba53b71
L
3592 int gpnum = regnum - tdep->al_regnum;
3593
3594 /* Read ... We read both lower and upper registers. */
0b883586 3595 regcache->raw_read (gpnum % 4, raw_buf);
1ba53b71
L
3596 /* ... Modify ... (always little endian). */
3597 if (gpnum >= 4)
3598 memcpy (raw_buf + 1, buf, 1);
3599 else
3600 memcpy (raw_buf, buf, 1);
3601 /* ... Write. */
10eaee5f 3602 regcache->raw_write (gpnum % 4, raw_buf);
1ba53b71
L
3603 }
3604 else
3605 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3606 }
28fc6740 3607}
62e5fd57
MK
3608
3609/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3610
3611int
3612i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3613 struct agent_expr *ax, int regnum)
3614{
3615 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3616
3617 if (i386_mmx_regnum_p (gdbarch, regnum))
3618 {
3619 /* MMX to FPU register mapping depends on current TOS. Let's just
3620 not care and collect everything... */
3621 int i;
3622
3623 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3624 for (i = 0; i < 8; i++)
3625 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3626 return 0;
3627 }
3628 else if (i386_bnd_regnum_p (gdbarch, regnum))
3629 {
3630 regnum -= tdep->bnd0_regnum;
3631 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3632 return 0;
3633 }
3634 else if (i386_k_regnum_p (gdbarch, regnum))
3635 {
3636 regnum -= tdep->k0_regnum;
3637 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3638 return 0;
3639 }
3640 else if (i386_zmm_regnum_p (gdbarch, regnum))
3641 {
3642 regnum -= tdep->zmm0_regnum;
3643 if (regnum < num_lower_zmm_regs)
3644 {
3645 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3646 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3647 }
3648 else
3649 {
3650 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3651 - num_lower_zmm_regs);
3652 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3653 - num_lower_zmm_regs);
3654 }
3655 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3656 return 0;
3657 }
3658 else if (i386_ymm_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->ymm0_regnum;
3661 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3662 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3663 return 0;
3664 }
3665 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3666 {
3667 regnum -= tdep->ymm16_regnum;
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3669 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3670 return 0;
3671 }
3672 else if (i386_word_regnum_p (gdbarch, regnum))
3673 {
3674 int gpnum = regnum - tdep->ax_regnum;
3675
3676 ax_reg_mask (ax, gpnum);
3677 return 0;
3678 }
3679 else if (i386_byte_regnum_p (gdbarch, regnum))
3680 {
3681 int gpnum = regnum - tdep->al_regnum;
3682
3683 ax_reg_mask (ax, gpnum % 4);
3684 return 0;
3685 }
3686 else
3687 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3688 return 1;
3689}
ff2e87ac
AC
3690\f
3691
ff2e87ac
AC
3692/* Return the register number of the register allocated by GCC after
3693 REGNUM, or -1 if there is no such register. */
3694
3695static int
3696i386_next_regnum (int regnum)
3697{
3698 /* GCC allocates the registers in the order:
3699
3700 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3701
3702 Since storing a variable in %esp doesn't make any sense we return
3703 -1 for %ebp and for %esp itself. */
3704 static int next_regnum[] =
3705 {
3706 I386_EDX_REGNUM, /* Slot for %eax. */
3707 I386_EBX_REGNUM, /* Slot for %ecx. */
3708 I386_ECX_REGNUM, /* Slot for %edx. */
3709 I386_ESI_REGNUM, /* Slot for %ebx. */
3710 -1, -1, /* Slots for %esp and %ebp. */
3711 I386_EDI_REGNUM, /* Slot for %esi. */
3712 I386_EBP_REGNUM /* Slot for %edi. */
3713 };
3714
de5b9bb9 3715 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3716 return next_regnum[regnum];
28fc6740 3717
ff2e87ac
AC
3718 return -1;
3719}
3720
3721/* Return nonzero if a value of type TYPE stored in register REGNUM
3722 needs any special handling. */
d7a0d72c 3723
3a1e71e3 3724static int
1777feb0
MS
3725i386_convert_register_p (struct gdbarch *gdbarch,
3726 int regnum, struct type *type)
d7a0d72c 3727{
de5b9bb9
MK
3728 int len = TYPE_LENGTH (type);
3729
ff2e87ac
AC
3730 /* Values may be spread across multiple registers. Most debugging
3731 formats aren't expressive enough to specify the locations, so
3732 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3733 have a length that is a multiple of the word size, since GCC
3734 doesn't seem to put any other types into registers. */
3735 if (len > 4 && len % 4 == 0)
3736 {
3737 int last_regnum = regnum;
3738
3739 while (len > 4)
3740 {
3741 last_regnum = i386_next_regnum (last_regnum);
3742 len -= 4;
3743 }
3744
3745 if (last_regnum != -1)
3746 return 1;
3747 }
ff2e87ac 3748
0abe36f5 3749 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3750}
3751
ff2e87ac
AC
3752/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3753 return its contents in TO. */
ac27f131 3754
8dccd430 3755static int
ff2e87ac 3756i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3757 struct type *type, gdb_byte *to,
3758 int *optimizedp, int *unavailablep)
ac27f131 3759{
20a6ec49 3760 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3761 int len = TYPE_LENGTH (type);
de5b9bb9 3762
20a6ec49 3763 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3764 return i387_register_to_value (frame, regnum, type, to,
3765 optimizedp, unavailablep);
ff2e87ac 3766
fd35795f 3767 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3768
3769 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3770
de5b9bb9
MK
3771 while (len > 0)
3772 {
3773 gdb_assert (regnum != -1);
20a6ec49 3774 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3775
8dccd430
PA
3776 if (!get_frame_register_bytes (frame, regnum, 0,
3777 register_size (gdbarch, regnum),
3778 to, optimizedp, unavailablep))
3779 return 0;
3780
de5b9bb9
MK
3781 regnum = i386_next_regnum (regnum);
3782 len -= 4;
42835c2b 3783 to += 4;
de5b9bb9 3784 }
8dccd430
PA
3785
3786 *optimizedp = *unavailablep = 0;
3787 return 1;
ac27f131
MK
3788}
3789
ff2e87ac
AC
3790/* Write the contents FROM of a value of type TYPE into register
3791 REGNUM in frame FRAME. */
ac27f131 3792
3a1e71e3 3793static void
ff2e87ac 3794i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3795 struct type *type, const gdb_byte *from)
ac27f131 3796{
de5b9bb9 3797 int len = TYPE_LENGTH (type);
de5b9bb9 3798
20a6ec49 3799 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3800 {
d532c08f
MK
3801 i387_value_to_register (frame, regnum, type, from);
3802 return;
3803 }
3d261580 3804
fd35795f 3805 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3806
3807 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3808
de5b9bb9
MK
3809 while (len > 0)
3810 {
3811 gdb_assert (regnum != -1);
875f8d0e 3812 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3813
42835c2b 3814 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3815 regnum = i386_next_regnum (regnum);
3816 len -= 4;
42835c2b 3817 from += 4;
de5b9bb9 3818 }
ac27f131 3819}
ff2e87ac 3820\f
7fdafb5a
MK
3821/* Supply register REGNUM from the buffer specified by GREGS and LEN
3822 in the general-purpose register set REGSET to register cache
3823 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3824
20187ed5 3825void
473f17b0
MK
3826i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3827 int regnum, const void *gregs, size_t len)
3828{
ac7936df 3829 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3830 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3831 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3832 int i;
3833
1528345d 3834 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3835
3836 for (i = 0; i < tdep->gregset_num_regs; i++)
3837 {
3838 if ((regnum == i || regnum == -1)
3839 && tdep->gregset_reg_offset[i] != -1)
73e1c03f 3840 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
473f17b0
MK
3841 }
3842}
3843
7fdafb5a
MK
3844/* Collect register REGNUM from the register cache REGCACHE and store
3845 it in the buffer specified by GREGS and LEN as described by the
3846 general-purpose register set REGSET. If REGNUM is -1, do this for
3847 all registers in REGSET. */
3848
ecc37a5a 3849static void
7fdafb5a
MK
3850i386_collect_gregset (const struct regset *regset,
3851 const struct regcache *regcache,
3852 int regnum, void *gregs, size_t len)
3853{
ac7936df 3854 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3855 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3856 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3857 int i;
3858
1528345d 3859 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3860
3861 for (i = 0; i < tdep->gregset_num_regs; i++)
3862 {
3863 if ((regnum == i || regnum == -1)
3864 && tdep->gregset_reg_offset[i] != -1)
34a79281 3865 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
7fdafb5a
MK
3866 }
3867}
3868
3869/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3870 in the floating-point register set REGSET to register cache
3871 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3872
3873static void
3874i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3875 int regnum, const void *fpregs, size_t len)
3876{
ac7936df 3877 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3878 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3879
66a72d25
MK
3880 if (len == I387_SIZEOF_FXSAVE)
3881 {
3882 i387_supply_fxsave (regcache, regnum, fpregs);
3883 return;
3884 }
3885
1528345d 3886 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3887 i387_supply_fsave (regcache, regnum, fpregs);
3888}
8446b36a 3889
2f305df1
MK
3890/* Collect register REGNUM from the register cache REGCACHE and store
3891 it in the buffer specified by FPREGS and LEN as described by the
3892 floating-point register set REGSET. If REGNUM is -1, do this for
3893 all registers in REGSET. */
7fdafb5a
MK
3894
3895static void
3896i386_collect_fpregset (const struct regset *regset,
3897 const struct regcache *regcache,
3898 int regnum, void *fpregs, size_t len)
3899{
ac7936df 3900 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3901 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3902
3903 if (len == I387_SIZEOF_FXSAVE)
3904 {
3905 i387_collect_fxsave (regcache, regnum, fpregs);
3906 return;
3907 }
3908
1528345d 3909 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3910 i387_collect_fsave (regcache, regnum, fpregs);
3911}
3912
ecc37a5a
AA
3913/* Register set definitions. */
3914
3915const struct regset i386_gregset =
3916 {
3917 NULL, i386_supply_gregset, i386_collect_gregset
3918 };
3919
8f0435f7 3920const struct regset i386_fpregset =
ecc37a5a
AA
3921 {
3922 NULL, i386_supply_fpregset, i386_collect_fpregset
3923 };
3924
490496c3 3925/* Default iterator over core file register note sections. */
8446b36a 3926
490496c3
AA
3927void
3928i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3929 iterate_over_regset_sections_cb *cb,
3930 void *cb_data,
3931 const struct regcache *regcache)
8446b36a
MK
3932{
3933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3934
a616bb94
AH
3935 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3936 cb_data);
490496c3 3937 if (tdep->sizeof_fpregset)
a616bb94
AH
3938 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3939 NULL, cb_data);
8446b36a 3940}
473f17b0 3941\f
fc338970 3942
fc338970 3943/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3944
3945CORE_ADDR
e17a4113
UW
3946i386_pe_skip_trampoline_code (struct frame_info *frame,
3947 CORE_ADDR pc, char *name)
c906108c 3948{
e17a4113
UW
3949 struct gdbarch *gdbarch = get_frame_arch (frame);
3950 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3951
3952 /* jmp *(dest) */
3953 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3954 {
e17a4113
UW
3955 unsigned long indirect =
3956 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3957 struct minimal_symbol *indsym =
7cbd4a93 3958 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
c9d95fa3 3959 const char *symname = indsym ? indsym->linkage_name () : 0;
c906108c 3960
c5aa993b 3961 if (symname)
c906108c 3962 {
61012eef
GB
3963 if (startswith (symname, "__imp_")
3964 || startswith (symname, "_imp_"))
e17a4113
UW
3965 return name ? 1 :
3966 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3967 }
3968 }
fc338970 3969 return 0; /* Not a trampoline. */
c906108c 3970}
fc338970
MK
3971\f
3972
10458914
DJ
3973/* Return whether the THIS_FRAME corresponds to a sigtramp
3974 routine. */
8201327c 3975
4bd207ef 3976int
10458914 3977i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3978{
10458914 3979 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3980 const char *name;
911bc6ee
MK
3981
3982 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3983 return (name && strcmp ("_sigtramp", name) == 0);
3984}
3985\f
3986
fc338970
MK
3987/* We have two flavours of disassembly. The machinery on this page
3988 deals with switching between those. */
c906108c
SS
3989
3990static int
a89aa300 3991i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3992{
5e3397bb
MK
3993 gdb_assert (disassembly_flavor == att_flavor
3994 || disassembly_flavor == intel_flavor);
3995
f995bbe8 3996 info->disassembler_options = disassembly_flavor;
5e3397bb 3997
6394c606 3998 return default_print_insn (pc, info);
7a292a7a 3999}
fc338970 4000\f
3ce1502b 4001
8201327c
MK
4002/* There are a few i386 architecture variants that differ only
4003 slightly from the generic i386 target. For now, we don't give them
4004 their own source file, but include them here. As a consequence,
4005 they'll always be included. */
3ce1502b 4006
8201327c 4007/* System V Release 4 (SVR4). */
3ce1502b 4008
10458914
DJ
4009/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4010 routine. */
911bc6ee 4011
8201327c 4012static int
10458914 4013i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4014{
10458914 4015 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4016 const char *name;
911bc6ee 4017
05b4bd79 4018 /* The origin of these symbols is currently unknown. */
911bc6ee 4019 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4020 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4021 || strcmp ("sigvechandler", name) == 0));
4022}
d2a7c97a 4023
10458914
DJ
4024/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4025 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4026
3a1e71e3 4027static CORE_ADDR
10458914 4028i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4029{
e17a4113
UW
4030 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4032 gdb_byte buf[4];
acd5c798 4033 CORE_ADDR sp;
3ce1502b 4034
10458914 4035 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4036 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4037
e17a4113 4038 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4039}
55aa24fb
SDJ
4040
4041\f
4042
4043/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4044 gdbarch.h. */
4045
4046int
4047i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4048{
4049 return (*s == '$' /* Literal number. */
4050 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4051 || (*s == '(' && s[1] == '%') /* Register indirection. */
4052 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4053}
4054
5acfdbae
SDJ
4055/* Helper function for i386_stap_parse_special_token.
4056
4057 This function parses operands of the form `-8+3+1(%rbp)', which
4058 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4059
af2d9bee 4060 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4061 otherwise. */
4062
af2d9bee 4063static bool
5acfdbae
SDJ
4064i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4065 struct stap_parse_info *p)
4066{
4067 const char *s = p->arg;
4068
4069 if (isdigit (*s) || *s == '-' || *s == '+')
4070 {
af2d9bee 4071 bool got_minus[3];
5acfdbae
SDJ
4072 int i;
4073 long displacements[3];
4074 const char *start;
4075 char *regname;
4076 int len;
4077 struct stoken str;
4078 char *endp;
4079
af2d9bee 4080 got_minus[0] = false;
5acfdbae
SDJ
4081 if (*s == '+')
4082 ++s;
4083 else if (*s == '-')
4084 {
4085 ++s;
af2d9bee 4086 got_minus[0] = true;
5acfdbae
SDJ
4087 }
4088
d7b30f67 4089 if (!isdigit ((unsigned char) *s))
af2d9bee 4090 return false;
d7b30f67 4091
5acfdbae
SDJ
4092 displacements[0] = strtol (s, &endp, 10);
4093 s = endp;
4094
4095 if (*s != '+' && *s != '-')
4096 {
4097 /* We are not dealing with a triplet. */
af2d9bee 4098 return false;
5acfdbae
SDJ
4099 }
4100
af2d9bee 4101 got_minus[1] = false;
5acfdbae
SDJ
4102 if (*s == '+')
4103 ++s;
4104 else
4105 {
4106 ++s;
af2d9bee 4107 got_minus[1] = true;
5acfdbae
SDJ
4108 }
4109
d7b30f67 4110 if (!isdigit ((unsigned char) *s))
af2d9bee 4111 return false;
d7b30f67 4112
5acfdbae
SDJ
4113 displacements[1] = strtol (s, &endp, 10);
4114 s = endp;
4115
4116 if (*s != '+' && *s != '-')
4117 {
4118 /* We are not dealing with a triplet. */
af2d9bee 4119 return false;
5acfdbae
SDJ
4120 }
4121
af2d9bee 4122 got_minus[2] = false;
5acfdbae
SDJ
4123 if (*s == '+')
4124 ++s;
4125 else
4126 {
4127 ++s;
af2d9bee 4128 got_minus[2] = true;
5acfdbae
SDJ
4129 }
4130
d7b30f67 4131 if (!isdigit ((unsigned char) *s))
af2d9bee 4132 return false;
d7b30f67 4133
5acfdbae
SDJ
4134 displacements[2] = strtol (s, &endp, 10);
4135 s = endp;
4136
4137 if (*s != '(' || s[1] != '%')
af2d9bee 4138 return false;
5acfdbae
SDJ
4139
4140 s += 2;
4141 start = s;
4142
4143 while (isalnum (*s))
4144 ++s;
4145
4146 if (*s++ != ')')
af2d9bee 4147 return false;
5acfdbae 4148
d7b30f67 4149 len = s - start - 1;
224c3ddb 4150 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4151
4152 strncpy (regname, start, len);
4153 regname[len] = '\0';
4154
4155 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4156 error (_("Invalid register name `%s' on expression `%s'."),
4157 regname, p->saved_arg);
4158
4159 for (i = 0; i < 3; i++)
4160 {
410a0ff2
SDJ
4161 write_exp_elt_opcode (&p->pstate, OP_LONG);
4162 write_exp_elt_type
4163 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4164 write_exp_elt_longcst (&p->pstate, displacements[i]);
4165 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4166 if (got_minus[i])
410a0ff2 4167 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4168 }
4169
410a0ff2 4170 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4171 str.ptr = regname;
4172 str.length = len;
410a0ff2
SDJ
4173 write_exp_string (&p->pstate, str);
4174 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4175
410a0ff2
SDJ
4176 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4177 write_exp_elt_type (&p->pstate,
4178 builtin_type (gdbarch)->builtin_data_ptr);
4179 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4180
410a0ff2
SDJ
4181 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4182 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4183 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4184
410a0ff2
SDJ
4185 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4186 write_exp_elt_type (&p->pstate,
4187 lookup_pointer_type (p->arg_type));
4188 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4189
410a0ff2 4190 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4191
4192 p->arg = s;
4193
af2d9bee 4194 return true;
5acfdbae
SDJ
4195 }
4196
af2d9bee 4197 return false;
5acfdbae
SDJ
4198}
4199
4200/* Helper function for i386_stap_parse_special_token.
4201
4202 This function parses operands of the form `register base +
4203 (register index * size) + offset', as represented in
4204 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4205
af2d9bee 4206 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4207 otherwise. */
4208
af2d9bee 4209static bool
5acfdbae
SDJ
4210i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4211 struct stap_parse_info *p)
4212{
4213 const char *s = p->arg;
4214
4215 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4216 {
af2d9bee 4217 bool offset_minus = false;
5acfdbae 4218 long offset = 0;
af2d9bee 4219 bool size_minus = false;
5acfdbae
SDJ
4220 long size = 0;
4221 const char *start;
4222 char *base;
4223 int len_base;
4224 char *index;
4225 int len_index;
4226 struct stoken base_token, index_token;
4227
4228 if (*s == '+')
4229 ++s;
4230 else if (*s == '-')
4231 {
4232 ++s;
af2d9bee 4233 offset_minus = true;
5acfdbae
SDJ
4234 }
4235
4236 if (offset_minus && !isdigit (*s))
af2d9bee 4237 return false;
5acfdbae
SDJ
4238
4239 if (isdigit (*s))
4240 {
4241 char *endp;
4242
4243 offset = strtol (s, &endp, 10);
4244 s = endp;
4245 }
4246
4247 if (*s != '(' || s[1] != '%')
af2d9bee 4248 return false;
5acfdbae
SDJ
4249
4250 s += 2;
4251 start = s;
4252
4253 while (isalnum (*s))
4254 ++s;
4255
4256 if (*s != ',' || s[1] != '%')
af2d9bee 4257 return false;
5acfdbae
SDJ
4258
4259 len_base = s - start;
224c3ddb 4260 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4261 strncpy (base, start, len_base);
4262 base[len_base] = '\0';
4263
4264 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4265 error (_("Invalid register name `%s' on expression `%s'."),
4266 base, p->saved_arg);
4267
4268 s += 2;
4269 start = s;
4270
4271 while (isalnum (*s))
4272 ++s;
4273
4274 len_index = s - start;
224c3ddb 4275 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4276 strncpy (index, start, len_index);
4277 index[len_index] = '\0';
4278
4279 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4280 error (_("Invalid register name `%s' on expression `%s'."),
4281 index, p->saved_arg);
4282
4283 if (*s != ',' && *s != ')')
af2d9bee 4284 return false;
5acfdbae
SDJ
4285
4286 if (*s == ',')
4287 {
4288 char *endp;
4289
4290 ++s;
4291 if (*s == '+')
4292 ++s;
4293 else if (*s == '-')
4294 {
4295 ++s;
af2d9bee 4296 size_minus = true;
5acfdbae
SDJ
4297 }
4298
4299 size = strtol (s, &endp, 10);
4300 s = endp;
4301
4302 if (*s != ')')
af2d9bee 4303 return false;
5acfdbae
SDJ
4304 }
4305
4306 ++s;
4307
4308 if (offset)
4309 {
410a0ff2
SDJ
4310 write_exp_elt_opcode (&p->pstate, OP_LONG);
4311 write_exp_elt_type (&p->pstate,
4312 builtin_type (gdbarch)->builtin_long);
4313 write_exp_elt_longcst (&p->pstate, offset);
4314 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4315 if (offset_minus)
410a0ff2 4316 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4317 }
4318
410a0ff2 4319 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4320 base_token.ptr = base;
4321 base_token.length = len_base;
410a0ff2
SDJ
4322 write_exp_string (&p->pstate, base_token);
4323 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4324
4325 if (offset)
410a0ff2 4326 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4327
410a0ff2 4328 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4329 index_token.ptr = index;
4330 index_token.length = len_index;
410a0ff2
SDJ
4331 write_exp_string (&p->pstate, index_token);
4332 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4333
4334 if (size)
4335 {
410a0ff2
SDJ
4336 write_exp_elt_opcode (&p->pstate, OP_LONG);
4337 write_exp_elt_type (&p->pstate,
4338 builtin_type (gdbarch)->builtin_long);
4339 write_exp_elt_longcst (&p->pstate, size);
4340 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4341 if (size_minus)
410a0ff2
SDJ
4342 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4343 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4344 }
4345
410a0ff2 4346 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4347
410a0ff2
SDJ
4348 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4349 write_exp_elt_type (&p->pstate,
4350 lookup_pointer_type (p->arg_type));
4351 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4352
410a0ff2 4353 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4354
4355 p->arg = s;
4356
af2d9bee 4357 return true;
5acfdbae
SDJ
4358 }
4359
af2d9bee 4360 return false;
5acfdbae
SDJ
4361}
4362
55aa24fb
SDJ
4363/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4364 gdbarch.h. */
4365
4366int
4367i386_stap_parse_special_token (struct gdbarch *gdbarch,
4368 struct stap_parse_info *p)
4369{
55aa24fb
SDJ
4370 /* In order to parse special tokens, we use a state-machine that go
4371 through every known token and try to get a match. */
4372 enum
4373 {
4374 TRIPLET,
4375 THREE_ARG_DISPLACEMENT,
4376 DONE
570dc176
TT
4377 };
4378 int current_state;
55aa24fb
SDJ
4379
4380 current_state = TRIPLET;
4381
4382 /* The special tokens to be parsed here are:
4383
4384 - `register base + (register index * size) + offset', as represented
4385 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4386
4387 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4388 `*(-8 + 3 - 1 + (void *) $eax)'. */
4389
4390 while (current_state != DONE)
4391 {
55aa24fb
SDJ
4392 switch (current_state)
4393 {
4394 case TRIPLET:
5acfdbae
SDJ
4395 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4396 return 1;
4397 break;
4398
55aa24fb 4399 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4400 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4401 return 1;
4402 break;
55aa24fb
SDJ
4403 }
4404
4405 /* Advancing to the next state. */
4406 ++current_state;
4407 }
4408
4409 return 0;
4410}
4411
7d7571f0
SDJ
4412/* Implementation of 'gdbarch_stap_adjust_register', as defined in
4413 gdbarch.h. */
4414
6b78c3f8 4415static std::string
7d7571f0 4416i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
6b78c3f8 4417 const std::string &regname, int regnum)
7d7571f0
SDJ
4418{
4419 static const std::unordered_set<std::string> reg_assoc
4420 = { "ax", "bx", "cx", "dx",
4421 "si", "di", "bp", "sp" };
4422
6b78c3f8
AB
4423 /* If we are dealing with a register whose size is less than the size
4424 specified by the "[-]N@" prefix, and it is one of the registers that
4425 we know has an extended variant available, then use the extended
4426 version of the register instead. */
4427 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4428 && reg_assoc.find (regname) != reg_assoc.end ())
4429 return "e" + regname;
7d7571f0 4430
6b78c3f8
AB
4431 /* Otherwise, just use the requested register. */
4432 return regname;
7d7571f0
SDJ
4433}
4434
8201327c 4435\f
3ce1502b 4436
ac04f72b
TT
4437/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4438 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4439
4440static const char *
4441i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4442{
4443 return "(x86_64|i.86)";
4444}
4445
4446\f
4447
1d509aa6
MM
4448/* Implement the "in_indirect_branch_thunk" gdbarch function. */
4449
4450static bool
4451i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4452{
4453 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4454 I386_EAX_REGNUM, I386_EIP_REGNUM);
4455}
4456
8201327c 4457/* Generic ELF. */
d2a7c97a 4458
8201327c
MK
4459void
4460i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4461{
05c0465e
SDJ
4462 static const char *const stap_integer_prefixes[] = { "$", NULL };
4463 static const char *const stap_register_prefixes[] = { "%", NULL };
4464 static const char *const stap_register_indirection_prefixes[] = { "(",
4465 NULL };
4466 static const char *const stap_register_indirection_suffixes[] = { ")",
4467 NULL };
4468
c4fc7f1b
MK
4469 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4470 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4471
4472 /* Registering SystemTap handlers. */
05c0465e
SDJ
4473 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4474 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4475 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4476 stap_register_indirection_prefixes);
4477 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4478 stap_register_indirection_suffixes);
55aa24fb
SDJ
4479 set_gdbarch_stap_is_single_operand (gdbarch,
4480 i386_stap_is_single_operand);
4481 set_gdbarch_stap_parse_special_token (gdbarch,
4482 i386_stap_parse_special_token);
7d7571f0
SDJ
4483 set_gdbarch_stap_adjust_register (gdbarch,
4484 i386_stap_adjust_register);
1d509aa6
MM
4485
4486 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4487 i386_in_indirect_branch_thunk);
8201327c 4488}
3ce1502b 4489
8201327c 4490/* System V Release 4 (SVR4). */
3ce1502b 4491
8201327c
MK
4492void
4493i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4494{
4495 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4496
8201327c
MK
4497 /* System V Release 4 uses ELF. */
4498 i386_elf_init_abi (info, gdbarch);
3ce1502b 4499
dfe01d39 4500 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4501 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4502
911bc6ee 4503 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4504 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4505 tdep->sc_pc_offset = 36 + 14 * 4;
4506 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4507
8201327c 4508 tdep->jb_pc_offset = 20;
3ce1502b
MK
4509}
4510
8201327c 4511\f
2acceee2 4512
38c968cf
AC
4513/* i386 register groups. In addition to the normal groups, add "mmx"
4514 and "sse". */
4515
4516static struct reggroup *i386_sse_reggroup;
4517static struct reggroup *i386_mmx_reggroup;
4518
4519static void
4520i386_init_reggroups (void)
4521{
4522 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4523 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4524}
4525
4526static void
4527i386_add_reggroups (struct gdbarch *gdbarch)
4528{
4529 reggroup_add (gdbarch, i386_sse_reggroup);
4530 reggroup_add (gdbarch, i386_mmx_reggroup);
4531 reggroup_add (gdbarch, general_reggroup);
4532 reggroup_add (gdbarch, float_reggroup);
4533 reggroup_add (gdbarch, all_reggroup);
4534 reggroup_add (gdbarch, save_reggroup);
4535 reggroup_add (gdbarch, restore_reggroup);
4536 reggroup_add (gdbarch, vector_reggroup);
4537 reggroup_add (gdbarch, system_reggroup);
4538}
4539
4540int
4541i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4542 struct reggroup *group)
4543{
c131fcee
L
4544 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4545 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808 4546 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
798a7429
SM
4547 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4548 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4549 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4550
1ba53b71
L
4551 /* Don't include pseudo registers, except for MMX, in any register
4552 groups. */
c131fcee 4553 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4554 return 0;
4555
c131fcee 4556 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4557 return 0;
4558
c131fcee 4559 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4560 return 0;
4561
4562 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4563 if (group == i386_mmx_reggroup)
4564 return mmx_regnum_p;
1ba53b71 4565
51547df6 4566 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4567 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4568 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4569 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4570 if (group == i386_sse_reggroup)
01f9f808 4571 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4572
4573 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4574 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4575 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4576
22049425
MS
4577 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4578 == X86_XSTATE_AVX_AVX512_MASK);
4579 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4580 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4581 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4582 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4583
38c968cf 4584 if (group == vector_reggroup)
c131fcee 4585 return (mmx_regnum_p
01f9f808
MS
4586 || (zmm_regnum_p && avx512_p)
4587 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4588 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4589 || mxcsr_regnum_p);
1ba53b71
L
4590
4591 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4592 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4593 if (group == float_reggroup)
4594 return fp_regnum_p;
1ba53b71 4595
c131fcee
L
4596 /* For "info reg all", don't include upper YMM registers nor XMM
4597 registers when AVX is supported. */
4598 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4599 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4600 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4601 if (group == all_reggroup
01f9f808
MS
4602 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4603 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4604 || ymmh_regnum_p
4605 || ymmh_avx512_regnum_p
4606 || zmmh_regnum_p))
c131fcee
L
4607 return 0;
4608
1dbcd68c
WT
4609 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4610 if (group == all_reggroup
df7e5265 4611 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4612 return bnd_regnum_p;
4613
4614 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4615 if (group == all_reggroup
df7e5265 4616 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4617 return 0;
4618
4619 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4620 if (group == all_reggroup
df7e5265 4621 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4622 return mpx_ctrl_regnum_p;
4623
38c968cf 4624 if (group == general_reggroup)
1ba53b71
L
4625 return (!fp_regnum_p
4626 && !mmx_regnum_p
c131fcee
L
4627 && !mxcsr_regnum_p
4628 && !xmm_regnum_p
01f9f808 4629 && !xmm_avx512_regnum_p
c131fcee 4630 && !ymm_regnum_p
1dbcd68c 4631 && !ymmh_regnum_p
01f9f808
MS
4632 && !ymm_avx512_regnum_p
4633 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4634 && !bndr_regnum_p
4635 && !bnd_regnum_p
01f9f808
MS
4636 && !mpx_ctrl_regnum_p
4637 && !zmm_regnum_p
51547df6
MS
4638 && !zmmh_regnum_p
4639 && !pkru_regnum_p);
acd5c798 4640
38c968cf
AC
4641 return default_register_reggroup_p (gdbarch, regnum, group);
4642}
38c968cf 4643\f
acd5c798 4644
f837910f
MK
4645/* Get the ARGIth function argument for the current function. */
4646
42c466d7 4647static CORE_ADDR
143985b7
AF
4648i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4649 struct type *type)
4650{
e17a4113
UW
4651 struct gdbarch *gdbarch = get_frame_arch (frame);
4652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4653 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4654 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4655}
4656
7ad10968
HZ
4657#define PREFIX_REPZ 0x01
4658#define PREFIX_REPNZ 0x02
4659#define PREFIX_LOCK 0x04
4660#define PREFIX_DATA 0x08
4661#define PREFIX_ADDR 0x10
473f17b0 4662
7ad10968
HZ
4663/* operand size */
4664enum
4665{
4666 OT_BYTE = 0,
4667 OT_WORD,
4668 OT_LONG,
cf648174 4669 OT_QUAD,
a3c4230a 4670 OT_DQUAD,
7ad10968 4671};
473f17b0 4672
7ad10968
HZ
4673/* i386 arith/logic operations */
4674enum
4675{
4676 OP_ADDL,
4677 OP_ORL,
4678 OP_ADCL,
4679 OP_SBBL,
4680 OP_ANDL,
4681 OP_SUBL,
4682 OP_XORL,
4683 OP_CMPL,
4684};
5716833c 4685
7ad10968
HZ
4686struct i386_record_s
4687{
cf648174 4688 struct gdbarch *gdbarch;
7ad10968 4689 struct regcache *regcache;
df61f520 4690 CORE_ADDR orig_addr;
7ad10968
HZ
4691 CORE_ADDR addr;
4692 int aflag;
4693 int dflag;
4694 int override;
4695 uint8_t modrm;
4696 uint8_t mod, reg, rm;
4697 int ot;
cf648174
HZ
4698 uint8_t rex_x;
4699 uint8_t rex_b;
4700 int rip_offset;
4701 int popl_esp_hack;
4702 const int *regmap;
7ad10968 4703};
5716833c 4704
99c1624c
PA
4705/* Parse the "modrm" part of the memory address irp->addr points at.
4706 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4707
7ad10968
HZ
4708static int
4709i386_record_modrm (struct i386_record_s *irp)
4710{
cf648174 4711 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4712
4ffa4fc7
PA
4713 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4714 return -1;
4715
7ad10968
HZ
4716 irp->addr++;
4717 irp->mod = (irp->modrm >> 6) & 3;
4718 irp->reg = (irp->modrm >> 3) & 7;
4719 irp->rm = irp->modrm & 7;
5716833c 4720
7ad10968
HZ
4721 return 0;
4722}
d2a7c97a 4723
99c1624c
PA
4724/* Extract the memory address that the current instruction writes to,
4725 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4726
7ad10968 4727static int
cf648174 4728i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4729{
cf648174 4730 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4731 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4732 gdb_byte buf[4];
4733 ULONGEST offset64;
21d0e8a4 4734
7ad10968 4735 *addr = 0;
1e87984a 4736 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4737 {
1e87984a 4738 /* 32/64 bits */
7ad10968
HZ
4739 int havesib = 0;
4740 uint8_t scale = 0;
648d0c8b 4741 uint8_t byte;
7ad10968
HZ
4742 uint8_t index = 0;
4743 uint8_t base = irp->rm;
896fb97d 4744
7ad10968
HZ
4745 if (base == 4)
4746 {
4747 havesib = 1;
4ffa4fc7
PA
4748 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4749 return -1;
7ad10968 4750 irp->addr++;
648d0c8b
MS
4751 scale = (byte >> 6) & 3;
4752 index = ((byte >> 3) & 7) | irp->rex_x;
4753 base = (byte & 7);
7ad10968 4754 }
cf648174 4755 base |= irp->rex_b;
21d0e8a4 4756
7ad10968
HZ
4757 switch (irp->mod)
4758 {
4759 case 0:
4760 if ((base & 7) == 5)
4761 {
4762 base = 0xff;
4ffa4fc7
PA
4763 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4764 return -1;
7ad10968 4765 irp->addr += 4;
60a1502a 4766 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4767 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4768 *addr += irp->addr + irp->rip_offset;
7ad10968 4769 }
7ad10968
HZ
4770 break;
4771 case 1:
4ffa4fc7
PA
4772 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4773 return -1;
7ad10968 4774 irp->addr++;
60a1502a 4775 *addr = (int8_t) buf[0];
7ad10968
HZ
4776 break;
4777 case 2:
4ffa4fc7
PA
4778 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4779 return -1;
60a1502a 4780 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4781 irp->addr += 4;
4782 break;
4783 }
356a6b3e 4784
60a1502a 4785 offset64 = 0;
7ad10968 4786 if (base != 0xff)
cf648174
HZ
4787 {
4788 if (base == 4 && irp->popl_esp_hack)
4789 *addr += irp->popl_esp_hack;
4790 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4791 &offset64);
7ad10968 4792 }
cf648174
HZ
4793 if (irp->aflag == 2)
4794 {
60a1502a 4795 *addr += offset64;
cf648174
HZ
4796 }
4797 else
60a1502a 4798 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4799
7ad10968
HZ
4800 if (havesib && (index != 4 || scale != 0))
4801 {
cf648174 4802 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4803 &offset64);
cf648174 4804 if (irp->aflag == 2)
60a1502a 4805 *addr += offset64 << scale;
cf648174 4806 else
60a1502a 4807 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4808 }
e85596e0
L
4809
4810 if (!irp->aflag)
4811 {
4812 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4813 address from 32-bit to 64-bit. */
4814 *addr = (uint32_t) *addr;
4815 }
7ad10968
HZ
4816 }
4817 else
4818 {
4819 /* 16 bits */
4820 switch (irp->mod)
4821 {
4822 case 0:
4823 if (irp->rm == 6)
4824 {
4ffa4fc7
PA
4825 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4826 return -1;
7ad10968 4827 irp->addr += 2;
60a1502a 4828 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4829 irp->rm = 0;
4830 goto no_rm;
4831 }
7ad10968
HZ
4832 break;
4833 case 1:
4ffa4fc7
PA
4834 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4835 return -1;
7ad10968 4836 irp->addr++;
60a1502a 4837 *addr = (int8_t) buf[0];
7ad10968
HZ
4838 break;
4839 case 2:
4ffa4fc7
PA
4840 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4841 return -1;
7ad10968 4842 irp->addr += 2;
60a1502a 4843 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4844 break;
4845 }
c4fc7f1b 4846
7ad10968
HZ
4847 switch (irp->rm)
4848 {
4849 case 0:
cf648174
HZ
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4852 &offset64);
4853 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4854 regcache_raw_read_unsigned (irp->regcache,
4855 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4856 &offset64);
4857 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4858 break;
4859 case 1:
cf648174
HZ
4860 regcache_raw_read_unsigned (irp->regcache,
4861 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4862 &offset64);
4863 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4868 break;
4869 case 2:
cf648174
HZ
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4872 &offset64);
4873 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4874 regcache_raw_read_unsigned (irp->regcache,
4875 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4876 &offset64);
4877 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4878 break;
4879 case 3:
cf648174
HZ
4880 regcache_raw_read_unsigned (irp->regcache,
4881 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4882 &offset64);
4883 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4886 &offset64);
4887 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4888 break;
4889 case 4:
cf648174
HZ
4890 regcache_raw_read_unsigned (irp->regcache,
4891 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4892 &offset64);
4893 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4894 break;
4895 case 5:
cf648174
HZ
4896 regcache_raw_read_unsigned (irp->regcache,
4897 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4898 &offset64);
4899 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4900 break;
4901 case 6:
cf648174
HZ
4902 regcache_raw_read_unsigned (irp->regcache,
4903 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4904 &offset64);
4905 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4906 break;
4907 case 7:
cf648174
HZ
4908 regcache_raw_read_unsigned (irp->regcache,
4909 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4910 &offset64);
4911 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4912 break;
4913 }
4914 *addr &= 0xffff;
4915 }
c4fc7f1b 4916
01fe1b41 4917 no_rm:
7ad10968
HZ
4918 return 0;
4919}
c4fc7f1b 4920
99c1624c
PA
4921/* Record the address and contents of the memory that will be changed
4922 by the current instruction. Return -1 if something goes wrong, 0
4923 otherwise. */
356a6b3e 4924
7ad10968
HZ
4925static int
4926i386_record_lea_modrm (struct i386_record_s *irp)
4927{
cf648174
HZ
4928 struct gdbarch *gdbarch = irp->gdbarch;
4929 uint64_t addr;
356a6b3e 4930
d7877f7e 4931 if (irp->override >= 0)
7ad10968 4932 {
25ea693b 4933 if (record_full_memory_query)
bb08c432 4934 {
651ce16a 4935 if (yquery (_("\
bb08c432
HZ
4936Process record ignores the memory change of instruction at address %s\n\
4937because it can't get the value of the segment register.\n\
4938Do you want to stop the program?"),
651ce16a
PA
4939 paddress (gdbarch, irp->orig_addr)))
4940 return -1;
bb08c432
HZ
4941 }
4942
7ad10968
HZ
4943 return 0;
4944 }
61113f8b 4945
7ad10968
HZ
4946 if (i386_record_lea_modrm_addr (irp, &addr))
4947 return -1;
96297dab 4948
25ea693b 4949 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4950 return -1;
a62cc96e 4951
7ad10968
HZ
4952 return 0;
4953}
b6197528 4954
99c1624c
PA
4955/* Record the effects of a push operation. Return -1 if something
4956 goes wrong, 0 otherwise. */
cf648174
HZ
4957
4958static int
4959i386_record_push (struct i386_record_s *irp, int size)
4960{
648d0c8b 4961 ULONGEST addr;
cf648174 4962
25ea693b
MM
4963 if (record_full_arch_list_add_reg (irp->regcache,
4964 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4965 return -1;
4966 regcache_raw_read_unsigned (irp->regcache,
4967 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4968 &addr);
25ea693b 4969 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4970 return -1;
4971
4972 return 0;
4973}
4974
0289bdd7
MS
4975
4976/* Defines contents to record. */
4977#define I386_SAVE_FPU_REGS 0xfffd
4978#define I386_SAVE_FPU_ENV 0xfffe
4979#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4980
99c1624c
PA
4981/* Record the values of the floating point registers which will be
4982 changed by the current instruction. Returns -1 if something is
4983 wrong, 0 otherwise. */
0289bdd7
MS
4984
4985static int i386_record_floats (struct gdbarch *gdbarch,
4986 struct i386_record_s *ir,
4987 uint32_t iregnum)
4988{
4989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4990 int i;
4991
4992 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4993 happen. Currently we store st0-st7 registers, but we need not store all
4994 registers all the time, in future we use ftag register and record only
4995 those who are not marked as an empty. */
4996
4997 if (I386_SAVE_FPU_REGS == iregnum)
4998 {
4999 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5000 {
25ea693b 5001 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5002 return -1;
5003 }
5004 }
5005 else if (I386_SAVE_FPU_ENV == iregnum)
5006 {
5007 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5008 {
25ea693b 5009 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5010 return -1;
5011 }
5012 }
5013 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5014 {
5015 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5016 {
25ea693b 5017 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5018 return -1;
5019 }
5020 }
5021 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5022 (iregnum <= I387_FOP_REGNUM (tdep)))
5023 {
25ea693b 5024 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
5025 return -1;
5026 }
5027 else
5028 {
5029 /* Parameter error. */
5030 return -1;
5031 }
5032 if(I386_SAVE_FPU_ENV != iregnum)
5033 {
5034 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5035 {
25ea693b 5036 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5037 return -1;
5038 }
5039 }
5040 return 0;
5041}
5042
99c1624c
PA
5043/* Parse the current instruction, and record the values of the
5044 registers and memory that will be changed by the current
5045 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5046
25ea693b
MM
5047#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5048 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5049
a6b808b4 5050int
7ad10968 5051i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5052 CORE_ADDR input_addr)
7ad10968 5053{
60a1502a 5054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5055 int prefixes = 0;
580879fc 5056 int regnum = 0;
425b824a 5057 uint32_t opcode;
f4644a3f 5058 uint8_t opcode8;
648d0c8b 5059 ULONGEST addr;
975c21ab 5060 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5061 struct i386_record_s ir;
0289bdd7 5062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5063 uint8_t rex_w = -1;
5064 uint8_t rex_r = 0;
7ad10968 5065
8408d274 5066 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5067 ir.regcache = regcache;
648d0c8b
MS
5068 ir.addr = input_addr;
5069 ir.orig_addr = input_addr;
7ad10968
HZ
5070 ir.aflag = 1;
5071 ir.dflag = 1;
cf648174
HZ
5072 ir.override = -1;
5073 ir.popl_esp_hack = 0;
a3c4230a 5074 ir.regmap = tdep->record_regmap;
cf648174 5075 ir.gdbarch = gdbarch;
7ad10968
HZ
5076
5077 if (record_debug > 1)
5078 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
5079 "addr = %s\n",
5080 paddress (gdbarch, ir.addr));
7ad10968
HZ
5081
5082 /* prefixes */
5083 while (1)
5084 {
4ffa4fc7
PA
5085 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5086 return -1;
7ad10968 5087 ir.addr++;
425b824a 5088 switch (opcode8) /* Instruction prefixes */
7ad10968 5089 {
01fe1b41 5090 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5091 prefixes |= PREFIX_REPZ;
5092 break;
01fe1b41 5093 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5094 prefixes |= PREFIX_REPNZ;
5095 break;
01fe1b41 5096 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5097 prefixes |= PREFIX_LOCK;
5098 break;
01fe1b41 5099 case CS_PREFIX_OPCODE:
cf648174 5100 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5101 break;
01fe1b41 5102 case SS_PREFIX_OPCODE:
cf648174 5103 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5104 break;
01fe1b41 5105 case DS_PREFIX_OPCODE:
cf648174 5106 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5107 break;
01fe1b41 5108 case ES_PREFIX_OPCODE:
cf648174 5109 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5110 break;
01fe1b41 5111 case FS_PREFIX_OPCODE:
cf648174 5112 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5113 break;
01fe1b41 5114 case GS_PREFIX_OPCODE:
cf648174 5115 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5116 break;
01fe1b41 5117 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5118 prefixes |= PREFIX_DATA;
5119 break;
01fe1b41 5120 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5121 prefixes |= PREFIX_ADDR;
5122 break;
d691bec7
MS
5123 case 0x40: /* i386 inc %eax */
5124 case 0x41: /* i386 inc %ecx */
5125 case 0x42: /* i386 inc %edx */
5126 case 0x43: /* i386 inc %ebx */
5127 case 0x44: /* i386 inc %esp */
5128 case 0x45: /* i386 inc %ebp */
5129 case 0x46: /* i386 inc %esi */
5130 case 0x47: /* i386 inc %edi */
5131 case 0x48: /* i386 dec %eax */
5132 case 0x49: /* i386 dec %ecx */
5133 case 0x4a: /* i386 dec %edx */
5134 case 0x4b: /* i386 dec %ebx */
5135 case 0x4c: /* i386 dec %esp */
5136 case 0x4d: /* i386 dec %ebp */
5137 case 0x4e: /* i386 dec %esi */
5138 case 0x4f: /* i386 dec %edi */
5139 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5140 {
5141 /* REX */
425b824a
MS
5142 rex_w = (opcode8 >> 3) & 1;
5143 rex_r = (opcode8 & 0x4) << 1;
5144 ir.rex_x = (opcode8 & 0x2) << 2;
5145 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5146 }
d691bec7
MS
5147 else /* 32 bit target */
5148 goto out_prefixes;
cf648174 5149 break;
7ad10968
HZ
5150 default:
5151 goto out_prefixes;
5152 break;
5153 }
5154 }
01fe1b41 5155 out_prefixes:
cf648174
HZ
5156 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5157 {
5158 ir.dflag = 2;
5159 }
5160 else
5161 {
5162 if (prefixes & PREFIX_DATA)
5163 ir.dflag ^= 1;
5164 }
7ad10968
HZ
5165 if (prefixes & PREFIX_ADDR)
5166 ir.aflag ^= 1;
cf648174
HZ
5167 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5168 ir.aflag = 2;
7ad10968 5169
1777feb0 5170 /* Now check op code. */
425b824a 5171 opcode = (uint32_t) opcode8;
01fe1b41 5172 reswitch:
7ad10968
HZ
5173 switch (opcode)
5174 {
5175 case 0x0f:
4ffa4fc7
PA
5176 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5177 return -1;
7ad10968 5178 ir.addr++;
a3c4230a 5179 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5180 goto reswitch;
5181 break;
93924b6b 5182
a38bba38 5183 case 0x00: /* arith & logic */
7ad10968
HZ
5184 case 0x01:
5185 case 0x02:
5186 case 0x03:
5187 case 0x04:
5188 case 0x05:
5189 case 0x08:
5190 case 0x09:
5191 case 0x0a:
5192 case 0x0b:
5193 case 0x0c:
5194 case 0x0d:
5195 case 0x10:
5196 case 0x11:
5197 case 0x12:
5198 case 0x13:
5199 case 0x14:
5200 case 0x15:
5201 case 0x18:
5202 case 0x19:
5203 case 0x1a:
5204 case 0x1b:
5205 case 0x1c:
5206 case 0x1d:
5207 case 0x20:
5208 case 0x21:
5209 case 0x22:
5210 case 0x23:
5211 case 0x24:
5212 case 0x25:
5213 case 0x28:
5214 case 0x29:
5215 case 0x2a:
5216 case 0x2b:
5217 case 0x2c:
5218 case 0x2d:
5219 case 0x30:
5220 case 0x31:
5221 case 0x32:
5222 case 0x33:
5223 case 0x34:
5224 case 0x35:
5225 case 0x38:
5226 case 0x39:
5227 case 0x3a:
5228 case 0x3b:
5229 case 0x3c:
5230 case 0x3d:
5231 if (((opcode >> 3) & 7) != OP_CMPL)
5232 {
5233 if ((opcode & 1) == 0)
5234 ir.ot = OT_BYTE;
5235 else
5236 ir.ot = ir.dflag + OT_WORD;
93924b6b 5237
7ad10968
HZ
5238 switch ((opcode >> 1) & 3)
5239 {
a38bba38 5240 case 0: /* OP Ev, Gv */
7ad10968
HZ
5241 if (i386_record_modrm (&ir))
5242 return -1;
5243 if (ir.mod != 3)
5244 {
5245 if (i386_record_lea_modrm (&ir))
5246 return -1;
5247 }
5248 else
5249 {
cf648174
HZ
5250 ir.rm |= ir.rex_b;
5251 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5252 ir.rm &= 0x3;
25ea693b 5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5254 }
5255 break;
a38bba38 5256 case 1: /* OP Gv, Ev */
7ad10968
HZ
5257 if (i386_record_modrm (&ir))
5258 return -1;
cf648174
HZ
5259 ir.reg |= rex_r;
5260 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5261 ir.reg &= 0x3;
25ea693b 5262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5263 break;
a38bba38 5264 case 2: /* OP A, Iv */
25ea693b 5265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5266 break;
5267 }
5268 }
25ea693b 5269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5270 break;
42fdc8df 5271
a38bba38 5272 case 0x80: /* GRP1 */
7ad10968
HZ
5273 case 0x81:
5274 case 0x82:
5275 case 0x83:
5276 if (i386_record_modrm (&ir))
5277 return -1;
8201327c 5278
7ad10968
HZ
5279 if (ir.reg != OP_CMPL)
5280 {
5281 if ((opcode & 1) == 0)
5282 ir.ot = OT_BYTE;
5283 else
5284 ir.ot = ir.dflag + OT_WORD;
28fc6740 5285
7ad10968
HZ
5286 if (ir.mod != 3)
5287 {
cf648174
HZ
5288 if (opcode == 0x83)
5289 ir.rip_offset = 1;
5290 else
5291 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5292 if (i386_record_lea_modrm (&ir))
5293 return -1;
5294 }
5295 else
25ea693b 5296 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5297 }
25ea693b 5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5299 break;
5e3397bb 5300
a38bba38 5301 case 0x40: /* inc */
7ad10968
HZ
5302 case 0x41:
5303 case 0x42:
5304 case 0x43:
5305 case 0x44:
5306 case 0x45:
5307 case 0x46:
5308 case 0x47:
a38bba38
MS
5309
5310 case 0x48: /* dec */
7ad10968
HZ
5311 case 0x49:
5312 case 0x4a:
5313 case 0x4b:
5314 case 0x4c:
5315 case 0x4d:
5316 case 0x4e:
5317 case 0x4f:
a38bba38 5318
25ea693b
MM
5319 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5321 break;
acd5c798 5322
a38bba38 5323 case 0xf6: /* GRP3 */
7ad10968
HZ
5324 case 0xf7:
5325 if ((opcode & 1) == 0)
5326 ir.ot = OT_BYTE;
5327 else
5328 ir.ot = ir.dflag + OT_WORD;
5329 if (i386_record_modrm (&ir))
5330 return -1;
acd5c798 5331
cf648174
HZ
5332 if (ir.mod != 3 && ir.reg == 0)
5333 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5334
7ad10968
HZ
5335 switch (ir.reg)
5336 {
a38bba38 5337 case 0: /* test */
25ea693b 5338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5339 break;
a38bba38
MS
5340 case 2: /* not */
5341 case 3: /* neg */
7ad10968
HZ
5342 if (ir.mod != 3)
5343 {
5344 if (i386_record_lea_modrm (&ir))
5345 return -1;
5346 }
5347 else
5348 {
cf648174
HZ
5349 ir.rm |= ir.rex_b;
5350 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5351 ir.rm &= 0x3;
25ea693b 5352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5353 }
a38bba38 5354 if (ir.reg == 3) /* neg */
25ea693b 5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5356 break;
a38bba38
MS
5357 case 4: /* mul */
5358 case 5: /* imul */
5359 case 6: /* div */
5360 case 7: /* idiv */
25ea693b 5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5362 if (ir.ot != OT_BYTE)
25ea693b
MM
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5365 break;
5366 default:
5367 ir.addr -= 2;
5368 opcode = opcode << 8 | ir.modrm;
5369 goto no_support;
5370 break;
5371 }
5372 break;
5373
a38bba38
MS
5374 case 0xfe: /* GRP4 */
5375 case 0xff: /* GRP5 */
7ad10968
HZ
5376 if (i386_record_modrm (&ir))
5377 return -1;
5378 if (ir.reg >= 2 && opcode == 0xfe)
5379 {
5380 ir.addr -= 2;
5381 opcode = opcode << 8 | ir.modrm;
5382 goto no_support;
5383 }
7ad10968
HZ
5384 switch (ir.reg)
5385 {
a38bba38
MS
5386 case 0: /* inc */
5387 case 1: /* dec */
cf648174
HZ
5388 if ((opcode & 1) == 0)
5389 ir.ot = OT_BYTE;
5390 else
5391 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5392 if (ir.mod != 3)
5393 {
5394 if (i386_record_lea_modrm (&ir))
5395 return -1;
5396 }
5397 else
5398 {
cf648174
HZ
5399 ir.rm |= ir.rex_b;
5400 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5401 ir.rm &= 0x3;
25ea693b 5402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5403 }
25ea693b 5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5405 break;
a38bba38 5406 case 2: /* call */
cf648174
HZ
5407 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5408 ir.dflag = 2;
5409 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5410 return -1;
25ea693b 5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5412 break;
a38bba38 5413 case 3: /* lcall */
25ea693b 5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5415 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5416 return -1;
25ea693b 5417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5418 break;
a38bba38
MS
5419 case 4: /* jmp */
5420 case 5: /* ljmp */
25ea693b 5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5422 break;
a38bba38 5423 case 6: /* push */
cf648174
HZ
5424 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5425 ir.dflag = 2;
5426 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5427 return -1;
7ad10968
HZ
5428 break;
5429 default:
5430 ir.addr -= 2;
5431 opcode = opcode << 8 | ir.modrm;
5432 goto no_support;
5433 break;
5434 }
5435 break;
5436
a38bba38 5437 case 0x84: /* test */
7ad10968
HZ
5438 case 0x85:
5439 case 0xa8:
5440 case 0xa9:
25ea693b 5441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5442 break;
5443
a38bba38 5444 case 0x98: /* CWDE/CBW */
25ea693b 5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5446 break;
5447
a38bba38 5448 case 0x99: /* CDQ/CWD */
25ea693b
MM
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5451 break;
5452
a38bba38 5453 case 0x0faf: /* imul */
7ad10968
HZ
5454 case 0x69:
5455 case 0x6b:
5456 ir.ot = ir.dflag + OT_WORD;
5457 if (i386_record_modrm (&ir))
5458 return -1;
cf648174
HZ
5459 if (opcode == 0x69)
5460 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5461 else if (opcode == 0x6b)
5462 ir.rip_offset = 1;
5463 ir.reg |= rex_r;
5464 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5465 ir.reg &= 0x3;
25ea693b
MM
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5468 break;
5469
a38bba38 5470 case 0x0fc0: /* xadd */
7ad10968
HZ
5471 case 0x0fc1:
5472 if ((opcode & 1) == 0)
5473 ir.ot = OT_BYTE;
5474 else
5475 ir.ot = ir.dflag + OT_WORD;
5476 if (i386_record_modrm (&ir))
5477 return -1;
cf648174 5478 ir.reg |= rex_r;
7ad10968
HZ
5479 if (ir.mod == 3)
5480 {
cf648174 5481 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5482 ir.reg &= 0x3;
25ea693b 5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5484 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5485 ir.rm &= 0x3;
25ea693b 5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5487 }
5488 else
5489 {
5490 if (i386_record_lea_modrm (&ir))
5491 return -1;
cf648174 5492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5493 ir.reg &= 0x3;
25ea693b 5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5495 }
25ea693b 5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5497 break;
5498
a38bba38 5499 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5500 case 0x0fb1:
5501 if ((opcode & 1) == 0)
5502 ir.ot = OT_BYTE;
5503 else
5504 ir.ot = ir.dflag + OT_WORD;
5505 if (i386_record_modrm (&ir))
5506 return -1;
5507 if (ir.mod == 3)
5508 {
cf648174 5509 ir.reg |= rex_r;
25ea693b 5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5511 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5512 ir.reg &= 0x3;
25ea693b 5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5514 }
5515 else
5516 {
25ea693b 5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5518 if (i386_record_lea_modrm (&ir))
5519 return -1;
5520 }
25ea693b 5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5522 break;
5523
20b477a7 5524 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5525 if (i386_record_modrm (&ir))
5526 return -1;
5527 if (ir.mod == 3)
5528 {
20b477a7
LM
5529 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5530 an extended opcode. rdrand has bits 110 (/6) and rdseed
5531 has bits 111 (/7). */
5532 if (ir.reg == 6 || ir.reg == 7)
5533 {
5534 /* The storage register is described by the 3 R/M bits, but the
5535 REX.B prefix may be used to give access to registers
5536 R8~R15. In this case ir.rex_b + R/M will give us the register
5537 in the range R8~R15.
5538
5539 REX.W may also be used to access 64-bit registers, but we
5540 already record entire registers and not just partial bits
5541 of them. */
5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5543 /* These instructions also set conditional bits. */
5544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5545 break;
5546 }
5547 else
5548 {
5549 /* We don't handle this particular instruction yet. */
5550 ir.addr -= 2;
5551 opcode = opcode << 8 | ir.modrm;
5552 goto no_support;
5553 }
7ad10968 5554 }
25ea693b
MM
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5557 if (i386_record_lea_modrm (&ir))
5558 return -1;
25ea693b 5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5560 break;
5561
a38bba38 5562 case 0x50: /* push */
7ad10968
HZ
5563 case 0x51:
5564 case 0x52:
5565 case 0x53:
5566 case 0x54:
5567 case 0x55:
5568 case 0x56:
5569 case 0x57:
5570 case 0x68:
5571 case 0x6a:
cf648174
HZ
5572 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5573 ir.dflag = 2;
5574 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5575 return -1;
5576 break;
5577
a38bba38
MS
5578 case 0x06: /* push es */
5579 case 0x0e: /* push cs */
5580 case 0x16: /* push ss */
5581 case 0x1e: /* push ds */
cf648174
HZ
5582 if (ir.regmap[X86_RECORD_R8_REGNUM])
5583 {
5584 ir.addr -= 1;
5585 goto no_support;
5586 }
5587 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5588 return -1;
5589 break;
5590
a38bba38
MS
5591 case 0x0fa0: /* push fs */
5592 case 0x0fa8: /* push gs */
cf648174
HZ
5593 if (ir.regmap[X86_RECORD_R8_REGNUM])
5594 {
5595 ir.addr -= 2;
5596 goto no_support;
5597 }
5598 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5599 return -1;
cf648174
HZ
5600 break;
5601
a38bba38 5602 case 0x60: /* pusha */
cf648174
HZ
5603 if (ir.regmap[X86_RECORD_R8_REGNUM])
5604 {
5605 ir.addr -= 1;
5606 goto no_support;
5607 }
5608 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5609 return -1;
5610 break;
5611
a38bba38 5612 case 0x58: /* pop */
7ad10968
HZ
5613 case 0x59:
5614 case 0x5a:
5615 case 0x5b:
5616 case 0x5c:
5617 case 0x5d:
5618 case 0x5e:
5619 case 0x5f:
25ea693b
MM
5620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5622 break;
5623
a38bba38 5624 case 0x61: /* popa */
cf648174
HZ
5625 if (ir.regmap[X86_RECORD_R8_REGNUM])
5626 {
5627 ir.addr -= 1;
5628 goto no_support;
7ad10968 5629 }
425b824a
MS
5630 for (regnum = X86_RECORD_REAX_REGNUM;
5631 regnum <= X86_RECORD_REDI_REGNUM;
5632 regnum++)
25ea693b 5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5634 break;
5635
a38bba38 5636 case 0x8f: /* pop */
cf648174
HZ
5637 if (ir.regmap[X86_RECORD_R8_REGNUM])
5638 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5639 else
5640 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5641 if (i386_record_modrm (&ir))
5642 return -1;
5643 if (ir.mod == 3)
25ea693b 5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5645 else
5646 {
cf648174 5647 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5648 if (i386_record_lea_modrm (&ir))
5649 return -1;
5650 }
25ea693b 5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5652 break;
5653
a38bba38 5654 case 0xc8: /* enter */
25ea693b 5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5656 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5657 ir.dflag = 2;
5658 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5659 return -1;
5660 break;
5661
a38bba38 5662 case 0xc9: /* leave */
25ea693b
MM
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5665 break;
5666
a38bba38 5667 case 0x07: /* pop es */
cf648174
HZ
5668 if (ir.regmap[X86_RECORD_R8_REGNUM])
5669 {
5670 ir.addr -= 1;
5671 goto no_support;
5672 }
25ea693b
MM
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5676 break;
5677
a38bba38 5678 case 0x17: /* pop ss */
cf648174
HZ
5679 if (ir.regmap[X86_RECORD_R8_REGNUM])
5680 {
5681 ir.addr -= 1;
5682 goto no_support;
5683 }
25ea693b
MM
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5687 break;
5688
a38bba38 5689 case 0x1f: /* pop ds */
cf648174
HZ
5690 if (ir.regmap[X86_RECORD_R8_REGNUM])
5691 {
5692 ir.addr -= 1;
5693 goto no_support;
5694 }
25ea693b
MM
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5698 break;
5699
a38bba38 5700 case 0x0fa1: /* pop fs */
25ea693b
MM
5701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5704 break;
5705
a38bba38 5706 case 0x0fa9: /* pop gs */
25ea693b
MM
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5710 break;
5711
a38bba38 5712 case 0x88: /* mov */
7ad10968
HZ
5713 case 0x89:
5714 case 0xc6:
5715 case 0xc7:
5716 if ((opcode & 1) == 0)
5717 ir.ot = OT_BYTE;
5718 else
5719 ir.ot = ir.dflag + OT_WORD;
5720
5721 if (i386_record_modrm (&ir))
5722 return -1;
5723
5724 if (ir.mod != 3)
5725 {
cf648174
HZ
5726 if (opcode == 0xc6 || opcode == 0xc7)
5727 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5728 if (i386_record_lea_modrm (&ir))
5729 return -1;
5730 }
5731 else
5732 {
cf648174
HZ
5733 if (opcode == 0xc6 || opcode == 0xc7)
5734 ir.rm |= ir.rex_b;
5735 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5736 ir.rm &= 0x3;
25ea693b 5737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5738 }
7ad10968 5739 break;
cf648174 5740
a38bba38 5741 case 0x8a: /* mov */
7ad10968
HZ
5742 case 0x8b:
5743 if ((opcode & 1) == 0)
5744 ir.ot = OT_BYTE;
5745 else
5746 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5747 if (i386_record_modrm (&ir))
5748 return -1;
cf648174
HZ
5749 ir.reg |= rex_r;
5750 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5751 ir.reg &= 0x3;
25ea693b 5752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5753 break;
7ad10968 5754
a38bba38 5755 case 0x8c: /* mov seg */
cf648174 5756 if (i386_record_modrm (&ir))
7ad10968 5757 return -1;
cf648174
HZ
5758 if (ir.reg > 5)
5759 {
5760 ir.addr -= 2;
5761 opcode = opcode << 8 | ir.modrm;
5762 goto no_support;
5763 }
5764
5765 if (ir.mod == 3)
25ea693b 5766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5767 else
5768 {
5769 ir.ot = OT_WORD;
5770 if (i386_record_lea_modrm (&ir))
5771 return -1;
5772 }
7ad10968
HZ
5773 break;
5774
a38bba38 5775 case 0x8e: /* mov seg */
7ad10968
HZ
5776 if (i386_record_modrm (&ir))
5777 return -1;
7ad10968
HZ
5778 switch (ir.reg)
5779 {
5780 case 0:
425b824a 5781 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5782 break;
5783 case 2:
425b824a 5784 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5785 break;
5786 case 3:
425b824a 5787 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5788 break;
5789 case 4:
425b824a 5790 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5791 break;
5792 case 5:
425b824a 5793 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5794 break;
5795 default:
5796 ir.addr -= 2;
5797 opcode = opcode << 8 | ir.modrm;
5798 goto no_support;
5799 break;
5800 }
25ea693b
MM
5801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5803 break;
5804
a38bba38
MS
5805 case 0x0fb6: /* movzbS */
5806 case 0x0fb7: /* movzwS */
5807 case 0x0fbe: /* movsbS */
5808 case 0x0fbf: /* movswS */
7ad10968
HZ
5809 if (i386_record_modrm (&ir))
5810 return -1;
25ea693b 5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5812 break;
5813
a38bba38 5814 case 0x8d: /* lea */
7ad10968
HZ
5815 if (i386_record_modrm (&ir))
5816 return -1;
5817 if (ir.mod == 3)
5818 {
5819 ir.addr -= 2;
5820 opcode = opcode << 8 | ir.modrm;
5821 goto no_support;
5822 }
7ad10968 5823 ir.ot = ir.dflag;
cf648174
HZ
5824 ir.reg |= rex_r;
5825 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5826 ir.reg &= 0x3;
25ea693b 5827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5828 break;
5829
a38bba38 5830 case 0xa0: /* mov EAX */
7ad10968 5831 case 0xa1:
a38bba38
MS
5832
5833 case 0xd7: /* xlat */
25ea693b 5834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5835 break;
5836
a38bba38 5837 case 0xa2: /* mov EAX */
7ad10968 5838 case 0xa3:
d7877f7e 5839 if (ir.override >= 0)
cf648174 5840 {
25ea693b 5841 if (record_full_memory_query)
bb08c432 5842 {
651ce16a 5843 if (yquery (_("\
bb08c432
HZ
5844Process record ignores the memory change of instruction at address %s\n\
5845because it can't get the value of the segment register.\n\
5846Do you want to stop the program?"),
651ce16a 5847 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
5848 return -1;
5849 }
cf648174
HZ
5850 }
5851 else
5852 {
5853 if ((opcode & 1) == 0)
5854 ir.ot = OT_BYTE;
5855 else
5856 ir.ot = ir.dflag + OT_WORD;
5857 if (ir.aflag == 2)
5858 {
4ffa4fc7
PA
5859 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5860 return -1;
cf648174 5861 ir.addr += 8;
60a1502a 5862 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5863 }
5864 else if (ir.aflag)
5865 {
4ffa4fc7
PA
5866 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5867 return -1;
cf648174 5868 ir.addr += 4;
60a1502a 5869 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5870 }
5871 else
5872 {
4ffa4fc7
PA
5873 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5874 return -1;
cf648174 5875 ir.addr += 2;
60a1502a 5876 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5877 }
25ea693b 5878 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5879 return -1;
5880 }
7ad10968
HZ
5881 break;
5882
a38bba38 5883 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5884 case 0xb1:
5885 case 0xb2:
5886 case 0xb3:
5887 case 0xb4:
5888 case 0xb5:
5889 case 0xb6:
5890 case 0xb7:
25ea693b
MM
5891 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5892 ? ((opcode & 0x7) | ir.rex_b)
5893 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5894 break;
5895
a38bba38 5896 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5897 case 0xb9:
5898 case 0xba:
5899 case 0xbb:
5900 case 0xbc:
5901 case 0xbd:
5902 case 0xbe:
5903 case 0xbf:
25ea693b 5904 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5905 break;
5906
a38bba38 5907 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5908 case 0x92:
5909 case 0x93:
5910 case 0x94:
5911 case 0x95:
5912 case 0x96:
5913 case 0x97:
25ea693b
MM
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5915 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5916 break;
5917
a38bba38 5918 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5919 case 0x87:
5920 if ((opcode & 1) == 0)
5921 ir.ot = OT_BYTE;
5922 else
5923 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5924 if (i386_record_modrm (&ir))
5925 return -1;
7ad10968
HZ
5926 if (ir.mod == 3)
5927 {
86839d38 5928 ir.rm |= ir.rex_b;
cf648174
HZ
5929 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5930 ir.rm &= 0x3;
25ea693b 5931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5932 }
5933 else
5934 {
5935 if (i386_record_lea_modrm (&ir))
5936 return -1;
5937 }
cf648174
HZ
5938 ir.reg |= rex_r;
5939 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5940 ir.reg &= 0x3;
25ea693b 5941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5942 break;
5943
a38bba38
MS
5944 case 0xc4: /* les Gv */
5945 case 0xc5: /* lds Gv */
cf648174
HZ
5946 if (ir.regmap[X86_RECORD_R8_REGNUM])
5947 {
5948 ir.addr -= 1;
5949 goto no_support;
5950 }
d3f323f3 5951 /* FALLTHROUGH */
a38bba38
MS
5952 case 0x0fb2: /* lss Gv */
5953 case 0x0fb4: /* lfs Gv */
5954 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5955 if (i386_record_modrm (&ir))
5956 return -1;
5957 if (ir.mod == 3)
5958 {
5959 if (opcode > 0xff)
5960 ir.addr -= 3;
5961 else
5962 ir.addr -= 2;
5963 opcode = opcode << 8 | ir.modrm;
5964 goto no_support;
5965 }
7ad10968
HZ
5966 switch (opcode)
5967 {
a38bba38 5968 case 0xc4: /* les Gv */
425b824a 5969 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5970 break;
a38bba38 5971 case 0xc5: /* lds Gv */
425b824a 5972 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5973 break;
a38bba38 5974 case 0x0fb2: /* lss Gv */
425b824a 5975 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5976 break;
a38bba38 5977 case 0x0fb4: /* lfs Gv */
425b824a 5978 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5979 break;
a38bba38 5980 case 0x0fb5: /* lgs Gv */
425b824a 5981 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5982 break;
5983 }
25ea693b
MM
5984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5985 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5987 break;
5988
a38bba38 5989 case 0xc0: /* shifts */
7ad10968
HZ
5990 case 0xc1:
5991 case 0xd0:
5992 case 0xd1:
5993 case 0xd2:
5994 case 0xd3:
5995 if ((opcode & 1) == 0)
5996 ir.ot = OT_BYTE;
5997 else
5998 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5999 if (i386_record_modrm (&ir))
6000 return -1;
7ad10968
HZ
6001 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6002 {
6003 if (i386_record_lea_modrm (&ir))
6004 return -1;
6005 }
6006 else
6007 {
cf648174
HZ
6008 ir.rm |= ir.rex_b;
6009 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 6010 ir.rm &= 0x3;
25ea693b 6011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 6012 }
25ea693b 6013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6014 break;
6015
6016 case 0x0fa4:
6017 case 0x0fa5:
6018 case 0x0fac:
6019 case 0x0fad:
6020 if (i386_record_modrm (&ir))
6021 return -1;
6022 if (ir.mod == 3)
6023 {
25ea693b 6024 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
6025 return -1;
6026 }
6027 else
6028 {
6029 if (i386_record_lea_modrm (&ir))
6030 return -1;
6031 }
6032 break;
6033
a38bba38 6034 case 0xd8: /* Floats. */
7ad10968
HZ
6035 case 0xd9:
6036 case 0xda:
6037 case 0xdb:
6038 case 0xdc:
6039 case 0xdd:
6040 case 0xde:
6041 case 0xdf:
6042 if (i386_record_modrm (&ir))
6043 return -1;
6044 ir.reg |= ((opcode & 7) << 3);
6045 if (ir.mod != 3)
6046 {
1777feb0 6047 /* Memory. */
955db0c0 6048 uint64_t addr64;
7ad10968 6049
955db0c0 6050 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6051 return -1;
6052 switch (ir.reg)
6053 {
7ad10968 6054 case 0x02:
0289bdd7
MS
6055 case 0x12:
6056 case 0x22:
6057 case 0x32:
6058 /* For fcom, ficom nothing to do. */
6059 break;
7ad10968 6060 case 0x03:
0289bdd7
MS
6061 case 0x13:
6062 case 0x23:
6063 case 0x33:
6064 /* For fcomp, ficomp pop FPU stack, store all. */
6065 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6066 return -1;
6067 break;
6068 case 0x00:
6069 case 0x01:
7ad10968
HZ
6070 case 0x04:
6071 case 0x05:
6072 case 0x06:
6073 case 0x07:
6074 case 0x10:
6075 case 0x11:
7ad10968
HZ
6076 case 0x14:
6077 case 0x15:
6078 case 0x16:
6079 case 0x17:
6080 case 0x20:
6081 case 0x21:
7ad10968
HZ
6082 case 0x24:
6083 case 0x25:
6084 case 0x26:
6085 case 0x27:
6086 case 0x30:
6087 case 0x31:
7ad10968
HZ
6088 case 0x34:
6089 case 0x35:
6090 case 0x36:
6091 case 0x37:
0289bdd7
MS
6092 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6093 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6094 of code, always affects st(0) register. */
6095 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6096 return -1;
7ad10968
HZ
6097 break;
6098 case 0x08:
6099 case 0x0a:
6100 case 0x0b:
6101 case 0x18:
6102 case 0x19:
6103 case 0x1a:
6104 case 0x1b:
0289bdd7 6105 case 0x1d:
7ad10968
HZ
6106 case 0x28:
6107 case 0x29:
6108 case 0x2a:
6109 case 0x2b:
6110 case 0x38:
6111 case 0x39:
6112 case 0x3a:
6113 case 0x3b:
0289bdd7
MS
6114 case 0x3c:
6115 case 0x3d:
7ad10968
HZ
6116 switch (ir.reg & 7)
6117 {
6118 case 0:
0289bdd7
MS
6119 /* Handling fld, fild. */
6120 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6121 return -1;
7ad10968
HZ
6122 break;
6123 case 1:
6124 switch (ir.reg >> 4)
6125 {
6126 case 0:
25ea693b 6127 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6128 return -1;
6129 break;
6130 case 2:
25ea693b 6131 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6132 return -1;
6133 break;
6134 case 3:
0289bdd7 6135 break;
7ad10968 6136 default:
25ea693b 6137 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6138 return -1;
6139 break;
6140 }
6141 break;
6142 default:
6143 switch (ir.reg >> 4)
6144 {
6145 case 0:
25ea693b 6146 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6147 return -1;
6148 if (3 == (ir.reg & 7))
6149 {
6150 /* For fstp m32fp. */
6151 if (i386_record_floats (gdbarch, &ir,
6152 I386_SAVE_FPU_REGS))
6153 return -1;
6154 }
6155 break;
7ad10968 6156 case 1:
25ea693b 6157 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6158 return -1;
0289bdd7
MS
6159 if ((3 == (ir.reg & 7))
6160 || (5 == (ir.reg & 7))
6161 || (7 == (ir.reg & 7)))
6162 {
6163 /* For fstp insn. */
6164 if (i386_record_floats (gdbarch, &ir,
6165 I386_SAVE_FPU_REGS))
6166 return -1;
6167 }
7ad10968
HZ
6168 break;
6169 case 2:
25ea693b 6170 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6171 return -1;
0289bdd7
MS
6172 if (3 == (ir.reg & 7))
6173 {
6174 /* For fstp m64fp. */
6175 if (i386_record_floats (gdbarch, &ir,
6176 I386_SAVE_FPU_REGS))
6177 return -1;
6178 }
7ad10968
HZ
6179 break;
6180 case 3:
0289bdd7
MS
6181 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6182 {
6183 /* For fistp, fbld, fild, fbstp. */
6184 if (i386_record_floats (gdbarch, &ir,
6185 I386_SAVE_FPU_REGS))
6186 return -1;
6187 }
6188 /* Fall through */
7ad10968 6189 default:
25ea693b 6190 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6191 return -1;
6192 break;
6193 }
6194 break;
6195 }
6196 break;
6197 case 0x0c:
0289bdd7
MS
6198 /* Insn fldenv. */
6199 if (i386_record_floats (gdbarch, &ir,
6200 I386_SAVE_FPU_ENV_REG_STACK))
6201 return -1;
6202 break;
7ad10968 6203 case 0x0d:
0289bdd7
MS
6204 /* Insn fldcw. */
6205 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6206 return -1;
6207 break;
7ad10968 6208 case 0x2c:
0289bdd7
MS
6209 /* Insn frstor. */
6210 if (i386_record_floats (gdbarch, &ir,
6211 I386_SAVE_FPU_ENV_REG_STACK))
6212 return -1;
7ad10968
HZ
6213 break;
6214 case 0x0e:
6215 if (ir.dflag)
6216 {
25ea693b 6217 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6218 return -1;
6219 }
6220 else
6221 {
25ea693b 6222 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6223 return -1;
6224 }
6225 break;
6226 case 0x0f:
6227 case 0x2f:
25ea693b 6228 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6229 return -1;
0289bdd7
MS
6230 /* Insn fstp, fbstp. */
6231 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6232 return -1;
7ad10968
HZ
6233 break;
6234 case 0x1f:
6235 case 0x3e:
25ea693b 6236 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6237 return -1;
6238 break;
6239 case 0x2e:
6240 if (ir.dflag)
6241 {
25ea693b 6242 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6243 return -1;
955db0c0 6244 addr64 += 28;
7ad10968
HZ
6245 }
6246 else
6247 {
25ea693b 6248 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6249 return -1;
955db0c0 6250 addr64 += 14;
7ad10968 6251 }
25ea693b 6252 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6253 return -1;
0289bdd7
MS
6254 /* Insn fsave. */
6255 if (i386_record_floats (gdbarch, &ir,
6256 I386_SAVE_FPU_ENV_REG_STACK))
6257 return -1;
7ad10968
HZ
6258 break;
6259 case 0x3f:
25ea693b 6260 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6261 return -1;
0289bdd7
MS
6262 /* Insn fistp. */
6263 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6264 return -1;
7ad10968
HZ
6265 break;
6266 default:
6267 ir.addr -= 2;
6268 opcode = opcode << 8 | ir.modrm;
6269 goto no_support;
6270 break;
6271 }
6272 }
0289bdd7
MS
6273 /* Opcode is an extension of modR/M byte. */
6274 else
6275 {
6276 switch (opcode)
6277 {
6278 case 0xd8:
6279 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6280 return -1;
6281 break;
6282 case 0xd9:
6283 if (0x0c == (ir.modrm >> 4))
6284 {
6285 if ((ir.modrm & 0x0f) <= 7)
6286 {
6287 if (i386_record_floats (gdbarch, &ir,
6288 I386_SAVE_FPU_REGS))
6289 return -1;
6290 }
6291 else
6292 {
6293 if (i386_record_floats (gdbarch, &ir,
6294 I387_ST0_REGNUM (tdep)))
6295 return -1;
6296 /* If only st(0) is changing, then we have already
6297 recorded. */
6298 if ((ir.modrm & 0x0f) - 0x08)
6299 {
6300 if (i386_record_floats (gdbarch, &ir,
6301 I387_ST0_REGNUM (tdep) +
6302 ((ir.modrm & 0x0f) - 0x08)))
6303 return -1;
6304 }
6305 }
6306 }
6307 else
6308 {
6309 switch (ir.modrm)
6310 {
6311 case 0xe0:
6312 case 0xe1:
6313 case 0xf0:
6314 case 0xf5:
6315 case 0xf8:
6316 case 0xfa:
6317 case 0xfc:
6318 case 0xfe:
6319 case 0xff:
6320 if (i386_record_floats (gdbarch, &ir,
6321 I387_ST0_REGNUM (tdep)))
6322 return -1;
6323 break;
6324 case 0xf1:
6325 case 0xf2:
6326 case 0xf3:
6327 case 0xf4:
6328 case 0xf6:
6329 case 0xf7:
6330 case 0xe8:
6331 case 0xe9:
6332 case 0xea:
6333 case 0xeb:
6334 case 0xec:
6335 case 0xed:
6336 case 0xee:
6337 case 0xf9:
6338 case 0xfb:
6339 if (i386_record_floats (gdbarch, &ir,
6340 I386_SAVE_FPU_REGS))
6341 return -1;
6342 break;
6343 case 0xfd:
6344 if (i386_record_floats (gdbarch, &ir,
6345 I387_ST0_REGNUM (tdep)))
6346 return -1;
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep) + 1))
6349 return -1;
6350 break;
6351 }
6352 }
6353 break;
6354 case 0xda:
6355 if (0xe9 == ir.modrm)
6356 {
6357 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6358 return -1;
6359 }
6360 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6361 {
6362 if (i386_record_floats (gdbarch, &ir,
6363 I387_ST0_REGNUM (tdep)))
6364 return -1;
6365 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6366 {
6367 if (i386_record_floats (gdbarch, &ir,
6368 I387_ST0_REGNUM (tdep) +
6369 (ir.modrm & 0x0f)))
6370 return -1;
6371 }
6372 else if ((ir.modrm & 0x0f) - 0x08)
6373 {
6374 if (i386_record_floats (gdbarch, &ir,
6375 I387_ST0_REGNUM (tdep) +
6376 ((ir.modrm & 0x0f) - 0x08)))
6377 return -1;
6378 }
6379 }
6380 break;
6381 case 0xdb:
6382 if (0xe3 == ir.modrm)
6383 {
6384 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6385 return -1;
6386 }
6387 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6388 {
6389 if (i386_record_floats (gdbarch, &ir,
6390 I387_ST0_REGNUM (tdep)))
6391 return -1;
6392 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 (ir.modrm & 0x0f)))
6397 return -1;
6398 }
6399 else if ((ir.modrm & 0x0f) - 0x08)
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 ((ir.modrm & 0x0f) - 0x08)))
6404 return -1;
6405 }
6406 }
6407 break;
6408 case 0xdc:
6409 if ((0x0c == ir.modrm >> 4)
6410 || (0x0d == ir.modrm >> 4)
6411 || (0x0f == ir.modrm >> 4))
6412 {
6413 if ((ir.modrm & 0x0f) <= 7)
6414 {
6415 if (i386_record_floats (gdbarch, &ir,
6416 I387_ST0_REGNUM (tdep) +
6417 (ir.modrm & 0x0f)))
6418 return -1;
6419 }
6420 else
6421 {
6422 if (i386_record_floats (gdbarch, &ir,
6423 I387_ST0_REGNUM (tdep) +
6424 ((ir.modrm & 0x0f) - 0x08)))
6425 return -1;
6426 }
6427 }
6428 break;
6429 case 0xdd:
6430 if (0x0c == ir.modrm >> 4)
6431 {
6432 if (i386_record_floats (gdbarch, &ir,
6433 I387_FTAG_REGNUM (tdep)))
6434 return -1;
6435 }
6436 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6437 {
6438 if ((ir.modrm & 0x0f) <= 7)
6439 {
6440 if (i386_record_floats (gdbarch, &ir,
6441 I387_ST0_REGNUM (tdep) +
6442 (ir.modrm & 0x0f)))
6443 return -1;
6444 }
6445 else
6446 {
6447 if (i386_record_floats (gdbarch, &ir,
6448 I386_SAVE_FPU_REGS))
6449 return -1;
6450 }
6451 }
6452 break;
6453 case 0xde:
6454 if ((0x0c == ir.modrm >> 4)
6455 || (0x0e == ir.modrm >> 4)
6456 || (0x0f == ir.modrm >> 4)
6457 || (0xd9 == ir.modrm))
6458 {
6459 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6460 return -1;
6461 }
6462 break;
6463 case 0xdf:
6464 if (0xe0 == ir.modrm)
6465 {
25ea693b
MM
6466 if (record_full_arch_list_add_reg (ir.regcache,
6467 I386_EAX_REGNUM))
0289bdd7
MS
6468 return -1;
6469 }
6470 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6471 {
6472 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6473 return -1;
6474 }
6475 break;
6476 }
6477 }
7ad10968 6478 break;
7ad10968 6479 /* string ops */
a38bba38 6480 case 0xa4: /* movsS */
7ad10968 6481 case 0xa5:
a38bba38 6482 case 0xaa: /* stosS */
7ad10968 6483 case 0xab:
a38bba38 6484 case 0x6c: /* insS */
7ad10968 6485 case 0x6d:
cf648174 6486 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6487 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6488 &addr);
6489 if (addr)
cf648174 6490 {
77d7dc92
HZ
6491 ULONGEST es, ds;
6492
6493 if ((opcode & 1) == 0)
6494 ir.ot = OT_BYTE;
6495 else
6496 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6497 regcache_raw_read_unsigned (ir.regcache,
6498 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6499 &addr);
77d7dc92 6500
d7877f7e
HZ
6501 regcache_raw_read_unsigned (ir.regcache,
6502 ir.regmap[X86_RECORD_ES_REGNUM],
6503 &es);
6504 regcache_raw_read_unsigned (ir.regcache,
6505 ir.regmap[X86_RECORD_DS_REGNUM],
6506 &ds);
6507 if (ir.aflag && (es != ds))
77d7dc92
HZ
6508 {
6509 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6510 if (record_full_memory_query)
bb08c432 6511 {
651ce16a 6512 if (yquery (_("\
bb08c432
HZ
6513Process record ignores the memory change of instruction at address %s\n\
6514because it can't get the value of the segment register.\n\
6515Do you want to stop the program?"),
651ce16a 6516 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
6517 return -1;
6518 }
df61f520
HZ
6519 }
6520 else
6521 {
25ea693b 6522 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6523 return -1;
77d7dc92
HZ
6524 }
6525
6526 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6528 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6532 }
cf648174 6533 break;
7ad10968 6534
a38bba38 6535 case 0xa6: /* cmpsS */
cf648174 6536 case 0xa7:
25ea693b
MM
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6539 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6542 break;
6543
a38bba38 6544 case 0xac: /* lodsS */
7ad10968 6545 case 0xad:
25ea693b
MM
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6548 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6551 break;
6552
a38bba38 6553 case 0xae: /* scasS */
7ad10968 6554 case 0xaf:
25ea693b 6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6556 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6559 break;
6560
a38bba38 6561 case 0x6e: /* outsS */
cf648174 6562 case 0x6f:
25ea693b 6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6564 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6567 break;
6568
a38bba38 6569 case 0xe4: /* port I/O */
7ad10968
HZ
6570 case 0xe5:
6571 case 0xec:
6572 case 0xed:
25ea693b
MM
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6575 break;
6576
6577 case 0xe6:
6578 case 0xe7:
6579 case 0xee:
6580 case 0xef:
6581 break;
6582
6583 /* control */
a38bba38
MS
6584 case 0xc2: /* ret im */
6585 case 0xc3: /* ret */
25ea693b
MM
6586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6588 break;
6589
a38bba38
MS
6590 case 0xca: /* lret im */
6591 case 0xcb: /* lret */
6592 case 0xcf: /* iret */
25ea693b
MM
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6596 break;
6597
a38bba38 6598 case 0xe8: /* call im */
cf648174
HZ
6599 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6600 ir.dflag = 2;
6601 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6602 return -1;
7ad10968
HZ
6603 break;
6604
a38bba38 6605 case 0x9a: /* lcall im */
cf648174
HZ
6606 if (ir.regmap[X86_RECORD_R8_REGNUM])
6607 {
6608 ir.addr -= 1;
6609 goto no_support;
6610 }
25ea693b 6611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6612 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6613 return -1;
7ad10968
HZ
6614 break;
6615
a38bba38
MS
6616 case 0xe9: /* jmp im */
6617 case 0xea: /* ljmp im */
6618 case 0xeb: /* jmp Jb */
6619 case 0x70: /* jcc Jb */
7ad10968
HZ
6620 case 0x71:
6621 case 0x72:
6622 case 0x73:
6623 case 0x74:
6624 case 0x75:
6625 case 0x76:
6626 case 0x77:
6627 case 0x78:
6628 case 0x79:
6629 case 0x7a:
6630 case 0x7b:
6631 case 0x7c:
6632 case 0x7d:
6633 case 0x7e:
6634 case 0x7f:
a38bba38 6635 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6636 case 0x0f81:
6637 case 0x0f82:
6638 case 0x0f83:
6639 case 0x0f84:
6640 case 0x0f85:
6641 case 0x0f86:
6642 case 0x0f87:
6643 case 0x0f88:
6644 case 0x0f89:
6645 case 0x0f8a:
6646 case 0x0f8b:
6647 case 0x0f8c:
6648 case 0x0f8d:
6649 case 0x0f8e:
6650 case 0x0f8f:
6651 break;
6652
a38bba38 6653 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6654 case 0x0f91:
6655 case 0x0f92:
6656 case 0x0f93:
6657 case 0x0f94:
6658 case 0x0f95:
6659 case 0x0f96:
6660 case 0x0f97:
6661 case 0x0f98:
6662 case 0x0f99:
6663 case 0x0f9a:
6664 case 0x0f9b:
6665 case 0x0f9c:
6666 case 0x0f9d:
6667 case 0x0f9e:
6668 case 0x0f9f:
25ea693b 6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6670 ir.ot = OT_BYTE;
6671 if (i386_record_modrm (&ir))
6672 return -1;
6673 if (ir.mod == 3)
25ea693b
MM
6674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6675 : (ir.rm & 0x3));
7ad10968
HZ
6676 else
6677 {
6678 if (i386_record_lea_modrm (&ir))
6679 return -1;
6680 }
6681 break;
6682
a38bba38 6683 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6684 case 0x0f41:
6685 case 0x0f42:
6686 case 0x0f43:
6687 case 0x0f44:
6688 case 0x0f45:
6689 case 0x0f46:
6690 case 0x0f47:
6691 case 0x0f48:
6692 case 0x0f49:
6693 case 0x0f4a:
6694 case 0x0f4b:
6695 case 0x0f4c:
6696 case 0x0f4d:
6697 case 0x0f4e:
6698 case 0x0f4f:
6699 if (i386_record_modrm (&ir))
6700 return -1;
cf648174 6701 ir.reg |= rex_r;
7ad10968
HZ
6702 if (ir.dflag == OT_BYTE)
6703 ir.reg &= 0x3;
25ea693b 6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6705 break;
6706
6707 /* flags */
a38bba38 6708 case 0x9c: /* pushf */
25ea693b 6709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6710 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6711 ir.dflag = 2;
6712 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6713 return -1;
7ad10968
HZ
6714 break;
6715
a38bba38 6716 case 0x9d: /* popf */
25ea693b
MM
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6719 break;
6720
a38bba38 6721 case 0x9e: /* sahf */
cf648174
HZ
6722 if (ir.regmap[X86_RECORD_R8_REGNUM])
6723 {
6724 ir.addr -= 1;
6725 goto no_support;
6726 }
d3f323f3 6727 /* FALLTHROUGH */
a38bba38
MS
6728 case 0xf5: /* cmc */
6729 case 0xf8: /* clc */
6730 case 0xf9: /* stc */
6731 case 0xfc: /* cld */
6732 case 0xfd: /* std */
25ea693b 6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6734 break;
6735
a38bba38 6736 case 0x9f: /* lahf */
cf648174
HZ
6737 if (ir.regmap[X86_RECORD_R8_REGNUM])
6738 {
6739 ir.addr -= 1;
6740 goto no_support;
6741 }
25ea693b
MM
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6744 break;
6745
6746 /* bit operations */
a38bba38 6747 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6748 ir.ot = ir.dflag + OT_WORD;
6749 if (i386_record_modrm (&ir))
6750 return -1;
6751 if (ir.reg < 4)
6752 {
cf648174 6753 ir.addr -= 2;
7ad10968
HZ
6754 opcode = opcode << 8 | ir.modrm;
6755 goto no_support;
6756 }
cf648174 6757 if (ir.reg != 4)
7ad10968 6758 {
cf648174 6759 if (ir.mod == 3)
25ea693b 6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6761 else
6762 {
cf648174 6763 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6764 return -1;
6765 }
6766 }
25ea693b 6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6768 break;
6769
a38bba38 6770 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6772 break;
6773
a38bba38
MS
6774 case 0x0fab: /* bts */
6775 case 0x0fb3: /* btr */
6776 case 0x0fbb: /* btc */
cf648174
HZ
6777 ir.ot = ir.dflag + OT_WORD;
6778 if (i386_record_modrm (&ir))
6779 return -1;
6780 if (ir.mod == 3)
25ea693b 6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6782 else
6783 {
955db0c0
MS
6784 uint64_t addr64;
6785 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6786 return -1;
6787 regcache_raw_read_unsigned (ir.regcache,
6788 ir.regmap[ir.reg | rex_r],
648d0c8b 6789 &addr);
cf648174
HZ
6790 switch (ir.dflag)
6791 {
6792 case 0:
648d0c8b 6793 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6794 break;
6795 case 1:
648d0c8b 6796 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6797 break;
6798 case 2:
648d0c8b 6799 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6800 break;
6801 }
25ea693b 6802 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6803 return -1;
6804 if (i386_record_lea_modrm (&ir))
6805 return -1;
6806 }
25ea693b 6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6808 break;
6809
a38bba38
MS
6810 case 0x0fbc: /* bsf */
6811 case 0x0fbd: /* bsr */
25ea693b
MM
6812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6814 break;
6815
6816 /* bcd */
a38bba38
MS
6817 case 0x27: /* daa */
6818 case 0x2f: /* das */
6819 case 0x37: /* aaa */
6820 case 0x3f: /* aas */
6821 case 0xd4: /* aam */
6822 case 0xd5: /* aad */
cf648174
HZ
6823 if (ir.regmap[X86_RECORD_R8_REGNUM])
6824 {
6825 ir.addr -= 1;
6826 goto no_support;
6827 }
25ea693b
MM
6828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6830 break;
6831
6832 /* misc */
a38bba38 6833 case 0x90: /* nop */
7ad10968
HZ
6834 if (prefixes & PREFIX_LOCK)
6835 {
6836 ir.addr -= 1;
6837 goto no_support;
6838 }
6839 break;
6840
a38bba38 6841 case 0x9b: /* fwait */
4ffa4fc7
PA
6842 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6843 return -1;
425b824a 6844 opcode = (uint32_t) opcode8;
0289bdd7
MS
6845 ir.addr++;
6846 goto reswitch;
7ad10968
HZ
6847 break;
6848
7ad10968 6849 /* XXX */
a38bba38 6850 case 0xcc: /* int3 */
a3c4230a 6851 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6852 "int3.\n"));
6853 ir.addr -= 1;
6854 goto no_support;
6855 break;
6856
7ad10968 6857 /* XXX */
a38bba38 6858 case 0xcd: /* int */
7ad10968
HZ
6859 {
6860 int ret;
425b824a 6861 uint8_t interrupt;
4ffa4fc7
PA
6862 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6863 return -1;
7ad10968 6864 ir.addr++;
425b824a 6865 if (interrupt != 0x80
a3c4230a 6866 || tdep->i386_intx80_record == NULL)
7ad10968 6867 {
a3c4230a 6868 printf_unfiltered (_("Process record does not support "
7ad10968 6869 "instruction int 0x%02x.\n"),
425b824a 6870 interrupt);
7ad10968
HZ
6871 ir.addr -= 2;
6872 goto no_support;
6873 }
a3c4230a 6874 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6875 if (ret)
6876 return ret;
6877 }
6878 break;
6879
7ad10968 6880 /* XXX */
a38bba38 6881 case 0xce: /* into */
a3c4230a 6882 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6883 "instruction into.\n"));
6884 ir.addr -= 1;
6885 goto no_support;
6886 break;
6887
a38bba38
MS
6888 case 0xfa: /* cli */
6889 case 0xfb: /* sti */
7ad10968
HZ
6890 break;
6891
a38bba38 6892 case 0x62: /* bound */
a3c4230a 6893 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6894 "instruction bound.\n"));
6895 ir.addr -= 1;
6896 goto no_support;
6897 break;
6898
a38bba38 6899 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6900 case 0x0fc9:
6901 case 0x0fca:
6902 case 0x0fcb:
6903 case 0x0fcc:
6904 case 0x0fcd:
6905 case 0x0fce:
6906 case 0x0fcf:
25ea693b 6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6908 break;
6909
a38bba38 6910 case 0xd6: /* salc */
cf648174
HZ
6911 if (ir.regmap[X86_RECORD_R8_REGNUM])
6912 {
6913 ir.addr -= 1;
6914 goto no_support;
6915 }
25ea693b
MM
6916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6917 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6918 break;
6919
a38bba38
MS
6920 case 0xe0: /* loopnz */
6921 case 0xe1: /* loopz */
6922 case 0xe2: /* loop */
6923 case 0xe3: /* jecxz */
25ea693b
MM
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6926 break;
6927
a38bba38 6928 case 0x0f30: /* wrmsr */
a3c4230a 6929 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6930 "instruction wrmsr.\n"));
6931 ir.addr -= 2;
6932 goto no_support;
6933 break;
6934
a38bba38 6935 case 0x0f32: /* rdmsr */
a3c4230a 6936 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6937 "instruction rdmsr.\n"));
6938 ir.addr -= 2;
6939 goto no_support;
6940 break;
6941
a38bba38 6942 case 0x0f31: /* rdtsc */
25ea693b
MM
6943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6945 break;
6946
a38bba38 6947 case 0x0f34: /* sysenter */
7ad10968
HZ
6948 {
6949 int ret;
cf648174
HZ
6950 if (ir.regmap[X86_RECORD_R8_REGNUM])
6951 {
6952 ir.addr -= 2;
6953 goto no_support;
6954 }
a3c4230a 6955 if (tdep->i386_sysenter_record == NULL)
7ad10968 6956 {
a3c4230a 6957 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6958 "instruction sysenter.\n"));
6959 ir.addr -= 2;
6960 goto no_support;
6961 }
a3c4230a 6962 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6963 if (ret)
6964 return ret;
6965 }
6966 break;
6967
a38bba38 6968 case 0x0f35: /* sysexit */
a3c4230a 6969 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6970 "instruction sysexit.\n"));
6971 ir.addr -= 2;
6972 goto no_support;
6973 break;
6974
a38bba38 6975 case 0x0f05: /* syscall */
cf648174
HZ
6976 {
6977 int ret;
a3c4230a 6978 if (tdep->i386_syscall_record == NULL)
cf648174 6979 {
a3c4230a 6980 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6981 "instruction syscall.\n"));
6982 ir.addr -= 2;
6983 goto no_support;
6984 }
a3c4230a 6985 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6986 if (ret)
6987 return ret;
6988 }
6989 break;
6990
a38bba38 6991 case 0x0f07: /* sysret */
a3c4230a 6992 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6993 "instruction sysret.\n"));
6994 ir.addr -= 2;
6995 goto no_support;
6996 break;
6997
a38bba38 6998 case 0x0fa2: /* cpuid */
25ea693b
MM
6999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
7003 break;
7004
a38bba38 7005 case 0xf4: /* hlt */
a3c4230a 7006 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
7007 "instruction hlt.\n"));
7008 ir.addr -= 1;
7009 goto no_support;
7010 break;
7011
7012 case 0x0f00:
7013 if (i386_record_modrm (&ir))
7014 return -1;
7015 switch (ir.reg)
7016 {
a38bba38
MS
7017 case 0: /* sldt */
7018 case 1: /* str */
7ad10968 7019 if (ir.mod == 3)
25ea693b 7020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7021 else
7022 {
7023 ir.ot = OT_WORD;
7024 if (i386_record_lea_modrm (&ir))
7025 return -1;
7026 }
7027 break;
a38bba38
MS
7028 case 2: /* lldt */
7029 case 3: /* ltr */
7ad10968 7030 break;
a38bba38
MS
7031 case 4: /* verr */
7032 case 5: /* verw */
25ea693b 7033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7034 break;
7035 default:
7036 ir.addr -= 3;
7037 opcode = opcode << 8 | ir.modrm;
7038 goto no_support;
7039 break;
7040 }
7041 break;
7042
7043 case 0x0f01:
7044 if (i386_record_modrm (&ir))
7045 return -1;
7046 switch (ir.reg)
7047 {
a38bba38 7048 case 0: /* sgdt */
7ad10968 7049 {
955db0c0 7050 uint64_t addr64;
7ad10968
HZ
7051
7052 if (ir.mod == 3)
7053 {
7054 ir.addr -= 3;
7055 opcode = opcode << 8 | ir.modrm;
7056 goto no_support;
7057 }
d7877f7e 7058 if (ir.override >= 0)
7ad10968 7059 {
25ea693b 7060 if (record_full_memory_query)
bb08c432 7061 {
651ce16a 7062 if (yquery (_("\
bb08c432
HZ
7063Process record ignores the memory change of instruction at address %s\n\
7064because it can't get the value of the segment register.\n\
7065Do you want to stop the program?"),
651ce16a
PA
7066 paddress (gdbarch, ir.orig_addr)))
7067 return -1;
bb08c432 7068 }
7ad10968
HZ
7069 }
7070 else
7071 {
955db0c0 7072 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7073 return -1;
25ea693b 7074 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7075 return -1;
955db0c0 7076 addr64 += 2;
cf648174
HZ
7077 if (ir.regmap[X86_RECORD_R8_REGNUM])
7078 {
25ea693b 7079 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7080 return -1;
7081 }
7082 else
7083 {
25ea693b 7084 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7085 return -1;
7086 }
7ad10968
HZ
7087 }
7088 }
7089 break;
7090 case 1:
7091 if (ir.mod == 3)
7092 {
7093 switch (ir.rm)
7094 {
a38bba38 7095 case 0: /* monitor */
7ad10968 7096 break;
a38bba38 7097 case 1: /* mwait */
25ea693b 7098 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7099 break;
7100 default:
7101 ir.addr -= 3;
7102 opcode = opcode << 8 | ir.modrm;
7103 goto no_support;
7104 break;
7105 }
7106 }
7107 else
7108 {
7109 /* sidt */
d7877f7e 7110 if (ir.override >= 0)
7ad10968 7111 {
25ea693b 7112 if (record_full_memory_query)
bb08c432 7113 {
651ce16a 7114 if (yquery (_("\
bb08c432
HZ
7115Process record ignores the memory change of instruction at address %s\n\
7116because it can't get the value of the segment register.\n\
7117Do you want to stop the program?"),
651ce16a 7118 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
7119 return -1;
7120 }
7ad10968
HZ
7121 }
7122 else
7123 {
955db0c0 7124 uint64_t addr64;
7ad10968 7125
955db0c0 7126 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7127 return -1;
25ea693b 7128 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7129 return -1;
955db0c0 7130 addr64 += 2;
cf648174
HZ
7131 if (ir.regmap[X86_RECORD_R8_REGNUM])
7132 {
25ea693b 7133 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7134 return -1;
7135 }
7136 else
7137 {
25ea693b 7138 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7139 return -1;
7140 }
7ad10968
HZ
7141 }
7142 }
7143 break;
a38bba38 7144 case 2: /* lgdt */
3800e645
MS
7145 if (ir.mod == 3)
7146 {
7147 /* xgetbv */
7148 if (ir.rm == 0)
7149 {
25ea693b
MM
7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7152 break;
7153 }
7154 /* xsetbv */
7155 else if (ir.rm == 1)
7156 break;
7157 }
da0e1563 7158 /* Fall through. */
a38bba38 7159 case 3: /* lidt */
7ad10968
HZ
7160 if (ir.mod == 3)
7161 {
7162 ir.addr -= 3;
7163 opcode = opcode << 8 | ir.modrm;
7164 goto no_support;
7165 }
7166 break;
a38bba38 7167 case 4: /* smsw */
7ad10968
HZ
7168 if (ir.mod == 3)
7169 {
25ea693b 7170 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7171 return -1;
7172 }
7173 else
7174 {
7175 ir.ot = OT_WORD;
7176 if (i386_record_lea_modrm (&ir))
7177 return -1;
7178 }
25ea693b 7179 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7180 break;
a38bba38 7181 case 6: /* lmsw */
25ea693b 7182 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7183 break;
a38bba38 7184 case 7: /* invlpg */
cf648174
HZ
7185 if (ir.mod == 3)
7186 {
7187 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7189 else
7190 {
7191 ir.addr -= 3;
7192 opcode = opcode << 8 | ir.modrm;
7193 goto no_support;
7194 }
7195 }
7196 else
25ea693b 7197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7198 break;
7199 default:
7200 ir.addr -= 3;
7201 opcode = opcode << 8 | ir.modrm;
7202 goto no_support;
7ad10968
HZ
7203 break;
7204 }
7205 break;
7206
a38bba38
MS
7207 case 0x0f08: /* invd */
7208 case 0x0f09: /* wbinvd */
7ad10968
HZ
7209 break;
7210
a38bba38 7211 case 0x63: /* arpl */
7ad10968
HZ
7212 if (i386_record_modrm (&ir))
7213 return -1;
cf648174
HZ
7214 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7215 {
25ea693b
MM
7216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7217 ? (ir.reg | rex_r) : ir.rm);
cf648174 7218 }
7ad10968 7219 else
cf648174
HZ
7220 {
7221 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7222 if (i386_record_lea_modrm (&ir))
7223 return -1;
7224 }
7225 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7226 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7227 break;
7228
a38bba38
MS
7229 case 0x0f02: /* lar */
7230 case 0x0f03: /* lsl */
7ad10968
HZ
7231 if (i386_record_modrm (&ir))
7232 return -1;
25ea693b
MM
7233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7235 break;
7236
7237 case 0x0f18:
cf648174
HZ
7238 if (i386_record_modrm (&ir))
7239 return -1;
7240 if (ir.mod == 3 && ir.reg == 3)
7241 {
7242 ir.addr -= 3;
7243 opcode = opcode << 8 | ir.modrm;
7244 goto no_support;
7245 }
7ad10968
HZ
7246 break;
7247
7ad10968
HZ
7248 case 0x0f19:
7249 case 0x0f1a:
7250 case 0x0f1b:
7251 case 0x0f1c:
7252 case 0x0f1d:
7253 case 0x0f1e:
7254 case 0x0f1f:
a38bba38 7255 /* nop (multi byte) */
7ad10968
HZ
7256 break;
7257
a38bba38
MS
7258 case 0x0f20: /* mov reg, crN */
7259 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7260 if (i386_record_modrm (&ir))
7261 return -1;
7262 if ((ir.modrm & 0xc0) != 0xc0)
7263 {
cf648174 7264 ir.addr -= 3;
7ad10968
HZ
7265 opcode = opcode << 8 | ir.modrm;
7266 goto no_support;
7267 }
7268 switch (ir.reg)
7269 {
7270 case 0:
7271 case 2:
7272 case 3:
7273 case 4:
7274 case 8:
7275 if (opcode & 2)
25ea693b 7276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7277 else
25ea693b 7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7279 break;
7280 default:
cf648174 7281 ir.addr -= 3;
7ad10968
HZ
7282 opcode = opcode << 8 | ir.modrm;
7283 goto no_support;
7284 break;
7285 }
7286 break;
7287
a38bba38
MS
7288 case 0x0f21: /* mov reg, drN */
7289 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7290 if (i386_record_modrm (&ir))
7291 return -1;
7292 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7293 || ir.reg == 5 || ir.reg >= 8)
7294 {
cf648174 7295 ir.addr -= 3;
7ad10968
HZ
7296 opcode = opcode << 8 | ir.modrm;
7297 goto no_support;
7298 }
7299 if (opcode & 2)
25ea693b 7300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7301 else
25ea693b 7302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7303 break;
7304
a38bba38 7305 case 0x0f06: /* clts */
25ea693b 7306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7307 break;
7308
a3c4230a
HZ
7309 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7310
7311 case 0x0f0d: /* 3DNow! prefetch */
7312 break;
7313
7314 case 0x0f0e: /* 3DNow! femms */
7315 case 0x0f77: /* emms */
7316 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7317 goto no_support;
25ea693b 7318 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7319 break;
7320
7321 case 0x0f0f: /* 3DNow! data */
7322 if (i386_record_modrm (&ir))
7323 return -1;
4ffa4fc7
PA
7324 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7325 return -1;
a3c4230a
HZ
7326 ir.addr++;
7327 switch (opcode8)
7328 {
7329 case 0x0c: /* 3DNow! pi2fw */
7330 case 0x0d: /* 3DNow! pi2fd */
7331 case 0x1c: /* 3DNow! pf2iw */
7332 case 0x1d: /* 3DNow! pf2id */
7333 case 0x8a: /* 3DNow! pfnacc */
7334 case 0x8e: /* 3DNow! pfpnacc */
7335 case 0x90: /* 3DNow! pfcmpge */
7336 case 0x94: /* 3DNow! pfmin */
7337 case 0x96: /* 3DNow! pfrcp */
7338 case 0x97: /* 3DNow! pfrsqrt */
7339 case 0x9a: /* 3DNow! pfsub */
7340 case 0x9e: /* 3DNow! pfadd */
7341 case 0xa0: /* 3DNow! pfcmpgt */
7342 case 0xa4: /* 3DNow! pfmax */
7343 case 0xa6: /* 3DNow! pfrcpit1 */
7344 case 0xa7: /* 3DNow! pfrsqit1 */
7345 case 0xaa: /* 3DNow! pfsubr */
7346 case 0xae: /* 3DNow! pfacc */
7347 case 0xb0: /* 3DNow! pfcmpeq */
7348 case 0xb4: /* 3DNow! pfmul */
7349 case 0xb6: /* 3DNow! pfrcpit2 */
7350 case 0xb7: /* 3DNow! pmulhrw */
7351 case 0xbb: /* 3DNow! pswapd */
7352 case 0xbf: /* 3DNow! pavgusb */
7353 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7354 goto no_support_3dnow_data;
25ea693b 7355 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7356 break;
7357
7358 default:
7359no_support_3dnow_data:
7360 opcode = (opcode << 8) | opcode8;
7361 goto no_support;
7362 break;
7363 }
7364 break;
7365
7366 case 0x0faa: /* rsm */
25ea693b
MM
7367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7376 break;
7377
7378 case 0x0fae:
7379 if (i386_record_modrm (&ir))
7380 return -1;
7381 switch(ir.reg)
7382 {
7383 case 0: /* fxsave */
7384 {
7385 uint64_t tmpu64;
7386
25ea693b 7387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7388 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7389 return -1;
25ea693b 7390 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7391 return -1;
7392 }
7393 break;
7394
7395 case 1: /* fxrstor */
7396 {
7397 int i;
7398
25ea693b 7399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7400
7401 for (i = I387_MM0_REGNUM (tdep);
7402 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7403 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7404
7405 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7406 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7407 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7408
7409 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7410 record_full_arch_list_add_reg (ir.regcache,
7411 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7412
7413 for (i = I387_ST0_REGNUM (tdep);
7414 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7415 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7416
7417 for (i = I387_FCTRL_REGNUM (tdep);
7418 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7419 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7420 }
7421 break;
7422
7423 case 2: /* ldmxcsr */
7424 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7425 goto no_support;
25ea693b 7426 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7427 break;
7428
7429 case 3: /* stmxcsr */
7430 ir.ot = OT_LONG;
7431 if (i386_record_lea_modrm (&ir))
7432 return -1;
7433 break;
7434
7435 case 5: /* lfence */
7436 case 6: /* mfence */
7437 case 7: /* sfence clflush */
7438 break;
7439
7440 default:
7441 opcode = (opcode << 8) | ir.modrm;
7442 goto no_support;
7443 break;
7444 }
7445 break;
7446
7447 case 0x0fc3: /* movnti */
7448 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7449 if (i386_record_modrm (&ir))
7450 return -1;
7451 if (ir.mod == 3)
7452 goto no_support;
7453 ir.reg |= rex_r;
7454 if (i386_record_lea_modrm (&ir))
7455 return -1;
7456 break;
7457
7458 /* Add prefix to opcode. */
7459 case 0x0f10:
7460 case 0x0f11:
7461 case 0x0f12:
7462 case 0x0f13:
7463 case 0x0f14:
7464 case 0x0f15:
7465 case 0x0f16:
7466 case 0x0f17:
7467 case 0x0f28:
7468 case 0x0f29:
7469 case 0x0f2a:
7470 case 0x0f2b:
7471 case 0x0f2c:
7472 case 0x0f2d:
7473 case 0x0f2e:
7474 case 0x0f2f:
7475 case 0x0f38:
7476 case 0x0f39:
7477 case 0x0f3a:
7478 case 0x0f50:
7479 case 0x0f51:
7480 case 0x0f52:
7481 case 0x0f53:
7482 case 0x0f54:
7483 case 0x0f55:
7484 case 0x0f56:
7485 case 0x0f57:
7486 case 0x0f58:
7487 case 0x0f59:
7488 case 0x0f5a:
7489 case 0x0f5b:
7490 case 0x0f5c:
7491 case 0x0f5d:
7492 case 0x0f5e:
7493 case 0x0f5f:
7494 case 0x0f60:
7495 case 0x0f61:
7496 case 0x0f62:
7497 case 0x0f63:
7498 case 0x0f64:
7499 case 0x0f65:
7500 case 0x0f66:
7501 case 0x0f67:
7502 case 0x0f68:
7503 case 0x0f69:
7504 case 0x0f6a:
7505 case 0x0f6b:
7506 case 0x0f6c:
7507 case 0x0f6d:
7508 case 0x0f6e:
7509 case 0x0f6f:
7510 case 0x0f70:
7511 case 0x0f71:
7512 case 0x0f72:
7513 case 0x0f73:
7514 case 0x0f74:
7515 case 0x0f75:
7516 case 0x0f76:
7517 case 0x0f7c:
7518 case 0x0f7d:
7519 case 0x0f7e:
7520 case 0x0f7f:
7521 case 0x0fb8:
7522 case 0x0fc2:
7523 case 0x0fc4:
7524 case 0x0fc5:
7525 case 0x0fc6:
7526 case 0x0fd0:
7527 case 0x0fd1:
7528 case 0x0fd2:
7529 case 0x0fd3:
7530 case 0x0fd4:
7531 case 0x0fd5:
7532 case 0x0fd6:
7533 case 0x0fd7:
7534 case 0x0fd8:
7535 case 0x0fd9:
7536 case 0x0fda:
7537 case 0x0fdb:
7538 case 0x0fdc:
7539 case 0x0fdd:
7540 case 0x0fde:
7541 case 0x0fdf:
7542 case 0x0fe0:
7543 case 0x0fe1:
7544 case 0x0fe2:
7545 case 0x0fe3:
7546 case 0x0fe4:
7547 case 0x0fe5:
7548 case 0x0fe6:
7549 case 0x0fe7:
7550 case 0x0fe8:
7551 case 0x0fe9:
7552 case 0x0fea:
7553 case 0x0feb:
7554 case 0x0fec:
7555 case 0x0fed:
7556 case 0x0fee:
7557 case 0x0fef:
7558 case 0x0ff0:
7559 case 0x0ff1:
7560 case 0x0ff2:
7561 case 0x0ff3:
7562 case 0x0ff4:
7563 case 0x0ff5:
7564 case 0x0ff6:
7565 case 0x0ff7:
7566 case 0x0ff8:
7567 case 0x0ff9:
7568 case 0x0ffa:
7569 case 0x0ffb:
7570 case 0x0ffc:
7571 case 0x0ffd:
7572 case 0x0ffe:
f9fda3f5
L
7573 /* Mask out PREFIX_ADDR. */
7574 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7575 {
7576 case PREFIX_REPNZ:
7577 opcode |= 0xf20000;
7578 break;
7579 case PREFIX_DATA:
7580 opcode |= 0x660000;
7581 break;
7582 case PREFIX_REPZ:
7583 opcode |= 0xf30000;
7584 break;
7585 }
7586reswitch_prefix_add:
7587 switch (opcode)
7588 {
7589 case 0x0f38:
7590 case 0x660f38:
7591 case 0xf20f38:
7592 case 0x0f3a:
7593 case 0x660f3a:
4ffa4fc7
PA
7594 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7595 return -1;
a3c4230a
HZ
7596 ir.addr++;
7597 opcode = (uint32_t) opcode8 | opcode << 8;
7598 goto reswitch_prefix_add;
7599 break;
7600
7601 case 0x0f10: /* movups */
7602 case 0x660f10: /* movupd */
7603 case 0xf30f10: /* movss */
7604 case 0xf20f10: /* movsd */
7605 case 0x0f12: /* movlps */
7606 case 0x660f12: /* movlpd */
7607 case 0xf30f12: /* movsldup */
7608 case 0xf20f12: /* movddup */
7609 case 0x0f14: /* unpcklps */
7610 case 0x660f14: /* unpcklpd */
7611 case 0x0f15: /* unpckhps */
7612 case 0x660f15: /* unpckhpd */
7613 case 0x0f16: /* movhps */
7614 case 0x660f16: /* movhpd */
7615 case 0xf30f16: /* movshdup */
7616 case 0x0f28: /* movaps */
7617 case 0x660f28: /* movapd */
7618 case 0x0f2a: /* cvtpi2ps */
7619 case 0x660f2a: /* cvtpi2pd */
7620 case 0xf30f2a: /* cvtsi2ss */
7621 case 0xf20f2a: /* cvtsi2sd */
7622 case 0x0f2c: /* cvttps2pi */
7623 case 0x660f2c: /* cvttpd2pi */
7624 case 0x0f2d: /* cvtps2pi */
7625 case 0x660f2d: /* cvtpd2pi */
7626 case 0x660f3800: /* pshufb */
7627 case 0x660f3801: /* phaddw */
7628 case 0x660f3802: /* phaddd */
7629 case 0x660f3803: /* phaddsw */
7630 case 0x660f3804: /* pmaddubsw */
7631 case 0x660f3805: /* phsubw */
7632 case 0x660f3806: /* phsubd */
4f7d61a8 7633 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7634 case 0x660f3808: /* psignb */
7635 case 0x660f3809: /* psignw */
7636 case 0x660f380a: /* psignd */
7637 case 0x660f380b: /* pmulhrsw */
7638 case 0x660f3810: /* pblendvb */
7639 case 0x660f3814: /* blendvps */
7640 case 0x660f3815: /* blendvpd */
7641 case 0x660f381c: /* pabsb */
7642 case 0x660f381d: /* pabsw */
7643 case 0x660f381e: /* pabsd */
7644 case 0x660f3820: /* pmovsxbw */
7645 case 0x660f3821: /* pmovsxbd */
7646 case 0x660f3822: /* pmovsxbq */
7647 case 0x660f3823: /* pmovsxwd */
7648 case 0x660f3824: /* pmovsxwq */
7649 case 0x660f3825: /* pmovsxdq */
7650 case 0x660f3828: /* pmuldq */
7651 case 0x660f3829: /* pcmpeqq */
7652 case 0x660f382a: /* movntdqa */
7653 case 0x660f3a08: /* roundps */
7654 case 0x660f3a09: /* roundpd */
7655 case 0x660f3a0a: /* roundss */
7656 case 0x660f3a0b: /* roundsd */
7657 case 0x660f3a0c: /* blendps */
7658 case 0x660f3a0d: /* blendpd */
7659 case 0x660f3a0e: /* pblendw */
7660 case 0x660f3a0f: /* palignr */
7661 case 0x660f3a20: /* pinsrb */
7662 case 0x660f3a21: /* insertps */
7663 case 0x660f3a22: /* pinsrd pinsrq */
7664 case 0x660f3a40: /* dpps */
7665 case 0x660f3a41: /* dppd */
7666 case 0x660f3a42: /* mpsadbw */
7667 case 0x660f3a60: /* pcmpestrm */
7668 case 0x660f3a61: /* pcmpestri */
7669 case 0x660f3a62: /* pcmpistrm */
7670 case 0x660f3a63: /* pcmpistri */
7671 case 0x0f51: /* sqrtps */
7672 case 0x660f51: /* sqrtpd */
7673 case 0xf20f51: /* sqrtsd */
7674 case 0xf30f51: /* sqrtss */
7675 case 0x0f52: /* rsqrtps */
7676 case 0xf30f52: /* rsqrtss */
7677 case 0x0f53: /* rcpps */
7678 case 0xf30f53: /* rcpss */
7679 case 0x0f54: /* andps */
7680 case 0x660f54: /* andpd */
7681 case 0x0f55: /* andnps */
7682 case 0x660f55: /* andnpd */
7683 case 0x0f56: /* orps */
7684 case 0x660f56: /* orpd */
7685 case 0x0f57: /* xorps */
7686 case 0x660f57: /* xorpd */
7687 case 0x0f58: /* addps */
7688 case 0x660f58: /* addpd */
7689 case 0xf20f58: /* addsd */
7690 case 0xf30f58: /* addss */
7691 case 0x0f59: /* mulps */
7692 case 0x660f59: /* mulpd */
7693 case 0xf20f59: /* mulsd */
7694 case 0xf30f59: /* mulss */
7695 case 0x0f5a: /* cvtps2pd */
7696 case 0x660f5a: /* cvtpd2ps */
7697 case 0xf20f5a: /* cvtsd2ss */
7698 case 0xf30f5a: /* cvtss2sd */
7699 case 0x0f5b: /* cvtdq2ps */
7700 case 0x660f5b: /* cvtps2dq */
7701 case 0xf30f5b: /* cvttps2dq */
7702 case 0x0f5c: /* subps */
7703 case 0x660f5c: /* subpd */
7704 case 0xf20f5c: /* subsd */
7705 case 0xf30f5c: /* subss */
7706 case 0x0f5d: /* minps */
7707 case 0x660f5d: /* minpd */
7708 case 0xf20f5d: /* minsd */
7709 case 0xf30f5d: /* minss */
7710 case 0x0f5e: /* divps */
7711 case 0x660f5e: /* divpd */
7712 case 0xf20f5e: /* divsd */
7713 case 0xf30f5e: /* divss */
7714 case 0x0f5f: /* maxps */
7715 case 0x660f5f: /* maxpd */
7716 case 0xf20f5f: /* maxsd */
7717 case 0xf30f5f: /* maxss */
7718 case 0x660f60: /* punpcklbw */
7719 case 0x660f61: /* punpcklwd */
7720 case 0x660f62: /* punpckldq */
7721 case 0x660f63: /* packsswb */
7722 case 0x660f64: /* pcmpgtb */
7723 case 0x660f65: /* pcmpgtw */
56d2815c 7724 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7725 case 0x660f67: /* packuswb */
7726 case 0x660f68: /* punpckhbw */
7727 case 0x660f69: /* punpckhwd */
7728 case 0x660f6a: /* punpckhdq */
7729 case 0x660f6b: /* packssdw */
7730 case 0x660f6c: /* punpcklqdq */
7731 case 0x660f6d: /* punpckhqdq */
7732 case 0x660f6e: /* movd */
7733 case 0x660f6f: /* movdqa */
7734 case 0xf30f6f: /* movdqu */
7735 case 0x660f70: /* pshufd */
7736 case 0xf20f70: /* pshuflw */
7737 case 0xf30f70: /* pshufhw */
7738 case 0x660f74: /* pcmpeqb */
7739 case 0x660f75: /* pcmpeqw */
56d2815c 7740 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7741 case 0x660f7c: /* haddpd */
7742 case 0xf20f7c: /* haddps */
7743 case 0x660f7d: /* hsubpd */
7744 case 0xf20f7d: /* hsubps */
7745 case 0xf30f7e: /* movq */
7746 case 0x0fc2: /* cmpps */
7747 case 0x660fc2: /* cmppd */
7748 case 0xf20fc2: /* cmpsd */
7749 case 0xf30fc2: /* cmpss */
7750 case 0x660fc4: /* pinsrw */
7751 case 0x0fc6: /* shufps */
7752 case 0x660fc6: /* shufpd */
7753 case 0x660fd0: /* addsubpd */
7754 case 0xf20fd0: /* addsubps */
7755 case 0x660fd1: /* psrlw */
7756 case 0x660fd2: /* psrld */
7757 case 0x660fd3: /* psrlq */
7758 case 0x660fd4: /* paddq */
7759 case 0x660fd5: /* pmullw */
7760 case 0xf30fd6: /* movq2dq */
7761 case 0x660fd8: /* psubusb */
7762 case 0x660fd9: /* psubusw */
7763 case 0x660fda: /* pminub */
7764 case 0x660fdb: /* pand */
7765 case 0x660fdc: /* paddusb */
7766 case 0x660fdd: /* paddusw */
7767 case 0x660fde: /* pmaxub */
7768 case 0x660fdf: /* pandn */
7769 case 0x660fe0: /* pavgb */
7770 case 0x660fe1: /* psraw */
7771 case 0x660fe2: /* psrad */
7772 case 0x660fe3: /* pavgw */
7773 case 0x660fe4: /* pmulhuw */
7774 case 0x660fe5: /* pmulhw */
7775 case 0x660fe6: /* cvttpd2dq */
7776 case 0xf20fe6: /* cvtpd2dq */
7777 case 0xf30fe6: /* cvtdq2pd */
7778 case 0x660fe8: /* psubsb */
7779 case 0x660fe9: /* psubsw */
7780 case 0x660fea: /* pminsw */
7781 case 0x660feb: /* por */
7782 case 0x660fec: /* paddsb */
7783 case 0x660fed: /* paddsw */
7784 case 0x660fee: /* pmaxsw */
7785 case 0x660fef: /* pxor */
4f7d61a8 7786 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7787 case 0x660ff1: /* psllw */
7788 case 0x660ff2: /* pslld */
7789 case 0x660ff3: /* psllq */
7790 case 0x660ff4: /* pmuludq */
7791 case 0x660ff5: /* pmaddwd */
7792 case 0x660ff6: /* psadbw */
7793 case 0x660ff8: /* psubb */
7794 case 0x660ff9: /* psubw */
56d2815c 7795 case 0x660ffa: /* psubd */
a3c4230a
HZ
7796 case 0x660ffb: /* psubq */
7797 case 0x660ffc: /* paddb */
7798 case 0x660ffd: /* paddw */
56d2815c 7799 case 0x660ffe: /* paddd */
a3c4230a
HZ
7800 if (i386_record_modrm (&ir))
7801 return -1;
7802 ir.reg |= rex_r;
c131fcee 7803 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7804 goto no_support;
25ea693b
MM
7805 record_full_arch_list_add_reg (ir.regcache,
7806 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7807 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7809 break;
7810
7811 case 0x0f11: /* movups */
7812 case 0x660f11: /* movupd */
7813 case 0xf30f11: /* movss */
7814 case 0xf20f11: /* movsd */
7815 case 0x0f13: /* movlps */
7816 case 0x660f13: /* movlpd */
7817 case 0x0f17: /* movhps */
7818 case 0x660f17: /* movhpd */
7819 case 0x0f29: /* movaps */
7820 case 0x660f29: /* movapd */
7821 case 0x660f3a14: /* pextrb */
7822 case 0x660f3a15: /* pextrw */
7823 case 0x660f3a16: /* pextrd pextrq */
7824 case 0x660f3a17: /* extractps */
7825 case 0x660f7f: /* movdqa */
7826 case 0xf30f7f: /* movdqu */
7827 if (i386_record_modrm (&ir))
7828 return -1;
7829 if (ir.mod == 3)
7830 {
7831 if (opcode == 0x0f13 || opcode == 0x660f13
7832 || opcode == 0x0f17 || opcode == 0x660f17)
7833 goto no_support;
7834 ir.rm |= ir.rex_b;
1777feb0
MS
7835 if (!i386_xmm_regnum_p (gdbarch,
7836 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7837 goto no_support;
25ea693b
MM
7838 record_full_arch_list_add_reg (ir.regcache,
7839 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7840 }
7841 else
7842 {
7843 switch (opcode)
7844 {
7845 case 0x660f3a14:
7846 ir.ot = OT_BYTE;
7847 break;
7848 case 0x660f3a15:
7849 ir.ot = OT_WORD;
7850 break;
7851 case 0x660f3a16:
7852 ir.ot = OT_LONG;
7853 break;
7854 case 0x660f3a17:
7855 ir.ot = OT_QUAD;
7856 break;
7857 default:
7858 ir.ot = OT_DQUAD;
7859 break;
7860 }
7861 if (i386_record_lea_modrm (&ir))
7862 return -1;
7863 }
7864 break;
7865
7866 case 0x0f2b: /* movntps */
7867 case 0x660f2b: /* movntpd */
7868 case 0x0fe7: /* movntq */
7869 case 0x660fe7: /* movntdq */
7870 if (ir.mod == 3)
7871 goto no_support;
7872 if (opcode == 0x0fe7)
7873 ir.ot = OT_QUAD;
7874 else
7875 ir.ot = OT_DQUAD;
7876 if (i386_record_lea_modrm (&ir))
7877 return -1;
7878 break;
7879
7880 case 0xf30f2c: /* cvttss2si */
7881 case 0xf20f2c: /* cvttsd2si */
7882 case 0xf30f2d: /* cvtss2si */
7883 case 0xf20f2d: /* cvtsd2si */
7884 case 0xf20f38f0: /* crc32 */
7885 case 0xf20f38f1: /* crc32 */
7886 case 0x0f50: /* movmskps */
7887 case 0x660f50: /* movmskpd */
7888 case 0x0fc5: /* pextrw */
7889 case 0x660fc5: /* pextrw */
7890 case 0x0fd7: /* pmovmskb */
7891 case 0x660fd7: /* pmovmskb */
25ea693b 7892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7893 break;
7894
7895 case 0x0f3800: /* pshufb */
7896 case 0x0f3801: /* phaddw */
7897 case 0x0f3802: /* phaddd */
7898 case 0x0f3803: /* phaddsw */
7899 case 0x0f3804: /* pmaddubsw */
7900 case 0x0f3805: /* phsubw */
7901 case 0x0f3806: /* phsubd */
4f7d61a8 7902 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7903 case 0x0f3808: /* psignb */
7904 case 0x0f3809: /* psignw */
7905 case 0x0f380a: /* psignd */
7906 case 0x0f380b: /* pmulhrsw */
7907 case 0x0f381c: /* pabsb */
7908 case 0x0f381d: /* pabsw */
7909 case 0x0f381e: /* pabsd */
7910 case 0x0f382b: /* packusdw */
7911 case 0x0f3830: /* pmovzxbw */
7912 case 0x0f3831: /* pmovzxbd */
7913 case 0x0f3832: /* pmovzxbq */
7914 case 0x0f3833: /* pmovzxwd */
7915 case 0x0f3834: /* pmovzxwq */
7916 case 0x0f3835: /* pmovzxdq */
7917 case 0x0f3837: /* pcmpgtq */
7918 case 0x0f3838: /* pminsb */
7919 case 0x0f3839: /* pminsd */
7920 case 0x0f383a: /* pminuw */
7921 case 0x0f383b: /* pminud */
7922 case 0x0f383c: /* pmaxsb */
7923 case 0x0f383d: /* pmaxsd */
7924 case 0x0f383e: /* pmaxuw */
7925 case 0x0f383f: /* pmaxud */
7926 case 0x0f3840: /* pmulld */
7927 case 0x0f3841: /* phminposuw */
7928 case 0x0f3a0f: /* palignr */
7929 case 0x0f60: /* punpcklbw */
7930 case 0x0f61: /* punpcklwd */
7931 case 0x0f62: /* punpckldq */
7932 case 0x0f63: /* packsswb */
7933 case 0x0f64: /* pcmpgtb */
7934 case 0x0f65: /* pcmpgtw */
56d2815c 7935 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7936 case 0x0f67: /* packuswb */
7937 case 0x0f68: /* punpckhbw */
7938 case 0x0f69: /* punpckhwd */
7939 case 0x0f6a: /* punpckhdq */
7940 case 0x0f6b: /* packssdw */
7941 case 0x0f6e: /* movd */
7942 case 0x0f6f: /* movq */
7943 case 0x0f70: /* pshufw */
7944 case 0x0f74: /* pcmpeqb */
7945 case 0x0f75: /* pcmpeqw */
56d2815c 7946 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7947 case 0x0fc4: /* pinsrw */
7948 case 0x0fd1: /* psrlw */
7949 case 0x0fd2: /* psrld */
7950 case 0x0fd3: /* psrlq */
7951 case 0x0fd4: /* paddq */
7952 case 0x0fd5: /* pmullw */
7953 case 0xf20fd6: /* movdq2q */
7954 case 0x0fd8: /* psubusb */
7955 case 0x0fd9: /* psubusw */
7956 case 0x0fda: /* pminub */
7957 case 0x0fdb: /* pand */
7958 case 0x0fdc: /* paddusb */
7959 case 0x0fdd: /* paddusw */
7960 case 0x0fde: /* pmaxub */
7961 case 0x0fdf: /* pandn */
7962 case 0x0fe0: /* pavgb */
7963 case 0x0fe1: /* psraw */
7964 case 0x0fe2: /* psrad */
7965 case 0x0fe3: /* pavgw */
7966 case 0x0fe4: /* pmulhuw */
7967 case 0x0fe5: /* pmulhw */
7968 case 0x0fe8: /* psubsb */
7969 case 0x0fe9: /* psubsw */
7970 case 0x0fea: /* pminsw */
7971 case 0x0feb: /* por */
7972 case 0x0fec: /* paddsb */
7973 case 0x0fed: /* paddsw */
7974 case 0x0fee: /* pmaxsw */
7975 case 0x0fef: /* pxor */
7976 case 0x0ff1: /* psllw */
7977 case 0x0ff2: /* pslld */
7978 case 0x0ff3: /* psllq */
7979 case 0x0ff4: /* pmuludq */
7980 case 0x0ff5: /* pmaddwd */
7981 case 0x0ff6: /* psadbw */
7982 case 0x0ff8: /* psubb */
7983 case 0x0ff9: /* psubw */
56d2815c 7984 case 0x0ffa: /* psubd */
a3c4230a
HZ
7985 case 0x0ffb: /* psubq */
7986 case 0x0ffc: /* paddb */
7987 case 0x0ffd: /* paddw */
56d2815c 7988 case 0x0ffe: /* paddd */
a3c4230a
HZ
7989 if (i386_record_modrm (&ir))
7990 return -1;
7991 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7992 goto no_support;
25ea693b
MM
7993 record_full_arch_list_add_reg (ir.regcache,
7994 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7995 break;
7996
7997 case 0x0f71: /* psllw */
7998 case 0x0f72: /* pslld */
7999 case 0x0f73: /* psllq */
8000 if (i386_record_modrm (&ir))
8001 return -1;
8002 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8003 goto no_support;
25ea693b
MM
8004 record_full_arch_list_add_reg (ir.regcache,
8005 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8006 break;
8007
8008 case 0x660f71: /* psllw */
8009 case 0x660f72: /* pslld */
8010 case 0x660f73: /* psllq */
8011 if (i386_record_modrm (&ir))
8012 return -1;
8013 ir.rm |= ir.rex_b;
c131fcee 8014 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8015 goto no_support;
25ea693b
MM
8016 record_full_arch_list_add_reg (ir.regcache,
8017 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8018 break;
8019
8020 case 0x0f7e: /* movd */
8021 case 0x660f7e: /* movd */
8022 if (i386_record_modrm (&ir))
8023 return -1;
8024 if (ir.mod == 3)
25ea693b 8025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
8026 else
8027 {
8028 if (ir.dflag == 2)
8029 ir.ot = OT_QUAD;
8030 else
8031 ir.ot = OT_LONG;
8032 if (i386_record_lea_modrm (&ir))
8033 return -1;
8034 }
8035 break;
8036
8037 case 0x0f7f: /* movq */
8038 if (i386_record_modrm (&ir))
8039 return -1;
8040 if (ir.mod == 3)
8041 {
8042 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8043 goto no_support;
25ea693b
MM
8044 record_full_arch_list_add_reg (ir.regcache,
8045 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8046 }
8047 else
8048 {
8049 ir.ot = OT_QUAD;
8050 if (i386_record_lea_modrm (&ir))
8051 return -1;
8052 }
8053 break;
8054
8055 case 0xf30fb8: /* popcnt */
8056 if (i386_record_modrm (&ir))
8057 return -1;
25ea693b
MM
8058 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8059 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8060 break;
8061
8062 case 0x660fd6: /* movq */
8063 if (i386_record_modrm (&ir))
8064 return -1;
8065 if (ir.mod == 3)
8066 {
8067 ir.rm |= ir.rex_b;
1777feb0
MS
8068 if (!i386_xmm_regnum_p (gdbarch,
8069 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8070 goto no_support;
25ea693b
MM
8071 record_full_arch_list_add_reg (ir.regcache,
8072 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8073 }
8074 else
8075 {
8076 ir.ot = OT_QUAD;
8077 if (i386_record_lea_modrm (&ir))
8078 return -1;
8079 }
8080 break;
8081
8082 case 0x660f3817: /* ptest */
8083 case 0x0f2e: /* ucomiss */
8084 case 0x660f2e: /* ucomisd */
8085 case 0x0f2f: /* comiss */
8086 case 0x660f2f: /* comisd */
25ea693b 8087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8088 break;
8089
8090 case 0x0ff7: /* maskmovq */
8091 regcache_raw_read_unsigned (ir.regcache,
8092 ir.regmap[X86_RECORD_REDI_REGNUM],
8093 &addr);
25ea693b 8094 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8095 return -1;
8096 break;
8097
8098 case 0x660ff7: /* maskmovdqu */
8099 regcache_raw_read_unsigned (ir.regcache,
8100 ir.regmap[X86_RECORD_REDI_REGNUM],
8101 &addr);
25ea693b 8102 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8103 return -1;
8104 break;
8105
8106 default:
8107 goto no_support;
8108 break;
8109 }
8110 break;
7ad10968
HZ
8111
8112 default:
7ad10968
HZ
8113 goto no_support;
8114 break;
8115 }
8116
cf648174 8117 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8118 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8119 if (record_full_arch_list_add_end ())
7ad10968
HZ
8120 return -1;
8121
8122 return 0;
8123
01fe1b41 8124 no_support:
a3c4230a
HZ
8125 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8126 "at address %s.\n"),
8127 (unsigned int) (opcode),
8128 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8129 return -1;
8130}
8131
cf648174
HZ
8132static const int i386_record_regmap[] =
8133{
8134 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8135 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8136 0, 0, 0, 0, 0, 0, 0, 0,
8137 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8138 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8139};
8140
7a697b8d 8141/* Check that the given address appears suitable for a fast
405f8e94 8142 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8143 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8144 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8145 middle of the tracepoint jump. On x86, it may be possible to use
8146 4-byte jumps with a 2-byte offset to a trampoline located in the
8147 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8148 of instruction to replace, and 0 if not, plus an explanatory
8149 string. */
8150
8151static int
6b940e6a 8152i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
281d762b 8153 std::string *msg)
7a697b8d
SS
8154{
8155 int len, jumplen;
7a697b8d 8156
405f8e94
SS
8157 /* Ask the target for the minimum instruction length supported. */
8158 jumplen = target_get_min_fast_tracepoint_insn_len ();
8159
8160 if (jumplen < 0)
8161 {
8162 /* If the target does not support the get_min_fast_tracepoint_insn_len
8163 operation, assume that fast tracepoints will always be implemented
8164 using 4-byte relative jumps on both x86 and x86-64. */
8165 jumplen = 5;
8166 }
8167 else if (jumplen == 0)
8168 {
8169 /* If the target does support get_min_fast_tracepoint_insn_len but
8170 returns zero, then the IPA has not loaded yet. In this case,
8171 we optimistically assume that truncated 2-byte relative jumps
8172 will be available on x86, and compensate later if this assumption
8173 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8174 jumps will always be used. */
8175 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8176 }
7a697b8d 8177
7a697b8d 8178 /* Check for fit. */
be85ce7d 8179 len = gdb_insn_length (gdbarch, addr);
405f8e94 8180
7a697b8d
SS
8181 if (len < jumplen)
8182 {
8183 /* Return a bit of target-specific detail to add to the caller's
8184 generic failure message. */
8185 if (msg)
281d762b
TT
8186 *msg = string_printf (_("; instruction is only %d bytes long, "
8187 "need at least %d bytes for the jump"),
8188 len, jumplen);
7a697b8d
SS
8189 return 0;
8190 }
405f8e94
SS
8191 else
8192 {
8193 if (msg)
281d762b 8194 msg->clear ();
405f8e94
SS
8195 return 1;
8196 }
7a697b8d
SS
8197}
8198
00d5215e
UW
8199/* Return a floating-point format for a floating-point variable of
8200 length LEN in bits. If non-NULL, NAME is the name of its type.
8201 If no suitable type is found, return NULL. */
8202
cb8c24b6 8203static const struct floatformat **
00d5215e
UW
8204i386_floatformat_for_type (struct gdbarch *gdbarch,
8205 const char *name, int len)
8206{
8207 if (len == 128 && name)
8208 if (strcmp (name, "__float128") == 0
8209 || strcmp (name, "_Float128") == 0
34d11c68
AB
8210 || strcmp (name, "complex _Float128") == 0
8211 || strcmp (name, "complex(kind=16)") == 0
8212 || strcmp (name, "real(kind=16)") == 0)
00d5215e
UW
8213 return floatformats_ia64_quad;
8214
8215 return default_floatformat_for_type (gdbarch, name, len);
8216}
8217
90884b2b
L
8218static int
8219i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8220 struct tdesc_arch_data *tdesc_data)
8221{
8222 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8223 const struct tdesc_feature *feature_core;
01f9f808
MS
8224
8225 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
1163a4b7 8226 *feature_avx512, *feature_pkeys, *feature_segments;
90884b2b
L
8227 int i, num_regs, valid_p;
8228
8229 if (! tdesc_has_registers (tdesc))
8230 return 0;
8231
8232 /* Get core registers. */
8233 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8234 if (feature_core == NULL)
8235 return 0;
90884b2b
L
8236
8237 /* Get SSE registers. */
c131fcee 8238 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8239
c131fcee
L
8240 /* Try AVX registers. */
8241 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8242
1dbcd68c
WT
8243 /* Try MPX registers. */
8244 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8245
01f9f808
MS
8246 /* Try AVX512 registers. */
8247 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8248
1163a4b7
JB
8249 /* Try segment base registers. */
8250 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8251
51547df6
MS
8252 /* Try PKEYS */
8253 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8254
90884b2b
L
8255 valid_p = 1;
8256
c131fcee 8257 /* The XCR0 bits. */
01f9f808
MS
8258 if (feature_avx512)
8259 {
8260 /* AVX512 register description requires AVX register description. */
8261 if (!feature_avx)
8262 return 0;
8263
a1fa17ee 8264 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8265
8266 /* It may have been set by OSABI initialization function. */
8267 if (tdep->k0_regnum < 0)
8268 {
8269 tdep->k_register_names = i386_k_names;
8270 tdep->k0_regnum = I386_K0_REGNUM;
8271 }
8272
8273 for (i = 0; i < I387_NUM_K_REGS; i++)
8274 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8275 tdep->k0_regnum + i,
8276 i386_k_names[i]);
8277
8278 if (tdep->num_zmm_regs == 0)
8279 {
8280 tdep->zmmh_register_names = i386_zmmh_names;
8281 tdep->num_zmm_regs = 8;
8282 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8283 }
8284
8285 for (i = 0; i < tdep->num_zmm_regs; i++)
8286 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8287 tdep->zmm0h_regnum + i,
8288 tdep->zmmh_register_names[i]);
8289
8290 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8292 tdep->xmm16_regnum + i,
8293 tdep->xmm_avx512_register_names[i]);
8294
8295 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8297 tdep->ymm16h_regnum + i,
8298 tdep->ymm16h_register_names[i]);
8299 }
c131fcee
L
8300 if (feature_avx)
8301 {
3a13a53b
L
8302 /* AVX register description requires SSE register description. */
8303 if (!feature_sse)
8304 return 0;
8305
01f9f808 8306 if (!feature_avx512)
df7e5265 8307 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8308
8309 /* It may have been set by OSABI initialization function. */
8310 if (tdep->num_ymm_regs == 0)
8311 {
8312 tdep->ymmh_register_names = i386_ymmh_names;
8313 tdep->num_ymm_regs = 8;
8314 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8315 }
8316
8317 for (i = 0; i < tdep->num_ymm_regs; i++)
8318 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8319 tdep->ymm0h_regnum + i,
8320 tdep->ymmh_register_names[i]);
8321 }
3a13a53b 8322 else if (feature_sse)
df7e5265 8323 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8324 else
8325 {
df7e5265 8326 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8327 tdep->num_xmm_regs = 0;
8328 }
c131fcee 8329
90884b2b
L
8330 num_regs = tdep->num_core_regs;
8331 for (i = 0; i < num_regs; i++)
8332 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8333 tdep->register_names[i]);
8334
3a13a53b
L
8335 if (feature_sse)
8336 {
8337 /* Need to include %mxcsr, so add one. */
8338 num_regs += tdep->num_xmm_regs + 1;
8339 for (; i < num_regs; i++)
8340 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8341 tdep->register_names[i]);
8342 }
90884b2b 8343
1dbcd68c
WT
8344 if (feature_mpx)
8345 {
df7e5265 8346 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8347
8348 if (tdep->bnd0r_regnum < 0)
8349 {
8350 tdep->mpx_register_names = i386_mpx_names;
8351 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8352 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8353 }
8354
8355 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8356 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8357 I387_BND0R_REGNUM (tdep) + i,
8358 tdep->mpx_register_names[i]);
8359 }
8360
1163a4b7
JB
8361 if (feature_segments)
8362 {
8363 if (tdep->fsbase_regnum < 0)
8364 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8365 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8366 tdep->fsbase_regnum, "fs_base");
8367 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8368 tdep->fsbase_regnum + 1, "gs_base");
8369 }
8370
51547df6
MS
8371 if (feature_pkeys)
8372 {
8373 tdep->xcr0 |= X86_XSTATE_PKRU;
8374 if (tdep->pkru_regnum < 0)
8375 {
8376 tdep->pkeys_register_names = i386_pkeys_names;
8377 tdep->pkru_regnum = I386_PKRU_REGNUM;
8378 tdep->num_pkeys_regs = 1;
8379 }
8380
8381 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8382 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8383 I387_PKRU_REGNUM (tdep) + i,
8384 tdep->pkeys_register_names[i]);
8385 }
8386
90884b2b
L
8387 return valid_p;
8388}
8389
2b4424c3
TT
8390\f
8391
8392/* Implement the type_align gdbarch function. */
8393
8394static ULONGEST
8395i386_type_align (struct gdbarch *gdbarch, struct type *type)
8396{
8397 type = check_typedef (type);
8398
8399 if (gdbarch_ptr_bit (gdbarch) == 32)
8400 {
78134374
SM
8401 if ((type->code () == TYPE_CODE_INT
8402 || type->code () == TYPE_CODE_FLT)
2b4424c3
TT
8403 && TYPE_LENGTH (type) > 4)
8404 return 4;
8405
8406 /* Handle x86's funny long double. */
78134374 8407 if (type->code () == TYPE_CODE_FLT
2b4424c3
TT
8408 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8409 return 4;
8410 }
8411
5561fc30 8412 return 0;
2b4424c3
TT
8413}
8414
7ad10968 8415\f
ad9eb1fd
DE
8416/* Note: This is called for both i386 and amd64. */
8417
7ad10968
HZ
8418static struct gdbarch *
8419i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8420{
8421 struct gdbarch_tdep *tdep;
8422 struct gdbarch *gdbarch;
90884b2b
L
8423 struct tdesc_arch_data *tdesc_data;
8424 const struct target_desc *tdesc;
1ba53b71 8425 int mm0_regnum;
c131fcee 8426 int ymm0_regnum;
1dbcd68c
WT
8427 int bnd0_regnum;
8428 int num_bnd_cooked;
7ad10968
HZ
8429
8430 /* If there is already a candidate, use it. */
8431 arches = gdbarch_list_lookup_by_info (arches, &info);
8432 if (arches != NULL)
8433 return arches->gdbarch;
8434
ad9eb1fd 8435 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8436 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8437 gdbarch = gdbarch_alloc (&info, tdep);
8438
8439 /* General-purpose registers. */
7ad10968
HZ
8440 tdep->gregset_reg_offset = NULL;
8441 tdep->gregset_num_regs = I386_NUM_GREGS;
8442 tdep->sizeof_gregset = 0;
8443
8444 /* Floating-point registers. */
7ad10968 8445 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8446 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8447
8448 /* The default settings include the FPU registers, the MMX registers
8449 and the SSE registers. This can be overridden for a specific ABI
8450 by adjusting the members `st0_regnum', `mm0_regnum' and
8451 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8452 will show up in the output of "info all-registers". */
7ad10968
HZ
8453
8454 tdep->st0_regnum = I386_ST0_REGNUM;
8455
7ad10968
HZ
8456 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8457 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8458
8459 tdep->jb_pc_offset = -1;
8460 tdep->struct_return = pcc_struct_return;
8461 tdep->sigtramp_start = 0;
8462 tdep->sigtramp_end = 0;
8463 tdep->sigtramp_p = i386_sigtramp_p;
8464 tdep->sigcontext_addr = NULL;
8465 tdep->sc_reg_offset = NULL;
8466 tdep->sc_pc_offset = -1;
8467 tdep->sc_sp_offset = -1;
8468
c131fcee
L
8469 tdep->xsave_xcr0_offset = -1;
8470
cf648174
HZ
8471 tdep->record_regmap = i386_record_regmap;
8472
2b4424c3 8473 set_gdbarch_type_align (gdbarch, i386_type_align);
205c306f 8474
7ad10968
HZ
8475 /* The format used for `long double' on almost all i386 targets is
8476 the i387 extended floating-point format. In fact, of all targets
8477 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8478 on having a `long double' that's not `long' at all. */
8479 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8480
8481 /* Although the i387 extended floating-point has only 80 significant
8482 bits, a `long double' actually takes up 96, probably to enforce
8483 alignment. */
8484 set_gdbarch_long_double_bit (gdbarch, 96);
8485
00d5215e
UW
8486 /* Support for floating-point data type variants. */
8487 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8488
7ad10968
HZ
8489 /* Register numbers of various important registers. */
8490 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8491 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8492 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8493 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8494
8495 /* NOTE: kettenis/20040418: GCC does have two possible register
8496 numbering schemes on the i386: dbx and SVR4. These schemes
8497 differ in how they number %ebp, %esp, %eflags, and the
8498 floating-point registers, and are implemented by the arrays
8499 dbx_register_map[] and svr4_dbx_register_map in
8500 gcc/config/i386.c. GCC also defines a third numbering scheme in
8501 gcc/config/i386.c, which it designates as the "default" register
8502 map used in 64bit mode. This last register numbering scheme is
8503 implemented in dbx64_register_map, and is used for AMD64; see
8504 amd64-tdep.c.
8505
8506 Currently, each GCC i386 target always uses the same register
8507 numbering scheme across all its supported debugging formats
8508 i.e. SDB (COFF), stabs and DWARF 2. This is because
8509 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8510 DBX_REGISTER_NUMBER macro which is defined by each target's
8511 respective config header in a manner independent of the requested
8512 output debugging format.
8513
8514 This does not match the arrangement below, which presumes that
8515 the SDB and stabs numbering schemes differ from the DWARF and
8516 DWARF 2 ones. The reason for this arrangement is that it is
8517 likely to get the numbering scheme for the target's
8518 default/native debug format right. For targets where GCC is the
8519 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8520 targets where the native toolchain uses a different numbering
8521 scheme for a particular debug format (stabs-in-ELF on Solaris)
8522 the defaults below will have to be overridden, like
8523 i386_elf_init_abi() does. */
8524
8525 /* Use the dbx register numbering scheme for stabs and COFF. */
8526 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8527 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8528
8529 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8530 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8531
8532 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8533 be in use on any of the supported i386 targets. */
8534
8535 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8536
8537 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8538
8539 /* Call dummy code. */
a9b8d892
JK
8540 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8541 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8542 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8543 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8544
8545 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8546 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8547 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8548
8549 set_gdbarch_return_value (gdbarch, i386_return_value);
8550
8551 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8552
8553 /* Stack grows downward. */
8554 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8555
04180708
YQ
8556 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8557 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8558
7ad10968
HZ
8559 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8560 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8561
8562 set_gdbarch_frame_args_skip (gdbarch, 8);
8563
7ad10968
HZ
8564 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8565
8566 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8567
8568 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8569
8570 /* Add the i386 register groups. */
8571 i386_add_reggroups (gdbarch);
90884b2b 8572 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8573
143985b7
AF
8574 /* Helper for function argument information. */
8575 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8576
06da04c6 8577 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8578 appended to the list first, so that it supercedes the DWARF
8579 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8580 currently fails). */
8581 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8582
8583 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8584 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8585 CFI info will be used if it is available. */
10458914 8586 dwarf2_append_unwinders (gdbarch);
6405b0a6 8587
acd5c798 8588 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8589
1ba53b71 8590 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8591 set_gdbarch_pseudo_register_read_value (gdbarch,
8592 i386_pseudo_register_read_value);
90884b2b 8593 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8594 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8595 i386_ax_pseudo_register_collect);
90884b2b
L
8596
8597 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8598 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8599
c131fcee
L
8600 /* Override the normal target description method to make the AVX
8601 upper halves anonymous. */
8602 set_gdbarch_register_name (gdbarch, i386_register_name);
8603
8604 /* Even though the default ABI only includes general-purpose registers,
8605 floating-point registers and the SSE registers, we have to leave a
01f9f808 8606 gap for the upper AVX, MPX and AVX512 registers. */
1163a4b7 8607 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
90884b2b 8608
ac04f72b
TT
8609 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8610
90884b2b
L
8611 /* Get the x86 target description from INFO. */
8612 tdesc = info.target_desc;
8613 if (! tdesc_has_registers (tdesc))
1163a4b7 8614 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
90884b2b
L
8615 tdep->tdesc = tdesc;
8616
8617 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8618 tdep->register_names = i386_register_names;
8619
c131fcee
L
8620 /* No upper YMM registers. */
8621 tdep->ymmh_register_names = NULL;
8622 tdep->ymm0h_regnum = -1;
8623
01f9f808
MS
8624 /* No upper ZMM registers. */
8625 tdep->zmmh_register_names = NULL;
8626 tdep->zmm0h_regnum = -1;
8627
8628 /* No high XMM registers. */
8629 tdep->xmm_avx512_register_names = NULL;
8630 tdep->xmm16_regnum = -1;
8631
8632 /* No upper YMM16-31 registers. */
8633 tdep->ymm16h_register_names = NULL;
8634 tdep->ymm16h_regnum = -1;
8635
1ba53b71
L
8636 tdep->num_byte_regs = 8;
8637 tdep->num_word_regs = 8;
8638 tdep->num_dword_regs = 0;
8639 tdep->num_mmx_regs = 8;
c131fcee 8640 tdep->num_ymm_regs = 0;
1ba53b71 8641
1dbcd68c
WT
8642 /* No MPX registers. */
8643 tdep->bnd0r_regnum = -1;
8644 tdep->bndcfgu_regnum = -1;
8645
01f9f808
MS
8646 /* No AVX512 registers. */
8647 tdep->k0_regnum = -1;
8648 tdep->num_zmm_regs = 0;
8649 tdep->num_ymm_avx512_regs = 0;
8650 tdep->num_xmm_avx512_regs = 0;
8651
51547df6
MS
8652 /* No PKEYS registers */
8653 tdep->pkru_regnum = -1;
8654 tdep->num_pkeys_regs = 0;
8655
1163a4b7
JB
8656 /* No segment base registers. */
8657 tdep->fsbase_regnum = -1;
8658
90884b2b
L
8659 tdesc_data = tdesc_data_alloc ();
8660
dde08ee1
PA
8661 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8662
6710bf39
SS
8663 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8664
c2170eef
MM
8665 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8666 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8667 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8668
ad9eb1fd
DE
8669 /* Hook in ABI-specific overrides, if they have been registered.
8670 Note: If INFO specifies a 64 bit arch, this is where we turn
8671 a 32-bit i386 into a 64-bit amd64. */
0dba2a6c 8672 info.tdesc_data = tdesc_data;
4be87837 8673 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8674
c131fcee
L
8675 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8676 {
8677 tdesc_data_cleanup (tdesc_data);
8678 xfree (tdep);
8679 gdbarch_free (gdbarch);
8680 return NULL;
8681 }
8682
1dbcd68c
WT
8683 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8684
1ba53b71
L
8685 /* Wire in pseudo registers. Number of pseudo registers may be
8686 changed. */
8687 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8688 + tdep->num_word_regs
8689 + tdep->num_dword_regs
c131fcee 8690 + tdep->num_mmx_regs
1dbcd68c 8691 + tdep->num_ymm_regs
01f9f808
MS
8692 + num_bnd_cooked
8693 + tdep->num_ymm_avx512_regs
8694 + tdep->num_zmm_regs));
1ba53b71 8695
90884b2b
L
8696 /* Target description may be changed. */
8697 tdesc = tdep->tdesc;
8698
90884b2b
L
8699 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8700
8701 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8702 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8703
1ba53b71
L
8704 /* Make %al the first pseudo-register. */
8705 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8706 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8707
c131fcee 8708 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8709 if (tdep->num_dword_regs)
8710 {
1c6272a6 8711 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8712 tdep->eax_regnum = ymm0_regnum;
8713 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8714 }
8715 else
8716 tdep->eax_regnum = -1;
8717
c131fcee
L
8718 mm0_regnum = ymm0_regnum;
8719 if (tdep->num_ymm_regs)
8720 {
1c6272a6 8721 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8722 tdep->ymm0_regnum = ymm0_regnum;
8723 mm0_regnum += tdep->num_ymm_regs;
8724 }
8725 else
8726 tdep->ymm0_regnum = -1;
8727
01f9f808
MS
8728 if (tdep->num_ymm_avx512_regs)
8729 {
8730 /* Support YMM16-31 pseudo registers if available. */
8731 tdep->ymm16_regnum = mm0_regnum;
8732 mm0_regnum += tdep->num_ymm_avx512_regs;
8733 }
8734 else
8735 tdep->ymm16_regnum = -1;
8736
8737 if (tdep->num_zmm_regs)
8738 {
8739 /* Support ZMM pseudo-register if it is available. */
8740 tdep->zmm0_regnum = mm0_regnum;
8741 mm0_regnum += tdep->num_zmm_regs;
8742 }
8743 else
8744 tdep->zmm0_regnum = -1;
8745
1dbcd68c 8746 bnd0_regnum = mm0_regnum;
1ba53b71
L
8747 if (tdep->num_mmx_regs != 0)
8748 {
1c6272a6 8749 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8750 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8751 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8752 }
8753 else
8754 tdep->mm0_regnum = -1;
8755
1dbcd68c
WT
8756 if (tdep->bnd0r_regnum > 0)
8757 tdep->bnd0_regnum = bnd0_regnum;
8758 else
8759 tdep-> bnd0_regnum = -1;
8760
06da04c6 8761 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8762 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8763 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8764 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8765
8446b36a
MK
8766 /* If we have a register mapping, enable the generic core file
8767 support, unless it has already been enabled. */
8768 if (tdep->gregset_reg_offset
8f0435f7 8769 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8770 set_gdbarch_iterate_over_regset_sections
8771 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8772
7a697b8d
SS
8773 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8774 i386_fast_tracepoint_valid_at);
8775
a62cc96e
AC
8776 return gdbarch;
8777}
8778
8201327c
MK
8779\f
8780
97de3545
JB
8781/* Return the target description for a specified XSAVE feature mask. */
8782
8783const struct target_desc *
1163a4b7 8784i386_target_description (uint64_t xcr0, bool segments)
97de3545 8785{
22916b07 8786 static target_desc *i386_tdescs \
1163a4b7 8787 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
8788 target_desc **tdesc;
8789
8790 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8791 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8792 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8793 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
1163a4b7
JB
8794 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8795 [segments ? 1 : 0];
22916b07
YQ
8796
8797 if (*tdesc == NULL)
1163a4b7 8798 *tdesc = i386_create_target_description (xcr0, false, segments);
22916b07
YQ
8799
8800 return *tdesc;
97de3545
JB
8801}
8802
29c1c244
WT
8803#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8804
8805/* Find the bound directory base address. */
8806
8807static unsigned long
8808i386_mpx_bd_base (void)
8809{
8810 struct regcache *rcache;
8811 struct gdbarch_tdep *tdep;
8812 ULONGEST ret;
8813 enum register_status regstatus;
29c1c244
WT
8814
8815 rcache = get_current_regcache ();
ac7936df 8816 tdep = gdbarch_tdep (rcache->arch ());
29c1c244
WT
8817
8818 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8819
8820 if (regstatus != REG_VALID)
8821 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8822
8823 return ret & MPX_BASE_MASK;
8824}
8825
012b3a21 8826int
29c1c244
WT
8827i386_mpx_enabled (void)
8828{
8829 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8830 const struct target_desc *tdesc = tdep->tdesc;
8831
8832 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8833}
8834
8835#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8836#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8837#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8838#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8839
8840/* Find the bound table entry given the pointer location and the base
8841 address of the table. */
8842
8843static CORE_ADDR
8844i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8845{
8846 CORE_ADDR offset1;
8847 CORE_ADDR offset2;
8848 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8849 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8850 CORE_ADDR bd_entry_addr;
8851 CORE_ADDR bt_addr;
8852 CORE_ADDR bd_entry;
8853 struct gdbarch *gdbarch = get_current_arch ();
8854 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8855
8856
8857 if (gdbarch_ptr_bit (gdbarch) == 64)
8858 {
966f0aef 8859 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8860 bd_ptr_r_shift = 20;
8861 bd_ptr_l_shift = 3;
8862 bt_select_r_shift = 3;
8863 bt_select_l_shift = 5;
966f0aef
WT
8864 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8865
8866 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8867 error (_("bound table examination not supported\
8868 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8869 }
8870 else
8871 {
8872 mpx_bd_mask = MPX_BD_MASK_32;
8873 bd_ptr_r_shift = 12;
8874 bd_ptr_l_shift = 2;
8875 bt_select_r_shift = 2;
8876 bt_select_l_shift = 4;
8877 bt_mask = MPX_BT_MASK_32;
8878 }
8879
8880 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8881 bd_entry_addr = bd_base + offset1;
8882 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8883
8884 if ((bd_entry & 0x1) == 0)
8885 error (_("Invalid bounds directory entry at %s."),
8886 paddress (get_current_arch (), bd_entry_addr));
8887
8888 /* Clearing status bit. */
8889 bd_entry--;
8890 bt_addr = bd_entry & ~bt_select_r_shift;
8891 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8892
8893 return bt_addr + offset2;
8894}
8895
8896/* Print routine for the mpx bounds. */
8897
8898static void
8899i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8900{
8901 struct ui_out *uiout = current_uiout;
34f8ac9f 8902 LONGEST size;
29c1c244
WT
8903 struct gdbarch *gdbarch = get_current_arch ();
8904 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8905 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8906
8907 if (bounds_in_map == 1)
8908 {
112e8700
SM
8909 uiout->text ("Null bounds on map:");
8910 uiout->text (" pointer value = ");
8911 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8912 uiout->text (".");
8913 uiout->text ("\n");
29c1c244
WT
8914 }
8915 else
8916 {
112e8700
SM
8917 uiout->text ("{lbound = ");
8918 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8919 uiout->text (", ubound = ");
29c1c244
WT
8920
8921 /* The upper bound is stored in 1's complement. */
112e8700
SM
8922 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8923 uiout->text ("}: pointer value = ");
8924 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8925
8926 if (gdbarch_ptr_bit (gdbarch) == 64)
8927 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8928 else
8929 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8930
8931 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8932 -1 represents in this sense full memory access, and there is no need
8933 one to the size. */
8934
8935 size = (size > -1 ? size + 1 : size);
112e8700 8936 uiout->text (", size = ");
33eca680 8937 uiout->field_string ("size", plongest (size));
29c1c244 8938
112e8700
SM
8939 uiout->text (", metadata = ");
8940 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8941 uiout->text ("\n");
29c1c244
WT
8942 }
8943}
8944
8945/* Implement the command "show mpx bound". */
8946
8947static void
c4a3e68e 8948i386_mpx_info_bounds (const char *args, int from_tty)
29c1c244
WT
8949{
8950 CORE_ADDR bd_base = 0;
8951 CORE_ADDR addr;
8952 CORE_ADDR bt_entry_addr = 0;
8953 CORE_ADDR bt_entry[4];
8954 int i;
8955 struct gdbarch *gdbarch = get_current_arch ();
8956 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8957
ae71e7b5
MR
8958 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8959 || !i386_mpx_enabled ())
118ca224 8960 {
bc504a31 8961 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8962 "supported on this target.\n"));
8963 return;
8964 }
29c1c244
WT
8965
8966 if (args == NULL)
118ca224
PP
8967 {
8968 printf_unfiltered (_("Address of pointer variable expected.\n"));
8969 return;
8970 }
29c1c244
WT
8971
8972 addr = parse_and_eval_address (args);
8973
8974 bd_base = i386_mpx_bd_base ();
8975 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8976
8977 memset (bt_entry, 0, sizeof (bt_entry));
8978
8979 for (i = 0; i < 4; i++)
8980 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8981 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8982 data_ptr_type);
8983
8984 i386_mpx_print_bounds (bt_entry);
8985}
8986
8987/* Implement the command "set mpx bound". */
8988
8989static void
c4a3e68e 8990i386_mpx_set_bounds (const char *args, int from_tty)
29c1c244
WT
8991{
8992 CORE_ADDR bd_base = 0;
8993 CORE_ADDR addr, lower, upper;
8994 CORE_ADDR bt_entry_addr = 0;
8995 CORE_ADDR bt_entry[2];
8996 const char *input = args;
8997 int i;
8998 struct gdbarch *gdbarch = get_current_arch ();
8999 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9000 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9001
ae71e7b5
MR
9002 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9003 || !i386_mpx_enabled ())
bc504a31 9004 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
9005 on this target."));
9006
9007 if (args == NULL)
9008 error (_("Pointer value expected."));
9009
9010 addr = value_as_address (parse_to_comma_and_eval (&input));
9011
9012 if (input[0] == ',')
9013 ++input;
9014 if (input[0] == '\0')
9015 error (_("wrong number of arguments: missing lower and upper bound."));
9016 lower = value_as_address (parse_to_comma_and_eval (&input));
9017
9018 if (input[0] == ',')
9019 ++input;
9020 if (input[0] == '\0')
9021 error (_("Wrong number of arguments; Missing upper bound."));
9022 upper = value_as_address (parse_to_comma_and_eval (&input));
9023
9024 bd_base = i386_mpx_bd_base ();
9025 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9026 for (i = 0; i < 2; i++)
9027 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 9028 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
9029 data_ptr_type);
9030 bt_entry[0] = (uint64_t) lower;
9031 bt_entry[1] = ~(uint64_t) upper;
9032
9033 for (i = 0; i < 2; i++)
132874d7
AB
9034 write_memory_unsigned_integer (bt_entry_addr
9035 + i * TYPE_LENGTH (data_ptr_type),
9036 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
9037 bt_entry[i]);
9038}
9039
9040static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9041
6c265988 9042void _initialize_i386_tdep ();
c906108c 9043void
6c265988 9044_initialize_i386_tdep ()
c906108c 9045{
a62cc96e
AC
9046 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9047
fc338970 9048 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9049 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9050 &disassembly_flavor, _("\
9051Set the disassembly flavor."), _("\
9052Show the disassembly flavor."), _("\
9053The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9054 NULL,
9055 NULL, /* FIXME: i18n: */
9056 &setlist, &showlist);
8201327c
MK
9057
9058 /* Add the variable that controls the convention for returning
9059 structs. */
7ab04401
AC
9060 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9061 &struct_convention, _("\
9062Set the convention for returning small structs."), _("\
9063Show the convention for returning small structs."), _("\
9064Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9065is \"default\"."),
9066 NULL,
9067 NULL, /* FIXME: i18n: */
9068 &setlist, &showlist);
8201327c 9069
29c1c244
WT
9070 /* Add "mpx" prefix for the set commands. */
9071
0743fc83 9072 add_basic_prefix_cmd ("mpx", class_support, _("\
bc504a31 9073Set Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9074 &mpx_set_cmdlist, "set mpx ",
9075 0 /* allow-unknown */, &setlist);
29c1c244
WT
9076
9077 /* Add "mpx" prefix for the show commands. */
9078
0743fc83 9079 add_show_prefix_cmd ("mpx", class_support, _("\
bc504a31 9080Show Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9081 &mpx_show_cmdlist, "show mpx ",
9082 0 /* allow-unknown */, &showlist);
29c1c244
WT
9083
9084 /* Add "bound" command for the show mpx commands list. */
9085
9086 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9087 "Show the memory bounds for a given array/pointer storage\
9088 in the bound table.",
9089 &mpx_show_cmdlist);
9090
9091 /* Add "bound" command for the set mpx commands list. */
9092
9093 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9094 "Set the memory bounds for a given array/pointer storage\
9095 in the bound table.",
9096 &mpx_set_cmdlist);
9097
05816f70 9098 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9099 i386_svr4_init_abi);
38c968cf 9100
209bd28e 9101 /* Initialize the i386-specific register groups. */
38c968cf 9102 i386_init_reggroups ();
90884b2b 9103
c8d5aac9
L
9104 /* Tell remote stub that we support XML target description. */
9105 register_remote_support_xml ("i386");
c906108c 9106}
This page took 2.390521 seconds and 4 git commands to generate.