Change inferior thread list to be a thread map
[deliverable/binutils-gdb.git] / gdb / regcache.c
CommitLineData
32178cab 1/* Cache and manage the values of registers for GDB, the GNU debugger.
3fadccb3 2
b811d2c2 3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
32178cab
MS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
32178cab
MS
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32178cab
MS
19
20#include "defs.h"
32178cab 21#include "inferior.h"
00431a78 22#include "gdbthread.h"
32178cab 23#include "target.h"
c180496d 24#include "test-target.h"
32178cab 25#include "gdbarch.h"
705152c5 26#include "gdbcmd.h"
4e052eda 27#include "regcache.h"
b59ff9d5 28#include "reggroups.h"
76727919 29#include "observable.h"
0b309272 30#include "regset.h"
94bb8dfe 31#include <forward_list>
32178cab
MS
32
33/*
34 * DATA STRUCTURE
35 *
36 * Here is the actual register cache.
37 */
38
3fadccb3 39/* Per-architecture object describing the layout of a register cache.
0df8b418 40 Computed once when the architecture is created. */
3fadccb3
AC
41
42struct gdbarch_data *regcache_descr_handle;
43
44struct regcache_descr
45{
46 /* The architecture this descriptor belongs to. */
47 struct gdbarch *gdbarch;
48
bb1db049
AC
49 /* The raw register cache. Each raw (or hard) register is supplied
50 by the target interface. The raw cache should not contain
51 redundant information - if the PC is constructed from two
d2f0b918 52 registers then those registers and not the PC lives in the raw
bb1db049 53 cache. */
3fadccb3 54 long sizeof_raw_registers;
3fadccb3 55
d138e37a
AC
56 /* The cooked register space. Each cooked register in the range
57 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
58 register. The remaining [NR_RAW_REGISTERS
02f60eae 59 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
d138e37a 60 both raw registers and memory by the architecture methods
02f60eae 61 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
d138e37a 62 int nr_cooked_registers;
067df2e5 63 long sizeof_cooked_registers;
d138e37a 64
86d31898 65 /* Offset and size (in 8 bit bytes), of each register in the
d138e37a 66 register cache. All registers (including those in the range
99e42fd8
PA
67 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
68 offset. */
3fadccb3 69 long *register_offset;
3fadccb3 70 long *sizeof_register;
3fadccb3 71
bb425013
AC
72 /* Cached table containing the type of each register. */
73 struct type **register_type;
3fadccb3
AC
74};
75
3fadccb3
AC
76static void *
77init_regcache_descr (struct gdbarch *gdbarch)
78{
79 int i;
80 struct regcache_descr *descr;
81 gdb_assert (gdbarch != NULL);
82
bb425013 83 /* Create an initial, zero filled, table. */
116f06ea 84 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
3fadccb3 85 descr->gdbarch = gdbarch;
3fadccb3 86
d138e37a
AC
87 /* Total size of the register space. The raw registers are mapped
88 directly onto the raw register cache while the pseudo's are
3fadccb3 89 either mapped onto raw-registers or memory. */
f6efe3f8 90 descr->nr_cooked_registers = gdbarch_num_cooked_regs (gdbarch);
3fadccb3 91
bb425013 92 /* Fill in a table of register types. */
116f06ea 93 descr->register_type
3e43a32a
MS
94 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
95 struct type *);
bb425013 96 for (i = 0; i < descr->nr_cooked_registers; i++)
336a3131 97 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
bb425013 98
bb1db049
AC
99 /* Construct a strictly RAW register cache. Don't allow pseudo's
100 into the register cache. */
bb1db049 101
067df2e5 102 /* Lay out the register cache.
3fadccb3 103
bb425013
AC
104 NOTE: cagney/2002-05-22: Only register_type() is used when
105 constructing the register cache. It is assumed that the
106 register's raw size, virtual size and type length are all the
107 same. */
3fadccb3
AC
108
109 {
110 long offset = 0;
123f5f96 111
116f06ea
AC
112 descr->sizeof_register
113 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
114 descr->register_offset
115 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
d999647b 116 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
99e42fd8
PA
117 {
118 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
119 descr->register_offset[i] = offset;
120 offset += descr->sizeof_register[i];
99e42fd8
PA
121 }
122 /* Set the real size of the raw register cache buffer. */
123 descr->sizeof_raw_registers = offset;
124
125 for (; i < descr->nr_cooked_registers; i++)
3fadccb3 126 {
bb425013 127 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
3fadccb3
AC
128 descr->register_offset[i] = offset;
129 offset += descr->sizeof_register[i];
3fadccb3 130 }
99e42fd8 131 /* Set the real size of the readonly register cache buffer. */
067df2e5 132 descr->sizeof_cooked_registers = offset;
3fadccb3
AC
133 }
134
3fadccb3
AC
135 return descr;
136}
137
138static struct regcache_descr *
139regcache_descr (struct gdbarch *gdbarch)
140{
19ba03f4
SM
141 return (struct regcache_descr *) gdbarch_data (gdbarch,
142 regcache_descr_handle);
3fadccb3
AC
143}
144
bb425013
AC
145/* Utility functions returning useful register attributes stored in
146 the regcache descr. */
147
148struct type *
149register_type (struct gdbarch *gdbarch, int regnum)
150{
151 struct regcache_descr *descr = regcache_descr (gdbarch);
123f5f96 152
bb425013
AC
153 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
154 return descr->register_type[regnum];
155}
156
0ed04cce
AC
157/* Utility functions returning useful register attributes stored in
158 the regcache descr. */
159
08a617da
AC
160int
161register_size (struct gdbarch *gdbarch, int regnum)
162{
163 struct regcache_descr *descr = regcache_descr (gdbarch);
164 int size;
123f5f96 165
f6efe3f8 166 gdb_assert (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch));
08a617da 167 size = descr->sizeof_register[regnum];
08a617da
AC
168 return size;
169}
170
268a13a5 171/* See gdbsupport/common-regcache.h. */
8d689ee5
YQ
172
173int
174regcache_register_size (const struct regcache *regcache, int n)
175{
ac7936df 176 return register_size (regcache->arch (), n);
8d689ee5
YQ
177}
178
31716595
YQ
179reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
180 : m_has_pseudo (has_pseudo)
3fadccb3 181{
ef79d9a3
YQ
182 gdb_assert (gdbarch != NULL);
183 m_descr = regcache_descr (gdbarch);
4621115f 184
31716595 185 if (has_pseudo)
4621115f 186 {
835dcf92
SM
187 m_registers.reset (new gdb_byte[m_descr->sizeof_cooked_registers] ());
188 m_register_status.reset
189 (new register_status[m_descr->nr_cooked_registers] ());
4621115f
YQ
190 }
191 else
192 {
835dcf92
SM
193 m_registers.reset (new gdb_byte[m_descr->sizeof_raw_registers] ());
194 m_register_status.reset
195 (new register_status[gdbarch_num_regs (gdbarch)] ());
4621115f 196 }
31716595
YQ
197}
198
5b6d1e4f
PA
199regcache::regcache (process_stratum_target *target, gdbarch *gdbarch,
200 const address_space *aspace_)
796bb026
YQ
201/* The register buffers. A read/write register cache can only hold
202 [0 .. gdbarch_num_regs). */
5b6d1e4f 203 : detached_regcache (gdbarch, false), m_aspace (aspace_), m_target (target)
31716595 204{
ef79d9a3
YQ
205 m_ptid = minus_one_ptid;
206}
4621115f 207
302abd6e
SM
208readonly_detached_regcache::readonly_detached_regcache (regcache &src)
209 : readonly_detached_regcache (src.arch (),
210 [&src] (int regnum, gdb_byte *buf)
211 {
212 return src.cooked_read (regnum, buf);
213 })
daf6667d
YQ
214{
215}
216
ef79d9a3 217gdbarch *
31716595 218reg_buffer::arch () const
ef79d9a3
YQ
219{
220 return m_descr->gdbarch;
221}
3fadccb3 222
51b1fe4e
AC
223/* Return a pointer to register REGNUM's buffer cache. */
224
ef79d9a3 225gdb_byte *
31716595 226reg_buffer::register_buffer (int regnum) const
51b1fe4e 227{
835dcf92 228 return m_registers.get () + m_descr->register_offset[regnum];
51b1fe4e
AC
229}
230
ef79d9a3 231void
302abd6e 232reg_buffer::save (register_read_ftype cooked_read)
ef79d9a3
YQ
233{
234 struct gdbarch *gdbarch = m_descr->gdbarch;
2d28509a 235 int regnum;
123f5f96 236
daf6667d
YQ
237 /* It should have pseudo registers. */
238 gdb_assert (m_has_pseudo);
2d28509a 239 /* Clear the dest. */
835dcf92
SM
240 memset (m_registers.get (), 0, m_descr->sizeof_cooked_registers);
241 memset (m_register_status.get (), REG_UNKNOWN, m_descr->nr_cooked_registers);
2d28509a 242 /* Copy over any registers (identified by their membership in the
f57d151a
UW
243 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
244 gdbarch_num_pseudo_regs) range is checked since some architectures need
5602984a 245 to save/restore `cooked' registers that live in memory. */
ef79d9a3 246 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
2d28509a
AC
247 {
248 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
249 {
50d6adef 250 gdb_byte *dst_buf = register_buffer (regnum);
302abd6e 251 enum register_status status = cooked_read (regnum, dst_buf);
123f5f96 252
50d6adef
AH
253 gdb_assert (status != REG_UNKNOWN);
254
255 if (status != REG_VALID)
256 memset (dst_buf, 0, register_size (gdbarch, regnum));
05d1431c 257
ef79d9a3 258 m_register_status[regnum] = status;
2d28509a
AC
259 }
260 }
261}
262
ef79d9a3 263void
daf6667d 264regcache::restore (readonly_detached_regcache *src)
2d28509a 265{
ef79d9a3 266 struct gdbarch *gdbarch = m_descr->gdbarch;
2d28509a 267 int regnum;
123f5f96 268
fc5b8736 269 gdb_assert (src != NULL);
daf6667d 270 gdb_assert (src->m_has_pseudo);
fc5b8736
YQ
271
272 gdb_assert (gdbarch == src->arch ());
273
2d28509a 274 /* Copy over any registers, being careful to only restore those that
f57d151a
UW
275 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
276 + gdbarch_num_pseudo_regs) range is checked since some architectures need
5602984a 277 to save/restore `cooked' registers that live in memory. */
ef79d9a3 278 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
2d28509a 279 {
5602984a 280 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
2d28509a 281 {
ef79d9a3
YQ
282 if (src->m_register_status[regnum] == REG_VALID)
283 cooked_write (regnum, src->register_buffer (regnum));
2d28509a
AC
284 }
285 }
286}
287
268a13a5 288/* See gdbsupport/common-regcache.h. */
9c861883 289
ef79d9a3 290enum register_status
c8ec2f33 291reg_buffer::get_register_status (int regnum) const
ef79d9a3 292{
c8ec2f33 293 assert_regnum (regnum);
6ed7ea50 294
aac0d564 295 return m_register_status[regnum];
3fadccb3
AC
296}
297
ef79d9a3 298void
9c861883 299reg_buffer::invalidate (int regnum)
ef79d9a3 300{
4e888c28 301 assert_regnum (regnum);
ef79d9a3
YQ
302 m_register_status[regnum] = REG_UNKNOWN;
303}
9c5ea4d9 304
4e888c28 305void
31716595 306reg_buffer::assert_regnum (int regnum) const
4e888c28 307{
31716595
YQ
308 gdb_assert (regnum >= 0);
309 if (m_has_pseudo)
310 gdb_assert (regnum < m_descr->nr_cooked_registers);
311 else
312 gdb_assert (regnum < gdbarch_num_regs (arch ()));
4e888c28
YQ
313}
314
3fadccb3 315/* Global structure containing the current regcache. */
3fadccb3 316
5ebd2499 317/* NOTE: this is a write-through cache. There is no "dirty" bit for
32178cab
MS
318 recording if the register values have been changed (eg. by the
319 user). Therefore all registers must be written back to the
320 target when appropriate. */
e521e87e 321std::forward_list<regcache *> regcache::current_regcache;
c2250ad1
UW
322
323struct regcache *
5b6d1e4f
PA
324get_thread_arch_aspace_regcache (process_stratum_target *target,
325 ptid_t ptid, struct gdbarch *gdbarch,
e2d96639 326 struct address_space *aspace)
c2250ad1 327{
5b6d1e4f
PA
328 gdb_assert (target != nullptr);
329
e521e87e 330 for (const auto &regcache : regcache::current_regcache)
5b6d1e4f
PA
331 if (regcache->target () == target
332 && regcache->ptid () == ptid
333 && regcache->arch () == gdbarch)
94bb8dfe 334 return regcache;
594f7785 335
5b6d1e4f 336 regcache *new_regcache = new regcache (target, gdbarch, aspace);
594f7785 337
e521e87e 338 regcache::current_regcache.push_front (new_regcache);
ef79d9a3 339 new_regcache->set_ptid (ptid);
e2d96639 340
e2d96639
YQ
341 return new_regcache;
342}
343
344struct regcache *
5b6d1e4f
PA
345get_thread_arch_regcache (process_stratum_target *target, ptid_t ptid,
346 struct gdbarch *gdbarch)
e2d96639 347{
5b6d1e4f
PA
348 scoped_restore_current_inferior restore_current_inferior;
349 set_current_inferior (find_inferior_ptid (target, ptid));
ed4227b7 350 address_space *aspace = target_thread_address_space (ptid);
b78974c3 351
5b6d1e4f 352 return get_thread_arch_aspace_regcache (target, ptid, gdbarch, aspace);
594f7785
UW
353}
354
5b6d1e4f 355static process_stratum_target *current_thread_target;
c2250ad1
UW
356static ptid_t current_thread_ptid;
357static struct gdbarch *current_thread_arch;
358
359struct regcache *
5b6d1e4f 360get_thread_regcache (process_stratum_target *target, ptid_t ptid)
c2250ad1 361{
5b6d1e4f
PA
362 if (!current_thread_arch
363 || target != current_thread_target
364 || current_thread_ptid != ptid)
c2250ad1 365 {
5b6d1e4f
PA
366 gdb_assert (ptid != null_ptid);
367
c2250ad1 368 current_thread_ptid = ptid;
5b6d1e4f
PA
369 current_thread_target = target;
370
371 scoped_restore_current_inferior restore_current_inferior;
372 set_current_inferior (find_inferior_ptid (target, ptid));
c2250ad1
UW
373 current_thread_arch = target_thread_architecture (ptid);
374 }
375
5b6d1e4f 376 return get_thread_arch_regcache (target, ptid, current_thread_arch);
c2250ad1
UW
377}
378
00431a78
PA
379/* See regcache.h. */
380
381struct regcache *
382get_thread_regcache (thread_info *thread)
383{
5b6d1e4f
PA
384 return get_thread_regcache (thread->inf->process_target (),
385 thread->ptid);
00431a78
PA
386}
387
c2250ad1
UW
388struct regcache *
389get_current_regcache (void)
594f7785 390{
00431a78 391 return get_thread_regcache (inferior_thread ());
594f7785 392}
32178cab 393
268a13a5 394/* See gdbsupport/common-regcache.h. */
361c8ade
GB
395
396struct regcache *
397get_thread_regcache_for_ptid (ptid_t ptid)
398{
5b6d1e4f
PA
399 /* This function doesn't take a process_stratum_target parameter
400 because it's a gdbsupport/ routine implemented by both gdb and
401 gdbserver. It always refers to a ptid of the current target. */
402 process_stratum_target *proc_target = current_inferior ()->process_target ();
403 return get_thread_regcache (proc_target, ptid);
361c8ade 404}
32178cab 405
f4c5303c
OF
406/* Observer for the target_changed event. */
407
2c0b251b 408static void
f4c5303c
OF
409regcache_observer_target_changed (struct target_ops *target)
410{
411 registers_changed ();
412}
413
5231c1fd
PA
414/* Update global variables old ptids to hold NEW_PTID if they were
415 holding OLD_PTID. */
e521e87e
YQ
416void
417regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 418{
e521e87e 419 for (auto &regcache : regcache::current_regcache)
94bb8dfe 420 {
d7e15655 421 if (regcache->ptid () == old_ptid)
94bb8dfe
YQ
422 regcache->set_ptid (new_ptid);
423 }
5231c1fd
PA
424}
425
32178cab
MS
426/* Low level examining and depositing of registers.
427
428 The caller is responsible for making sure that the inferior is
429 stopped before calling the fetching routines, or it will get
430 garbage. (a change from GDB version 3, in which the caller got the
431 value from the last stop). */
432
433/* REGISTERS_CHANGED ()
434
435 Indicate that registers may have changed, so invalidate the cache. */
436
437void
5b6d1e4f 438registers_changed_ptid (process_stratum_target *target, ptid_t ptid)
32178cab 439{
e521e87e 440 for (auto oit = regcache::current_regcache.before_begin (),
94bb8dfe 441 it = std::next (oit);
e521e87e 442 it != regcache::current_regcache.end ();
94bb8dfe 443 )
c2250ad1 444 {
5b6d1e4f
PA
445 struct regcache *regcache = *it;
446 if ((target == nullptr || regcache->target () == target)
447 && regcache->ptid ().matches (ptid))
e66408ed 448 {
5b6d1e4f 449 delete regcache;
e521e87e 450 it = regcache::current_regcache.erase_after (oit);
e66408ed 451 }
94bb8dfe
YQ
452 else
453 oit = it++;
c2250ad1 454 }
32178cab 455
5b6d1e4f
PA
456 if ((target == nullptr || current_thread_target == target)
457 && current_thread_ptid.matches (ptid))
041274d8 458 {
5b6d1e4f 459 current_thread_target = NULL;
041274d8
PA
460 current_thread_ptid = null_ptid;
461 current_thread_arch = NULL;
462 }
32178cab 463
5b6d1e4f
PA
464 if ((target == nullptr || current_inferior ()->process_target () == target)
465 && inferior_ptid.matches (ptid))
041274d8
PA
466 {
467 /* We just deleted the regcache of the current thread. Need to
468 forget about any frames we have cached, too. */
469 reinit_frame_cache ();
470 }
471}
c2250ad1 472
00431a78
PA
473/* See regcache.h. */
474
475void
476registers_changed_thread (thread_info *thread)
477{
5b6d1e4f 478 registers_changed_ptid (thread->inf->process_target (), thread->ptid);
00431a78
PA
479}
480
041274d8
PA
481void
482registers_changed (void)
483{
5b6d1e4f 484 registers_changed_ptid (nullptr, minus_one_ptid);
32178cab
MS
485}
486
ef79d9a3
YQ
487void
488regcache::raw_update (int regnum)
489{
4e888c28 490 assert_regnum (regnum);
8e368124 491
3fadccb3
AC
492 /* Make certain that the register cache is up-to-date with respect
493 to the current thread. This switching shouldn't be necessary
494 only there is still only one target side register cache. Sigh!
495 On the bright side, at least there is a regcache object. */
8e368124 496
796bb026 497 if (get_register_status (regnum) == REG_UNKNOWN)
3fadccb3 498 {
ef79d9a3 499 target_fetch_registers (this, regnum);
788c8b10
PA
500
501 /* A number of targets can't access the whole set of raw
502 registers (because the debug API provides no means to get at
503 them). */
ef79d9a3
YQ
504 if (m_register_status[regnum] == REG_UNKNOWN)
505 m_register_status[regnum] = REG_UNAVAILABLE;
3fadccb3 506 }
8e368124
AH
507}
508
ef79d9a3 509enum register_status
849d0ba8 510readable_regcache::raw_read (int regnum, gdb_byte *buf)
8e368124
AH
511{
512 gdb_assert (buf != NULL);
ef79d9a3 513 raw_update (regnum);
05d1431c 514
ef79d9a3
YQ
515 if (m_register_status[regnum] != REG_VALID)
516 memset (buf, 0, m_descr->sizeof_register[regnum]);
05d1431c 517 else
ef79d9a3
YQ
518 memcpy (buf, register_buffer (regnum),
519 m_descr->sizeof_register[regnum]);
05d1431c 520
aac0d564 521 return m_register_status[regnum];
61a0eb5b
AC
522}
523
05d1431c 524enum register_status
28fc6740 525regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
ef79d9a3
YQ
526{
527 gdb_assert (regcache != NULL);
6f98355c 528 return regcache->raw_read (regnum, val);
ef79d9a3
YQ
529}
530
6f98355c 531template<typename T, typename>
ef79d9a3 532enum register_status
849d0ba8 533readable_regcache::raw_read (int regnum, T *val)
28fc6740 534{
2d522557 535 gdb_byte *buf;
05d1431c 536 enum register_status status;
123f5f96 537
4e888c28 538 assert_regnum (regnum);
ef79d9a3
YQ
539 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
540 status = raw_read (regnum, buf);
05d1431c 541 if (status == REG_VALID)
6f98355c
YQ
542 *val = extract_integer<T> (buf,
543 m_descr->sizeof_register[regnum],
544 gdbarch_byte_order (m_descr->gdbarch));
05d1431c
PA
545 else
546 *val = 0;
547 return status;
28fc6740
AC
548}
549
05d1431c 550enum register_status
28fc6740
AC
551regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
552 ULONGEST *val)
ef79d9a3
YQ
553{
554 gdb_assert (regcache != NULL);
6f98355c 555 return regcache->raw_read (regnum, val);
28fc6740
AC
556}
557
c00dcbe9
MK
558void
559regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
ef79d9a3
YQ
560{
561 gdb_assert (regcache != NULL);
6f98355c 562 regcache->raw_write (regnum, val);
ef79d9a3
YQ
563}
564
6f98355c 565template<typename T, typename>
ef79d9a3 566void
6f98355c 567regcache::raw_write (int regnum, T val)
c00dcbe9 568{
7c543f7b 569 gdb_byte *buf;
123f5f96 570
4e888c28 571 assert_regnum (regnum);
ef79d9a3 572 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
6f98355c
YQ
573 store_integer (buf, m_descr->sizeof_register[regnum],
574 gdbarch_byte_order (m_descr->gdbarch), val);
ef79d9a3 575 raw_write (regnum, buf);
c00dcbe9
MK
576}
577
578void
579regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
580 ULONGEST val)
ef79d9a3
YQ
581{
582 gdb_assert (regcache != NULL);
6f98355c 583 regcache->raw_write (regnum, val);
c00dcbe9
MK
584}
585
9fd15b2e
YQ
586LONGEST
587regcache_raw_get_signed (struct regcache *regcache, int regnum)
588{
589 LONGEST value;
590 enum register_status status;
591
592 status = regcache_raw_read_signed (regcache, regnum, &value);
593 if (status == REG_UNAVAILABLE)
594 throw_error (NOT_AVAILABLE_ERROR,
595 _("Register %d is not available"), regnum);
596 return value;
597}
598
ef79d9a3 599enum register_status
849d0ba8 600readable_regcache::cooked_read (int regnum, gdb_byte *buf)
68365089 601{
d138e37a 602 gdb_assert (regnum >= 0);
ef79d9a3 603 gdb_assert (regnum < m_descr->nr_cooked_registers);
d999647b 604 if (regnum < num_raw_registers ())
ef79d9a3 605 return raw_read (regnum, buf);
849d0ba8 606 else if (m_has_pseudo
ef79d9a3 607 && m_register_status[regnum] != REG_UNKNOWN)
05d1431c 608 {
ef79d9a3
YQ
609 if (m_register_status[regnum] == REG_VALID)
610 memcpy (buf, register_buffer (regnum),
611 m_descr->sizeof_register[regnum]);
05d1431c 612 else
ef79d9a3 613 memset (buf, 0, m_descr->sizeof_register[regnum]);
05d1431c 614
aac0d564 615 return m_register_status[regnum];
05d1431c 616 }
ef79d9a3 617 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
3543a589
TT
618 {
619 struct value *mark, *computed;
620 enum register_status result = REG_VALID;
621
622 mark = value_mark ();
623
ef79d9a3
YQ
624 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
625 this, regnum);
3543a589
TT
626 if (value_entirely_available (computed))
627 memcpy (buf, value_contents_raw (computed),
ef79d9a3 628 m_descr->sizeof_register[regnum]);
3543a589
TT
629 else
630 {
ef79d9a3 631 memset (buf, 0, m_descr->sizeof_register[regnum]);
3543a589
TT
632 result = REG_UNAVAILABLE;
633 }
634
635 value_free_to_mark (mark);
636
637 return result;
638 }
d138e37a 639 else
ef79d9a3 640 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
05d1431c 641 regnum, buf);
61a0eb5b
AC
642}
643
ef79d9a3 644struct value *
849d0ba8 645readable_regcache::cooked_read_value (int regnum)
3543a589
TT
646{
647 gdb_assert (regnum >= 0);
ef79d9a3 648 gdb_assert (regnum < m_descr->nr_cooked_registers);
3543a589 649
d999647b 650 if (regnum < num_raw_registers ()
849d0ba8 651 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
ef79d9a3 652 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
3543a589
TT
653 {
654 struct value *result;
655
ef79d9a3 656 result = allocate_value (register_type (m_descr->gdbarch, regnum));
3543a589
TT
657 VALUE_LVAL (result) = lval_register;
658 VALUE_REGNUM (result) = regnum;
659
660 /* It is more efficient in general to do this delegation in this
661 direction than in the other one, even though the value-based
662 API is preferred. */
ef79d9a3
YQ
663 if (cooked_read (regnum,
664 value_contents_raw (result)) == REG_UNAVAILABLE)
3543a589
TT
665 mark_value_bytes_unavailable (result, 0,
666 TYPE_LENGTH (value_type (result)));
667
668 return result;
669 }
670 else
ef79d9a3
YQ
671 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
672 this, regnum);
3543a589
TT
673}
674
05d1431c 675enum register_status
a378f419
AC
676regcache_cooked_read_signed (struct regcache *regcache, int regnum,
677 LONGEST *val)
ef79d9a3
YQ
678{
679 gdb_assert (regcache != NULL);
6f98355c 680 return regcache->cooked_read (regnum, val);
ef79d9a3
YQ
681}
682
6f98355c 683template<typename T, typename>
ef79d9a3 684enum register_status
849d0ba8 685readable_regcache::cooked_read (int regnum, T *val)
a378f419 686{
05d1431c 687 enum register_status status;
2d522557 688 gdb_byte *buf;
123f5f96 689
ef79d9a3
YQ
690 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
691 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
692 status = cooked_read (regnum, buf);
05d1431c 693 if (status == REG_VALID)
6f98355c
YQ
694 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
695 gdbarch_byte_order (m_descr->gdbarch));
05d1431c
PA
696 else
697 *val = 0;
698 return status;
a378f419
AC
699}
700
05d1431c 701enum register_status
a378f419
AC
702regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
703 ULONGEST *val)
ef79d9a3
YQ
704{
705 gdb_assert (regcache != NULL);
6f98355c 706 return regcache->cooked_read (regnum, val);
a378f419
AC
707}
708
a66a9c23
AC
709void
710regcache_cooked_write_signed (struct regcache *regcache, int regnum,
711 LONGEST val)
ef79d9a3
YQ
712{
713 gdb_assert (regcache != NULL);
6f98355c 714 regcache->cooked_write (regnum, val);
ef79d9a3
YQ
715}
716
6f98355c 717template<typename T, typename>
ef79d9a3 718void
6f98355c 719regcache::cooked_write (int regnum, T val)
a66a9c23 720{
7c543f7b 721 gdb_byte *buf;
123f5f96 722
ef79d9a3
YQ
723 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
724 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
6f98355c
YQ
725 store_integer (buf, m_descr->sizeof_register[regnum],
726 gdbarch_byte_order (m_descr->gdbarch), val);
ef79d9a3 727 cooked_write (regnum, buf);
a66a9c23
AC
728}
729
730void
731regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
732 ULONGEST val)
ef79d9a3
YQ
733{
734 gdb_assert (regcache != NULL);
6f98355c 735 regcache->cooked_write (regnum, val);
a66a9c23
AC
736}
737
ef79d9a3
YQ
738void
739regcache::raw_write (int regnum, const gdb_byte *buf)
61a0eb5b 740{
594f7785 741
ef79d9a3 742 gdb_assert (buf != NULL);
4e888c28 743 assert_regnum (regnum);
3fadccb3 744
3fadccb3
AC
745 /* On the sparc, writing %g0 is a no-op, so we don't even want to
746 change the registers array if something writes to this register. */
ef79d9a3 747 if (gdbarch_cannot_store_register (arch (), regnum))
3fadccb3
AC
748 return;
749
3fadccb3 750 /* If we have a valid copy of the register, and new value == old
0df8b418 751 value, then don't bother doing the actual store. */
ef79d9a3
YQ
752 if (get_register_status (regnum) == REG_VALID
753 && (memcmp (register_buffer (regnum), buf,
754 m_descr->sizeof_register[regnum]) == 0))
3fadccb3
AC
755 return;
756
ef79d9a3 757 target_prepare_to_store (this);
c8ec2f33 758 raw_supply (regnum, buf);
b94ade42 759
b292235f
TT
760 /* Invalidate the register after it is written, in case of a
761 failure. */
311dc83a
TT
762 auto invalidator
763 = make_scope_exit ([&] { this->invalidate (regnum); });
b94ade42 764
ef79d9a3 765 target_store_registers (this, regnum);
594f7785 766
b292235f
TT
767 /* The target did not throw an error so we can discard invalidating
768 the register. */
769 invalidator.release ();
61a0eb5b
AC
770}
771
ef79d9a3
YQ
772void
773regcache::cooked_write (int regnum, const gdb_byte *buf)
68365089 774{
d138e37a 775 gdb_assert (regnum >= 0);
ef79d9a3 776 gdb_assert (regnum < m_descr->nr_cooked_registers);
d999647b 777 if (regnum < num_raw_registers ())
ef79d9a3 778 raw_write (regnum, buf);
d138e37a 779 else
ef79d9a3 780 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
d8124050 781 regnum, buf);
61a0eb5b
AC
782}
783
33bab475 784/* See regcache.h. */
06c0b04e 785
ef79d9a3 786enum register_status
33bab475
AH
787readable_regcache::read_part (int regnum, int offset, int len,
788 gdb_byte *out, bool is_raw)
849d0ba8 789{
33bab475
AH
790 int reg_size = register_size (arch (), regnum);
791
792 gdb_assert (out != NULL);
8e7767e3
AH
793 gdb_assert (offset >= 0 && offset <= reg_size);
794 gdb_assert (len >= 0 && offset + len <= reg_size);
33bab475
AH
795
796 if (offset == 0 && len == 0)
797 {
798 /* Nothing to do. */
799 return REG_VALID;
800 }
801
802 if (offset == 0 && len == reg_size)
803 {
804 /* Read the full register. */
805 return (is_raw) ? raw_read (regnum, out) : cooked_read (regnum, out);
806 }
849d0ba8 807
849d0ba8 808 enum register_status status;
33bab475 809 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
849d0ba8 810
33bab475
AH
811 /* Read full register to buffer. */
812 status = (is_raw) ? raw_read (regnum, reg) : cooked_read (regnum, reg);
849d0ba8
YQ
813 if (status != REG_VALID)
814 return status;
815
33bab475
AH
816 /* Copy out. */
817 memcpy (out, reg + offset, len);
849d0ba8
YQ
818 return REG_VALID;
819}
820
33bab475
AH
821/* See regcache.h. */
822
8e7767e3
AH
823void
824reg_buffer::raw_collect_part (int regnum, int offset, int len,
825 gdb_byte *out) const
826{
827 int reg_size = register_size (arch (), regnum);
828
829 gdb_assert (out != nullptr);
830 gdb_assert (offset >= 0 && offset <= reg_size);
831 gdb_assert (len >= 0 && offset + len <= reg_size);
832
833 if (offset == 0 && len == 0)
834 {
835 /* Nothing to do. */
836 return;
837 }
838
839 if (offset == 0 && len == reg_size)
840 {
841 /* Collect the full register. */
842 return raw_collect (regnum, out);
843 }
844
845 /* Read to buffer, then write out. */
846 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
847 raw_collect (regnum, reg);
848 memcpy (out, reg + offset, len);
849}
850
851/* See regcache.h. */
852
849d0ba8
YQ
853enum register_status
854regcache::write_part (int regnum, int offset, int len,
33bab475 855 const gdb_byte *in, bool is_raw)
ef79d9a3 856{
33bab475 857 int reg_size = register_size (arch (), regnum);
123f5f96 858
33bab475 859 gdb_assert (in != NULL);
8e7767e3
AH
860 gdb_assert (offset >= 0 && offset <= reg_size);
861 gdb_assert (len >= 0 && offset + len <= reg_size);
33bab475
AH
862
863 if (offset == 0 && len == 0)
06c0b04e 864 {
33bab475
AH
865 /* Nothing to do. */
866 return REG_VALID;
867 }
05d1431c 868
33bab475
AH
869 if (offset == 0 && len == reg_size)
870 {
871 /* Write the full register. */
872 (is_raw) ? raw_write (regnum, in) : cooked_write (regnum, in);
873 return REG_VALID;
06c0b04e 874 }
849d0ba8 875
33bab475
AH
876 enum register_status status;
877 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
05d1431c 878
33bab475
AH
879 /* Read existing register to buffer. */
880 status = (is_raw) ? raw_read (regnum, reg) : cooked_read (regnum, reg);
881 if (status != REG_VALID)
882 return status;
883
884 /* Update buffer, then write back to regcache. */
885 memcpy (reg + offset, in, len);
886 is_raw ? raw_write (regnum, reg) : cooked_write (regnum, reg);
05d1431c 887 return REG_VALID;
06c0b04e
AC
888}
889
33bab475
AH
890/* See regcache.h. */
891
8e7767e3
AH
892void
893reg_buffer::raw_supply_part (int regnum, int offset, int len,
894 const gdb_byte *in)
895{
896 int reg_size = register_size (arch (), regnum);
897
898 gdb_assert (in != nullptr);
899 gdb_assert (offset >= 0 && offset <= reg_size);
900 gdb_assert (len >= 0 && offset + len <= reg_size);
901
902 if (offset == 0 && len == 0)
903 {
904 /* Nothing to do. */
905 return;
906 }
907
908 if (offset == 0 && len == reg_size)
909 {
910 /* Supply the full register. */
911 return raw_supply (regnum, in);
912 }
913
914 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
915
916 /* Read existing value to buffer. */
917 raw_collect (regnum, reg);
918
919 /* Write to buffer, then write out. */
920 memcpy (reg + offset, in, len);
921 raw_supply (regnum, reg);
922}
923
ef79d9a3 924enum register_status
33bab475
AH
925readable_regcache::raw_read_part (int regnum, int offset, int len,
926 gdb_byte *buf)
ef79d9a3 927{
4e888c28 928 assert_regnum (regnum);
849d0ba8 929 return read_part (regnum, offset, len, buf, true);
06c0b04e
AC
930}
931
4f0420fd 932/* See regcache.h. */
123f5f96 933
ef79d9a3
YQ
934void
935regcache::raw_write_part (int regnum, int offset, int len,
936 const gdb_byte *buf)
937{
4e888c28 938 assert_regnum (regnum);
849d0ba8 939 write_part (regnum, offset, len, buf, true);
06c0b04e
AC
940}
941
33bab475
AH
942/* See regcache.h. */
943
ef79d9a3 944enum register_status
849d0ba8
YQ
945readable_regcache::cooked_read_part (int regnum, int offset, int len,
946 gdb_byte *buf)
ef79d9a3
YQ
947{
948 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
849d0ba8 949 return read_part (regnum, offset, len, buf, false);
06c0b04e
AC
950}
951
33bab475
AH
952/* See regcache.h. */
953
ef79d9a3
YQ
954void
955regcache::cooked_write_part (int regnum, int offset, int len,
956 const gdb_byte *buf)
957{
958 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
849d0ba8 959 write_part (regnum, offset, len, buf, false);
06c0b04e 960}
32178cab 961
268a13a5 962/* See gdbsupport/common-regcache.h. */
9c861883 963
ef79d9a3 964void
9c861883 965reg_buffer::raw_supply (int regnum, const void *buf)
9a661b68
MK
966{
967 void *regbuf;
968 size_t size;
969
4e888c28 970 assert_regnum (regnum);
9a661b68 971
ef79d9a3
YQ
972 regbuf = register_buffer (regnum);
973 size = m_descr->sizeof_register[regnum];
9a661b68
MK
974
975 if (buf)
ee99023e
PA
976 {
977 memcpy (regbuf, buf, size);
ef79d9a3 978 m_register_status[regnum] = REG_VALID;
ee99023e 979 }
9a661b68 980 else
ee99023e
PA
981 {
982 /* This memset not strictly necessary, but better than garbage
983 in case the register value manages to escape somewhere (due
984 to a bug, no less). */
985 memset (regbuf, 0, size);
ef79d9a3 986 m_register_status[regnum] = REG_UNAVAILABLE;
ee99023e 987 }
9a661b68
MK
988}
989
9c861883 990/* See regcache.h. */
b057297a
AH
991
992void
9c861883
AH
993reg_buffer::raw_supply_integer (int regnum, const gdb_byte *addr,
994 int addr_len, bool is_signed)
b057297a
AH
995{
996 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
997 gdb_byte *regbuf;
998 size_t regsize;
999
4e888c28 1000 assert_regnum (regnum);
b057297a
AH
1001
1002 regbuf = register_buffer (regnum);
1003 regsize = m_descr->sizeof_register[regnum];
1004
1005 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
1006 byte_order);
1007 m_register_status[regnum] = REG_VALID;
1008}
1009
9c861883 1010/* See regcache.h. */
f81fdd35
AH
1011
1012void
9c861883 1013reg_buffer::raw_supply_zeroed (int regnum)
f81fdd35
AH
1014{
1015 void *regbuf;
1016 size_t size;
1017
4e888c28 1018 assert_regnum (regnum);
f81fdd35
AH
1019
1020 regbuf = register_buffer (regnum);
1021 size = m_descr->sizeof_register[regnum];
1022
1023 memset (regbuf, 0, size);
1024 m_register_status[regnum] = REG_VALID;
1025}
1026
268a13a5 1027/* See gdbsupport/common-regcache.h. */
9c861883 1028
ef79d9a3 1029void
9c861883 1030reg_buffer::raw_collect (int regnum, void *buf) const
9a661b68
MK
1031{
1032 const void *regbuf;
1033 size_t size;
1034
ef79d9a3 1035 gdb_assert (buf != NULL);
4e888c28 1036 assert_regnum (regnum);
9a661b68 1037
ef79d9a3
YQ
1038 regbuf = register_buffer (regnum);
1039 size = m_descr->sizeof_register[regnum];
9a661b68
MK
1040 memcpy (buf, regbuf, size);
1041}
1042
9c861883 1043/* See regcache.h. */
b057297a
AH
1044
1045void
9c861883
AH
1046reg_buffer::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1047 bool is_signed) const
b057297a
AH
1048{
1049 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1050 const gdb_byte *regbuf;
1051 size_t regsize;
1052
4e888c28 1053 assert_regnum (regnum);
b057297a
AH
1054
1055 regbuf = register_buffer (regnum);
1056 regsize = m_descr->sizeof_register[regnum];
1057
1058 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1059 byte_order);
1060}
1061
8e7767e3
AH
1062/* See regcache.h. */
1063
1064void
1065regcache::transfer_regset_register (struct regcache *out_regcache, int regnum,
1066 const gdb_byte *in_buf, gdb_byte *out_buf,
1067 int slot_size, int offs) const
1068{
1069 struct gdbarch *gdbarch = arch ();
1070 int reg_size = std::min (register_size (gdbarch, regnum), slot_size);
1071
1072 /* Use part versions and reg_size to prevent possible buffer overflows when
1073 accessing the regcache. */
1074
1075 if (out_buf != nullptr)
1076 {
1077 raw_collect_part (regnum, 0, reg_size, out_buf + offs);
1078
1079 /* Ensure any additional space is cleared. */
1080 if (slot_size > reg_size)
1081 memset (out_buf + offs + reg_size, 0, slot_size - reg_size);
1082 }
1083 else if (in_buf != nullptr)
1084 out_regcache->raw_supply_part (regnum, 0, reg_size, in_buf + offs);
1085 else
1086 {
1087 /* Invalidate the register. */
1088 out_regcache->raw_supply (regnum, nullptr);
1089 }
1090}
1091
1092/* See regcache.h. */
9c861883 1093
ef79d9a3
YQ
1094void
1095regcache::transfer_regset (const struct regset *regset,
1096 struct regcache *out_regcache,
8e7767e3
AH
1097 int regnum, const gdb_byte *in_buf,
1098 gdb_byte *out_buf, size_t size) const
0b309272
AA
1099{
1100 const struct regcache_map_entry *map;
1101 int offs = 0, count;
1102
19ba03f4
SM
1103 for (map = (const struct regcache_map_entry *) regset->regmap;
1104 (count = map->count) != 0;
1105 map++)
0b309272
AA
1106 {
1107 int regno = map->regno;
1108 int slot_size = map->size;
1109
1110 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
ef79d9a3 1111 slot_size = m_descr->sizeof_register[regno];
0b309272
AA
1112
1113 if (regno == REGCACHE_MAP_SKIP
1114 || (regnum != -1
1115 && (regnum < regno || regnum >= regno + count)))
1116 offs += count * slot_size;
1117
1118 else if (regnum == -1)
1119 for (; count--; regno++, offs += slot_size)
1120 {
1121 if (offs + slot_size > size)
1122 break;
1123
8e7767e3
AH
1124 transfer_regset_register (out_regcache, regno, in_buf, out_buf,
1125 slot_size, offs);
0b309272
AA
1126 }
1127 else
1128 {
1129 /* Transfer a single register and return. */
1130 offs += (regnum - regno) * slot_size;
1131 if (offs + slot_size > size)
1132 return;
1133
8e7767e3
AH
1134 transfer_regset_register (out_regcache, regnum, in_buf, out_buf,
1135 slot_size, offs);
0b309272
AA
1136 return;
1137 }
1138 }
1139}
1140
1141/* Supply register REGNUM from BUF to REGCACHE, using the register map
1142 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1143 If BUF is NULL, set the register(s) to "unavailable" status. */
1144
1145void
1146regcache_supply_regset (const struct regset *regset,
1147 struct regcache *regcache,
1148 int regnum, const void *buf, size_t size)
1149{
8e7767e3 1150 regcache->supply_regset (regset, regnum, (const gdb_byte *) buf, size);
ef79d9a3
YQ
1151}
1152
1153void
1154regcache::supply_regset (const struct regset *regset,
1155 int regnum, const void *buf, size_t size)
1156{
8e7767e3 1157 transfer_regset (regset, this, regnum, (const gdb_byte *) buf, nullptr, size);
0b309272
AA
1158}
1159
1160/* Collect register REGNUM from REGCACHE to BUF, using the register
1161 map in REGSET. If REGNUM is -1, do this for all registers in
1162 REGSET. */
1163
1164void
1165regcache_collect_regset (const struct regset *regset,
1166 const struct regcache *regcache,
1167 int regnum, void *buf, size_t size)
1168{
8e7767e3 1169 regcache->collect_regset (regset, regnum, (gdb_byte *) buf, size);
ef79d9a3
YQ
1170}
1171
1172void
1173regcache::collect_regset (const struct regset *regset,
1174 int regnum, void *buf, size_t size) const
1175{
8e7767e3 1176 transfer_regset (regset, nullptr, regnum, nullptr, (gdb_byte *) buf, size);
0b309272
AA
1177}
1178
268a13a5 1179/* See gdbsupport/common-regcache.h. */
f868386e
AH
1180
1181bool
1182reg_buffer::raw_compare (int regnum, const void *buf, int offset) const
1183{
1184 gdb_assert (buf != NULL);
1185 assert_regnum (regnum);
1186
1187 const char *regbuf = (const char *) register_buffer (regnum);
1188 size_t size = m_descr->sizeof_register[regnum];
1189 gdb_assert (size >= offset);
1190
1191 return (memcmp (buf, regbuf + offset, size - offset) == 0);
1192}
193cb69f 1193
515630c5 1194/* Special handling for register PC. */
32178cab
MS
1195
1196CORE_ADDR
515630c5 1197regcache_read_pc (struct regcache *regcache)
32178cab 1198{
ac7936df 1199 struct gdbarch *gdbarch = regcache->arch ();
61a1198a 1200
32178cab
MS
1201 CORE_ADDR pc_val;
1202
61a1198a
UW
1203 if (gdbarch_read_pc_p (gdbarch))
1204 pc_val = gdbarch_read_pc (gdbarch, regcache);
cde9ea48 1205 /* Else use per-frame method on get_current_frame. */
214e098a 1206 else if (gdbarch_pc_regnum (gdbarch) >= 0)
cde9ea48 1207 {
61a1198a 1208 ULONGEST raw_val;
123f5f96 1209
05d1431c
PA
1210 if (regcache_cooked_read_unsigned (regcache,
1211 gdbarch_pc_regnum (gdbarch),
1212 &raw_val) == REG_UNAVAILABLE)
1213 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1214
214e098a 1215 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
cde9ea48
AC
1216 }
1217 else
515630c5
UW
1218 internal_error (__FILE__, __LINE__,
1219 _("regcache_read_pc: Unable to find PC"));
32178cab
MS
1220 return pc_val;
1221}
1222
32178cab 1223void
515630c5 1224regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
32178cab 1225{
ac7936df 1226 struct gdbarch *gdbarch = regcache->arch ();
61a1198a 1227
61a1198a
UW
1228 if (gdbarch_write_pc_p (gdbarch))
1229 gdbarch_write_pc (gdbarch, regcache, pc);
214e098a 1230 else if (gdbarch_pc_regnum (gdbarch) >= 0)
3e8c568d 1231 regcache_cooked_write_unsigned (regcache,
214e098a 1232 gdbarch_pc_regnum (gdbarch), pc);
61a1198a
UW
1233 else
1234 internal_error (__FILE__, __LINE__,
515630c5 1235 _("regcache_write_pc: Unable to update PC"));
edb3359d
DJ
1236
1237 /* Writing the PC (for instance, from "load") invalidates the
1238 current frame. */
1239 reinit_frame_cache ();
32178cab
MS
1240}
1241
d999647b 1242int
31716595 1243reg_buffer::num_raw_registers () const
d999647b
YQ
1244{
1245 return gdbarch_num_regs (arch ());
1246}
1247
ed771251 1248void
ef79d9a3 1249regcache::debug_print_register (const char *func, int regno)
ed771251 1250{
ef79d9a3 1251 struct gdbarch *gdbarch = arch ();
ed771251
AH
1252
1253 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1254 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1255 && gdbarch_register_name (gdbarch, regno) != NULL
1256 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1257 fprintf_unfiltered (gdb_stdlog, "(%s)",
1258 gdbarch_register_name (gdbarch, regno));
1259 else
1260 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1261 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1262 {
1263 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1264 int size = register_size (gdbarch, regno);
ef79d9a3 1265 gdb_byte *buf = register_buffer (regno);
ed771251
AH
1266
1267 fprintf_unfiltered (gdb_stdlog, " = ");
1268 for (int i = 0; i < size; i++)
1269 {
1270 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1271 }
1272 if (size <= sizeof (LONGEST))
1273 {
1274 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1275
1276 fprintf_unfiltered (gdb_stdlog, " %s %s",
1277 core_addr_to_string_nz (val), plongest (val));
1278 }
1279 }
1280 fprintf_unfiltered (gdb_stdlog, "\n");
1281}
32178cab 1282
705152c5 1283static void
0b39b52e 1284reg_flush_command (const char *command, int from_tty)
705152c5
MS
1285{
1286 /* Force-flush the register cache. */
1287 registers_changed ();
1288 if (from_tty)
a3f17187 1289 printf_filtered (_("Register cache flushed.\n"));
705152c5
MS
1290}
1291
4c74fe6b
YQ
1292void
1293register_dump::dump (ui_file *file)
af030b9a 1294{
4c74fe6b
YQ
1295 auto descr = regcache_descr (m_gdbarch);
1296 int regnum;
1297 int footnote_nr = 0;
1298 int footnote_register_offset = 0;
1299 int footnote_register_type_name_null = 0;
1300 long register_offset = 0;
af030b9a 1301
4c74fe6b 1302 gdb_assert (descr->nr_cooked_registers
f6efe3f8 1303 == gdbarch_num_cooked_regs (m_gdbarch));
af030b9a 1304
4c74fe6b
YQ
1305 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1306 {
1307 /* Name. */
1308 if (regnum < 0)
1309 fprintf_unfiltered (file, " %-10s", "Name");
1310 else
1311 {
1312 const char *p = gdbarch_register_name (m_gdbarch, regnum);
123f5f96 1313
4c74fe6b
YQ
1314 if (p == NULL)
1315 p = "";
1316 else if (p[0] == '\0')
1317 p = "''";
1318 fprintf_unfiltered (file, " %-10s", p);
1319 }
af030b9a 1320
4c74fe6b
YQ
1321 /* Number. */
1322 if (regnum < 0)
1323 fprintf_unfiltered (file, " %4s", "Nr");
1324 else
1325 fprintf_unfiltered (file, " %4d", regnum);
af030b9a 1326
4c74fe6b
YQ
1327 /* Relative number. */
1328 if (regnum < 0)
1329 fprintf_unfiltered (file, " %4s", "Rel");
1330 else if (regnum < gdbarch_num_regs (m_gdbarch))
1331 fprintf_unfiltered (file, " %4d", regnum);
1332 else
1333 fprintf_unfiltered (file, " %4d",
1334 (regnum - gdbarch_num_regs (m_gdbarch)));
af030b9a 1335
4c74fe6b
YQ
1336 /* Offset. */
1337 if (regnum < 0)
1338 fprintf_unfiltered (file, " %6s ", "Offset");
1339 else
af030b9a 1340 {
4c74fe6b
YQ
1341 fprintf_unfiltered (file, " %6ld",
1342 descr->register_offset[regnum]);
1343 if (register_offset != descr->register_offset[regnum]
1344 || (regnum > 0
1345 && (descr->register_offset[regnum]
1346 != (descr->register_offset[regnum - 1]
1347 + descr->sizeof_register[regnum - 1])))
1348 )
af030b9a 1349 {
4c74fe6b
YQ
1350 if (!footnote_register_offset)
1351 footnote_register_offset = ++footnote_nr;
1352 fprintf_unfiltered (file, "*%d", footnote_register_offset);
af030b9a 1353 }
4c74fe6b
YQ
1354 else
1355 fprintf_unfiltered (file, " ");
1356 register_offset = (descr->register_offset[regnum]
1357 + descr->sizeof_register[regnum]);
af030b9a
AC
1358 }
1359
4c74fe6b
YQ
1360 /* Size. */
1361 if (regnum < 0)
1362 fprintf_unfiltered (file, " %5s ", "Size");
1363 else
1364 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
f3384e66 1365
4c74fe6b 1366 /* Type. */
f3384e66 1367 {
4c74fe6b
YQ
1368 const char *t;
1369 std::string name_holder;
b59ff9d5 1370
4c74fe6b
YQ
1371 if (regnum < 0)
1372 t = "Type";
215c69dc
YQ
1373 else
1374 {
4c74fe6b 1375 static const char blt[] = "builtin_type";
123f5f96 1376
4c74fe6b
YQ
1377 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1378 if (t == NULL)
f3384e66 1379 {
4c74fe6b
YQ
1380 if (!footnote_register_type_name_null)
1381 footnote_register_type_name_null = ++footnote_nr;
1382 name_holder = string_printf ("*%d",
1383 footnote_register_type_name_null);
1384 t = name_holder.c_str ();
f3384e66 1385 }
4c74fe6b
YQ
1386 /* Chop a leading builtin_type. */
1387 if (startswith (t, blt))
1388 t += strlen (blt);
f3384e66 1389 }
4c74fe6b 1390 fprintf_unfiltered (file, " %-15s", t);
f3384e66 1391 }
f3384e66 1392
4c74fe6b
YQ
1393 /* Leading space always present. */
1394 fprintf_unfiltered (file, " ");
af030b9a 1395
4c74fe6b 1396 dump_reg (file, regnum);
ed4227b7 1397
4c74fe6b 1398 fprintf_unfiltered (file, "\n");
ed4227b7
PA
1399 }
1400
4c74fe6b
YQ
1401 if (footnote_register_offset)
1402 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1403 footnote_register_offset);
1404 if (footnote_register_type_name_null)
1405 fprintf_unfiltered (file,
1406 "*%d: Register type's name NULL.\n",
1407 footnote_register_type_name_null);
c21236dc
PA
1408}
1409
8248946c 1410#if GDB_SELF_TEST
268a13a5 1411#include "gdbsupport/selftest.h"
1b30aaa5 1412#include "selftest-arch.h"
ec7a5fcb 1413#include "target-float.h"
8248946c
YQ
1414
1415namespace selftests {
1416
e521e87e 1417class regcache_access : public regcache
8248946c 1418{
e521e87e
YQ
1419public:
1420
1421 /* Return the number of elements in current_regcache. */
1422
1423 static size_t
1424 current_regcache_size ()
1425 {
1426 return std::distance (regcache::current_regcache.begin (),
1427 regcache::current_regcache.end ());
1428 }
1429};
8248946c 1430
5b6d1e4f
PA
1431/* Wrapper around get_thread_arch_aspace_regcache that does some self checks. */
1432
1433static void
1434test_get_thread_arch_aspace_regcache (process_stratum_target *target,
1435 ptid_t ptid, struct gdbarch *gdbarch,
1436 address_space *aspace)
1437{
1438 struct regcache *regcache
1439 = get_thread_arch_aspace_regcache (target, ptid, gdbarch, aspace);
1440 SELF_CHECK (regcache != NULL);
1441 SELF_CHECK (regcache->target () == target);
1442 SELF_CHECK (regcache->ptid () == ptid);
1443 SELF_CHECK (regcache->aspace () == aspace);
1444}
1445
8248946c
YQ
1446static void
1447current_regcache_test (void)
1448{
1449 /* It is empty at the start. */
e521e87e 1450 SELF_CHECK (regcache_access::current_regcache_size () == 0);
8248946c
YQ
1451
1452 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1453
5b6d1e4f
PA
1454 test_target_ops test_target1;
1455 test_target_ops test_target2;
8248946c 1456
5b6d1e4f
PA
1457 /* Get regcache from (target1,ptid1), a new regcache is added to
1458 current_regcache. */
1459 test_get_thread_arch_aspace_regcache (&test_target1, ptid1,
1460 target_gdbarch (),
1461 NULL);
e521e87e 1462 SELF_CHECK (regcache_access::current_regcache_size () == 1);
8248946c 1463
5b6d1e4f 1464 /* Get regcache from (target1,ptid2), a new regcache is added to
8248946c 1465 current_regcache. */
5b6d1e4f
PA
1466 test_get_thread_arch_aspace_regcache (&test_target1, ptid2,
1467 target_gdbarch (),
1468 NULL);
e521e87e 1469 SELF_CHECK (regcache_access::current_regcache_size () == 2);
8248946c 1470
5b6d1e4f 1471 /* Get regcache from (target1,ptid3), a new regcache is added to
8248946c 1472 current_regcache. */
5b6d1e4f
PA
1473 test_get_thread_arch_aspace_regcache (&test_target1, ptid3,
1474 target_gdbarch (),
1475 NULL);
e521e87e 1476 SELF_CHECK (regcache_access::current_regcache_size () == 3);
8248946c 1477
5b6d1e4f 1478 /* Get regcache from (target1,ptid2) again, nothing is added to
8248946c 1479 current_regcache. */
5b6d1e4f
PA
1480 test_get_thread_arch_aspace_regcache (&test_target1, ptid2,
1481 target_gdbarch (),
1482 NULL);
e521e87e 1483 SELF_CHECK (regcache_access::current_regcache_size () == 3);
8248946c 1484
5b6d1e4f
PA
1485 /* Get regcache from (target2,ptid2), a new regcache is added to
1486 current_regcache, since this time we're using a differen
1487 target. */
1488 test_get_thread_arch_aspace_regcache (&test_target2, ptid2,
1489 target_gdbarch (),
1490 NULL);
1491 SELF_CHECK (regcache_access::current_regcache_size () == 4);
1492
1493 /* Mark that (target1,ptid2) changed. The regcache of (target1,
1494 ptid2) should be removed from current_regcache. */
1495 registers_changed_ptid (&test_target1, ptid2);
1496 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1497
1498 /* Get the regcache from (target2,ptid2) again, confirming the
1499 registers_changed_ptid call above did not delete it. */
1500 test_get_thread_arch_aspace_regcache (&test_target2, ptid2,
1501 target_gdbarch (),
1502 NULL);
1503 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1504
1505 /* Confirm that marking all regcaches of all targets as changed
1506 clears current_regcache. */
1507 registers_changed_ptid (nullptr, minus_one_ptid);
1508 SELF_CHECK (regcache_access::current_regcache_size () == 0);
8248946c
YQ
1509}
1510
1b30aaa5
YQ
1511class target_ops_no_register : public test_target_ops
1512{
1513public:
1514 target_ops_no_register ()
1515 : test_target_ops {}
f6ac5f3d 1516 {}
1b30aaa5
YQ
1517
1518 void reset ()
1519 {
1520 fetch_registers_called = 0;
1521 store_registers_called = 0;
1522 xfer_partial_called = 0;
1523 }
1524
f6ac5f3d
PA
1525 void fetch_registers (regcache *regs, int regno) override;
1526 void store_registers (regcache *regs, int regno) override;
1527
1528 enum target_xfer_status xfer_partial (enum target_object object,
1529 const char *annex, gdb_byte *readbuf,
1530 const gdb_byte *writebuf,
1531 ULONGEST offset, ULONGEST len,
1532 ULONGEST *xfered_len) override;
1533
1b30aaa5
YQ
1534 unsigned int fetch_registers_called = 0;
1535 unsigned int store_registers_called = 0;
1536 unsigned int xfer_partial_called = 0;
1537};
1538
f6ac5f3d
PA
1539void
1540target_ops_no_register::fetch_registers (regcache *regs, int regno)
1b30aaa5 1541{
1b30aaa5
YQ
1542 /* Mark register available. */
1543 regs->raw_supply_zeroed (regno);
f6ac5f3d 1544 this->fetch_registers_called++;
1b30aaa5
YQ
1545}
1546
f6ac5f3d
PA
1547void
1548target_ops_no_register::store_registers (regcache *regs, int regno)
1b30aaa5 1549{
f6ac5f3d 1550 this->store_registers_called++;
1b30aaa5
YQ
1551}
1552
f6ac5f3d
PA
1553enum target_xfer_status
1554target_ops_no_register::xfer_partial (enum target_object object,
1555 const char *annex, gdb_byte *readbuf,
1556 const gdb_byte *writebuf,
1557 ULONGEST offset, ULONGEST len,
1558 ULONGEST *xfered_len)
1b30aaa5 1559{
f6ac5f3d 1560 this->xfer_partial_called++;
1b30aaa5
YQ
1561
1562 *xfered_len = len;
1563 return TARGET_XFER_OK;
1564}
1565
1566class readwrite_regcache : public regcache
1567{
1568public:
5b6d1e4f
PA
1569 readwrite_regcache (process_stratum_target *target,
1570 struct gdbarch *gdbarch)
1571 : regcache (target, gdbarch, nullptr)
1b30aaa5
YQ
1572 {}
1573};
1574
1575/* Test regcache::cooked_read gets registers from raw registers and
1576 memory instead of target to_{fetch,store}_registers. */
1577
1578static void
1579cooked_read_test (struct gdbarch *gdbarch)
1580{
1581 /* Error out if debugging something, because we're going to push the
1582 test target, which would pop any existing target. */
66b4deae 1583 if (current_top_target ()->stratum () >= process_stratum)
1b30aaa5
YQ
1584 error (_("target already pushed"));
1585
1586 /* Create a mock environment. An inferior with a thread, with a
1587 process_stratum target pushed. */
1588
1589 target_ops_no_register mock_target;
1590 ptid_t mock_ptid (1, 1);
1591 inferior mock_inferior (mock_ptid.pid ());
1592 address_space mock_aspace {};
1593 mock_inferior.gdbarch = gdbarch;
1594 mock_inferior.aspace = &mock_aspace;
1595 thread_info mock_thread (&mock_inferior, mock_ptid);
cd9629e1 1596 mock_inferior.thread_map[mock_ptid] = &mock_thread;
1b30aaa5 1597
1b30aaa5
YQ
1598 /* Add the mock inferior to the inferior list so that look ups by
1599 target+ptid can find it. */
1600 scoped_restore restore_inferior_list
1601 = make_scoped_restore (&inferior_list);
1602 inferior_list = &mock_inferior;
1603
1604 /* Switch to the mock inferior. */
1605 scoped_restore_current_inferior restore_current_inferior;
1606 set_current_inferior (&mock_inferior);
1607
1608 /* Push the process_stratum target so we can mock accessing
1609 registers. */
1610 push_target (&mock_target);
1611
1612 /* Pop it again on exit (return/exception). */
1613 struct on_exit
1614 {
1615 ~on_exit ()
1616 {
1617 pop_all_targets_at_and_above (process_stratum);
1618 }
1619 } pop_targets;
1620
1621 /* Switch to the mock thread. */
1622 scoped_restore restore_inferior_ptid
1623 = make_scoped_restore (&inferior_ptid, mock_ptid);
1624
1625 /* Test that read one raw register from regcache_no_target will go
1626 to the target layer. */
1b30aaa5
YQ
1627
1628 /* Find a raw register which size isn't zero. */
b926417a
TT
1629 int nonzero_regnum;
1630 for (nonzero_regnum = 0;
1631 nonzero_regnum < gdbarch_num_regs (gdbarch);
1632 nonzero_regnum++)
1b30aaa5 1633 {
b926417a 1634 if (register_size (gdbarch, nonzero_regnum) != 0)
1b30aaa5
YQ
1635 break;
1636 }
1637
5b6d1e4f 1638 readwrite_regcache readwrite (&mock_target, gdbarch);
b926417a 1639 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, nonzero_regnum));
1b30aaa5 1640
b926417a 1641 readwrite.raw_read (nonzero_regnum, buf.data ());
1b30aaa5
YQ
1642
1643 /* raw_read calls target_fetch_registers. */
1644 SELF_CHECK (mock_target.fetch_registers_called > 0);
1645 mock_target.reset ();
1646
1647 /* Mark all raw registers valid, so the following raw registers
1648 accesses won't go to target. */
1649 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1650 readwrite.raw_update (i);
1651
1652 mock_target.reset ();
1653 /* Then, read all raw and pseudo registers, and don't expect calling
1654 to_{fetch,store}_registers. */
f6efe3f8 1655 for (int regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); regnum++)
1b30aaa5
YQ
1656 {
1657 if (register_size (gdbarch, regnum) == 0)
1658 continue;
1659
b926417a 1660 gdb::def_vector<gdb_byte> inner_buf (register_size (gdbarch, regnum));
1b30aaa5 1661
b926417a
TT
1662 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum,
1663 inner_buf.data ()));
1b30aaa5 1664
dc711524
YQ
1665 SELF_CHECK (mock_target.fetch_registers_called == 0);
1666 SELF_CHECK (mock_target.store_registers_called == 0);
abf516c6 1667 SELF_CHECK (mock_target.xfer_partial_called == 0);
1b30aaa5
YQ
1668
1669 mock_target.reset ();
1670 }
a63f2d2f 1671
215c69dc 1672 readonly_detached_regcache readonly (readwrite);
a63f2d2f
YQ
1673
1674 /* GDB may go to target layer to fetch all registers and memory for
1675 readonly regcache. */
1676 mock_target.reset ();
1677
f6efe3f8 1678 for (int regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); regnum++)
a63f2d2f 1679 {
a63f2d2f
YQ
1680 if (register_size (gdbarch, regnum) == 0)
1681 continue;
1682
b926417a 1683 gdb::def_vector<gdb_byte> inner_buf (register_size (gdbarch, regnum));
a63f2d2f 1684 enum register_status status = readonly.cooked_read (regnum,
b926417a 1685 inner_buf.data ());
a63f2d2f
YQ
1686
1687 if (regnum < gdbarch_num_regs (gdbarch))
1688 {
1689 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1690
1691 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1692 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1693 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1694 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1695 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1696 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
ea005f31 1697 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
bea556ab 1698 || bfd_arch == bfd_arch_riscv || bfd_arch == bfd_arch_csky)
a63f2d2f
YQ
1699 {
1700 /* Raw registers. If raw registers are not in save_reggroup,
1701 their status are unknown. */
1702 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1703 SELF_CHECK (status == REG_VALID);
1704 else
1705 SELF_CHECK (status == REG_UNKNOWN);
1706 }
1707 else
1708 SELF_CHECK (status == REG_VALID);
1709 }
1710 else
1711 {
1712 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1713 SELF_CHECK (status == REG_VALID);
1714 else
1715 {
1716 /* If pseudo registers are not in save_reggroup, some of
1717 them can be computed from saved raw registers, but some
1718 of them are unknown. */
1719 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1720
1721 if (bfd_arch == bfd_arch_frv
1722 || bfd_arch == bfd_arch_m32c
1723 || bfd_arch == bfd_arch_mep
1724 || bfd_arch == bfd_arch_sh)
1725 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1726 else if (bfd_arch == bfd_arch_mips
1727 || bfd_arch == bfd_arch_h8300)
1728 SELF_CHECK (status == REG_UNKNOWN);
1729 else
1730 SELF_CHECK (status == REG_VALID);
1731 }
1732 }
1733
1734 SELF_CHECK (mock_target.fetch_registers_called == 0);
1735 SELF_CHECK (mock_target.store_registers_called == 0);
1736 SELF_CHECK (mock_target.xfer_partial_called == 0);
1737
1738 mock_target.reset ();
1739 }
1b30aaa5
YQ
1740}
1741
ec7a5fcb
YQ
1742/* Test regcache::cooked_write by writing some expected contents to
1743 registers, and checking that contents read from registers and the
1744 expected contents are the same. */
1745
1746static void
1747cooked_write_test (struct gdbarch *gdbarch)
1748{
1749 /* Error out if debugging something, because we're going to push the
1750 test target, which would pop any existing target. */
66b4deae 1751 if (current_top_target ()->stratum () >= process_stratum)
ec7a5fcb
YQ
1752 error (_("target already pushed"));
1753
1754 /* Create a mock environment. A process_stratum target pushed. */
1755
1756 target_ops_no_register mock_target;
1757
1758 /* Push the process_stratum target so we can mock accessing
1759 registers. */
1760 push_target (&mock_target);
1761
1762 /* Pop it again on exit (return/exception). */
1763 struct on_exit
1764 {
1765 ~on_exit ()
1766 {
1767 pop_all_targets_at_and_above (process_stratum);
1768 }
1769 } pop_targets;
1770
5b6d1e4f 1771 readwrite_regcache readwrite (&mock_target, gdbarch);
ec7a5fcb 1772
f6efe3f8 1773 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
ec7a5fcb
YQ
1774
1775 for (auto regnum = 0; regnum < num_regs; regnum++)
1776 {
1777 if (register_size (gdbarch, regnum) == 0
1778 || gdbarch_cannot_store_register (gdbarch, regnum))
1779 continue;
1780
1781 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1782
abf516c6
UW
1783 if (bfd_arch == bfd_arch_sparc
1784 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1785 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1786 && gdbarch_ptr_bit (gdbarch) == 64
1787 && (regnum >= gdbarch_num_regs (gdbarch)
1788 && regnum <= gdbarch_num_regs (gdbarch) + 4))
ec7a5fcb
YQ
1789 continue;
1790
1791 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1792 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1793 const auto type = register_type (gdbarch, regnum);
1794
1795 if (TYPE_CODE (type) == TYPE_CODE_FLT
1796 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1797 {
1798 /* Generate valid float format. */
1799 target_float_from_string (expected.data (), type, "1.25");
1800 }
1801 else if (TYPE_CODE (type) == TYPE_CODE_INT
1802 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1803 || TYPE_CODE (type) == TYPE_CODE_PTR
1804 || TYPE_CODE (type) == TYPE_CODE_UNION
1805 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1806 {
1807 if (bfd_arch == bfd_arch_ia64
1808 || (regnum >= gdbarch_num_regs (gdbarch)
1809 && (bfd_arch == bfd_arch_xtensa
1810 || bfd_arch == bfd_arch_bfin
1811 || bfd_arch == bfd_arch_m32c
1812 /* m68hc11 pseudo registers are in memory. */
1813 || bfd_arch == bfd_arch_m68hc11
1814 || bfd_arch == bfd_arch_m68hc12
1815 || bfd_arch == bfd_arch_s390))
1816 || (bfd_arch == bfd_arch_frv
1817 /* FRV pseudo registers except iacc0. */
1818 && regnum > gdbarch_num_regs (gdbarch)))
1819 {
1820 /* Skip setting the expected values for some architecture
1821 registers. */
1822 }
1823 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1824 {
1825 /* RL78_PC_REGNUM */
1826 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1827 expected[j] = j;
1828 }
1829 else
1830 {
1831 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1832 expected[j] = j;
1833 }
1834 }
1835 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1836 {
1837 /* No idea how to test flags. */
1838 continue;
1839 }
1840 else
1841 {
1842 /* If we don't know how to create the expected value for the
1843 this type, make it fail. */
1844 SELF_CHECK (0);
1845 }
1846
1847 readwrite.cooked_write (regnum, expected.data ());
1848
1849 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1850 SELF_CHECK (expected == buf);
1851 }
1852}
1853
8248946c
YQ
1854} // namespace selftests
1855#endif /* GDB_SELF_TEST */
1856
32178cab
MS
1857void
1858_initialize_regcache (void)
1859{
3e43a32a
MS
1860 regcache_descr_handle
1861 = gdbarch_data_register_post_init (init_regcache_descr);
705152c5 1862
76727919
TT
1863 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1864 gdb::observers::thread_ptid_changed.attach
1865 (regcache::regcache_thread_ptid_changed);
f4c5303c 1866
705152c5 1867 add_com ("flushregs", class_maintenance, reg_flush_command,
590042fc 1868 _("Force gdb to flush its register cache (maintainer command)."));
39f77062 1869
8248946c 1870#if GDB_SELF_TEST
1526853e 1871 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1b30aaa5
YQ
1872
1873 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1874 selftests::cooked_read_test);
ec7a5fcb
YQ
1875 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1876 selftests::cooked_write_test);
8248946c 1877#endif
32178cab 1878}
This page took 2.030569 seconds and 4 git commands to generate.