perf/x86/intel/pt: Fix and clean up error handling in pt_event_add()
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
CommitLineData
a7e3ed1e 1/*
efc9f05d
SE
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
a7e3ed1e 6 */
de0428a7 7
c767a54b
JP
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
de0428a7
KW
10#include <linux/stddef.h>
11#include <linux/types.h>
12#include <linux/init.h>
13#include <linux/slab.h>
69c60c88 14#include <linux/export.h>
b37609c3 15#include <linux/watchdog.h>
de0428a7 16
3a632cb2 17#include <asm/cpufeature.h>
de0428a7
KW
18#include <asm/hardirq.h>
19#include <asm/apic.h>
20
21#include "perf_event.h"
a7e3ed1e 22
f22f54f4 23/*
b622d644 24 * Intel PerfMon, used on Core and later.
f22f54f4 25 */
ec75a716 26static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
f22f54f4 27{
c3b7cdf1
PE
28 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
29 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
30 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
31 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
32 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
33 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
34 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
35 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
f22f54f4
PZ
36};
37
5c543e3c 38static struct event_constraint intel_core_event_constraints[] __read_mostly =
f22f54f4
PZ
39{
40 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 EVENT_CONSTRAINT_END
47};
48
5c543e3c 49static struct event_constraint intel_core2_event_constraints[] __read_mostly =
f22f54f4 50{
b622d644
PZ
51 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 53 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
54 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
b622d644 62 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
f22f54f4
PZ
63 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 EVENT_CONSTRAINT_END
65};
66
5c543e3c 67static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
f22f54f4 68{
b622d644
PZ
69 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 71 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
72 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 EVENT_CONSTRAINT_END
81};
82
5c543e3c 83static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
a7e3ed1e 84{
53ad0447
YZ
85 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
f20093ee 87 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
88 EVENT_EXTRA_END
89};
90
5c543e3c 91static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
f22f54f4 92{
b622d644
PZ
93 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 95 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
96 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
d1100770 99 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
f22f54f4
PZ
100 EVENT_CONSTRAINT_END
101};
102
5c543e3c 103static struct event_constraint intel_snb_event_constraints[] __read_mostly =
b06b3d49
LM
104{
105 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 107 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
fd4a5aef
SE
108 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
b06b3d49 112 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
b06b3d49
LM
113 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
f8378f52
AK
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
93fcf72c
MD
117
118 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
b06b3d49
LM
123 EVENT_CONSTRAINT_END
124};
125
69943182
SE
126static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127{
128 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
6113af14 134 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
69943182
SE
135 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
93fcf72c
MD
141
142 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
69943182
SE
147 EVENT_CONSTRAINT_END
148};
149
5c543e3c 150static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
a7e3ed1e 151{
53ad0447
YZ
152 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
f20093ee 155 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
156 EVENT_EXTRA_END
157};
158
0af3ac1f
AK
159static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160{
161 EVENT_CONSTRAINT_END
162};
163
5c543e3c 164static struct event_constraint intel_gen_event_constraints[] __read_mostly =
f22f54f4 165{
b622d644
PZ
166 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 168 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
169 EVENT_CONSTRAINT_END
170};
171
1fa64180
YZ
172static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173{
174 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
1fa64180
YZ
176 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 EVENT_CONSTRAINT_END
178};
179
ee89cbc2 180static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
53ad0447
YZ
181 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
182 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
183 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
f20093ee 184 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
f1923820
SE
185 EVENT_EXTRA_END
186};
187
188static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
53ad0447
YZ
189 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
191 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
f1a52789 192 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
ee89cbc2
SE
193 EVENT_EXTRA_END
194};
195
7f2ee91f
IM
196EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
197EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
198EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
f20093ee
SE
199
200struct attribute *nhm_events_attrs[] = {
201 EVENT_PTR(mem_ld_nhm),
202 NULL,
203};
204
205struct attribute *snb_events_attrs[] = {
206 EVENT_PTR(mem_ld_snb),
9ad64c0f 207 EVENT_PTR(mem_st_snb),
f20093ee
SE
208 NULL,
209};
210
3a632cb2
AK
211static struct event_constraint intel_hsw_event_constraints[] = {
212 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
213 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
214 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
215 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
216 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
217 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
218 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
c420f19b 219 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
3a632cb2 220 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
c420f19b 221 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
3a632cb2 222 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
c420f19b 223 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
93fcf72c
MD
224
225 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
226 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
227 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
228 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
229
3a632cb2
AK
230 EVENT_CONSTRAINT_END
231};
232
91f1b705
AK
233struct event_constraint intel_bdw_event_constraints[] = {
234 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
235 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
236 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
237 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
238 INTEL_EVENT_CONSTRAINT(0xa3, 0x4), /* CYCLE_ACTIVITY.* */
239 EVENT_CONSTRAINT_END
240};
241
f22f54f4
PZ
242static u64 intel_pmu_event_map(int hw_event)
243{
244 return intel_perfmon_event_map[hw_event];
245}
246
74e6543f
YZ
247#define SNB_DMND_DATA_RD (1ULL << 0)
248#define SNB_DMND_RFO (1ULL << 1)
249#define SNB_DMND_IFETCH (1ULL << 2)
250#define SNB_DMND_WB (1ULL << 3)
251#define SNB_PF_DATA_RD (1ULL << 4)
252#define SNB_PF_RFO (1ULL << 5)
253#define SNB_PF_IFETCH (1ULL << 6)
254#define SNB_LLC_DATA_RD (1ULL << 7)
255#define SNB_LLC_RFO (1ULL << 8)
256#define SNB_LLC_IFETCH (1ULL << 9)
257#define SNB_BUS_LOCKS (1ULL << 10)
258#define SNB_STRM_ST (1ULL << 11)
259#define SNB_OTHER (1ULL << 15)
260#define SNB_RESP_ANY (1ULL << 16)
261#define SNB_NO_SUPP (1ULL << 17)
262#define SNB_LLC_HITM (1ULL << 18)
263#define SNB_LLC_HITE (1ULL << 19)
264#define SNB_LLC_HITS (1ULL << 20)
265#define SNB_LLC_HITF (1ULL << 21)
266#define SNB_LOCAL (1ULL << 22)
267#define SNB_REMOTE (0xffULL << 23)
268#define SNB_SNP_NONE (1ULL << 31)
269#define SNB_SNP_NOT_NEEDED (1ULL << 32)
270#define SNB_SNP_MISS (1ULL << 33)
271#define SNB_NO_FWD (1ULL << 34)
272#define SNB_SNP_FWD (1ULL << 35)
273#define SNB_HITM (1ULL << 36)
274#define SNB_NON_DRAM (1ULL << 37)
275
276#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
277#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
278#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
279
280#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
281 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
282 SNB_HITM)
283
284#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
285#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
286
287#define SNB_L3_ACCESS SNB_RESP_ANY
288#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
289
290static __initconst const u64 snb_hw_cache_extra_regs
291 [PERF_COUNT_HW_CACHE_MAX]
292 [PERF_COUNT_HW_CACHE_OP_MAX]
293 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
294{
295 [ C(LL ) ] = {
296 [ C(OP_READ) ] = {
297 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
298 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
299 },
300 [ C(OP_WRITE) ] = {
301 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
302 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
303 },
304 [ C(OP_PREFETCH) ] = {
305 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
306 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
307 },
308 },
309 [ C(NODE) ] = {
310 [ C(OP_READ) ] = {
311 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
312 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
313 },
314 [ C(OP_WRITE) ] = {
315 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
316 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
317 },
318 [ C(OP_PREFETCH) ] = {
319 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
320 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
321 },
322 },
323};
324
b06b3d49
LM
325static __initconst const u64 snb_hw_cache_event_ids
326 [PERF_COUNT_HW_CACHE_MAX]
327 [PERF_COUNT_HW_CACHE_OP_MAX]
328 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
329{
330 [ C(L1D) ] = {
331 [ C(OP_READ) ] = {
332 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
333 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
334 },
335 [ C(OP_WRITE) ] = {
336 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
337 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
338 },
339 [ C(OP_PREFETCH) ] = {
340 [ C(RESULT_ACCESS) ] = 0x0,
341 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
342 },
343 },
344 [ C(L1I ) ] = {
345 [ C(OP_READ) ] = {
346 [ C(RESULT_ACCESS) ] = 0x0,
347 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
348 },
349 [ C(OP_WRITE) ] = {
350 [ C(RESULT_ACCESS) ] = -1,
351 [ C(RESULT_MISS) ] = -1,
352 },
353 [ C(OP_PREFETCH) ] = {
354 [ C(RESULT_ACCESS) ] = 0x0,
355 [ C(RESULT_MISS) ] = 0x0,
356 },
357 },
358 [ C(LL ) ] = {
b06b3d49 359 [ C(OP_READ) ] = {
63b6a675 360 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
b06b3d49 361 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
362 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
363 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
364 },
365 [ C(OP_WRITE) ] = {
63b6a675 366 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
b06b3d49 367 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
368 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
369 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
370 },
371 [ C(OP_PREFETCH) ] = {
63b6a675 372 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
b06b3d49 373 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
374 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
375 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
376 },
377 },
378 [ C(DTLB) ] = {
379 [ C(OP_READ) ] = {
380 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
381 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
382 },
383 [ C(OP_WRITE) ] = {
384 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
385 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
386 },
387 [ C(OP_PREFETCH) ] = {
388 [ C(RESULT_ACCESS) ] = 0x0,
389 [ C(RESULT_MISS) ] = 0x0,
390 },
391 },
392 [ C(ITLB) ] = {
393 [ C(OP_READ) ] = {
394 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
395 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
396 },
397 [ C(OP_WRITE) ] = {
398 [ C(RESULT_ACCESS) ] = -1,
399 [ C(RESULT_MISS) ] = -1,
400 },
401 [ C(OP_PREFETCH) ] = {
402 [ C(RESULT_ACCESS) ] = -1,
403 [ C(RESULT_MISS) ] = -1,
404 },
405 },
406 [ C(BPU ) ] = {
407 [ C(OP_READ) ] = {
408 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
409 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
410 },
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = -1,
413 [ C(RESULT_MISS) ] = -1,
414 },
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = -1,
417 [ C(RESULT_MISS) ] = -1,
418 },
419 },
89d6c0b5
PZ
420 [ C(NODE) ] = {
421 [ C(OP_READ) ] = {
74e6543f
YZ
422 [ C(RESULT_ACCESS) ] = 0x01b7,
423 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
424 },
425 [ C(OP_WRITE) ] = {
74e6543f
YZ
426 [ C(RESULT_ACCESS) ] = 0x01b7,
427 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
428 },
429 [ C(OP_PREFETCH) ] = {
74e6543f
YZ
430 [ C(RESULT_ACCESS) ] = 0x01b7,
431 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
432 },
433 },
434
b06b3d49
LM
435};
436
0f1b5ca2
AK
437/*
438 * Notes on the events:
439 * - data reads do not include code reads (comparable to earlier tables)
440 * - data counts include speculative execution (except L1 write, dtlb, bpu)
441 * - remote node access includes remote memory, remote cache, remote mmio.
442 * - prefetches are not included in the counts because they are not
443 * reliably counted.
444 */
445
446#define HSW_DEMAND_DATA_RD BIT_ULL(0)
447#define HSW_DEMAND_RFO BIT_ULL(1)
448#define HSW_ANY_RESPONSE BIT_ULL(16)
449#define HSW_SUPPLIER_NONE BIT_ULL(17)
450#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
451#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
452#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
453#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
454#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
455 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
456 HSW_L3_MISS_REMOTE_HOP2P)
457#define HSW_SNOOP_NONE BIT_ULL(31)
458#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
459#define HSW_SNOOP_MISS BIT_ULL(33)
460#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
461#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
462#define HSW_SNOOP_HITM BIT_ULL(36)
463#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
464#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
465 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
466 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
467 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
468#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
469#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
470#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
471#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
472 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
473#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
474
91f1b705
AK
475#define BDW_L3_MISS_LOCAL BIT(26)
476#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
477 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
478 HSW_L3_MISS_REMOTE_HOP2P)
479
480
0f1b5ca2
AK
481static __initconst const u64 hsw_hw_cache_event_ids
482 [PERF_COUNT_HW_CACHE_MAX]
483 [PERF_COUNT_HW_CACHE_OP_MAX]
484 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
485{
486 [ C(L1D ) ] = {
487 [ C(OP_READ) ] = {
488 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
489 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
490 },
491 [ C(OP_WRITE) ] = {
492 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
493 [ C(RESULT_MISS) ] = 0x0,
494 },
495 [ C(OP_PREFETCH) ] = {
496 [ C(RESULT_ACCESS) ] = 0x0,
497 [ C(RESULT_MISS) ] = 0x0,
498 },
499 },
500 [ C(L1I ) ] = {
501 [ C(OP_READ) ] = {
502 [ C(RESULT_ACCESS) ] = 0x0,
503 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
504 },
505 [ C(OP_WRITE) ] = {
506 [ C(RESULT_ACCESS) ] = -1,
507 [ C(RESULT_MISS) ] = -1,
508 },
509 [ C(OP_PREFETCH) ] = {
510 [ C(RESULT_ACCESS) ] = 0x0,
511 [ C(RESULT_MISS) ] = 0x0,
512 },
513 },
514 [ C(LL ) ] = {
515 [ C(OP_READ) ] = {
516 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
517 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
518 },
519 [ C(OP_WRITE) ] = {
520 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
521 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
522 },
523 [ C(OP_PREFETCH) ] = {
524 [ C(RESULT_ACCESS) ] = 0x0,
525 [ C(RESULT_MISS) ] = 0x0,
526 },
527 },
528 [ C(DTLB) ] = {
529 [ C(OP_READ) ] = {
530 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
531 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
532 },
533 [ C(OP_WRITE) ] = {
534 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
535 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
536 },
537 [ C(OP_PREFETCH) ] = {
538 [ C(RESULT_ACCESS) ] = 0x0,
539 [ C(RESULT_MISS) ] = 0x0,
540 },
541 },
542 [ C(ITLB) ] = {
543 [ C(OP_READ) ] = {
544 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
545 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
546 },
547 [ C(OP_WRITE) ] = {
548 [ C(RESULT_ACCESS) ] = -1,
549 [ C(RESULT_MISS) ] = -1,
550 },
551 [ C(OP_PREFETCH) ] = {
552 [ C(RESULT_ACCESS) ] = -1,
553 [ C(RESULT_MISS) ] = -1,
554 },
555 },
556 [ C(BPU ) ] = {
557 [ C(OP_READ) ] = {
558 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
559 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
560 },
561 [ C(OP_WRITE) ] = {
562 [ C(RESULT_ACCESS) ] = -1,
563 [ C(RESULT_MISS) ] = -1,
564 },
565 [ C(OP_PREFETCH) ] = {
566 [ C(RESULT_ACCESS) ] = -1,
567 [ C(RESULT_MISS) ] = -1,
568 },
569 },
570 [ C(NODE) ] = {
571 [ C(OP_READ) ] = {
572 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
573 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
574 },
575 [ C(OP_WRITE) ] = {
576 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
577 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
578 },
579 [ C(OP_PREFETCH) ] = {
580 [ C(RESULT_ACCESS) ] = 0x0,
581 [ C(RESULT_MISS) ] = 0x0,
582 },
583 },
584};
585
586static __initconst const u64 hsw_hw_cache_extra_regs
587 [PERF_COUNT_HW_CACHE_MAX]
588 [PERF_COUNT_HW_CACHE_OP_MAX]
589 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
590{
591 [ C(LL ) ] = {
592 [ C(OP_READ) ] = {
593 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
594 HSW_LLC_ACCESS,
595 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
596 HSW_L3_MISS|HSW_ANY_SNOOP,
597 },
598 [ C(OP_WRITE) ] = {
599 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
600 HSW_LLC_ACCESS,
601 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
602 HSW_L3_MISS|HSW_ANY_SNOOP,
603 },
604 [ C(OP_PREFETCH) ] = {
605 [ C(RESULT_ACCESS) ] = 0x0,
606 [ C(RESULT_MISS) ] = 0x0,
607 },
608 },
609 [ C(NODE) ] = {
610 [ C(OP_READ) ] = {
611 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
612 HSW_L3_MISS_LOCAL_DRAM|
613 HSW_SNOOP_DRAM,
614 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
615 HSW_L3_MISS_REMOTE|
616 HSW_SNOOP_DRAM,
617 },
618 [ C(OP_WRITE) ] = {
619 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
620 HSW_L3_MISS_LOCAL_DRAM|
621 HSW_SNOOP_DRAM,
622 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
623 HSW_L3_MISS_REMOTE|
624 HSW_SNOOP_DRAM,
625 },
626 [ C(OP_PREFETCH) ] = {
627 [ C(RESULT_ACCESS) ] = 0x0,
628 [ C(RESULT_MISS) ] = 0x0,
629 },
630 },
631};
632
caaa8be3 633static __initconst const u64 westmere_hw_cache_event_ids
f22f54f4
PZ
634 [PERF_COUNT_HW_CACHE_MAX]
635 [PERF_COUNT_HW_CACHE_OP_MAX]
636 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
637{
638 [ C(L1D) ] = {
639 [ C(OP_READ) ] = {
640 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
641 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
642 },
643 [ C(OP_WRITE) ] = {
644 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
645 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
646 },
647 [ C(OP_PREFETCH) ] = {
648 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
649 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
650 },
651 },
652 [ C(L1I ) ] = {
653 [ C(OP_READ) ] = {
654 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
655 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
656 },
657 [ C(OP_WRITE) ] = {
658 [ C(RESULT_ACCESS) ] = -1,
659 [ C(RESULT_MISS) ] = -1,
660 },
661 [ C(OP_PREFETCH) ] = {
662 [ C(RESULT_ACCESS) ] = 0x0,
663 [ C(RESULT_MISS) ] = 0x0,
664 },
665 },
666 [ C(LL ) ] = {
667 [ C(OP_READ) ] = {
63b6a675 668 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
e994d7d2 669 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
670 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
671 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 672 },
e994d7d2
AK
673 /*
674 * Use RFO, not WRITEBACK, because a write miss would typically occur
675 * on RFO.
676 */
f22f54f4 677 [ C(OP_WRITE) ] = {
63b6a675
PZ
678 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
679 [ C(RESULT_ACCESS) ] = 0x01b7,
680 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
e994d7d2 681 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
682 },
683 [ C(OP_PREFETCH) ] = {
63b6a675 684 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
e994d7d2 685 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
686 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
687 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
688 },
689 },
690 [ C(DTLB) ] = {
691 [ C(OP_READ) ] = {
692 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
693 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
694 },
695 [ C(OP_WRITE) ] = {
696 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
697 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
698 },
699 [ C(OP_PREFETCH) ] = {
700 [ C(RESULT_ACCESS) ] = 0x0,
701 [ C(RESULT_MISS) ] = 0x0,
702 },
703 },
704 [ C(ITLB) ] = {
705 [ C(OP_READ) ] = {
706 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
707 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
708 },
709 [ C(OP_WRITE) ] = {
710 [ C(RESULT_ACCESS) ] = -1,
711 [ C(RESULT_MISS) ] = -1,
712 },
713 [ C(OP_PREFETCH) ] = {
714 [ C(RESULT_ACCESS) ] = -1,
715 [ C(RESULT_MISS) ] = -1,
716 },
717 },
718 [ C(BPU ) ] = {
719 [ C(OP_READ) ] = {
720 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
721 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
722 },
723 [ C(OP_WRITE) ] = {
724 [ C(RESULT_ACCESS) ] = -1,
725 [ C(RESULT_MISS) ] = -1,
726 },
727 [ C(OP_PREFETCH) ] = {
728 [ C(RESULT_ACCESS) ] = -1,
729 [ C(RESULT_MISS) ] = -1,
730 },
731 },
89d6c0b5
PZ
732 [ C(NODE) ] = {
733 [ C(OP_READ) ] = {
734 [ C(RESULT_ACCESS) ] = 0x01b7,
735 [ C(RESULT_MISS) ] = 0x01b7,
736 },
737 [ C(OP_WRITE) ] = {
738 [ C(RESULT_ACCESS) ] = 0x01b7,
739 [ C(RESULT_MISS) ] = 0x01b7,
740 },
741 [ C(OP_PREFETCH) ] = {
742 [ C(RESULT_ACCESS) ] = 0x01b7,
743 [ C(RESULT_MISS) ] = 0x01b7,
744 },
745 },
f22f54f4
PZ
746};
747
e994d7d2 748/*
63b6a675
PZ
749 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
750 * See IA32 SDM Vol 3B 30.6.1.3
e994d7d2
AK
751 */
752
63b6a675
PZ
753#define NHM_DMND_DATA_RD (1 << 0)
754#define NHM_DMND_RFO (1 << 1)
755#define NHM_DMND_IFETCH (1 << 2)
756#define NHM_DMND_WB (1 << 3)
757#define NHM_PF_DATA_RD (1 << 4)
758#define NHM_PF_DATA_RFO (1 << 5)
759#define NHM_PF_IFETCH (1 << 6)
760#define NHM_OFFCORE_OTHER (1 << 7)
761#define NHM_UNCORE_HIT (1 << 8)
762#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
763#define NHM_OTHER_CORE_HITM (1 << 10)
764 /* reserved */
765#define NHM_REMOTE_CACHE_FWD (1 << 12)
766#define NHM_REMOTE_DRAM (1 << 13)
767#define NHM_LOCAL_DRAM (1 << 14)
768#define NHM_NON_DRAM (1 << 15)
769
87e24f4b
PZ
770#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
771#define NHM_REMOTE (NHM_REMOTE_DRAM)
63b6a675
PZ
772
773#define NHM_DMND_READ (NHM_DMND_DATA_RD)
774#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
775#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
776
777#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
87e24f4b 778#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
63b6a675 779#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
e994d7d2
AK
780
781static __initconst const u64 nehalem_hw_cache_extra_regs
782 [PERF_COUNT_HW_CACHE_MAX]
783 [PERF_COUNT_HW_CACHE_OP_MAX]
784 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
785{
786 [ C(LL ) ] = {
787 [ C(OP_READ) ] = {
63b6a675
PZ
788 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
789 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
e994d7d2
AK
790 },
791 [ C(OP_WRITE) ] = {
63b6a675
PZ
792 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
793 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
e994d7d2
AK
794 },
795 [ C(OP_PREFETCH) ] = {
63b6a675
PZ
796 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
797 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
e994d7d2 798 },
89d6c0b5
PZ
799 },
800 [ C(NODE) ] = {
801 [ C(OP_READ) ] = {
87e24f4b
PZ
802 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
803 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
89d6c0b5
PZ
804 },
805 [ C(OP_WRITE) ] = {
87e24f4b
PZ
806 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
807 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
89d6c0b5
PZ
808 },
809 [ C(OP_PREFETCH) ] = {
87e24f4b
PZ
810 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
811 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
89d6c0b5
PZ
812 },
813 },
e994d7d2
AK
814};
815
caaa8be3 816static __initconst const u64 nehalem_hw_cache_event_ids
f22f54f4
PZ
817 [PERF_COUNT_HW_CACHE_MAX]
818 [PERF_COUNT_HW_CACHE_OP_MAX]
819 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
820{
821 [ C(L1D) ] = {
822 [ C(OP_READ) ] = {
f4929bd3
PZ
823 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
824 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
f22f54f4
PZ
825 },
826 [ C(OP_WRITE) ] = {
f4929bd3
PZ
827 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
828 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
f22f54f4
PZ
829 },
830 [ C(OP_PREFETCH) ] = {
831 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
832 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
833 },
834 },
835 [ C(L1I ) ] = {
836 [ C(OP_READ) ] = {
837 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
838 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
839 },
840 [ C(OP_WRITE) ] = {
841 [ C(RESULT_ACCESS) ] = -1,
842 [ C(RESULT_MISS) ] = -1,
843 },
844 [ C(OP_PREFETCH) ] = {
845 [ C(RESULT_ACCESS) ] = 0x0,
846 [ C(RESULT_MISS) ] = 0x0,
847 },
848 },
849 [ C(LL ) ] = {
850 [ C(OP_READ) ] = {
e994d7d2
AK
851 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852 [ C(RESULT_ACCESS) ] = 0x01b7,
853 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 855 },
e994d7d2
AK
856 /*
857 * Use RFO, not WRITEBACK, because a write miss would typically occur
858 * on RFO.
859 */
f22f54f4 860 [ C(OP_WRITE) ] = {
e994d7d2
AK
861 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
862 [ C(RESULT_ACCESS) ] = 0x01b7,
863 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
864 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
865 },
866 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
867 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
868 [ C(RESULT_ACCESS) ] = 0x01b7,
869 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
870 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
871 },
872 },
873 [ C(DTLB) ] = {
874 [ C(OP_READ) ] = {
875 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
876 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
877 },
878 [ C(OP_WRITE) ] = {
879 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
880 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
881 },
882 [ C(OP_PREFETCH) ] = {
883 [ C(RESULT_ACCESS) ] = 0x0,
884 [ C(RESULT_MISS) ] = 0x0,
885 },
886 },
887 [ C(ITLB) ] = {
888 [ C(OP_READ) ] = {
889 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
890 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
891 },
892 [ C(OP_WRITE) ] = {
893 [ C(RESULT_ACCESS) ] = -1,
894 [ C(RESULT_MISS) ] = -1,
895 },
896 [ C(OP_PREFETCH) ] = {
897 [ C(RESULT_ACCESS) ] = -1,
898 [ C(RESULT_MISS) ] = -1,
899 },
900 },
901 [ C(BPU ) ] = {
902 [ C(OP_READ) ] = {
903 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
904 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
905 },
906 [ C(OP_WRITE) ] = {
907 [ C(RESULT_ACCESS) ] = -1,
908 [ C(RESULT_MISS) ] = -1,
909 },
910 [ C(OP_PREFETCH) ] = {
911 [ C(RESULT_ACCESS) ] = -1,
912 [ C(RESULT_MISS) ] = -1,
913 },
914 },
89d6c0b5
PZ
915 [ C(NODE) ] = {
916 [ C(OP_READ) ] = {
917 [ C(RESULT_ACCESS) ] = 0x01b7,
918 [ C(RESULT_MISS) ] = 0x01b7,
919 },
920 [ C(OP_WRITE) ] = {
921 [ C(RESULT_ACCESS) ] = 0x01b7,
922 [ C(RESULT_MISS) ] = 0x01b7,
923 },
924 [ C(OP_PREFETCH) ] = {
925 [ C(RESULT_ACCESS) ] = 0x01b7,
926 [ C(RESULT_MISS) ] = 0x01b7,
927 },
928 },
f22f54f4
PZ
929};
930
caaa8be3 931static __initconst const u64 core2_hw_cache_event_ids
f22f54f4
PZ
932 [PERF_COUNT_HW_CACHE_MAX]
933 [PERF_COUNT_HW_CACHE_OP_MAX]
934 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
935{
936 [ C(L1D) ] = {
937 [ C(OP_READ) ] = {
938 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
939 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
940 },
941 [ C(OP_WRITE) ] = {
942 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
943 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
944 },
945 [ C(OP_PREFETCH) ] = {
946 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
947 [ C(RESULT_MISS) ] = 0,
948 },
949 },
950 [ C(L1I ) ] = {
951 [ C(OP_READ) ] = {
952 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
953 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
954 },
955 [ C(OP_WRITE) ] = {
956 [ C(RESULT_ACCESS) ] = -1,
957 [ C(RESULT_MISS) ] = -1,
958 },
959 [ C(OP_PREFETCH) ] = {
960 [ C(RESULT_ACCESS) ] = 0,
961 [ C(RESULT_MISS) ] = 0,
962 },
963 },
964 [ C(LL ) ] = {
965 [ C(OP_READ) ] = {
966 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
967 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
968 },
969 [ C(OP_WRITE) ] = {
970 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
971 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
972 },
973 [ C(OP_PREFETCH) ] = {
974 [ C(RESULT_ACCESS) ] = 0,
975 [ C(RESULT_MISS) ] = 0,
976 },
977 },
978 [ C(DTLB) ] = {
979 [ C(OP_READ) ] = {
980 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
981 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
982 },
983 [ C(OP_WRITE) ] = {
984 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
985 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
986 },
987 [ C(OP_PREFETCH) ] = {
988 [ C(RESULT_ACCESS) ] = 0,
989 [ C(RESULT_MISS) ] = 0,
990 },
991 },
992 [ C(ITLB) ] = {
993 [ C(OP_READ) ] = {
994 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
995 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
996 },
997 [ C(OP_WRITE) ] = {
998 [ C(RESULT_ACCESS) ] = -1,
999 [ C(RESULT_MISS) ] = -1,
1000 },
1001 [ C(OP_PREFETCH) ] = {
1002 [ C(RESULT_ACCESS) ] = -1,
1003 [ C(RESULT_MISS) ] = -1,
1004 },
1005 },
1006 [ C(BPU ) ] = {
1007 [ C(OP_READ) ] = {
1008 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1009 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1010 },
1011 [ C(OP_WRITE) ] = {
1012 [ C(RESULT_ACCESS) ] = -1,
1013 [ C(RESULT_MISS) ] = -1,
1014 },
1015 [ C(OP_PREFETCH) ] = {
1016 [ C(RESULT_ACCESS) ] = -1,
1017 [ C(RESULT_MISS) ] = -1,
1018 },
1019 },
1020};
1021
caaa8be3 1022static __initconst const u64 atom_hw_cache_event_ids
f22f54f4
PZ
1023 [PERF_COUNT_HW_CACHE_MAX]
1024 [PERF_COUNT_HW_CACHE_OP_MAX]
1025 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1026{
1027 [ C(L1D) ] = {
1028 [ C(OP_READ) ] = {
1029 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1030 [ C(RESULT_MISS) ] = 0,
1031 },
1032 [ C(OP_WRITE) ] = {
1033 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1034 [ C(RESULT_MISS) ] = 0,
1035 },
1036 [ C(OP_PREFETCH) ] = {
1037 [ C(RESULT_ACCESS) ] = 0x0,
1038 [ C(RESULT_MISS) ] = 0,
1039 },
1040 },
1041 [ C(L1I ) ] = {
1042 [ C(OP_READ) ] = {
1043 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1044 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1045 },
1046 [ C(OP_WRITE) ] = {
1047 [ C(RESULT_ACCESS) ] = -1,
1048 [ C(RESULT_MISS) ] = -1,
1049 },
1050 [ C(OP_PREFETCH) ] = {
1051 [ C(RESULT_ACCESS) ] = 0,
1052 [ C(RESULT_MISS) ] = 0,
1053 },
1054 },
1055 [ C(LL ) ] = {
1056 [ C(OP_READ) ] = {
1057 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1058 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1059 },
1060 [ C(OP_WRITE) ] = {
1061 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1062 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1063 },
1064 [ C(OP_PREFETCH) ] = {
1065 [ C(RESULT_ACCESS) ] = 0,
1066 [ C(RESULT_MISS) ] = 0,
1067 },
1068 },
1069 [ C(DTLB) ] = {
1070 [ C(OP_READ) ] = {
1071 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1072 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1073 },
1074 [ C(OP_WRITE) ] = {
1075 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1076 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1077 },
1078 [ C(OP_PREFETCH) ] = {
1079 [ C(RESULT_ACCESS) ] = 0,
1080 [ C(RESULT_MISS) ] = 0,
1081 },
1082 },
1083 [ C(ITLB) ] = {
1084 [ C(OP_READ) ] = {
1085 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1086 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1087 },
1088 [ C(OP_WRITE) ] = {
1089 [ C(RESULT_ACCESS) ] = -1,
1090 [ C(RESULT_MISS) ] = -1,
1091 },
1092 [ C(OP_PREFETCH) ] = {
1093 [ C(RESULT_ACCESS) ] = -1,
1094 [ C(RESULT_MISS) ] = -1,
1095 },
1096 },
1097 [ C(BPU ) ] = {
1098 [ C(OP_READ) ] = {
1099 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1100 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1101 },
1102 [ C(OP_WRITE) ] = {
1103 [ C(RESULT_ACCESS) ] = -1,
1104 [ C(RESULT_MISS) ] = -1,
1105 },
1106 [ C(OP_PREFETCH) ] = {
1107 [ C(RESULT_ACCESS) ] = -1,
1108 [ C(RESULT_MISS) ] = -1,
1109 },
1110 },
1111};
1112
1fa64180
YZ
1113static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1114{
1115 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
06c939c1
PZ
1116 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1117 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1fa64180
YZ
1118 EVENT_EXTRA_END
1119};
1120
1121#define SLM_DMND_READ SNB_DMND_DATA_RD
1122#define SLM_DMND_WRITE SNB_DMND_RFO
1123#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1124
1125#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1126#define SLM_LLC_ACCESS SNB_RESP_ANY
1127#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1128
1129static __initconst const u64 slm_hw_cache_extra_regs
1130 [PERF_COUNT_HW_CACHE_MAX]
1131 [PERF_COUNT_HW_CACHE_OP_MAX]
1132 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1133{
1134 [ C(LL ) ] = {
1135 [ C(OP_READ) ] = {
1136 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1137 [ C(RESULT_MISS) ] = SLM_DMND_READ|SLM_LLC_MISS,
1138 },
1139 [ C(OP_WRITE) ] = {
1140 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1141 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1142 },
1143 [ C(OP_PREFETCH) ] = {
1144 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1145 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1146 },
1147 },
1148};
1149
1150static __initconst const u64 slm_hw_cache_event_ids
1151 [PERF_COUNT_HW_CACHE_MAX]
1152 [PERF_COUNT_HW_CACHE_OP_MAX]
1153 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1154{
1155 [ C(L1D) ] = {
1156 [ C(OP_READ) ] = {
1157 [ C(RESULT_ACCESS) ] = 0,
1158 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1159 },
1160 [ C(OP_WRITE) ] = {
1161 [ C(RESULT_ACCESS) ] = 0,
1162 [ C(RESULT_MISS) ] = 0,
1163 },
1164 [ C(OP_PREFETCH) ] = {
1165 [ C(RESULT_ACCESS) ] = 0,
1166 [ C(RESULT_MISS) ] = 0,
1167 },
1168 },
1169 [ C(L1I ) ] = {
1170 [ C(OP_READ) ] = {
1171 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1172 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1173 },
1174 [ C(OP_WRITE) ] = {
1175 [ C(RESULT_ACCESS) ] = -1,
1176 [ C(RESULT_MISS) ] = -1,
1177 },
1178 [ C(OP_PREFETCH) ] = {
1179 [ C(RESULT_ACCESS) ] = 0,
1180 [ C(RESULT_MISS) ] = 0,
1181 },
1182 },
1183 [ C(LL ) ] = {
1184 [ C(OP_READ) ] = {
1185 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186 [ C(RESULT_ACCESS) ] = 0x01b7,
1187 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1188 [ C(RESULT_MISS) ] = 0x01b7,
1189 },
1190 [ C(OP_WRITE) ] = {
1191 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1192 [ C(RESULT_ACCESS) ] = 0x01b7,
1193 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1194 [ C(RESULT_MISS) ] = 0x01b7,
1195 },
1196 [ C(OP_PREFETCH) ] = {
1197 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1198 [ C(RESULT_ACCESS) ] = 0x01b7,
1199 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1200 [ C(RESULT_MISS) ] = 0x01b7,
1201 },
1202 },
1203 [ C(DTLB) ] = {
1204 [ C(OP_READ) ] = {
1205 [ C(RESULT_ACCESS) ] = 0,
1206 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1207 },
1208 [ C(OP_WRITE) ] = {
1209 [ C(RESULT_ACCESS) ] = 0,
1210 [ C(RESULT_MISS) ] = 0,
1211 },
1212 [ C(OP_PREFETCH) ] = {
1213 [ C(RESULT_ACCESS) ] = 0,
1214 [ C(RESULT_MISS) ] = 0,
1215 },
1216 },
1217 [ C(ITLB) ] = {
1218 [ C(OP_READ) ] = {
1219 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1220 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1221 },
1222 [ C(OP_WRITE) ] = {
1223 [ C(RESULT_ACCESS) ] = -1,
1224 [ C(RESULT_MISS) ] = -1,
1225 },
1226 [ C(OP_PREFETCH) ] = {
1227 [ C(RESULT_ACCESS) ] = -1,
1228 [ C(RESULT_MISS) ] = -1,
1229 },
1230 },
1231 [ C(BPU ) ] = {
1232 [ C(OP_READ) ] = {
1233 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1234 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1235 },
1236 [ C(OP_WRITE) ] = {
1237 [ C(RESULT_ACCESS) ] = -1,
1238 [ C(RESULT_MISS) ] = -1,
1239 },
1240 [ C(OP_PREFETCH) ] = {
1241 [ C(RESULT_ACCESS) ] = -1,
1242 [ C(RESULT_MISS) ] = -1,
1243 },
1244 },
1245};
1246
1a78d937
AK
1247/*
1248 * Use from PMIs where the LBRs are already disabled.
1249 */
1250static void __intel_pmu_disable_all(void)
f22f54f4 1251{
89cbc767 1252 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4
PZ
1253
1254 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1255
15c7ad51 1256 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
f22f54f4 1257 intel_pmu_disable_bts();
8062382c
AS
1258 else
1259 intel_bts_disable_local();
ca037701
PZ
1260
1261 intel_pmu_pebs_disable_all();
1a78d937
AK
1262}
1263
1264static void intel_pmu_disable_all(void)
1265{
1266 __intel_pmu_disable_all();
caff2bef 1267 intel_pmu_lbr_disable_all();
f22f54f4
PZ
1268}
1269
1a78d937 1270static void __intel_pmu_enable_all(int added, bool pmi)
f22f54f4 1271{
89cbc767 1272 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 1273
d329527e 1274 intel_pmu_pebs_enable_all();
1a78d937 1275 intel_pmu_lbr_enable_all(pmi);
144d31e6
GN
1276 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1277 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
f22f54f4 1278
15c7ad51 1279 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
f22f54f4 1280 struct perf_event *event =
15c7ad51 1281 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
f22f54f4
PZ
1282
1283 if (WARN_ON_ONCE(!event))
1284 return;
1285
1286 intel_pmu_enable_bts(event->hw.config);
8062382c
AS
1287 } else
1288 intel_bts_enable_local();
f22f54f4
PZ
1289}
1290
1a78d937
AK
1291static void intel_pmu_enable_all(int added)
1292{
1293 __intel_pmu_enable_all(added, false);
1294}
1295
11164cd4
PZ
1296/*
1297 * Workaround for:
1298 * Intel Errata AAK100 (model 26)
1299 * Intel Errata AAP53 (model 30)
40b91cd1 1300 * Intel Errata BD53 (model 44)
11164cd4 1301 *
351af072
ZY
1302 * The official story:
1303 * These chips need to be 'reset' when adding counters by programming the
1304 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1305 * in sequence on the same PMC or on different PMCs.
1306 *
1307 * In practise it appears some of these events do in fact count, and
1308 * we need to programm all 4 events.
11164cd4 1309 */
351af072 1310static void intel_pmu_nhm_workaround(void)
11164cd4 1311{
89cbc767 1312 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
351af072
ZY
1313 static const unsigned long nhm_magic[4] = {
1314 0x4300B5,
1315 0x4300D2,
1316 0x4300B1,
1317 0x4300B1
1318 };
1319 struct perf_event *event;
1320 int i;
11164cd4 1321
351af072
ZY
1322 /*
1323 * The Errata requires below steps:
1324 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1325 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1326 * the corresponding PMCx;
1327 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1328 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1329 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1330 */
11164cd4 1331
351af072
ZY
1332 /*
1333 * The real steps we choose are a little different from above.
1334 * A) To reduce MSR operations, we don't run step 1) as they
1335 * are already cleared before this function is called;
1336 * B) Call x86_perf_event_update to save PMCx before configuring
1337 * PERFEVTSELx with magic number;
1338 * C) With step 5), we do clear only when the PERFEVTSELx is
1339 * not used currently.
1340 * D) Call x86_perf_event_set_period to restore PMCx;
1341 */
11164cd4 1342
351af072
ZY
1343 /* We always operate 4 pairs of PERF Counters */
1344 for (i = 0; i < 4; i++) {
1345 event = cpuc->events[i];
1346 if (event)
1347 x86_perf_event_update(event);
1348 }
11164cd4 1349
351af072
ZY
1350 for (i = 0; i < 4; i++) {
1351 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1352 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1353 }
1354
1355 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1356 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
11164cd4 1357
351af072
ZY
1358 for (i = 0; i < 4; i++) {
1359 event = cpuc->events[i];
1360
1361 if (event) {
1362 x86_perf_event_set_period(event);
31fa58af 1363 __x86_pmu_enable_event(&event->hw,
351af072
ZY
1364 ARCH_PERFMON_EVENTSEL_ENABLE);
1365 } else
1366 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
11164cd4 1367 }
351af072
ZY
1368}
1369
1370static void intel_pmu_nhm_enable_all(int added)
1371{
1372 if (added)
1373 intel_pmu_nhm_workaround();
11164cd4
PZ
1374 intel_pmu_enable_all(added);
1375}
1376
f22f54f4
PZ
1377static inline u64 intel_pmu_get_status(void)
1378{
1379 u64 status;
1380
1381 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1382
1383 return status;
1384}
1385
1386static inline void intel_pmu_ack_status(u64 ack)
1387{
1388 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1389}
1390
ca037701 1391static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
f22f54f4 1392{
15c7ad51 1393 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4
PZ
1394 u64 ctrl_val, mask;
1395
1396 mask = 0xfULL << (idx * 4);
1397
1398 rdmsrl(hwc->config_base, ctrl_val);
1399 ctrl_val &= ~mask;
7645a24c 1400 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1401}
1402
2b9e344d
PZ
1403static inline bool event_is_checkpointed(struct perf_event *event)
1404{
1405 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1406}
1407
ca037701 1408static void intel_pmu_disable_event(struct perf_event *event)
f22f54f4 1409{
aff3d91a 1410 struct hw_perf_event *hwc = &event->hw;
89cbc767 1411 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 1412
15c7ad51 1413 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
f22f54f4
PZ
1414 intel_pmu_disable_bts();
1415 intel_pmu_drain_bts_buffer();
1416 return;
1417 }
1418
144d31e6
GN
1419 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1420 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2b9e344d 1421 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
144d31e6 1422
60ce0fbd
SE
1423 /*
1424 * must disable before any actual event
1425 * because any event may be combined with LBR
1426 */
a46a2300 1427 if (needs_branch_stack(event))
60ce0fbd
SE
1428 intel_pmu_lbr_disable(event);
1429
f22f54f4 1430 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1431 intel_pmu_disable_fixed(hwc);
f22f54f4
PZ
1432 return;
1433 }
1434
aff3d91a 1435 x86_pmu_disable_event(event);
ca037701 1436
ab608344 1437 if (unlikely(event->attr.precise_ip))
ef21f683 1438 intel_pmu_pebs_disable(event);
f22f54f4
PZ
1439}
1440
ca037701 1441static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
f22f54f4 1442{
15c7ad51 1443 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4 1444 u64 ctrl_val, bits, mask;
f22f54f4
PZ
1445
1446 /*
1447 * Enable IRQ generation (0x8),
1448 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1449 * if requested:
1450 */
1451 bits = 0x8ULL;
1452 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1453 bits |= 0x2;
1454 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1455 bits |= 0x1;
1456
1457 /*
1458 * ANY bit is supported in v3 and up
1459 */
1460 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1461 bits |= 0x4;
1462
1463 bits <<= (idx * 4);
1464 mask = 0xfULL << (idx * 4);
1465
1466 rdmsrl(hwc->config_base, ctrl_val);
1467 ctrl_val &= ~mask;
1468 ctrl_val |= bits;
7645a24c 1469 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1470}
1471
aff3d91a 1472static void intel_pmu_enable_event(struct perf_event *event)
f22f54f4 1473{
aff3d91a 1474 struct hw_perf_event *hwc = &event->hw;
89cbc767 1475 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 1476
15c7ad51 1477 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
0a3aee0d 1478 if (!__this_cpu_read(cpu_hw_events.enabled))
f22f54f4
PZ
1479 return;
1480
1481 intel_pmu_enable_bts(hwc->config);
1482 return;
1483 }
60ce0fbd
SE
1484 /*
1485 * must enabled before any actual event
1486 * because any event may be combined with LBR
1487 */
a46a2300 1488 if (needs_branch_stack(event))
60ce0fbd 1489 intel_pmu_lbr_enable(event);
f22f54f4 1490
144d31e6
GN
1491 if (event->attr.exclude_host)
1492 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1493 if (event->attr.exclude_guest)
1494 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1495
2b9e344d
PZ
1496 if (unlikely(event_is_checkpointed(event)))
1497 cpuc->intel_cp_status |= (1ull << hwc->idx);
1498
f22f54f4 1499 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1500 intel_pmu_enable_fixed(hwc);
f22f54f4
PZ
1501 return;
1502 }
1503
ab608344 1504 if (unlikely(event->attr.precise_ip))
ef21f683 1505 intel_pmu_pebs_enable(event);
ca037701 1506
31fa58af 1507 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f22f54f4
PZ
1508}
1509
1510/*
1511 * Save and restart an expired event. Called by NMI contexts,
1512 * so it has to be careful about preempting normal event ops:
1513 */
de0428a7 1514int intel_pmu_save_and_restart(struct perf_event *event)
f22f54f4 1515{
cc2ad4ba 1516 x86_perf_event_update(event);
2dbf0116
AK
1517 /*
1518 * For a checkpointed counter always reset back to 0. This
1519 * avoids a situation where the counter overflows, aborts the
1520 * transaction and is then set back to shortly before the
1521 * overflow, and overflows and aborts again.
1522 */
1523 if (unlikely(event_is_checkpointed(event))) {
1524 /* No race with NMIs because the counter should not be armed */
1525 wrmsrl(event->hw.event_base, 0);
1526 local64_set(&event->hw.prev_count, 0);
1527 }
cc2ad4ba 1528 return x86_perf_event_set_period(event);
f22f54f4
PZ
1529}
1530
1531static void intel_pmu_reset(void)
1532{
0a3aee0d 1533 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
f22f54f4
PZ
1534 unsigned long flags;
1535 int idx;
1536
948b1bb8 1537 if (!x86_pmu.num_counters)
f22f54f4
PZ
1538 return;
1539
1540 local_irq_save(flags);
1541
c767a54b 1542 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
f22f54f4 1543
948b1bb8 1544 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
715c85b1
PA
1545 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1546 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
f22f54f4 1547 }
948b1bb8 1548 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
715c85b1 1549 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
948b1bb8 1550
f22f54f4
PZ
1551 if (ds)
1552 ds->bts_index = ds->bts_buffer_base;
1553
8882edf7
AK
1554 /* Ack all overflows and disable fixed counters */
1555 if (x86_pmu.version >= 2) {
1556 intel_pmu_ack_status(intel_pmu_get_status());
1557 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1558 }
1559
1560 /* Reset LBRs and LBR freezing */
1561 if (x86_pmu.lbr_nr) {
1562 update_debugctlmsr(get_debugctlmsr() &
1563 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1564 }
1565
f22f54f4
PZ
1566 local_irq_restore(flags);
1567}
1568
1569/*
1570 * This handler is triggered by the local APIC, so the APIC IRQ handling
1571 * rules apply:
1572 */
1573static int intel_pmu_handle_irq(struct pt_regs *regs)
1574{
1575 struct perf_sample_data data;
1576 struct cpu_hw_events *cpuc;
1577 int bit, loops;
2e556b5b 1578 u64 status;
b0b2072d 1579 int handled;
f22f54f4 1580
89cbc767 1581 cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 1582
2bce5dac 1583 /*
72db5596
AK
1584 * No known reason to not always do late ACK,
1585 * but just in case do it opt-in.
2bce5dac 1586 */
72db5596
AK
1587 if (!x86_pmu.late_ack)
1588 apic_write(APIC_LVTPC, APIC_DM_NMI);
1a78d937 1589 __intel_pmu_disable_all();
b0b2072d 1590 handled = intel_pmu_drain_bts_buffer();
8062382c 1591 handled += intel_bts_interrupt();
f22f54f4 1592 status = intel_pmu_get_status();
a3ef2229
MM
1593 if (!status)
1594 goto done;
f22f54f4
PZ
1595
1596 loops = 0;
1597again:
2e556b5b 1598 intel_pmu_ack_status(status);
f22f54f4 1599 if (++loops > 100) {
ae0def05
DH
1600 static bool warned = false;
1601 if (!warned) {
1602 WARN(1, "perfevents: irq loop stuck!\n");
1603 perf_event_print_debug();
1604 warned = true;
1605 }
f22f54f4 1606 intel_pmu_reset();
3fb2b8dd 1607 goto done;
f22f54f4
PZ
1608 }
1609
1610 inc_irq_stat(apic_perf_irqs);
ca037701 1611
caff2bef
PZ
1612 intel_pmu_lbr_read();
1613
b292d7a1
HD
1614 /*
1615 * CondChgd bit 63 doesn't mean any overflow status. Ignore
1616 * and clear the bit.
1617 */
1618 if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1619 if (!status)
1620 goto done;
1621 }
1622
ca037701
PZ
1623 /*
1624 * PEBS overflow sets bit 62 in the global status register
1625 */
de725dec
PZ
1626 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1627 handled++;
ca037701 1628 x86_pmu.drain_pebs(regs);
de725dec 1629 }
ca037701 1630
52ca9ced
AS
1631 /*
1632 * Intel PT
1633 */
1634 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1635 handled++;
1636 intel_pt_interrupt();
1637 }
1638
2dbf0116 1639 /*
2b9e344d
PZ
1640 * Checkpointed counters can lead to 'spurious' PMIs because the
1641 * rollback caused by the PMI will have cleared the overflow status
1642 * bit. Therefore always force probe these counters.
2dbf0116 1643 */
2b9e344d 1644 status |= cpuc->intel_cp_status;
2dbf0116 1645
984b3f57 1646 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
f22f54f4
PZ
1647 struct perf_event *event = cpuc->events[bit];
1648
de725dec
PZ
1649 handled++;
1650
f22f54f4
PZ
1651 if (!test_bit(bit, cpuc->active_mask))
1652 continue;
1653
1654 if (!intel_pmu_save_and_restart(event))
1655 continue;
1656
fd0d000b 1657 perf_sample_data_init(&data, 0, event->hw.last_period);
f22f54f4 1658
60ce0fbd
SE
1659 if (has_branch_stack(event))
1660 data.br_stack = &cpuc->lbr_stack;
1661
a8b0ca17 1662 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1663 x86_pmu_stop(event, 0);
f22f54f4
PZ
1664 }
1665
f22f54f4
PZ
1666 /*
1667 * Repeat if there is more work to be done:
1668 */
1669 status = intel_pmu_get_status();
1670 if (status)
1671 goto again;
1672
3fb2b8dd 1673done:
1a78d937 1674 __intel_pmu_enable_all(0, true);
72db5596
AK
1675 /*
1676 * Only unmask the NMI after the overflow counters
1677 * have been reset. This avoids spurious NMIs on
1678 * Haswell CPUs.
1679 */
1680 if (x86_pmu.late_ack)
1681 apic_write(APIC_LVTPC, APIC_DM_NMI);
de725dec 1682 return handled;
f22f54f4
PZ
1683}
1684
f22f54f4 1685static struct event_constraint *
ca037701 1686intel_bts_constraints(struct perf_event *event)
f22f54f4 1687{
ca037701
PZ
1688 struct hw_perf_event *hwc = &event->hw;
1689 unsigned int hw_event, bts_event;
f22f54f4 1690
18a073a3
PZ
1691 if (event->attr.freq)
1692 return NULL;
1693
ca037701
PZ
1694 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1695 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
f22f54f4 1696
ca037701 1697 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
f22f54f4 1698 return &bts_constraint;
ca037701 1699
f22f54f4
PZ
1700 return NULL;
1701}
1702
5a425294 1703static int intel_alt_er(int idx)
b79e8941 1704{
9a5e3fb5 1705 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
5a425294 1706 return idx;
b79e8941 1707
5a425294
PZ
1708 if (idx == EXTRA_REG_RSP_0)
1709 return EXTRA_REG_RSP_1;
1710
1711 if (idx == EXTRA_REG_RSP_1)
1712 return EXTRA_REG_RSP_0;
1713
1714 return idx;
1715}
1716
1717static void intel_fixup_er(struct perf_event *event, int idx)
1718{
1719 event->hw.extra_reg.idx = idx;
1720
1721 if (idx == EXTRA_REG_RSP_0) {
b79e8941 1722 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 1723 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
b79e8941 1724 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
5a425294
PZ
1725 } else if (idx == EXTRA_REG_RSP_1) {
1726 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 1727 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
5a425294 1728 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
b79e8941 1729 }
b79e8941
PZ
1730}
1731
efc9f05d
SE
1732/*
1733 * manage allocation of shared extra msr for certain events
1734 *
1735 * sharing can be:
1736 * per-cpu: to be shared between the various events on a single PMU
1737 * per-core: per-cpu + shared by HT threads
1738 */
a7e3ed1e 1739static struct event_constraint *
efc9f05d 1740__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
b36817e8
SE
1741 struct perf_event *event,
1742 struct hw_perf_event_extra *reg)
a7e3ed1e 1743{
efc9f05d 1744 struct event_constraint *c = &emptyconstraint;
a7e3ed1e 1745 struct er_account *era;
cd8a38d3 1746 unsigned long flags;
5a425294 1747 int idx = reg->idx;
a7e3ed1e 1748
5a425294
PZ
1749 /*
1750 * reg->alloc can be set due to existing state, so for fake cpuc we
1751 * need to ignore this, otherwise we might fail to allocate proper fake
1752 * state for this extra reg constraint. Also see the comment below.
1753 */
1754 if (reg->alloc && !cpuc->is_fake)
b36817e8 1755 return NULL; /* call x86_get_event_constraint() */
a7e3ed1e 1756
b79e8941 1757again:
5a425294 1758 era = &cpuc->shared_regs->regs[idx];
cd8a38d3
SE
1759 /*
1760 * we use spin_lock_irqsave() to avoid lockdep issues when
1761 * passing a fake cpuc
1762 */
1763 raw_spin_lock_irqsave(&era->lock, flags);
efc9f05d
SE
1764
1765 if (!atomic_read(&era->ref) || era->config == reg->config) {
1766
5a425294
PZ
1767 /*
1768 * If its a fake cpuc -- as per validate_{group,event}() we
1769 * shouldn't touch event state and we can avoid doing so
1770 * since both will only call get_event_constraints() once
1771 * on each event, this avoids the need for reg->alloc.
1772 *
1773 * Not doing the ER fixup will only result in era->reg being
1774 * wrong, but since we won't actually try and program hardware
1775 * this isn't a problem either.
1776 */
1777 if (!cpuc->is_fake) {
1778 if (idx != reg->idx)
1779 intel_fixup_er(event, idx);
1780
1781 /*
1782 * x86_schedule_events() can call get_event_constraints()
1783 * multiple times on events in the case of incremental
1784 * scheduling(). reg->alloc ensures we only do the ER
1785 * allocation once.
1786 */
1787 reg->alloc = 1;
1788 }
1789
efc9f05d
SE
1790 /* lock in msr value */
1791 era->config = reg->config;
1792 era->reg = reg->reg;
1793
1794 /* one more user */
1795 atomic_inc(&era->ref);
1796
a7e3ed1e 1797 /*
b36817e8
SE
1798 * need to call x86_get_event_constraint()
1799 * to check if associated event has constraints
a7e3ed1e 1800 */
b36817e8 1801 c = NULL;
5a425294
PZ
1802 } else {
1803 idx = intel_alt_er(idx);
1804 if (idx != reg->idx) {
1805 raw_spin_unlock_irqrestore(&era->lock, flags);
1806 goto again;
1807 }
a7e3ed1e 1808 }
cd8a38d3 1809 raw_spin_unlock_irqrestore(&era->lock, flags);
a7e3ed1e 1810
efc9f05d
SE
1811 return c;
1812}
1813
1814static void
1815__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1816 struct hw_perf_event_extra *reg)
1817{
1818 struct er_account *era;
1819
1820 /*
5a425294
PZ
1821 * Only put constraint if extra reg was actually allocated. Also takes
1822 * care of event which do not use an extra shared reg.
1823 *
1824 * Also, if this is a fake cpuc we shouldn't touch any event state
1825 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1826 * either since it'll be thrown out.
efc9f05d 1827 */
5a425294 1828 if (!reg->alloc || cpuc->is_fake)
efc9f05d
SE
1829 return;
1830
1831 era = &cpuc->shared_regs->regs[reg->idx];
1832
1833 /* one fewer user */
1834 atomic_dec(&era->ref);
1835
1836 /* allocate again next time */
1837 reg->alloc = 0;
1838}
1839
1840static struct event_constraint *
1841intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1842 struct perf_event *event)
1843{
b36817e8
SE
1844 struct event_constraint *c = NULL, *d;
1845 struct hw_perf_event_extra *xreg, *breg;
1846
1847 xreg = &event->hw.extra_reg;
1848 if (xreg->idx != EXTRA_REG_NONE) {
1849 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1850 if (c == &emptyconstraint)
1851 return c;
1852 }
1853 breg = &event->hw.branch_reg;
1854 if (breg->idx != EXTRA_REG_NONE) {
1855 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1856 if (d == &emptyconstraint) {
1857 __intel_shared_reg_put_constraints(cpuc, xreg);
1858 c = d;
1859 }
1860 }
efc9f05d 1861 return c;
a7e3ed1e
AK
1862}
1863
de0428a7 1864struct event_constraint *
79cba822
SE
1865x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1866 struct perf_event *event)
de0428a7
KW
1867{
1868 struct event_constraint *c;
1869
1870 if (x86_pmu.event_constraints) {
1871 for_each_event_constraint(c, x86_pmu.event_constraints) {
9fac2cf3 1872 if ((event->hw.config & c->cmask) == c->code) {
9fac2cf3 1873 event->hw.flags |= c->flags;
de0428a7 1874 return c;
9fac2cf3 1875 }
de0428a7
KW
1876 }
1877 }
1878
1879 return &unconstrained;
1880}
1881
f22f54f4 1882static struct event_constraint *
e979121b 1883__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
79cba822 1884 struct perf_event *event)
f22f54f4
PZ
1885{
1886 struct event_constraint *c;
1887
ca037701
PZ
1888 c = intel_bts_constraints(event);
1889 if (c)
1890 return c;
1891
687805e4 1892 c = intel_shared_regs_constraints(cpuc, event);
f22f54f4
PZ
1893 if (c)
1894 return c;
1895
687805e4 1896 c = intel_pebs_constraints(event);
a7e3ed1e
AK
1897 if (c)
1898 return c;
1899
79cba822 1900 return x86_get_event_constraints(cpuc, idx, event);
f22f54f4
PZ
1901}
1902
e979121b
MD
1903static void
1904intel_start_scheduling(struct cpu_hw_events *cpuc)
1905{
1906 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1907 struct intel_excl_states *xl, *xlo;
1908 int tid = cpuc->excl_thread_id;
1909 int o_tid = 1 - tid; /* sibling thread */
1910
1911 /*
1912 * nothing needed if in group validation mode
1913 */
b37609c3 1914 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b 1915 return;
b37609c3 1916
e979121b
MD
1917 /*
1918 * no exclusion needed
1919 */
1920 if (!excl_cntrs)
1921 return;
1922
1923 xlo = &excl_cntrs->states[o_tid];
1924 xl = &excl_cntrs->states[tid];
1925
1926 xl->sched_started = true;
c02cdbf6 1927 xl->num_alloc_cntrs = 0;
e979121b
MD
1928 /*
1929 * lock shared state until we are done scheduling
1930 * in stop_event_scheduling()
1931 * makes scheduling appear as a transaction
1932 */
1933 WARN_ON_ONCE(!irqs_disabled());
1934 raw_spin_lock(&excl_cntrs->lock);
1935
1936 /*
1937 * save initial state of sibling thread
1938 */
1939 memcpy(xlo->init_state, xlo->state, sizeof(xlo->init_state));
1940}
1941
1942static void
1943intel_stop_scheduling(struct cpu_hw_events *cpuc)
1944{
1945 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1946 struct intel_excl_states *xl, *xlo;
1947 int tid = cpuc->excl_thread_id;
1948 int o_tid = 1 - tid; /* sibling thread */
1949
1950 /*
1951 * nothing needed if in group validation mode
1952 */
b37609c3 1953 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b
MD
1954 return;
1955 /*
1956 * no exclusion needed
1957 */
1958 if (!excl_cntrs)
1959 return;
1960
1961 xlo = &excl_cntrs->states[o_tid];
1962 xl = &excl_cntrs->states[tid];
1963
1964 /*
1965 * make new sibling thread state visible
1966 */
1967 memcpy(xlo->state, xlo->init_state, sizeof(xlo->state));
1968
1969 xl->sched_started = false;
1970 /*
1971 * release shared state lock (acquired in intel_start_scheduling())
1972 */
1973 raw_spin_unlock(&excl_cntrs->lock);
1974}
1975
1976static struct event_constraint *
1977intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
1978 int idx, struct event_constraint *c)
1979{
1980 struct event_constraint *cx;
1981 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1982 struct intel_excl_states *xl, *xlo;
1983 int is_excl, i;
1984 int tid = cpuc->excl_thread_id;
1985 int o_tid = 1 - tid; /* alternate */
1986
1987 /*
1988 * validating a group does not require
1989 * enforcing cross-thread exclusion
1990 */
b37609c3
SE
1991 if (cpuc->is_fake || !is_ht_workaround_enabled())
1992 return c;
1993
1994 /*
1995 * no exclusion needed
1996 */
1997 if (!excl_cntrs)
e979121b 1998 return c;
e979121b
MD
1999 /*
2000 * event requires exclusive counter access
2001 * across HT threads
2002 */
2003 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2004
2005 /*
2006 * xl = state of current HT
2007 * xlo = state of sibling HT
2008 */
2009 xl = &excl_cntrs->states[tid];
2010 xlo = &excl_cntrs->states[o_tid];
2011
c02cdbf6
SE
2012 /*
2013 * do not allow scheduling of more than max_alloc_cntrs
2014 * which is set to half the available generic counters.
2015 * this helps avoid counter starvation of sibling thread
2016 * by ensuring at most half the counters cannot be in
2017 * exclusive mode. There is not designated counters for the
2018 * limits. Any N/2 counters can be used. This helps with
2019 * events with specifix counter constraints
2020 */
2021 if (xl->num_alloc_cntrs++ == xl->max_alloc_cntrs)
2022 return &emptyconstraint;
2023
e979121b
MD
2024 cx = c;
2025
2026 /*
2027 * because we modify the constraint, we need
2028 * to make a copy. Static constraints come
2029 * from static const tables.
2030 *
2031 * only needed when constraint has not yet
2032 * been cloned (marked dynamic)
2033 */
2034 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2035
2036 /* sanity check */
2037 if (idx < 0)
2038 return &emptyconstraint;
2039
2040 /*
2041 * grab pre-allocated constraint entry
2042 */
2043 cx = &cpuc->constraint_list[idx];
2044
2045 /*
2046 * initialize dynamic constraint
2047 * with static constraint
2048 */
2049 memcpy(cx, c, sizeof(*cx));
2050
2051 /*
2052 * mark constraint as dynamic, so we
2053 * can free it later on
2054 */
2055 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2056 }
2057
2058 /*
2059 * From here on, the constraint is dynamic.
2060 * Either it was just allocated above, or it
2061 * was allocated during a earlier invocation
2062 * of this function
2063 */
2064
2065 /*
2066 * Modify static constraint with current dynamic
2067 * state of thread
2068 *
2069 * EXCLUSIVE: sibling counter measuring exclusive event
2070 * SHARED : sibling counter measuring non-exclusive event
2071 * UNUSED : sibling counter unused
2072 */
2073 for_each_set_bit(i, cx->idxmsk, X86_PMC_IDX_MAX) {
2074 /*
2075 * exclusive event in sibling counter
2076 * our corresponding counter cannot be used
2077 * regardless of our event
2078 */
2079 if (xl->state[i] == INTEL_EXCL_EXCLUSIVE)
2080 __clear_bit(i, cx->idxmsk);
2081 /*
2082 * if measuring an exclusive event, sibling
2083 * measuring non-exclusive, then counter cannot
2084 * be used
2085 */
2086 if (is_excl && xl->state[i] == INTEL_EXCL_SHARED)
2087 __clear_bit(i, cx->idxmsk);
2088 }
2089
2090 /*
2091 * recompute actual bit weight for scheduling algorithm
2092 */
2093 cx->weight = hweight64(cx->idxmsk64);
2094
2095 /*
2096 * if we return an empty mask, then switch
2097 * back to static empty constraint to avoid
2098 * the cost of freeing later on
2099 */
2100 if (cx->weight == 0)
2101 cx = &emptyconstraint;
2102
2103 return cx;
2104}
2105
2106static struct event_constraint *
2107intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2108 struct perf_event *event)
2109{
a90738c2
SE
2110 struct event_constraint *c1 = event->hw.constraint;
2111 struct event_constraint *c2;
e979121b
MD
2112
2113 /*
2114 * first time only
2115 * - static constraint: no change across incremental scheduling calls
2116 * - dynamic constraint: handled by intel_get_excl_constraints()
2117 */
a90738c2
SE
2118 c2 = __intel_get_event_constraints(cpuc, idx, event);
2119 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2120 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2121 c1->weight = c2->weight;
2122 c2 = c1;
2123 }
e979121b
MD
2124
2125 if (cpuc->excl_cntrs)
a90738c2 2126 return intel_get_excl_constraints(cpuc, event, idx, c2);
e979121b 2127
a90738c2 2128 return c2;
e979121b
MD
2129}
2130
2131static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2132 struct perf_event *event)
2133{
2134 struct hw_perf_event *hwc = &event->hw;
2135 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2136 struct intel_excl_states *xlo, *xl;
2137 unsigned long flags = 0; /* keep compiler happy */
2138 int tid = cpuc->excl_thread_id;
2139 int o_tid = 1 - tid;
2140
2141 /*
2142 * nothing needed if in group validation mode
2143 */
2144 if (cpuc->is_fake)
2145 return;
2146
2147 WARN_ON_ONCE(!excl_cntrs);
2148
2149 if (!excl_cntrs)
2150 return;
2151
2152 xl = &excl_cntrs->states[tid];
2153 xlo = &excl_cntrs->states[o_tid];
2154
2155 /*
2156 * put_constraint may be called from x86_schedule_events()
2157 * which already has the lock held so here make locking
2158 * conditional
2159 */
2160 if (!xl->sched_started)
2161 raw_spin_lock_irqsave(&excl_cntrs->lock, flags);
2162
2163 /*
2164 * if event was actually assigned, then mark the
2165 * counter state as unused now
2166 */
2167 if (hwc->idx >= 0)
2168 xlo->state[hwc->idx] = INTEL_EXCL_UNUSED;
2169
2170 if (!xl->sched_started)
2171 raw_spin_unlock_irqrestore(&excl_cntrs->lock, flags);
2172}
2173
efc9f05d
SE
2174static void
2175intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
a7e3ed1e
AK
2176 struct perf_event *event)
2177{
efc9f05d 2178 struct hw_perf_event_extra *reg;
a7e3ed1e 2179
efc9f05d
SE
2180 reg = &event->hw.extra_reg;
2181 if (reg->idx != EXTRA_REG_NONE)
2182 __intel_shared_reg_put_constraints(cpuc, reg);
b36817e8
SE
2183
2184 reg = &event->hw.branch_reg;
2185 if (reg->idx != EXTRA_REG_NONE)
2186 __intel_shared_reg_put_constraints(cpuc, reg);
efc9f05d 2187}
a7e3ed1e 2188
efc9f05d
SE
2189static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2190 struct perf_event *event)
2191{
e979121b
MD
2192 struct event_constraint *c = event->hw.constraint;
2193
efc9f05d 2194 intel_put_shared_regs_event_constraints(cpuc, event);
e979121b
MD
2195
2196 /*
2197 * is PMU has exclusive counter restrictions, then
2198 * all events are subject to and must call the
2199 * put_excl_constraints() routine
2200 */
2201 if (c && cpuc->excl_cntrs)
2202 intel_put_excl_constraints(cpuc, event);
2203
2204 /* cleanup dynamic constraint */
2205 if (c && (c->flags & PERF_X86_EVENT_DYNAMIC))
2206 event->hw.constraint = NULL;
2207}
2208
2209static void intel_commit_scheduling(struct cpu_hw_events *cpuc,
2210 struct perf_event *event, int cntr)
2211{
2212 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2213 struct event_constraint *c = event->hw.constraint;
2214 struct intel_excl_states *xlo, *xl;
2215 int tid = cpuc->excl_thread_id;
2216 int o_tid = 1 - tid;
2217 int is_excl;
2218
2219 if (cpuc->is_fake || !c)
2220 return;
2221
2222 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2223
2224 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2225 return;
2226
2227 WARN_ON_ONCE(!excl_cntrs);
2228
2229 if (!excl_cntrs)
2230 return;
2231
2232 xl = &excl_cntrs->states[tid];
2233 xlo = &excl_cntrs->states[o_tid];
2234
2235 WARN_ON_ONCE(!raw_spin_is_locked(&excl_cntrs->lock));
2236
2237 if (cntr >= 0) {
2238 if (is_excl)
2239 xlo->init_state[cntr] = INTEL_EXCL_EXCLUSIVE;
2240 else
2241 xlo->init_state[cntr] = INTEL_EXCL_SHARED;
2242 }
a7e3ed1e
AK
2243}
2244
0780c927 2245static void intel_pebs_aliases_core2(struct perf_event *event)
b4cdc5c2 2246{
0780c927 2247 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
7639dae0
PZ
2248 /*
2249 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2250 * (0x003c) so that we can use it with PEBS.
2251 *
2252 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2253 * PEBS capable. However we can use INST_RETIRED.ANY_P
2254 * (0x00c0), which is a PEBS capable event, to get the same
2255 * count.
2256 *
2257 * INST_RETIRED.ANY_P counts the number of cycles that retires
2258 * CNTMASK instructions. By setting CNTMASK to a value (16)
2259 * larger than the maximum number of instructions that can be
2260 * retired per cycle (4) and then inverting the condition, we
2261 * count all cycles that retire 16 or less instructions, which
2262 * is every cycle.
2263 *
2264 * Thereby we gain a PEBS capable cycle counter.
2265 */
f9b4eeb8
PZ
2266 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2267
0780c927
PZ
2268 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2269 event->hw.config = alt_config;
2270 }
2271}
2272
2273static void intel_pebs_aliases_snb(struct perf_event *event)
2274{
2275 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2276 /*
2277 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2278 * (0x003c) so that we can use it with PEBS.
2279 *
2280 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2281 * PEBS capable. However we can use UOPS_RETIRED.ALL
2282 * (0x01c2), which is a PEBS capable event, to get the same
2283 * count.
2284 *
2285 * UOPS_RETIRED.ALL counts the number of cycles that retires
2286 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2287 * larger than the maximum number of micro-ops that can be
2288 * retired per cycle (4) and then inverting the condition, we
2289 * count all cycles that retire 16 or less micro-ops, which
2290 * is every cycle.
2291 *
2292 * Thereby we gain a PEBS capable cycle counter.
2293 */
2294 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
7639dae0
PZ
2295
2296 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2297 event->hw.config = alt_config;
2298 }
0780c927
PZ
2299}
2300
2301static int intel_pmu_hw_config(struct perf_event *event)
2302{
2303 int ret = x86_pmu_hw_config(event);
2304
2305 if (ret)
2306 return ret;
2307
2308 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
2309 x86_pmu.pebs_aliases(event);
7639dae0 2310
a46a2300 2311 if (needs_branch_stack(event)) {
60ce0fbd
SE
2312 ret = intel_pmu_setup_lbr_filter(event);
2313 if (ret)
2314 return ret;
48070342
AS
2315
2316 /*
2317 * BTS is set up earlier in this path, so don't account twice
2318 */
2319 if (!intel_pmu_has_bts(event)) {
2320 /* disallow lbr if conflicting events are present */
2321 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2322 return -EBUSY;
2323
2324 event->destroy = hw_perf_lbr_event_destroy;
2325 }
60ce0fbd
SE
2326 }
2327
b4cdc5c2
PZ
2328 if (event->attr.type != PERF_TYPE_RAW)
2329 return 0;
2330
2331 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2332 return 0;
2333
2334 if (x86_pmu.version < 3)
2335 return -EINVAL;
2336
2337 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2338 return -EACCES;
2339
2340 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2341
2342 return 0;
2343}
2344
144d31e6
GN
2345struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2346{
2347 if (x86_pmu.guest_get_msrs)
2348 return x86_pmu.guest_get_msrs(nr);
2349 *nr = 0;
2350 return NULL;
2351}
2352EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2353
2354static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2355{
89cbc767 2356 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2357 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2358
2359 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2360 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2361 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
26a4f3c0
GN
2362 /*
2363 * If PMU counter has PEBS enabled it is not enough to disable counter
2364 * on a guest entry since PEBS memory write can overshoot guest entry
2365 * and corrupt guest memory. Disabling PEBS solves the problem.
2366 */
2367 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2368 arr[1].host = cpuc->pebs_enabled;
2369 arr[1].guest = 0;
144d31e6 2370
26a4f3c0 2371 *nr = 2;
144d31e6
GN
2372 return arr;
2373}
2374
2375static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2376{
89cbc767 2377 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2378 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2379 int idx;
2380
2381 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2382 struct perf_event *event = cpuc->events[idx];
2383
2384 arr[idx].msr = x86_pmu_config_addr(idx);
2385 arr[idx].host = arr[idx].guest = 0;
2386
2387 if (!test_bit(idx, cpuc->active_mask))
2388 continue;
2389
2390 arr[idx].host = arr[idx].guest =
2391 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2392
2393 if (event->attr.exclude_host)
2394 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2395 else if (event->attr.exclude_guest)
2396 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2397 }
2398
2399 *nr = x86_pmu.num_counters;
2400 return arr;
2401}
2402
2403static void core_pmu_enable_event(struct perf_event *event)
2404{
2405 if (!event->attr.exclude_host)
2406 x86_pmu_enable_event(event);
2407}
2408
2409static void core_pmu_enable_all(int added)
2410{
89cbc767 2411 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2412 int idx;
2413
2414 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2415 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2416
2417 if (!test_bit(idx, cpuc->active_mask) ||
2418 cpuc->events[idx]->attr.exclude_host)
2419 continue;
2420
2421 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2422 }
2423}
2424
3a632cb2
AK
2425static int hsw_hw_config(struct perf_event *event)
2426{
2427 int ret = intel_pmu_hw_config(event);
2428
2429 if (ret)
2430 return ret;
2431 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2432 return 0;
2433 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2434
2435 /*
2436 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2437 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2438 * this combination.
2439 */
2440 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2441 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2442 event->attr.precise_ip > 0))
2443 return -EOPNOTSUPP;
2444
2dbf0116
AK
2445 if (event_is_checkpointed(event)) {
2446 /*
2447 * Sampling of checkpointed events can cause situations where
2448 * the CPU constantly aborts because of a overflow, which is
2449 * then checkpointed back and ignored. Forbid checkpointing
2450 * for sampling.
2451 *
2452 * But still allow a long sampling period, so that perf stat
2453 * from KVM works.
2454 */
2455 if (event->attr.sample_period > 0 &&
2456 event->attr.sample_period < 0x7fffffff)
2457 return -EOPNOTSUPP;
2458 }
3a632cb2
AK
2459 return 0;
2460}
2461
2462static struct event_constraint counter2_constraint =
2463 EVENT_CONSTRAINT(0, 0x4, 0);
2464
2465static struct event_constraint *
79cba822
SE
2466hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2467 struct perf_event *event)
3a632cb2 2468{
79cba822
SE
2469 struct event_constraint *c;
2470
2471 c = intel_get_event_constraints(cpuc, idx, event);
3a632cb2
AK
2472
2473 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2474 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2475 if (c->idxmsk64 & (1U << 2))
2476 return &counter2_constraint;
2477 return &emptyconstraint;
2478 }
2479
2480 return c;
2481}
2482
294fe0f5
AK
2483/*
2484 * Broadwell:
2485 *
2486 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2487 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2488 * the two to enforce a minimum period of 128 (the smallest value that has bits
2489 * 0-5 cleared and >= 100).
2490 *
2491 * Because of how the code in x86_perf_event_set_period() works, the truncation
2492 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2493 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2494 *
2495 * Therefore the effective (average) period matches the requested period,
2496 * despite coarser hardware granularity.
2497 */
2498static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2499{
2500 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2501 X86_CONFIG(.event=0xc0, .umask=0x01)) {
2502 if (left < 128)
2503 left = 128;
2504 left &= ~0x3fu;
2505 }
2506 return left;
2507}
2508
641cc938
JO
2509PMU_FORMAT_ATTR(event, "config:0-7" );
2510PMU_FORMAT_ATTR(umask, "config:8-15" );
2511PMU_FORMAT_ATTR(edge, "config:18" );
2512PMU_FORMAT_ATTR(pc, "config:19" );
2513PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2514PMU_FORMAT_ATTR(inv, "config:23" );
2515PMU_FORMAT_ATTR(cmask, "config:24-31" );
3a632cb2
AK
2516PMU_FORMAT_ATTR(in_tx, "config:32");
2517PMU_FORMAT_ATTR(in_tx_cp, "config:33");
641cc938
JO
2518
2519static struct attribute *intel_arch_formats_attr[] = {
2520 &format_attr_event.attr,
2521 &format_attr_umask.attr,
2522 &format_attr_edge.attr,
2523 &format_attr_pc.attr,
2524 &format_attr_inv.attr,
2525 &format_attr_cmask.attr,
2526 NULL,
2527};
2528
0bf79d44
JO
2529ssize_t intel_event_sysfs_show(char *page, u64 config)
2530{
2531 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2532
2533 return x86_event_sysfs_show(page, config, event);
2534}
2535
caaa8be3 2536static __initconst const struct x86_pmu core_pmu = {
f22f54f4
PZ
2537 .name = "core",
2538 .handle_irq = x86_pmu_handle_irq,
2539 .disable_all = x86_pmu_disable_all,
144d31e6
GN
2540 .enable_all = core_pmu_enable_all,
2541 .enable = core_pmu_enable_event,
f22f54f4 2542 .disable = x86_pmu_disable_event,
b4cdc5c2 2543 .hw_config = x86_pmu_hw_config,
a072738e 2544 .schedule_events = x86_schedule_events,
f22f54f4
PZ
2545 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2546 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2547 .event_map = intel_pmu_event_map,
f22f54f4
PZ
2548 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2549 .apic = 1,
2550 /*
2551 * Intel PMCs cannot be accessed sanely above 32 bit width,
2552 * so we install an artificial 1<<31 period regardless of
2553 * the generic event period:
2554 */
2555 .max_period = (1ULL << 31) - 1,
2556 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 2557 .put_event_constraints = intel_put_event_constraints,
f22f54f4 2558 .event_constraints = intel_core_event_constraints,
144d31e6 2559 .guest_get_msrs = core_guest_get_msrs,
641cc938 2560 .format_attrs = intel_arch_formats_attr,
0bf79d44 2561 .events_sysfs_show = intel_event_sysfs_show,
f22f54f4
PZ
2562};
2563
de0428a7 2564struct intel_shared_regs *allocate_shared_regs(int cpu)
efc9f05d
SE
2565{
2566 struct intel_shared_regs *regs;
2567 int i;
2568
2569 regs = kzalloc_node(sizeof(struct intel_shared_regs),
2570 GFP_KERNEL, cpu_to_node(cpu));
2571 if (regs) {
2572 /*
2573 * initialize the locks to keep lockdep happy
2574 */
2575 for (i = 0; i < EXTRA_REG_MAX; i++)
2576 raw_spin_lock_init(&regs->regs[i].lock);
2577
2578 regs->core_id = -1;
2579 }
2580 return regs;
2581}
2582
6f6539ca
MD
2583static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2584{
2585 struct intel_excl_cntrs *c;
2586 int i;
2587
2588 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2589 GFP_KERNEL, cpu_to_node(cpu));
2590 if (c) {
2591 raw_spin_lock_init(&c->lock);
2592 for (i = 0; i < X86_PMC_IDX_MAX; i++) {
2593 c->states[0].state[i] = INTEL_EXCL_UNUSED;
2594 c->states[0].init_state[i] = INTEL_EXCL_UNUSED;
2595
2596 c->states[1].state[i] = INTEL_EXCL_UNUSED;
2597 c->states[1].init_state[i] = INTEL_EXCL_UNUSED;
2598 }
2599 c->core_id = -1;
2600 }
2601 return c;
2602}
2603
a7e3ed1e
AK
2604static int intel_pmu_cpu_prepare(int cpu)
2605{
2606 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2607
6f6539ca
MD
2608 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2609 cpuc->shared_regs = allocate_shared_regs(cpu);
2610 if (!cpuc->shared_regs)
2611 return NOTIFY_BAD;
2612 }
69092624 2613
6f6539ca
MD
2614 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2615 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2616
2617 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2618 if (!cpuc->constraint_list)
2619 return NOTIFY_BAD;
2620
2621 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2622 if (!cpuc->excl_cntrs) {
2623 kfree(cpuc->constraint_list);
2624 kfree(cpuc->shared_regs);
2625 return NOTIFY_BAD;
2626 }
2627 cpuc->excl_thread_id = 0;
2628 }
a7e3ed1e 2629
a7e3ed1e
AK
2630 return NOTIFY_OK;
2631}
2632
74846d35
PZ
2633static void intel_pmu_cpu_starting(int cpu)
2634{
a7e3ed1e
AK
2635 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2636 int core_id = topology_core_id(cpu);
2637 int i;
2638
69092624
LM
2639 init_debug_store_on_cpu(cpu);
2640 /*
2641 * Deal with CPUs that don't clear their LBRs on power-up.
2642 */
2643 intel_pmu_lbr_reset();
2644
b36817e8
SE
2645 cpuc->lbr_sel = NULL;
2646
2647 if (!cpuc->shared_regs)
69092624
LM
2648 return;
2649
9a5e3fb5 2650 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
90413464
SE
2651 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2652
b36817e8
SE
2653 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2654 struct intel_shared_regs *pc;
a7e3ed1e 2655
b36817e8
SE
2656 pc = per_cpu(cpu_hw_events, i).shared_regs;
2657 if (pc && pc->core_id == core_id) {
90413464 2658 *onln = cpuc->shared_regs;
b36817e8
SE
2659 cpuc->shared_regs = pc;
2660 break;
2661 }
a7e3ed1e 2662 }
b36817e8
SE
2663 cpuc->shared_regs->core_id = core_id;
2664 cpuc->shared_regs->refcnt++;
a7e3ed1e
AK
2665 }
2666
b36817e8
SE
2667 if (x86_pmu.lbr_sel_map)
2668 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
6f6539ca
MD
2669
2670 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
c02cdbf6
SE
2671 int h = x86_pmu.num_counters >> 1;
2672
6f6539ca
MD
2673 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2674 struct intel_excl_cntrs *c;
2675
2676 c = per_cpu(cpu_hw_events, i).excl_cntrs;
2677 if (c && c->core_id == core_id) {
2678 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2679 cpuc->excl_cntrs = c;
2680 cpuc->excl_thread_id = 1;
2681 break;
2682 }
2683 }
2684 cpuc->excl_cntrs->core_id = core_id;
2685 cpuc->excl_cntrs->refcnt++;
c02cdbf6
SE
2686 /*
2687 * set hard limit to half the number of generic counters
2688 */
2689 cpuc->excl_cntrs->states[0].max_alloc_cntrs = h;
2690 cpuc->excl_cntrs->states[1].max_alloc_cntrs = h;
6f6539ca 2691 }
74846d35
PZ
2692}
2693
b37609c3 2694static void free_excl_cntrs(int cpu)
74846d35 2695{
a7e3ed1e 2696 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6f6539ca 2697 struct intel_excl_cntrs *c;
a7e3ed1e 2698
6f6539ca
MD
2699 c = cpuc->excl_cntrs;
2700 if (c) {
2701 if (c->core_id == -1 || --c->refcnt == 0)
2702 kfree(c);
2703 cpuc->excl_cntrs = NULL;
2704 kfree(cpuc->constraint_list);
2705 cpuc->constraint_list = NULL;
2706 }
b37609c3 2707}
a7e3ed1e 2708
b37609c3
SE
2709static void intel_pmu_cpu_dying(int cpu)
2710{
2711 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2712 struct intel_shared_regs *pc;
2713
2714 pc = cpuc->shared_regs;
2715 if (pc) {
2716 if (pc->core_id == -1 || --pc->refcnt == 0)
2717 kfree(pc);
2718 cpuc->shared_regs = NULL;
e979121b
MD
2719 }
2720
b37609c3
SE
2721 free_excl_cntrs(cpu);
2722
74846d35
PZ
2723 fini_debug_store_on_cpu(cpu);
2724}
2725
641cc938
JO
2726PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2727
a63fcab4
SE
2728PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2729
641cc938
JO
2730static struct attribute *intel_arch3_formats_attr[] = {
2731 &format_attr_event.attr,
2732 &format_attr_umask.attr,
2733 &format_attr_edge.attr,
2734 &format_attr_pc.attr,
2735 &format_attr_any.attr,
2736 &format_attr_inv.attr,
2737 &format_attr_cmask.attr,
3a632cb2
AK
2738 &format_attr_in_tx.attr,
2739 &format_attr_in_tx_cp.attr,
641cc938
JO
2740
2741 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
a63fcab4 2742 &format_attr_ldlat.attr, /* PEBS load latency */
641cc938
JO
2743 NULL,
2744};
2745
caaa8be3 2746static __initconst const struct x86_pmu intel_pmu = {
f22f54f4
PZ
2747 .name = "Intel",
2748 .handle_irq = intel_pmu_handle_irq,
2749 .disable_all = intel_pmu_disable_all,
2750 .enable_all = intel_pmu_enable_all,
2751 .enable = intel_pmu_enable_event,
2752 .disable = intel_pmu_disable_event,
b4cdc5c2 2753 .hw_config = intel_pmu_hw_config,
a072738e 2754 .schedule_events = x86_schedule_events,
f22f54f4
PZ
2755 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2756 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2757 .event_map = intel_pmu_event_map,
f22f54f4
PZ
2758 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2759 .apic = 1,
2760 /*
2761 * Intel PMCs cannot be accessed sanely above 32 bit width,
2762 * so we install an artificial 1<<31 period regardless of
2763 * the generic event period:
2764 */
2765 .max_period = (1ULL << 31) - 1,
3f6da390 2766 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 2767 .put_event_constraints = intel_put_event_constraints,
0780c927 2768 .pebs_aliases = intel_pebs_aliases_core2,
3f6da390 2769
641cc938 2770 .format_attrs = intel_arch3_formats_attr,
0bf79d44 2771 .events_sysfs_show = intel_event_sysfs_show,
641cc938 2772
a7e3ed1e 2773 .cpu_prepare = intel_pmu_cpu_prepare,
74846d35
PZ
2774 .cpu_starting = intel_pmu_cpu_starting,
2775 .cpu_dying = intel_pmu_cpu_dying,
144d31e6 2776 .guest_get_msrs = intel_guest_get_msrs,
2a0ad3b3 2777 .sched_task = intel_pmu_lbr_sched_task,
f22f54f4
PZ
2778};
2779
c1d6f42f 2780static __init void intel_clovertown_quirk(void)
3c44780b
PZ
2781{
2782 /*
2783 * PEBS is unreliable due to:
2784 *
2785 * AJ67 - PEBS may experience CPL leaks
2786 * AJ68 - PEBS PMI may be delayed by one event
2787 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2788 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2789 *
2790 * AJ67 could be worked around by restricting the OS/USR flags.
2791 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2792 *
2793 * AJ106 could possibly be worked around by not allowing LBR
2794 * usage from PEBS, including the fixup.
2795 * AJ68 could possibly be worked around by always programming
ec75a716 2796 * a pebs_event_reset[0] value and coping with the lost events.
3c44780b
PZ
2797 *
2798 * But taken together it might just make sense to not enable PEBS on
2799 * these chips.
2800 */
c767a54b 2801 pr_warn("PEBS disabled due to CPU errata\n");
3c44780b
PZ
2802 x86_pmu.pebs = 0;
2803 x86_pmu.pebs_constraints = NULL;
2804}
2805
c93dc84c
PZ
2806static int intel_snb_pebs_broken(int cpu)
2807{
2808 u32 rev = UINT_MAX; /* default to broken for unknown models */
2809
2810 switch (cpu_data(cpu).x86_model) {
2811 case 42: /* SNB */
2812 rev = 0x28;
2813 break;
2814
2815 case 45: /* SNB-EP */
2816 switch (cpu_data(cpu).x86_mask) {
2817 case 6: rev = 0x618; break;
2818 case 7: rev = 0x70c; break;
2819 }
2820 }
2821
2822 return (cpu_data(cpu).microcode < rev);
2823}
2824
2825static void intel_snb_check_microcode(void)
2826{
2827 int pebs_broken = 0;
2828 int cpu;
2829
2830 get_online_cpus();
2831 for_each_online_cpu(cpu) {
2832 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2833 break;
2834 }
2835 put_online_cpus();
2836
2837 if (pebs_broken == x86_pmu.pebs_broken)
2838 return;
2839
2840 /*
2841 * Serialized by the microcode lock..
2842 */
2843 if (x86_pmu.pebs_broken) {
2844 pr_info("PEBS enabled due to microcode update\n");
2845 x86_pmu.pebs_broken = 0;
2846 } else {
2847 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2848 x86_pmu.pebs_broken = 1;
2849 }
2850}
2851
338b522c
KL
2852/*
2853 * Under certain circumstances, access certain MSR may cause #GP.
2854 * The function tests if the input MSR can be safely accessed.
2855 */
2856static bool check_msr(unsigned long msr, u64 mask)
2857{
2858 u64 val_old, val_new, val_tmp;
2859
2860 /*
2861 * Read the current value, change it and read it back to see if it
2862 * matches, this is needed to detect certain hardware emulators
2863 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2864 */
2865 if (rdmsrl_safe(msr, &val_old))
2866 return false;
2867
2868 /*
2869 * Only change the bits which can be updated by wrmsrl.
2870 */
2871 val_tmp = val_old ^ mask;
2872 if (wrmsrl_safe(msr, val_tmp) ||
2873 rdmsrl_safe(msr, &val_new))
2874 return false;
2875
2876 if (val_new != val_tmp)
2877 return false;
2878
2879 /* Here it's sure that the MSR can be safely accessed.
2880 * Restore the old value and return.
2881 */
2882 wrmsrl(msr, val_old);
2883
2884 return true;
2885}
2886
c1d6f42f 2887static __init void intel_sandybridge_quirk(void)
6a600a8b 2888{
c93dc84c
PZ
2889 x86_pmu.check_microcode = intel_snb_check_microcode;
2890 intel_snb_check_microcode();
6a600a8b
PZ
2891}
2892
c1d6f42f
PZ
2893static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2894 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2895 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2896 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2897 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2898 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2899 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2900 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
ffb871bc
GN
2901};
2902
c1d6f42f
PZ
2903static __init void intel_arch_events_quirk(void)
2904{
2905 int bit;
2906
2907 /* disable event that reported as not presend by cpuid */
2908 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2909 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
c767a54b
JP
2910 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2911 intel_arch_events_map[bit].name);
c1d6f42f
PZ
2912 }
2913}
2914
2915static __init void intel_nehalem_quirk(void)
2916{
2917 union cpuid10_ebx ebx;
2918
2919 ebx.full = x86_pmu.events_maskl;
2920 if (ebx.split.no_branch_misses_retired) {
2921 /*
2922 * Erratum AAJ80 detected, we work it around by using
2923 * the BR_MISP_EXEC.ANY event. This will over-count
2924 * branch-misses, but it's still much better than the
2925 * architectural event which is often completely bogus:
2926 */
2927 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2928 ebx.split.no_branch_misses_retired = 0;
2929 x86_pmu.events_maskl = ebx.full;
c767a54b 2930 pr_info("CPU erratum AAJ80 worked around\n");
c1d6f42f
PZ
2931 }
2932}
2933
93fcf72c
MD
2934/*
2935 * enable software workaround for errata:
2936 * SNB: BJ122
2937 * IVB: BV98
2938 * HSW: HSD29
2939 *
2940 * Only needed when HT is enabled. However detecting
b37609c3
SE
2941 * if HT is enabled is difficult (model specific). So instead,
2942 * we enable the workaround in the early boot, and verify if
2943 * it is needed in a later initcall phase once we have valid
2944 * topology information to check if HT is actually enabled
93fcf72c
MD
2945 */
2946static __init void intel_ht_bug(void)
2947{
b37609c3 2948 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
93fcf72c
MD
2949
2950 x86_pmu.commit_scheduling = intel_commit_scheduling;
2951 x86_pmu.start_scheduling = intel_start_scheduling;
2952 x86_pmu.stop_scheduling = intel_stop_scheduling;
93fcf72c
MD
2953}
2954
7f2ee91f
IM
2955EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
2956EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
f9134f36 2957
4b2c4f1f 2958/* Haswell special events */
7f2ee91f
IM
2959EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
2960EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
2961EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
2962EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
2963EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
2964EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
2965EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
2966EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
2967EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
2968EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
2969EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
2970EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4b2c4f1f 2971
f9134f36 2972static struct attribute *hsw_events_attrs[] = {
4b2c4f1f
AK
2973 EVENT_PTR(tx_start),
2974 EVENT_PTR(tx_commit),
2975 EVENT_PTR(tx_abort),
2976 EVENT_PTR(tx_capacity),
2977 EVENT_PTR(tx_conflict),
2978 EVENT_PTR(el_start),
2979 EVENT_PTR(el_commit),
2980 EVENT_PTR(el_abort),
2981 EVENT_PTR(el_capacity),
2982 EVENT_PTR(el_conflict),
2983 EVENT_PTR(cycles_t),
2984 EVENT_PTR(cycles_ct),
f9134f36
AK
2985 EVENT_PTR(mem_ld_hsw),
2986 EVENT_PTR(mem_st_hsw),
2987 NULL
2988};
2989
de0428a7 2990__init int intel_pmu_init(void)
f22f54f4
PZ
2991{
2992 union cpuid10_edx edx;
2993 union cpuid10_eax eax;
ffb871bc 2994 union cpuid10_ebx ebx;
a1eac7ac 2995 struct event_constraint *c;
f22f54f4 2996 unsigned int unused;
338b522c
KL
2997 struct extra_reg *er;
2998 int version, i;
f22f54f4
PZ
2999
3000 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
a072738e
CG
3001 switch (boot_cpu_data.x86) {
3002 case 0x6:
3003 return p6_pmu_init();
e717bf4e
VW
3004 case 0xb:
3005 return knc_pmu_init();
a072738e
CG
3006 case 0xf:
3007 return p4_pmu_init();
3008 }
f22f54f4 3009 return -ENODEV;
f22f54f4
PZ
3010 }
3011
3012 /*
3013 * Check whether the Architectural PerfMon supports
3014 * Branch Misses Retired hw_event or not.
3015 */
ffb871bc
GN
3016 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3017 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
f22f54f4
PZ
3018 return -ENODEV;
3019
3020 version = eax.split.version_id;
3021 if (version < 2)
3022 x86_pmu = core_pmu;
3023 else
3024 x86_pmu = intel_pmu;
3025
3026 x86_pmu.version = version;
948b1bb8
RR
3027 x86_pmu.num_counters = eax.split.num_counters;
3028 x86_pmu.cntval_bits = eax.split.bit_width;
3029 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
f22f54f4 3030
c1d6f42f
PZ
3031 x86_pmu.events_maskl = ebx.full;
3032 x86_pmu.events_mask_len = eax.split.mask_length;
3033
70ab7003
AK
3034 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3035
f22f54f4
PZ
3036 /*
3037 * Quirk: v2 perfmon does not report fixed-purpose events, so
3038 * assume at least 3 events:
3039 */
3040 if (version > 1)
948b1bb8 3041 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
f22f54f4 3042
c9b08884 3043 if (boot_cpu_has(X86_FEATURE_PDCM)) {
8db909a7
PZ
3044 u64 capabilities;
3045
3046 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3047 x86_pmu.intel_cap.capabilities = capabilities;
3048 }
3049
ca037701
PZ
3050 intel_ds_init();
3051
c1d6f42f
PZ
3052 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3053
f22f54f4
PZ
3054 /*
3055 * Install the hw-cache-events table:
3056 */
3057 switch (boot_cpu_data.x86_model) {
0f7c29ce 3058 case 14: /* 65nm Core "Yonah" */
f22f54f4
PZ
3059 pr_cont("Core events, ");
3060 break;
3061
0f7c29ce 3062 case 15: /* 65nm Core2 "Merom" */
c1d6f42f 3063 x86_add_quirk(intel_clovertown_quirk);
0f7c29ce
PZ
3064 case 22: /* 65nm Core2 "Merom-L" */
3065 case 23: /* 45nm Core2 "Penryn" */
3066 case 29: /* 45nm Core2 "Dunnington (MP) */
f22f54f4
PZ
3067 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3068 sizeof(hw_cache_event_ids));
3069
caff2bef
PZ
3070 intel_pmu_lbr_init_core();
3071
f22f54f4 3072 x86_pmu.event_constraints = intel_core2_event_constraints;
17e31629 3073 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
f22f54f4
PZ
3074 pr_cont("Core2 events, ");
3075 break;
3076
0f7c29ce
PZ
3077 case 30: /* 45nm Nehalem */
3078 case 26: /* 45nm Nehalem-EP */
3079 case 46: /* 45nm Nehalem-EX */
f22f54f4
PZ
3080 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3081 sizeof(hw_cache_event_ids));
e994d7d2
AK
3082 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3083 sizeof(hw_cache_extra_regs));
f22f54f4 3084
caff2bef
PZ
3085 intel_pmu_lbr_init_nhm();
3086
f22f54f4 3087 x86_pmu.event_constraints = intel_nehalem_event_constraints;
17e31629 3088 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
11164cd4 3089 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
a7e3ed1e 3090 x86_pmu.extra_regs = intel_nehalem_extra_regs;
ec75a716 3091
f20093ee
SE
3092 x86_pmu.cpu_events = nhm_events_attrs;
3093
91fc4cc0 3094 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3095 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3096 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
91fc4cc0 3097 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3098 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3099 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
94403f88 3100
c1d6f42f 3101 x86_add_quirk(intel_nehalem_quirk);
ec75a716 3102
11164cd4 3103 pr_cont("Nehalem events, ");
f22f54f4 3104 break;
caff2bef 3105
0f7c29ce
PZ
3106 case 28: /* 45nm Atom "Pineview" */
3107 case 38: /* 45nm Atom "Lincroft" */
3108 case 39: /* 32nm Atom "Penwell" */
3109 case 53: /* 32nm Atom "Cloverview" */
3110 case 54: /* 32nm Atom "Cedarview" */
f22f54f4
PZ
3111 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3112 sizeof(hw_cache_event_ids));
3113
caff2bef
PZ
3114 intel_pmu_lbr_init_atom();
3115
f22f54f4 3116 x86_pmu.event_constraints = intel_gen_event_constraints;
17e31629 3117 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
f22f54f4
PZ
3118 pr_cont("Atom events, ");
3119 break;
3120
0f7c29ce 3121 case 55: /* 22nm Atom "Silvermont" */
ef454cae 3122 case 76: /* 14nm Atom "Airmont" */
0f7c29ce 3123 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
1fa64180
YZ
3124 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3125 sizeof(hw_cache_event_ids));
3126 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3127 sizeof(hw_cache_extra_regs));
3128
3129 intel_pmu_lbr_init_atom();
3130
3131 x86_pmu.event_constraints = intel_slm_event_constraints;
3132 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3133 x86_pmu.extra_regs = intel_slm_extra_regs;
9a5e3fb5 3134 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
1fa64180
YZ
3135 pr_cont("Silvermont events, ");
3136 break;
3137
0f7c29ce
PZ
3138 case 37: /* 32nm Westmere */
3139 case 44: /* 32nm Westmere-EP */
3140 case 47: /* 32nm Westmere-EX */
f22f54f4
PZ
3141 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3142 sizeof(hw_cache_event_ids));
e994d7d2
AK
3143 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3144 sizeof(hw_cache_extra_regs));
f22f54f4 3145
caff2bef
PZ
3146 intel_pmu_lbr_init_nhm();
3147
f22f54f4 3148 x86_pmu.event_constraints = intel_westmere_event_constraints;
40b91cd1 3149 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
17e31629 3150 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
a7e3ed1e 3151 x86_pmu.extra_regs = intel_westmere_extra_regs;
9a5e3fb5 3152 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
30112039 3153
f20093ee
SE
3154 x86_pmu.cpu_events = nhm_events_attrs;
3155
30112039 3156 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3157 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3158 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
30112039 3159 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3160 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3161 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
30112039 3162
f22f54f4
PZ
3163 pr_cont("Westmere events, ");
3164 break;
b622d644 3165
0f7c29ce
PZ
3166 case 42: /* 32nm SandyBridge */
3167 case 45: /* 32nm SandyBridge-E/EN/EP */
47a8863d 3168 x86_add_quirk(intel_sandybridge_quirk);
93fcf72c 3169 x86_add_quirk(intel_ht_bug);
b06b3d49
LM
3170 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3171 sizeof(hw_cache_event_ids));
74e6543f
YZ
3172 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3173 sizeof(hw_cache_extra_regs));
b06b3d49 3174
c5cc2cd9 3175 intel_pmu_lbr_init_snb();
b06b3d49
LM
3176
3177 x86_pmu.event_constraints = intel_snb_event_constraints;
de0428a7 3178 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
0780c927 3179 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
3180 if (boot_cpu_data.x86_model == 45)
3181 x86_pmu.extra_regs = intel_snbep_extra_regs;
3182 else
3183 x86_pmu.extra_regs = intel_snb_extra_regs;
93fcf72c
MD
3184
3185
ee89cbc2 3186 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3187 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3188 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
e04d1b23 3189
f20093ee
SE
3190 x86_pmu.cpu_events = snb_events_attrs;
3191
e04d1b23 3192 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
f9b4eeb8
PZ
3193 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3194 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 3195 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
f9b4eeb8
PZ
3196 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3197 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 3198
b06b3d49
LM
3199 pr_cont("SandyBridge events, ");
3200 break;
0f7c29ce
PZ
3201
3202 case 58: /* 22nm IvyBridge */
3203 case 62: /* 22nm IvyBridge-EP/EX */
93fcf72c 3204 x86_add_quirk(intel_ht_bug);
20a36e39
SE
3205 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3206 sizeof(hw_cache_event_ids));
1996388e
VW
3207 /* dTLB-load-misses on IVB is different than SNB */
3208 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3209
20a36e39
SE
3210 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3211 sizeof(hw_cache_extra_regs));
3212
3213 intel_pmu_lbr_init_snb();
3214
69943182 3215 x86_pmu.event_constraints = intel_ivb_event_constraints;
20a36e39
SE
3216 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3217 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
3218 if (boot_cpu_data.x86_model == 62)
3219 x86_pmu.extra_regs = intel_snbep_extra_regs;
3220 else
3221 x86_pmu.extra_regs = intel_snb_extra_regs;
20a36e39 3222 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3223 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3224 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
20a36e39 3225
f20093ee
SE
3226 x86_pmu.cpu_events = snb_events_attrs;
3227
20a36e39
SE
3228 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3229 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3230 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3231
3232 pr_cont("IvyBridge events, ");
3233 break;
3234
b06b3d49 3235
d86c8eaf
AK
3236 case 60: /* 22nm Haswell Core */
3237 case 63: /* 22nm Haswell Server */
3238 case 69: /* 22nm Haswell ULT */
3239 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
93fcf72c 3240 x86_add_quirk(intel_ht_bug);
72db5596 3241 x86_pmu.late_ack = true;
0f1b5ca2
AK
3242 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3243 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3a632cb2 3244
e9d7f7cd 3245 intel_pmu_lbr_init_hsw();
3a632cb2
AK
3246
3247 x86_pmu.event_constraints = intel_hsw_event_constraints;
3044318f 3248 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
36bbb2f2 3249 x86_pmu.extra_regs = intel_snbep_extra_regs;
3044318f 3250 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3a632cb2 3251 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3252 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3253 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3a632cb2
AK
3254
3255 x86_pmu.hw_config = hsw_hw_config;
3256 x86_pmu.get_event_constraints = hsw_get_event_constraints;
f9134f36 3257 x86_pmu.cpu_events = hsw_events_attrs;
b7af41a1 3258 x86_pmu.lbr_double_abort = true;
3a632cb2
AK
3259 pr_cont("Haswell events, ");
3260 break;
3261
91f1b705
AK
3262 case 61: /* 14nm Broadwell Core-M */
3263 case 86: /* 14nm Broadwell Xeon D */
3264 x86_pmu.late_ack = true;
3265 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3266 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3267
3268 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3269 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3270 BDW_L3_MISS|HSW_SNOOP_DRAM;
3271 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3272 HSW_SNOOP_DRAM;
3273 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3274 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3275 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3276 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3277
78d504bc 3278 intel_pmu_lbr_init_hsw();
91f1b705
AK
3279
3280 x86_pmu.event_constraints = intel_bdw_event_constraints;
3281 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3282 x86_pmu.extra_regs = intel_snbep_extra_regs;
3283 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3284 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3285 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3286 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
91f1b705
AK
3287
3288 x86_pmu.hw_config = hsw_hw_config;
3289 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3290 x86_pmu.cpu_events = hsw_events_attrs;
294fe0f5 3291 x86_pmu.limit_period = bdw_limit_period;
91f1b705
AK
3292 pr_cont("Broadwell events, ");
3293 break;
3294
f22f54f4 3295 default:
0af3ac1f
AK
3296 switch (x86_pmu.version) {
3297 case 1:
3298 x86_pmu.event_constraints = intel_v1_event_constraints;
3299 pr_cont("generic architected perfmon v1, ");
3300 break;
3301 default:
3302 /*
3303 * default constraints for v2 and up
3304 */
3305 x86_pmu.event_constraints = intel_gen_event_constraints;
3306 pr_cont("generic architected perfmon, ");
3307 break;
3308 }
f22f54f4 3309 }
ffb871bc 3310
a1eac7ac
RR
3311 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3312 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3313 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3314 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3315 }
3316 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3317
3318 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3319 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3320 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3321 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3322 }
3323
3324 x86_pmu.intel_ctrl |=
3325 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3326
3327 if (x86_pmu.event_constraints) {
3328 /*
3329 * event on fixed counter2 (REF_CYCLES) only works on this
3330 * counter, so do not extend mask to generic counters
3331 */
3332 for_each_event_constraint(c, x86_pmu.event_constraints) {
3a632cb2 3333 if (c->cmask != FIXED_EVENT_FLAGS
a1eac7ac
RR
3334 || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3335 continue;
3336 }
3337
3338 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3339 c->weight += x86_pmu.num_counters;
3340 }
3341 }
3342
338b522c
KL
3343 /*
3344 * Access LBR MSR may cause #GP under certain circumstances.
3345 * E.g. KVM doesn't support LBR MSR
3346 * Check all LBT MSR here.
3347 * Disable LBR access if any LBR MSRs can not be accessed.
3348 */
3349 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3350 x86_pmu.lbr_nr = 0;
3351 for (i = 0; i < x86_pmu.lbr_nr; i++) {
3352 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3353 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3354 x86_pmu.lbr_nr = 0;
3355 }
3356
3357 /*
3358 * Access extra MSR may cause #GP under certain circumstances.
3359 * E.g. KVM doesn't support offcore event
3360 * Check all extra_regs here.
3361 */
3362 if (x86_pmu.extra_regs) {
3363 for (er = x86_pmu.extra_regs; er->msr; er++) {
3364 er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
3365 /* Disable LBR select mapping */
3366 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3367 x86_pmu.lbr_sel_map = NULL;
3368 }
3369 }
3370
069e0c3c
AK
3371 /* Support full width counters using alternative MSR range */
3372 if (x86_pmu.intel_cap.full_width_write) {
3373 x86_pmu.max_period = x86_pmu.cntval_mask;
3374 x86_pmu.perfctr = MSR_IA32_PMC0;
3375 pr_cont("full-width counters, ");
3376 }
3377
f22f54f4
PZ
3378 return 0;
3379}
b37609c3
SE
3380
3381/*
3382 * HT bug: phase 2 init
3383 * Called once we have valid topology information to check
3384 * whether or not HT is enabled
3385 * If HT is off, then we disable the workaround
3386 */
3387static __init int fixup_ht_bug(void)
3388{
3389 int cpu = smp_processor_id();
3390 int w, c;
3391 /*
3392 * problem not present on this CPU model, nothing to do
3393 */
3394 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3395 return 0;
3396
3397 w = cpumask_weight(topology_thread_cpumask(cpu));
3398 if (w > 1) {
3399 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3400 return 0;
3401 }
3402
3403 watchdog_nmi_disable_all();
3404
3405 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3406
3407 x86_pmu.commit_scheduling = NULL;
3408 x86_pmu.start_scheduling = NULL;
3409 x86_pmu.stop_scheduling = NULL;
3410
3411 watchdog_nmi_enable_all();
3412
3413 get_online_cpus();
3414
3415 for_each_online_cpu(c) {
3416 free_excl_cntrs(c);
3417 }
3418
3419 put_online_cpus();
3420 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3421 return 0;
3422}
3423subsys_initcall(fixup_ht_bug)
This page took 0.381717 seconds and 5 git commands to generate.