drm/i915: enable kernel modesetting on IGDNG
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/i2c.h>
28#include "drmP.h"
29#include "intel_drv.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32
33#include "drm_crtc_helper.h"
34
35bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
36
37typedef struct {
38 /* given values */
39 int n;
40 int m1, m2;
41 int p1, p2;
42 /* derived values */
43 int dot;
44 int vco;
45 int m;
46 int p;
47} intel_clock_t;
48
49typedef struct {
50 int min, max;
51} intel_range_t;
52
53typedef struct {
54 int dot_limit;
55 int p2_slow, p2_fast;
56} intel_p2_t;
57
58#define INTEL_P2_NUM 2
d4906093
ML
59typedef struct intel_limit intel_limit_t;
60struct intel_limit {
79e53945
JB
61 intel_range_t dot, vco, n, m, m1, m2, p, p1;
62 intel_p2_t p2;
d4906093
ML
63 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
64 int, int, intel_clock_t *);
65};
79e53945
JB
66
67#define I8XX_DOT_MIN 25000
68#define I8XX_DOT_MAX 350000
69#define I8XX_VCO_MIN 930000
70#define I8XX_VCO_MAX 1400000
71#define I8XX_N_MIN 3
72#define I8XX_N_MAX 16
73#define I8XX_M_MIN 96
74#define I8XX_M_MAX 140
75#define I8XX_M1_MIN 18
76#define I8XX_M1_MAX 26
77#define I8XX_M2_MIN 6
78#define I8XX_M2_MAX 16
79#define I8XX_P_MIN 4
80#define I8XX_P_MAX 128
81#define I8XX_P1_MIN 2
82#define I8XX_P1_MAX 33
83#define I8XX_P1_LVDS_MIN 1
84#define I8XX_P1_LVDS_MAX 6
85#define I8XX_P2_SLOW 4
86#define I8XX_P2_FAST 2
87#define I8XX_P2_LVDS_SLOW 14
88#define I8XX_P2_LVDS_FAST 14 /* No fast option */
89#define I8XX_P2_SLOW_LIMIT 165000
90
91#define I9XX_DOT_MIN 20000
92#define I9XX_DOT_MAX 400000
93#define I9XX_VCO_MIN 1400000
94#define I9XX_VCO_MAX 2800000
2177832f
SL
95#define IGD_VCO_MIN 1700000
96#define IGD_VCO_MAX 3500000
f3cade5c
KH
97#define I9XX_N_MIN 1
98#define I9XX_N_MAX 6
2177832f
SL
99/* IGD's Ncounter is a ring counter */
100#define IGD_N_MIN 3
101#define IGD_N_MAX 6
79e53945
JB
102#define I9XX_M_MIN 70
103#define I9XX_M_MAX 120
2177832f
SL
104#define IGD_M_MIN 2
105#define IGD_M_MAX 256
79e53945 106#define I9XX_M1_MIN 10
f3cade5c 107#define I9XX_M1_MAX 22
79e53945
JB
108#define I9XX_M2_MIN 5
109#define I9XX_M2_MAX 9
2177832f
SL
110/* IGD M1 is reserved, and must be 0 */
111#define IGD_M1_MIN 0
112#define IGD_M1_MAX 0
113#define IGD_M2_MIN 0
114#define IGD_M2_MAX 254
79e53945
JB
115#define I9XX_P_SDVO_DAC_MIN 5
116#define I9XX_P_SDVO_DAC_MAX 80
117#define I9XX_P_LVDS_MIN 7
118#define I9XX_P_LVDS_MAX 98
2177832f
SL
119#define IGD_P_LVDS_MIN 7
120#define IGD_P_LVDS_MAX 112
79e53945
JB
121#define I9XX_P1_MIN 1
122#define I9XX_P1_MAX 8
123#define I9XX_P2_SDVO_DAC_SLOW 10
124#define I9XX_P2_SDVO_DAC_FAST 5
125#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
126#define I9XX_P2_LVDS_SLOW 14
127#define I9XX_P2_LVDS_FAST 7
128#define I9XX_P2_LVDS_SLOW_LIMIT 112000
129
130#define INTEL_LIMIT_I8XX_DVO_DAC 0
131#define INTEL_LIMIT_I8XX_LVDS 1
132#define INTEL_LIMIT_I9XX_SDVO_DAC 2
133#define INTEL_LIMIT_I9XX_LVDS 3
044c7c41
ML
134#define INTEL_LIMIT_G4X_SDVO 4
135#define INTEL_LIMIT_G4X_HDMI_DAC 5
136#define INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS 6
137#define INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS 7
2177832f
SL
138#define INTEL_LIMIT_IGD_SDVO_DAC 8
139#define INTEL_LIMIT_IGD_LVDS 9
2c07245f
ZW
140#define INTEL_LIMIT_IGDNG_SDVO_DAC 10
141#define INTEL_LIMIT_IGDNG_LVDS 11
044c7c41
ML
142
143/*The parameter is for SDVO on G4x platform*/
144#define G4X_DOT_SDVO_MIN 25000
145#define G4X_DOT_SDVO_MAX 270000
146#define G4X_VCO_MIN 1750000
147#define G4X_VCO_MAX 3500000
148#define G4X_N_SDVO_MIN 1
149#define G4X_N_SDVO_MAX 4
150#define G4X_M_SDVO_MIN 104
151#define G4X_M_SDVO_MAX 138
152#define G4X_M1_SDVO_MIN 17
153#define G4X_M1_SDVO_MAX 23
154#define G4X_M2_SDVO_MIN 5
155#define G4X_M2_SDVO_MAX 11
156#define G4X_P_SDVO_MIN 10
157#define G4X_P_SDVO_MAX 30
158#define G4X_P1_SDVO_MIN 1
159#define G4X_P1_SDVO_MAX 3
160#define G4X_P2_SDVO_SLOW 10
161#define G4X_P2_SDVO_FAST 10
162#define G4X_P2_SDVO_LIMIT 270000
163
164/*The parameter is for HDMI_DAC on G4x platform*/
165#define G4X_DOT_HDMI_DAC_MIN 22000
166#define G4X_DOT_HDMI_DAC_MAX 400000
167#define G4X_N_HDMI_DAC_MIN 1
168#define G4X_N_HDMI_DAC_MAX 4
169#define G4X_M_HDMI_DAC_MIN 104
170#define G4X_M_HDMI_DAC_MAX 138
171#define G4X_M1_HDMI_DAC_MIN 16
172#define G4X_M1_HDMI_DAC_MAX 23
173#define G4X_M2_HDMI_DAC_MIN 5
174#define G4X_M2_HDMI_DAC_MAX 11
175#define G4X_P_HDMI_DAC_MIN 5
176#define G4X_P_HDMI_DAC_MAX 80
177#define G4X_P1_HDMI_DAC_MIN 1
178#define G4X_P1_HDMI_DAC_MAX 8
179#define G4X_P2_HDMI_DAC_SLOW 10
180#define G4X_P2_HDMI_DAC_FAST 5
181#define G4X_P2_HDMI_DAC_LIMIT 165000
182
183/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
184#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
185#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
186#define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
187#define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
188#define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
189#define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
190#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
191#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
192#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
193#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
194#define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
195#define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
196#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
197#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
198#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
199#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
200#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201
202/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
203#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
204#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
205#define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
206#define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
207#define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
208#define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
209#define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
210#define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
211#define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
212#define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
213#define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
214#define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
215#define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
216#define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
217#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
218#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
219#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220
2c07245f
ZW
221/* IGDNG */
222/* as we calculate clock using (register_value + 2) for
223 N/M1/M2, so here the range value for them is (actual_value-2).
224 */
225#define IGDNG_DOT_MIN 25000
226#define IGDNG_DOT_MAX 350000
227#define IGDNG_VCO_MIN 1760000
228#define IGDNG_VCO_MAX 3510000
229#define IGDNG_N_MIN 1
230#define IGDNG_N_MAX 5
231#define IGDNG_M_MIN 79
232#define IGDNG_M_MAX 118
233#define IGDNG_M1_MIN 12
234#define IGDNG_M1_MAX 23
235#define IGDNG_M2_MIN 5
236#define IGDNG_M2_MAX 9
237#define IGDNG_P_SDVO_DAC_MIN 5
238#define IGDNG_P_SDVO_DAC_MAX 80
239#define IGDNG_P_LVDS_MIN 28
240#define IGDNG_P_LVDS_MAX 112
241#define IGDNG_P1_MIN 1
242#define IGDNG_P1_MAX 8
243#define IGDNG_P2_SDVO_DAC_SLOW 10
244#define IGDNG_P2_SDVO_DAC_FAST 5
245#define IGDNG_P2_LVDS_SLOW 14 /* single channel */
246#define IGDNG_P2_LVDS_FAST 7 /* double channel */
247#define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
248
d4906093
ML
249static bool
250intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
251 int target, int refclk, intel_clock_t *best_clock);
252static bool
253intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
254 int target, int refclk, intel_clock_t *best_clock);
2c07245f
ZW
255static bool
256intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
257 int target, int refclk, intel_clock_t *best_clock);
79e53945
JB
258
259static const intel_limit_t intel_limits[] = {
260 { /* INTEL_LIMIT_I8XX_DVO_DAC */
261 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
262 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
263 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
264 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
265 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
266 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
267 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
268 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
269 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
270 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
d4906093 271 .find_pll = intel_find_best_PLL,
79e53945
JB
272 },
273 { /* INTEL_LIMIT_I8XX_LVDS */
274 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
275 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
276 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
277 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
278 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
279 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
280 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
281 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
282 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
283 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
d4906093 284 .find_pll = intel_find_best_PLL,
79e53945
JB
285 },
286 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
287 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
288 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
289 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
290 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
291 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
292 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
293 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
294 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
295 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
296 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
d4906093 297 .find_pll = intel_find_best_PLL,
79e53945
JB
298 },
299 { /* INTEL_LIMIT_I9XX_LVDS */
300 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
301 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
302 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
303 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
304 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
305 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
306 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
307 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
308 /* The single-channel range is 25-112Mhz, and dual-channel
309 * is 80-224Mhz. Prefer single channel as much as possible.
310 */
311 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
312 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
d4906093 313 .find_pll = intel_find_best_PLL,
79e53945 314 },
044c7c41
ML
315 /* below parameter and function is for G4X Chipset Family*/
316 { /* INTEL_LIMIT_G4X_SDVO */
317 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
318 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
319 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
320 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
321 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
322 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
323 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
324 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
325 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
326 .p2_slow = G4X_P2_SDVO_SLOW,
327 .p2_fast = G4X_P2_SDVO_FAST
328 },
d4906093 329 .find_pll = intel_g4x_find_best_PLL,
044c7c41
ML
330 },
331 { /* INTEL_LIMIT_G4X_HDMI_DAC */
332 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
333 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
334 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
335 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
336 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
337 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
338 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
339 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
340 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
341 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
342 .p2_fast = G4X_P2_HDMI_DAC_FAST
343 },
d4906093 344 .find_pll = intel_g4x_find_best_PLL,
044c7c41
ML
345 },
346 { /* INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS */
347 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
348 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
349 .vco = { .min = G4X_VCO_MIN,
350 .max = G4X_VCO_MAX },
351 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
352 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
353 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
354 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
355 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
356 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
357 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
358 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
359 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
360 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
361 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
362 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
363 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
364 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
365 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
366 },
d4906093 367 .find_pll = intel_g4x_find_best_PLL,
044c7c41
ML
368 },
369 { /* INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS */
370 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
371 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
372 .vco = { .min = G4X_VCO_MIN,
373 .max = G4X_VCO_MAX },
374 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
375 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
376 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
377 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
378 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
379 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
380 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
381 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
382 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
383 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
384 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
385 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
386 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
387 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
388 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
389 },
d4906093 390 .find_pll = intel_g4x_find_best_PLL,
044c7c41 391 },
2177832f
SL
392 { /* INTEL_LIMIT_IGD_SDVO */
393 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
394 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
395 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
396 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
397 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
398 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
399 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
400 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
401 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
402 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
6115707b 403 .find_pll = intel_find_best_PLL,
2177832f
SL
404 },
405 { /* INTEL_LIMIT_IGD_LVDS */
406 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
407 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
408 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
409 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
410 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
411 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
412 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
413 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
414 /* IGD only supports single-channel mode. */
415 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
416 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
6115707b 417 .find_pll = intel_find_best_PLL,
2177832f 418 },
2c07245f
ZW
419 { /* INTEL_LIMIT_IGDNG_SDVO_DAC */
420 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
421 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
422 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
423 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
424 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
425 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
426 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
427 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
428 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
429 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
430 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
431 .find_pll = intel_igdng_find_best_PLL,
432 },
433 { /* INTEL_LIMIT_IGDNG_LVDS */
434 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
435 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
436 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
437 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
438 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
439 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
440 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
441 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
442 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
443 .p2_slow = IGDNG_P2_LVDS_SLOW,
444 .p2_fast = IGDNG_P2_LVDS_FAST },
445 .find_pll = intel_igdng_find_best_PLL,
446 },
79e53945
JB
447};
448
2c07245f
ZW
449static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
450{
451 const intel_limit_t *limit;
452 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
453 limit = &intel_limits[INTEL_LIMIT_IGDNG_LVDS];
454 else
455 limit = &intel_limits[INTEL_LIMIT_IGDNG_SDVO_DAC];
456
457 return limit;
458}
459
044c7c41
ML
460static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
461{
462 struct drm_device *dev = crtc->dev;
463 struct drm_i915_private *dev_priv = dev->dev_private;
464 const intel_limit_t *limit;
465
466 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
467 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
468 LVDS_CLKB_POWER_UP)
469 /* LVDS with dual channel */
470 limit = &intel_limits
471 [INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS];
472 else
473 /* LVDS with dual channel */
474 limit = &intel_limits
475 [INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS];
476 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
477 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
478 limit = &intel_limits[INTEL_LIMIT_G4X_HDMI_DAC];
479 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
480 limit = &intel_limits[INTEL_LIMIT_G4X_SDVO];
481 } else /* The option is for other outputs */
482 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
483
484 return limit;
485}
486
79e53945
JB
487static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
488{
489 struct drm_device *dev = crtc->dev;
490 const intel_limit_t *limit;
491
2c07245f
ZW
492 if (IS_IGDNG(dev))
493 limit = intel_igdng_limit(crtc);
494 else if (IS_G4X(dev)) {
044c7c41 495 limit = intel_g4x_limit(crtc);
2177832f 496 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
79e53945
JB
497 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
498 limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
499 else
500 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
2177832f
SL
501 } else if (IS_IGD(dev)) {
502 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
503 limit = &intel_limits[INTEL_LIMIT_IGD_LVDS];
504 else
505 limit = &intel_limits[INTEL_LIMIT_IGD_SDVO_DAC];
79e53945
JB
506 } else {
507 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
508 limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
509 else
510 limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
511 }
512 return limit;
513}
514
2177832f
SL
515/* m1 is reserved as 0 in IGD, n is a ring counter */
516static void igd_clock(int refclk, intel_clock_t *clock)
79e53945 517{
2177832f
SL
518 clock->m = clock->m2 + 2;
519 clock->p = clock->p1 * clock->p2;
520 clock->vco = refclk * clock->m / clock->n;
521 clock->dot = clock->vco / clock->p;
522}
523
524static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
525{
526 if (IS_IGD(dev)) {
527 igd_clock(refclk, clock);
528 return;
529 }
79e53945
JB
530 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
531 clock->p = clock->p1 * clock->p2;
532 clock->vco = refclk * clock->m / (clock->n + 2);
533 clock->dot = clock->vco / clock->p;
534}
535
79e53945
JB
536/**
537 * Returns whether any output on the specified pipe is of the specified type
538 */
539bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
540{
541 struct drm_device *dev = crtc->dev;
542 struct drm_mode_config *mode_config = &dev->mode_config;
543 struct drm_connector *l_entry;
544
545 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
546 if (l_entry->encoder &&
547 l_entry->encoder->crtc == crtc) {
548 struct intel_output *intel_output = to_intel_output(l_entry);
549 if (intel_output->type == type)
550 return true;
551 }
552 }
553 return false;
554}
555
7c04d1d9 556#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
557/**
558 * Returns whether the given set of divisors are valid for a given refclk with
559 * the given connectors.
560 */
561
562static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
563{
564 const intel_limit_t *limit = intel_limit (crtc);
2177832f 565 struct drm_device *dev = crtc->dev;
79e53945
JB
566
567 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
568 INTELPllInvalid ("p1 out of range\n");
569 if (clock->p < limit->p.min || limit->p.max < clock->p)
570 INTELPllInvalid ("p out of range\n");
571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
572 INTELPllInvalid ("m2 out of range\n");
573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
574 INTELPllInvalid ("m1 out of range\n");
2177832f 575 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
79e53945
JB
576 INTELPllInvalid ("m1 <= m2\n");
577 if (clock->m < limit->m.min || limit->m.max < clock->m)
578 INTELPllInvalid ("m out of range\n");
579 if (clock->n < limit->n.min || limit->n.max < clock->n)
580 INTELPllInvalid ("n out of range\n");
581 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
582 INTELPllInvalid ("vco out of range\n");
583 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
584 * connector, etc., rather than just a single range.
585 */
586 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
587 INTELPllInvalid ("dot out of range\n");
588
589 return true;
590}
591
d4906093
ML
592static bool
593intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
594 int target, int refclk, intel_clock_t *best_clock)
595
79e53945
JB
596{
597 struct drm_device *dev = crtc->dev;
598 struct drm_i915_private *dev_priv = dev->dev_private;
599 intel_clock_t clock;
79e53945
JB
600 int err = target;
601
602 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
603 (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
604 /*
605 * For LVDS, if the panel is on, just rely on its current
606 * settings for dual-channel. We haven't figured out how to
607 * reliably set up different single/dual channel state, if we
608 * even can.
609 */
610 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
611 LVDS_CLKB_POWER_UP)
612 clock.p2 = limit->p2.p2_fast;
613 else
614 clock.p2 = limit->p2.p2_slow;
615 } else {
616 if (target < limit->p2.dot_limit)
617 clock.p2 = limit->p2.p2_slow;
618 else
619 clock.p2 = limit->p2.p2_fast;
620 }
621
622 memset (best_clock, 0, sizeof (*best_clock));
623
624 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
2177832f
SL
625 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
626 /* m1 is always 0 in IGD */
627 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
628 break;
79e53945
JB
629 for (clock.n = limit->n.min; clock.n <= limit->n.max;
630 clock.n++) {
631 for (clock.p1 = limit->p1.min;
632 clock.p1 <= limit->p1.max; clock.p1++) {
633 int this_err;
634
2177832f 635 intel_clock(dev, refclk, &clock);
79e53945
JB
636
637 if (!intel_PLL_is_valid(crtc, &clock))
638 continue;
639
640 this_err = abs(clock.dot - target);
641 if (this_err < err) {
642 *best_clock = clock;
643 err = this_err;
644 }
645 }
646 }
647 }
648 }
649
650 return (err != target);
651}
652
d4906093
ML
653static bool
654intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
655 int target, int refclk, intel_clock_t *best_clock)
656{
657 struct drm_device *dev = crtc->dev;
658 struct drm_i915_private *dev_priv = dev->dev_private;
659 intel_clock_t clock;
660 int max_n;
661 bool found;
662 /* approximately equals target * 0.00488 */
663 int err_most = (target >> 8) + (target >> 10);
664 found = false;
665
666 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
667 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
668 LVDS_CLKB_POWER_UP)
669 clock.p2 = limit->p2.p2_fast;
670 else
671 clock.p2 = limit->p2.p2_slow;
672 } else {
673 if (target < limit->p2.dot_limit)
674 clock.p2 = limit->p2.p2_slow;
675 else
676 clock.p2 = limit->p2.p2_fast;
677 }
678
679 memset(best_clock, 0, sizeof(*best_clock));
680 max_n = limit->n.max;
681 /* based on hardware requriment prefer smaller n to precision */
682 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
683 /* based on hardware requirment prefere larger m1,m2, p1 */
684 for (clock.m1 = limit->m1.max;
685 clock.m1 >= limit->m1.min; clock.m1--) {
686 for (clock.m2 = limit->m2.max;
687 clock.m2 >= limit->m2.min; clock.m2--) {
688 for (clock.p1 = limit->p1.max;
689 clock.p1 >= limit->p1.min; clock.p1--) {
690 int this_err;
691
2177832f 692 intel_clock(dev, refclk, &clock);
d4906093
ML
693 if (!intel_PLL_is_valid(crtc, &clock))
694 continue;
695 this_err = abs(clock.dot - target) ;
696 if (this_err < err_most) {
697 *best_clock = clock;
698 err_most = this_err;
699 max_n = clock.n;
700 found = true;
701 }
702 }
703 }
704 }
705 }
2c07245f
ZW
706 return found;
707}
708
709static bool
710intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
711 int target, int refclk, intel_clock_t *best_clock)
712{
713 struct drm_device *dev = crtc->dev;
714 struct drm_i915_private *dev_priv = dev->dev_private;
715 intel_clock_t clock;
716 int max_n;
717 bool found;
718 int err_most = 47;
719 found = false;
720
721 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
722 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
723 LVDS_CLKB_POWER_UP)
724 clock.p2 = limit->p2.p2_fast;
725 else
726 clock.p2 = limit->p2.p2_slow;
727 } else {
728 if (target < limit->p2.dot_limit)
729 clock.p2 = limit->p2.p2_slow;
730 else
731 clock.p2 = limit->p2.p2_fast;
732 }
733
734 memset(best_clock, 0, sizeof(*best_clock));
735 max_n = limit->n.max;
736 /* based on hardware requriment prefer smaller n to precision */
737 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
738 /* based on hardware requirment prefere larger m1,m2, p1 */
739 for (clock.m1 = limit->m1.max;
740 clock.m1 >= limit->m1.min; clock.m1--) {
741 for (clock.m2 = limit->m2.max;
742 clock.m2 >= limit->m2.min; clock.m2--) {
743 for (clock.p1 = limit->p1.max;
744 clock.p1 >= limit->p1.min; clock.p1--) {
745 int this_err;
d4906093 746
2c07245f
ZW
747 intel_clock(dev, refclk, &clock);
748 if (!intel_PLL_is_valid(crtc, &clock))
749 continue;
750 this_err = abs((10000 - (target*10000/clock.dot)));
751 if (this_err < err_most) {
752 *best_clock = clock;
753 err_most = this_err;
754 max_n = clock.n;
755 found = true;
756 /* found on first matching */
757 goto out;
758 }
759 }
760 }
761 }
762 }
763out:
d4906093
ML
764 return found;
765}
766
79e53945
JB
767void
768intel_wait_for_vblank(struct drm_device *dev)
769{
770 /* Wait for 20ms, i.e. one cycle at 50hz. */
580982d3 771 mdelay(20);
79e53945
JB
772}
773
5c3b82e2 774static int
3c4fdcfb
KH
775intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
776 struct drm_framebuffer *old_fb)
79e53945
JB
777{
778 struct drm_device *dev = crtc->dev;
779 struct drm_i915_private *dev_priv = dev->dev_private;
780 struct drm_i915_master_private *master_priv;
781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
782 struct intel_framebuffer *intel_fb;
783 struct drm_i915_gem_object *obj_priv;
784 struct drm_gem_object *obj;
785 int pipe = intel_crtc->pipe;
786 unsigned long Start, Offset;
787 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
788 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
789 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
f544847f 790 int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
79e53945 791 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
3c4fdcfb 792 u32 dspcntr, alignment;
5c3b82e2 793 int ret;
79e53945
JB
794
795 /* no fb bound */
796 if (!crtc->fb) {
797 DRM_DEBUG("No FB bound\n");
5c3b82e2
CW
798 return 0;
799 }
800
801 switch (pipe) {
802 case 0:
803 case 1:
804 break;
805 default:
806 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
807 return -EINVAL;
79e53945
JB
808 }
809
810 intel_fb = to_intel_framebuffer(crtc->fb);
79e53945
JB
811 obj = intel_fb->obj;
812 obj_priv = obj->driver_private;
813
3c4fdcfb
KH
814 switch (obj_priv->tiling_mode) {
815 case I915_TILING_NONE:
816 alignment = 64 * 1024;
817 break;
818 case I915_TILING_X:
2ebed176
CW
819 /* pin() will align the object as required by fence */
820 alignment = 0;
3c4fdcfb
KH
821 break;
822 case I915_TILING_Y:
823 /* FIXME: Is this true? */
824 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
5c3b82e2 825 return -EINVAL;
3c4fdcfb
KH
826 default:
827 BUG();
828 }
829
5c3b82e2
CW
830 mutex_lock(&dev->struct_mutex);
831 ret = i915_gem_object_pin(intel_fb->obj, alignment);
832 if (ret != 0) {
833 mutex_unlock(&dev->struct_mutex);
834 return ret;
835 }
79e53945 836
5c3b82e2
CW
837 ret = i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
838 if (ret != 0) {
839 i915_gem_object_unpin(intel_fb->obj);
840 mutex_unlock(&dev->struct_mutex);
841 return ret;
842 }
79e53945
JB
843
844 dspcntr = I915_READ(dspcntr_reg);
712531bf
JB
845 /* Mask out pixel format bits in case we change it */
846 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
79e53945
JB
847 switch (crtc->fb->bits_per_pixel) {
848 case 8:
849 dspcntr |= DISPPLANE_8BPP;
850 break;
851 case 16:
852 if (crtc->fb->depth == 15)
853 dspcntr |= DISPPLANE_15_16BPP;
854 else
855 dspcntr |= DISPPLANE_16BPP;
856 break;
857 case 24:
858 case 32:
859 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
860 break;
861 default:
862 DRM_ERROR("Unknown color depth\n");
5c3b82e2
CW
863 i915_gem_object_unpin(intel_fb->obj);
864 mutex_unlock(&dev->struct_mutex);
865 return -EINVAL;
79e53945 866 }
f544847f
JB
867 if (IS_I965G(dev)) {
868 if (obj_priv->tiling_mode != I915_TILING_NONE)
869 dspcntr |= DISPPLANE_TILED;
870 else
871 dspcntr &= ~DISPPLANE_TILED;
872 }
873
79e53945
JB
874 I915_WRITE(dspcntr_reg, dspcntr);
875
5c3b82e2
CW
876 Start = obj_priv->gtt_offset;
877 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
878
79e53945 879 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
5c3b82e2 880 I915_WRITE(dspstride, crtc->fb->pitch);
79e53945
JB
881 if (IS_I965G(dev)) {
882 I915_WRITE(dspbase, Offset);
883 I915_READ(dspbase);
884 I915_WRITE(dspsurf, Start);
885 I915_READ(dspsurf);
f544847f 886 I915_WRITE(dsptileoff, (y << 16) | x);
79e53945
JB
887 } else {
888 I915_WRITE(dspbase, Start + Offset);
889 I915_READ(dspbase);
890 }
891
3c4fdcfb
KH
892 intel_wait_for_vblank(dev);
893
894 if (old_fb) {
895 intel_fb = to_intel_framebuffer(old_fb);
896 i915_gem_object_unpin(intel_fb->obj);
897 }
5c3b82e2 898 mutex_unlock(&dev->struct_mutex);
79e53945
JB
899
900 if (!dev->primary->master)
5c3b82e2 901 return 0;
79e53945
JB
902
903 master_priv = dev->primary->master->driver_priv;
904 if (!master_priv->sarea_priv)
5c3b82e2 905 return 0;
79e53945 906
5c3b82e2 907 if (pipe) {
79e53945
JB
908 master_priv->sarea_priv->pipeB_x = x;
909 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
910 } else {
911 master_priv->sarea_priv->pipeA_x = x;
912 master_priv->sarea_priv->pipeA_y = y;
79e53945 913 }
5c3b82e2
CW
914
915 return 0;
79e53945
JB
916}
917
2c07245f
ZW
918static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
919{
920 struct drm_device *dev = crtc->dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
923 int pipe = intel_crtc->pipe;
924 int plane = intel_crtc->pipe;
925 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
926 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
927 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
928 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
929 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
930 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
931 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
932 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
933 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
934 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
935 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
936 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
937 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
938 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
939 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
940 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
941 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
942 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
943 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
944 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
945 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
946 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
947 u32 temp;
948 int tries = 5, j;
79e53945 949
2c07245f
ZW
950 /* XXX: When our outputs are all unaware of DPMS modes other than off
951 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
952 */
953 switch (mode) {
954 case DRM_MODE_DPMS_ON:
955 case DRM_MODE_DPMS_STANDBY:
956 case DRM_MODE_DPMS_SUSPEND:
957 DRM_DEBUG("crtc %d dpms on\n", pipe);
958 /* enable PCH DPLL */
959 temp = I915_READ(pch_dpll_reg);
960 if ((temp & DPLL_VCO_ENABLE) == 0) {
961 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
962 I915_READ(pch_dpll_reg);
963 }
79e53945 964
2c07245f
ZW
965 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
966 temp = I915_READ(fdi_rx_reg);
967 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
968 FDI_SEL_PCDCLK |
969 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
970 I915_READ(fdi_rx_reg);
971 udelay(200);
972
973 /* Enable CPU FDI TX PLL, always on for IGDNG */
974 temp = I915_READ(fdi_tx_reg);
975 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
976 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
977 I915_READ(fdi_tx_reg);
978 udelay(100);
979 }
980
981 /* Enable CPU pipe */
982 temp = I915_READ(pipeconf_reg);
983 if ((temp & PIPEACONF_ENABLE) == 0) {
984 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
985 I915_READ(pipeconf_reg);
986 udelay(100);
987 }
988
989 /* configure and enable CPU plane */
990 temp = I915_READ(dspcntr_reg);
991 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
992 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
993 /* Flush the plane changes */
994 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
995 }
996
997 /* enable CPU FDI TX and PCH FDI RX */
998 temp = I915_READ(fdi_tx_reg);
999 temp |= FDI_TX_ENABLE;
1000 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1001 temp &= ~FDI_LINK_TRAIN_NONE;
1002 temp |= FDI_LINK_TRAIN_PATTERN_1;
1003 I915_WRITE(fdi_tx_reg, temp);
1004 I915_READ(fdi_tx_reg);
1005
1006 temp = I915_READ(fdi_rx_reg);
1007 temp &= ~FDI_LINK_TRAIN_NONE;
1008 temp |= FDI_LINK_TRAIN_PATTERN_1;
1009 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1010 I915_READ(fdi_rx_reg);
1011
1012 udelay(150);
1013
1014 /* Train FDI. */
1015 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1016 for train result */
1017 temp = I915_READ(fdi_rx_imr_reg);
1018 temp &= ~FDI_RX_SYMBOL_LOCK;
1019 temp &= ~FDI_RX_BIT_LOCK;
1020 I915_WRITE(fdi_rx_imr_reg, temp);
1021 I915_READ(fdi_rx_imr_reg);
1022 udelay(150);
1023
1024 temp = I915_READ(fdi_rx_iir_reg);
1025 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1026
1027 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1028 for (j = 0; j < tries; j++) {
1029 temp = I915_READ(fdi_rx_iir_reg);
1030 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1031 if (temp & FDI_RX_BIT_LOCK)
1032 break;
1033 udelay(200);
1034 }
1035 if (j != tries)
1036 I915_WRITE(fdi_rx_iir_reg,
1037 temp | FDI_RX_BIT_LOCK);
1038 else
1039 DRM_DEBUG("train 1 fail\n");
1040 } else {
1041 I915_WRITE(fdi_rx_iir_reg,
1042 temp | FDI_RX_BIT_LOCK);
1043 DRM_DEBUG("train 1 ok 2!\n");
1044 }
1045 temp = I915_READ(fdi_tx_reg);
1046 temp &= ~FDI_LINK_TRAIN_NONE;
1047 temp |= FDI_LINK_TRAIN_PATTERN_2;
1048 I915_WRITE(fdi_tx_reg, temp);
1049
1050 temp = I915_READ(fdi_rx_reg);
1051 temp &= ~FDI_LINK_TRAIN_NONE;
1052 temp |= FDI_LINK_TRAIN_PATTERN_2;
1053 I915_WRITE(fdi_rx_reg, temp);
1054
1055 udelay(150);
1056
1057 temp = I915_READ(fdi_rx_iir_reg);
1058 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1059
1060 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1061 for (j = 0; j < tries; j++) {
1062 temp = I915_READ(fdi_rx_iir_reg);
1063 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1064 if (temp & FDI_RX_SYMBOL_LOCK)
1065 break;
1066 udelay(200);
1067 }
1068 if (j != tries) {
1069 I915_WRITE(fdi_rx_iir_reg,
1070 temp | FDI_RX_SYMBOL_LOCK);
1071 DRM_DEBUG("train 2 ok 1!\n");
1072 } else
1073 DRM_DEBUG("train 2 fail\n");
1074 } else {
1075 I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK);
1076 DRM_DEBUG("train 2 ok 2!\n");
1077 }
1078 DRM_DEBUG("train done\n");
1079
1080 /* set transcoder timing */
1081 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1082 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1083 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1084
1085 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1086 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1087 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1088
1089 /* enable PCH transcoder */
1090 temp = I915_READ(transconf_reg);
1091 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1092 I915_READ(transconf_reg);
1093
1094 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1095 ;
1096
1097 /* enable normal */
1098
1099 temp = I915_READ(fdi_tx_reg);
1100 temp &= ~FDI_LINK_TRAIN_NONE;
1101 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1102 FDI_TX_ENHANCE_FRAME_ENABLE);
1103 I915_READ(fdi_tx_reg);
1104
1105 temp = I915_READ(fdi_rx_reg);
1106 temp &= ~FDI_LINK_TRAIN_NONE;
1107 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1108 FDI_RX_ENHANCE_FRAME_ENABLE);
1109 I915_READ(fdi_rx_reg);
1110
1111 /* wait one idle pattern time */
1112 udelay(100);
1113
1114 intel_crtc_load_lut(crtc);
1115
1116 break;
1117 case DRM_MODE_DPMS_OFF:
1118 DRM_DEBUG("crtc %d dpms off\n", pipe);
1119
1120 /* Disable the VGA plane that we never use */
1121 I915_WRITE(CPU_VGACNTRL, VGA_DISP_DISABLE);
1122
1123 /* Disable display plane */
1124 temp = I915_READ(dspcntr_reg);
1125 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1126 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1127 /* Flush the plane changes */
1128 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1129 I915_READ(dspbase_reg);
1130 }
1131
1132 /* disable cpu pipe, disable after all planes disabled */
1133 temp = I915_READ(pipeconf_reg);
1134 if ((temp & PIPEACONF_ENABLE) != 0) {
1135 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1136 I915_READ(pipeconf_reg);
1137 /* wait for cpu pipe off, pipe state */
1138 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0)
1139 ;
1140 } else
1141 DRM_DEBUG("crtc %d is disabled\n", pipe);
1142
1143 /* IGDNG-A : disable cpu panel fitter ? */
1144 temp = I915_READ(pf_ctl_reg);
1145 if ((temp & PF_ENABLE) != 0) {
1146 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1147 I915_READ(pf_ctl_reg);
1148 }
1149
1150 /* disable CPU FDI tx and PCH FDI rx */
1151 temp = I915_READ(fdi_tx_reg);
1152 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1153 I915_READ(fdi_tx_reg);
1154
1155 temp = I915_READ(fdi_rx_reg);
1156 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1157 I915_READ(fdi_rx_reg);
1158
1159 /* still set train pattern 1 */
1160 temp = I915_READ(fdi_tx_reg);
1161 temp &= ~FDI_LINK_TRAIN_NONE;
1162 temp |= FDI_LINK_TRAIN_PATTERN_1;
1163 I915_WRITE(fdi_tx_reg, temp);
1164
1165 temp = I915_READ(fdi_rx_reg);
1166 temp &= ~FDI_LINK_TRAIN_NONE;
1167 temp |= FDI_LINK_TRAIN_PATTERN_1;
1168 I915_WRITE(fdi_rx_reg, temp);
1169
1170 /* disable PCH transcoder */
1171 temp = I915_READ(transconf_reg);
1172 if ((temp & TRANS_ENABLE) != 0) {
1173 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1174 I915_READ(transconf_reg);
1175 /* wait for PCH transcoder off, transcoder state */
1176 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0)
1177 ;
1178 }
1179
1180 /* disable PCH DPLL */
1181 temp = I915_READ(pch_dpll_reg);
1182 if ((temp & DPLL_VCO_ENABLE) != 0) {
1183 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1184 I915_READ(pch_dpll_reg);
1185 }
1186
1187 temp = I915_READ(fdi_rx_reg);
1188 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1189 temp &= ~FDI_SEL_PCDCLK;
1190 temp &= ~FDI_RX_PLL_ENABLE;
1191 I915_WRITE(fdi_rx_reg, temp);
1192 I915_READ(fdi_rx_reg);
1193 }
1194
1195 /* Wait for the clocks to turn off. */
1196 udelay(150);
1197 break;
1198 }
1199}
1200
1201static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
79e53945
JB
1202{
1203 struct drm_device *dev = crtc->dev;
79e53945
JB
1204 struct drm_i915_private *dev_priv = dev->dev_private;
1205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1206 int pipe = intel_crtc->pipe;
1207 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1208 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1209 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1210 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1211 u32 temp;
79e53945
JB
1212
1213 /* XXX: When our outputs are all unaware of DPMS modes other than off
1214 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1215 */
1216 switch (mode) {
1217 case DRM_MODE_DPMS_ON:
1218 case DRM_MODE_DPMS_STANDBY:
1219 case DRM_MODE_DPMS_SUSPEND:
1220 /* Enable the DPLL */
1221 temp = I915_READ(dpll_reg);
1222 if ((temp & DPLL_VCO_ENABLE) == 0) {
1223 I915_WRITE(dpll_reg, temp);
1224 I915_READ(dpll_reg);
1225 /* Wait for the clocks to stabilize. */
1226 udelay(150);
1227 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1228 I915_READ(dpll_reg);
1229 /* Wait for the clocks to stabilize. */
1230 udelay(150);
1231 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1232 I915_READ(dpll_reg);
1233 /* Wait for the clocks to stabilize. */
1234 udelay(150);
1235 }
1236
1237 /* Enable the pipe */
1238 temp = I915_READ(pipeconf_reg);
1239 if ((temp & PIPEACONF_ENABLE) == 0)
1240 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1241
1242 /* Enable the plane */
1243 temp = I915_READ(dspcntr_reg);
1244 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1245 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1246 /* Flush the plane changes */
1247 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1248 }
1249
1250 intel_crtc_load_lut(crtc);
1251
1252 /* Give the overlay scaler a chance to enable if it's on this pipe */
1253 //intel_crtc_dpms_video(crtc, true); TODO
1254 break;
1255 case DRM_MODE_DPMS_OFF:
1256 /* Give the overlay scaler a chance to disable if it's on this pipe */
1257 //intel_crtc_dpms_video(crtc, FALSE); TODO
1258
1259 /* Disable the VGA plane that we never use */
1260 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
1261
1262 /* Disable display plane */
1263 temp = I915_READ(dspcntr_reg);
1264 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1265 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1266 /* Flush the plane changes */
1267 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1268 I915_READ(dspbase_reg);
1269 }
1270
1271 if (!IS_I9XX(dev)) {
1272 /* Wait for vblank for the disable to take effect */
1273 intel_wait_for_vblank(dev);
1274 }
1275
1276 /* Next, disable display pipes */
1277 temp = I915_READ(pipeconf_reg);
1278 if ((temp & PIPEACONF_ENABLE) != 0) {
1279 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1280 I915_READ(pipeconf_reg);
1281 }
1282
1283 /* Wait for vblank for the disable to take effect. */
1284 intel_wait_for_vblank(dev);
1285
1286 temp = I915_READ(dpll_reg);
1287 if ((temp & DPLL_VCO_ENABLE) != 0) {
1288 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1289 I915_READ(dpll_reg);
1290 }
1291
1292 /* Wait for the clocks to turn off. */
1293 udelay(150);
1294 break;
1295 }
2c07245f
ZW
1296}
1297
1298/**
1299 * Sets the power management mode of the pipe and plane.
1300 *
1301 * This code should probably grow support for turning the cursor off and back
1302 * on appropriately at the same time as we're turning the pipe off/on.
1303 */
1304static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1305{
1306 struct drm_device *dev = crtc->dev;
1307 struct drm_i915_master_private *master_priv;
1308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1309 int pipe = intel_crtc->pipe;
1310 bool enabled;
1311
1312 if (IS_IGDNG(dev))
1313 igdng_crtc_dpms(crtc, mode);
1314 else
1315 i9xx_crtc_dpms(crtc, mode);
79e53945
JB
1316
1317 if (!dev->primary->master)
1318 return;
1319
1320 master_priv = dev->primary->master->driver_priv;
1321 if (!master_priv->sarea_priv)
1322 return;
1323
1324 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1325
1326 switch (pipe) {
1327 case 0:
1328 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1329 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1330 break;
1331 case 1:
1332 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1333 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1334 break;
1335 default:
1336 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1337 break;
1338 }
1339
1340 intel_crtc->dpms_mode = mode;
1341}
1342
1343static void intel_crtc_prepare (struct drm_crtc *crtc)
1344{
1345 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1346 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1347}
1348
1349static void intel_crtc_commit (struct drm_crtc *crtc)
1350{
1351 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1352 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1353}
1354
1355void intel_encoder_prepare (struct drm_encoder *encoder)
1356{
1357 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1358 /* lvds has its own version of prepare see intel_lvds_prepare */
1359 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1360}
1361
1362void intel_encoder_commit (struct drm_encoder *encoder)
1363{
1364 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1365 /* lvds has its own version of commit see intel_lvds_commit */
1366 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1367}
1368
1369static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1370 struct drm_display_mode *mode,
1371 struct drm_display_mode *adjusted_mode)
1372{
2c07245f
ZW
1373 struct drm_device *dev = crtc->dev;
1374 if (IS_IGDNG(dev)) {
1375 /* FDI link clock is fixed at 2.7G */
1376 if (mode->clock * 3 > 27000 * 4)
1377 return MODE_CLOCK_HIGH;
1378 }
79e53945
JB
1379 return true;
1380}
1381
1382
1383/** Returns the core display clock speed for i830 - i945 */
1384static int intel_get_core_clock_speed(struct drm_device *dev)
1385{
1386
1387 /* Core clock values taken from the published datasheets.
1388 * The 830 may go up to 166 Mhz, which we should check.
1389 */
1390 if (IS_I945G(dev))
1391 return 400000;
1392 else if (IS_I915G(dev))
1393 return 333000;
2177832f 1394 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
79e53945
JB
1395 return 200000;
1396 else if (IS_I915GM(dev)) {
1397 u16 gcfgc = 0;
1398
1399 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1400
1401 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1402 return 133000;
1403 else {
1404 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1405 case GC_DISPLAY_CLOCK_333_MHZ:
1406 return 333000;
1407 default:
1408 case GC_DISPLAY_CLOCK_190_200_MHZ:
1409 return 190000;
1410 }
1411 }
1412 } else if (IS_I865G(dev))
1413 return 266000;
1414 else if (IS_I855(dev)) {
1415 u16 hpllcc = 0;
1416 /* Assume that the hardware is in the high speed state. This
1417 * should be the default.
1418 */
1419 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1420 case GC_CLOCK_133_200:
1421 case GC_CLOCK_100_200:
1422 return 200000;
1423 case GC_CLOCK_166_250:
1424 return 250000;
1425 case GC_CLOCK_100_133:
1426 return 133000;
1427 }
1428 } else /* 852, 830 */
1429 return 133000;
1430
1431 return 0; /* Silence gcc warning */
1432}
1433
1434
1435/**
1436 * Return the pipe currently connected to the panel fitter,
1437 * or -1 if the panel fitter is not present or not in use
1438 */
1439static int intel_panel_fitter_pipe (struct drm_device *dev)
1440{
1441 struct drm_i915_private *dev_priv = dev->dev_private;
1442 u32 pfit_control;
1443
1444 /* i830 doesn't have a panel fitter */
1445 if (IS_I830(dev))
1446 return -1;
1447
1448 pfit_control = I915_READ(PFIT_CONTROL);
1449
1450 /* See if the panel fitter is in use */
1451 if ((pfit_control & PFIT_ENABLE) == 0)
1452 return -1;
1453
1454 /* 965 can place panel fitter on either pipe */
1455 if (IS_I965G(dev))
1456 return (pfit_control >> 29) & 0x3;
1457
1458 /* older chips can only use pipe 1 */
1459 return 1;
1460}
1461
2c07245f
ZW
1462struct fdi_m_n {
1463 u32 tu;
1464 u32 gmch_m;
1465 u32 gmch_n;
1466 u32 link_m;
1467 u32 link_n;
1468};
1469
1470static void
1471fdi_reduce_ratio(u32 *num, u32 *den)
1472{
1473 while (*num > 0xffffff || *den > 0xffffff) {
1474 *num >>= 1;
1475 *den >>= 1;
1476 }
1477}
1478
1479#define DATA_N 0x800000
1480#define LINK_N 0x80000
1481
1482static void
1483igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1484 int pixel_clock, int link_clock,
1485 struct fdi_m_n *m_n)
1486{
1487 u64 temp;
1488
1489 m_n->tu = 64; /* default size */
1490
1491 temp = (u64) DATA_N * pixel_clock;
1492 temp = div_u64(temp, link_clock);
1493 m_n->gmch_m = (temp * bytes_per_pixel) / nlanes;
1494 m_n->gmch_n = DATA_N;
1495 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1496
1497 temp = (u64) LINK_N * pixel_clock;
1498 m_n->link_m = div_u64(temp, link_clock);
1499 m_n->link_n = LINK_N;
1500 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1501}
1502
1503
5c3b82e2
CW
1504static int intel_crtc_mode_set(struct drm_crtc *crtc,
1505 struct drm_display_mode *mode,
1506 struct drm_display_mode *adjusted_mode,
1507 int x, int y,
1508 struct drm_framebuffer *old_fb)
79e53945
JB
1509{
1510 struct drm_device *dev = crtc->dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1513 int pipe = intel_crtc->pipe;
1514 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
1515 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1516 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
1517 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1518 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1519 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1520 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1521 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1522 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1523 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1524 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1525 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
1526 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
1527 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
43565a06 1528 int refclk, num_outputs = 0;
79e53945
JB
1529 intel_clock_t clock;
1530 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
1531 bool ok, is_sdvo = false, is_dvo = false;
1532 bool is_crt = false, is_lvds = false, is_tv = false;
1533 struct drm_mode_config *mode_config = &dev->mode_config;
1534 struct drm_connector *connector;
d4906093 1535 const intel_limit_t *limit;
5c3b82e2 1536 int ret;
2c07245f
ZW
1537 struct fdi_m_n m_n = {0};
1538 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
1539 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
1540 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
1541 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
1542 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
1543 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1544 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1545 u32 temp;
1546 int sdvo_pixel_multiply;
79e53945
JB
1547
1548 drm_vblank_pre_modeset(dev, pipe);
1549
1550 list_for_each_entry(connector, &mode_config->connector_list, head) {
1551 struct intel_output *intel_output = to_intel_output(connector);
1552
1553 if (!connector->encoder || connector->encoder->crtc != crtc)
1554 continue;
1555
1556 switch (intel_output->type) {
1557 case INTEL_OUTPUT_LVDS:
1558 is_lvds = true;
1559 break;
1560 case INTEL_OUTPUT_SDVO:
7d57382e 1561 case INTEL_OUTPUT_HDMI:
79e53945 1562 is_sdvo = true;
e2f0ba97
JB
1563 if (intel_output->needs_tv_clock)
1564 is_tv = true;
79e53945
JB
1565 break;
1566 case INTEL_OUTPUT_DVO:
1567 is_dvo = true;
1568 break;
1569 case INTEL_OUTPUT_TVOUT:
1570 is_tv = true;
1571 break;
1572 case INTEL_OUTPUT_ANALOG:
1573 is_crt = true;
1574 break;
1575 }
43565a06
KH
1576
1577 num_outputs++;
79e53945
JB
1578 }
1579
43565a06
KH
1580 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
1581 refclk = dev_priv->lvds_ssc_freq * 1000;
1582 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
1583 } else if (IS_I9XX(dev)) {
79e53945 1584 refclk = 96000;
2c07245f
ZW
1585 if (IS_IGDNG(dev))
1586 refclk = 120000; /* 120Mhz refclk */
79e53945
JB
1587 } else {
1588 refclk = 48000;
1589 }
1590
d4906093
ML
1591 /*
1592 * Returns a set of divisors for the desired target clock with the given
1593 * refclk, or FALSE. The returned values represent the clock equation:
1594 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
1595 */
1596 limit = intel_limit(crtc);
1597 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
1598 if (!ok) {
1599 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 1600 return -EINVAL;
79e53945
JB
1601 }
1602
7026d4ac
ZW
1603 /* SDVO TV has fixed PLL values depend on its clock range,
1604 this mirrors vbios setting. */
1605 if (is_sdvo && is_tv) {
1606 if (adjusted_mode->clock >= 100000
1607 && adjusted_mode->clock < 140500) {
1608 clock.p1 = 2;
1609 clock.p2 = 10;
1610 clock.n = 3;
1611 clock.m1 = 16;
1612 clock.m2 = 8;
1613 } else if (adjusted_mode->clock >= 140500
1614 && adjusted_mode->clock <= 200000) {
1615 clock.p1 = 1;
1616 clock.p2 = 10;
1617 clock.n = 6;
1618 clock.m1 = 12;
1619 clock.m2 = 8;
1620 }
1621 }
1622
2c07245f
ZW
1623 /* FDI link */
1624 if (IS_IGDNG(dev))
1625 igdng_compute_m_n(3, 4, /* lane num 4 */
1626 adjusted_mode->clock,
1627 270000, /* lane clock */
1628 &m_n);
1629
2177832f
SL
1630 if (IS_IGD(dev))
1631 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
1632 else
1633 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
79e53945 1634
2c07245f
ZW
1635 if (!IS_IGDNG(dev))
1636 dpll = DPLL_VGA_MODE_DIS;
1637
79e53945
JB
1638 if (IS_I9XX(dev)) {
1639 if (is_lvds)
1640 dpll |= DPLLB_MODE_LVDS;
1641 else
1642 dpll |= DPLLB_MODE_DAC_SERIAL;
1643 if (is_sdvo) {
1644 dpll |= DPLL_DVO_HIGH_SPEED;
2c07245f
ZW
1645 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1646 if (IS_I945G(dev) || IS_I945GM(dev))
79e53945 1647 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2c07245f
ZW
1648 else if (IS_IGDNG(dev))
1649 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945
JB
1650 }
1651
1652 /* compute bitmask from p1 value */
2177832f
SL
1653 if (IS_IGD(dev))
1654 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2c07245f 1655 else {
2177832f 1656 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2c07245f
ZW
1657 /* also FPA1 */
1658 if (IS_IGDNG(dev))
1659 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1660 }
79e53945
JB
1661 switch (clock.p2) {
1662 case 5:
1663 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1664 break;
1665 case 7:
1666 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1667 break;
1668 case 10:
1669 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1670 break;
1671 case 14:
1672 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1673 break;
1674 }
2c07245f 1675 if (IS_I965G(dev) && !IS_IGDNG(dev))
79e53945
JB
1676 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1677 } else {
1678 if (is_lvds) {
1679 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1680 } else {
1681 if (clock.p1 == 2)
1682 dpll |= PLL_P1_DIVIDE_BY_TWO;
1683 else
1684 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1685 if (clock.p2 == 4)
1686 dpll |= PLL_P2_DIVIDE_BY_4;
1687 }
1688 }
1689
43565a06
KH
1690 if (is_sdvo && is_tv)
1691 dpll |= PLL_REF_INPUT_TVCLKINBC;
1692 else if (is_tv)
79e53945 1693 /* XXX: just matching BIOS for now */
43565a06 1694 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 1695 dpll |= 3;
43565a06
KH
1696 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
1697 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
1698 else
1699 dpll |= PLL_REF_INPUT_DREFCLK;
1700
1701 /* setup pipeconf */
1702 pipeconf = I915_READ(pipeconf_reg);
1703
1704 /* Set up the display plane register */
1705 dspcntr = DISPPLANE_GAMMA_ENABLE;
1706
2c07245f
ZW
1707 /* IGDNG's plane is forced to pipe, bit 24 is to
1708 enable color space conversion */
1709 if (!IS_IGDNG(dev)) {
1710 if (pipe == 0)
1711 dspcntr |= DISPPLANE_SEL_PIPE_A;
1712 else
1713 dspcntr |= DISPPLANE_SEL_PIPE_B;
1714 }
79e53945
JB
1715
1716 if (pipe == 0 && !IS_I965G(dev)) {
1717 /* Enable pixel doubling when the dot clock is > 90% of the (display)
1718 * core speed.
1719 *
1720 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
1721 * pipe == 0 check?
1722 */
1723 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
1724 pipeconf |= PIPEACONF_DOUBLE_WIDE;
1725 else
1726 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
1727 }
1728
1729 dspcntr |= DISPLAY_PLANE_ENABLE;
1730 pipeconf |= PIPEACONF_ENABLE;
1731 dpll |= DPLL_VCO_ENABLE;
1732
1733
1734 /* Disable the panel fitter if it was on our pipe */
2c07245f 1735 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
79e53945
JB
1736 I915_WRITE(PFIT_CONTROL, 0);
1737
1738 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1739 drm_mode_debug_printmodeline(mode);
1740
2c07245f
ZW
1741 /* assign to IGDNG registers */
1742 if (IS_IGDNG(dev)) {
1743 fp_reg = pch_fp_reg;
1744 dpll_reg = pch_dpll_reg;
1745 }
79e53945
JB
1746
1747 if (dpll & DPLL_VCO_ENABLE) {
1748 I915_WRITE(fp_reg, fp);
1749 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
1750 I915_READ(dpll_reg);
1751 udelay(150);
1752 }
1753
2c07245f
ZW
1754 if (IS_IGDNG(dev)) {
1755 /* enable PCH clock reference source */
1756 /* XXX need to change the setting for other outputs */
1757 u32 temp;
1758 temp = I915_READ(PCH_DREF_CONTROL);
1759 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
1760 temp |= DREF_NONSPREAD_CK505_ENABLE;
1761 temp &= ~DREF_SSC_SOURCE_MASK;
1762 temp |= DREF_SSC_SOURCE_ENABLE;
1763 temp &= ~DREF_SSC1_ENABLE;
1764 /* if no eDP, disable source output to CPU */
1765 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
1766 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
1767 I915_WRITE(PCH_DREF_CONTROL, temp);
1768 }
1769
79e53945
JB
1770 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1771 * This is an exception to the general rule that mode_set doesn't turn
1772 * things on.
1773 */
1774 if (is_lvds) {
1775 u32 lvds = I915_READ(LVDS);
1776
1777 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
1778 /* Set the B0-B3 data pairs corresponding to whether we're going to
1779 * set the DPLLs for dual-channel mode or not.
1780 */
1781 if (clock.p2 == 7)
1782 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1783 else
1784 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1785
1786 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1787 * appropriately here, but we need to look more thoroughly into how
1788 * panels behave in the two modes.
1789 */
1790
1791 I915_WRITE(LVDS, lvds);
1792 I915_READ(LVDS);
1793 }
1794
1795 I915_WRITE(fp_reg, fp);
1796 I915_WRITE(dpll_reg, dpll);
1797 I915_READ(dpll_reg);
1798 /* Wait for the clocks to stabilize. */
1799 udelay(150);
1800
2c07245f
ZW
1801 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
1802 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
79e53945
JB
1803 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
1804 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1805 } else {
1806 /* write it again -- the BIOS does, after all */
1807 I915_WRITE(dpll_reg, dpll);
1808 }
1809 I915_READ(dpll_reg);
1810 /* Wait for the clocks to stabilize. */
1811 udelay(150);
1812
1813 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
1814 ((adjusted_mode->crtc_htotal - 1) << 16));
1815 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
1816 ((adjusted_mode->crtc_hblank_end - 1) << 16));
1817 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
1818 ((adjusted_mode->crtc_hsync_end - 1) << 16));
1819 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
1820 ((adjusted_mode->crtc_vtotal - 1) << 16));
1821 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
1822 ((adjusted_mode->crtc_vblank_end - 1) << 16));
1823 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
1824 ((adjusted_mode->crtc_vsync_end - 1) << 16));
1825 /* pipesrc and dspsize control the size that is scaled from, which should
1826 * always be the user's requested size.
1827 */
2c07245f
ZW
1828 if (!IS_IGDNG(dev)) {
1829 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
1830 (mode->hdisplay - 1));
1831 I915_WRITE(dsppos_reg, 0);
1832 }
79e53945 1833 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f
ZW
1834
1835 if (IS_IGDNG(dev)) {
1836 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
1837 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
1838 I915_WRITE(link_m1_reg, m_n.link_m);
1839 I915_WRITE(link_n1_reg, m_n.link_n);
1840
1841 /* enable FDI RX PLL too */
1842 temp = I915_READ(fdi_rx_reg);
1843 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1844 udelay(200);
1845 }
1846
79e53945
JB
1847 I915_WRITE(pipeconf_reg, pipeconf);
1848 I915_READ(pipeconf_reg);
1849
1850 intel_wait_for_vblank(dev);
1851
1852 I915_WRITE(dspcntr_reg, dspcntr);
1853
1854 /* Flush the plane changes */
5c3b82e2
CW
1855 ret = intel_pipe_set_base(crtc, x, y, old_fb);
1856 if (ret != 0)
1857 return ret;
79e53945
JB
1858
1859 drm_vblank_post_modeset(dev, pipe);
5c3b82e2
CW
1860
1861 return 0;
79e53945
JB
1862}
1863
1864/** Loads the palette/gamma unit for the CRTC with the prepared values */
1865void intel_crtc_load_lut(struct drm_crtc *crtc)
1866{
1867 struct drm_device *dev = crtc->dev;
1868 struct drm_i915_private *dev_priv = dev->dev_private;
1869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1870 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
1871 int i;
1872
1873 /* The clocks have to be on to load the palette. */
1874 if (!crtc->enabled)
1875 return;
1876
2c07245f
ZW
1877 /* use legacy palette for IGDNG */
1878 if (IS_IGDNG(dev))
1879 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
1880 LGC_PALETTE_B;
1881
79e53945
JB
1882 for (i = 0; i < 256; i++) {
1883 I915_WRITE(palreg + 4 * i,
1884 (intel_crtc->lut_r[i] << 16) |
1885 (intel_crtc->lut_g[i] << 8) |
1886 intel_crtc->lut_b[i]);
1887 }
1888}
1889
1890static int intel_crtc_cursor_set(struct drm_crtc *crtc,
1891 struct drm_file *file_priv,
1892 uint32_t handle,
1893 uint32_t width, uint32_t height)
1894{
1895 struct drm_device *dev = crtc->dev;
1896 struct drm_i915_private *dev_priv = dev->dev_private;
1897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1898 struct drm_gem_object *bo;
1899 struct drm_i915_gem_object *obj_priv;
1900 int pipe = intel_crtc->pipe;
1901 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1902 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
14b60391 1903 uint32_t temp = I915_READ(control);
79e53945 1904 size_t addr;
3f8bc370 1905 int ret;
79e53945
JB
1906
1907 DRM_DEBUG("\n");
1908
1909 /* if we want to turn off the cursor ignore width and height */
1910 if (!handle) {
1911 DRM_DEBUG("cursor off\n");
14b60391
JB
1912 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
1913 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
1914 temp |= CURSOR_MODE_DISABLE;
1915 } else {
1916 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
1917 }
3f8bc370
KH
1918 addr = 0;
1919 bo = NULL;
5004417d 1920 mutex_lock(&dev->struct_mutex);
3f8bc370 1921 goto finish;
79e53945
JB
1922 }
1923
1924 /* Currently we only support 64x64 cursors */
1925 if (width != 64 || height != 64) {
1926 DRM_ERROR("we currently only support 64x64 cursors\n");
1927 return -EINVAL;
1928 }
1929
1930 bo = drm_gem_object_lookup(dev, file_priv, handle);
1931 if (!bo)
1932 return -ENOENT;
1933
1934 obj_priv = bo->driver_private;
1935
1936 if (bo->size < width * height * 4) {
1937 DRM_ERROR("buffer is to small\n");
34b8686e
DA
1938 ret = -ENOMEM;
1939 goto fail;
79e53945
JB
1940 }
1941
71acb5eb 1942 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 1943 mutex_lock(&dev->struct_mutex);
71acb5eb
DA
1944 if (!dev_priv->cursor_needs_physical) {
1945 ret = i915_gem_object_pin(bo, PAGE_SIZE);
1946 if (ret) {
1947 DRM_ERROR("failed to pin cursor bo\n");
7f9872e0 1948 goto fail_locked;
71acb5eb 1949 }
79e53945 1950 addr = obj_priv->gtt_offset;
71acb5eb
DA
1951 } else {
1952 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
1953 if (ret) {
1954 DRM_ERROR("failed to attach phys object\n");
7f9872e0 1955 goto fail_locked;
71acb5eb
DA
1956 }
1957 addr = obj_priv->phys_obj->handle->busaddr;
3f8bc370
KH
1958 }
1959
14b60391
JB
1960 if (!IS_I9XX(dev))
1961 I915_WRITE(CURSIZE, (height << 12) | width);
1962
1963 /* Hooray for CUR*CNTR differences */
1964 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
1965 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
1966 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1967 temp |= (pipe << 28); /* Connect to correct pipe */
1968 } else {
1969 temp &= ~(CURSOR_FORMAT_MASK);
1970 temp |= CURSOR_ENABLE;
1971 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
1972 }
79e53945 1973
3f8bc370 1974 finish:
79e53945
JB
1975 I915_WRITE(control, temp);
1976 I915_WRITE(base, addr);
1977
3f8bc370 1978 if (intel_crtc->cursor_bo) {
71acb5eb
DA
1979 if (dev_priv->cursor_needs_physical) {
1980 if (intel_crtc->cursor_bo != bo)
1981 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
1982 } else
1983 i915_gem_object_unpin(intel_crtc->cursor_bo);
3f8bc370
KH
1984 drm_gem_object_unreference(intel_crtc->cursor_bo);
1985 }
7f9872e0 1986 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
1987
1988 intel_crtc->cursor_addr = addr;
1989 intel_crtc->cursor_bo = bo;
1990
79e53945 1991 return 0;
34b8686e
DA
1992fail:
1993 mutex_lock(&dev->struct_mutex);
7f9872e0 1994fail_locked:
34b8686e
DA
1995 drm_gem_object_unreference(bo);
1996 mutex_unlock(&dev->struct_mutex);
1997 return ret;
79e53945
JB
1998}
1999
2000static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2001{
2002 struct drm_device *dev = crtc->dev;
2003 struct drm_i915_private *dev_priv = dev->dev_private;
2004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2005 int pipe = intel_crtc->pipe;
2006 uint32_t temp = 0;
2007 uint32_t adder;
2008
2009 if (x < 0) {
2010 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
2011 x = -x;
2012 }
2013 if (y < 0) {
2014 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
2015 y = -y;
2016 }
2017
2018 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
2019 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
2020
2021 adder = intel_crtc->cursor_addr;
2022 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2023 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2024
2025 return 0;
2026}
2027
2028/** Sets the color ramps on behalf of RandR */
2029void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2030 u16 blue, int regno)
2031{
2032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2033
2034 intel_crtc->lut_r[regno] = red >> 8;
2035 intel_crtc->lut_g[regno] = green >> 8;
2036 intel_crtc->lut_b[regno] = blue >> 8;
2037}
2038
2039static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2040 u16 *blue, uint32_t size)
2041{
2042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2043 int i;
2044
2045 if (size != 256)
2046 return;
2047
2048 for (i = 0; i < 256; i++) {
2049 intel_crtc->lut_r[i] = red[i] >> 8;
2050 intel_crtc->lut_g[i] = green[i] >> 8;
2051 intel_crtc->lut_b[i] = blue[i] >> 8;
2052 }
2053
2054 intel_crtc_load_lut(crtc);
2055}
2056
2057/**
2058 * Get a pipe with a simple mode set on it for doing load-based monitor
2059 * detection.
2060 *
2061 * It will be up to the load-detect code to adjust the pipe as appropriate for
2062 * its requirements. The pipe will be connected to no other outputs.
2063 *
2064 * Currently this code will only succeed if there is a pipe with no outputs
2065 * configured for it. In the future, it could choose to temporarily disable
2066 * some outputs to free up a pipe for its use.
2067 *
2068 * \return crtc, or NULL if no pipes are available.
2069 */
2070
2071/* VESA 640x480x72Hz mode to set on the pipe */
2072static struct drm_display_mode load_detect_mode = {
2073 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2074 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2075};
2076
2077struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2078 struct drm_display_mode *mode,
2079 int *dpms_mode)
2080{
2081 struct intel_crtc *intel_crtc;
2082 struct drm_crtc *possible_crtc;
2083 struct drm_crtc *supported_crtc =NULL;
2084 struct drm_encoder *encoder = &intel_output->enc;
2085 struct drm_crtc *crtc = NULL;
2086 struct drm_device *dev = encoder->dev;
2087 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2088 struct drm_crtc_helper_funcs *crtc_funcs;
2089 int i = -1;
2090
2091 /*
2092 * Algorithm gets a little messy:
2093 * - if the connector already has an assigned crtc, use it (but make
2094 * sure it's on first)
2095 * - try to find the first unused crtc that can drive this connector,
2096 * and use that if we find one
2097 * - if there are no unused crtcs available, try to use the first
2098 * one we found that supports the connector
2099 */
2100
2101 /* See if we already have a CRTC for this connector */
2102 if (encoder->crtc) {
2103 crtc = encoder->crtc;
2104 /* Make sure the crtc and connector are running */
2105 intel_crtc = to_intel_crtc(crtc);
2106 *dpms_mode = intel_crtc->dpms_mode;
2107 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2108 crtc_funcs = crtc->helper_private;
2109 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2110 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2111 }
2112 return crtc;
2113 }
2114
2115 /* Find an unused one (if possible) */
2116 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2117 i++;
2118 if (!(encoder->possible_crtcs & (1 << i)))
2119 continue;
2120 if (!possible_crtc->enabled) {
2121 crtc = possible_crtc;
2122 break;
2123 }
2124 if (!supported_crtc)
2125 supported_crtc = possible_crtc;
2126 }
2127
2128 /*
2129 * If we didn't find an unused CRTC, don't use any.
2130 */
2131 if (!crtc) {
2132 return NULL;
2133 }
2134
2135 encoder->crtc = crtc;
2136 intel_output->load_detect_temp = true;
2137
2138 intel_crtc = to_intel_crtc(crtc);
2139 *dpms_mode = intel_crtc->dpms_mode;
2140
2141 if (!crtc->enabled) {
2142 if (!mode)
2143 mode = &load_detect_mode;
3c4fdcfb 2144 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
79e53945
JB
2145 } else {
2146 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2147 crtc_funcs = crtc->helper_private;
2148 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2149 }
2150
2151 /* Add this connector to the crtc */
2152 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2153 encoder_funcs->commit(encoder);
2154 }
2155 /* let the connector get through one full cycle before testing */
2156 intel_wait_for_vblank(dev);
2157
2158 return crtc;
2159}
2160
2161void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2162{
2163 struct drm_encoder *encoder = &intel_output->enc;
2164 struct drm_device *dev = encoder->dev;
2165 struct drm_crtc *crtc = encoder->crtc;
2166 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2167 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2168
2169 if (intel_output->load_detect_temp) {
2170 encoder->crtc = NULL;
2171 intel_output->load_detect_temp = false;
2172 crtc->enabled = drm_helper_crtc_in_use(crtc);
2173 drm_helper_disable_unused_functions(dev);
2174 }
2175
2176 /* Switch crtc and output back off if necessary */
2177 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2178 if (encoder->crtc == crtc)
2179 encoder_funcs->dpms(encoder, dpms_mode);
2180 crtc_funcs->dpms(crtc, dpms_mode);
2181 }
2182}
2183
2184/* Returns the clock of the currently programmed mode of the given pipe. */
2185static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2186{
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2189 int pipe = intel_crtc->pipe;
2190 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2191 u32 fp;
2192 intel_clock_t clock;
2193
2194 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2195 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2196 else
2197 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2198
2199 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2177832f
SL
2200 if (IS_IGD(dev)) {
2201 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2202 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2203 } else {
2204 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2205 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2206 }
2207
79e53945 2208 if (IS_I9XX(dev)) {
2177832f
SL
2209 if (IS_IGD(dev))
2210 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2211 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2212 else
2213 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
2214 DPLL_FPA01_P1_POST_DIV_SHIFT);
2215
2216 switch (dpll & DPLL_MODE_MASK) {
2217 case DPLLB_MODE_DAC_SERIAL:
2218 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2219 5 : 10;
2220 break;
2221 case DPLLB_MODE_LVDS:
2222 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2223 7 : 14;
2224 break;
2225 default:
2226 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2227 "mode\n", (int)(dpll & DPLL_MODE_MASK));
2228 return 0;
2229 }
2230
2231 /* XXX: Handle the 100Mhz refclk */
2177832f 2232 intel_clock(dev, 96000, &clock);
79e53945
JB
2233 } else {
2234 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2235
2236 if (is_lvds) {
2237 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2238 DPLL_FPA01_P1_POST_DIV_SHIFT);
2239 clock.p2 = 14;
2240
2241 if ((dpll & PLL_REF_INPUT_MASK) ==
2242 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2243 /* XXX: might not be 66MHz */
2177832f 2244 intel_clock(dev, 66000, &clock);
79e53945 2245 } else
2177832f 2246 intel_clock(dev, 48000, &clock);
79e53945
JB
2247 } else {
2248 if (dpll & PLL_P1_DIVIDE_BY_TWO)
2249 clock.p1 = 2;
2250 else {
2251 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
2252 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
2253 }
2254 if (dpll & PLL_P2_DIVIDE_BY_4)
2255 clock.p2 = 4;
2256 else
2257 clock.p2 = 2;
2258
2177832f 2259 intel_clock(dev, 48000, &clock);
79e53945
JB
2260 }
2261 }
2262
2263 /* XXX: It would be nice to validate the clocks, but we can't reuse
2264 * i830PllIsValid() because it relies on the xf86_config connector
2265 * configuration being accurate, which it isn't necessarily.
2266 */
2267
2268 return clock.dot;
2269}
2270
2271/** Returns the currently programmed mode of the given pipe. */
2272struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
2273 struct drm_crtc *crtc)
2274{
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2277 int pipe = intel_crtc->pipe;
2278 struct drm_display_mode *mode;
2279 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
2280 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
2281 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
2282 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
2283
2284 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
2285 if (!mode)
2286 return NULL;
2287
2288 mode->clock = intel_crtc_clock_get(dev, crtc);
2289 mode->hdisplay = (htot & 0xffff) + 1;
2290 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
2291 mode->hsync_start = (hsync & 0xffff) + 1;
2292 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
2293 mode->vdisplay = (vtot & 0xffff) + 1;
2294 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
2295 mode->vsync_start = (vsync & 0xffff) + 1;
2296 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
2297
2298 drm_mode_set_name(mode);
2299 drm_mode_set_crtcinfo(mode, 0);
2300
2301 return mode;
2302}
2303
2304static void intel_crtc_destroy(struct drm_crtc *crtc)
2305{
2306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2307
2308 drm_crtc_cleanup(crtc);
2309 kfree(intel_crtc);
2310}
2311
2312static const struct drm_crtc_helper_funcs intel_helper_funcs = {
2313 .dpms = intel_crtc_dpms,
2314 .mode_fixup = intel_crtc_mode_fixup,
2315 .mode_set = intel_crtc_mode_set,
2316 .mode_set_base = intel_pipe_set_base,
2317 .prepare = intel_crtc_prepare,
2318 .commit = intel_crtc_commit,
2319};
2320
2321static const struct drm_crtc_funcs intel_crtc_funcs = {
2322 .cursor_set = intel_crtc_cursor_set,
2323 .cursor_move = intel_crtc_cursor_move,
2324 .gamma_set = intel_crtc_gamma_set,
2325 .set_config = drm_crtc_helper_set_config,
2326 .destroy = intel_crtc_destroy,
2327};
2328
2329
b358d0a6 2330static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945
JB
2331{
2332 struct intel_crtc *intel_crtc;
2333 int i;
2334
2335 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
2336 if (intel_crtc == NULL)
2337 return;
2338
2339 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2340
2341 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
2342 intel_crtc->pipe = pipe;
2343 for (i = 0; i < 256; i++) {
2344 intel_crtc->lut_r[i] = i;
2345 intel_crtc->lut_g[i] = i;
2346 intel_crtc->lut_b[i] = i;
2347 }
2348
2349 intel_crtc->cursor_addr = 0;
2350 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
2351 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
2352
2353 intel_crtc->mode_set.crtc = &intel_crtc->base;
2354 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
2355 intel_crtc->mode_set.num_connectors = 0;
2356
2357 if (i915_fbpercrtc) {
2358
2359
2360
2361 }
2362}
2363
08d7b3d1
CW
2364int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
2365 struct drm_file *file_priv)
2366{
2367 drm_i915_private_t *dev_priv = dev->dev_private;
2368 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
2369 struct drm_crtc *crtc = NULL;
2370 int pipe = -1;
2371
2372 if (!dev_priv) {
2373 DRM_ERROR("called with no initialization\n");
2374 return -EINVAL;
2375 }
2376
2377 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2379 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
2380 pipe = intel_crtc->pipe;
2381 break;
2382 }
2383 }
2384
2385 if (pipe == -1) {
2386 DRM_ERROR("no such CRTC id\n");
2387 return -EINVAL;
2388 }
2389
2390 pipe_from_crtc_id->pipe = pipe;
2391
2392 return 0;
2393}
2394
79e53945
JB
2395struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
2396{
2397 struct drm_crtc *crtc = NULL;
2398
2399 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2401 if (intel_crtc->pipe == pipe)
2402 break;
2403 }
2404 return crtc;
2405}
2406
b358d0a6 2407static int intel_connector_clones(struct drm_device *dev, int type_mask)
79e53945
JB
2408{
2409 int index_mask = 0;
2410 struct drm_connector *connector;
2411 int entry = 0;
2412
2413 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2414 struct intel_output *intel_output = to_intel_output(connector);
2415 if (type_mask & (1 << intel_output->type))
2416 index_mask |= (1 << entry);
2417 entry++;
2418 }
2419 return index_mask;
2420}
2421
2422
2423static void intel_setup_outputs(struct drm_device *dev)
2424{
725e30ad 2425 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
2426 struct drm_connector *connector;
2427
2428 intel_crt_init(dev);
2429
2430 /* Set up integrated LVDS */
2c07245f 2431 if (IS_MOBILE(dev) && !IS_I830(dev) && !IS_IGDNG(dev))
79e53945
JB
2432 intel_lvds_init(dev);
2433
2c07245f
ZW
2434 if (IS_IGDNG(dev)) {
2435 /* ignore for other outputs */
2436 } else if (IS_I9XX(dev)) {
7d57382e 2437 int found;
13520b05 2438 u32 reg;
7d57382e 2439
725e30ad
EA
2440 if (I915_READ(SDVOB) & SDVO_DETECTED) {
2441 found = intel_sdvo_init(dev, SDVOB);
2442 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
2443 intel_hdmi_init(dev, SDVOB);
2444 }
13520b05
KH
2445
2446 /* Before G4X SDVOC doesn't have its own detect register */
2447 if (IS_G4X(dev))
2448 reg = SDVOC;
2449 else
2450 reg = SDVOB;
2451
2452 if (I915_READ(reg) & SDVO_DETECTED) {
725e30ad
EA
2453 found = intel_sdvo_init(dev, SDVOC);
2454 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
2455 intel_hdmi_init(dev, SDVOC);
2456 }
79e53945
JB
2457 } else
2458 intel_dvo_init(dev);
2459
2c07245f 2460 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
79e53945
JB
2461 intel_tv_init(dev);
2462
2463 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2464 struct intel_output *intel_output = to_intel_output(connector);
2465 struct drm_encoder *encoder = &intel_output->enc;
2466 int crtc_mask = 0, clone_mask = 0;
2467
2468 /* valid crtcs */
2469 switch(intel_output->type) {
7d57382e
EA
2470 case INTEL_OUTPUT_HDMI:
2471 crtc_mask = ((1 << 0)|
2472 (1 << 1));
2473 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
2474 break;
79e53945
JB
2475 case INTEL_OUTPUT_DVO:
2476 case INTEL_OUTPUT_SDVO:
2477 crtc_mask = ((1 << 0)|
2478 (1 << 1));
2479 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
2480 (1 << INTEL_OUTPUT_DVO) |
2481 (1 << INTEL_OUTPUT_SDVO));
2482 break;
2483 case INTEL_OUTPUT_ANALOG:
2484 crtc_mask = ((1 << 0)|
2485 (1 << 1));
2486 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
2487 (1 << INTEL_OUTPUT_DVO) |
2488 (1 << INTEL_OUTPUT_SDVO));
2489 break;
2490 case INTEL_OUTPUT_LVDS:
2491 crtc_mask = (1 << 1);
2492 clone_mask = (1 << INTEL_OUTPUT_LVDS);
2493 break;
2494 case INTEL_OUTPUT_TVOUT:
2495 crtc_mask = ((1 << 0) |
2496 (1 << 1));
2497 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
2498 break;
2499 }
2500 encoder->possible_crtcs = crtc_mask;
2501 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
2502 }
2503}
2504
2505static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
2506{
2507 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2508 struct drm_device *dev = fb->dev;
2509
2510 if (fb->fbdev)
2511 intelfb_remove(dev, fb);
2512
2513 drm_framebuffer_cleanup(fb);
2514 mutex_lock(&dev->struct_mutex);
2515 drm_gem_object_unreference(intel_fb->obj);
2516 mutex_unlock(&dev->struct_mutex);
2517
2518 kfree(intel_fb);
2519}
2520
2521static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
2522 struct drm_file *file_priv,
2523 unsigned int *handle)
2524{
2525 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2526 struct drm_gem_object *object = intel_fb->obj;
2527
2528 return drm_gem_handle_create(file_priv, object, handle);
2529}
2530
2531static const struct drm_framebuffer_funcs intel_fb_funcs = {
2532 .destroy = intel_user_framebuffer_destroy,
2533 .create_handle = intel_user_framebuffer_create_handle,
2534};
2535
2536int intel_framebuffer_create(struct drm_device *dev,
2537 struct drm_mode_fb_cmd *mode_cmd,
2538 struct drm_framebuffer **fb,
2539 struct drm_gem_object *obj)
2540{
2541 struct intel_framebuffer *intel_fb;
2542 int ret;
2543
2544 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
2545 if (!intel_fb)
2546 return -ENOMEM;
2547
2548 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
2549 if (ret) {
2550 DRM_ERROR("framebuffer init failed %d\n", ret);
2551 return ret;
2552 }
2553
2554 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
2555
2556 intel_fb->obj = obj;
2557
2558 *fb = &intel_fb->base;
2559
2560 return 0;
2561}
2562
2563
2564static struct drm_framebuffer *
2565intel_user_framebuffer_create(struct drm_device *dev,
2566 struct drm_file *filp,
2567 struct drm_mode_fb_cmd *mode_cmd)
2568{
2569 struct drm_gem_object *obj;
2570 struct drm_framebuffer *fb;
2571 int ret;
2572
2573 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
2574 if (!obj)
2575 return NULL;
2576
2577 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
2578 if (ret) {
496818f0 2579 mutex_lock(&dev->struct_mutex);
79e53945 2580 drm_gem_object_unreference(obj);
496818f0 2581 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2582 return NULL;
2583 }
2584
2585 return fb;
2586}
2587
79e53945 2588static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945
JB
2589 .fb_create = intel_user_framebuffer_create,
2590 .fb_changed = intelfb_probe,
2591};
2592
2593void intel_modeset_init(struct drm_device *dev)
2594{
2595 int num_pipe;
2596 int i;
2597
2598 drm_mode_config_init(dev);
2599
2600 dev->mode_config.min_width = 0;
2601 dev->mode_config.min_height = 0;
2602
2603 dev->mode_config.funcs = (void *)&intel_mode_funcs;
2604
2605 if (IS_I965G(dev)) {
2606 dev->mode_config.max_width = 8192;
2607 dev->mode_config.max_height = 8192;
2608 } else {
2609 dev->mode_config.max_width = 2048;
2610 dev->mode_config.max_height = 2048;
2611 }
2612
2613 /* set memory base */
2614 if (IS_I9XX(dev))
2615 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
2616 else
2617 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
2618
2619 if (IS_MOBILE(dev) || IS_I9XX(dev))
2620 num_pipe = 2;
2621 else
2622 num_pipe = 1;
2623 DRM_DEBUG("%d display pipe%s available.\n",
2624 num_pipe, num_pipe > 1 ? "s" : "");
2625
2626 for (i = 0; i < num_pipe; i++) {
2627 intel_crtc_init(dev, i);
2628 }
2629
2630 intel_setup_outputs(dev);
2631}
2632
2633void intel_modeset_cleanup(struct drm_device *dev)
2634{
2635 drm_mode_config_cleanup(dev);
2636}
2637
2638
2639/* current intel driver doesn't take advantage of encoders
2640 always give back the encoder for the connector
2641*/
2642struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2643{
2644 struct intel_output *intel_output = to_intel_output(connector);
2645
2646 return &intel_output->enc;
2647}
This page took 0.169085 seconds and 5 git commands to generate.