sched: Drop the rq argument to sched_class::select_task_rq()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
6aa645ea
IM
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
4a55bd5e
PZ
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
ac53db59 326 struct sched_entity *curr, *next, *last, *skip;
ddc97297 327
5ac5c4d6 328 unsigned int nr_spread_over;
ddc97297 329
62160e3f 330#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
41a2d6cf
IM
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
3d4b47b4 341 int on_list;
41a2d6cf
IM
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
344
345#ifdef CONFIG_SMP
c09595f6 346 /*
c8cba857 347 * the part of load.weight contributed by tasks
c09595f6 348 */
c8cba857 349 unsigned long task_weight;
c09595f6 350
c8cba857
PZ
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
c09595f6 358
c8cba857 359 /*
3b3d190e
PT
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 365 */
2069dd75
PZ
366 u64 load_avg;
367 u64 load_period;
3b3d190e 368 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 369
2069dd75 370 unsigned long load_contribution;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
a64692a3 560
1e5a7405 561static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 562
0a2966b4
CL
563static inline int cpu_of(struct rq *rq)
564{
565#ifdef CONFIG_SMP
566 return rq->cpu;
567#else
568 return 0;
569#endif
570}
571
497f0ab3 572#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
674311d5
NP
577/*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 579 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
48f24c4d 584#define for_each_domain(cpu, __sd) \
497f0ab3 585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
586
587#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588#define this_rq() (&__get_cpu_var(runqueues))
589#define task_rq(p) cpu_rq(task_cpu(p))
590#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 591#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 592
dc61b1d6
PZ
593#ifdef CONFIG_CGROUP_SCHED
594
595/*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603static inline struct task_group *task_group(struct task_struct *p)
604{
5091faa4 605 struct task_group *tg;
dc61b1d6
PZ
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
dc61b1d6
PZ
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
fe44d621 639static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 640
fe44d621 641static void update_rq_clock(struct rq *rq)
3e51f33f 642{
fe44d621 643 s64 delta;
305e6835 644
f26f9aff
MG
645 if (rq->skip_clock_update)
646 return;
aa483808 647
fe44d621
PZ
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
3e51f33f
PZ
651}
652
bf5c91ba
IM
653/*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656#ifdef CONFIG_SCHED_DEBUG
657# define const_debug __read_mostly
658#else
659# define const_debug static const
660#endif
661
017730c1 662/**
1fd06bb1 663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 664 * @cpu: the processor in question.
017730c1 665 *
017730c1
IM
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
7740191c 726 char *cmp;
f00b45c1
PZ
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
7740191c 737 cmp = strstrip(buf);
f00b45c1 738
524429c3 739 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
7740191c 745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
42994724 757 *ppos += cnt;
f00b45c1
PZ
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
828c0950 767static const struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
e9e9250b
PZ
794/*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
fa85ae24 802/*
9f0c1e56 803 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
804 * default: 1s
805 */
9f0c1e56 806unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 807
6892b75e
IM
808static __read_mostly int scheduler_running;
809
9f0c1e56
PZ
810/*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814int sysctl_sched_rt_runtime = 950000;
fa85ae24 815
d0b27fa7
PZ
816static inline u64 global_rt_period(void)
817{
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819}
820
821static inline u64 global_rt_runtime(void)
822{
e26873bb 823 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827}
fa85ae24 828
1da177e4 829#ifndef prepare_arch_switch
4866cde0
NP
830# define prepare_arch_switch(next) do { } while (0)
831#endif
832#ifndef finish_arch_switch
833# define finish_arch_switch(prev) do { } while (0)
834#endif
835
051a1d1a
DA
836static inline int task_current(struct rq *rq, struct task_struct *p)
837{
838 return rq->curr == p;
839}
840
70b97a7f 841static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 842{
3ca7a440
PZ
843#ifdef CONFIG_SMP
844 return p->on_cpu;
845#else
051a1d1a 846 return task_current(rq, p);
3ca7a440 847#endif
4866cde0
NP
848}
849
3ca7a440 850#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 851static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 852{
3ca7a440
PZ
853#ifdef CONFIG_SMP
854 /*
855 * We can optimise this out completely for !SMP, because the
856 * SMP rebalancing from interrupt is the only thing that cares
857 * here.
858 */
859 next->on_cpu = 1;
860#endif
4866cde0
NP
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
3ca7a440
PZ
865#ifdef CONFIG_SMP
866 /*
867 * After ->on_cpu is cleared, the task can be moved to a different CPU.
868 * We must ensure this doesn't happen until the switch is completely
869 * finished.
870 */
871 smp_wmb();
872 prev->on_cpu = 0;
873#endif
da04c035
IM
874#ifdef CONFIG_DEBUG_SPINLOCK
875 /* this is a valid case when another task releases the spinlock */
876 rq->lock.owner = current;
877#endif
8a25d5de
IM
878 /*
879 * If we are tracking spinlock dependencies then we have to
880 * fix up the runqueue lock - which gets 'carried over' from
881 * prev into current:
882 */
883 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
884
05fa785c 885 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
886}
887
888#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
3ca7a440 897 next->on_cpu = 1;
4866cde0
NP
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 900 raw_spin_unlock_irq(&rq->lock);
4866cde0 901#else
05fa785c 902 raw_spin_unlock(&rq->lock);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
3ca7a440 910 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
3ca7a440 915 prev->on_cpu = 0;
4866cde0
NP
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
0970d299 923/*
65cc8e48
PZ
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
0970d299
PZ
926 */
927static inline int task_is_waking(struct task_struct *p)
928{
0017d735 929 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
930}
931
b29739f9
IM
932/*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
05fa785c 963 raw_spin_lock(&rq->lock);
65cc8e48 964 if (likely(rq == task_rq(p)))
3a5c359a 965 return rq;
05fa785c 966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1194/*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202int get_nohz_timer_target(void)
1203{
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214}
06d8308c
TG
1215/*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225void wake_up_idle_cpu(int cpu)
1226{
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
5ed0cec0 1247 set_tsk_need_resched(rq->idle);
06d8308c
TG
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253}
39c0cbe2 1254
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276}
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282}
1283
6d6bc0ad 1284#else /* !CONFIG_SMP */
31656519 1285static void resched_task(struct task_struct *p)
c24d20db 1286{
05fa785c 1287 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1288 set_tsk_need_resched(p);
c24d20db 1289}
e9e9250b
PZ
1290
1291static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293}
da2b71ed
SS
1294
1295static void sched_avg_update(struct rq *rq)
1296{
1297}
6d6bc0ad 1298#endif /* CONFIG_SMP */
c24d20db 1299
45bf76df
IM
1300#if BITS_PER_LONG == 32
1301# define WMULT_CONST (~0UL)
1302#else
1303# define WMULT_CONST (1UL << 32)
1304#endif
1305
1306#define WMULT_SHIFT 32
1307
194081eb
IM
1308/*
1309 * Shift right and round:
1310 */
cf2ab469 1311#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1312
a7be37ac
PZ
1313/*
1314 * delta *= weight / lw
1315 */
cb1c4fc9 1316static unsigned long
45bf76df
IM
1317calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319{
1320 u64 tmp;
1321
7a232e03
LJ
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
45bf76df
IM
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
194081eb 1334 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1336 WMULT_SHIFT/2);
1337 else
cf2ab469 1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1339
ecf691da 1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1344{
1345 lw->weight += inc;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
1091985b 1349static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1350{
1351 lw->weight -= dec;
e89996ae 1352 lw->inv_weight = 0;
45bf76df
IM
1353}
1354
2069dd75
PZ
1355static inline void update_load_set(struct load_weight *lw, unsigned long w)
1356{
1357 lw->weight = w;
1358 lw->inv_weight = 0;
1359}
1360
2dd73a4f
PW
1361/*
1362 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1363 * of tasks with abnormal "nice" values across CPUs the contribution that
1364 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1365 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1366 * scaled version of the new time slice allocation that they receive on time
1367 * slice expiry etc.
1368 */
1369
cce7ade8
PZ
1370#define WEIGHT_IDLEPRIO 3
1371#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1372
1373/*
1374 * Nice levels are multiplicative, with a gentle 10% change for every
1375 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1376 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1377 * that remained on nice 0.
1378 *
1379 * The "10% effect" is relative and cumulative: from _any_ nice level,
1380 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1381 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1382 * If a task goes up by ~10% and another task goes down by ~10% then
1383 * the relative distance between them is ~25%.)
dd41f596
IM
1384 */
1385static const int prio_to_weight[40] = {
254753dc
IM
1386 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1387 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1388 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1389 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1390 /* 0 */ 1024, 820, 655, 526, 423,
1391 /* 5 */ 335, 272, 215, 172, 137,
1392 /* 10 */ 110, 87, 70, 56, 45,
1393 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1394};
1395
5714d2de
IM
1396/*
1397 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1398 *
1399 * In cases where the weight does not change often, we can use the
1400 * precalculated inverse to speed up arithmetics by turning divisions
1401 * into multiplications:
1402 */
dd41f596 1403static const u32 prio_to_wmult[40] = {
254753dc
IM
1404 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1405 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1406 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1407 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1408 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1409 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1410 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1411 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1412};
2dd73a4f 1413
ef12fefa
BR
1414/* Time spent by the tasks of the cpu accounting group executing in ... */
1415enum cpuacct_stat_index {
1416 CPUACCT_STAT_USER, /* ... user mode */
1417 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1418
1419 CPUACCT_STAT_NSTATS,
1420};
1421
d842de87
SV
1422#ifdef CONFIG_CGROUP_CPUACCT
1423static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1424static void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1426#else
1427static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1428static inline void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1430#endif
1431
18d95a28
PZ
1432static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1433{
1434 update_load_add(&rq->load, load);
1435}
1436
1437static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_sub(&rq->load, load);
1440}
1441
7940ca36 1442#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1443typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1444
1445/*
1446 * Iterate the full tree, calling @down when first entering a node and @up when
1447 * leaving it for the final time.
1448 */
eb755805 1449static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1450{
1451 struct task_group *parent, *child;
eb755805 1452 int ret;
c09595f6
PZ
1453
1454 rcu_read_lock();
1455 parent = &root_task_group;
1456down:
eb755805
PZ
1457 ret = (*down)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460 list_for_each_entry_rcu(child, &parent->children, siblings) {
1461 parent = child;
1462 goto down;
1463
1464up:
1465 continue;
1466 }
eb755805
PZ
1467 ret = (*up)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470
1471 child = parent;
1472 parent = parent->parent;
1473 if (parent)
1474 goto up;
eb755805 1475out_unlock:
c09595f6 1476 rcu_read_unlock();
eb755805
PZ
1477
1478 return ret;
c09595f6
PZ
1479}
1480
eb755805
PZ
1481static int tg_nop(struct task_group *tg, void *data)
1482{
1483 return 0;
c09595f6 1484}
eb755805
PZ
1485#endif
1486
1487#ifdef CONFIG_SMP
f5f08f39
PZ
1488/* Used instead of source_load when we know the type == 0 */
1489static unsigned long weighted_cpuload(const int cpu)
1490{
1491 return cpu_rq(cpu)->load.weight;
1492}
1493
1494/*
1495 * Return a low guess at the load of a migration-source cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 *
1498 * We want to under-estimate the load of migration sources, to
1499 * balance conservatively.
1500 */
1501static unsigned long source_load(int cpu, int type)
1502{
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long total = weighted_cpuload(cpu);
1505
1506 if (type == 0 || !sched_feat(LB_BIAS))
1507 return total;
1508
1509 return min(rq->cpu_load[type-1], total);
1510}
1511
1512/*
1513 * Return a high guess at the load of a migration-target cpu weighted
1514 * according to the scheduling class and "nice" value.
1515 */
1516static unsigned long target_load(int cpu, int type)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long total = weighted_cpuload(cpu);
1520
1521 if (type == 0 || !sched_feat(LB_BIAS))
1522 return total;
1523
1524 return max(rq->cpu_load[type-1], total);
1525}
1526
ae154be1
PZ
1527static unsigned long power_of(int cpu)
1528{
e51fd5e2 1529 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1530}
1531
eb755805
PZ
1532static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1533
1534static unsigned long cpu_avg_load_per_task(int cpu)
1535{
1536 struct rq *rq = cpu_rq(cpu);
af6d596f 1537 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1538
4cd42620
SR
1539 if (nr_running)
1540 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1541 else
1542 rq->avg_load_per_task = 0;
eb755805
PZ
1543
1544 return rq->avg_load_per_task;
1545}
1546
1547#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1548
c09595f6 1549/*
c8cba857
PZ
1550 * Compute the cpu's hierarchical load factor for each task group.
1551 * This needs to be done in a top-down fashion because the load of a child
1552 * group is a fraction of its parents load.
c09595f6 1553 */
eb755805 1554static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1555{
c8cba857 1556 unsigned long load;
eb755805 1557 long cpu = (long)data;
c09595f6 1558
c8cba857
PZ
1559 if (!tg->parent) {
1560 load = cpu_rq(cpu)->load.weight;
1561 } else {
1562 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1563 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1564 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 }
c09595f6 1566
c8cba857 1567 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1568
eb755805 1569 return 0;
c09595f6
PZ
1570}
1571
eb755805 1572static void update_h_load(long cpu)
c09595f6 1573{
eb755805 1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1575}
1576
18d95a28
PZ
1577#endif
1578
8f45e2b5
GH
1579#ifdef CONFIG_PREEMPT
1580
b78bb868
PZ
1581static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
70574a99 1583/*
8f45e2b5
GH
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
70574a99 1590 */
8f45e2b5
GH
1591static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595{
05fa785c 1596 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600}
1601
1602#else
1603/*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614{
1615 int ret = 0;
1616
05fa785c 1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1618 if (busiest < this_rq) {
05fa785c
TG
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
70574a99
AD
1623 ret = 1;
1624 } else
05fa785c
TG
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
70574a99
AD
1627 }
1628 return ret;
1629}
1630
8f45e2b5
GH
1631#endif /* CONFIG_PREEMPT */
1632
1633/*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637{
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
05fa785c 1640 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645}
1646
70574a99
AD
1647static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649{
05fa785c 1650 raw_spin_unlock(&busiest->lock);
70574a99
AD
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652}
1e3c88bd
PZ
1653
1654/*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663{
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1e3c88bd
PZ
1677}
1678
1679/*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688{
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694}
1695
d95f4122
MG
1696#else /* CONFIG_SMP */
1697
1698/*
1699 * double_rq_lock - safely lock two runqueues
1700 *
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1703 */
1704static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1707{
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1712}
1713
1714/*
1715 * double_rq_unlock - safely unlock two runqueues
1716 *
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1719 */
1720static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1723{
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1727}
1728
18d95a28
PZ
1729#endif
1730
74f5187a 1731static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1732static void update_sysctl(void);
acb4a848 1733static int get_update_sysctl_factor(void);
fdf3e95d 1734static void update_cpu_load(struct rq *this_rq);
dce48a84 1735
cd29fe6f
PZ
1736static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1737{
1738 set_task_rq(p, cpu);
1739#ifdef CONFIG_SMP
1740 /*
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfuly executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1744 */
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747#endif
1748}
dce48a84 1749
1e3c88bd 1750static const struct sched_class rt_sched_class;
dd41f596 1751
34f971f6 1752#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1753#define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
dd41f596 1755
1e3c88bd
PZ
1756#include "sched_stats.h"
1757
c09595f6 1758static void inc_nr_running(struct rq *rq)
9c217245
IM
1759{
1760 rq->nr_running++;
9c217245
IM
1761}
1762
c09595f6 1763static void dec_nr_running(struct rq *rq)
9c217245
IM
1764{
1765 rq->nr_running--;
9c217245
IM
1766}
1767
45bf76df
IM
1768static void set_load_weight(struct task_struct *p)
1769{
dd41f596
IM
1770 /*
1771 * SCHED_IDLE tasks get minimal weight:
1772 */
1773 if (p->policy == SCHED_IDLE) {
1774 p->se.load.weight = WEIGHT_IDLEPRIO;
1775 p->se.load.inv_weight = WMULT_IDLEPRIO;
1776 return;
1777 }
71f8bd46 1778
dd41f596
IM
1779 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1780 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1781}
1782
371fd7e7 1783static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1784{
a64692a3 1785 update_rq_clock(rq);
dd41f596 1786 sched_info_queued(p);
371fd7e7 1787 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1788}
1789
371fd7e7 1790static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1791{
a64692a3 1792 update_rq_clock(rq);
46ac22ba 1793 sched_info_dequeued(p);
371fd7e7 1794 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1795}
1796
1e3c88bd
PZ
1797/*
1798 * activate_task - move a task to the runqueue.
1799 */
371fd7e7 1800static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1801{
1802 if (task_contributes_to_load(p))
1803 rq->nr_uninterruptible--;
1804
371fd7e7 1805 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1806 inc_nr_running(rq);
1807}
1808
1809/*
1810 * deactivate_task - remove a task from the runqueue.
1811 */
371fd7e7 1812static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1813{
1814 if (task_contributes_to_load(p))
1815 rq->nr_uninterruptible++;
1816
371fd7e7 1817 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1818 dec_nr_running(rq);
1819}
1820
b52bfee4
VP
1821#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1822
305e6835
VP
1823/*
1824 * There are no locks covering percpu hardirq/softirq time.
1825 * They are only modified in account_system_vtime, on corresponding CPU
1826 * with interrupts disabled. So, writes are safe.
1827 * They are read and saved off onto struct rq in update_rq_clock().
1828 * This may result in other CPU reading this CPU's irq time and can
1829 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1830 * or new value with a side effect of accounting a slice of irq time to wrong
1831 * task when irq is in progress while we read rq->clock. That is a worthy
1832 * compromise in place of having locks on each irq in account_system_time.
305e6835 1833 */
b52bfee4
VP
1834static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1835static DEFINE_PER_CPU(u64, cpu_softirq_time);
1836
1837static DEFINE_PER_CPU(u64, irq_start_time);
1838static int sched_clock_irqtime;
1839
1840void enable_sched_clock_irqtime(void)
1841{
1842 sched_clock_irqtime = 1;
1843}
1844
1845void disable_sched_clock_irqtime(void)
1846{
1847 sched_clock_irqtime = 0;
1848}
1849
8e92c201
PZ
1850#ifndef CONFIG_64BIT
1851static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1852
1853static inline void irq_time_write_begin(void)
1854{
1855 __this_cpu_inc(irq_time_seq.sequence);
1856 smp_wmb();
1857}
1858
1859static inline void irq_time_write_end(void)
1860{
1861 smp_wmb();
1862 __this_cpu_inc(irq_time_seq.sequence);
1863}
1864
1865static inline u64 irq_time_read(int cpu)
1866{
1867 u64 irq_time;
1868 unsigned seq;
1869
1870 do {
1871 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1872 irq_time = per_cpu(cpu_softirq_time, cpu) +
1873 per_cpu(cpu_hardirq_time, cpu);
1874 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1875
1876 return irq_time;
1877}
1878#else /* CONFIG_64BIT */
1879static inline void irq_time_write_begin(void)
1880{
1881}
1882
1883static inline void irq_time_write_end(void)
1884{
1885}
1886
1887static inline u64 irq_time_read(int cpu)
305e6835 1888{
305e6835
VP
1889 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1890}
8e92c201 1891#endif /* CONFIG_64BIT */
305e6835 1892
fe44d621
PZ
1893/*
1894 * Called before incrementing preempt_count on {soft,}irq_enter
1895 * and before decrementing preempt_count on {soft,}irq_exit.
1896 */
b52bfee4
VP
1897void account_system_vtime(struct task_struct *curr)
1898{
1899 unsigned long flags;
fe44d621 1900 s64 delta;
b52bfee4 1901 int cpu;
b52bfee4
VP
1902
1903 if (!sched_clock_irqtime)
1904 return;
1905
1906 local_irq_save(flags);
1907
b52bfee4 1908 cpu = smp_processor_id();
fe44d621
PZ
1909 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1910 __this_cpu_add(irq_start_time, delta);
1911
8e92c201 1912 irq_time_write_begin();
b52bfee4
VP
1913 /*
1914 * We do not account for softirq time from ksoftirqd here.
1915 * We want to continue accounting softirq time to ksoftirqd thread
1916 * in that case, so as not to confuse scheduler with a special task
1917 * that do not consume any time, but still wants to run.
1918 */
1919 if (hardirq_count())
fe44d621 1920 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1921 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1922 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1923
8e92c201 1924 irq_time_write_end();
b52bfee4
VP
1925 local_irq_restore(flags);
1926}
b7dadc38 1927EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1928
fe44d621 1929static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1930{
fe44d621
PZ
1931 s64 irq_delta;
1932
8e92c201 1933 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1934
1935 /*
1936 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1937 * this case when a previous update_rq_clock() happened inside a
1938 * {soft,}irq region.
1939 *
1940 * When this happens, we stop ->clock_task and only update the
1941 * prev_irq_time stamp to account for the part that fit, so that a next
1942 * update will consume the rest. This ensures ->clock_task is
1943 * monotonic.
1944 *
1945 * It does however cause some slight miss-attribution of {soft,}irq
1946 * time, a more accurate solution would be to update the irq_time using
1947 * the current rq->clock timestamp, except that would require using
1948 * atomic ops.
1949 */
1950 if (irq_delta > delta)
1951 irq_delta = delta;
1952
1953 rq->prev_irq_time += irq_delta;
1954 delta -= irq_delta;
1955 rq->clock_task += delta;
1956
1957 if (irq_delta && sched_feat(NONIRQ_POWER))
1958 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1959}
1960
abb74cef
VP
1961static int irqtime_account_hi_update(void)
1962{
1963 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1964 unsigned long flags;
1965 u64 latest_ns;
1966 int ret = 0;
1967
1968 local_irq_save(flags);
1969 latest_ns = this_cpu_read(cpu_hardirq_time);
1970 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1971 ret = 1;
1972 local_irq_restore(flags);
1973 return ret;
1974}
1975
1976static int irqtime_account_si_update(void)
1977{
1978 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1979 unsigned long flags;
1980 u64 latest_ns;
1981 int ret = 0;
1982
1983 local_irq_save(flags);
1984 latest_ns = this_cpu_read(cpu_softirq_time);
1985 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1986 ret = 1;
1987 local_irq_restore(flags);
1988 return ret;
1989}
1990
fe44d621 1991#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1992
abb74cef
VP
1993#define sched_clock_irqtime (0)
1994
fe44d621 1995static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1996{
fe44d621 1997 rq->clock_task += delta;
305e6835
VP
1998}
1999
fe44d621 2000#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2001
1e3c88bd
PZ
2002#include "sched_idletask.c"
2003#include "sched_fair.c"
2004#include "sched_rt.c"
5091faa4 2005#include "sched_autogroup.c"
34f971f6 2006#include "sched_stoptask.c"
1e3c88bd
PZ
2007#ifdef CONFIG_SCHED_DEBUG
2008# include "sched_debug.c"
2009#endif
2010
34f971f6
PZ
2011void sched_set_stop_task(int cpu, struct task_struct *stop)
2012{
2013 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2014 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2015
2016 if (stop) {
2017 /*
2018 * Make it appear like a SCHED_FIFO task, its something
2019 * userspace knows about and won't get confused about.
2020 *
2021 * Also, it will make PI more or less work without too
2022 * much confusion -- but then, stop work should not
2023 * rely on PI working anyway.
2024 */
2025 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2026
2027 stop->sched_class = &stop_sched_class;
2028 }
2029
2030 cpu_rq(cpu)->stop = stop;
2031
2032 if (old_stop) {
2033 /*
2034 * Reset it back to a normal scheduling class so that
2035 * it can die in pieces.
2036 */
2037 old_stop->sched_class = &rt_sched_class;
2038 }
2039}
2040
14531189 2041/*
dd41f596 2042 * __normal_prio - return the priority that is based on the static prio
14531189 2043 */
14531189
IM
2044static inline int __normal_prio(struct task_struct *p)
2045{
dd41f596 2046 return p->static_prio;
14531189
IM
2047}
2048
b29739f9
IM
2049/*
2050 * Calculate the expected normal priority: i.e. priority
2051 * without taking RT-inheritance into account. Might be
2052 * boosted by interactivity modifiers. Changes upon fork,
2053 * setprio syscalls, and whenever the interactivity
2054 * estimator recalculates.
2055 */
36c8b586 2056static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2057{
2058 int prio;
2059
e05606d3 2060 if (task_has_rt_policy(p))
b29739f9
IM
2061 prio = MAX_RT_PRIO-1 - p->rt_priority;
2062 else
2063 prio = __normal_prio(p);
2064 return prio;
2065}
2066
2067/*
2068 * Calculate the current priority, i.e. the priority
2069 * taken into account by the scheduler. This value might
2070 * be boosted by RT tasks, or might be boosted by
2071 * interactivity modifiers. Will be RT if the task got
2072 * RT-boosted. If not then it returns p->normal_prio.
2073 */
36c8b586 2074static int effective_prio(struct task_struct *p)
b29739f9
IM
2075{
2076 p->normal_prio = normal_prio(p);
2077 /*
2078 * If we are RT tasks or we were boosted to RT priority,
2079 * keep the priority unchanged. Otherwise, update priority
2080 * to the normal priority:
2081 */
2082 if (!rt_prio(p->prio))
2083 return p->normal_prio;
2084 return p->prio;
2085}
2086
1da177e4
LT
2087/**
2088 * task_curr - is this task currently executing on a CPU?
2089 * @p: the task in question.
2090 */
36c8b586 2091inline int task_curr(const struct task_struct *p)
1da177e4
LT
2092{
2093 return cpu_curr(task_cpu(p)) == p;
2094}
2095
cb469845
SR
2096static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2097 const struct sched_class *prev_class,
da7a735e 2098 int oldprio)
cb469845
SR
2099{
2100 if (prev_class != p->sched_class) {
2101 if (prev_class->switched_from)
da7a735e
PZ
2102 prev_class->switched_from(rq, p);
2103 p->sched_class->switched_to(rq, p);
2104 } else if (oldprio != p->prio)
2105 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2106}
2107
1e5a7405
PZ
2108static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2109{
2110 const struct sched_class *class;
2111
2112 if (p->sched_class == rq->curr->sched_class) {
2113 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2114 } else {
2115 for_each_class(class) {
2116 if (class == rq->curr->sched_class)
2117 break;
2118 if (class == p->sched_class) {
2119 resched_task(rq->curr);
2120 break;
2121 }
2122 }
2123 }
2124
2125 /*
2126 * A queue event has occurred, and we're going to schedule. In
2127 * this case, we can save a useless back to back clock update.
2128 */
fd2f4419 2129 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2130 rq->skip_clock_update = 1;
2131}
2132
1da177e4 2133#ifdef CONFIG_SMP
cc367732
IM
2134/*
2135 * Is this task likely cache-hot:
2136 */
e7693a36 2137static int
cc367732
IM
2138task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2139{
2140 s64 delta;
2141
e6c8fba7
PZ
2142 if (p->sched_class != &fair_sched_class)
2143 return 0;
2144
ef8002f6
NR
2145 if (unlikely(p->policy == SCHED_IDLE))
2146 return 0;
2147
f540a608
IM
2148 /*
2149 * Buddy candidates are cache hot:
2150 */
f685ceac 2151 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2152 (&p->se == cfs_rq_of(&p->se)->next ||
2153 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2154 return 1;
2155
6bc1665b
IM
2156 if (sysctl_sched_migration_cost == -1)
2157 return 1;
2158 if (sysctl_sched_migration_cost == 0)
2159 return 0;
2160
cc367732
IM
2161 delta = now - p->se.exec_start;
2162
2163 return delta < (s64)sysctl_sched_migration_cost;
2164}
2165
dd41f596 2166void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2167{
e2912009
PZ
2168#ifdef CONFIG_SCHED_DEBUG
2169 /*
2170 * We should never call set_task_cpu() on a blocked task,
2171 * ttwu() will sort out the placement.
2172 */
077614ee
PZ
2173 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2174 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2175#endif
2176
de1d7286 2177 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2178
0c69774e
PZ
2179 if (task_cpu(p) != new_cpu) {
2180 p->se.nr_migrations++;
2181 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2182 }
dd41f596
IM
2183
2184 __set_task_cpu(p, new_cpu);
c65cc870
IM
2185}
2186
969c7921 2187struct migration_arg {
36c8b586 2188 struct task_struct *task;
1da177e4 2189 int dest_cpu;
70b97a7f 2190};
1da177e4 2191
969c7921
TH
2192static int migration_cpu_stop(void *data);
2193
1da177e4
LT
2194/*
2195 * The task's runqueue lock must be held.
2196 * Returns true if you have to wait for migration thread.
2197 */
7608dec2 2198static bool need_migrate_task(struct task_struct *p)
1da177e4 2199{
1da177e4
LT
2200 /*
2201 * If the task is not on a runqueue (and not running), then
e2912009 2202 * the next wake-up will properly place the task.
1da177e4 2203 */
7608dec2
PZ
2204 bool running = p->on_rq || p->on_cpu;
2205 smp_rmb(); /* finish_lock_switch() */
2206 return running;
1da177e4
LT
2207}
2208
2209/*
2210 * wait_task_inactive - wait for a thread to unschedule.
2211 *
85ba2d86
RM
2212 * If @match_state is nonzero, it's the @p->state value just checked and
2213 * not expected to change. If it changes, i.e. @p might have woken up,
2214 * then return zero. When we succeed in waiting for @p to be off its CPU,
2215 * we return a positive number (its total switch count). If a second call
2216 * a short while later returns the same number, the caller can be sure that
2217 * @p has remained unscheduled the whole time.
2218 *
1da177e4
LT
2219 * The caller must ensure that the task *will* unschedule sometime soon,
2220 * else this function might spin for a *long* time. This function can't
2221 * be called with interrupts off, or it may introduce deadlock with
2222 * smp_call_function() if an IPI is sent by the same process we are
2223 * waiting to become inactive.
2224 */
85ba2d86 2225unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2226{
2227 unsigned long flags;
dd41f596 2228 int running, on_rq;
85ba2d86 2229 unsigned long ncsw;
70b97a7f 2230 struct rq *rq;
1da177e4 2231
3a5c359a
AK
2232 for (;;) {
2233 /*
2234 * We do the initial early heuristics without holding
2235 * any task-queue locks at all. We'll only try to get
2236 * the runqueue lock when things look like they will
2237 * work out!
2238 */
2239 rq = task_rq(p);
fa490cfd 2240
3a5c359a
AK
2241 /*
2242 * If the task is actively running on another CPU
2243 * still, just relax and busy-wait without holding
2244 * any locks.
2245 *
2246 * NOTE! Since we don't hold any locks, it's not
2247 * even sure that "rq" stays as the right runqueue!
2248 * But we don't care, since "task_running()" will
2249 * return false if the runqueue has changed and p
2250 * is actually now running somewhere else!
2251 */
85ba2d86
RM
2252 while (task_running(rq, p)) {
2253 if (match_state && unlikely(p->state != match_state))
2254 return 0;
3a5c359a 2255 cpu_relax();
85ba2d86 2256 }
fa490cfd 2257
3a5c359a
AK
2258 /*
2259 * Ok, time to look more closely! We need the rq
2260 * lock now, to be *sure*. If we're wrong, we'll
2261 * just go back and repeat.
2262 */
2263 rq = task_rq_lock(p, &flags);
27a9da65 2264 trace_sched_wait_task(p);
3a5c359a 2265 running = task_running(rq, p);
fd2f4419 2266 on_rq = p->on_rq;
85ba2d86 2267 ncsw = 0;
f31e11d8 2268 if (!match_state || p->state == match_state)
93dcf55f 2269 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2270 task_rq_unlock(rq, &flags);
fa490cfd 2271
85ba2d86
RM
2272 /*
2273 * If it changed from the expected state, bail out now.
2274 */
2275 if (unlikely(!ncsw))
2276 break;
2277
3a5c359a
AK
2278 /*
2279 * Was it really running after all now that we
2280 * checked with the proper locks actually held?
2281 *
2282 * Oops. Go back and try again..
2283 */
2284 if (unlikely(running)) {
2285 cpu_relax();
2286 continue;
2287 }
fa490cfd 2288
3a5c359a
AK
2289 /*
2290 * It's not enough that it's not actively running,
2291 * it must be off the runqueue _entirely_, and not
2292 * preempted!
2293 *
80dd99b3 2294 * So if it was still runnable (but just not actively
3a5c359a
AK
2295 * running right now), it's preempted, and we should
2296 * yield - it could be a while.
2297 */
2298 if (unlikely(on_rq)) {
8eb90c30
TG
2299 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2300
2301 set_current_state(TASK_UNINTERRUPTIBLE);
2302 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2303 continue;
2304 }
fa490cfd 2305
3a5c359a
AK
2306 /*
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2310 */
2311 break;
2312 }
85ba2d86
RM
2313
2314 return ncsw;
1da177e4
LT
2315}
2316
2317/***
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2320 *
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2323 *
25985edc 2324 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2328 * achieved as well.
2329 */
36c8b586 2330void kick_process(struct task_struct *p)
1da177e4
LT
2331{
2332 int cpu;
2333
2334 preempt_disable();
2335 cpu = task_cpu(p);
2336 if ((cpu != smp_processor_id()) && task_curr(p))
2337 smp_send_reschedule(cpu);
2338 preempt_enable();
2339}
b43e3521 2340EXPORT_SYMBOL_GPL(kick_process);
476d139c 2341#endif /* CONFIG_SMP */
1da177e4 2342
970b13ba 2343#ifdef CONFIG_SMP
30da688e 2344/*
013fdb80 2345 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2346 */
5da9a0fb
PZ
2347static int select_fallback_rq(int cpu, struct task_struct *p)
2348{
2349 int dest_cpu;
2350 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2351
2352 /* Look for allowed, online CPU in same node. */
2353 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2354 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2355 return dest_cpu;
2356
2357 /* Any allowed, online CPU? */
2358 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2359 if (dest_cpu < nr_cpu_ids)
2360 return dest_cpu;
2361
2362 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2363 dest_cpu = cpuset_cpus_allowed_fallback(p);
2364 /*
2365 * Don't tell them about moving exiting tasks or
2366 * kernel threads (both mm NULL), since they never
2367 * leave kernel.
2368 */
2369 if (p->mm && printk_ratelimit()) {
2370 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2371 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2372 }
2373
2374 return dest_cpu;
2375}
2376
e2912009 2377/*
013fdb80 2378 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2379 */
970b13ba 2380static inline
7608dec2 2381int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2382{
7608dec2 2383 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2384
2385 /*
2386 * In order not to call set_task_cpu() on a blocking task we need
2387 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2388 * cpu.
2389 *
2390 * Since this is common to all placement strategies, this lives here.
2391 *
2392 * [ this allows ->select_task() to simply return task_cpu(p) and
2393 * not worry about this generic constraint ]
2394 */
2395 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2396 !cpu_online(cpu)))
5da9a0fb 2397 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2398
2399 return cpu;
970b13ba 2400}
09a40af5
MG
2401
2402static void update_avg(u64 *avg, u64 sample)
2403{
2404 s64 diff = sample - *avg;
2405 *avg += diff >> 3;
2406}
970b13ba
PZ
2407#endif
2408
d7c01d27
PZ
2409static void
2410ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2411{
d7c01d27
PZ
2412#ifdef CONFIG_SCHEDSTATS
2413#ifdef CONFIG_SMP
2414 int this_cpu = smp_processor_id();
2415
2416 if (cpu == this_cpu) {
2417 schedstat_inc(rq, ttwu_local);
2418 schedstat_inc(p, se.statistics.nr_wakeups_local);
2419 } else {
2420 struct sched_domain *sd;
2421
2422 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2423 for_each_domain(this_cpu, sd) {
2424 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2425 schedstat_inc(sd, ttwu_wake_remote);
2426 break;
2427 }
2428 }
2429 }
2430#endif /* CONFIG_SMP */
2431
2432 schedstat_inc(rq, ttwu_count);
9ed3811a 2433 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2434
2435 if (wake_flags & WF_SYNC)
9ed3811a 2436 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2437
2438 if (cpu != task_cpu(p))
9ed3811a 2439 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2440
d7c01d27
PZ
2441#endif /* CONFIG_SCHEDSTATS */
2442}
2443
2444static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2445{
9ed3811a 2446 activate_task(rq, p, en_flags);
fd2f4419 2447 p->on_rq = 1;
c2f7115e
PZ
2448
2449 /* if a worker is waking up, notify workqueue */
2450 if (p->flags & PF_WQ_WORKER)
2451 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2452}
2453
89363381
PZ
2454static void
2455ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
9ed3811a 2456{
89363381 2457 trace_sched_wakeup(p, true);
9ed3811a
TH
2458 check_preempt_curr(rq, p, wake_flags);
2459
2460 p->state = TASK_RUNNING;
2461#ifdef CONFIG_SMP
2462 if (p->sched_class->task_woken)
2463 p->sched_class->task_woken(rq, p);
2464
2465 if (unlikely(rq->idle_stamp)) {
2466 u64 delta = rq->clock - rq->idle_stamp;
2467 u64 max = 2*sysctl_sched_migration_cost;
2468
2469 if (delta > max)
2470 rq->avg_idle = max;
2471 else
2472 update_avg(&rq->avg_idle, delta);
2473 rq->idle_stamp = 0;
2474 }
2475#endif
2476}
2477
2478/**
1da177e4 2479 * try_to_wake_up - wake up a thread
9ed3811a 2480 * @p: the thread to be awakened
1da177e4 2481 * @state: the mask of task states that can be woken
9ed3811a 2482 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2483 *
2484 * Put it on the run-queue if it's not already there. The "current"
2485 * thread is always on the run-queue (except when the actual
2486 * re-schedule is in progress), and as such you're allowed to do
2487 * the simpler "current->state = TASK_RUNNING" to mark yourself
2488 * runnable without the overhead of this.
2489 *
9ed3811a
TH
2490 * Returns %true if @p was woken up, %false if it was already running
2491 * or @state didn't match @p's state.
1da177e4 2492 */
7d478721
PZ
2493static int try_to_wake_up(struct task_struct *p, unsigned int state,
2494 int wake_flags)
1da177e4 2495{
cc367732 2496 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2497 unsigned long flags;
371fd7e7 2498 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2499 struct rq *rq;
1da177e4 2500
e9c84311 2501 this_cpu = get_cpu();
2398f2c6 2502
04e2f174 2503 smp_wmb();
013fdb80
PZ
2504 raw_spin_lock_irqsave(&p->pi_lock, flags);
2505 rq = __task_rq_lock(p);
e9c84311 2506 if (!(p->state & state))
1da177e4
LT
2507 goto out;
2508
d7c01d27
PZ
2509 cpu = task_cpu(p);
2510
fd2f4419 2511 if (p->on_rq)
1da177e4
LT
2512 goto out_running;
2513
cc367732 2514 orig_cpu = cpu;
1da177e4
LT
2515#ifdef CONFIG_SMP
2516 if (unlikely(task_running(rq, p)))
2517 goto out_activate;
2518
e9c84311
PZ
2519 /*
2520 * In order to handle concurrent wakeups and release the rq->lock
2521 * we put the task in TASK_WAKING state.
eb24073b
IM
2522 *
2523 * First fix up the nr_uninterruptible count:
e9c84311 2524 */
cc87f76a
PZ
2525 if (task_contributes_to_load(p)) {
2526 if (likely(cpu_online(orig_cpu)))
2527 rq->nr_uninterruptible--;
2528 else
2529 this_rq()->nr_uninterruptible--;
2530 }
e9c84311 2531 p->state = TASK_WAKING;
efbbd05a 2532
371fd7e7 2533 if (p->sched_class->task_waking) {
efbbd05a 2534 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2535 en_flags |= ENQUEUE_WAKING;
2536 }
efbbd05a 2537
7608dec2 2538 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0017d735 2539 if (cpu != orig_cpu)
5d2f5a61 2540 set_task_cpu(p, cpu);
0017d735 2541 __task_rq_unlock(rq);
ab19cb23 2542
0970d299
PZ
2543 rq = cpu_rq(cpu);
2544 raw_spin_lock(&rq->lock);
f5dc3753 2545
0970d299
PZ
2546 /*
2547 * We migrated the task without holding either rq->lock, however
2548 * since the task is not on the task list itself, nobody else
2549 * will try and migrate the task, hence the rq should match the
2550 * cpu we just moved it to.
2551 */
2552 WARN_ON(task_cpu(p) != cpu);
e9c84311 2553 WARN_ON(p->state != TASK_WAKING);
1da177e4
LT
2554
2555out_activate:
2556#endif /* CONFIG_SMP */
d7c01d27 2557 ttwu_activate(rq, p, en_flags);
1da177e4 2558out_running:
89363381 2559 ttwu_post_activation(p, rq, wake_flags);
d7c01d27 2560 ttwu_stat(rq, p, cpu, wake_flags);
89363381 2561 success = 1;
1da177e4 2562out:
013fdb80
PZ
2563 __task_rq_unlock(rq);
2564 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
e9c84311 2565 put_cpu();
1da177e4
LT
2566
2567 return success;
2568}
2569
21aa9af0
TH
2570/**
2571 * try_to_wake_up_local - try to wake up a local task with rq lock held
2572 * @p: the thread to be awakened
2573 *
b595076a 2574 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2575 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2576 * the current task. this_rq() stays locked over invocation.
2577 */
2578static void try_to_wake_up_local(struct task_struct *p)
2579{
2580 struct rq *rq = task_rq(p);
21aa9af0
TH
2581
2582 BUG_ON(rq != this_rq());
2583 BUG_ON(p == current);
2584 lockdep_assert_held(&rq->lock);
2585
2586 if (!(p->state & TASK_NORMAL))
2587 return;
2588
fd2f4419 2589 if (!p->on_rq)
d7c01d27
PZ
2590 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2591
89363381 2592 ttwu_post_activation(p, rq, 0);
d7c01d27 2593 ttwu_stat(rq, p, smp_processor_id(), 0);
21aa9af0
TH
2594}
2595
50fa610a
DH
2596/**
2597 * wake_up_process - Wake up a specific process
2598 * @p: The process to be woken up.
2599 *
2600 * Attempt to wake up the nominated process and move it to the set of runnable
2601 * processes. Returns 1 if the process was woken up, 0 if it was already
2602 * running.
2603 *
2604 * It may be assumed that this function implies a write memory barrier before
2605 * changing the task state if and only if any tasks are woken up.
2606 */
7ad5b3a5 2607int wake_up_process(struct task_struct *p)
1da177e4 2608{
d9514f6c 2609 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2610}
1da177e4
LT
2611EXPORT_SYMBOL(wake_up_process);
2612
7ad5b3a5 2613int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2614{
2615 return try_to_wake_up(p, state, 0);
2616}
2617
1da177e4
LT
2618/*
2619 * Perform scheduler related setup for a newly forked process p.
2620 * p is forked by current.
dd41f596
IM
2621 *
2622 * __sched_fork() is basic setup used by init_idle() too:
2623 */
2624static void __sched_fork(struct task_struct *p)
2625{
fd2f4419
PZ
2626 p->on_rq = 0;
2627
2628 p->se.on_rq = 0;
dd41f596
IM
2629 p->se.exec_start = 0;
2630 p->se.sum_exec_runtime = 0;
f6cf891c 2631 p->se.prev_sum_exec_runtime = 0;
6c594c21 2632 p->se.nr_migrations = 0;
da7a735e 2633 p->se.vruntime = 0;
fd2f4419 2634 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2635
2636#ifdef CONFIG_SCHEDSTATS
41acab88 2637 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2638#endif
476d139c 2639
fa717060 2640 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2641
e107be36
AK
2642#ifdef CONFIG_PREEMPT_NOTIFIERS
2643 INIT_HLIST_HEAD(&p->preempt_notifiers);
2644#endif
dd41f596
IM
2645}
2646
2647/*
2648 * fork()/clone()-time setup:
2649 */
2650void sched_fork(struct task_struct *p, int clone_flags)
2651{
2652 int cpu = get_cpu();
2653
2654 __sched_fork(p);
06b83b5f 2655 /*
0017d735 2656 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2657 * nobody will actually run it, and a signal or other external
2658 * event cannot wake it up and insert it on the runqueue either.
2659 */
0017d735 2660 p->state = TASK_RUNNING;
dd41f596 2661
b9dc29e7
MG
2662 /*
2663 * Revert to default priority/policy on fork if requested.
2664 */
2665 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2666 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2667 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2668 p->normal_prio = p->static_prio;
2669 }
b9dc29e7 2670
6c697bdf
MG
2671 if (PRIO_TO_NICE(p->static_prio) < 0) {
2672 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2673 p->normal_prio = p->static_prio;
6c697bdf
MG
2674 set_load_weight(p);
2675 }
2676
b9dc29e7
MG
2677 /*
2678 * We don't need the reset flag anymore after the fork. It has
2679 * fulfilled its duty:
2680 */
2681 p->sched_reset_on_fork = 0;
2682 }
ca94c442 2683
f83f9ac2
PW
2684 /*
2685 * Make sure we do not leak PI boosting priority to the child.
2686 */
2687 p->prio = current->normal_prio;
2688
2ddbf952
HS
2689 if (!rt_prio(p->prio))
2690 p->sched_class = &fair_sched_class;
b29739f9 2691
cd29fe6f
PZ
2692 if (p->sched_class->task_fork)
2693 p->sched_class->task_fork(p);
2694
86951599
PZ
2695 /*
2696 * The child is not yet in the pid-hash so no cgroup attach races,
2697 * and the cgroup is pinned to this child due to cgroup_fork()
2698 * is ran before sched_fork().
2699 *
2700 * Silence PROVE_RCU.
2701 */
2702 rcu_read_lock();
5f3edc1b 2703 set_task_cpu(p, cpu);
86951599 2704 rcu_read_unlock();
5f3edc1b 2705
52f17b6c 2706#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2707 if (likely(sched_info_on()))
52f17b6c 2708 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2709#endif
3ca7a440
PZ
2710#if defined(CONFIG_SMP)
2711 p->on_cpu = 0;
4866cde0 2712#endif
1da177e4 2713#ifdef CONFIG_PREEMPT
4866cde0 2714 /* Want to start with kernel preemption disabled. */
a1261f54 2715 task_thread_info(p)->preempt_count = 1;
1da177e4 2716#endif
806c09a7 2717#ifdef CONFIG_SMP
917b627d 2718 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2719#endif
917b627d 2720
476d139c 2721 put_cpu();
1da177e4
LT
2722}
2723
2724/*
2725 * wake_up_new_task - wake up a newly created task for the first time.
2726 *
2727 * This function will do some initial scheduler statistics housekeeping
2728 * that must be done for every newly created context, then puts the task
2729 * on the runqueue and wakes it.
2730 */
7ad5b3a5 2731void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2732{
2733 unsigned long flags;
dd41f596 2734 struct rq *rq;
c890692b 2735 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2736
2737#ifdef CONFIG_SMP
0017d735
PZ
2738 rq = task_rq_lock(p, &flags);
2739 p->state = TASK_WAKING;
2740
fabf318e
PZ
2741 /*
2742 * Fork balancing, do it here and not earlier because:
2743 * - cpus_allowed can change in the fork path
2744 * - any previously selected cpu might disappear through hotplug
2745 *
0017d735
PZ
2746 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2747 * without people poking at ->cpus_allowed.
fabf318e 2748 */
7608dec2 2749 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
fabf318e 2750 set_task_cpu(p, cpu);
1da177e4 2751
06b83b5f 2752 p->state = TASK_RUNNING;
0017d735
PZ
2753 task_rq_unlock(rq, &flags);
2754#endif
2755
2756 rq = task_rq_lock(p, &flags);
cd29fe6f 2757 activate_task(rq, p, 0);
fd2f4419 2758 p->on_rq = 1;
89363381 2759 trace_sched_wakeup_new(p, true);
a7558e01 2760 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2761#ifdef CONFIG_SMP
efbbd05a
PZ
2762 if (p->sched_class->task_woken)
2763 p->sched_class->task_woken(rq, p);
9a897c5a 2764#endif
dd41f596 2765 task_rq_unlock(rq, &flags);
fabf318e 2766 put_cpu();
1da177e4
LT
2767}
2768
e107be36
AK
2769#ifdef CONFIG_PREEMPT_NOTIFIERS
2770
2771/**
80dd99b3 2772 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2773 * @notifier: notifier struct to register
e107be36
AK
2774 */
2775void preempt_notifier_register(struct preempt_notifier *notifier)
2776{
2777 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2778}
2779EXPORT_SYMBOL_GPL(preempt_notifier_register);
2780
2781/**
2782 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2783 * @notifier: notifier struct to unregister
e107be36
AK
2784 *
2785 * This is safe to call from within a preemption notifier.
2786 */
2787void preempt_notifier_unregister(struct preempt_notifier *notifier)
2788{
2789 hlist_del(&notifier->link);
2790}
2791EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2792
2793static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794{
2795 struct preempt_notifier *notifier;
2796 struct hlist_node *node;
2797
2798 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2799 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2800}
2801
2802static void
2803fire_sched_out_preempt_notifiers(struct task_struct *curr,
2804 struct task_struct *next)
2805{
2806 struct preempt_notifier *notifier;
2807 struct hlist_node *node;
2808
2809 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2810 notifier->ops->sched_out(notifier, next);
2811}
2812
6d6bc0ad 2813#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2814
2815static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2816{
2817}
2818
2819static void
2820fire_sched_out_preempt_notifiers(struct task_struct *curr,
2821 struct task_struct *next)
2822{
2823}
2824
6d6bc0ad 2825#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2826
4866cde0
NP
2827/**
2828 * prepare_task_switch - prepare to switch tasks
2829 * @rq: the runqueue preparing to switch
421cee29 2830 * @prev: the current task that is being switched out
4866cde0
NP
2831 * @next: the task we are going to switch to.
2832 *
2833 * This is called with the rq lock held and interrupts off. It must
2834 * be paired with a subsequent finish_task_switch after the context
2835 * switch.
2836 *
2837 * prepare_task_switch sets up locking and calls architecture specific
2838 * hooks.
2839 */
e107be36
AK
2840static inline void
2841prepare_task_switch(struct rq *rq, struct task_struct *prev,
2842 struct task_struct *next)
4866cde0 2843{
fe4b04fa
PZ
2844 sched_info_switch(prev, next);
2845 perf_event_task_sched_out(prev, next);
e107be36 2846 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2847 prepare_lock_switch(rq, next);
2848 prepare_arch_switch(next);
fe4b04fa 2849 trace_sched_switch(prev, next);
4866cde0
NP
2850}
2851
1da177e4
LT
2852/**
2853 * finish_task_switch - clean up after a task-switch
344babaa 2854 * @rq: runqueue associated with task-switch
1da177e4
LT
2855 * @prev: the thread we just switched away from.
2856 *
4866cde0
NP
2857 * finish_task_switch must be called after the context switch, paired
2858 * with a prepare_task_switch call before the context switch.
2859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2860 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2861 *
2862 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2863 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2864 * with the lock held can cause deadlocks; see schedule() for
2865 * details.)
2866 */
a9957449 2867static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2868 __releases(rq->lock)
2869{
1da177e4 2870 struct mm_struct *mm = rq->prev_mm;
55a101f8 2871 long prev_state;
1da177e4
LT
2872
2873 rq->prev_mm = NULL;
2874
2875 /*
2876 * A task struct has one reference for the use as "current".
c394cc9f 2877 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2878 * schedule one last time. The schedule call will never return, and
2879 * the scheduled task must drop that reference.
c394cc9f 2880 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2881 * still held, otherwise prev could be scheduled on another cpu, die
2882 * there before we look at prev->state, and then the reference would
2883 * be dropped twice.
2884 * Manfred Spraul <manfred@colorfullife.com>
2885 */
55a101f8 2886 prev_state = prev->state;
4866cde0 2887 finish_arch_switch(prev);
8381f65d
JI
2888#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2889 local_irq_disable();
2890#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2891 perf_event_task_sched_in(current);
8381f65d
JI
2892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2893 local_irq_enable();
2894#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2895 finish_lock_switch(rq, prev);
e8fa1362 2896
e107be36 2897 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2898 if (mm)
2899 mmdrop(mm);
c394cc9f 2900 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2901 /*
2902 * Remove function-return probe instances associated with this
2903 * task and put them back on the free list.
9761eea8 2904 */
c6fd91f0 2905 kprobe_flush_task(prev);
1da177e4 2906 put_task_struct(prev);
c6fd91f0 2907 }
1da177e4
LT
2908}
2909
3f029d3c
GH
2910#ifdef CONFIG_SMP
2911
2912/* assumes rq->lock is held */
2913static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2914{
2915 if (prev->sched_class->pre_schedule)
2916 prev->sched_class->pre_schedule(rq, prev);
2917}
2918
2919/* rq->lock is NOT held, but preemption is disabled */
2920static inline void post_schedule(struct rq *rq)
2921{
2922 if (rq->post_schedule) {
2923 unsigned long flags;
2924
05fa785c 2925 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2926 if (rq->curr->sched_class->post_schedule)
2927 rq->curr->sched_class->post_schedule(rq);
05fa785c 2928 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2929
2930 rq->post_schedule = 0;
2931 }
2932}
2933
2934#else
da19ab51 2935
3f029d3c
GH
2936static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2937{
2938}
2939
2940static inline void post_schedule(struct rq *rq)
2941{
1da177e4
LT
2942}
2943
3f029d3c
GH
2944#endif
2945
1da177e4
LT
2946/**
2947 * schedule_tail - first thing a freshly forked thread must call.
2948 * @prev: the thread we just switched away from.
2949 */
36c8b586 2950asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2951 __releases(rq->lock)
2952{
70b97a7f
IM
2953 struct rq *rq = this_rq();
2954
4866cde0 2955 finish_task_switch(rq, prev);
da19ab51 2956
3f029d3c
GH
2957 /*
2958 * FIXME: do we need to worry about rq being invalidated by the
2959 * task_switch?
2960 */
2961 post_schedule(rq);
70b97a7f 2962
4866cde0
NP
2963#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2964 /* In this case, finish_task_switch does not reenable preemption */
2965 preempt_enable();
2966#endif
1da177e4 2967 if (current->set_child_tid)
b488893a 2968 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2969}
2970
2971/*
2972 * context_switch - switch to the new MM and the new
2973 * thread's register state.
2974 */
dd41f596 2975static inline void
70b97a7f 2976context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2977 struct task_struct *next)
1da177e4 2978{
dd41f596 2979 struct mm_struct *mm, *oldmm;
1da177e4 2980
e107be36 2981 prepare_task_switch(rq, prev, next);
fe4b04fa 2982
dd41f596
IM
2983 mm = next->mm;
2984 oldmm = prev->active_mm;
9226d125
ZA
2985 /*
2986 * For paravirt, this is coupled with an exit in switch_to to
2987 * combine the page table reload and the switch backend into
2988 * one hypercall.
2989 */
224101ed 2990 arch_start_context_switch(prev);
9226d125 2991
31915ab4 2992 if (!mm) {
1da177e4
LT
2993 next->active_mm = oldmm;
2994 atomic_inc(&oldmm->mm_count);
2995 enter_lazy_tlb(oldmm, next);
2996 } else
2997 switch_mm(oldmm, mm, next);
2998
31915ab4 2999 if (!prev->mm) {
1da177e4 3000 prev->active_mm = NULL;
1da177e4
LT
3001 rq->prev_mm = oldmm;
3002 }
3a5f5e48
IM
3003 /*
3004 * Since the runqueue lock will be released by the next
3005 * task (which is an invalid locking op but in the case
3006 * of the scheduler it's an obvious special-case), so we
3007 * do an early lockdep release here:
3008 */
3009#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3010 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3011#endif
1da177e4
LT
3012
3013 /* Here we just switch the register state and the stack. */
3014 switch_to(prev, next, prev);
3015
dd41f596
IM
3016 barrier();
3017 /*
3018 * this_rq must be evaluated again because prev may have moved
3019 * CPUs since it called schedule(), thus the 'rq' on its stack
3020 * frame will be invalid.
3021 */
3022 finish_task_switch(this_rq(), prev);
1da177e4
LT
3023}
3024
3025/*
3026 * nr_running, nr_uninterruptible and nr_context_switches:
3027 *
3028 * externally visible scheduler statistics: current number of runnable
3029 * threads, current number of uninterruptible-sleeping threads, total
3030 * number of context switches performed since bootup.
3031 */
3032unsigned long nr_running(void)
3033{
3034 unsigned long i, sum = 0;
3035
3036 for_each_online_cpu(i)
3037 sum += cpu_rq(i)->nr_running;
3038
3039 return sum;
f711f609 3040}
1da177e4
LT
3041
3042unsigned long nr_uninterruptible(void)
f711f609 3043{
1da177e4 3044 unsigned long i, sum = 0;
f711f609 3045
0a945022 3046 for_each_possible_cpu(i)
1da177e4 3047 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3048
3049 /*
1da177e4
LT
3050 * Since we read the counters lockless, it might be slightly
3051 * inaccurate. Do not allow it to go below zero though:
f711f609 3052 */
1da177e4
LT
3053 if (unlikely((long)sum < 0))
3054 sum = 0;
f711f609 3055
1da177e4 3056 return sum;
f711f609 3057}
f711f609 3058
1da177e4 3059unsigned long long nr_context_switches(void)
46cb4b7c 3060{
cc94abfc
SR
3061 int i;
3062 unsigned long long sum = 0;
46cb4b7c 3063
0a945022 3064 for_each_possible_cpu(i)
1da177e4 3065 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3066
1da177e4
LT
3067 return sum;
3068}
483b4ee6 3069
1da177e4
LT
3070unsigned long nr_iowait(void)
3071{
3072 unsigned long i, sum = 0;
483b4ee6 3073
0a945022 3074 for_each_possible_cpu(i)
1da177e4 3075 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3076
1da177e4
LT
3077 return sum;
3078}
483b4ee6 3079
8c215bd3 3080unsigned long nr_iowait_cpu(int cpu)
69d25870 3081{
8c215bd3 3082 struct rq *this = cpu_rq(cpu);
69d25870
AV
3083 return atomic_read(&this->nr_iowait);
3084}
46cb4b7c 3085
69d25870
AV
3086unsigned long this_cpu_load(void)
3087{
3088 struct rq *this = this_rq();
3089 return this->cpu_load[0];
3090}
e790fb0b 3091
46cb4b7c 3092
dce48a84
TG
3093/* Variables and functions for calc_load */
3094static atomic_long_t calc_load_tasks;
3095static unsigned long calc_load_update;
3096unsigned long avenrun[3];
3097EXPORT_SYMBOL(avenrun);
46cb4b7c 3098
74f5187a
PZ
3099static long calc_load_fold_active(struct rq *this_rq)
3100{
3101 long nr_active, delta = 0;
3102
3103 nr_active = this_rq->nr_running;
3104 nr_active += (long) this_rq->nr_uninterruptible;
3105
3106 if (nr_active != this_rq->calc_load_active) {
3107 delta = nr_active - this_rq->calc_load_active;
3108 this_rq->calc_load_active = nr_active;
3109 }
3110
3111 return delta;
3112}
3113
0f004f5a
PZ
3114static unsigned long
3115calc_load(unsigned long load, unsigned long exp, unsigned long active)
3116{
3117 load *= exp;
3118 load += active * (FIXED_1 - exp);
3119 load += 1UL << (FSHIFT - 1);
3120 return load >> FSHIFT;
3121}
3122
74f5187a
PZ
3123#ifdef CONFIG_NO_HZ
3124/*
3125 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3126 *
3127 * When making the ILB scale, we should try to pull this in as well.
3128 */
3129static atomic_long_t calc_load_tasks_idle;
3130
3131static void calc_load_account_idle(struct rq *this_rq)
3132{
3133 long delta;
3134
3135 delta = calc_load_fold_active(this_rq);
3136 if (delta)
3137 atomic_long_add(delta, &calc_load_tasks_idle);
3138}
3139
3140static long calc_load_fold_idle(void)
3141{
3142 long delta = 0;
3143
3144 /*
3145 * Its got a race, we don't care...
3146 */
3147 if (atomic_long_read(&calc_load_tasks_idle))
3148 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3149
3150 return delta;
3151}
0f004f5a
PZ
3152
3153/**
3154 * fixed_power_int - compute: x^n, in O(log n) time
3155 *
3156 * @x: base of the power
3157 * @frac_bits: fractional bits of @x
3158 * @n: power to raise @x to.
3159 *
3160 * By exploiting the relation between the definition of the natural power
3161 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3162 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3163 * (where: n_i \elem {0, 1}, the binary vector representing n),
3164 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3165 * of course trivially computable in O(log_2 n), the length of our binary
3166 * vector.
3167 */
3168static unsigned long
3169fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3170{
3171 unsigned long result = 1UL << frac_bits;
3172
3173 if (n) for (;;) {
3174 if (n & 1) {
3175 result *= x;
3176 result += 1UL << (frac_bits - 1);
3177 result >>= frac_bits;
3178 }
3179 n >>= 1;
3180 if (!n)
3181 break;
3182 x *= x;
3183 x += 1UL << (frac_bits - 1);
3184 x >>= frac_bits;
3185 }
3186
3187 return result;
3188}
3189
3190/*
3191 * a1 = a0 * e + a * (1 - e)
3192 *
3193 * a2 = a1 * e + a * (1 - e)
3194 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3195 * = a0 * e^2 + a * (1 - e) * (1 + e)
3196 *
3197 * a3 = a2 * e + a * (1 - e)
3198 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3199 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3200 *
3201 * ...
3202 *
3203 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3204 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3205 * = a0 * e^n + a * (1 - e^n)
3206 *
3207 * [1] application of the geometric series:
3208 *
3209 * n 1 - x^(n+1)
3210 * S_n := \Sum x^i = -------------
3211 * i=0 1 - x
3212 */
3213static unsigned long
3214calc_load_n(unsigned long load, unsigned long exp,
3215 unsigned long active, unsigned int n)
3216{
3217
3218 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3219}
3220
3221/*
3222 * NO_HZ can leave us missing all per-cpu ticks calling
3223 * calc_load_account_active(), but since an idle CPU folds its delta into
3224 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3225 * in the pending idle delta if our idle period crossed a load cycle boundary.
3226 *
3227 * Once we've updated the global active value, we need to apply the exponential
3228 * weights adjusted to the number of cycles missed.
3229 */
3230static void calc_global_nohz(unsigned long ticks)
3231{
3232 long delta, active, n;
3233
3234 if (time_before(jiffies, calc_load_update))
3235 return;
3236
3237 /*
3238 * If we crossed a calc_load_update boundary, make sure to fold
3239 * any pending idle changes, the respective CPUs might have
3240 * missed the tick driven calc_load_account_active() update
3241 * due to NO_HZ.
3242 */
3243 delta = calc_load_fold_idle();
3244 if (delta)
3245 atomic_long_add(delta, &calc_load_tasks);
3246
3247 /*
3248 * If we were idle for multiple load cycles, apply them.
3249 */
3250 if (ticks >= LOAD_FREQ) {
3251 n = ticks / LOAD_FREQ;
3252
3253 active = atomic_long_read(&calc_load_tasks);
3254 active = active > 0 ? active * FIXED_1 : 0;
3255
3256 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3257 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3258 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3259
3260 calc_load_update += n * LOAD_FREQ;
3261 }
3262
3263 /*
3264 * Its possible the remainder of the above division also crosses
3265 * a LOAD_FREQ period, the regular check in calc_global_load()
3266 * which comes after this will take care of that.
3267 *
3268 * Consider us being 11 ticks before a cycle completion, and us
3269 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3270 * age us 4 cycles, and the test in calc_global_load() will
3271 * pick up the final one.
3272 */
3273}
74f5187a
PZ
3274#else
3275static void calc_load_account_idle(struct rq *this_rq)
3276{
3277}
3278
3279static inline long calc_load_fold_idle(void)
3280{
3281 return 0;
3282}
0f004f5a
PZ
3283
3284static void calc_global_nohz(unsigned long ticks)
3285{
3286}
74f5187a
PZ
3287#endif
3288
2d02494f
TG
3289/**
3290 * get_avenrun - get the load average array
3291 * @loads: pointer to dest load array
3292 * @offset: offset to add
3293 * @shift: shift count to shift the result left
3294 *
3295 * These values are estimates at best, so no need for locking.
3296 */
3297void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3298{
3299 loads[0] = (avenrun[0] + offset) << shift;
3300 loads[1] = (avenrun[1] + offset) << shift;
3301 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3302}
46cb4b7c 3303
46cb4b7c 3304/*
dce48a84
TG
3305 * calc_load - update the avenrun load estimates 10 ticks after the
3306 * CPUs have updated calc_load_tasks.
7835b98b 3307 */
0f004f5a 3308void calc_global_load(unsigned long ticks)
7835b98b 3309{
dce48a84 3310 long active;
1da177e4 3311
0f004f5a
PZ
3312 calc_global_nohz(ticks);
3313
3314 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3315 return;
1da177e4 3316
dce48a84
TG
3317 active = atomic_long_read(&calc_load_tasks);
3318 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3319
dce48a84
TG
3320 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3321 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3322 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3323
dce48a84
TG
3324 calc_load_update += LOAD_FREQ;
3325}
1da177e4 3326
dce48a84 3327/*
74f5187a
PZ
3328 * Called from update_cpu_load() to periodically update this CPU's
3329 * active count.
dce48a84
TG
3330 */
3331static void calc_load_account_active(struct rq *this_rq)
3332{
74f5187a 3333 long delta;
08c183f3 3334
74f5187a
PZ
3335 if (time_before(jiffies, this_rq->calc_load_update))
3336 return;
783609c6 3337
74f5187a
PZ
3338 delta = calc_load_fold_active(this_rq);
3339 delta += calc_load_fold_idle();
3340 if (delta)
dce48a84 3341 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3342
3343 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3344}
3345
fdf3e95d
VP
3346/*
3347 * The exact cpuload at various idx values, calculated at every tick would be
3348 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3349 *
3350 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3351 * on nth tick when cpu may be busy, then we have:
3352 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3353 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3354 *
3355 * decay_load_missed() below does efficient calculation of
3356 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3357 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3358 *
3359 * The calculation is approximated on a 128 point scale.
3360 * degrade_zero_ticks is the number of ticks after which load at any
3361 * particular idx is approximated to be zero.
3362 * degrade_factor is a precomputed table, a row for each load idx.
3363 * Each column corresponds to degradation factor for a power of two ticks,
3364 * based on 128 point scale.
3365 * Example:
3366 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3367 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3368 *
3369 * With this power of 2 load factors, we can degrade the load n times
3370 * by looking at 1 bits in n and doing as many mult/shift instead of
3371 * n mult/shifts needed by the exact degradation.
3372 */
3373#define DEGRADE_SHIFT 7
3374static const unsigned char
3375 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3376static const unsigned char
3377 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3378 {0, 0, 0, 0, 0, 0, 0, 0},
3379 {64, 32, 8, 0, 0, 0, 0, 0},
3380 {96, 72, 40, 12, 1, 0, 0},
3381 {112, 98, 75, 43, 15, 1, 0},
3382 {120, 112, 98, 76, 45, 16, 2} };
3383
3384/*
3385 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3386 * would be when CPU is idle and so we just decay the old load without
3387 * adding any new load.
3388 */
3389static unsigned long
3390decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3391{
3392 int j = 0;
3393
3394 if (!missed_updates)
3395 return load;
3396
3397 if (missed_updates >= degrade_zero_ticks[idx])
3398 return 0;
3399
3400 if (idx == 1)
3401 return load >> missed_updates;
3402
3403 while (missed_updates) {
3404 if (missed_updates % 2)
3405 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3406
3407 missed_updates >>= 1;
3408 j++;
3409 }
3410 return load;
3411}
3412
46cb4b7c 3413/*
dd41f596 3414 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3415 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3416 * every tick. We fix it up based on jiffies.
46cb4b7c 3417 */
dd41f596 3418static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3419{
495eca49 3420 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3421 unsigned long curr_jiffies = jiffies;
3422 unsigned long pending_updates;
dd41f596 3423 int i, scale;
46cb4b7c 3424
dd41f596 3425 this_rq->nr_load_updates++;
46cb4b7c 3426
fdf3e95d
VP
3427 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3428 if (curr_jiffies == this_rq->last_load_update_tick)
3429 return;
3430
3431 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3432 this_rq->last_load_update_tick = curr_jiffies;
3433
dd41f596 3434 /* Update our load: */
fdf3e95d
VP
3435 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3436 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3437 unsigned long old_load, new_load;
7d1e6a9b 3438
dd41f596 3439 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3440
dd41f596 3441 old_load = this_rq->cpu_load[i];
fdf3e95d 3442 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3443 new_load = this_load;
a25707f3
IM
3444 /*
3445 * Round up the averaging division if load is increasing. This
3446 * prevents us from getting stuck on 9 if the load is 10, for
3447 * example.
3448 */
3449 if (new_load > old_load)
fdf3e95d
VP
3450 new_load += scale - 1;
3451
3452 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3453 }
da2b71ed
SS
3454
3455 sched_avg_update(this_rq);
fdf3e95d
VP
3456}
3457
3458static void update_cpu_load_active(struct rq *this_rq)
3459{
3460 update_cpu_load(this_rq);
46cb4b7c 3461
74f5187a 3462 calc_load_account_active(this_rq);
46cb4b7c
SS
3463}
3464
dd41f596 3465#ifdef CONFIG_SMP
8a0be9ef 3466
46cb4b7c 3467/*
38022906
PZ
3468 * sched_exec - execve() is a valuable balancing opportunity, because at
3469 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3470 */
38022906 3471void sched_exec(void)
46cb4b7c 3472{
38022906 3473 struct task_struct *p = current;
1da177e4 3474 unsigned long flags;
70b97a7f 3475 struct rq *rq;
0017d735 3476 int dest_cpu;
46cb4b7c 3477
1da177e4 3478 rq = task_rq_lock(p, &flags);
7608dec2 3479 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3480 if (dest_cpu == smp_processor_id())
3481 goto unlock;
38022906 3482
46cb4b7c 3483 /*
38022906 3484 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3485 */
30da688e 3486 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
7608dec2 3487 likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
969c7921 3488 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3489
1da177e4 3490 task_rq_unlock(rq, &flags);
969c7921 3491 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3492 return;
3493 }
0017d735 3494unlock:
1da177e4 3495 task_rq_unlock(rq, &flags);
1da177e4 3496}
dd41f596 3497
1da177e4
LT
3498#endif
3499
1da177e4
LT
3500DEFINE_PER_CPU(struct kernel_stat, kstat);
3501
3502EXPORT_PER_CPU_SYMBOL(kstat);
3503
3504/*
c5f8d995 3505 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3506 * @p in case that task is currently running.
c5f8d995
HS
3507 *
3508 * Called with task_rq_lock() held on @rq.
1da177e4 3509 */
c5f8d995
HS
3510static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3511{
3512 u64 ns = 0;
3513
3514 if (task_current(rq, p)) {
3515 update_rq_clock(rq);
305e6835 3516 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3517 if ((s64)ns < 0)
3518 ns = 0;
3519 }
3520
3521 return ns;
3522}
3523
bb34d92f 3524unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3525{
1da177e4 3526 unsigned long flags;
41b86e9c 3527 struct rq *rq;
bb34d92f 3528 u64 ns = 0;
48f24c4d 3529
41b86e9c 3530 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3531 ns = do_task_delta_exec(p, rq);
3532 task_rq_unlock(rq, &flags);
1508487e 3533
c5f8d995
HS
3534 return ns;
3535}
f06febc9 3536
c5f8d995
HS
3537/*
3538 * Return accounted runtime for the task.
3539 * In case the task is currently running, return the runtime plus current's
3540 * pending runtime that have not been accounted yet.
3541 */
3542unsigned long long task_sched_runtime(struct task_struct *p)
3543{
3544 unsigned long flags;
3545 struct rq *rq;
3546 u64 ns = 0;
3547
3548 rq = task_rq_lock(p, &flags);
3549 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3550 task_rq_unlock(rq, &flags);
3551
3552 return ns;
3553}
48f24c4d 3554
c5f8d995
HS
3555/*
3556 * Return sum_exec_runtime for the thread group.
3557 * In case the task is currently running, return the sum plus current's
3558 * pending runtime that have not been accounted yet.
3559 *
3560 * Note that the thread group might have other running tasks as well,
3561 * so the return value not includes other pending runtime that other
3562 * running tasks might have.
3563 */
3564unsigned long long thread_group_sched_runtime(struct task_struct *p)
3565{
3566 struct task_cputime totals;
3567 unsigned long flags;
3568 struct rq *rq;
3569 u64 ns;
3570
3571 rq = task_rq_lock(p, &flags);
3572 thread_group_cputime(p, &totals);
3573 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3574 task_rq_unlock(rq, &flags);
48f24c4d 3575
1da177e4
LT
3576 return ns;
3577}
3578
1da177e4
LT
3579/*
3580 * Account user cpu time to a process.
3581 * @p: the process that the cpu time gets accounted to
1da177e4 3582 * @cputime: the cpu time spent in user space since the last update
457533a7 3583 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3584 */
457533a7
MS
3585void account_user_time(struct task_struct *p, cputime_t cputime,
3586 cputime_t cputime_scaled)
1da177e4
LT
3587{
3588 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3589 cputime64_t tmp;
3590
457533a7 3591 /* Add user time to process. */
1da177e4 3592 p->utime = cputime_add(p->utime, cputime);
457533a7 3593 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3594 account_group_user_time(p, cputime);
1da177e4
LT
3595
3596 /* Add user time to cpustat. */
3597 tmp = cputime_to_cputime64(cputime);
3598 if (TASK_NICE(p) > 0)
3599 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3600 else
3601 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3602
3603 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3604 /* Account for user time used */
3605 acct_update_integrals(p);
1da177e4
LT
3606}
3607
94886b84
LV
3608/*
3609 * Account guest cpu time to a process.
3610 * @p: the process that the cpu time gets accounted to
3611 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3612 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3613 */
457533a7
MS
3614static void account_guest_time(struct task_struct *p, cputime_t cputime,
3615 cputime_t cputime_scaled)
94886b84
LV
3616{
3617 cputime64_t tmp;
3618 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3619
3620 tmp = cputime_to_cputime64(cputime);
3621
457533a7 3622 /* Add guest time to process. */
94886b84 3623 p->utime = cputime_add(p->utime, cputime);
457533a7 3624 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3625 account_group_user_time(p, cputime);
94886b84
LV
3626 p->gtime = cputime_add(p->gtime, cputime);
3627
457533a7 3628 /* Add guest time to cpustat. */
ce0e7b28
RO
3629 if (TASK_NICE(p) > 0) {
3630 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3631 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3632 } else {
3633 cpustat->user = cputime64_add(cpustat->user, tmp);
3634 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3635 }
94886b84
LV
3636}
3637
70a89a66
VP
3638/*
3639 * Account system cpu time to a process and desired cpustat field
3640 * @p: the process that the cpu time gets accounted to
3641 * @cputime: the cpu time spent in kernel space since the last update
3642 * @cputime_scaled: cputime scaled by cpu frequency
3643 * @target_cputime64: pointer to cpustat field that has to be updated
3644 */
3645static inline
3646void __account_system_time(struct task_struct *p, cputime_t cputime,
3647 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3648{
3649 cputime64_t tmp = cputime_to_cputime64(cputime);
3650
3651 /* Add system time to process. */
3652 p->stime = cputime_add(p->stime, cputime);
3653 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3654 account_group_system_time(p, cputime);
3655
3656 /* Add system time to cpustat. */
3657 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3658 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3659
3660 /* Account for system time used */
3661 acct_update_integrals(p);
3662}
3663
1da177e4
LT
3664/*
3665 * Account system cpu time to a process.
3666 * @p: the process that the cpu time gets accounted to
3667 * @hardirq_offset: the offset to subtract from hardirq_count()
3668 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3669 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3670 */
3671void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3672 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3673{
3674 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3675 cputime64_t *target_cputime64;
1da177e4 3676
983ed7a6 3677 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3678 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3679 return;
3680 }
94886b84 3681
1da177e4 3682 if (hardirq_count() - hardirq_offset)
70a89a66 3683 target_cputime64 = &cpustat->irq;
75e1056f 3684 else if (in_serving_softirq())
70a89a66 3685 target_cputime64 = &cpustat->softirq;
1da177e4 3686 else
70a89a66 3687 target_cputime64 = &cpustat->system;
ef12fefa 3688
70a89a66 3689 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3690}
3691
c66f08be 3692/*
1da177e4 3693 * Account for involuntary wait time.
544b4a1f 3694 * @cputime: the cpu time spent in involuntary wait
c66f08be 3695 */
79741dd3 3696void account_steal_time(cputime_t cputime)
c66f08be 3697{
79741dd3
MS
3698 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3699 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3700
3701 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3702}
3703
1da177e4 3704/*
79741dd3
MS
3705 * Account for idle time.
3706 * @cputime: the cpu time spent in idle wait
1da177e4 3707 */
79741dd3 3708void account_idle_time(cputime_t cputime)
1da177e4
LT
3709{
3710 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3711 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3712 struct rq *rq = this_rq();
1da177e4 3713
79741dd3
MS
3714 if (atomic_read(&rq->nr_iowait) > 0)
3715 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3716 else
3717 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3718}
3719
79741dd3
MS
3720#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3721
abb74cef
VP
3722#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3723/*
3724 * Account a tick to a process and cpustat
3725 * @p: the process that the cpu time gets accounted to
3726 * @user_tick: is the tick from userspace
3727 * @rq: the pointer to rq
3728 *
3729 * Tick demultiplexing follows the order
3730 * - pending hardirq update
3731 * - pending softirq update
3732 * - user_time
3733 * - idle_time
3734 * - system time
3735 * - check for guest_time
3736 * - else account as system_time
3737 *
3738 * Check for hardirq is done both for system and user time as there is
3739 * no timer going off while we are on hardirq and hence we may never get an
3740 * opportunity to update it solely in system time.
3741 * p->stime and friends are only updated on system time and not on irq
3742 * softirq as those do not count in task exec_runtime any more.
3743 */
3744static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3745 struct rq *rq)
3746{
3747 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3748 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3749 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3750
3751 if (irqtime_account_hi_update()) {
3752 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3753 } else if (irqtime_account_si_update()) {
3754 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3755 } else if (this_cpu_ksoftirqd() == p) {
3756 /*
3757 * ksoftirqd time do not get accounted in cpu_softirq_time.
3758 * So, we have to handle it separately here.
3759 * Also, p->stime needs to be updated for ksoftirqd.
3760 */
3761 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3762 &cpustat->softirq);
abb74cef
VP
3763 } else if (user_tick) {
3764 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3765 } else if (p == rq->idle) {
3766 account_idle_time(cputime_one_jiffy);
3767 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3768 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3769 } else {
3770 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3771 &cpustat->system);
3772 }
3773}
3774
3775static void irqtime_account_idle_ticks(int ticks)
3776{
3777 int i;
3778 struct rq *rq = this_rq();
3779
3780 for (i = 0; i < ticks; i++)
3781 irqtime_account_process_tick(current, 0, rq);
3782}
544b4a1f 3783#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3784static void irqtime_account_idle_ticks(int ticks) {}
3785static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3786 struct rq *rq) {}
544b4a1f 3787#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3788
3789/*
3790 * Account a single tick of cpu time.
3791 * @p: the process that the cpu time gets accounted to
3792 * @user_tick: indicates if the tick is a user or a system tick
3793 */
3794void account_process_tick(struct task_struct *p, int user_tick)
3795{
a42548a1 3796 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3797 struct rq *rq = this_rq();
3798
abb74cef
VP
3799 if (sched_clock_irqtime) {
3800 irqtime_account_process_tick(p, user_tick, rq);
3801 return;
3802 }
3803
79741dd3 3804 if (user_tick)
a42548a1 3805 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3806 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3807 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3808 one_jiffy_scaled);
3809 else
a42548a1 3810 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3811}
3812
3813/*
3814 * Account multiple ticks of steal time.
3815 * @p: the process from which the cpu time has been stolen
3816 * @ticks: number of stolen ticks
3817 */
3818void account_steal_ticks(unsigned long ticks)
3819{
3820 account_steal_time(jiffies_to_cputime(ticks));
3821}
3822
3823/*
3824 * Account multiple ticks of idle time.
3825 * @ticks: number of stolen ticks
3826 */
3827void account_idle_ticks(unsigned long ticks)
3828{
abb74cef
VP
3829
3830 if (sched_clock_irqtime) {
3831 irqtime_account_idle_ticks(ticks);
3832 return;
3833 }
3834
79741dd3 3835 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3836}
3837
79741dd3
MS
3838#endif
3839
49048622
BS
3840/*
3841 * Use precise platform statistics if available:
3842 */
3843#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3844void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3845{
d99ca3b9
HS
3846 *ut = p->utime;
3847 *st = p->stime;
49048622
BS
3848}
3849
0cf55e1e 3850void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3851{
0cf55e1e
HS
3852 struct task_cputime cputime;
3853
3854 thread_group_cputime(p, &cputime);
3855
3856 *ut = cputime.utime;
3857 *st = cputime.stime;
49048622
BS
3858}
3859#else
761b1d26
HS
3860
3861#ifndef nsecs_to_cputime
b7b20df9 3862# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3863#endif
3864
d180c5bc 3865void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3866{
d99ca3b9 3867 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3868
3869 /*
3870 * Use CFS's precise accounting:
3871 */
d180c5bc 3872 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3873
3874 if (total) {
e75e863d 3875 u64 temp = rtime;
d180c5bc 3876
e75e863d 3877 temp *= utime;
49048622 3878 do_div(temp, total);
d180c5bc
HS
3879 utime = (cputime_t)temp;
3880 } else
3881 utime = rtime;
49048622 3882
d180c5bc
HS
3883 /*
3884 * Compare with previous values, to keep monotonicity:
3885 */
761b1d26 3886 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3887 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3888
d99ca3b9
HS
3889 *ut = p->prev_utime;
3890 *st = p->prev_stime;
49048622
BS
3891}
3892
0cf55e1e
HS
3893/*
3894 * Must be called with siglock held.
3895 */
3896void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3897{
0cf55e1e
HS
3898 struct signal_struct *sig = p->signal;
3899 struct task_cputime cputime;
3900 cputime_t rtime, utime, total;
49048622 3901
0cf55e1e 3902 thread_group_cputime(p, &cputime);
49048622 3903
0cf55e1e
HS
3904 total = cputime_add(cputime.utime, cputime.stime);
3905 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3906
0cf55e1e 3907 if (total) {
e75e863d 3908 u64 temp = rtime;
49048622 3909
e75e863d 3910 temp *= cputime.utime;
0cf55e1e
HS
3911 do_div(temp, total);
3912 utime = (cputime_t)temp;
3913 } else
3914 utime = rtime;
3915
3916 sig->prev_utime = max(sig->prev_utime, utime);
3917 sig->prev_stime = max(sig->prev_stime,
3918 cputime_sub(rtime, sig->prev_utime));
3919
3920 *ut = sig->prev_utime;
3921 *st = sig->prev_stime;
49048622 3922}
49048622 3923#endif
49048622 3924
7835b98b
CL
3925/*
3926 * This function gets called by the timer code, with HZ frequency.
3927 * We call it with interrupts disabled.
3928 *
3929 * It also gets called by the fork code, when changing the parent's
3930 * timeslices.
3931 */
3932void scheduler_tick(void)
3933{
7835b98b
CL
3934 int cpu = smp_processor_id();
3935 struct rq *rq = cpu_rq(cpu);
dd41f596 3936 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3937
3938 sched_clock_tick();
dd41f596 3939
05fa785c 3940 raw_spin_lock(&rq->lock);
3e51f33f 3941 update_rq_clock(rq);
fdf3e95d 3942 update_cpu_load_active(rq);
fa85ae24 3943 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3944 raw_spin_unlock(&rq->lock);
7835b98b 3945
e9d2b064 3946 perf_event_task_tick();
e220d2dc 3947
e418e1c2 3948#ifdef CONFIG_SMP
dd41f596
IM
3949 rq->idle_at_tick = idle_cpu(cpu);
3950 trigger_load_balance(rq, cpu);
e418e1c2 3951#endif
1da177e4
LT
3952}
3953
132380a0 3954notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3955{
3956 if (in_lock_functions(addr)) {
3957 addr = CALLER_ADDR2;
3958 if (in_lock_functions(addr))
3959 addr = CALLER_ADDR3;
3960 }
3961 return addr;
3962}
1da177e4 3963
7e49fcce
SR
3964#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3965 defined(CONFIG_PREEMPT_TRACER))
3966
43627582 3967void __kprobes add_preempt_count(int val)
1da177e4 3968{
6cd8a4bb 3969#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3970 /*
3971 * Underflow?
3972 */
9a11b49a
IM
3973 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3974 return;
6cd8a4bb 3975#endif
1da177e4 3976 preempt_count() += val;
6cd8a4bb 3977#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3978 /*
3979 * Spinlock count overflowing soon?
3980 */
33859f7f
MOS
3981 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3982 PREEMPT_MASK - 10);
6cd8a4bb
SR
3983#endif
3984 if (preempt_count() == val)
3985 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3986}
3987EXPORT_SYMBOL(add_preempt_count);
3988
43627582 3989void __kprobes sub_preempt_count(int val)
1da177e4 3990{
6cd8a4bb 3991#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3992 /*
3993 * Underflow?
3994 */
01e3eb82 3995 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3996 return;
1da177e4
LT
3997 /*
3998 * Is the spinlock portion underflowing?
3999 */
9a11b49a
IM
4000 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4001 !(preempt_count() & PREEMPT_MASK)))
4002 return;
6cd8a4bb 4003#endif
9a11b49a 4004
6cd8a4bb
SR
4005 if (preempt_count() == val)
4006 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4007 preempt_count() -= val;
4008}
4009EXPORT_SYMBOL(sub_preempt_count);
4010
4011#endif
4012
4013/*
dd41f596 4014 * Print scheduling while atomic bug:
1da177e4 4015 */
dd41f596 4016static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4017{
838225b4
SS
4018 struct pt_regs *regs = get_irq_regs();
4019
3df0fc5b
PZ
4020 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4021 prev->comm, prev->pid, preempt_count());
838225b4 4022
dd41f596 4023 debug_show_held_locks(prev);
e21f5b15 4024 print_modules();
dd41f596
IM
4025 if (irqs_disabled())
4026 print_irqtrace_events(prev);
838225b4
SS
4027
4028 if (regs)
4029 show_regs(regs);
4030 else
4031 dump_stack();
dd41f596 4032}
1da177e4 4033
dd41f596
IM
4034/*
4035 * Various schedule()-time debugging checks and statistics:
4036 */
4037static inline void schedule_debug(struct task_struct *prev)
4038{
1da177e4 4039 /*
41a2d6cf 4040 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4041 * schedule() atomically, we ignore that path for now.
4042 * Otherwise, whine if we are scheduling when we should not be.
4043 */
3f33a7ce 4044 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4045 __schedule_bug(prev);
4046
1da177e4
LT
4047 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4048
2d72376b 4049 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4050#ifdef CONFIG_SCHEDSTATS
4051 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4052 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4053 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4054 }
4055#endif
dd41f596
IM
4056}
4057
6cecd084 4058static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4059{
fd2f4419 4060 if (prev->on_rq)
a64692a3 4061 update_rq_clock(rq);
6cecd084 4062 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4063}
4064
dd41f596
IM
4065/*
4066 * Pick up the highest-prio task:
4067 */
4068static inline struct task_struct *
b67802ea 4069pick_next_task(struct rq *rq)
dd41f596 4070{
5522d5d5 4071 const struct sched_class *class;
dd41f596 4072 struct task_struct *p;
1da177e4
LT
4073
4074 /*
dd41f596
IM
4075 * Optimization: we know that if all tasks are in
4076 * the fair class we can call that function directly:
1da177e4 4077 */
dd41f596 4078 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4079 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4080 if (likely(p))
4081 return p;
1da177e4
LT
4082 }
4083
34f971f6 4084 for_each_class(class) {
fb8d4724 4085 p = class->pick_next_task(rq);
dd41f596
IM
4086 if (p)
4087 return p;
dd41f596 4088 }
34f971f6
PZ
4089
4090 BUG(); /* the idle class will always have a runnable task */
dd41f596 4091}
1da177e4 4092
dd41f596
IM
4093/*
4094 * schedule() is the main scheduler function.
4095 */
ff743345 4096asmlinkage void __sched schedule(void)
dd41f596
IM
4097{
4098 struct task_struct *prev, *next;
67ca7bde 4099 unsigned long *switch_count;
dd41f596 4100 struct rq *rq;
31656519 4101 int cpu;
dd41f596 4102
ff743345
PZ
4103need_resched:
4104 preempt_disable();
dd41f596
IM
4105 cpu = smp_processor_id();
4106 rq = cpu_rq(cpu);
25502a6c 4107 rcu_note_context_switch(cpu);
dd41f596 4108 prev = rq->curr;
dd41f596 4109
dd41f596 4110 schedule_debug(prev);
1da177e4 4111
31656519 4112 if (sched_feat(HRTICK))
f333fdc9 4113 hrtick_clear(rq);
8f4d37ec 4114
05fa785c 4115 raw_spin_lock_irq(&rq->lock);
1da177e4 4116
246d86b5 4117 switch_count = &prev->nivcsw;
1da177e4 4118 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4119 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4120 prev->state = TASK_RUNNING;
21aa9af0
TH
4121 } else {
4122 /*
4123 * If a worker is going to sleep, notify and
4124 * ask workqueue whether it wants to wake up a
4125 * task to maintain concurrency. If so, wake
4126 * up the task.
4127 */
4128 if (prev->flags & PF_WQ_WORKER) {
4129 struct task_struct *to_wakeup;
4130
4131 to_wakeup = wq_worker_sleeping(prev, cpu);
4132 if (to_wakeup)
4133 try_to_wake_up_local(to_wakeup);
4134 }
fd2f4419 4135
371fd7e7 4136 deactivate_task(rq, prev, DEQUEUE_SLEEP);
fd2f4419 4137 prev->on_rq = 0;
6631e635
LT
4138
4139 /*
4140 * If we are going to sleep and we have plugged IO queued, make
4141 * sure to submit it to avoid deadlocks.
4142 */
4143 if (blk_needs_flush_plug(prev)) {
4144 raw_spin_unlock(&rq->lock);
4145 blk_flush_plug(prev);
4146 raw_spin_lock(&rq->lock);
4147 }
21aa9af0 4148 }
dd41f596 4149 switch_count = &prev->nvcsw;
1da177e4
LT
4150 }
4151
3f029d3c 4152 pre_schedule(rq, prev);
f65eda4f 4153
dd41f596 4154 if (unlikely(!rq->nr_running))
1da177e4 4155 idle_balance(cpu, rq);
1da177e4 4156
df1c99d4 4157 put_prev_task(rq, prev);
b67802ea 4158 next = pick_next_task(rq);
f26f9aff
MG
4159 clear_tsk_need_resched(prev);
4160 rq->skip_clock_update = 0;
1da177e4 4161
1da177e4 4162 if (likely(prev != next)) {
1da177e4
LT
4163 rq->nr_switches++;
4164 rq->curr = next;
4165 ++*switch_count;
4166
dd41f596 4167 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4168 /*
246d86b5
ON
4169 * The context switch have flipped the stack from under us
4170 * and restored the local variables which were saved when
4171 * this task called schedule() in the past. prev == current
4172 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4173 */
4174 cpu = smp_processor_id();
4175 rq = cpu_rq(cpu);
1da177e4 4176 } else
05fa785c 4177 raw_spin_unlock_irq(&rq->lock);
1da177e4 4178
3f029d3c 4179 post_schedule(rq);
1da177e4 4180
1da177e4 4181 preempt_enable_no_resched();
ff743345 4182 if (need_resched())
1da177e4
LT
4183 goto need_resched;
4184}
1da177e4
LT
4185EXPORT_SYMBOL(schedule);
4186
c08f7829 4187#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4188
c6eb3dda
PZ
4189static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4190{
4191 bool ret = false;
0d66bf6d 4192
c6eb3dda
PZ
4193 rcu_read_lock();
4194 if (lock->owner != owner)
4195 goto fail;
0d66bf6d
PZ
4196
4197 /*
c6eb3dda
PZ
4198 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4199 * lock->owner still matches owner, if that fails, owner might
4200 * point to free()d memory, if it still matches, the rcu_read_lock()
4201 * ensures the memory stays valid.
0d66bf6d 4202 */
c6eb3dda 4203 barrier();
0d66bf6d 4204
c6eb3dda
PZ
4205 ret = owner->on_cpu;
4206fail:
4207 rcu_read_unlock();
0d66bf6d 4208
c6eb3dda
PZ
4209 return ret;
4210}
0d66bf6d 4211
c6eb3dda
PZ
4212/*
4213 * Look out! "owner" is an entirely speculative pointer
4214 * access and not reliable.
4215 */
4216int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4217{
4218 if (!sched_feat(OWNER_SPIN))
4219 return 0;
0d66bf6d 4220
c6eb3dda
PZ
4221 while (owner_running(lock, owner)) {
4222 if (need_resched())
0d66bf6d
PZ
4223 return 0;
4224
335d7afb 4225 arch_mutex_cpu_relax();
0d66bf6d 4226 }
4b402210 4227
c6eb3dda
PZ
4228 /*
4229 * If the owner changed to another task there is likely
4230 * heavy contention, stop spinning.
4231 */
4232 if (lock->owner)
4233 return 0;
4234
0d66bf6d
PZ
4235 return 1;
4236}
4237#endif
4238
1da177e4
LT
4239#ifdef CONFIG_PREEMPT
4240/*
2ed6e34f 4241 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4242 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4243 * occur there and call schedule directly.
4244 */
d1f74e20 4245asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4246{
4247 struct thread_info *ti = current_thread_info();
6478d880 4248
1da177e4
LT
4249 /*
4250 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4251 * we do not want to preempt the current task. Just return..
1da177e4 4252 */
beed33a8 4253 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4254 return;
4255
3a5c359a 4256 do {
d1f74e20 4257 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4258 schedule();
d1f74e20 4259 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4260
3a5c359a
AK
4261 /*
4262 * Check again in case we missed a preemption opportunity
4263 * between schedule and now.
4264 */
4265 barrier();
5ed0cec0 4266 } while (need_resched());
1da177e4 4267}
1da177e4
LT
4268EXPORT_SYMBOL(preempt_schedule);
4269
4270/*
2ed6e34f 4271 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4272 * off of irq context.
4273 * Note, that this is called and return with irqs disabled. This will
4274 * protect us against recursive calling from irq.
4275 */
4276asmlinkage void __sched preempt_schedule_irq(void)
4277{
4278 struct thread_info *ti = current_thread_info();
6478d880 4279
2ed6e34f 4280 /* Catch callers which need to be fixed */
1da177e4
LT
4281 BUG_ON(ti->preempt_count || !irqs_disabled());
4282
3a5c359a
AK
4283 do {
4284 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4285 local_irq_enable();
4286 schedule();
4287 local_irq_disable();
3a5c359a 4288 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4289
3a5c359a
AK
4290 /*
4291 * Check again in case we missed a preemption opportunity
4292 * between schedule and now.
4293 */
4294 barrier();
5ed0cec0 4295 } while (need_resched());
1da177e4
LT
4296}
4297
4298#endif /* CONFIG_PREEMPT */
4299
63859d4f 4300int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4301 void *key)
1da177e4 4302{
63859d4f 4303 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4304}
1da177e4
LT
4305EXPORT_SYMBOL(default_wake_function);
4306
4307/*
41a2d6cf
IM
4308 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4309 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4310 * number) then we wake all the non-exclusive tasks and one exclusive task.
4311 *
4312 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4313 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4314 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4315 */
78ddb08f 4316static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4317 int nr_exclusive, int wake_flags, void *key)
1da177e4 4318{
2e45874c 4319 wait_queue_t *curr, *next;
1da177e4 4320
2e45874c 4321 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4322 unsigned flags = curr->flags;
4323
63859d4f 4324 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4325 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4326 break;
4327 }
4328}
4329
4330/**
4331 * __wake_up - wake up threads blocked on a waitqueue.
4332 * @q: the waitqueue
4333 * @mode: which threads
4334 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4335 * @key: is directly passed to the wakeup function
50fa610a
DH
4336 *
4337 * It may be assumed that this function implies a write memory barrier before
4338 * changing the task state if and only if any tasks are woken up.
1da177e4 4339 */
7ad5b3a5 4340void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4341 int nr_exclusive, void *key)
1da177e4
LT
4342{
4343 unsigned long flags;
4344
4345 spin_lock_irqsave(&q->lock, flags);
4346 __wake_up_common(q, mode, nr_exclusive, 0, key);
4347 spin_unlock_irqrestore(&q->lock, flags);
4348}
1da177e4
LT
4349EXPORT_SYMBOL(__wake_up);
4350
4351/*
4352 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4353 */
7ad5b3a5 4354void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4355{
4356 __wake_up_common(q, mode, 1, 0, NULL);
4357}
22c43c81 4358EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4359
4ede816a
DL
4360void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4361{
4362 __wake_up_common(q, mode, 1, 0, key);
4363}
bf294b41 4364EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4365
1da177e4 4366/**
4ede816a 4367 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4368 * @q: the waitqueue
4369 * @mode: which threads
4370 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4371 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4372 *
4373 * The sync wakeup differs that the waker knows that it will schedule
4374 * away soon, so while the target thread will be woken up, it will not
4375 * be migrated to another CPU - ie. the two threads are 'synchronized'
4376 * with each other. This can prevent needless bouncing between CPUs.
4377 *
4378 * On UP it can prevent extra preemption.
50fa610a
DH
4379 *
4380 * It may be assumed that this function implies a write memory barrier before
4381 * changing the task state if and only if any tasks are woken up.
1da177e4 4382 */
4ede816a
DL
4383void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4384 int nr_exclusive, void *key)
1da177e4
LT
4385{
4386 unsigned long flags;
7d478721 4387 int wake_flags = WF_SYNC;
1da177e4
LT
4388
4389 if (unlikely(!q))
4390 return;
4391
4392 if (unlikely(!nr_exclusive))
7d478721 4393 wake_flags = 0;
1da177e4
LT
4394
4395 spin_lock_irqsave(&q->lock, flags);
7d478721 4396 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4397 spin_unlock_irqrestore(&q->lock, flags);
4398}
4ede816a
DL
4399EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4400
4401/*
4402 * __wake_up_sync - see __wake_up_sync_key()
4403 */
4404void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4405{
4406 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4407}
1da177e4
LT
4408EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4409
65eb3dc6
KD
4410/**
4411 * complete: - signals a single thread waiting on this completion
4412 * @x: holds the state of this particular completion
4413 *
4414 * This will wake up a single thread waiting on this completion. Threads will be
4415 * awakened in the same order in which they were queued.
4416 *
4417 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4418 *
4419 * It may be assumed that this function implies a write memory barrier before
4420 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4421 */
b15136e9 4422void complete(struct completion *x)
1da177e4
LT
4423{
4424 unsigned long flags;
4425
4426 spin_lock_irqsave(&x->wait.lock, flags);
4427 x->done++;
d9514f6c 4428 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4429 spin_unlock_irqrestore(&x->wait.lock, flags);
4430}
4431EXPORT_SYMBOL(complete);
4432
65eb3dc6
KD
4433/**
4434 * complete_all: - signals all threads waiting on this completion
4435 * @x: holds the state of this particular completion
4436 *
4437 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4438 *
4439 * It may be assumed that this function implies a write memory barrier before
4440 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4441 */
b15136e9 4442void complete_all(struct completion *x)
1da177e4
LT
4443{
4444 unsigned long flags;
4445
4446 spin_lock_irqsave(&x->wait.lock, flags);
4447 x->done += UINT_MAX/2;
d9514f6c 4448 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4449 spin_unlock_irqrestore(&x->wait.lock, flags);
4450}
4451EXPORT_SYMBOL(complete_all);
4452
8cbbe86d
AK
4453static inline long __sched
4454do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4455{
1da177e4
LT
4456 if (!x->done) {
4457 DECLARE_WAITQUEUE(wait, current);
4458
a93d2f17 4459 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4460 do {
94d3d824 4461 if (signal_pending_state(state, current)) {
ea71a546
ON
4462 timeout = -ERESTARTSYS;
4463 break;
8cbbe86d
AK
4464 }
4465 __set_current_state(state);
1da177e4
LT
4466 spin_unlock_irq(&x->wait.lock);
4467 timeout = schedule_timeout(timeout);
4468 spin_lock_irq(&x->wait.lock);
ea71a546 4469 } while (!x->done && timeout);
1da177e4 4470 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4471 if (!x->done)
4472 return timeout;
1da177e4
LT
4473 }
4474 x->done--;
ea71a546 4475 return timeout ?: 1;
1da177e4 4476}
1da177e4 4477
8cbbe86d
AK
4478static long __sched
4479wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4480{
1da177e4
LT
4481 might_sleep();
4482
4483 spin_lock_irq(&x->wait.lock);
8cbbe86d 4484 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4485 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4486 return timeout;
4487}
1da177e4 4488
65eb3dc6
KD
4489/**
4490 * wait_for_completion: - waits for completion of a task
4491 * @x: holds the state of this particular completion
4492 *
4493 * This waits to be signaled for completion of a specific task. It is NOT
4494 * interruptible and there is no timeout.
4495 *
4496 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4497 * and interrupt capability. Also see complete().
4498 */
b15136e9 4499void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4500{
4501 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4502}
8cbbe86d 4503EXPORT_SYMBOL(wait_for_completion);
1da177e4 4504
65eb3dc6
KD
4505/**
4506 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4507 * @x: holds the state of this particular completion
4508 * @timeout: timeout value in jiffies
4509 *
4510 * This waits for either a completion of a specific task to be signaled or for a
4511 * specified timeout to expire. The timeout is in jiffies. It is not
4512 * interruptible.
4513 */
b15136e9 4514unsigned long __sched
8cbbe86d 4515wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4516{
8cbbe86d 4517 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4518}
8cbbe86d 4519EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4520
65eb3dc6
KD
4521/**
4522 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4523 * @x: holds the state of this particular completion
4524 *
4525 * This waits for completion of a specific task to be signaled. It is
4526 * interruptible.
4527 */
8cbbe86d 4528int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4529{
51e97990
AK
4530 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4531 if (t == -ERESTARTSYS)
4532 return t;
4533 return 0;
0fec171c 4534}
8cbbe86d 4535EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4536
65eb3dc6
KD
4537/**
4538 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4539 * @x: holds the state of this particular completion
4540 * @timeout: timeout value in jiffies
4541 *
4542 * This waits for either a completion of a specific task to be signaled or for a
4543 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4544 */
6bf41237 4545long __sched
8cbbe86d
AK
4546wait_for_completion_interruptible_timeout(struct completion *x,
4547 unsigned long timeout)
0fec171c 4548{
8cbbe86d 4549 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4550}
8cbbe86d 4551EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4552
65eb3dc6
KD
4553/**
4554 * wait_for_completion_killable: - waits for completion of a task (killable)
4555 * @x: holds the state of this particular completion
4556 *
4557 * This waits to be signaled for completion of a specific task. It can be
4558 * interrupted by a kill signal.
4559 */
009e577e
MW
4560int __sched wait_for_completion_killable(struct completion *x)
4561{
4562 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4563 if (t == -ERESTARTSYS)
4564 return t;
4565 return 0;
4566}
4567EXPORT_SYMBOL(wait_for_completion_killable);
4568
0aa12fb4
SW
4569/**
4570 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4571 * @x: holds the state of this particular completion
4572 * @timeout: timeout value in jiffies
4573 *
4574 * This waits for either a completion of a specific task to be
4575 * signaled or for a specified timeout to expire. It can be
4576 * interrupted by a kill signal. The timeout is in jiffies.
4577 */
6bf41237 4578long __sched
0aa12fb4
SW
4579wait_for_completion_killable_timeout(struct completion *x,
4580 unsigned long timeout)
4581{
4582 return wait_for_common(x, timeout, TASK_KILLABLE);
4583}
4584EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4585
be4de352
DC
4586/**
4587 * try_wait_for_completion - try to decrement a completion without blocking
4588 * @x: completion structure
4589 *
4590 * Returns: 0 if a decrement cannot be done without blocking
4591 * 1 if a decrement succeeded.
4592 *
4593 * If a completion is being used as a counting completion,
4594 * attempt to decrement the counter without blocking. This
4595 * enables us to avoid waiting if the resource the completion
4596 * is protecting is not available.
4597 */
4598bool try_wait_for_completion(struct completion *x)
4599{
7539a3b3 4600 unsigned long flags;
be4de352
DC
4601 int ret = 1;
4602
7539a3b3 4603 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4604 if (!x->done)
4605 ret = 0;
4606 else
4607 x->done--;
7539a3b3 4608 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4609 return ret;
4610}
4611EXPORT_SYMBOL(try_wait_for_completion);
4612
4613/**
4614 * completion_done - Test to see if a completion has any waiters
4615 * @x: completion structure
4616 *
4617 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4618 * 1 if there are no waiters.
4619 *
4620 */
4621bool completion_done(struct completion *x)
4622{
7539a3b3 4623 unsigned long flags;
be4de352
DC
4624 int ret = 1;
4625
7539a3b3 4626 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4627 if (!x->done)
4628 ret = 0;
7539a3b3 4629 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4630 return ret;
4631}
4632EXPORT_SYMBOL(completion_done);
4633
8cbbe86d
AK
4634static long __sched
4635sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4636{
0fec171c
IM
4637 unsigned long flags;
4638 wait_queue_t wait;
4639
4640 init_waitqueue_entry(&wait, current);
1da177e4 4641
8cbbe86d 4642 __set_current_state(state);
1da177e4 4643
8cbbe86d
AK
4644 spin_lock_irqsave(&q->lock, flags);
4645 __add_wait_queue(q, &wait);
4646 spin_unlock(&q->lock);
4647 timeout = schedule_timeout(timeout);
4648 spin_lock_irq(&q->lock);
4649 __remove_wait_queue(q, &wait);
4650 spin_unlock_irqrestore(&q->lock, flags);
4651
4652 return timeout;
4653}
4654
4655void __sched interruptible_sleep_on(wait_queue_head_t *q)
4656{
4657 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4658}
1da177e4
LT
4659EXPORT_SYMBOL(interruptible_sleep_on);
4660
0fec171c 4661long __sched
95cdf3b7 4662interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4663{
8cbbe86d 4664 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4665}
1da177e4
LT
4666EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4667
0fec171c 4668void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4669{
8cbbe86d 4670 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4671}
1da177e4
LT
4672EXPORT_SYMBOL(sleep_on);
4673
0fec171c 4674long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4675{
8cbbe86d 4676 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4677}
1da177e4
LT
4678EXPORT_SYMBOL(sleep_on_timeout);
4679
b29739f9
IM
4680#ifdef CONFIG_RT_MUTEXES
4681
4682/*
4683 * rt_mutex_setprio - set the current priority of a task
4684 * @p: task
4685 * @prio: prio value (kernel-internal form)
4686 *
4687 * This function changes the 'effective' priority of a task. It does
4688 * not touch ->normal_prio like __setscheduler().
4689 *
4690 * Used by the rt_mutex code to implement priority inheritance logic.
4691 */
36c8b586 4692void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4693{
4694 unsigned long flags;
83b699ed 4695 int oldprio, on_rq, running;
70b97a7f 4696 struct rq *rq;
83ab0aa0 4697 const struct sched_class *prev_class;
b29739f9
IM
4698
4699 BUG_ON(prio < 0 || prio > MAX_PRIO);
4700
013fdb80
PZ
4701 lockdep_assert_held(&p->pi_lock);
4702
b29739f9
IM
4703 rq = task_rq_lock(p, &flags);
4704
a8027073 4705 trace_sched_pi_setprio(p, prio);
d5f9f942 4706 oldprio = p->prio;
83ab0aa0 4707 prev_class = p->sched_class;
fd2f4419 4708 on_rq = p->on_rq;
051a1d1a 4709 running = task_current(rq, p);
0e1f3483 4710 if (on_rq)
69be72c1 4711 dequeue_task(rq, p, 0);
0e1f3483
HS
4712 if (running)
4713 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4714
4715 if (rt_prio(prio))
4716 p->sched_class = &rt_sched_class;
4717 else
4718 p->sched_class = &fair_sched_class;
4719
b29739f9
IM
4720 p->prio = prio;
4721
0e1f3483
HS
4722 if (running)
4723 p->sched_class->set_curr_task(rq);
da7a735e 4724 if (on_rq)
371fd7e7 4725 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4726
da7a735e 4727 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4728 task_rq_unlock(rq, &flags);
4729}
4730
4731#endif
4732
36c8b586 4733void set_user_nice(struct task_struct *p, long nice)
1da177e4 4734{
dd41f596 4735 int old_prio, delta, on_rq;
1da177e4 4736 unsigned long flags;
70b97a7f 4737 struct rq *rq;
1da177e4
LT
4738
4739 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4740 return;
4741 /*
4742 * We have to be careful, if called from sys_setpriority(),
4743 * the task might be in the middle of scheduling on another CPU.
4744 */
4745 rq = task_rq_lock(p, &flags);
4746 /*
4747 * The RT priorities are set via sched_setscheduler(), but we still
4748 * allow the 'normal' nice value to be set - but as expected
4749 * it wont have any effect on scheduling until the task is
dd41f596 4750 * SCHED_FIFO/SCHED_RR:
1da177e4 4751 */
e05606d3 4752 if (task_has_rt_policy(p)) {
1da177e4
LT
4753 p->static_prio = NICE_TO_PRIO(nice);
4754 goto out_unlock;
4755 }
fd2f4419 4756 on_rq = p->on_rq;
c09595f6 4757 if (on_rq)
69be72c1 4758 dequeue_task(rq, p, 0);
1da177e4 4759
1da177e4 4760 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4761 set_load_weight(p);
b29739f9
IM
4762 old_prio = p->prio;
4763 p->prio = effective_prio(p);
4764 delta = p->prio - old_prio;
1da177e4 4765
dd41f596 4766 if (on_rq) {
371fd7e7 4767 enqueue_task(rq, p, 0);
1da177e4 4768 /*
d5f9f942
AM
4769 * If the task increased its priority or is running and
4770 * lowered its priority, then reschedule its CPU:
1da177e4 4771 */
d5f9f942 4772 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4773 resched_task(rq->curr);
4774 }
4775out_unlock:
4776 task_rq_unlock(rq, &flags);
4777}
1da177e4
LT
4778EXPORT_SYMBOL(set_user_nice);
4779
e43379f1
MM
4780/*
4781 * can_nice - check if a task can reduce its nice value
4782 * @p: task
4783 * @nice: nice value
4784 */
36c8b586 4785int can_nice(const struct task_struct *p, const int nice)
e43379f1 4786{
024f4747
MM
4787 /* convert nice value [19,-20] to rlimit style value [1,40] */
4788 int nice_rlim = 20 - nice;
48f24c4d 4789
78d7d407 4790 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4791 capable(CAP_SYS_NICE));
4792}
4793
1da177e4
LT
4794#ifdef __ARCH_WANT_SYS_NICE
4795
4796/*
4797 * sys_nice - change the priority of the current process.
4798 * @increment: priority increment
4799 *
4800 * sys_setpriority is a more generic, but much slower function that
4801 * does similar things.
4802 */
5add95d4 4803SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4804{
48f24c4d 4805 long nice, retval;
1da177e4
LT
4806
4807 /*
4808 * Setpriority might change our priority at the same moment.
4809 * We don't have to worry. Conceptually one call occurs first
4810 * and we have a single winner.
4811 */
e43379f1
MM
4812 if (increment < -40)
4813 increment = -40;
1da177e4
LT
4814 if (increment > 40)
4815 increment = 40;
4816
2b8f836f 4817 nice = TASK_NICE(current) + increment;
1da177e4
LT
4818 if (nice < -20)
4819 nice = -20;
4820 if (nice > 19)
4821 nice = 19;
4822
e43379f1
MM
4823 if (increment < 0 && !can_nice(current, nice))
4824 return -EPERM;
4825
1da177e4
LT
4826 retval = security_task_setnice(current, nice);
4827 if (retval)
4828 return retval;
4829
4830 set_user_nice(current, nice);
4831 return 0;
4832}
4833
4834#endif
4835
4836/**
4837 * task_prio - return the priority value of a given task.
4838 * @p: the task in question.
4839 *
4840 * This is the priority value as seen by users in /proc.
4841 * RT tasks are offset by -200. Normal tasks are centered
4842 * around 0, value goes from -16 to +15.
4843 */
36c8b586 4844int task_prio(const struct task_struct *p)
1da177e4
LT
4845{
4846 return p->prio - MAX_RT_PRIO;
4847}
4848
4849/**
4850 * task_nice - return the nice value of a given task.
4851 * @p: the task in question.
4852 */
36c8b586 4853int task_nice(const struct task_struct *p)
1da177e4
LT
4854{
4855 return TASK_NICE(p);
4856}
150d8bed 4857EXPORT_SYMBOL(task_nice);
1da177e4
LT
4858
4859/**
4860 * idle_cpu - is a given cpu idle currently?
4861 * @cpu: the processor in question.
4862 */
4863int idle_cpu(int cpu)
4864{
4865 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4866}
4867
1da177e4
LT
4868/**
4869 * idle_task - return the idle task for a given cpu.
4870 * @cpu: the processor in question.
4871 */
36c8b586 4872struct task_struct *idle_task(int cpu)
1da177e4
LT
4873{
4874 return cpu_rq(cpu)->idle;
4875}
4876
4877/**
4878 * find_process_by_pid - find a process with a matching PID value.
4879 * @pid: the pid in question.
4880 */
a9957449 4881static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4882{
228ebcbe 4883 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4884}
4885
4886/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4887static void
4888__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4889{
1da177e4
LT
4890 p->policy = policy;
4891 p->rt_priority = prio;
b29739f9
IM
4892 p->normal_prio = normal_prio(p);
4893 /* we are holding p->pi_lock already */
4894 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4895 if (rt_prio(p->prio))
4896 p->sched_class = &rt_sched_class;
4897 else
4898 p->sched_class = &fair_sched_class;
2dd73a4f 4899 set_load_weight(p);
1da177e4
LT
4900}
4901
c69e8d9c
DH
4902/*
4903 * check the target process has a UID that matches the current process's
4904 */
4905static bool check_same_owner(struct task_struct *p)
4906{
4907 const struct cred *cred = current_cred(), *pcred;
4908 bool match;
4909
4910 rcu_read_lock();
4911 pcred = __task_cred(p);
b0e77598
SH
4912 if (cred->user->user_ns == pcred->user->user_ns)
4913 match = (cred->euid == pcred->euid ||
4914 cred->euid == pcred->uid);
4915 else
4916 match = false;
c69e8d9c
DH
4917 rcu_read_unlock();
4918 return match;
4919}
4920
961ccddd 4921static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4922 const struct sched_param *param, bool user)
1da177e4 4923{
83b699ed 4924 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4925 unsigned long flags;
83ab0aa0 4926 const struct sched_class *prev_class;
70b97a7f 4927 struct rq *rq;
ca94c442 4928 int reset_on_fork;
1da177e4 4929
66e5393a
SR
4930 /* may grab non-irq protected spin_locks */
4931 BUG_ON(in_interrupt());
1da177e4
LT
4932recheck:
4933 /* double check policy once rq lock held */
ca94c442
LP
4934 if (policy < 0) {
4935 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4936 policy = oldpolicy = p->policy;
ca94c442
LP
4937 } else {
4938 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4939 policy &= ~SCHED_RESET_ON_FORK;
4940
4941 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4942 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4943 policy != SCHED_IDLE)
4944 return -EINVAL;
4945 }
4946
1da177e4
LT
4947 /*
4948 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4949 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4950 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4951 */
4952 if (param->sched_priority < 0 ||
95cdf3b7 4953 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4954 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4955 return -EINVAL;
e05606d3 4956 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4957 return -EINVAL;
4958
37e4ab3f
OC
4959 /*
4960 * Allow unprivileged RT tasks to decrease priority:
4961 */
961ccddd 4962 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4963 if (rt_policy(policy)) {
a44702e8
ON
4964 unsigned long rlim_rtprio =
4965 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4966
4967 /* can't set/change the rt policy */
4968 if (policy != p->policy && !rlim_rtprio)
4969 return -EPERM;
4970
4971 /* can't increase priority */
4972 if (param->sched_priority > p->rt_priority &&
4973 param->sched_priority > rlim_rtprio)
4974 return -EPERM;
4975 }
c02aa73b 4976
dd41f596 4977 /*
c02aa73b
DH
4978 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4979 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4980 */
c02aa73b
DH
4981 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4982 if (!can_nice(p, TASK_NICE(p)))
4983 return -EPERM;
4984 }
5fe1d75f 4985
37e4ab3f 4986 /* can't change other user's priorities */
c69e8d9c 4987 if (!check_same_owner(p))
37e4ab3f 4988 return -EPERM;
ca94c442
LP
4989
4990 /* Normal users shall not reset the sched_reset_on_fork flag */
4991 if (p->sched_reset_on_fork && !reset_on_fork)
4992 return -EPERM;
37e4ab3f 4993 }
1da177e4 4994
725aad24 4995 if (user) {
b0ae1981 4996 retval = security_task_setscheduler(p);
725aad24
JF
4997 if (retval)
4998 return retval;
4999 }
5000
b29739f9
IM
5001 /*
5002 * make sure no PI-waiters arrive (or leave) while we are
5003 * changing the priority of the task:
5004 */
1d615482 5005 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4 5006 /*
25985edc 5007 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5008 * runqueue lock must be held.
5009 */
b29739f9 5010 rq = __task_rq_lock(p);
dc61b1d6 5011
34f971f6
PZ
5012 /*
5013 * Changing the policy of the stop threads its a very bad idea
5014 */
5015 if (p == rq->stop) {
5016 __task_rq_unlock(rq);
5017 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5018 return -EINVAL;
5019 }
5020
a51e9198
DF
5021 /*
5022 * If not changing anything there's no need to proceed further:
5023 */
5024 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5025 param->sched_priority == p->rt_priority))) {
5026
5027 __task_rq_unlock(rq);
5028 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5029 return 0;
5030 }
5031
dc61b1d6
PZ
5032#ifdef CONFIG_RT_GROUP_SCHED
5033 if (user) {
5034 /*
5035 * Do not allow realtime tasks into groups that have no runtime
5036 * assigned.
5037 */
5038 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5039 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5040 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5041 __task_rq_unlock(rq);
5042 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5043 return -EPERM;
5044 }
5045 }
5046#endif
5047
1da177e4
LT
5048 /* recheck policy now with rq lock held */
5049 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5050 policy = oldpolicy = -1;
b29739f9 5051 __task_rq_unlock(rq);
1d615482 5052 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5053 goto recheck;
5054 }
fd2f4419 5055 on_rq = p->on_rq;
051a1d1a 5056 running = task_current(rq, p);
0e1f3483 5057 if (on_rq)
2e1cb74a 5058 deactivate_task(rq, p, 0);
0e1f3483
HS
5059 if (running)
5060 p->sched_class->put_prev_task(rq, p);
f6b53205 5061
ca94c442
LP
5062 p->sched_reset_on_fork = reset_on_fork;
5063
1da177e4 5064 oldprio = p->prio;
83ab0aa0 5065 prev_class = p->sched_class;
dd41f596 5066 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5067
0e1f3483
HS
5068 if (running)
5069 p->sched_class->set_curr_task(rq);
da7a735e 5070 if (on_rq)
dd41f596 5071 activate_task(rq, p, 0);
cb469845 5072
da7a735e 5073 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5074 __task_rq_unlock(rq);
1d615482 5075 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5076
95e02ca9
TG
5077 rt_mutex_adjust_pi(p);
5078
1da177e4
LT
5079 return 0;
5080}
961ccddd
RR
5081
5082/**
5083 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5084 * @p: the task in question.
5085 * @policy: new policy.
5086 * @param: structure containing the new RT priority.
5087 *
5088 * NOTE that the task may be already dead.
5089 */
5090int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5091 const struct sched_param *param)
961ccddd
RR
5092{
5093 return __sched_setscheduler(p, policy, param, true);
5094}
1da177e4
LT
5095EXPORT_SYMBOL_GPL(sched_setscheduler);
5096
961ccddd
RR
5097/**
5098 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5099 * @p: the task in question.
5100 * @policy: new policy.
5101 * @param: structure containing the new RT priority.
5102 *
5103 * Just like sched_setscheduler, only don't bother checking if the
5104 * current context has permission. For example, this is needed in
5105 * stop_machine(): we create temporary high priority worker threads,
5106 * but our caller might not have that capability.
5107 */
5108int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5109 const struct sched_param *param)
961ccddd
RR
5110{
5111 return __sched_setscheduler(p, policy, param, false);
5112}
5113
95cdf3b7
IM
5114static int
5115do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5116{
1da177e4
LT
5117 struct sched_param lparam;
5118 struct task_struct *p;
36c8b586 5119 int retval;
1da177e4
LT
5120
5121 if (!param || pid < 0)
5122 return -EINVAL;
5123 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5124 return -EFAULT;
5fe1d75f
ON
5125
5126 rcu_read_lock();
5127 retval = -ESRCH;
1da177e4 5128 p = find_process_by_pid(pid);
5fe1d75f
ON
5129 if (p != NULL)
5130 retval = sched_setscheduler(p, policy, &lparam);
5131 rcu_read_unlock();
36c8b586 5132
1da177e4
LT
5133 return retval;
5134}
5135
5136/**
5137 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5138 * @pid: the pid in question.
5139 * @policy: new policy.
5140 * @param: structure containing the new RT priority.
5141 */
5add95d4
HC
5142SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5143 struct sched_param __user *, param)
1da177e4 5144{
c21761f1
JB
5145 /* negative values for policy are not valid */
5146 if (policy < 0)
5147 return -EINVAL;
5148
1da177e4
LT
5149 return do_sched_setscheduler(pid, policy, param);
5150}
5151
5152/**
5153 * sys_sched_setparam - set/change the RT priority of a thread
5154 * @pid: the pid in question.
5155 * @param: structure containing the new RT priority.
5156 */
5add95d4 5157SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5158{
5159 return do_sched_setscheduler(pid, -1, param);
5160}
5161
5162/**
5163 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5164 * @pid: the pid in question.
5165 */
5add95d4 5166SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5167{
36c8b586 5168 struct task_struct *p;
3a5c359a 5169 int retval;
1da177e4
LT
5170
5171 if (pid < 0)
3a5c359a 5172 return -EINVAL;
1da177e4
LT
5173
5174 retval = -ESRCH;
5fe85be0 5175 rcu_read_lock();
1da177e4
LT
5176 p = find_process_by_pid(pid);
5177 if (p) {
5178 retval = security_task_getscheduler(p);
5179 if (!retval)
ca94c442
LP
5180 retval = p->policy
5181 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5182 }
5fe85be0 5183 rcu_read_unlock();
1da177e4
LT
5184 return retval;
5185}
5186
5187/**
ca94c442 5188 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5189 * @pid: the pid in question.
5190 * @param: structure containing the RT priority.
5191 */
5add95d4 5192SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5193{
5194 struct sched_param lp;
36c8b586 5195 struct task_struct *p;
3a5c359a 5196 int retval;
1da177e4
LT
5197
5198 if (!param || pid < 0)
3a5c359a 5199 return -EINVAL;
1da177e4 5200
5fe85be0 5201 rcu_read_lock();
1da177e4
LT
5202 p = find_process_by_pid(pid);
5203 retval = -ESRCH;
5204 if (!p)
5205 goto out_unlock;
5206
5207 retval = security_task_getscheduler(p);
5208 if (retval)
5209 goto out_unlock;
5210
5211 lp.sched_priority = p->rt_priority;
5fe85be0 5212 rcu_read_unlock();
1da177e4
LT
5213
5214 /*
5215 * This one might sleep, we cannot do it with a spinlock held ...
5216 */
5217 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5218
1da177e4
LT
5219 return retval;
5220
5221out_unlock:
5fe85be0 5222 rcu_read_unlock();
1da177e4
LT
5223 return retval;
5224}
5225
96f874e2 5226long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5227{
5a16f3d3 5228 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5229 struct task_struct *p;
5230 int retval;
1da177e4 5231
95402b38 5232 get_online_cpus();
23f5d142 5233 rcu_read_lock();
1da177e4
LT
5234
5235 p = find_process_by_pid(pid);
5236 if (!p) {
23f5d142 5237 rcu_read_unlock();
95402b38 5238 put_online_cpus();
1da177e4
LT
5239 return -ESRCH;
5240 }
5241
23f5d142 5242 /* Prevent p going away */
1da177e4 5243 get_task_struct(p);
23f5d142 5244 rcu_read_unlock();
1da177e4 5245
5a16f3d3
RR
5246 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5247 retval = -ENOMEM;
5248 goto out_put_task;
5249 }
5250 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5251 retval = -ENOMEM;
5252 goto out_free_cpus_allowed;
5253 }
1da177e4 5254 retval = -EPERM;
b0e77598 5255 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5256 goto out_unlock;
5257
b0ae1981 5258 retval = security_task_setscheduler(p);
e7834f8f
DQ
5259 if (retval)
5260 goto out_unlock;
5261
5a16f3d3
RR
5262 cpuset_cpus_allowed(p, cpus_allowed);
5263 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5264again:
5a16f3d3 5265 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5266
8707d8b8 5267 if (!retval) {
5a16f3d3
RR
5268 cpuset_cpus_allowed(p, cpus_allowed);
5269 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5270 /*
5271 * We must have raced with a concurrent cpuset
5272 * update. Just reset the cpus_allowed to the
5273 * cpuset's cpus_allowed
5274 */
5a16f3d3 5275 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5276 goto again;
5277 }
5278 }
1da177e4 5279out_unlock:
5a16f3d3
RR
5280 free_cpumask_var(new_mask);
5281out_free_cpus_allowed:
5282 free_cpumask_var(cpus_allowed);
5283out_put_task:
1da177e4 5284 put_task_struct(p);
95402b38 5285 put_online_cpus();
1da177e4
LT
5286 return retval;
5287}
5288
5289static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5290 struct cpumask *new_mask)
1da177e4 5291{
96f874e2
RR
5292 if (len < cpumask_size())
5293 cpumask_clear(new_mask);
5294 else if (len > cpumask_size())
5295 len = cpumask_size();
5296
1da177e4
LT
5297 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5298}
5299
5300/**
5301 * sys_sched_setaffinity - set the cpu affinity of a process
5302 * @pid: pid of the process
5303 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5304 * @user_mask_ptr: user-space pointer to the new cpu mask
5305 */
5add95d4
HC
5306SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5307 unsigned long __user *, user_mask_ptr)
1da177e4 5308{
5a16f3d3 5309 cpumask_var_t new_mask;
1da177e4
LT
5310 int retval;
5311
5a16f3d3
RR
5312 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5313 return -ENOMEM;
1da177e4 5314
5a16f3d3
RR
5315 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5316 if (retval == 0)
5317 retval = sched_setaffinity(pid, new_mask);
5318 free_cpumask_var(new_mask);
5319 return retval;
1da177e4
LT
5320}
5321
96f874e2 5322long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5323{
36c8b586 5324 struct task_struct *p;
31605683 5325 unsigned long flags;
1da177e4 5326 int retval;
1da177e4 5327
95402b38 5328 get_online_cpus();
23f5d142 5329 rcu_read_lock();
1da177e4
LT
5330
5331 retval = -ESRCH;
5332 p = find_process_by_pid(pid);
5333 if (!p)
5334 goto out_unlock;
5335
e7834f8f
DQ
5336 retval = security_task_getscheduler(p);
5337 if (retval)
5338 goto out_unlock;
5339
013fdb80 5340 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5341 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5342 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5343
5344out_unlock:
23f5d142 5345 rcu_read_unlock();
95402b38 5346 put_online_cpus();
1da177e4 5347
9531b62f 5348 return retval;
1da177e4
LT
5349}
5350
5351/**
5352 * sys_sched_getaffinity - get the cpu affinity of a process
5353 * @pid: pid of the process
5354 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5355 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5356 */
5add95d4
HC
5357SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5358 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5359{
5360 int ret;
f17c8607 5361 cpumask_var_t mask;
1da177e4 5362
84fba5ec 5363 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5364 return -EINVAL;
5365 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5366 return -EINVAL;
5367
f17c8607
RR
5368 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5369 return -ENOMEM;
1da177e4 5370
f17c8607
RR
5371 ret = sched_getaffinity(pid, mask);
5372 if (ret == 0) {
8bc037fb 5373 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5374
5375 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5376 ret = -EFAULT;
5377 else
cd3d8031 5378 ret = retlen;
f17c8607
RR
5379 }
5380 free_cpumask_var(mask);
1da177e4 5381
f17c8607 5382 return ret;
1da177e4
LT
5383}
5384
5385/**
5386 * sys_sched_yield - yield the current processor to other threads.
5387 *
dd41f596
IM
5388 * This function yields the current CPU to other tasks. If there are no
5389 * other threads running on this CPU then this function will return.
1da177e4 5390 */
5add95d4 5391SYSCALL_DEFINE0(sched_yield)
1da177e4 5392{
70b97a7f 5393 struct rq *rq = this_rq_lock();
1da177e4 5394
2d72376b 5395 schedstat_inc(rq, yld_count);
4530d7ab 5396 current->sched_class->yield_task(rq);
1da177e4
LT
5397
5398 /*
5399 * Since we are going to call schedule() anyway, there's
5400 * no need to preempt or enable interrupts:
5401 */
5402 __release(rq->lock);
8a25d5de 5403 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5404 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5405 preempt_enable_no_resched();
5406
5407 schedule();
5408
5409 return 0;
5410}
5411
d86ee480
PZ
5412static inline int should_resched(void)
5413{
5414 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5415}
5416
e7b38404 5417static void __cond_resched(void)
1da177e4 5418{
e7aaaa69
FW
5419 add_preempt_count(PREEMPT_ACTIVE);
5420 schedule();
5421 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5422}
5423
02b67cc3 5424int __sched _cond_resched(void)
1da177e4 5425{
d86ee480 5426 if (should_resched()) {
1da177e4
LT
5427 __cond_resched();
5428 return 1;
5429 }
5430 return 0;
5431}
02b67cc3 5432EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5433
5434/*
613afbf8 5435 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5436 * call schedule, and on return reacquire the lock.
5437 *
41a2d6cf 5438 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5439 * operations here to prevent schedule() from being called twice (once via
5440 * spin_unlock(), once by hand).
5441 */
613afbf8 5442int __cond_resched_lock(spinlock_t *lock)
1da177e4 5443{
d86ee480 5444 int resched = should_resched();
6df3cecb
JK
5445 int ret = 0;
5446
f607c668
PZ
5447 lockdep_assert_held(lock);
5448
95c354fe 5449 if (spin_needbreak(lock) || resched) {
1da177e4 5450 spin_unlock(lock);
d86ee480 5451 if (resched)
95c354fe
NP
5452 __cond_resched();
5453 else
5454 cpu_relax();
6df3cecb 5455 ret = 1;
1da177e4 5456 spin_lock(lock);
1da177e4 5457 }
6df3cecb 5458 return ret;
1da177e4 5459}
613afbf8 5460EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5461
613afbf8 5462int __sched __cond_resched_softirq(void)
1da177e4
LT
5463{
5464 BUG_ON(!in_softirq());
5465
d86ee480 5466 if (should_resched()) {
98d82567 5467 local_bh_enable();
1da177e4
LT
5468 __cond_resched();
5469 local_bh_disable();
5470 return 1;
5471 }
5472 return 0;
5473}
613afbf8 5474EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5475
1da177e4
LT
5476/**
5477 * yield - yield the current processor to other threads.
5478 *
72fd4a35 5479 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5480 * thread runnable and calls sys_sched_yield().
5481 */
5482void __sched yield(void)
5483{
5484 set_current_state(TASK_RUNNING);
5485 sys_sched_yield();
5486}
1da177e4
LT
5487EXPORT_SYMBOL(yield);
5488
d95f4122
MG
5489/**
5490 * yield_to - yield the current processor to another thread in
5491 * your thread group, or accelerate that thread toward the
5492 * processor it's on.
16addf95
RD
5493 * @p: target task
5494 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5495 *
5496 * It's the caller's job to ensure that the target task struct
5497 * can't go away on us before we can do any checks.
5498 *
5499 * Returns true if we indeed boosted the target task.
5500 */
5501bool __sched yield_to(struct task_struct *p, bool preempt)
5502{
5503 struct task_struct *curr = current;
5504 struct rq *rq, *p_rq;
5505 unsigned long flags;
5506 bool yielded = 0;
5507
5508 local_irq_save(flags);
5509 rq = this_rq();
5510
5511again:
5512 p_rq = task_rq(p);
5513 double_rq_lock(rq, p_rq);
5514 while (task_rq(p) != p_rq) {
5515 double_rq_unlock(rq, p_rq);
5516 goto again;
5517 }
5518
5519 if (!curr->sched_class->yield_to_task)
5520 goto out;
5521
5522 if (curr->sched_class != p->sched_class)
5523 goto out;
5524
5525 if (task_running(p_rq, p) || p->state)
5526 goto out;
5527
5528 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5529 if (yielded) {
d95f4122 5530 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5531 /*
5532 * Make p's CPU reschedule; pick_next_entity takes care of
5533 * fairness.
5534 */
5535 if (preempt && rq != p_rq)
5536 resched_task(p_rq->curr);
5537 }
d95f4122
MG
5538
5539out:
5540 double_rq_unlock(rq, p_rq);
5541 local_irq_restore(flags);
5542
5543 if (yielded)
5544 schedule();
5545
5546 return yielded;
5547}
5548EXPORT_SYMBOL_GPL(yield_to);
5549
1da177e4 5550/*
41a2d6cf 5551 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5552 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5553 */
5554void __sched io_schedule(void)
5555{
54d35f29 5556 struct rq *rq = raw_rq();
1da177e4 5557
0ff92245 5558 delayacct_blkio_start();
1da177e4 5559 atomic_inc(&rq->nr_iowait);
73c10101 5560 blk_flush_plug(current);
8f0dfc34 5561 current->in_iowait = 1;
1da177e4 5562 schedule();
8f0dfc34 5563 current->in_iowait = 0;
1da177e4 5564 atomic_dec(&rq->nr_iowait);
0ff92245 5565 delayacct_blkio_end();
1da177e4 5566}
1da177e4
LT
5567EXPORT_SYMBOL(io_schedule);
5568
5569long __sched io_schedule_timeout(long timeout)
5570{
54d35f29 5571 struct rq *rq = raw_rq();
1da177e4
LT
5572 long ret;
5573
0ff92245 5574 delayacct_blkio_start();
1da177e4 5575 atomic_inc(&rq->nr_iowait);
73c10101 5576 blk_flush_plug(current);
8f0dfc34 5577 current->in_iowait = 1;
1da177e4 5578 ret = schedule_timeout(timeout);
8f0dfc34 5579 current->in_iowait = 0;
1da177e4 5580 atomic_dec(&rq->nr_iowait);
0ff92245 5581 delayacct_blkio_end();
1da177e4
LT
5582 return ret;
5583}
5584
5585/**
5586 * sys_sched_get_priority_max - return maximum RT priority.
5587 * @policy: scheduling class.
5588 *
5589 * this syscall returns the maximum rt_priority that can be used
5590 * by a given scheduling class.
5591 */
5add95d4 5592SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5593{
5594 int ret = -EINVAL;
5595
5596 switch (policy) {
5597 case SCHED_FIFO:
5598 case SCHED_RR:
5599 ret = MAX_USER_RT_PRIO-1;
5600 break;
5601 case SCHED_NORMAL:
b0a9499c 5602 case SCHED_BATCH:
dd41f596 5603 case SCHED_IDLE:
1da177e4
LT
5604 ret = 0;
5605 break;
5606 }
5607 return ret;
5608}
5609
5610/**
5611 * sys_sched_get_priority_min - return minimum RT priority.
5612 * @policy: scheduling class.
5613 *
5614 * this syscall returns the minimum rt_priority that can be used
5615 * by a given scheduling class.
5616 */
5add95d4 5617SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5618{
5619 int ret = -EINVAL;
5620
5621 switch (policy) {
5622 case SCHED_FIFO:
5623 case SCHED_RR:
5624 ret = 1;
5625 break;
5626 case SCHED_NORMAL:
b0a9499c 5627 case SCHED_BATCH:
dd41f596 5628 case SCHED_IDLE:
1da177e4
LT
5629 ret = 0;
5630 }
5631 return ret;
5632}
5633
5634/**
5635 * sys_sched_rr_get_interval - return the default timeslice of a process.
5636 * @pid: pid of the process.
5637 * @interval: userspace pointer to the timeslice value.
5638 *
5639 * this syscall writes the default timeslice value of a given process
5640 * into the user-space timespec buffer. A value of '0' means infinity.
5641 */
17da2bd9 5642SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5643 struct timespec __user *, interval)
1da177e4 5644{
36c8b586 5645 struct task_struct *p;
a4ec24b4 5646 unsigned int time_slice;
dba091b9
TG
5647 unsigned long flags;
5648 struct rq *rq;
3a5c359a 5649 int retval;
1da177e4 5650 struct timespec t;
1da177e4
LT
5651
5652 if (pid < 0)
3a5c359a 5653 return -EINVAL;
1da177e4
LT
5654
5655 retval = -ESRCH;
1a551ae7 5656 rcu_read_lock();
1da177e4
LT
5657 p = find_process_by_pid(pid);
5658 if (!p)
5659 goto out_unlock;
5660
5661 retval = security_task_getscheduler(p);
5662 if (retval)
5663 goto out_unlock;
5664
dba091b9
TG
5665 rq = task_rq_lock(p, &flags);
5666 time_slice = p->sched_class->get_rr_interval(rq, p);
5667 task_rq_unlock(rq, &flags);
a4ec24b4 5668
1a551ae7 5669 rcu_read_unlock();
a4ec24b4 5670 jiffies_to_timespec(time_slice, &t);
1da177e4 5671 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5672 return retval;
3a5c359a 5673
1da177e4 5674out_unlock:
1a551ae7 5675 rcu_read_unlock();
1da177e4
LT
5676 return retval;
5677}
5678
7c731e0a 5679static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5680
82a1fcb9 5681void sched_show_task(struct task_struct *p)
1da177e4 5682{
1da177e4 5683 unsigned long free = 0;
36c8b586 5684 unsigned state;
1da177e4 5685
1da177e4 5686 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5687 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5688 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5689#if BITS_PER_LONG == 32
1da177e4 5690 if (state == TASK_RUNNING)
3df0fc5b 5691 printk(KERN_CONT " running ");
1da177e4 5692 else
3df0fc5b 5693 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5694#else
5695 if (state == TASK_RUNNING)
3df0fc5b 5696 printk(KERN_CONT " running task ");
1da177e4 5697 else
3df0fc5b 5698 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5699#endif
5700#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5701 free = stack_not_used(p);
1da177e4 5702#endif
3df0fc5b 5703 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5704 task_pid_nr(p), task_pid_nr(p->real_parent),
5705 (unsigned long)task_thread_info(p)->flags);
1da177e4 5706
5fb5e6de 5707 show_stack(p, NULL);
1da177e4
LT
5708}
5709
e59e2ae2 5710void show_state_filter(unsigned long state_filter)
1da177e4 5711{
36c8b586 5712 struct task_struct *g, *p;
1da177e4 5713
4bd77321 5714#if BITS_PER_LONG == 32
3df0fc5b
PZ
5715 printk(KERN_INFO
5716 " task PC stack pid father\n");
1da177e4 5717#else
3df0fc5b
PZ
5718 printk(KERN_INFO
5719 " task PC stack pid father\n");
1da177e4
LT
5720#endif
5721 read_lock(&tasklist_lock);
5722 do_each_thread(g, p) {
5723 /*
5724 * reset the NMI-timeout, listing all files on a slow
25985edc 5725 * console might take a lot of time:
1da177e4
LT
5726 */
5727 touch_nmi_watchdog();
39bc89fd 5728 if (!state_filter || (p->state & state_filter))
82a1fcb9 5729 sched_show_task(p);
1da177e4
LT
5730 } while_each_thread(g, p);
5731
04c9167f
JF
5732 touch_all_softlockup_watchdogs();
5733
dd41f596
IM
5734#ifdef CONFIG_SCHED_DEBUG
5735 sysrq_sched_debug_show();
5736#endif
1da177e4 5737 read_unlock(&tasklist_lock);
e59e2ae2
IM
5738 /*
5739 * Only show locks if all tasks are dumped:
5740 */
93335a21 5741 if (!state_filter)
e59e2ae2 5742 debug_show_all_locks();
1da177e4
LT
5743}
5744
1df21055
IM
5745void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5746{
dd41f596 5747 idle->sched_class = &idle_sched_class;
1df21055
IM
5748}
5749
f340c0d1
IM
5750/**
5751 * init_idle - set up an idle thread for a given CPU
5752 * @idle: task in question
5753 * @cpu: cpu the idle task belongs to
5754 *
5755 * NOTE: this function does not set the idle thread's NEED_RESCHED
5756 * flag, to make booting more robust.
5757 */
5c1e1767 5758void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5759{
70b97a7f 5760 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5761 unsigned long flags;
5762
05fa785c 5763 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5764
dd41f596 5765 __sched_fork(idle);
06b83b5f 5766 idle->state = TASK_RUNNING;
dd41f596
IM
5767 idle->se.exec_start = sched_clock();
5768
96f874e2 5769 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5770 /*
5771 * We're having a chicken and egg problem, even though we are
5772 * holding rq->lock, the cpu isn't yet set to this cpu so the
5773 * lockdep check in task_group() will fail.
5774 *
5775 * Similar case to sched_fork(). / Alternatively we could
5776 * use task_rq_lock() here and obtain the other rq->lock.
5777 *
5778 * Silence PROVE_RCU
5779 */
5780 rcu_read_lock();
dd41f596 5781 __set_task_cpu(idle, cpu);
6506cf6c 5782 rcu_read_unlock();
1da177e4 5783
1da177e4 5784 rq->curr = rq->idle = idle;
3ca7a440
PZ
5785#if defined(CONFIG_SMP)
5786 idle->on_cpu = 1;
4866cde0 5787#endif
05fa785c 5788 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5789
5790 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5791#if defined(CONFIG_PREEMPT)
5792 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5793#else
a1261f54 5794 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5795#endif
dd41f596
IM
5796 /*
5797 * The idle tasks have their own, simple scheduling class:
5798 */
5799 idle->sched_class = &idle_sched_class;
868baf07 5800 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5801}
5802
5803/*
5804 * In a system that switches off the HZ timer nohz_cpu_mask
5805 * indicates which cpus entered this state. This is used
5806 * in the rcu update to wait only for active cpus. For system
5807 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5808 * always be CPU_BITS_NONE.
1da177e4 5809 */
6a7b3dc3 5810cpumask_var_t nohz_cpu_mask;
1da177e4 5811
19978ca6
IM
5812/*
5813 * Increase the granularity value when there are more CPUs,
5814 * because with more CPUs the 'effective latency' as visible
5815 * to users decreases. But the relationship is not linear,
5816 * so pick a second-best guess by going with the log2 of the
5817 * number of CPUs.
5818 *
5819 * This idea comes from the SD scheduler of Con Kolivas:
5820 */
acb4a848 5821static int get_update_sysctl_factor(void)
19978ca6 5822{
4ca3ef71 5823 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5824 unsigned int factor;
5825
5826 switch (sysctl_sched_tunable_scaling) {
5827 case SCHED_TUNABLESCALING_NONE:
5828 factor = 1;
5829 break;
5830 case SCHED_TUNABLESCALING_LINEAR:
5831 factor = cpus;
5832 break;
5833 case SCHED_TUNABLESCALING_LOG:
5834 default:
5835 factor = 1 + ilog2(cpus);
5836 break;
5837 }
19978ca6 5838
acb4a848
CE
5839 return factor;
5840}
19978ca6 5841
acb4a848
CE
5842static void update_sysctl(void)
5843{
5844 unsigned int factor = get_update_sysctl_factor();
19978ca6 5845
0bcdcf28
CE
5846#define SET_SYSCTL(name) \
5847 (sysctl_##name = (factor) * normalized_sysctl_##name)
5848 SET_SYSCTL(sched_min_granularity);
5849 SET_SYSCTL(sched_latency);
5850 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5851#undef SET_SYSCTL
5852}
55cd5340 5853
0bcdcf28
CE
5854static inline void sched_init_granularity(void)
5855{
5856 update_sysctl();
19978ca6
IM
5857}
5858
1da177e4
LT
5859#ifdef CONFIG_SMP
5860/*
5861 * This is how migration works:
5862 *
969c7921
TH
5863 * 1) we invoke migration_cpu_stop() on the target CPU using
5864 * stop_one_cpu().
5865 * 2) stopper starts to run (implicitly forcing the migrated thread
5866 * off the CPU)
5867 * 3) it checks whether the migrated task is still in the wrong runqueue.
5868 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5869 * it and puts it into the right queue.
969c7921
TH
5870 * 5) stopper completes and stop_one_cpu() returns and the migration
5871 * is done.
1da177e4
LT
5872 */
5873
5874/*
5875 * Change a given task's CPU affinity. Migrate the thread to a
5876 * proper CPU and schedule it away if the CPU it's executing on
5877 * is removed from the allowed bitmask.
5878 *
5879 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5880 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5881 * call is not atomic; no spinlocks may be held.
5882 */
96f874e2 5883int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5884{
5885 unsigned long flags;
70b97a7f 5886 struct rq *rq;
969c7921 5887 unsigned int dest_cpu;
48f24c4d 5888 int ret = 0;
1da177e4 5889
013fdb80
PZ
5890 raw_spin_lock_irqsave(&p->pi_lock, flags);
5891 rq = __task_rq_lock(p);
e2912009 5892
6ad4c188 5893 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5894 ret = -EINVAL;
5895 goto out;
5896 }
5897
9985b0ba 5898 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5899 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5900 ret = -EINVAL;
5901 goto out;
5902 }
5903
73fe6aae 5904 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5905 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5906 else {
96f874e2
RR
5907 cpumask_copy(&p->cpus_allowed, new_mask);
5908 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5909 }
5910
1da177e4 5911 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5912 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5913 goto out;
5914
969c7921 5915 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
7608dec2 5916 if (need_migrate_task(p)) {
969c7921 5917 struct migration_arg arg = { p, dest_cpu };
1da177e4 5918 /* Need help from migration thread: drop lock and wait. */
013fdb80
PZ
5919 __task_rq_unlock(rq);
5920 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
969c7921 5921 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5922 tlb_migrate_finish(p->mm);
5923 return 0;
5924 }
5925out:
013fdb80
PZ
5926 __task_rq_unlock(rq);
5927 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
48f24c4d 5928
1da177e4
LT
5929 return ret;
5930}
cd8ba7cd 5931EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5932
5933/*
41a2d6cf 5934 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5935 * this because either it can't run here any more (set_cpus_allowed()
5936 * away from this CPU, or CPU going down), or because we're
5937 * attempting to rebalance this task on exec (sched_exec).
5938 *
5939 * So we race with normal scheduler movements, but that's OK, as long
5940 * as the task is no longer on this CPU.
efc30814
KK
5941 *
5942 * Returns non-zero if task was successfully migrated.
1da177e4 5943 */
efc30814 5944static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5945{
70b97a7f 5946 struct rq *rq_dest, *rq_src;
e2912009 5947 int ret = 0;
1da177e4 5948
e761b772 5949 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5950 return ret;
1da177e4
LT
5951
5952 rq_src = cpu_rq(src_cpu);
5953 rq_dest = cpu_rq(dest_cpu);
5954
5955 double_rq_lock(rq_src, rq_dest);
5956 /* Already moved. */
5957 if (task_cpu(p) != src_cpu)
b1e38734 5958 goto done;
1da177e4 5959 /* Affinity changed (again). */
96f874e2 5960 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5961 goto fail;
1da177e4 5962
e2912009
PZ
5963 /*
5964 * If we're not on a rq, the next wake-up will ensure we're
5965 * placed properly.
5966 */
fd2f4419 5967 if (p->on_rq) {
2e1cb74a 5968 deactivate_task(rq_src, p, 0);
e2912009 5969 set_task_cpu(p, dest_cpu);
dd41f596 5970 activate_task(rq_dest, p, 0);
15afe09b 5971 check_preempt_curr(rq_dest, p, 0);
1da177e4 5972 }
b1e38734 5973done:
efc30814 5974 ret = 1;
b1e38734 5975fail:
1da177e4 5976 double_rq_unlock(rq_src, rq_dest);
efc30814 5977 return ret;
1da177e4
LT
5978}
5979
5980/*
969c7921
TH
5981 * migration_cpu_stop - this will be executed by a highprio stopper thread
5982 * and performs thread migration by bumping thread off CPU then
5983 * 'pushing' onto another runqueue.
1da177e4 5984 */
969c7921 5985static int migration_cpu_stop(void *data)
1da177e4 5986{
969c7921 5987 struct migration_arg *arg = data;
f7b4cddc 5988
969c7921
TH
5989 /*
5990 * The original target cpu might have gone down and we might
5991 * be on another cpu but it doesn't matter.
5992 */
f7b4cddc 5993 local_irq_disable();
969c7921 5994 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5995 local_irq_enable();
1da177e4 5996 return 0;
f7b4cddc
ON
5997}
5998
1da177e4 5999#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6000
054b9108 6001/*
48c5ccae
PZ
6002 * Ensures that the idle task is using init_mm right before its cpu goes
6003 * offline.
054b9108 6004 */
48c5ccae 6005void idle_task_exit(void)
1da177e4 6006{
48c5ccae 6007 struct mm_struct *mm = current->active_mm;
e76bd8d9 6008
48c5ccae 6009 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6010
48c5ccae
PZ
6011 if (mm != &init_mm)
6012 switch_mm(mm, &init_mm, current);
6013 mmdrop(mm);
1da177e4
LT
6014}
6015
6016/*
6017 * While a dead CPU has no uninterruptible tasks queued at this point,
6018 * it might still have a nonzero ->nr_uninterruptible counter, because
6019 * for performance reasons the counter is not stricly tracking tasks to
6020 * their home CPUs. So we just add the counter to another CPU's counter,
6021 * to keep the global sum constant after CPU-down:
6022 */
70b97a7f 6023static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6024{
6ad4c188 6025 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6026
1da177e4
LT
6027 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6028 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6029}
6030
dd41f596 6031/*
48c5ccae 6032 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6033 */
48c5ccae 6034static void calc_global_load_remove(struct rq *rq)
1da177e4 6035{
48c5ccae
PZ
6036 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6037 rq->calc_load_active = 0;
1da177e4
LT
6038}
6039
48f24c4d 6040/*
48c5ccae
PZ
6041 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6042 * try_to_wake_up()->select_task_rq().
6043 *
6044 * Called with rq->lock held even though we'er in stop_machine() and
6045 * there's no concurrency possible, we hold the required locks anyway
6046 * because of lock validation efforts.
1da177e4 6047 */
48c5ccae 6048static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6049{
70b97a7f 6050 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6051 struct task_struct *next, *stop = rq->stop;
6052 int dest_cpu;
1da177e4
LT
6053
6054 /*
48c5ccae
PZ
6055 * Fudge the rq selection such that the below task selection loop
6056 * doesn't get stuck on the currently eligible stop task.
6057 *
6058 * We're currently inside stop_machine() and the rq is either stuck
6059 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6060 * either way we should never end up calling schedule() until we're
6061 * done here.
1da177e4 6062 */
48c5ccae 6063 rq->stop = NULL;
48f24c4d 6064
dd41f596 6065 for ( ; ; ) {
48c5ccae
PZ
6066 /*
6067 * There's this thread running, bail when that's the only
6068 * remaining thread.
6069 */
6070 if (rq->nr_running == 1)
dd41f596 6071 break;
48c5ccae 6072
b67802ea 6073 next = pick_next_task(rq);
48c5ccae 6074 BUG_ON(!next);
79c53799 6075 next->sched_class->put_prev_task(rq, next);
e692ab53 6076
48c5ccae
PZ
6077 /* Find suitable destination for @next, with force if needed. */
6078 dest_cpu = select_fallback_rq(dead_cpu, next);
6079 raw_spin_unlock(&rq->lock);
6080
6081 __migrate_task(next, dead_cpu, dest_cpu);
6082
6083 raw_spin_lock(&rq->lock);
1da177e4 6084 }
dce48a84 6085
48c5ccae 6086 rq->stop = stop;
dce48a84 6087}
48c5ccae 6088
1da177e4
LT
6089#endif /* CONFIG_HOTPLUG_CPU */
6090
e692ab53
NP
6091#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6092
6093static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6094 {
6095 .procname = "sched_domain",
c57baf1e 6096 .mode = 0555,
e0361851 6097 },
56992309 6098 {}
e692ab53
NP
6099};
6100
6101static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6102 {
6103 .procname = "kernel",
c57baf1e 6104 .mode = 0555,
e0361851
AD
6105 .child = sd_ctl_dir,
6106 },
56992309 6107 {}
e692ab53
NP
6108};
6109
6110static struct ctl_table *sd_alloc_ctl_entry(int n)
6111{
6112 struct ctl_table *entry =
5cf9f062 6113 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6114
e692ab53
NP
6115 return entry;
6116}
6117
6382bc90
MM
6118static void sd_free_ctl_entry(struct ctl_table **tablep)
6119{
cd790076 6120 struct ctl_table *entry;
6382bc90 6121
cd790076
MM
6122 /*
6123 * In the intermediate directories, both the child directory and
6124 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6125 * will always be set. In the lowest directory the names are
cd790076
MM
6126 * static strings and all have proc handlers.
6127 */
6128 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6129 if (entry->child)
6130 sd_free_ctl_entry(&entry->child);
cd790076
MM
6131 if (entry->proc_handler == NULL)
6132 kfree(entry->procname);
6133 }
6382bc90
MM
6134
6135 kfree(*tablep);
6136 *tablep = NULL;
6137}
6138
e692ab53 6139static void
e0361851 6140set_table_entry(struct ctl_table *entry,
e692ab53
NP
6141 const char *procname, void *data, int maxlen,
6142 mode_t mode, proc_handler *proc_handler)
6143{
e692ab53
NP
6144 entry->procname = procname;
6145 entry->data = data;
6146 entry->maxlen = maxlen;
6147 entry->mode = mode;
6148 entry->proc_handler = proc_handler;
6149}
6150
6151static struct ctl_table *
6152sd_alloc_ctl_domain_table(struct sched_domain *sd)
6153{
a5d8c348 6154 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6155
ad1cdc1d
MM
6156 if (table == NULL)
6157 return NULL;
6158
e0361851 6159 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6160 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6161 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6162 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6163 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6164 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6165 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6166 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6167 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6168 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6169 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6170 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6171 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6172 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6173 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6174 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6175 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6176 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6177 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6178 &sd->cache_nice_tries,
6179 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6180 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6181 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6182 set_table_entry(&table[11], "name", sd->name,
6183 CORENAME_MAX_SIZE, 0444, proc_dostring);
6184 /* &table[12] is terminator */
e692ab53
NP
6185
6186 return table;
6187}
6188
9a4e7159 6189static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6190{
6191 struct ctl_table *entry, *table;
6192 struct sched_domain *sd;
6193 int domain_num = 0, i;
6194 char buf[32];
6195
6196 for_each_domain(cpu, sd)
6197 domain_num++;
6198 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6199 if (table == NULL)
6200 return NULL;
e692ab53
NP
6201
6202 i = 0;
6203 for_each_domain(cpu, sd) {
6204 snprintf(buf, 32, "domain%d", i);
e692ab53 6205 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6206 entry->mode = 0555;
e692ab53
NP
6207 entry->child = sd_alloc_ctl_domain_table(sd);
6208 entry++;
6209 i++;
6210 }
6211 return table;
6212}
6213
6214static struct ctl_table_header *sd_sysctl_header;
6382bc90 6215static void register_sched_domain_sysctl(void)
e692ab53 6216{
6ad4c188 6217 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6218 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6219 char buf[32];
6220
7378547f
MM
6221 WARN_ON(sd_ctl_dir[0].child);
6222 sd_ctl_dir[0].child = entry;
6223
ad1cdc1d
MM
6224 if (entry == NULL)
6225 return;
6226
6ad4c188 6227 for_each_possible_cpu(i) {
e692ab53 6228 snprintf(buf, 32, "cpu%d", i);
e692ab53 6229 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6230 entry->mode = 0555;
e692ab53 6231 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6232 entry++;
e692ab53 6233 }
7378547f
MM
6234
6235 WARN_ON(sd_sysctl_header);
e692ab53
NP
6236 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6237}
6382bc90 6238
7378547f 6239/* may be called multiple times per register */
6382bc90
MM
6240static void unregister_sched_domain_sysctl(void)
6241{
7378547f
MM
6242 if (sd_sysctl_header)
6243 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6244 sd_sysctl_header = NULL;
7378547f
MM
6245 if (sd_ctl_dir[0].child)
6246 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6247}
e692ab53 6248#else
6382bc90
MM
6249static void register_sched_domain_sysctl(void)
6250{
6251}
6252static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6253{
6254}
6255#endif
6256
1f11eb6a
GH
6257static void set_rq_online(struct rq *rq)
6258{
6259 if (!rq->online) {
6260 const struct sched_class *class;
6261
c6c4927b 6262 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6263 rq->online = 1;
6264
6265 for_each_class(class) {
6266 if (class->rq_online)
6267 class->rq_online(rq);
6268 }
6269 }
6270}
6271
6272static void set_rq_offline(struct rq *rq)
6273{
6274 if (rq->online) {
6275 const struct sched_class *class;
6276
6277 for_each_class(class) {
6278 if (class->rq_offline)
6279 class->rq_offline(rq);
6280 }
6281
c6c4927b 6282 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6283 rq->online = 0;
6284 }
6285}
6286
1da177e4
LT
6287/*
6288 * migration_call - callback that gets triggered when a CPU is added.
6289 * Here we can start up the necessary migration thread for the new CPU.
6290 */
48f24c4d
IM
6291static int __cpuinit
6292migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6293{
48f24c4d 6294 int cpu = (long)hcpu;
1da177e4 6295 unsigned long flags;
969c7921 6296 struct rq *rq = cpu_rq(cpu);
1da177e4 6297
48c5ccae 6298 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6299
1da177e4 6300 case CPU_UP_PREPARE:
a468d389 6301 rq->calc_load_update = calc_load_update;
1da177e4 6302 break;
48f24c4d 6303
1da177e4 6304 case CPU_ONLINE:
1f94ef59 6305 /* Update our root-domain */
05fa785c 6306 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6307 if (rq->rd) {
c6c4927b 6308 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6309
6310 set_rq_online(rq);
1f94ef59 6311 }
05fa785c 6312 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6313 break;
48f24c4d 6314
1da177e4 6315#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6316 case CPU_DYING:
57d885fe 6317 /* Update our root-domain */
05fa785c 6318 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6319 if (rq->rd) {
c6c4927b 6320 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6321 set_rq_offline(rq);
57d885fe 6322 }
48c5ccae
PZ
6323 migrate_tasks(cpu);
6324 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6325 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6326
6327 migrate_nr_uninterruptible(rq);
6328 calc_global_load_remove(rq);
57d885fe 6329 break;
1da177e4
LT
6330#endif
6331 }
49c022e6
PZ
6332
6333 update_max_interval();
6334
1da177e4
LT
6335 return NOTIFY_OK;
6336}
6337
f38b0820
PM
6338/*
6339 * Register at high priority so that task migration (migrate_all_tasks)
6340 * happens before everything else. This has to be lower priority than
cdd6c482 6341 * the notifier in the perf_event subsystem, though.
1da177e4 6342 */
26c2143b 6343static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6344 .notifier_call = migration_call,
50a323b7 6345 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6346};
6347
3a101d05
TH
6348static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6349 unsigned long action, void *hcpu)
6350{
6351 switch (action & ~CPU_TASKS_FROZEN) {
6352 case CPU_ONLINE:
6353 case CPU_DOWN_FAILED:
6354 set_cpu_active((long)hcpu, true);
6355 return NOTIFY_OK;
6356 default:
6357 return NOTIFY_DONE;
6358 }
6359}
6360
6361static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6362 unsigned long action, void *hcpu)
6363{
6364 switch (action & ~CPU_TASKS_FROZEN) {
6365 case CPU_DOWN_PREPARE:
6366 set_cpu_active((long)hcpu, false);
6367 return NOTIFY_OK;
6368 default:
6369 return NOTIFY_DONE;
6370 }
6371}
6372
7babe8db 6373static int __init migration_init(void)
1da177e4
LT
6374{
6375 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6376 int err;
48f24c4d 6377
3a101d05 6378 /* Initialize migration for the boot CPU */
07dccf33
AM
6379 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6380 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6381 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6382 register_cpu_notifier(&migration_notifier);
7babe8db 6383
3a101d05
TH
6384 /* Register cpu active notifiers */
6385 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6386 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6387
a004cd42 6388 return 0;
1da177e4 6389}
7babe8db 6390early_initcall(migration_init);
1da177e4
LT
6391#endif
6392
6393#ifdef CONFIG_SMP
476f3534 6394
3e9830dc 6395#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6396
f6630114
MT
6397static __read_mostly int sched_domain_debug_enabled;
6398
6399static int __init sched_domain_debug_setup(char *str)
6400{
6401 sched_domain_debug_enabled = 1;
6402
6403 return 0;
6404}
6405early_param("sched_debug", sched_domain_debug_setup);
6406
7c16ec58 6407static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6408 struct cpumask *groupmask)
1da177e4 6409{
4dcf6aff 6410 struct sched_group *group = sd->groups;
434d53b0 6411 char str[256];
1da177e4 6412
968ea6d8 6413 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6414 cpumask_clear(groupmask);
4dcf6aff
IM
6415
6416 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6417
6418 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6419 printk("does not load-balance\n");
4dcf6aff 6420 if (sd->parent)
3df0fc5b
PZ
6421 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6422 " has parent");
4dcf6aff 6423 return -1;
41c7ce9a
NP
6424 }
6425
3df0fc5b 6426 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6427
758b2cdc 6428 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6429 printk(KERN_ERR "ERROR: domain->span does not contain "
6430 "CPU%d\n", cpu);
4dcf6aff 6431 }
758b2cdc 6432 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6433 printk(KERN_ERR "ERROR: domain->groups does not contain"
6434 " CPU%d\n", cpu);
4dcf6aff 6435 }
1da177e4 6436
4dcf6aff 6437 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6438 do {
4dcf6aff 6439 if (!group) {
3df0fc5b
PZ
6440 printk("\n");
6441 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6442 break;
6443 }
6444
18a3885f 6445 if (!group->cpu_power) {
3df0fc5b
PZ
6446 printk(KERN_CONT "\n");
6447 printk(KERN_ERR "ERROR: domain->cpu_power not "
6448 "set\n");
4dcf6aff
IM
6449 break;
6450 }
1da177e4 6451
758b2cdc 6452 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6453 printk(KERN_CONT "\n");
6454 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6455 break;
6456 }
1da177e4 6457
758b2cdc 6458 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6459 printk(KERN_CONT "\n");
6460 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6461 break;
6462 }
1da177e4 6463
758b2cdc 6464 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6465
968ea6d8 6466 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6467
3df0fc5b 6468 printk(KERN_CONT " %s", str);
18a3885f 6469 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6470 printk(KERN_CONT " (cpu_power = %d)",
6471 group->cpu_power);
381512cf 6472 }
1da177e4 6473
4dcf6aff
IM
6474 group = group->next;
6475 } while (group != sd->groups);
3df0fc5b 6476 printk(KERN_CONT "\n");
1da177e4 6477
758b2cdc 6478 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6479 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6480
758b2cdc
RR
6481 if (sd->parent &&
6482 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6483 printk(KERN_ERR "ERROR: parent span is not a superset "
6484 "of domain->span\n");
4dcf6aff
IM
6485 return 0;
6486}
1da177e4 6487
4dcf6aff
IM
6488static void sched_domain_debug(struct sched_domain *sd, int cpu)
6489{
d5dd3db1 6490 cpumask_var_t groupmask;
4dcf6aff 6491 int level = 0;
1da177e4 6492
f6630114
MT
6493 if (!sched_domain_debug_enabled)
6494 return;
6495
4dcf6aff
IM
6496 if (!sd) {
6497 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6498 return;
6499 }
1da177e4 6500
4dcf6aff
IM
6501 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6502
d5dd3db1 6503 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6504 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6505 return;
6506 }
6507
4dcf6aff 6508 for (;;) {
7c16ec58 6509 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6510 break;
1da177e4
LT
6511 level++;
6512 sd = sd->parent;
33859f7f 6513 if (!sd)
4dcf6aff
IM
6514 break;
6515 }
d5dd3db1 6516 free_cpumask_var(groupmask);
1da177e4 6517}
6d6bc0ad 6518#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6519# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6520#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6521
1a20ff27 6522static int sd_degenerate(struct sched_domain *sd)
245af2c7 6523{
758b2cdc 6524 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6525 return 1;
6526
6527 /* Following flags need at least 2 groups */
6528 if (sd->flags & (SD_LOAD_BALANCE |
6529 SD_BALANCE_NEWIDLE |
6530 SD_BALANCE_FORK |
89c4710e
SS
6531 SD_BALANCE_EXEC |
6532 SD_SHARE_CPUPOWER |
6533 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6534 if (sd->groups != sd->groups->next)
6535 return 0;
6536 }
6537
6538 /* Following flags don't use groups */
c88d5910 6539 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6540 return 0;
6541
6542 return 1;
6543}
6544
48f24c4d
IM
6545static int
6546sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6547{
6548 unsigned long cflags = sd->flags, pflags = parent->flags;
6549
6550 if (sd_degenerate(parent))
6551 return 1;
6552
758b2cdc 6553 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6554 return 0;
6555
245af2c7
SS
6556 /* Flags needing groups don't count if only 1 group in parent */
6557 if (parent->groups == parent->groups->next) {
6558 pflags &= ~(SD_LOAD_BALANCE |
6559 SD_BALANCE_NEWIDLE |
6560 SD_BALANCE_FORK |
89c4710e
SS
6561 SD_BALANCE_EXEC |
6562 SD_SHARE_CPUPOWER |
6563 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6564 if (nr_node_ids == 1)
6565 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6566 }
6567 if (~cflags & pflags)
6568 return 0;
6569
6570 return 1;
6571}
6572
c6c4927b
RR
6573static void free_rootdomain(struct root_domain *rd)
6574{
047106ad
PZ
6575 synchronize_sched();
6576
68e74568
RR
6577 cpupri_cleanup(&rd->cpupri);
6578
c6c4927b
RR
6579 free_cpumask_var(rd->rto_mask);
6580 free_cpumask_var(rd->online);
6581 free_cpumask_var(rd->span);
6582 kfree(rd);
6583}
6584
57d885fe
GH
6585static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6586{
a0490fa3 6587 struct root_domain *old_rd = NULL;
57d885fe 6588 unsigned long flags;
57d885fe 6589
05fa785c 6590 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6591
6592 if (rq->rd) {
a0490fa3 6593 old_rd = rq->rd;
57d885fe 6594
c6c4927b 6595 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6596 set_rq_offline(rq);
57d885fe 6597
c6c4927b 6598 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6599
a0490fa3
IM
6600 /*
6601 * If we dont want to free the old_rt yet then
6602 * set old_rd to NULL to skip the freeing later
6603 * in this function:
6604 */
6605 if (!atomic_dec_and_test(&old_rd->refcount))
6606 old_rd = NULL;
57d885fe
GH
6607 }
6608
6609 atomic_inc(&rd->refcount);
6610 rq->rd = rd;
6611
c6c4927b 6612 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6613 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6614 set_rq_online(rq);
57d885fe 6615
05fa785c 6616 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6617
6618 if (old_rd)
6619 free_rootdomain(old_rd);
57d885fe
GH
6620}
6621
68c38fc3 6622static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6623{
6624 memset(rd, 0, sizeof(*rd));
6625
68c38fc3 6626 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6627 goto out;
68c38fc3 6628 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6629 goto free_span;
68c38fc3 6630 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6631 goto free_online;
6e0534f2 6632
68c38fc3 6633 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6634 goto free_rto_mask;
c6c4927b 6635 return 0;
6e0534f2 6636
68e74568
RR
6637free_rto_mask:
6638 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6639free_online:
6640 free_cpumask_var(rd->online);
6641free_span:
6642 free_cpumask_var(rd->span);
0c910d28 6643out:
c6c4927b 6644 return -ENOMEM;
57d885fe
GH
6645}
6646
6647static void init_defrootdomain(void)
6648{
68c38fc3 6649 init_rootdomain(&def_root_domain);
c6c4927b 6650
57d885fe
GH
6651 atomic_set(&def_root_domain.refcount, 1);
6652}
6653
dc938520 6654static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6655{
6656 struct root_domain *rd;
6657
6658 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6659 if (!rd)
6660 return NULL;
6661
68c38fc3 6662 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6663 kfree(rd);
6664 return NULL;
6665 }
57d885fe
GH
6666
6667 return rd;
6668}
6669
1da177e4 6670/*
0eab9146 6671 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6672 * hold the hotplug lock.
6673 */
0eab9146
IM
6674static void
6675cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6676{
70b97a7f 6677 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6678 struct sched_domain *tmp;
6679
669c55e9
PZ
6680 for (tmp = sd; tmp; tmp = tmp->parent)
6681 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6682
245af2c7 6683 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6684 for (tmp = sd; tmp; ) {
245af2c7
SS
6685 struct sched_domain *parent = tmp->parent;
6686 if (!parent)
6687 break;
f29c9b1c 6688
1a848870 6689 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6690 tmp->parent = parent->parent;
1a848870
SS
6691 if (parent->parent)
6692 parent->parent->child = tmp;
f29c9b1c
LZ
6693 } else
6694 tmp = tmp->parent;
245af2c7
SS
6695 }
6696
1a848870 6697 if (sd && sd_degenerate(sd)) {
245af2c7 6698 sd = sd->parent;
1a848870
SS
6699 if (sd)
6700 sd->child = NULL;
6701 }
1da177e4
LT
6702
6703 sched_domain_debug(sd, cpu);
6704
57d885fe 6705 rq_attach_root(rq, rd);
674311d5 6706 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6707}
6708
6709/* cpus with isolated domains */
dcc30a35 6710static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6711
6712/* Setup the mask of cpus configured for isolated domains */
6713static int __init isolated_cpu_setup(char *str)
6714{
bdddd296 6715 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6716 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6717 return 1;
6718}
6719
8927f494 6720__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6721
6722/*
6711cab4
SS
6723 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6724 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6725 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6726 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6727 *
6728 * init_sched_build_groups will build a circular linked list of the groups
6729 * covered by the given span, and will set each group's ->cpumask correctly,
6730 * and ->cpu_power to 0.
6731 */
a616058b 6732static void
96f874e2
RR
6733init_sched_build_groups(const struct cpumask *span,
6734 const struct cpumask *cpu_map,
6735 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6736 struct sched_group **sg,
96f874e2
RR
6737 struct cpumask *tmpmask),
6738 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6739{
6740 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6741 int i;
6742
96f874e2 6743 cpumask_clear(covered);
7c16ec58 6744
abcd083a 6745 for_each_cpu(i, span) {
6711cab4 6746 struct sched_group *sg;
7c16ec58 6747 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6748 int j;
6749
758b2cdc 6750 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6751 continue;
6752
758b2cdc 6753 cpumask_clear(sched_group_cpus(sg));
18a3885f 6754 sg->cpu_power = 0;
1da177e4 6755
abcd083a 6756 for_each_cpu(j, span) {
7c16ec58 6757 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6758 continue;
6759
96f874e2 6760 cpumask_set_cpu(j, covered);
758b2cdc 6761 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6762 }
6763 if (!first)
6764 first = sg;
6765 if (last)
6766 last->next = sg;
6767 last = sg;
6768 }
6769 last->next = first;
6770}
6771
9c1cfda2 6772#define SD_NODES_PER_DOMAIN 16
1da177e4 6773
9c1cfda2 6774#ifdef CONFIG_NUMA
198e2f18 6775
9c1cfda2
JH
6776/**
6777 * find_next_best_node - find the next node to include in a sched_domain
6778 * @node: node whose sched_domain we're building
6779 * @used_nodes: nodes already in the sched_domain
6780 *
41a2d6cf 6781 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6782 * finds the closest node not already in the @used_nodes map.
6783 *
6784 * Should use nodemask_t.
6785 */
c5f59f08 6786static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6787{
6788 int i, n, val, min_val, best_node = 0;
6789
6790 min_val = INT_MAX;
6791
076ac2af 6792 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6793 /* Start at @node */
076ac2af 6794 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6795
6796 if (!nr_cpus_node(n))
6797 continue;
6798
6799 /* Skip already used nodes */
c5f59f08 6800 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6801 continue;
6802
6803 /* Simple min distance search */
6804 val = node_distance(node, n);
6805
6806 if (val < min_val) {
6807 min_val = val;
6808 best_node = n;
6809 }
6810 }
6811
c5f59f08 6812 node_set(best_node, *used_nodes);
9c1cfda2
JH
6813 return best_node;
6814}
6815
6816/**
6817 * sched_domain_node_span - get a cpumask for a node's sched_domain
6818 * @node: node whose cpumask we're constructing
73486722 6819 * @span: resulting cpumask
9c1cfda2 6820 *
41a2d6cf 6821 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6822 * should be one that prevents unnecessary balancing, but also spreads tasks
6823 * out optimally.
6824 */
96f874e2 6825static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6826{
c5f59f08 6827 nodemask_t used_nodes;
48f24c4d 6828 int i;
9c1cfda2 6829
6ca09dfc 6830 cpumask_clear(span);
c5f59f08 6831 nodes_clear(used_nodes);
9c1cfda2 6832
6ca09dfc 6833 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6834 node_set(node, used_nodes);
9c1cfda2
JH
6835
6836 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6837 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6838
6ca09dfc 6839 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6840 }
9c1cfda2 6841}
6d6bc0ad 6842#endif /* CONFIG_NUMA */
9c1cfda2 6843
5c45bf27 6844int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6845
6c99e9ad
RR
6846/*
6847 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6848 *
6849 * ( See the the comments in include/linux/sched.h:struct sched_group
6850 * and struct sched_domain. )
6c99e9ad
RR
6851 */
6852struct static_sched_group {
6853 struct sched_group sg;
6854 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6855};
6856
6857struct static_sched_domain {
6858 struct sched_domain sd;
6859 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6860};
6861
49a02c51
AH
6862struct s_data {
6863#ifdef CONFIG_NUMA
6864 int sd_allnodes;
6865 cpumask_var_t domainspan;
6866 cpumask_var_t covered;
6867 cpumask_var_t notcovered;
6868#endif
6869 cpumask_var_t nodemask;
6870 cpumask_var_t this_sibling_map;
6871 cpumask_var_t this_core_map;
01a08546 6872 cpumask_var_t this_book_map;
49a02c51
AH
6873 cpumask_var_t send_covered;
6874 cpumask_var_t tmpmask;
6875 struct sched_group **sched_group_nodes;
6876 struct root_domain *rd;
6877};
6878
2109b99e
AH
6879enum s_alloc {
6880 sa_sched_groups = 0,
6881 sa_rootdomain,
6882 sa_tmpmask,
6883 sa_send_covered,
01a08546 6884 sa_this_book_map,
2109b99e
AH
6885 sa_this_core_map,
6886 sa_this_sibling_map,
6887 sa_nodemask,
6888 sa_sched_group_nodes,
6889#ifdef CONFIG_NUMA
6890 sa_notcovered,
6891 sa_covered,
6892 sa_domainspan,
6893#endif
6894 sa_none,
6895};
6896
9c1cfda2 6897/*
48f24c4d 6898 * SMT sched-domains:
9c1cfda2 6899 */
1da177e4 6900#ifdef CONFIG_SCHED_SMT
6c99e9ad 6901static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6902static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6903
41a2d6cf 6904static int
96f874e2
RR
6905cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6906 struct sched_group **sg, struct cpumask *unused)
1da177e4 6907{
6711cab4 6908 if (sg)
1871e52c 6909 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6910 return cpu;
6911}
6d6bc0ad 6912#endif /* CONFIG_SCHED_SMT */
1da177e4 6913
48f24c4d
IM
6914/*
6915 * multi-core sched-domains:
6916 */
1e9f28fa 6917#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6918static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6919static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6920
41a2d6cf 6921static int
96f874e2
RR
6922cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6923 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6924{
6711cab4 6925 int group;
f269893c 6926#ifdef CONFIG_SCHED_SMT
c69fc56d 6927 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6928 group = cpumask_first(mask);
f269893c
HC
6929#else
6930 group = cpu;
6931#endif
6711cab4 6932 if (sg)
6c99e9ad 6933 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6934 return group;
1e9f28fa 6935}
f269893c 6936#endif /* CONFIG_SCHED_MC */
1e9f28fa 6937
01a08546
HC
6938/*
6939 * book sched-domains:
6940 */
6941#ifdef CONFIG_SCHED_BOOK
6942static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6943static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6944
41a2d6cf 6945static int
01a08546
HC
6946cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6947 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6948{
01a08546
HC
6949 int group = cpu;
6950#ifdef CONFIG_SCHED_MC
6951 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6952 group = cpumask_first(mask);
6953#elif defined(CONFIG_SCHED_SMT)
6954 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6955 group = cpumask_first(mask);
6956#endif
6711cab4 6957 if (sg)
01a08546
HC
6958 *sg = &per_cpu(sched_group_book, group).sg;
6959 return group;
1e9f28fa 6960}
01a08546 6961#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6962
6c99e9ad
RR
6963static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6964static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6965
41a2d6cf 6966static int
96f874e2
RR
6967cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6968 struct sched_group **sg, struct cpumask *mask)
1da177e4 6969{
6711cab4 6970 int group;
01a08546
HC
6971#ifdef CONFIG_SCHED_BOOK
6972 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6973 group = cpumask_first(mask);
6974#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6975 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6976 group = cpumask_first(mask);
1e9f28fa 6977#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6978 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6979 group = cpumask_first(mask);
1da177e4 6980#else
6711cab4 6981 group = cpu;
1da177e4 6982#endif
6711cab4 6983 if (sg)
6c99e9ad 6984 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6985 return group;
1da177e4
LT
6986}
6987
6988#ifdef CONFIG_NUMA
1da177e4 6989/*
9c1cfda2
JH
6990 * The init_sched_build_groups can't handle what we want to do with node
6991 * groups, so roll our own. Now each node has its own list of groups which
6992 * gets dynamically allocated.
1da177e4 6993 */
62ea9ceb 6994static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6995static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6996
62ea9ceb 6997static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6998static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6999
96f874e2
RR
7000static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7001 struct sched_group **sg,
7002 struct cpumask *nodemask)
9c1cfda2 7003{
6711cab4
SS
7004 int group;
7005
6ca09dfc 7006 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7007 group = cpumask_first(nodemask);
6711cab4
SS
7008
7009 if (sg)
6c99e9ad 7010 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7011 return group;
1da177e4 7012}
6711cab4 7013
08069033
SS
7014static void init_numa_sched_groups_power(struct sched_group *group_head)
7015{
7016 struct sched_group *sg = group_head;
7017 int j;
7018
7019 if (!sg)
7020 return;
3a5c359a 7021 do {
758b2cdc 7022 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7023 struct sched_domain *sd;
08069033 7024
6c99e9ad 7025 sd = &per_cpu(phys_domains, j).sd;
13318a71 7026 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7027 /*
7028 * Only add "power" once for each
7029 * physical package.
7030 */
7031 continue;
7032 }
08069033 7033
18a3885f 7034 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7035 }
7036 sg = sg->next;
7037 } while (sg != group_head);
08069033 7038}
0601a88d
AH
7039
7040static int build_numa_sched_groups(struct s_data *d,
7041 const struct cpumask *cpu_map, int num)
7042{
7043 struct sched_domain *sd;
7044 struct sched_group *sg, *prev;
7045 int n, j;
7046
7047 cpumask_clear(d->covered);
7048 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7049 if (cpumask_empty(d->nodemask)) {
7050 d->sched_group_nodes[num] = NULL;
7051 goto out;
7052 }
7053
7054 sched_domain_node_span(num, d->domainspan);
7055 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7056
7057 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7058 GFP_KERNEL, num);
7059 if (!sg) {
3df0fc5b
PZ
7060 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7061 num);
0601a88d
AH
7062 return -ENOMEM;
7063 }
7064 d->sched_group_nodes[num] = sg;
7065
7066 for_each_cpu(j, d->nodemask) {
7067 sd = &per_cpu(node_domains, j).sd;
7068 sd->groups = sg;
7069 }
7070
18a3885f 7071 sg->cpu_power = 0;
0601a88d
AH
7072 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7073 sg->next = sg;
7074 cpumask_or(d->covered, d->covered, d->nodemask);
7075
7076 prev = sg;
7077 for (j = 0; j < nr_node_ids; j++) {
7078 n = (num + j) % nr_node_ids;
7079 cpumask_complement(d->notcovered, d->covered);
7080 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7081 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7082 if (cpumask_empty(d->tmpmask))
7083 break;
7084 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7085 if (cpumask_empty(d->tmpmask))
7086 continue;
7087 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7088 GFP_KERNEL, num);
7089 if (!sg) {
3df0fc5b
PZ
7090 printk(KERN_WARNING
7091 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7092 return -ENOMEM;
7093 }
18a3885f 7094 sg->cpu_power = 0;
0601a88d
AH
7095 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7096 sg->next = prev->next;
7097 cpumask_or(d->covered, d->covered, d->tmpmask);
7098 prev->next = sg;
7099 prev = sg;
7100 }
7101out:
7102 return 0;
7103}
6d6bc0ad 7104#endif /* CONFIG_NUMA */
1da177e4 7105
a616058b 7106#ifdef CONFIG_NUMA
51888ca2 7107/* Free memory allocated for various sched_group structures */
96f874e2
RR
7108static void free_sched_groups(const struct cpumask *cpu_map,
7109 struct cpumask *nodemask)
51888ca2 7110{
a616058b 7111 int cpu, i;
51888ca2 7112
abcd083a 7113 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7114 struct sched_group **sched_group_nodes
7115 = sched_group_nodes_bycpu[cpu];
7116
51888ca2
SV
7117 if (!sched_group_nodes)
7118 continue;
7119
076ac2af 7120 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7121 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7122
6ca09dfc 7123 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7124 if (cpumask_empty(nodemask))
51888ca2
SV
7125 continue;
7126
7127 if (sg == NULL)
7128 continue;
7129 sg = sg->next;
7130next_sg:
7131 oldsg = sg;
7132 sg = sg->next;
7133 kfree(oldsg);
7134 if (oldsg != sched_group_nodes[i])
7135 goto next_sg;
7136 }
7137 kfree(sched_group_nodes);
7138 sched_group_nodes_bycpu[cpu] = NULL;
7139 }
51888ca2 7140}
6d6bc0ad 7141#else /* !CONFIG_NUMA */
96f874e2
RR
7142static void free_sched_groups(const struct cpumask *cpu_map,
7143 struct cpumask *nodemask)
a616058b
SS
7144{
7145}
6d6bc0ad 7146#endif /* CONFIG_NUMA */
51888ca2 7147
89c4710e
SS
7148/*
7149 * Initialize sched groups cpu_power.
7150 *
7151 * cpu_power indicates the capacity of sched group, which is used while
7152 * distributing the load between different sched groups in a sched domain.
7153 * Typically cpu_power for all the groups in a sched domain will be same unless
7154 * there are asymmetries in the topology. If there are asymmetries, group
7155 * having more cpu_power will pickup more load compared to the group having
7156 * less cpu_power.
89c4710e
SS
7157 */
7158static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7159{
7160 struct sched_domain *child;
7161 struct sched_group *group;
f93e65c1
PZ
7162 long power;
7163 int weight;
89c4710e
SS
7164
7165 WARN_ON(!sd || !sd->groups);
7166
13318a71 7167 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7168 return;
7169
aae6d3dd
SS
7170 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7171
89c4710e
SS
7172 child = sd->child;
7173
18a3885f 7174 sd->groups->cpu_power = 0;
5517d86b 7175
f93e65c1
PZ
7176 if (!child) {
7177 power = SCHED_LOAD_SCALE;
7178 weight = cpumask_weight(sched_domain_span(sd));
7179 /*
7180 * SMT siblings share the power of a single core.
a52bfd73
PZ
7181 * Usually multiple threads get a better yield out of
7182 * that one core than a single thread would have,
7183 * reflect that in sd->smt_gain.
f93e65c1 7184 */
a52bfd73
PZ
7185 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7186 power *= sd->smt_gain;
f93e65c1 7187 power /= weight;
a52bfd73
PZ
7188 power >>= SCHED_LOAD_SHIFT;
7189 }
18a3885f 7190 sd->groups->cpu_power += power;
89c4710e
SS
7191 return;
7192 }
7193
89c4710e 7194 /*
f93e65c1 7195 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7196 */
7197 group = child->groups;
7198 do {
18a3885f 7199 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7200 group = group->next;
7201 } while (group != child->groups);
7202}
7203
7c16ec58
MT
7204/*
7205 * Initializers for schedule domains
7206 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7207 */
7208
a5d8c348
IM
7209#ifdef CONFIG_SCHED_DEBUG
7210# define SD_INIT_NAME(sd, type) sd->name = #type
7211#else
7212# define SD_INIT_NAME(sd, type) do { } while (0)
7213#endif
7214
7c16ec58 7215#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7216
7c16ec58
MT
7217#define SD_INIT_FUNC(type) \
7218static noinline void sd_init_##type(struct sched_domain *sd) \
7219{ \
7220 memset(sd, 0, sizeof(*sd)); \
7221 *sd = SD_##type##_INIT; \
1d3504fc 7222 sd->level = SD_LV_##type; \
a5d8c348 7223 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7224}
7225
7226SD_INIT_FUNC(CPU)
7227#ifdef CONFIG_NUMA
7228 SD_INIT_FUNC(ALLNODES)
7229 SD_INIT_FUNC(NODE)
7230#endif
7231#ifdef CONFIG_SCHED_SMT
7232 SD_INIT_FUNC(SIBLING)
7233#endif
7234#ifdef CONFIG_SCHED_MC
7235 SD_INIT_FUNC(MC)
7236#endif
01a08546
HC
7237#ifdef CONFIG_SCHED_BOOK
7238 SD_INIT_FUNC(BOOK)
7239#endif
7c16ec58 7240
1d3504fc
HS
7241static int default_relax_domain_level = -1;
7242
7243static int __init setup_relax_domain_level(char *str)
7244{
30e0e178
LZ
7245 unsigned long val;
7246
7247 val = simple_strtoul(str, NULL, 0);
7248 if (val < SD_LV_MAX)
7249 default_relax_domain_level = val;
7250
1d3504fc
HS
7251 return 1;
7252}
7253__setup("relax_domain_level=", setup_relax_domain_level);
7254
7255static void set_domain_attribute(struct sched_domain *sd,
7256 struct sched_domain_attr *attr)
7257{
7258 int request;
7259
7260 if (!attr || attr->relax_domain_level < 0) {
7261 if (default_relax_domain_level < 0)
7262 return;
7263 else
7264 request = default_relax_domain_level;
7265 } else
7266 request = attr->relax_domain_level;
7267 if (request < sd->level) {
7268 /* turn off idle balance on this domain */
c88d5910 7269 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7270 } else {
7271 /* turn on idle balance on this domain */
c88d5910 7272 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7273 }
7274}
7275
2109b99e
AH
7276static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7277 const struct cpumask *cpu_map)
7278{
7279 switch (what) {
7280 case sa_sched_groups:
7281 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7282 d->sched_group_nodes = NULL;
7283 case sa_rootdomain:
7284 free_rootdomain(d->rd); /* fall through */
7285 case sa_tmpmask:
7286 free_cpumask_var(d->tmpmask); /* fall through */
7287 case sa_send_covered:
7288 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7289 case sa_this_book_map:
7290 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7291 case sa_this_core_map:
7292 free_cpumask_var(d->this_core_map); /* fall through */
7293 case sa_this_sibling_map:
7294 free_cpumask_var(d->this_sibling_map); /* fall through */
7295 case sa_nodemask:
7296 free_cpumask_var(d->nodemask); /* fall through */
7297 case sa_sched_group_nodes:
d1b55138 7298#ifdef CONFIG_NUMA
2109b99e
AH
7299 kfree(d->sched_group_nodes); /* fall through */
7300 case sa_notcovered:
7301 free_cpumask_var(d->notcovered); /* fall through */
7302 case sa_covered:
7303 free_cpumask_var(d->covered); /* fall through */
7304 case sa_domainspan:
7305 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7306#endif
2109b99e
AH
7307 case sa_none:
7308 break;
7309 }
7310}
3404c8d9 7311
2109b99e
AH
7312static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7313 const struct cpumask *cpu_map)
7314{
3404c8d9 7315#ifdef CONFIG_NUMA
2109b99e
AH
7316 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7317 return sa_none;
7318 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7319 return sa_domainspan;
7320 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7321 return sa_covered;
7322 /* Allocate the per-node list of sched groups */
7323 d->sched_group_nodes = kcalloc(nr_node_ids,
7324 sizeof(struct sched_group *), GFP_KERNEL);
7325 if (!d->sched_group_nodes) {
3df0fc5b 7326 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7327 return sa_notcovered;
d1b55138 7328 }
2109b99e 7329 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7330#endif
2109b99e
AH
7331 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7332 return sa_sched_group_nodes;
7333 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7334 return sa_nodemask;
7335 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7336 return sa_this_sibling_map;
01a08546 7337 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7338 return sa_this_core_map;
01a08546
HC
7339 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7340 return sa_this_book_map;
2109b99e
AH
7341 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7342 return sa_send_covered;
7343 d->rd = alloc_rootdomain();
7344 if (!d->rd) {
3df0fc5b 7345 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7346 return sa_tmpmask;
57d885fe 7347 }
2109b99e
AH
7348 return sa_rootdomain;
7349}
57d885fe 7350
7f4588f3
AH
7351static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7352 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7353{
7354 struct sched_domain *sd = NULL;
7c16ec58 7355#ifdef CONFIG_NUMA
7f4588f3 7356 struct sched_domain *parent;
1da177e4 7357
7f4588f3
AH
7358 d->sd_allnodes = 0;
7359 if (cpumask_weight(cpu_map) >
7360 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7361 sd = &per_cpu(allnodes_domains, i).sd;
7362 SD_INIT(sd, ALLNODES);
1d3504fc 7363 set_domain_attribute(sd, attr);
7f4588f3
AH
7364 cpumask_copy(sched_domain_span(sd), cpu_map);
7365 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7366 d->sd_allnodes = 1;
7367 }
7368 parent = sd;
7369
7370 sd = &per_cpu(node_domains, i).sd;
7371 SD_INIT(sd, NODE);
7372 set_domain_attribute(sd, attr);
7373 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7374 sd->parent = parent;
7375 if (parent)
7376 parent->child = sd;
7377 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7378#endif
7f4588f3
AH
7379 return sd;
7380}
1da177e4 7381
87cce662
AH
7382static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7383 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7384 struct sched_domain *parent, int i)
7385{
7386 struct sched_domain *sd;
7387 sd = &per_cpu(phys_domains, i).sd;
7388 SD_INIT(sd, CPU);
7389 set_domain_attribute(sd, attr);
7390 cpumask_copy(sched_domain_span(sd), d->nodemask);
7391 sd->parent = parent;
7392 if (parent)
7393 parent->child = sd;
7394 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7395 return sd;
7396}
1da177e4 7397
01a08546
HC
7398static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7399 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7400 struct sched_domain *parent, int i)
7401{
7402 struct sched_domain *sd = parent;
7403#ifdef CONFIG_SCHED_BOOK
7404 sd = &per_cpu(book_domains, i).sd;
7405 SD_INIT(sd, BOOK);
7406 set_domain_attribute(sd, attr);
7407 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7408 sd->parent = parent;
7409 parent->child = sd;
7410 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7411#endif
7412 return sd;
7413}
7414
410c4081
AH
7415static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7416 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7417 struct sched_domain *parent, int i)
7418{
7419 struct sched_domain *sd = parent;
1e9f28fa 7420#ifdef CONFIG_SCHED_MC
410c4081
AH
7421 sd = &per_cpu(core_domains, i).sd;
7422 SD_INIT(sd, MC);
7423 set_domain_attribute(sd, attr);
7424 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7425 sd->parent = parent;
7426 parent->child = sd;
7427 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7428#endif
410c4081
AH
7429 return sd;
7430}
1e9f28fa 7431
d8173535
AH
7432static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7433 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7434 struct sched_domain *parent, int i)
7435{
7436 struct sched_domain *sd = parent;
1da177e4 7437#ifdef CONFIG_SCHED_SMT
d8173535
AH
7438 sd = &per_cpu(cpu_domains, i).sd;
7439 SD_INIT(sd, SIBLING);
7440 set_domain_attribute(sd, attr);
7441 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7442 sd->parent = parent;
7443 parent->child = sd;
7444 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7445#endif
d8173535
AH
7446 return sd;
7447}
1da177e4 7448
0e8e85c9
AH
7449static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7450 const struct cpumask *cpu_map, int cpu)
7451{
7452 switch (l) {
1da177e4 7453#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7454 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7455 cpumask_and(d->this_sibling_map, cpu_map,
7456 topology_thread_cpumask(cpu));
7457 if (cpu == cpumask_first(d->this_sibling_map))
7458 init_sched_build_groups(d->this_sibling_map, cpu_map,
7459 &cpu_to_cpu_group,
7460 d->send_covered, d->tmpmask);
7461 break;
1da177e4 7462#endif
1e9f28fa 7463#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7464 case SD_LV_MC: /* set up multi-core groups */
7465 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7466 if (cpu == cpumask_first(d->this_core_map))
7467 init_sched_build_groups(d->this_core_map, cpu_map,
7468 &cpu_to_core_group,
7469 d->send_covered, d->tmpmask);
7470 break;
01a08546
HC
7471#endif
7472#ifdef CONFIG_SCHED_BOOK
7473 case SD_LV_BOOK: /* set up book groups */
7474 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7475 if (cpu == cpumask_first(d->this_book_map))
7476 init_sched_build_groups(d->this_book_map, cpu_map,
7477 &cpu_to_book_group,
7478 d->send_covered, d->tmpmask);
7479 break;
1e9f28fa 7480#endif
86548096
AH
7481 case SD_LV_CPU: /* set up physical groups */
7482 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7483 if (!cpumask_empty(d->nodemask))
7484 init_sched_build_groups(d->nodemask, cpu_map,
7485 &cpu_to_phys_group,
7486 d->send_covered, d->tmpmask);
7487 break;
1da177e4 7488#ifdef CONFIG_NUMA
de616e36
AH
7489 case SD_LV_ALLNODES:
7490 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7491 d->send_covered, d->tmpmask);
7492 break;
7493#endif
0e8e85c9
AH
7494 default:
7495 break;
7c16ec58 7496 }
0e8e85c9 7497}
9c1cfda2 7498
2109b99e
AH
7499/*
7500 * Build sched domains for a given set of cpus and attach the sched domains
7501 * to the individual cpus
7502 */
7503static int __build_sched_domains(const struct cpumask *cpu_map,
7504 struct sched_domain_attr *attr)
7505{
7506 enum s_alloc alloc_state = sa_none;
7507 struct s_data d;
294b0c96 7508 struct sched_domain *sd;
2109b99e 7509 int i;
7c16ec58 7510#ifdef CONFIG_NUMA
2109b99e 7511 d.sd_allnodes = 0;
7c16ec58 7512#endif
9c1cfda2 7513
2109b99e
AH
7514 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7515 if (alloc_state != sa_rootdomain)
7516 goto error;
7517 alloc_state = sa_sched_groups;
9c1cfda2 7518
1da177e4 7519 /*
1a20ff27 7520 * Set up domains for cpus specified by the cpu_map.
1da177e4 7521 */
abcd083a 7522 for_each_cpu(i, cpu_map) {
49a02c51
AH
7523 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7524 cpu_map);
9761eea8 7525
7f4588f3 7526 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7527 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7528 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7529 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7530 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7531 }
9c1cfda2 7532
abcd083a 7533 for_each_cpu(i, cpu_map) {
0e8e85c9 7534 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7535 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7536 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7537 }
9c1cfda2 7538
1da177e4 7539 /* Set up physical groups */
86548096
AH
7540 for (i = 0; i < nr_node_ids; i++)
7541 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7542
1da177e4
LT
7543#ifdef CONFIG_NUMA
7544 /* Set up node groups */
de616e36
AH
7545 if (d.sd_allnodes)
7546 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7547
0601a88d
AH
7548 for (i = 0; i < nr_node_ids; i++)
7549 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7550 goto error;
1da177e4
LT
7551#endif
7552
7553 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7554#ifdef CONFIG_SCHED_SMT
abcd083a 7555 for_each_cpu(i, cpu_map) {
294b0c96 7556 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7557 init_sched_groups_power(i, sd);
5c45bf27 7558 }
1da177e4 7559#endif
1e9f28fa 7560#ifdef CONFIG_SCHED_MC
abcd083a 7561 for_each_cpu(i, cpu_map) {
294b0c96 7562 sd = &per_cpu(core_domains, i).sd;
89c4710e 7563 init_sched_groups_power(i, sd);
5c45bf27
SS
7564 }
7565#endif
01a08546
HC
7566#ifdef CONFIG_SCHED_BOOK
7567 for_each_cpu(i, cpu_map) {
7568 sd = &per_cpu(book_domains, i).sd;
7569 init_sched_groups_power(i, sd);
7570 }
7571#endif
1e9f28fa 7572
abcd083a 7573 for_each_cpu(i, cpu_map) {
294b0c96 7574 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7575 init_sched_groups_power(i, sd);
1da177e4
LT
7576 }
7577
9c1cfda2 7578#ifdef CONFIG_NUMA
076ac2af 7579 for (i = 0; i < nr_node_ids; i++)
49a02c51 7580 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7581
49a02c51 7582 if (d.sd_allnodes) {
6711cab4 7583 struct sched_group *sg;
f712c0c7 7584
96f874e2 7585 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7586 d.tmpmask);
f712c0c7
SS
7587 init_numa_sched_groups_power(sg);
7588 }
9c1cfda2
JH
7589#endif
7590
1da177e4 7591 /* Attach the domains */
abcd083a 7592 for_each_cpu(i, cpu_map) {
1da177e4 7593#ifdef CONFIG_SCHED_SMT
6c99e9ad 7594 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7595#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7596 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7597#elif defined(CONFIG_SCHED_BOOK)
7598 sd = &per_cpu(book_domains, i).sd;
1da177e4 7599#else
6c99e9ad 7600 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7601#endif
49a02c51 7602 cpu_attach_domain(sd, d.rd, i);
1da177e4 7603 }
51888ca2 7604
2109b99e
AH
7605 d.sched_group_nodes = NULL; /* don't free this we still need it */
7606 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7607 return 0;
51888ca2 7608
51888ca2 7609error:
2109b99e
AH
7610 __free_domain_allocs(&d, alloc_state, cpu_map);
7611 return -ENOMEM;
1da177e4 7612}
029190c5 7613
96f874e2 7614static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7615{
7616 return __build_sched_domains(cpu_map, NULL);
7617}
7618
acc3f5d7 7619static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7620static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7621static struct sched_domain_attr *dattr_cur;
7622 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7623
7624/*
7625 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7626 * cpumask) fails, then fallback to a single sched domain,
7627 * as determined by the single cpumask fallback_doms.
029190c5 7628 */
4212823f 7629static cpumask_var_t fallback_doms;
029190c5 7630
ee79d1bd
HC
7631/*
7632 * arch_update_cpu_topology lets virtualized architectures update the
7633 * cpu core maps. It is supposed to return 1 if the topology changed
7634 * or 0 if it stayed the same.
7635 */
7636int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7637{
ee79d1bd 7638 return 0;
22e52b07
HC
7639}
7640
acc3f5d7
RR
7641cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7642{
7643 int i;
7644 cpumask_var_t *doms;
7645
7646 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7647 if (!doms)
7648 return NULL;
7649 for (i = 0; i < ndoms; i++) {
7650 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7651 free_sched_domains(doms, i);
7652 return NULL;
7653 }
7654 }
7655 return doms;
7656}
7657
7658void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7659{
7660 unsigned int i;
7661 for (i = 0; i < ndoms; i++)
7662 free_cpumask_var(doms[i]);
7663 kfree(doms);
7664}
7665
1a20ff27 7666/*
41a2d6cf 7667 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7668 * For now this just excludes isolated cpus, but could be used to
7669 * exclude other special cases in the future.
1a20ff27 7670 */
96f874e2 7671static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7672{
7378547f
MM
7673 int err;
7674
22e52b07 7675 arch_update_cpu_topology();
029190c5 7676 ndoms_cur = 1;
acc3f5d7 7677 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7678 if (!doms_cur)
acc3f5d7
RR
7679 doms_cur = &fallback_doms;
7680 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7681 dattr_cur = NULL;
acc3f5d7 7682 err = build_sched_domains(doms_cur[0]);
6382bc90 7683 register_sched_domain_sysctl();
7378547f
MM
7684
7685 return err;
1a20ff27
DG
7686}
7687
96f874e2
RR
7688static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7689 struct cpumask *tmpmask)
1da177e4 7690{
7c16ec58 7691 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7692}
1da177e4 7693
1a20ff27
DG
7694/*
7695 * Detach sched domains from a group of cpus specified in cpu_map
7696 * These cpus will now be attached to the NULL domain
7697 */
96f874e2 7698static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7699{
96f874e2
RR
7700 /* Save because hotplug lock held. */
7701 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7702 int i;
7703
abcd083a 7704 for_each_cpu(i, cpu_map)
57d885fe 7705 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7706 synchronize_sched();
96f874e2 7707 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7708}
7709
1d3504fc
HS
7710/* handle null as "default" */
7711static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7712 struct sched_domain_attr *new, int idx_new)
7713{
7714 struct sched_domain_attr tmp;
7715
7716 /* fast path */
7717 if (!new && !cur)
7718 return 1;
7719
7720 tmp = SD_ATTR_INIT;
7721 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7722 new ? (new + idx_new) : &tmp,
7723 sizeof(struct sched_domain_attr));
7724}
7725
029190c5
PJ
7726/*
7727 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7728 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7729 * doms_new[] to the current sched domain partitioning, doms_cur[].
7730 * It destroys each deleted domain and builds each new domain.
7731 *
acc3f5d7 7732 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7733 * The masks don't intersect (don't overlap.) We should setup one
7734 * sched domain for each mask. CPUs not in any of the cpumasks will
7735 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7736 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7737 * it as it is.
7738 *
acc3f5d7
RR
7739 * The passed in 'doms_new' should be allocated using
7740 * alloc_sched_domains. This routine takes ownership of it and will
7741 * free_sched_domains it when done with it. If the caller failed the
7742 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7743 * and partition_sched_domains() will fallback to the single partition
7744 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7745 *
96f874e2 7746 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7747 * ndoms_new == 0 is a special case for destroying existing domains,
7748 * and it will not create the default domain.
dfb512ec 7749 *
029190c5
PJ
7750 * Call with hotplug lock held
7751 */
acc3f5d7 7752void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7753 struct sched_domain_attr *dattr_new)
029190c5 7754{
dfb512ec 7755 int i, j, n;
d65bd5ec 7756 int new_topology;
029190c5 7757
712555ee 7758 mutex_lock(&sched_domains_mutex);
a1835615 7759
7378547f
MM
7760 /* always unregister in case we don't destroy any domains */
7761 unregister_sched_domain_sysctl();
7762
d65bd5ec
HC
7763 /* Let architecture update cpu core mappings. */
7764 new_topology = arch_update_cpu_topology();
7765
dfb512ec 7766 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7767
7768 /* Destroy deleted domains */
7769 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7770 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7771 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7772 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7773 goto match1;
7774 }
7775 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7776 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7777match1:
7778 ;
7779 }
7780
e761b772
MK
7781 if (doms_new == NULL) {
7782 ndoms_cur = 0;
acc3f5d7 7783 doms_new = &fallback_doms;
6ad4c188 7784 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7785 WARN_ON_ONCE(dattr_new);
e761b772
MK
7786 }
7787
029190c5
PJ
7788 /* Build new domains */
7789 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7790 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7791 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7792 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7793 goto match2;
7794 }
7795 /* no match - add a new doms_new */
acc3f5d7 7796 __build_sched_domains(doms_new[i],
1d3504fc 7797 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7798match2:
7799 ;
7800 }
7801
7802 /* Remember the new sched domains */
acc3f5d7
RR
7803 if (doms_cur != &fallback_doms)
7804 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7805 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7806 doms_cur = doms_new;
1d3504fc 7807 dattr_cur = dattr_new;
029190c5 7808 ndoms_cur = ndoms_new;
7378547f
MM
7809
7810 register_sched_domain_sysctl();
a1835615 7811
712555ee 7812 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7813}
7814
5c45bf27 7815#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7816static void arch_reinit_sched_domains(void)
5c45bf27 7817{
95402b38 7818 get_online_cpus();
dfb512ec
MK
7819
7820 /* Destroy domains first to force the rebuild */
7821 partition_sched_domains(0, NULL, NULL);
7822
e761b772 7823 rebuild_sched_domains();
95402b38 7824 put_online_cpus();
5c45bf27
SS
7825}
7826
7827static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7828{
afb8a9b7 7829 unsigned int level = 0;
5c45bf27 7830
afb8a9b7
GS
7831 if (sscanf(buf, "%u", &level) != 1)
7832 return -EINVAL;
7833
7834 /*
7835 * level is always be positive so don't check for
7836 * level < POWERSAVINGS_BALANCE_NONE which is 0
7837 * What happens on 0 or 1 byte write,
7838 * need to check for count as well?
7839 */
7840
7841 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7842 return -EINVAL;
7843
7844 if (smt)
afb8a9b7 7845 sched_smt_power_savings = level;
5c45bf27 7846 else
afb8a9b7 7847 sched_mc_power_savings = level;
5c45bf27 7848
c70f22d2 7849 arch_reinit_sched_domains();
5c45bf27 7850
c70f22d2 7851 return count;
5c45bf27
SS
7852}
7853
5c45bf27 7854#ifdef CONFIG_SCHED_MC
f718cd4a 7855static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7856 struct sysdev_class_attribute *attr,
f718cd4a 7857 char *page)
5c45bf27
SS
7858{
7859 return sprintf(page, "%u\n", sched_mc_power_savings);
7860}
f718cd4a 7861static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7862 struct sysdev_class_attribute *attr,
48f24c4d 7863 const char *buf, size_t count)
5c45bf27
SS
7864{
7865 return sched_power_savings_store(buf, count, 0);
7866}
f718cd4a
AK
7867static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7868 sched_mc_power_savings_show,
7869 sched_mc_power_savings_store);
5c45bf27
SS
7870#endif
7871
7872#ifdef CONFIG_SCHED_SMT
f718cd4a 7873static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7874 struct sysdev_class_attribute *attr,
f718cd4a 7875 char *page)
5c45bf27
SS
7876{
7877 return sprintf(page, "%u\n", sched_smt_power_savings);
7878}
f718cd4a 7879static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7880 struct sysdev_class_attribute *attr,
48f24c4d 7881 const char *buf, size_t count)
5c45bf27
SS
7882{
7883 return sched_power_savings_store(buf, count, 1);
7884}
f718cd4a
AK
7885static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7886 sched_smt_power_savings_show,
6707de00
AB
7887 sched_smt_power_savings_store);
7888#endif
7889
39aac648 7890int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7891{
7892 int err = 0;
7893
7894#ifdef CONFIG_SCHED_SMT
7895 if (smt_capable())
7896 err = sysfs_create_file(&cls->kset.kobj,
7897 &attr_sched_smt_power_savings.attr);
7898#endif
7899#ifdef CONFIG_SCHED_MC
7900 if (!err && mc_capable())
7901 err = sysfs_create_file(&cls->kset.kobj,
7902 &attr_sched_mc_power_savings.attr);
7903#endif
7904 return err;
7905}
6d6bc0ad 7906#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7907
1da177e4 7908/*
3a101d05
TH
7909 * Update cpusets according to cpu_active mask. If cpusets are
7910 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7911 * around partition_sched_domains().
1da177e4 7912 */
0b2e918a
TH
7913static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7914 void *hcpu)
e761b772 7915{
3a101d05 7916 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7917 case CPU_ONLINE:
6ad4c188 7918 case CPU_DOWN_FAILED:
3a101d05 7919 cpuset_update_active_cpus();
e761b772 7920 return NOTIFY_OK;
3a101d05
TH
7921 default:
7922 return NOTIFY_DONE;
7923 }
7924}
e761b772 7925
0b2e918a
TH
7926static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7927 void *hcpu)
3a101d05
TH
7928{
7929 switch (action & ~CPU_TASKS_FROZEN) {
7930 case CPU_DOWN_PREPARE:
7931 cpuset_update_active_cpus();
7932 return NOTIFY_OK;
e761b772
MK
7933 default:
7934 return NOTIFY_DONE;
7935 }
7936}
e761b772
MK
7937
7938static int update_runtime(struct notifier_block *nfb,
7939 unsigned long action, void *hcpu)
1da177e4 7940{
7def2be1
PZ
7941 int cpu = (int)(long)hcpu;
7942
1da177e4 7943 switch (action) {
1da177e4 7944 case CPU_DOWN_PREPARE:
8bb78442 7945 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7946 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7947 return NOTIFY_OK;
7948
1da177e4 7949 case CPU_DOWN_FAILED:
8bb78442 7950 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7951 case CPU_ONLINE:
8bb78442 7952 case CPU_ONLINE_FROZEN:
7def2be1 7953 enable_runtime(cpu_rq(cpu));
e761b772
MK
7954 return NOTIFY_OK;
7955
1da177e4
LT
7956 default:
7957 return NOTIFY_DONE;
7958 }
1da177e4 7959}
1da177e4
LT
7960
7961void __init sched_init_smp(void)
7962{
dcc30a35
RR
7963 cpumask_var_t non_isolated_cpus;
7964
7965 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7966 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7967
434d53b0
MT
7968#if defined(CONFIG_NUMA)
7969 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7970 GFP_KERNEL);
7971 BUG_ON(sched_group_nodes_bycpu == NULL);
7972#endif
95402b38 7973 get_online_cpus();
712555ee 7974 mutex_lock(&sched_domains_mutex);
6ad4c188 7975 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7976 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7977 if (cpumask_empty(non_isolated_cpus))
7978 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7979 mutex_unlock(&sched_domains_mutex);
95402b38 7980 put_online_cpus();
e761b772 7981
3a101d05
TH
7982 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7983 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7984
7985 /* RT runtime code needs to handle some hotplug events */
7986 hotcpu_notifier(update_runtime, 0);
7987
b328ca18 7988 init_hrtick();
5c1e1767
NP
7989
7990 /* Move init over to a non-isolated CPU */
dcc30a35 7991 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7992 BUG();
19978ca6 7993 sched_init_granularity();
dcc30a35 7994 free_cpumask_var(non_isolated_cpus);
4212823f 7995
0e3900e6 7996 init_sched_rt_class();
1da177e4
LT
7997}
7998#else
7999void __init sched_init_smp(void)
8000{
19978ca6 8001 sched_init_granularity();
1da177e4
LT
8002}
8003#endif /* CONFIG_SMP */
8004
cd1bb94b
AB
8005const_debug unsigned int sysctl_timer_migration = 1;
8006
1da177e4
LT
8007int in_sched_functions(unsigned long addr)
8008{
1da177e4
LT
8009 return in_lock_functions(addr) ||
8010 (addr >= (unsigned long)__sched_text_start
8011 && addr < (unsigned long)__sched_text_end);
8012}
8013
a9957449 8014static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8015{
8016 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8017 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8018#ifdef CONFIG_FAIR_GROUP_SCHED
8019 cfs_rq->rq = rq;
f07333bf 8020 /* allow initial update_cfs_load() to truncate */
6ea72f12 8021#ifdef CONFIG_SMP
f07333bf 8022 cfs_rq->load_stamp = 1;
6ea72f12 8023#endif
dd41f596 8024#endif
67e9fb2a 8025 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8026}
8027
fa85ae24
PZ
8028static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8029{
8030 struct rt_prio_array *array;
8031 int i;
8032
8033 array = &rt_rq->active;
8034 for (i = 0; i < MAX_RT_PRIO; i++) {
8035 INIT_LIST_HEAD(array->queue + i);
8036 __clear_bit(i, array->bitmap);
8037 }
8038 /* delimiter for bitsearch: */
8039 __set_bit(MAX_RT_PRIO, array->bitmap);
8040
052f1dc7 8041#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8042 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8043#ifdef CONFIG_SMP
e864c499 8044 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8045#endif
48d5e258 8046#endif
fa85ae24
PZ
8047#ifdef CONFIG_SMP
8048 rt_rq->rt_nr_migratory = 0;
fa85ae24 8049 rt_rq->overloaded = 0;
05fa785c 8050 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8051#endif
8052
8053 rt_rq->rt_time = 0;
8054 rt_rq->rt_throttled = 0;
ac086bc2 8055 rt_rq->rt_runtime = 0;
0986b11b 8056 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8057
052f1dc7 8058#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8059 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8060 rt_rq->rq = rq;
8061#endif
fa85ae24
PZ
8062}
8063
6f505b16 8064#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8065static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8066 struct sched_entity *se, int cpu,
ec7dc8ac 8067 struct sched_entity *parent)
6f505b16 8068{
ec7dc8ac 8069 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8070 tg->cfs_rq[cpu] = cfs_rq;
8071 init_cfs_rq(cfs_rq, rq);
8072 cfs_rq->tg = tg;
6f505b16
PZ
8073
8074 tg->se[cpu] = se;
07e06b01 8075 /* se could be NULL for root_task_group */
354d60c2
DG
8076 if (!se)
8077 return;
8078
ec7dc8ac
DG
8079 if (!parent)
8080 se->cfs_rq = &rq->cfs;
8081 else
8082 se->cfs_rq = parent->my_q;
8083
6f505b16 8084 se->my_q = cfs_rq;
9437178f 8085 update_load_set(&se->load, 0);
ec7dc8ac 8086 se->parent = parent;
6f505b16 8087}
052f1dc7 8088#endif
6f505b16 8089
052f1dc7 8090#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8091static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8092 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8093 struct sched_rt_entity *parent)
6f505b16 8094{
ec7dc8ac
DG
8095 struct rq *rq = cpu_rq(cpu);
8096
6f505b16
PZ
8097 tg->rt_rq[cpu] = rt_rq;
8098 init_rt_rq(rt_rq, rq);
8099 rt_rq->tg = tg;
ac086bc2 8100 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8101
8102 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8103 if (!rt_se)
8104 return;
8105
ec7dc8ac
DG
8106 if (!parent)
8107 rt_se->rt_rq = &rq->rt;
8108 else
8109 rt_se->rt_rq = parent->my_q;
8110
6f505b16 8111 rt_se->my_q = rt_rq;
ec7dc8ac 8112 rt_se->parent = parent;
6f505b16
PZ
8113 INIT_LIST_HEAD(&rt_se->run_list);
8114}
8115#endif
8116
1da177e4
LT
8117void __init sched_init(void)
8118{
dd41f596 8119 int i, j;
434d53b0
MT
8120 unsigned long alloc_size = 0, ptr;
8121
8122#ifdef CONFIG_FAIR_GROUP_SCHED
8123 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8124#endif
8125#ifdef CONFIG_RT_GROUP_SCHED
8126 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8127#endif
df7c8e84 8128#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8129 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8130#endif
434d53b0 8131 if (alloc_size) {
36b7b6d4 8132 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8133
8134#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8135 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8136 ptr += nr_cpu_ids * sizeof(void **);
8137
07e06b01 8138 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8139 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8140
6d6bc0ad 8141#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8142#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8143 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8144 ptr += nr_cpu_ids * sizeof(void **);
8145
07e06b01 8146 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8147 ptr += nr_cpu_ids * sizeof(void **);
8148
6d6bc0ad 8149#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8150#ifdef CONFIG_CPUMASK_OFFSTACK
8151 for_each_possible_cpu(i) {
8152 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8153 ptr += cpumask_size();
8154 }
8155#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8156 }
dd41f596 8157
57d885fe
GH
8158#ifdef CONFIG_SMP
8159 init_defrootdomain();
8160#endif
8161
d0b27fa7
PZ
8162 init_rt_bandwidth(&def_rt_bandwidth,
8163 global_rt_period(), global_rt_runtime());
8164
8165#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8166 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8167 global_rt_period(), global_rt_runtime());
6d6bc0ad 8168#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8169
7c941438 8170#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8171 list_add(&root_task_group.list, &task_groups);
8172 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8173 autogroup_init(&init_task);
7c941438 8174#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8175
0a945022 8176 for_each_possible_cpu(i) {
70b97a7f 8177 struct rq *rq;
1da177e4
LT
8178
8179 rq = cpu_rq(i);
05fa785c 8180 raw_spin_lock_init(&rq->lock);
7897986b 8181 rq->nr_running = 0;
dce48a84
TG
8182 rq->calc_load_active = 0;
8183 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8184 init_cfs_rq(&rq->cfs, rq);
6f505b16 8185 init_rt_rq(&rq->rt, rq);
dd41f596 8186#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8187 root_task_group.shares = root_task_group_load;
6f505b16 8188 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8189 /*
07e06b01 8190 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8191 *
8192 * In case of task-groups formed thr' the cgroup filesystem, it
8193 * gets 100% of the cpu resources in the system. This overall
8194 * system cpu resource is divided among the tasks of
07e06b01 8195 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8196 * based on each entity's (task or task-group's) weight
8197 * (se->load.weight).
8198 *
07e06b01 8199 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8200 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8201 * then A0's share of the cpu resource is:
8202 *
0d905bca 8203 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8204 *
07e06b01
YZ
8205 * We achieve this by letting root_task_group's tasks sit
8206 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8207 */
07e06b01 8208 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8209#endif /* CONFIG_FAIR_GROUP_SCHED */
8210
8211 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8212#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8213 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8214 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8215#endif
1da177e4 8216
dd41f596
IM
8217 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8218 rq->cpu_load[j] = 0;
fdf3e95d
VP
8219
8220 rq->last_load_update_tick = jiffies;
8221
1da177e4 8222#ifdef CONFIG_SMP
41c7ce9a 8223 rq->sd = NULL;
57d885fe 8224 rq->rd = NULL;
e51fd5e2 8225 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8226 rq->post_schedule = 0;
1da177e4 8227 rq->active_balance = 0;
dd41f596 8228 rq->next_balance = jiffies;
1da177e4 8229 rq->push_cpu = 0;
0a2966b4 8230 rq->cpu = i;
1f11eb6a 8231 rq->online = 0;
eae0c9df
MG
8232 rq->idle_stamp = 0;
8233 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8234 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8235#ifdef CONFIG_NO_HZ
8236 rq->nohz_balance_kick = 0;
8237 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8238#endif
1da177e4 8239#endif
8f4d37ec 8240 init_rq_hrtick(rq);
1da177e4 8241 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8242 }
8243
2dd73a4f 8244 set_load_weight(&init_task);
b50f60ce 8245
e107be36
AK
8246#ifdef CONFIG_PREEMPT_NOTIFIERS
8247 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8248#endif
8249
c9819f45 8250#ifdef CONFIG_SMP
962cf36c 8251 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8252#endif
8253
b50f60ce 8254#ifdef CONFIG_RT_MUTEXES
1d615482 8255 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8256#endif
8257
1da177e4
LT
8258 /*
8259 * The boot idle thread does lazy MMU switching as well:
8260 */
8261 atomic_inc(&init_mm.mm_count);
8262 enter_lazy_tlb(&init_mm, current);
8263
8264 /*
8265 * Make us the idle thread. Technically, schedule() should not be
8266 * called from this thread, however somewhere below it might be,
8267 * but because we are the idle thread, we just pick up running again
8268 * when this runqueue becomes "idle".
8269 */
8270 init_idle(current, smp_processor_id());
dce48a84
TG
8271
8272 calc_load_update = jiffies + LOAD_FREQ;
8273
dd41f596
IM
8274 /*
8275 * During early bootup we pretend to be a normal task:
8276 */
8277 current->sched_class = &fair_sched_class;
6892b75e 8278
6a7b3dc3 8279 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8280 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8281#ifdef CONFIG_SMP
7d1e6a9b 8282#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8283 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8284 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8285 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8286 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8287 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8288#endif
bdddd296
RR
8289 /* May be allocated at isolcpus cmdline parse time */
8290 if (cpu_isolated_map == NULL)
8291 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8292#endif /* SMP */
6a7b3dc3 8293
6892b75e 8294 scheduler_running = 1;
1da177e4
LT
8295}
8296
8297#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8298static inline int preempt_count_equals(int preempt_offset)
8299{
234da7bc 8300 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8301
4ba8216c 8302 return (nested == preempt_offset);
e4aafea2
FW
8303}
8304
d894837f 8305void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8306{
48f24c4d 8307#ifdef in_atomic
1da177e4
LT
8308 static unsigned long prev_jiffy; /* ratelimiting */
8309
e4aafea2
FW
8310 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8311 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8312 return;
8313 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8314 return;
8315 prev_jiffy = jiffies;
8316
3df0fc5b
PZ
8317 printk(KERN_ERR
8318 "BUG: sleeping function called from invalid context at %s:%d\n",
8319 file, line);
8320 printk(KERN_ERR
8321 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8322 in_atomic(), irqs_disabled(),
8323 current->pid, current->comm);
aef745fc
IM
8324
8325 debug_show_held_locks(current);
8326 if (irqs_disabled())
8327 print_irqtrace_events(current);
8328 dump_stack();
1da177e4
LT
8329#endif
8330}
8331EXPORT_SYMBOL(__might_sleep);
8332#endif
8333
8334#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8335static void normalize_task(struct rq *rq, struct task_struct *p)
8336{
da7a735e
PZ
8337 const struct sched_class *prev_class = p->sched_class;
8338 int old_prio = p->prio;
3a5e4dc1 8339 int on_rq;
3e51f33f 8340
fd2f4419 8341 on_rq = p->on_rq;
3a5e4dc1
AK
8342 if (on_rq)
8343 deactivate_task(rq, p, 0);
8344 __setscheduler(rq, p, SCHED_NORMAL, 0);
8345 if (on_rq) {
8346 activate_task(rq, p, 0);
8347 resched_task(rq->curr);
8348 }
da7a735e
PZ
8349
8350 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8351}
8352
1da177e4
LT
8353void normalize_rt_tasks(void)
8354{
a0f98a1c 8355 struct task_struct *g, *p;
1da177e4 8356 unsigned long flags;
70b97a7f 8357 struct rq *rq;
1da177e4 8358
4cf5d77a 8359 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8360 do_each_thread(g, p) {
178be793
IM
8361 /*
8362 * Only normalize user tasks:
8363 */
8364 if (!p->mm)
8365 continue;
8366
6cfb0d5d 8367 p->se.exec_start = 0;
6cfb0d5d 8368#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8369 p->se.statistics.wait_start = 0;
8370 p->se.statistics.sleep_start = 0;
8371 p->se.statistics.block_start = 0;
6cfb0d5d 8372#endif
dd41f596
IM
8373
8374 if (!rt_task(p)) {
8375 /*
8376 * Renice negative nice level userspace
8377 * tasks back to 0:
8378 */
8379 if (TASK_NICE(p) < 0 && p->mm)
8380 set_user_nice(p, 0);
1da177e4 8381 continue;
dd41f596 8382 }
1da177e4 8383
1d615482 8384 raw_spin_lock(&p->pi_lock);
b29739f9 8385 rq = __task_rq_lock(p);
1da177e4 8386
178be793 8387 normalize_task(rq, p);
3a5e4dc1 8388
b29739f9 8389 __task_rq_unlock(rq);
1d615482 8390 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8391 } while_each_thread(g, p);
8392
4cf5d77a 8393 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8394}
8395
8396#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8397
67fc4e0c 8398#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8399/*
67fc4e0c 8400 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8401 *
8402 * They can only be called when the whole system has been
8403 * stopped - every CPU needs to be quiescent, and no scheduling
8404 * activity can take place. Using them for anything else would
8405 * be a serious bug, and as a result, they aren't even visible
8406 * under any other configuration.
8407 */
8408
8409/**
8410 * curr_task - return the current task for a given cpu.
8411 * @cpu: the processor in question.
8412 *
8413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8414 */
36c8b586 8415struct task_struct *curr_task(int cpu)
1df5c10a
LT
8416{
8417 return cpu_curr(cpu);
8418}
8419
67fc4e0c
JW
8420#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8421
8422#ifdef CONFIG_IA64
1df5c10a
LT
8423/**
8424 * set_curr_task - set the current task for a given cpu.
8425 * @cpu: the processor in question.
8426 * @p: the task pointer to set.
8427 *
8428 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8429 * are serviced on a separate stack. It allows the architecture to switch the
8430 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8431 * must be called with all CPU's synchronized, and interrupts disabled, the
8432 * and caller must save the original value of the current task (see
8433 * curr_task() above) and restore that value before reenabling interrupts and
8434 * re-starting the system.
8435 *
8436 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8437 */
36c8b586 8438void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8439{
8440 cpu_curr(cpu) = p;
8441}
8442
8443#endif
29f59db3 8444
bccbe08a
PZ
8445#ifdef CONFIG_FAIR_GROUP_SCHED
8446static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8447{
8448 int i;
8449
8450 for_each_possible_cpu(i) {
8451 if (tg->cfs_rq)
8452 kfree(tg->cfs_rq[i]);
8453 if (tg->se)
8454 kfree(tg->se[i]);
6f505b16
PZ
8455 }
8456
8457 kfree(tg->cfs_rq);
8458 kfree(tg->se);
6f505b16
PZ
8459}
8460
ec7dc8ac
DG
8461static
8462int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8463{
29f59db3 8464 struct cfs_rq *cfs_rq;
eab17229 8465 struct sched_entity *se;
29f59db3
SV
8466 int i;
8467
434d53b0 8468 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8469 if (!tg->cfs_rq)
8470 goto err;
434d53b0 8471 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8472 if (!tg->se)
8473 goto err;
052f1dc7
PZ
8474
8475 tg->shares = NICE_0_LOAD;
29f59db3
SV
8476
8477 for_each_possible_cpu(i) {
eab17229
LZ
8478 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8479 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8480 if (!cfs_rq)
8481 goto err;
8482
eab17229
LZ
8483 se = kzalloc_node(sizeof(struct sched_entity),
8484 GFP_KERNEL, cpu_to_node(i));
29f59db3 8485 if (!se)
dfc12eb2 8486 goto err_free_rq;
29f59db3 8487
3d4b47b4 8488 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8489 }
8490
8491 return 1;
8492
49246274 8493err_free_rq:
dfc12eb2 8494 kfree(cfs_rq);
49246274 8495err:
bccbe08a
PZ
8496 return 0;
8497}
8498
bccbe08a
PZ
8499static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8500{
3d4b47b4
PZ
8501 struct rq *rq = cpu_rq(cpu);
8502 unsigned long flags;
3d4b47b4
PZ
8503
8504 /*
8505 * Only empty task groups can be destroyed; so we can speculatively
8506 * check on_list without danger of it being re-added.
8507 */
8508 if (!tg->cfs_rq[cpu]->on_list)
8509 return;
8510
8511 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8512 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8513 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8514}
6d6bc0ad 8515#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8516static inline void free_fair_sched_group(struct task_group *tg)
8517{
8518}
8519
ec7dc8ac
DG
8520static inline
8521int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8522{
8523 return 1;
8524}
8525
bccbe08a
PZ
8526static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8527{
8528}
6d6bc0ad 8529#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8530
8531#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8532static void free_rt_sched_group(struct task_group *tg)
8533{
8534 int i;
8535
d0b27fa7
PZ
8536 destroy_rt_bandwidth(&tg->rt_bandwidth);
8537
bccbe08a
PZ
8538 for_each_possible_cpu(i) {
8539 if (tg->rt_rq)
8540 kfree(tg->rt_rq[i]);
8541 if (tg->rt_se)
8542 kfree(tg->rt_se[i]);
8543 }
8544
8545 kfree(tg->rt_rq);
8546 kfree(tg->rt_se);
8547}
8548
ec7dc8ac
DG
8549static
8550int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8551{
8552 struct rt_rq *rt_rq;
eab17229 8553 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8554 struct rq *rq;
8555 int i;
8556
434d53b0 8557 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8558 if (!tg->rt_rq)
8559 goto err;
434d53b0 8560 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8561 if (!tg->rt_se)
8562 goto err;
8563
d0b27fa7
PZ
8564 init_rt_bandwidth(&tg->rt_bandwidth,
8565 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8566
8567 for_each_possible_cpu(i) {
8568 rq = cpu_rq(i);
8569
eab17229
LZ
8570 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8571 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8572 if (!rt_rq)
8573 goto err;
29f59db3 8574
eab17229
LZ
8575 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8576 GFP_KERNEL, cpu_to_node(i));
6f505b16 8577 if (!rt_se)
dfc12eb2 8578 goto err_free_rq;
29f59db3 8579
3d4b47b4 8580 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8581 }
8582
bccbe08a
PZ
8583 return 1;
8584
49246274 8585err_free_rq:
dfc12eb2 8586 kfree(rt_rq);
49246274 8587err:
bccbe08a
PZ
8588 return 0;
8589}
6d6bc0ad 8590#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8591static inline void free_rt_sched_group(struct task_group *tg)
8592{
8593}
8594
ec7dc8ac
DG
8595static inline
8596int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8597{
8598 return 1;
8599}
6d6bc0ad 8600#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8601
7c941438 8602#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8603static void free_sched_group(struct task_group *tg)
8604{
8605 free_fair_sched_group(tg);
8606 free_rt_sched_group(tg);
e9aa1dd1 8607 autogroup_free(tg);
bccbe08a
PZ
8608 kfree(tg);
8609}
8610
8611/* allocate runqueue etc for a new task group */
ec7dc8ac 8612struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8613{
8614 struct task_group *tg;
8615 unsigned long flags;
bccbe08a
PZ
8616
8617 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8618 if (!tg)
8619 return ERR_PTR(-ENOMEM);
8620
ec7dc8ac 8621 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8622 goto err;
8623
ec7dc8ac 8624 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8625 goto err;
8626
8ed36996 8627 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8628 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8629
8630 WARN_ON(!parent); /* root should already exist */
8631
8632 tg->parent = parent;
f473aa5e 8633 INIT_LIST_HEAD(&tg->children);
09f2724a 8634 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8635 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8636
9b5b7751 8637 return tg;
29f59db3
SV
8638
8639err:
6f505b16 8640 free_sched_group(tg);
29f59db3
SV
8641 return ERR_PTR(-ENOMEM);
8642}
8643
9b5b7751 8644/* rcu callback to free various structures associated with a task group */
6f505b16 8645static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8646{
29f59db3 8647 /* now it should be safe to free those cfs_rqs */
6f505b16 8648 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8649}
8650
9b5b7751 8651/* Destroy runqueue etc associated with a task group */
4cf86d77 8652void sched_destroy_group(struct task_group *tg)
29f59db3 8653{
8ed36996 8654 unsigned long flags;
9b5b7751 8655 int i;
29f59db3 8656
3d4b47b4
PZ
8657 /* end participation in shares distribution */
8658 for_each_possible_cpu(i)
bccbe08a 8659 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8660
8661 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8662 list_del_rcu(&tg->list);
f473aa5e 8663 list_del_rcu(&tg->siblings);
8ed36996 8664 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8665
9b5b7751 8666 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8667 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8668}
8669
9b5b7751 8670/* change task's runqueue when it moves between groups.
3a252015
IM
8671 * The caller of this function should have put the task in its new group
8672 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8673 * reflect its new group.
9b5b7751
SV
8674 */
8675void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8676{
8677 int on_rq, running;
8678 unsigned long flags;
8679 struct rq *rq;
8680
8681 rq = task_rq_lock(tsk, &flags);
8682
051a1d1a 8683 running = task_current(rq, tsk);
fd2f4419 8684 on_rq = tsk->on_rq;
29f59db3 8685
0e1f3483 8686 if (on_rq)
29f59db3 8687 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8688 if (unlikely(running))
8689 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8690
810b3817 8691#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8692 if (tsk->sched_class->task_move_group)
8693 tsk->sched_class->task_move_group(tsk, on_rq);
8694 else
810b3817 8695#endif
b2b5ce02 8696 set_task_rq(tsk, task_cpu(tsk));
810b3817 8697
0e1f3483
HS
8698 if (unlikely(running))
8699 tsk->sched_class->set_curr_task(rq);
8700 if (on_rq)
371fd7e7 8701 enqueue_task(rq, tsk, 0);
29f59db3 8702
29f59db3
SV
8703 task_rq_unlock(rq, &flags);
8704}
7c941438 8705#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8706
052f1dc7 8707#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8708static DEFINE_MUTEX(shares_mutex);
8709
4cf86d77 8710int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8711{
8712 int i;
8ed36996 8713 unsigned long flags;
c61935fd 8714
ec7dc8ac
DG
8715 /*
8716 * We can't change the weight of the root cgroup.
8717 */
8718 if (!tg->se[0])
8719 return -EINVAL;
8720
18d95a28
PZ
8721 if (shares < MIN_SHARES)
8722 shares = MIN_SHARES;
cb4ad1ff
MX
8723 else if (shares > MAX_SHARES)
8724 shares = MAX_SHARES;
62fb1851 8725
8ed36996 8726 mutex_lock(&shares_mutex);
9b5b7751 8727 if (tg->shares == shares)
5cb350ba 8728 goto done;
29f59db3 8729
9b5b7751 8730 tg->shares = shares;
c09595f6 8731 for_each_possible_cpu(i) {
9437178f
PT
8732 struct rq *rq = cpu_rq(i);
8733 struct sched_entity *se;
8734
8735 se = tg->se[i];
8736 /* Propagate contribution to hierarchy */
8737 raw_spin_lock_irqsave(&rq->lock, flags);
8738 for_each_sched_entity(se)
6d5ab293 8739 update_cfs_shares(group_cfs_rq(se));
9437178f 8740 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8741 }
29f59db3 8742
5cb350ba 8743done:
8ed36996 8744 mutex_unlock(&shares_mutex);
9b5b7751 8745 return 0;
29f59db3
SV
8746}
8747
5cb350ba
DG
8748unsigned long sched_group_shares(struct task_group *tg)
8749{
8750 return tg->shares;
8751}
052f1dc7 8752#endif
5cb350ba 8753
052f1dc7 8754#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8755/*
9f0c1e56 8756 * Ensure that the real time constraints are schedulable.
6f505b16 8757 */
9f0c1e56
PZ
8758static DEFINE_MUTEX(rt_constraints_mutex);
8759
8760static unsigned long to_ratio(u64 period, u64 runtime)
8761{
8762 if (runtime == RUNTIME_INF)
9a7e0b18 8763 return 1ULL << 20;
9f0c1e56 8764
9a7e0b18 8765 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8766}
8767
9a7e0b18
PZ
8768/* Must be called with tasklist_lock held */
8769static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8770{
9a7e0b18 8771 struct task_struct *g, *p;
b40b2e8e 8772
9a7e0b18
PZ
8773 do_each_thread(g, p) {
8774 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8775 return 1;
8776 } while_each_thread(g, p);
b40b2e8e 8777
9a7e0b18
PZ
8778 return 0;
8779}
b40b2e8e 8780
9a7e0b18
PZ
8781struct rt_schedulable_data {
8782 struct task_group *tg;
8783 u64 rt_period;
8784 u64 rt_runtime;
8785};
b40b2e8e 8786
9a7e0b18
PZ
8787static int tg_schedulable(struct task_group *tg, void *data)
8788{
8789 struct rt_schedulable_data *d = data;
8790 struct task_group *child;
8791 unsigned long total, sum = 0;
8792 u64 period, runtime;
b40b2e8e 8793
9a7e0b18
PZ
8794 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8795 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8796
9a7e0b18
PZ
8797 if (tg == d->tg) {
8798 period = d->rt_period;
8799 runtime = d->rt_runtime;
b40b2e8e 8800 }
b40b2e8e 8801
4653f803
PZ
8802 /*
8803 * Cannot have more runtime than the period.
8804 */
8805 if (runtime > period && runtime != RUNTIME_INF)
8806 return -EINVAL;
6f505b16 8807
4653f803
PZ
8808 /*
8809 * Ensure we don't starve existing RT tasks.
8810 */
9a7e0b18
PZ
8811 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8812 return -EBUSY;
6f505b16 8813
9a7e0b18 8814 total = to_ratio(period, runtime);
6f505b16 8815
4653f803
PZ
8816 /*
8817 * Nobody can have more than the global setting allows.
8818 */
8819 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8820 return -EINVAL;
6f505b16 8821
4653f803
PZ
8822 /*
8823 * The sum of our children's runtime should not exceed our own.
8824 */
9a7e0b18
PZ
8825 list_for_each_entry_rcu(child, &tg->children, siblings) {
8826 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8827 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8828
9a7e0b18
PZ
8829 if (child == d->tg) {
8830 period = d->rt_period;
8831 runtime = d->rt_runtime;
8832 }
6f505b16 8833
9a7e0b18 8834 sum += to_ratio(period, runtime);
9f0c1e56 8835 }
6f505b16 8836
9a7e0b18
PZ
8837 if (sum > total)
8838 return -EINVAL;
8839
8840 return 0;
6f505b16
PZ
8841}
8842
9a7e0b18 8843static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8844{
9a7e0b18
PZ
8845 struct rt_schedulable_data data = {
8846 .tg = tg,
8847 .rt_period = period,
8848 .rt_runtime = runtime,
8849 };
8850
8851 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8852}
8853
d0b27fa7
PZ
8854static int tg_set_bandwidth(struct task_group *tg,
8855 u64 rt_period, u64 rt_runtime)
6f505b16 8856{
ac086bc2 8857 int i, err = 0;
9f0c1e56 8858
9f0c1e56 8859 mutex_lock(&rt_constraints_mutex);
521f1a24 8860 read_lock(&tasklist_lock);
9a7e0b18
PZ
8861 err = __rt_schedulable(tg, rt_period, rt_runtime);
8862 if (err)
9f0c1e56 8863 goto unlock;
ac086bc2 8864
0986b11b 8865 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8866 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8867 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8868
8869 for_each_possible_cpu(i) {
8870 struct rt_rq *rt_rq = tg->rt_rq[i];
8871
0986b11b 8872 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8873 rt_rq->rt_runtime = rt_runtime;
0986b11b 8874 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8875 }
0986b11b 8876 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8877unlock:
521f1a24 8878 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8879 mutex_unlock(&rt_constraints_mutex);
8880
8881 return err;
6f505b16
PZ
8882}
8883
d0b27fa7
PZ
8884int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8885{
8886 u64 rt_runtime, rt_period;
8887
8888 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8889 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8890 if (rt_runtime_us < 0)
8891 rt_runtime = RUNTIME_INF;
8892
8893 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8894}
8895
9f0c1e56
PZ
8896long sched_group_rt_runtime(struct task_group *tg)
8897{
8898 u64 rt_runtime_us;
8899
d0b27fa7 8900 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8901 return -1;
8902
d0b27fa7 8903 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8904 do_div(rt_runtime_us, NSEC_PER_USEC);
8905 return rt_runtime_us;
8906}
d0b27fa7
PZ
8907
8908int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8909{
8910 u64 rt_runtime, rt_period;
8911
8912 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8913 rt_runtime = tg->rt_bandwidth.rt_runtime;
8914
619b0488
R
8915 if (rt_period == 0)
8916 return -EINVAL;
8917
d0b27fa7
PZ
8918 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8919}
8920
8921long sched_group_rt_period(struct task_group *tg)
8922{
8923 u64 rt_period_us;
8924
8925 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8926 do_div(rt_period_us, NSEC_PER_USEC);
8927 return rt_period_us;
8928}
8929
8930static int sched_rt_global_constraints(void)
8931{
4653f803 8932 u64 runtime, period;
d0b27fa7
PZ
8933 int ret = 0;
8934
ec5d4989
HS
8935 if (sysctl_sched_rt_period <= 0)
8936 return -EINVAL;
8937
4653f803
PZ
8938 runtime = global_rt_runtime();
8939 period = global_rt_period();
8940
8941 /*
8942 * Sanity check on the sysctl variables.
8943 */
8944 if (runtime > period && runtime != RUNTIME_INF)
8945 return -EINVAL;
10b612f4 8946
d0b27fa7 8947 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8948 read_lock(&tasklist_lock);
4653f803 8949 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8950 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8951 mutex_unlock(&rt_constraints_mutex);
8952
8953 return ret;
8954}
54e99124
DG
8955
8956int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8957{
8958 /* Don't accept realtime tasks when there is no way for them to run */
8959 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8960 return 0;
8961
8962 return 1;
8963}
8964
6d6bc0ad 8965#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8966static int sched_rt_global_constraints(void)
8967{
ac086bc2
PZ
8968 unsigned long flags;
8969 int i;
8970
ec5d4989
HS
8971 if (sysctl_sched_rt_period <= 0)
8972 return -EINVAL;
8973
60aa605d
PZ
8974 /*
8975 * There's always some RT tasks in the root group
8976 * -- migration, kstopmachine etc..
8977 */
8978 if (sysctl_sched_rt_runtime == 0)
8979 return -EBUSY;
8980
0986b11b 8981 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8982 for_each_possible_cpu(i) {
8983 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8984
0986b11b 8985 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8986 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8987 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8988 }
0986b11b 8989 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8990
d0b27fa7
PZ
8991 return 0;
8992}
6d6bc0ad 8993#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8994
8995int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8996 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8997 loff_t *ppos)
8998{
8999 int ret;
9000 int old_period, old_runtime;
9001 static DEFINE_MUTEX(mutex);
9002
9003 mutex_lock(&mutex);
9004 old_period = sysctl_sched_rt_period;
9005 old_runtime = sysctl_sched_rt_runtime;
9006
8d65af78 9007 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9008
9009 if (!ret && write) {
9010 ret = sched_rt_global_constraints();
9011 if (ret) {
9012 sysctl_sched_rt_period = old_period;
9013 sysctl_sched_rt_runtime = old_runtime;
9014 } else {
9015 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9016 def_rt_bandwidth.rt_period =
9017 ns_to_ktime(global_rt_period());
9018 }
9019 }
9020 mutex_unlock(&mutex);
9021
9022 return ret;
9023}
68318b8e 9024
052f1dc7 9025#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9026
9027/* return corresponding task_group object of a cgroup */
2b01dfe3 9028static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9029{
2b01dfe3
PM
9030 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9031 struct task_group, css);
68318b8e
SV
9032}
9033
9034static struct cgroup_subsys_state *
2b01dfe3 9035cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9036{
ec7dc8ac 9037 struct task_group *tg, *parent;
68318b8e 9038
2b01dfe3 9039 if (!cgrp->parent) {
68318b8e 9040 /* This is early initialization for the top cgroup */
07e06b01 9041 return &root_task_group.css;
68318b8e
SV
9042 }
9043
ec7dc8ac
DG
9044 parent = cgroup_tg(cgrp->parent);
9045 tg = sched_create_group(parent);
68318b8e
SV
9046 if (IS_ERR(tg))
9047 return ERR_PTR(-ENOMEM);
9048
68318b8e
SV
9049 return &tg->css;
9050}
9051
41a2d6cf
IM
9052static void
9053cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9054{
2b01dfe3 9055 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9056
9057 sched_destroy_group(tg);
9058}
9059
41a2d6cf 9060static int
be367d09 9061cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9062{
b68aa230 9063#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9064 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9065 return -EINVAL;
9066#else
68318b8e
SV
9067 /* We don't support RT-tasks being in separate groups */
9068 if (tsk->sched_class != &fair_sched_class)
9069 return -EINVAL;
b68aa230 9070#endif
be367d09
BB
9071 return 0;
9072}
68318b8e 9073
be367d09
BB
9074static int
9075cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9076 struct task_struct *tsk, bool threadgroup)
9077{
9078 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9079 if (retval)
9080 return retval;
9081 if (threadgroup) {
9082 struct task_struct *c;
9083 rcu_read_lock();
9084 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9085 retval = cpu_cgroup_can_attach_task(cgrp, c);
9086 if (retval) {
9087 rcu_read_unlock();
9088 return retval;
9089 }
9090 }
9091 rcu_read_unlock();
9092 }
68318b8e
SV
9093 return 0;
9094}
9095
9096static void
2b01dfe3 9097cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9098 struct cgroup *old_cont, struct task_struct *tsk,
9099 bool threadgroup)
68318b8e
SV
9100{
9101 sched_move_task(tsk);
be367d09
BB
9102 if (threadgroup) {
9103 struct task_struct *c;
9104 rcu_read_lock();
9105 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9106 sched_move_task(c);
9107 }
9108 rcu_read_unlock();
9109 }
68318b8e
SV
9110}
9111
068c5cc5 9112static void
d41d5a01
PZ
9113cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9114 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9115{
9116 /*
9117 * cgroup_exit() is called in the copy_process() failure path.
9118 * Ignore this case since the task hasn't ran yet, this avoids
9119 * trying to poke a half freed task state from generic code.
9120 */
9121 if (!(task->flags & PF_EXITING))
9122 return;
9123
9124 sched_move_task(task);
9125}
9126
052f1dc7 9127#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9128static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9129 u64 shareval)
68318b8e 9130{
2b01dfe3 9131 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9132}
9133
f4c753b7 9134static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9135{
2b01dfe3 9136 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9137
9138 return (u64) tg->shares;
9139}
6d6bc0ad 9140#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9141
052f1dc7 9142#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9143static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9144 s64 val)
6f505b16 9145{
06ecb27c 9146 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9147}
9148
06ecb27c 9149static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9150{
06ecb27c 9151 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9152}
d0b27fa7
PZ
9153
9154static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9155 u64 rt_period_us)
9156{
9157 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9158}
9159
9160static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9161{
9162 return sched_group_rt_period(cgroup_tg(cgrp));
9163}
6d6bc0ad 9164#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9165
fe5c7cc2 9166static struct cftype cpu_files[] = {
052f1dc7 9167#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9168 {
9169 .name = "shares",
f4c753b7
PM
9170 .read_u64 = cpu_shares_read_u64,
9171 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9172 },
052f1dc7
PZ
9173#endif
9174#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9175 {
9f0c1e56 9176 .name = "rt_runtime_us",
06ecb27c
PM
9177 .read_s64 = cpu_rt_runtime_read,
9178 .write_s64 = cpu_rt_runtime_write,
6f505b16 9179 },
d0b27fa7
PZ
9180 {
9181 .name = "rt_period_us",
f4c753b7
PM
9182 .read_u64 = cpu_rt_period_read_uint,
9183 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9184 },
052f1dc7 9185#endif
68318b8e
SV
9186};
9187
9188static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9189{
fe5c7cc2 9190 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9191}
9192
9193struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9194 .name = "cpu",
9195 .create = cpu_cgroup_create,
9196 .destroy = cpu_cgroup_destroy,
9197 .can_attach = cpu_cgroup_can_attach,
9198 .attach = cpu_cgroup_attach,
068c5cc5 9199 .exit = cpu_cgroup_exit,
38605cae
IM
9200 .populate = cpu_cgroup_populate,
9201 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9202 .early_init = 1,
9203};
9204
052f1dc7 9205#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9206
9207#ifdef CONFIG_CGROUP_CPUACCT
9208
9209/*
9210 * CPU accounting code for task groups.
9211 *
9212 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9213 * (balbir@in.ibm.com).
9214 */
9215
934352f2 9216/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9217struct cpuacct {
9218 struct cgroup_subsys_state css;
9219 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9220 u64 __percpu *cpuusage;
ef12fefa 9221 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9222 struct cpuacct *parent;
d842de87
SV
9223};
9224
9225struct cgroup_subsys cpuacct_subsys;
9226
9227/* return cpu accounting group corresponding to this container */
32cd756a 9228static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9229{
32cd756a 9230 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9231 struct cpuacct, css);
9232}
9233
9234/* return cpu accounting group to which this task belongs */
9235static inline struct cpuacct *task_ca(struct task_struct *tsk)
9236{
9237 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9238 struct cpuacct, css);
9239}
9240
9241/* create a new cpu accounting group */
9242static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9243 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9244{
9245 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9246 int i;
d842de87
SV
9247
9248 if (!ca)
ef12fefa 9249 goto out;
d842de87
SV
9250
9251 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9252 if (!ca->cpuusage)
9253 goto out_free_ca;
9254
9255 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9256 if (percpu_counter_init(&ca->cpustat[i], 0))
9257 goto out_free_counters;
d842de87 9258
934352f2
BR
9259 if (cgrp->parent)
9260 ca->parent = cgroup_ca(cgrp->parent);
9261
d842de87 9262 return &ca->css;
ef12fefa
BR
9263
9264out_free_counters:
9265 while (--i >= 0)
9266 percpu_counter_destroy(&ca->cpustat[i]);
9267 free_percpu(ca->cpuusage);
9268out_free_ca:
9269 kfree(ca);
9270out:
9271 return ERR_PTR(-ENOMEM);
d842de87
SV
9272}
9273
9274/* destroy an existing cpu accounting group */
41a2d6cf 9275static void
32cd756a 9276cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9277{
32cd756a 9278 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9279 int i;
d842de87 9280
ef12fefa
BR
9281 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9282 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9283 free_percpu(ca->cpuusage);
9284 kfree(ca);
9285}
9286
720f5498
KC
9287static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9288{
b36128c8 9289 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9290 u64 data;
9291
9292#ifndef CONFIG_64BIT
9293 /*
9294 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9295 */
05fa785c 9296 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9297 data = *cpuusage;
05fa785c 9298 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9299#else
9300 data = *cpuusage;
9301#endif
9302
9303 return data;
9304}
9305
9306static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9307{
b36128c8 9308 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9309
9310#ifndef CONFIG_64BIT
9311 /*
9312 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9313 */
05fa785c 9314 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9315 *cpuusage = val;
05fa785c 9316 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9317#else
9318 *cpuusage = val;
9319#endif
9320}
9321
d842de87 9322/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9323static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9324{
32cd756a 9325 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9326 u64 totalcpuusage = 0;
9327 int i;
9328
720f5498
KC
9329 for_each_present_cpu(i)
9330 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9331
9332 return totalcpuusage;
9333}
9334
0297b803
DG
9335static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9336 u64 reset)
9337{
9338 struct cpuacct *ca = cgroup_ca(cgrp);
9339 int err = 0;
9340 int i;
9341
9342 if (reset) {
9343 err = -EINVAL;
9344 goto out;
9345 }
9346
720f5498
KC
9347 for_each_present_cpu(i)
9348 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9349
0297b803
DG
9350out:
9351 return err;
9352}
9353
e9515c3c
KC
9354static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9355 struct seq_file *m)
9356{
9357 struct cpuacct *ca = cgroup_ca(cgroup);
9358 u64 percpu;
9359 int i;
9360
9361 for_each_present_cpu(i) {
9362 percpu = cpuacct_cpuusage_read(ca, i);
9363 seq_printf(m, "%llu ", (unsigned long long) percpu);
9364 }
9365 seq_printf(m, "\n");
9366 return 0;
9367}
9368
ef12fefa
BR
9369static const char *cpuacct_stat_desc[] = {
9370 [CPUACCT_STAT_USER] = "user",
9371 [CPUACCT_STAT_SYSTEM] = "system",
9372};
9373
9374static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9375 struct cgroup_map_cb *cb)
9376{
9377 struct cpuacct *ca = cgroup_ca(cgrp);
9378 int i;
9379
9380 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9381 s64 val = percpu_counter_read(&ca->cpustat[i]);
9382 val = cputime64_to_clock_t(val);
9383 cb->fill(cb, cpuacct_stat_desc[i], val);
9384 }
9385 return 0;
9386}
9387
d842de87
SV
9388static struct cftype files[] = {
9389 {
9390 .name = "usage",
f4c753b7
PM
9391 .read_u64 = cpuusage_read,
9392 .write_u64 = cpuusage_write,
d842de87 9393 },
e9515c3c
KC
9394 {
9395 .name = "usage_percpu",
9396 .read_seq_string = cpuacct_percpu_seq_read,
9397 },
ef12fefa
BR
9398 {
9399 .name = "stat",
9400 .read_map = cpuacct_stats_show,
9401 },
d842de87
SV
9402};
9403
32cd756a 9404static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9405{
32cd756a 9406 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9407}
9408
9409/*
9410 * charge this task's execution time to its accounting group.
9411 *
9412 * called with rq->lock held.
9413 */
9414static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9415{
9416 struct cpuacct *ca;
934352f2 9417 int cpu;
d842de87 9418
c40c6f85 9419 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9420 return;
9421
934352f2 9422 cpu = task_cpu(tsk);
a18b83b7
BR
9423
9424 rcu_read_lock();
9425
d842de87 9426 ca = task_ca(tsk);
d842de87 9427
934352f2 9428 for (; ca; ca = ca->parent) {
b36128c8 9429 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9430 *cpuusage += cputime;
9431 }
a18b83b7
BR
9432
9433 rcu_read_unlock();
d842de87
SV
9434}
9435
fa535a77
AB
9436/*
9437 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9438 * in cputime_t units. As a result, cpuacct_update_stats calls
9439 * percpu_counter_add with values large enough to always overflow the
9440 * per cpu batch limit causing bad SMP scalability.
9441 *
9442 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9443 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9444 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9445 */
9446#ifdef CONFIG_SMP
9447#define CPUACCT_BATCH \
9448 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9449#else
9450#define CPUACCT_BATCH 0
9451#endif
9452
ef12fefa
BR
9453/*
9454 * Charge the system/user time to the task's accounting group.
9455 */
9456static void cpuacct_update_stats(struct task_struct *tsk,
9457 enum cpuacct_stat_index idx, cputime_t val)
9458{
9459 struct cpuacct *ca;
fa535a77 9460 int batch = CPUACCT_BATCH;
ef12fefa
BR
9461
9462 if (unlikely(!cpuacct_subsys.active))
9463 return;
9464
9465 rcu_read_lock();
9466 ca = task_ca(tsk);
9467
9468 do {
fa535a77 9469 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9470 ca = ca->parent;
9471 } while (ca);
9472 rcu_read_unlock();
9473}
9474
d842de87
SV
9475struct cgroup_subsys cpuacct_subsys = {
9476 .name = "cpuacct",
9477 .create = cpuacct_create,
9478 .destroy = cpuacct_destroy,
9479 .populate = cpuacct_populate,
9480 .subsys_id = cpuacct_subsys_id,
9481};
9482#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9483
This page took 2.034808 seconds and 5 git commands to generate.