Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
1da177e4
LT
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
8f4d37ec
PZ
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 176 */
8f4d37ec 177
8f4d37ec
PZ
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
8f4d37ec
PZ
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
05fa785c 194 raw_spin_lock(&rq->lock);
3e51f33f 195 update_rq_clock(rq);
8f4d37ec 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 197 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
198
199 return HRTIMER_NORESTART;
200}
201
95e904c7 202#ifdef CONFIG_SMP
971ee28c 203
4961b6e1 204static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 207
4961b6e1 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
209}
210
31656519
PZ
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
b328ca18 215{
31656519 216 struct rq *rq = arg;
b328ca18 217
05fa785c 218 raw_spin_lock(&rq->lock);
971ee28c 219 __hrtick_restart(rq);
31656519 220 rq->hrtick_csd_pending = 0;
05fa785c 221 raw_spin_unlock(&rq->lock);
b328ca18
PZ
222}
223
31656519
PZ
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
029632fb 229void hrtick_start(struct rq *rq, u64 delay)
b328ca18 230{
31656519 231 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 241
cc584b21 242 hrtimer_set_expires(timer, time);
31656519
PZ
243
244 if (rq == this_rq()) {
971ee28c 245 __hrtick_restart(rq);
31656519 246 } else if (!rq->hrtick_csd_pending) {
c46fff2a 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
248 rq->hrtick_csd_pending = 1;
249 }
b328ca18
PZ
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
31656519 264 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
fa748203 271static __init void init_hrtick(void)
b328ca18
PZ
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
31656519
PZ
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
31656519 282{
86893335
WL
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
31656519 290}
b328ca18 291
006c75f1 292static inline void init_hrtick(void)
8f4d37ec 293{
8f4d37ec 294}
31656519 295#endif /* CONFIG_SMP */
8f4d37ec 296
31656519 297static void init_rq_hrtick(struct rq *rq)
8f4d37ec 298{
31656519
PZ
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
8f4d37ec 301
31656519
PZ
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
8f4d37ec 306
31656519
PZ
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
8f4d37ec 309}
006c75f1 310#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
8f4d37ec
PZ
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
b328ca18
PZ
319static inline void init_hrtick(void)
320{
321}
006c75f1 322#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 323
5529578a
FW
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
e3baac47 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
e3baac47
PZ
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
316c1608 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
fd99f91a
PZ
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
e3baac47
PZ
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
fd99f91a
PZ
391#endif
392
76751049
PZ
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
c24d20db 439/*
8875125e 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
8875125e 446void resched_curr(struct rq *rq)
c24d20db 447{
8875125e 448 struct task_struct *curr = rq->curr;
c24d20db
IM
449 int cpu;
450
8875125e 451 lockdep_assert_held(&rq->lock);
c24d20db 452
8875125e 453 if (test_tsk_need_resched(curr))
c24d20db
IM
454 return;
455
8875125e 456 cpu = cpu_of(rq);
fd99f91a 457
f27dde8d 458 if (cpu == smp_processor_id()) {
8875125e 459 set_tsk_need_resched(curr);
f27dde8d 460 set_preempt_need_resched();
c24d20db 461 return;
f27dde8d 462 }
c24d20db 463
8875125e 464 if (set_nr_and_not_polling(curr))
c24d20db 465 smp_send_reschedule(cpu);
dfc68f29
AL
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
468}
469
029632fb 470void resched_cpu(int cpu)
c24d20db
IM
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
05fa785c 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 476 return;
8875125e 477 resched_curr(rq);
05fa785c 478 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 479}
06d8308c 480
b021fe3e 481#ifdef CONFIG_SMP
3451d024 482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
bc7a34b8 491int get_nohz_timer_target(void)
83cd4fe2 492{
bc7a34b8 493 int i, cpu = smp_processor_id();
83cd4fe2
VP
494 struct sched_domain *sd;
495
9642d18e 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
497 return cpu;
498
057f3fad 499 rcu_read_lock();
83cd4fe2 500 for_each_domain(cpu, sd) {
057f3fad 501 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
503 cpu = i;
504 goto unlock;
505 }
506 }
83cd4fe2 507 }
9642d18e
VH
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
057f3fad
PZ
511unlock:
512 rcu_read_unlock();
83cd4fe2
VP
513 return cpu;
514}
06d8308c
TG
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
1c20091e 525static void wake_up_idle_cpu(int cpu)
06d8308c
TG
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
67b9ca70 532 if (set_nr_and_not_polling(rq->idle))
06d8308c 533 smp_send_reschedule(cpu);
dfc68f29
AL
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
536}
537
c5bfece2 538static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 539{
53c5fa16
FW
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
c5bfece2 546 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
53c5fa16 549 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
c5bfece2 558 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
559 wake_up_idle_cpu(cpu);
560}
561
ca38062e 562static inline bool got_nohz_idle_kick(void)
45bf76df 563{
1c792db7 564 int cpu = smp_processor_id();
873b4c65
VG
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
45bf76df
IM
578}
579
3451d024 580#else /* CONFIG_NO_HZ_COMMON */
45bf76df 581
ca38062e 582static inline bool got_nohz_idle_kick(void)
2069dd75 583{
ca38062e 584 return false;
2069dd75
PZ
585}
586
3451d024 587#endif /* CONFIG_NO_HZ_COMMON */
d842de87 588
ce831b38 589#ifdef CONFIG_NO_HZ_FULL
76d92ac3 590bool sched_can_stop_tick(struct rq *rq)
ce831b38 591{
76d92ac3
FW
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
1e78cdbd 598 /*
2548d546
PZ
599 * If there are more than one RR tasks, we need the tick to effect the
600 * actual RR behaviour.
1e78cdbd 601 */
76d92ac3
FW
602 if (rq->rt.rr_nr_running) {
603 if (rq->rt.rr_nr_running == 1)
604 return true;
605 else
606 return false;
1e78cdbd
RR
607 }
608
2548d546
PZ
609 /*
610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 * forced preemption between FIFO tasks.
612 */
613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 if (fifo_nr_running)
615 return true;
616
617 /*
618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 * if there's more than one we need the tick for involuntary
620 * preemption.
621 */
622 if (rq->nr_running > 1)
541b8264 623 return false;
ce831b38 624
541b8264 625 return true;
ce831b38
FW
626}
627#endif /* CONFIG_NO_HZ_FULL */
d842de87 628
029632fb 629void sched_avg_update(struct rq *rq)
18d95a28 630{
e9e9250b
PZ
631 s64 period = sched_avg_period();
632
78becc27 633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
634 /*
635 * Inline assembly required to prevent the compiler
636 * optimising this loop into a divmod call.
637 * See __iter_div_u64_rem() for another example of this.
638 */
639 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
640 rq->age_stamp += period;
641 rq->rt_avg /= 2;
642 }
18d95a28
PZ
643}
644
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
45bf76df
IM
692static void set_load_weight(struct task_struct *p)
693{
f05998d4
NR
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
dd41f596
IM
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
20f9cd2a 700 if (idle_policy(p->policy)) {
c8b28116 701 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 702 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
703 return;
704 }
71f8bd46 705
ed82b8a1
AK
706 load->weight = scale_load(sched_prio_to_weight[prio]);
707 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
708}
709
1de64443 710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 711{
a64692a3 712 update_rq_clock(rq);
1de64443
PZ
713 if (!(flags & ENQUEUE_RESTORE))
714 sched_info_queued(rq, p);
371fd7e7 715 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
716}
717
1de64443 718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 719{
a64692a3 720 update_rq_clock(rq);
1de64443
PZ
721 if (!(flags & DEQUEUE_SAVE))
722 sched_info_dequeued(rq, p);
371fd7e7 723 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
724}
725
029632fb 726void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
727{
728 if (task_contributes_to_load(p))
729 rq->nr_uninterruptible--;
730
371fd7e7 731 enqueue_task(rq, p, flags);
1e3c88bd
PZ
732}
733
029632fb 734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
735{
736 if (task_contributes_to_load(p))
737 rq->nr_uninterruptible++;
738
371fd7e7 739 dequeue_task(rq, p, flags);
1e3c88bd
PZ
740}
741
fe44d621 742static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 743{
095c0aa8
GC
744/*
745 * In theory, the compile should just see 0 here, and optimize out the call
746 * to sched_rt_avg_update. But I don't trust it...
747 */
748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 s64 steal = 0, irq_delta = 0;
750#endif
751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
753
754 /*
755 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 * this case when a previous update_rq_clock() happened inside a
757 * {soft,}irq region.
758 *
759 * When this happens, we stop ->clock_task and only update the
760 * prev_irq_time stamp to account for the part that fit, so that a next
761 * update will consume the rest. This ensures ->clock_task is
762 * monotonic.
763 *
764 * It does however cause some slight miss-attribution of {soft,}irq
765 * time, a more accurate solution would be to update the irq_time using
766 * the current rq->clock timestamp, except that would require using
767 * atomic ops.
768 */
769 if (irq_delta > delta)
770 irq_delta = delta;
771
772 rq->prev_irq_time += irq_delta;
773 delta -= irq_delta;
095c0aa8
GC
774#endif
775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 776 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
777 steal = paravirt_steal_clock(cpu_of(rq));
778 steal -= rq->prev_steal_time_rq;
779
780 if (unlikely(steal > delta))
781 steal = delta;
782
095c0aa8 783 rq->prev_steal_time_rq += steal;
095c0aa8
GC
784 delta -= steal;
785 }
786#endif
787
fe44d621
PZ
788 rq->clock_task += delta;
789
095c0aa8 790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
792 sched_rt_avg_update(rq, irq_delta + steal);
793#endif
aa483808
VP
794}
795
34f971f6
PZ
796void sched_set_stop_task(int cpu, struct task_struct *stop)
797{
798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 struct task_struct *old_stop = cpu_rq(cpu)->stop;
800
801 if (stop) {
802 /*
803 * Make it appear like a SCHED_FIFO task, its something
804 * userspace knows about and won't get confused about.
805 *
806 * Also, it will make PI more or less work without too
807 * much confusion -- but then, stop work should not
808 * rely on PI working anyway.
809 */
810 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
811
812 stop->sched_class = &stop_sched_class;
813 }
814
815 cpu_rq(cpu)->stop = stop;
816
817 if (old_stop) {
818 /*
819 * Reset it back to a normal scheduling class so that
820 * it can die in pieces.
821 */
822 old_stop->sched_class = &rt_sched_class;
823 }
824}
825
14531189 826/*
dd41f596 827 * __normal_prio - return the priority that is based on the static prio
14531189 828 */
14531189
IM
829static inline int __normal_prio(struct task_struct *p)
830{
dd41f596 831 return p->static_prio;
14531189
IM
832}
833
b29739f9
IM
834/*
835 * Calculate the expected normal priority: i.e. priority
836 * without taking RT-inheritance into account. Might be
837 * boosted by interactivity modifiers. Changes upon fork,
838 * setprio syscalls, and whenever the interactivity
839 * estimator recalculates.
840 */
36c8b586 841static inline int normal_prio(struct task_struct *p)
b29739f9
IM
842{
843 int prio;
844
aab03e05
DF
845 if (task_has_dl_policy(p))
846 prio = MAX_DL_PRIO-1;
847 else if (task_has_rt_policy(p))
b29739f9
IM
848 prio = MAX_RT_PRIO-1 - p->rt_priority;
849 else
850 prio = __normal_prio(p);
851 return prio;
852}
853
854/*
855 * Calculate the current priority, i.e. the priority
856 * taken into account by the scheduler. This value might
857 * be boosted by RT tasks, or might be boosted by
858 * interactivity modifiers. Will be RT if the task got
859 * RT-boosted. If not then it returns p->normal_prio.
860 */
36c8b586 861static int effective_prio(struct task_struct *p)
b29739f9
IM
862{
863 p->normal_prio = normal_prio(p);
864 /*
865 * If we are RT tasks or we were boosted to RT priority,
866 * keep the priority unchanged. Otherwise, update priority
867 * to the normal priority:
868 */
869 if (!rt_prio(p->prio))
870 return p->normal_prio;
871 return p->prio;
872}
873
1da177e4
LT
874/**
875 * task_curr - is this task currently executing on a CPU?
876 * @p: the task in question.
e69f6186
YB
877 *
878 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 879 */
36c8b586 880inline int task_curr(const struct task_struct *p)
1da177e4
LT
881{
882 return cpu_curr(task_cpu(p)) == p;
883}
884
67dfa1b7 885/*
4c9a4bc8
PZ
886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887 * use the balance_callback list if you want balancing.
888 *
889 * this means any call to check_class_changed() must be followed by a call to
890 * balance_callback().
67dfa1b7 891 */
cb469845
SR
892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 const struct sched_class *prev_class,
da7a735e 894 int oldprio)
cb469845
SR
895{
896 if (prev_class != p->sched_class) {
897 if (prev_class->switched_from)
da7a735e 898 prev_class->switched_from(rq, p);
4c9a4bc8 899
da7a735e 900 p->sched_class->switched_to(rq, p);
2d3d891d 901 } else if (oldprio != p->prio || dl_task(p))
da7a735e 902 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
903}
904
029632fb 905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
906{
907 const struct sched_class *class;
908
909 if (p->sched_class == rq->curr->sched_class) {
910 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 } else {
912 for_each_class(class) {
913 if (class == rq->curr->sched_class)
914 break;
915 if (class == p->sched_class) {
8875125e 916 resched_curr(rq);
1e5a7405
PZ
917 break;
918 }
919 }
920 }
921
922 /*
923 * A queue event has occurred, and we're going to schedule. In
924 * this case, we can save a useless back to back clock update.
925 */
da0c1e65 926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 927 rq_clock_skip_update(rq, true);
1e5a7405
PZ
928}
929
1da177e4 930#ifdef CONFIG_SMP
5cc389bc
PZ
931/*
932 * This is how migration works:
933 *
934 * 1) we invoke migration_cpu_stop() on the target CPU using
935 * stop_one_cpu().
936 * 2) stopper starts to run (implicitly forcing the migrated thread
937 * off the CPU)
938 * 3) it checks whether the migrated task is still in the wrong runqueue.
939 * 4) if it's in the wrong runqueue then the migration thread removes
940 * it and puts it into the right queue.
941 * 5) stopper completes and stop_one_cpu() returns and the migration
942 * is done.
943 */
944
945/*
946 * move_queued_task - move a queued task to new rq.
947 *
948 * Returns (locked) new rq. Old rq's lock is released.
949 */
5e16bbc2 950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 951{
5cc389bc
PZ
952 lockdep_assert_held(&rq->lock);
953
5cc389bc 954 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 955 dequeue_task(rq, p, 0);
5cc389bc
PZ
956 set_task_cpu(p, new_cpu);
957 raw_spin_unlock(&rq->lock);
958
959 rq = cpu_rq(new_cpu);
960
961 raw_spin_lock(&rq->lock);
962 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 963 enqueue_task(rq, p, 0);
3ea94de1 964 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
965 check_preempt_curr(rq, p, 0);
966
967 return rq;
968}
969
970struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973};
974
975/*
976 * Move (not current) task off this cpu, onto dest cpu. We're doing
977 * this because either it can't run here any more (set_cpus_allowed()
978 * away from this CPU, or CPU going down), or because we're
979 * attempting to rebalance this task on exec (sched_exec).
980 *
981 * So we race with normal scheduler movements, but that's OK, as long
982 * as the task is no longer on this CPU.
5cc389bc 983 */
5e16bbc2 984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 985{
5cc389bc 986 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 987 return rq;
5cc389bc
PZ
988
989 /* Affinity changed (again). */
990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 991 return rq;
5cc389bc 992
5e16bbc2
PZ
993 rq = move_queued_task(rq, p, dest_cpu);
994
995 return rq;
5cc389bc
PZ
996}
997
998/*
999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005 struct migration_arg *arg = data;
5e16bbc2
PZ
1006 struct task_struct *p = arg->task;
1007 struct rq *rq = this_rq();
5cc389bc
PZ
1008
1009 /*
1010 * The original target cpu might have gone down and we might
1011 * be on another cpu but it doesn't matter.
1012 */
1013 local_irq_disable();
1014 /*
1015 * We need to explicitly wake pending tasks before running
1016 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 */
1019 sched_ttwu_pending();
5e16bbc2
PZ
1020
1021 raw_spin_lock(&p->pi_lock);
1022 raw_spin_lock(&rq->lock);
1023 /*
1024 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 * we're holding p->pi_lock.
1027 */
1028 if (task_rq(p) == rq && task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 raw_spin_unlock(&rq->lock);
1031 raw_spin_unlock(&p->pi_lock);
1032
5cc389bc
PZ
1033 local_irq_enable();
1034 return 0;
1035}
1036
c5b28038
PZ
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1042{
5cc389bc
PZ
1043 cpumask_copy(&p->cpus_allowed, new_mask);
1044 p->nr_cpus_allowed = cpumask_weight(new_mask);
1045}
1046
c5b28038
PZ
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048{
6c37067e
PZ
1049 struct rq *rq = task_rq(p);
1050 bool queued, running;
1051
c5b28038 1052 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1053
1054 queued = task_on_rq_queued(p);
1055 running = task_current(rq, p);
1056
1057 if (queued) {
1058 /*
1059 * Because __kthread_bind() calls this on blocked tasks without
1060 * holding rq->lock.
1061 */
1062 lockdep_assert_held(&rq->lock);
1de64443 1063 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1064 }
1065 if (running)
1066 put_prev_task(rq, p);
1067
c5b28038 1068 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1069
1070 if (running)
1071 p->sched_class->set_curr_task(rq);
1072 if (queued)
1de64443 1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1074}
1075
5cc389bc
PZ
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
25834c73
PZ
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1087{
1088 unsigned long flags;
1089 struct rq *rq;
1090 unsigned int dest_cpu;
1091 int ret = 0;
1092
1093 rq = task_rq_lock(p, &flags);
1094
25834c73
PZ
1095 /*
1096 * Must re-check here, to close a race against __kthread_bind(),
1097 * sched_setaffinity() is not guaranteed to observe the flag.
1098 */
1099 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 ret = -EINVAL;
1101 goto out;
1102 }
1103
5cc389bc
PZ
1104 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 goto out;
1106
1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
1112 do_set_cpus_allowed(p, new_mask);
1113
1114 /* Can the task run on the task's current CPU? If so, we're done */
1115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 goto out;
1117
1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 struct migration_arg arg = { p, dest_cpu };
1121 /* Need help from migration thread: drop lock and wait. */
1122 task_rq_unlock(rq, p, &flags);
1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 tlb_migrate_finish(p->mm);
1125 return 0;
cbce1a68
PZ
1126 } else if (task_on_rq_queued(p)) {
1127 /*
1128 * OK, since we're going to drop the lock immediately
1129 * afterwards anyway.
1130 */
1131 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1132 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1133 lockdep_pin_lock(&rq->lock);
1134 }
5cc389bc
PZ
1135out:
1136 task_rq_unlock(rq, p, &flags);
1137
1138 return ret;
1139}
25834c73
PZ
1140
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143 return __set_cpus_allowed_ptr(p, new_mask, false);
1144}
5cc389bc
PZ
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
dd41f596 1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1148{
e2912009
PZ
1149#ifdef CONFIG_SCHED_DEBUG
1150 /*
1151 * We should never call set_task_cpu() on a blocked task,
1152 * ttwu() will sort out the placement.
1153 */
077614ee 1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1155 !p->on_rq);
0122ec5b 1156
3ea94de1
JP
1157 /*
1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 * time relying on p->on_rq.
1161 */
1162 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 p->sched_class == &fair_sched_class &&
1164 (p->on_rq && !task_on_rq_migrating(p)));
1165
0122ec5b 1166#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1167 /*
1168 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 *
1171 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1172 * see task_group().
6c6c54e1
PZ
1173 *
1174 * Furthermore, all task_rq users should acquire both locks, see
1175 * task_rq_lock().
1176 */
0122ec5b
PZ
1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 lockdep_is_held(&task_rq(p)->lock)));
1179#endif
e2912009
PZ
1180#endif
1181
de1d7286 1182 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1183
0c69774e 1184 if (task_cpu(p) != new_cpu) {
0a74bef8 1185 if (p->sched_class->migrate_task_rq)
5a4fd036 1186 p->sched_class->migrate_task_rq(p);
0c69774e 1187 p->se.nr_migrations++;
ff303e66 1188 perf_event_task_migrate(p);
0c69774e 1189 }
dd41f596
IM
1190
1191 __set_task_cpu(p, new_cpu);
c65cc870
IM
1192}
1193
ac66f547
PZ
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
da0c1e65 1196 if (task_on_rq_queued(p)) {
ac66f547
PZ
1197 struct rq *src_rq, *dst_rq;
1198
1199 src_rq = task_rq(p);
1200 dst_rq = cpu_rq(cpu);
1201
3ea94de1 1202 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1203 deactivate_task(src_rq, p, 0);
1204 set_task_cpu(p, cpu);
1205 activate_task(dst_rq, p, 0);
3ea94de1 1206 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1207 check_preempt_curr(dst_rq, p, 0);
1208 } else {
1209 /*
1210 * Task isn't running anymore; make it appear like we migrated
1211 * it before it went to sleep. This means on wakeup we make the
1212 * previous cpu our targer instead of where it really is.
1213 */
1214 p->wake_cpu = cpu;
1215 }
1216}
1217
1218struct migration_swap_arg {
1219 struct task_struct *src_task, *dst_task;
1220 int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225 struct migration_swap_arg *arg = data;
1226 struct rq *src_rq, *dst_rq;
1227 int ret = -EAGAIN;
1228
62694cd5
PZ
1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 return -EAGAIN;
1231
ac66f547
PZ
1232 src_rq = cpu_rq(arg->src_cpu);
1233 dst_rq = cpu_rq(arg->dst_cpu);
1234
74602315
PZ
1235 double_raw_lock(&arg->src_task->pi_lock,
1236 &arg->dst_task->pi_lock);
ac66f547 1237 double_rq_lock(src_rq, dst_rq);
62694cd5 1238
ac66f547
PZ
1239 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 goto unlock;
1241
1242 if (task_cpu(arg->src_task) != arg->src_cpu)
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 goto unlock;
1247
1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 goto unlock;
1250
1251 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254 ret = 0;
1255
1256unlock:
1257 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1258 raw_spin_unlock(&arg->dst_task->pi_lock);
1259 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1260
1261 return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268{
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
ac66f547
PZ
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = task_cpu(cur),
1275 .dst_task = p,
1276 .dst_cpu = task_cpu(p),
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
6acce3ef
PZ
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
ac66f547
PZ
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 goto out;
1291
1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 goto out;
1294
286549dc 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
ac66f547
PZ
1299 return ret;
1300}
1301
1da177e4
LT
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
85ba2d86
RM
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change. If it changes, i.e. @p might have woken up,
1307 * then return zero. When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count). If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1da177e4
LT
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
85ba2d86 1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1319{
1320 unsigned long flags;
da0c1e65 1321 int running, queued;
85ba2d86 1322 unsigned long ncsw;
70b97a7f 1323 struct rq *rq;
1da177e4 1324
3a5c359a
AK
1325 for (;;) {
1326 /*
1327 * We do the initial early heuristics without holding
1328 * any task-queue locks at all. We'll only try to get
1329 * the runqueue lock when things look like they will
1330 * work out!
1331 */
1332 rq = task_rq(p);
fa490cfd 1333
3a5c359a
AK
1334 /*
1335 * If the task is actively running on another CPU
1336 * still, just relax and busy-wait without holding
1337 * any locks.
1338 *
1339 * NOTE! Since we don't hold any locks, it's not
1340 * even sure that "rq" stays as the right runqueue!
1341 * But we don't care, since "task_running()" will
1342 * return false if the runqueue has changed and p
1343 * is actually now running somewhere else!
1344 */
85ba2d86
RM
1345 while (task_running(rq, p)) {
1346 if (match_state && unlikely(p->state != match_state))
1347 return 0;
3a5c359a 1348 cpu_relax();
85ba2d86 1349 }
fa490cfd 1350
3a5c359a
AK
1351 /*
1352 * Ok, time to look more closely! We need the rq
1353 * lock now, to be *sure*. If we're wrong, we'll
1354 * just go back and repeat.
1355 */
1356 rq = task_rq_lock(p, &flags);
27a9da65 1357 trace_sched_wait_task(p);
3a5c359a 1358 running = task_running(rq, p);
da0c1e65 1359 queued = task_on_rq_queued(p);
85ba2d86 1360 ncsw = 0;
f31e11d8 1361 if (!match_state || p->state == match_state)
93dcf55f 1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1363 task_rq_unlock(rq, p, &flags);
fa490cfd 1364
85ba2d86
RM
1365 /*
1366 * If it changed from the expected state, bail out now.
1367 */
1368 if (unlikely(!ncsw))
1369 break;
1370
3a5c359a
AK
1371 /*
1372 * Was it really running after all now that we
1373 * checked with the proper locks actually held?
1374 *
1375 * Oops. Go back and try again..
1376 */
1377 if (unlikely(running)) {
1378 cpu_relax();
1379 continue;
1380 }
fa490cfd 1381
3a5c359a
AK
1382 /*
1383 * It's not enough that it's not actively running,
1384 * it must be off the runqueue _entirely_, and not
1385 * preempted!
1386 *
80dd99b3 1387 * So if it was still runnable (but just not actively
3a5c359a
AK
1388 * running right now), it's preempted, and we should
1389 * yield - it could be a while.
1390 */
da0c1e65 1391 if (unlikely(queued)) {
8eb90c30
TG
1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1396 continue;
1397 }
fa490cfd 1398
3a5c359a
AK
1399 /*
1400 * Ahh, all good. It wasn't running, and it wasn't
1401 * runnable, which means that it will never become
1402 * running in the future either. We're all done!
1403 */
1404 break;
1405 }
85ba2d86
RM
1406
1407 return ncsw;
1da177e4
LT
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
25985edc 1417 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
36c8b586 1423void kick_process(struct task_struct *p)
1da177e4
LT
1424{
1425 int cpu;
1426
1427 preempt_disable();
1428 cpu = task_cpu(p);
1429 if ((cpu != smp_processor_id()) && task_curr(p))
1430 smp_send_reschedule(cpu);
1431 preempt_enable();
1432}
b43e3521 1433EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1434
30da688e 1435/*
013fdb80 1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1437 */
5da9a0fb
PZ
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
aa00d89c
TC
1440 int nid = cpu_to_node(cpu);
1441 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1442 enum { cpuset, possible, fail } state = cpuset;
1443 int dest_cpu;
5da9a0fb 1444
aa00d89c
TC
1445 /*
1446 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 * will return -1. There is no cpu on the node, and we should
1448 * select the cpu on the other node.
1449 */
1450 if (nid != -1) {
1451 nodemask = cpumask_of_node(nid);
1452
1453 /* Look for allowed, online CPU in same node. */
1454 for_each_cpu(dest_cpu, nodemask) {
1455 if (!cpu_online(dest_cpu))
1456 continue;
1457 if (!cpu_active(dest_cpu))
1458 continue;
1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 return dest_cpu;
1461 }
2baab4e9 1462 }
5da9a0fb 1463
2baab4e9
PZ
1464 for (;;) {
1465 /* Any allowed, online CPU? */
e3831edd 1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1467 if (!cpu_online(dest_cpu))
1468 continue;
1469 if (!cpu_active(dest_cpu))
1470 continue;
1471 goto out;
1472 }
5da9a0fb 1473
e73e85f0 1474 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1475 switch (state) {
1476 case cpuset:
e73e85f0
ON
1477 if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 cpuset_cpus_allowed_fallback(p);
1479 state = possible;
1480 break;
1481 }
1482 /* fall-through */
2baab4e9
PZ
1483 case possible:
1484 do_set_cpus_allowed(p, cpu_possible_mask);
1485 state = fail;
1486 break;
1487
1488 case fail:
1489 BUG();
1490 break;
1491 }
1492 }
1493
1494out:
1495 if (state != cpuset) {
1496 /*
1497 * Don't tell them about moving exiting tasks or
1498 * kernel threads (both mm NULL), since they never
1499 * leave kernel.
1500 */
1501 if (p->mm && printk_ratelimit()) {
aac74dc4 1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1503 task_pid_nr(p), p->comm, cpu);
1504 }
5da9a0fb
PZ
1505 }
1506
1507 return dest_cpu;
1508}
1509
e2912009 1510/*
013fdb80 1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1512 */
970b13ba 1513static inline
ac66f547 1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1515{
cbce1a68
PZ
1516 lockdep_assert_held(&p->pi_lock);
1517
6c1d9410
WL
1518 if (p->nr_cpus_allowed > 1)
1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1520
1521 /*
1522 * In order not to call set_task_cpu() on a blocking task we need
1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 * cpu.
1525 *
1526 * Since this is common to all placement strategies, this lives here.
1527 *
1528 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 * not worry about this generic constraint ]
1530 */
fa17b507 1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1532 !cpu_online(cpu)))
5da9a0fb 1533 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1534
1535 return cpu;
970b13ba 1536}
09a40af5
MG
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540 s64 diff = sample - *avg;
1541 *avg += diff >> 3;
1542}
25834c73
PZ
1543
1544#else
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 const struct cpumask *new_mask, bool check)
1548{
1549 return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
5cc389bc 1552#endif /* CONFIG_SMP */
970b13ba 1553
d7c01d27 1554static void
b84cb5df 1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1556{
d7c01d27 1557#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1558 struct rq *rq = this_rq();
1559
d7c01d27
PZ
1560#ifdef CONFIG_SMP
1561 int this_cpu = smp_processor_id();
1562
1563 if (cpu == this_cpu) {
1564 schedstat_inc(rq, ttwu_local);
1565 schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 } else {
1567 struct sched_domain *sd;
1568
1569 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1570 rcu_read_lock();
d7c01d27
PZ
1571 for_each_domain(this_cpu, sd) {
1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 schedstat_inc(sd, ttwu_wake_remote);
1574 break;
1575 }
1576 }
057f3fad 1577 rcu_read_unlock();
d7c01d27 1578 }
f339b9dc
PZ
1579
1580 if (wake_flags & WF_MIGRATED)
1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
d7c01d27
PZ
1583#endif /* CONFIG_SMP */
1584
1585 schedstat_inc(rq, ttwu_count);
9ed3811a 1586 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1587
1588 if (wake_flags & WF_SYNC)
9ed3811a 1589 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1590
d7c01d27
PZ
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1de64443 1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1595{
9ed3811a 1596 activate_task(rq, p, en_flags);
da0c1e65 1597 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1598
1599 /* if a worker is waking up, notify workqueue */
1600 if (p->flags & PF_WQ_WORKER)
1601 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1602}
1603
23f41eeb
PZ
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
89363381 1607static void
23f41eeb 1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1609{
9ed3811a 1610 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1611 p->state = TASK_RUNNING;
fbd705a0
PZ
1612 trace_sched_wakeup(p);
1613
9ed3811a 1614#ifdef CONFIG_SMP
4c9a4bc8
PZ
1615 if (p->sched_class->task_woken) {
1616 /*
cbce1a68
PZ
1617 * Our task @p is fully woken up and running; so its safe to
1618 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1619 */
cbce1a68 1620 lockdep_unpin_lock(&rq->lock);
9ed3811a 1621 p->sched_class->task_woken(rq, p);
cbce1a68 1622 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1623 }
9ed3811a 1624
e69c6341 1625 if (rq->idle_stamp) {
78becc27 1626 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1627 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1628
abfafa54
JL
1629 update_avg(&rq->avg_idle, delta);
1630
1631 if (rq->avg_idle > max)
9ed3811a 1632 rq->avg_idle = max;
abfafa54 1633
9ed3811a
TH
1634 rq->idle_stamp = 0;
1635 }
1636#endif
1637}
1638
c05fbafb
PZ
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641{
cbce1a68
PZ
1642 lockdep_assert_held(&rq->lock);
1643
c05fbafb
PZ
1644#ifdef CONFIG_SMP
1645 if (p->sched_contributes_to_load)
1646 rq->nr_uninterruptible--;
1647#endif
1648
1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
1661 struct rq *rq;
1662 int ret = 0;
1663
1664 rq = __task_rq_lock(p);
da0c1e65 1665 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1666 /* check_preempt_curr() may use rq clock */
1667 update_rq_clock(rq);
c05fbafb
PZ
1668 ttwu_do_wakeup(rq, p, wake_flags);
1669 ret = 1;
1670 }
1671 __task_rq_unlock(rq);
1672
1673 return ret;
1674}
1675
317f3941 1676#ifdef CONFIG_SMP
e3baac47 1677void sched_ttwu_pending(void)
317f3941
PZ
1678{
1679 struct rq *rq = this_rq();
fa14ff4a
PZ
1680 struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 struct task_struct *p;
e3baac47 1682 unsigned long flags;
317f3941 1683
e3baac47
PZ
1684 if (!llist)
1685 return;
1686
1687 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1688 lockdep_pin_lock(&rq->lock);
317f3941 1689
fa14ff4a
PZ
1690 while (llist) {
1691 p = llist_entry(llist, struct task_struct, wake_entry);
1692 llist = llist_next(llist);
317f3941
PZ
1693 ttwu_do_activate(rq, p, 0);
1694 }
1695
cbce1a68 1696 lockdep_unpin_lock(&rq->lock);
e3baac47 1697 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1698}
1699
1700void scheduler_ipi(void)
1701{
f27dde8d
PZ
1702 /*
1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 * this IPI.
1706 */
8cb75e0c 1707 preempt_fold_need_resched();
f27dde8d 1708
fd2ac4f4 1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1710 return;
1711
1712 /*
1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 * traditionally all their work was done from the interrupt return
1715 * path. Now that we actually do some work, we need to make sure
1716 * we do call them.
1717 *
1718 * Some archs already do call them, luckily irq_enter/exit nest
1719 * properly.
1720 *
1721 * Arguably we should visit all archs and update all handlers,
1722 * however a fair share of IPIs are still resched only so this would
1723 * somewhat pessimize the simple resched case.
1724 */
1725 irq_enter();
fa14ff4a 1726 sched_ttwu_pending();
ca38062e
SS
1727
1728 /*
1729 * Check if someone kicked us for doing the nohz idle load balance.
1730 */
873b4c65 1731 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1732 this_rq()->idle_balance = 1;
ca38062e 1733 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1734 }
c5d753a5 1735 irq_exit();
317f3941
PZ
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739{
e3baac47
PZ
1740 struct rq *rq = cpu_rq(cpu);
1741
1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 if (!set_nr_if_polling(rq->idle))
1744 smp_send_reschedule(cpu);
1745 else
1746 trace_sched_wake_idle_without_ipi(cpu);
1747 }
317f3941 1748}
d6aa8f85 1749
f6be8af1
CL
1750void wake_up_if_idle(int cpu)
1751{
1752 struct rq *rq = cpu_rq(cpu);
1753 unsigned long flags;
1754
fd7de1e8
AL
1755 rcu_read_lock();
1756
1757 if (!is_idle_task(rcu_dereference(rq->curr)))
1758 goto out;
f6be8af1
CL
1759
1760 if (set_nr_if_polling(rq->idle)) {
1761 trace_sched_wake_idle_without_ipi(cpu);
1762 } else {
1763 raw_spin_lock_irqsave(&rq->lock, flags);
1764 if (is_idle_task(rq->curr))
1765 smp_send_reschedule(cpu);
1766 /* Else cpu is not in idle, do nothing here */
1767 raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 }
fd7de1e8
AL
1769
1770out:
1771 rcu_read_unlock();
f6be8af1
CL
1772}
1773
39be3501 1774bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1775{
1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
d6aa8f85 1778#endif /* CONFIG_SMP */
317f3941 1779
c05fbafb
PZ
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782 struct rq *rq = cpu_rq(cpu);
1783
17d9f311 1784#if defined(CONFIG_SMP)
39be3501 1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1787 ttwu_queue_remote(p, cpu);
1788 return;
1789 }
1790#endif
1791
c05fbafb 1792 raw_spin_lock(&rq->lock);
cbce1a68 1793 lockdep_pin_lock(&rq->lock);
c05fbafb 1794 ttwu_do_activate(rq, p, 0);
cbce1a68 1795 lockdep_unpin_lock(&rq->lock);
c05fbafb 1796 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1797}
1798
8643cda5
PZ
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 * MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 * rq(c1)->lock (if not at the same time, then in that order).
1813 * C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 * CPU0 CPU1 CPU2
1822 *
1823 * LOCK rq(0)->lock
1824 * sched-out X
1825 * sched-in Y
1826 * UNLOCK rq(0)->lock
1827 *
1828 * LOCK rq(0)->lock // orders against CPU0
1829 * dequeue X
1830 * UNLOCK rq(0)->lock
1831 *
1832 * LOCK rq(1)->lock
1833 * enqueue X
1834 * UNLOCK rq(1)->lock
1835 *
1836 * LOCK rq(1)->lock // orders against CPU2
1837 * sched-out Z
1838 * sched-in X
1839 * UNLOCK rq(1)->lock
1840 *
1841 *
1842 * BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 * 1) smp_store_release(X->on_cpu, 0)
1849 * 2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 * LOCK rq(0)->lock LOCK X->pi_lock
1856 * dequeue X
1857 * sched-out X
1858 * smp_store_release(X->on_cpu, 0);
1859 *
1860 * smp_cond_acquire(!X->on_cpu);
1861 * X->state = WAKING
1862 * set_task_cpu(X,2)
1863 *
1864 * LOCK rq(2)->lock
1865 * enqueue X
1866 * X->state = RUNNING
1867 * UNLOCK rq(2)->lock
1868 *
1869 * LOCK rq(2)->lock // orders against CPU1
1870 * sched-out Z
1871 * sched-in X
1872 * UNLOCK rq(2)->lock
1873 *
1874 * UNLOCK X->pi_lock
1875 * UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
9ed3811a 1890/**
1da177e4 1891 * try_to_wake_up - wake up a thread
9ed3811a 1892 * @p: the thread to be awakened
1da177e4 1893 * @state: the mask of task states that can be woken
9ed3811a 1894 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
e69f6186 1902 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1903 * or @state didn't match @p's state.
1da177e4 1904 */
e4a52bcb
PZ
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1907{
1da177e4 1908 unsigned long flags;
c05fbafb 1909 int cpu, success = 0;
2398f2c6 1910
e0acd0a6
ON
1911 /*
1912 * If we are going to wake up a thread waiting for CONDITION we
1913 * need to ensure that CONDITION=1 done by the caller can not be
1914 * reordered with p->state check below. This pairs with mb() in
1915 * set_current_state() the waiting thread does.
1916 */
1917 smp_mb__before_spinlock();
013fdb80 1918 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1919 if (!(p->state & state))
1da177e4
LT
1920 goto out;
1921
fbd705a0
PZ
1922 trace_sched_waking(p);
1923
c05fbafb 1924 success = 1; /* we're going to change ->state */
1da177e4 1925 cpu = task_cpu(p);
1da177e4 1926
c05fbafb
PZ
1927 if (p->on_rq && ttwu_remote(p, wake_flags))
1928 goto stat;
1da177e4 1929
1da177e4 1930#ifdef CONFIG_SMP
ecf7d01c
PZ
1931 /*
1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 * possible to, falsely, observe p->on_cpu == 0.
1934 *
1935 * One must be running (->on_cpu == 1) in order to remove oneself
1936 * from the runqueue.
1937 *
1938 * [S] ->on_cpu = 1; [L] ->on_rq
1939 * UNLOCK rq->lock
1940 * RMB
1941 * LOCK rq->lock
1942 * [S] ->on_rq = 0; [L] ->on_cpu
1943 *
1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 * from the consecutive calls to schedule(); the first switching to our
1946 * task, the second putting it to sleep.
1947 */
1948 smp_rmb();
1949
e9c84311 1950 /*
c05fbafb
PZ
1951 * If the owning (remote) cpu is still in the middle of schedule() with
1952 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1953 *
1954 * Pairs with the smp_store_release() in finish_lock_switch().
1955 *
1956 * This ensures that tasks getting woken will be fully ordered against
1957 * their previous state and preserve Program Order.
0970d299 1958 */
b3e0b1b6 1959 smp_cond_acquire(!p->on_cpu);
1da177e4 1960
a8e4f2ea 1961 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1962 p->state = TASK_WAKING;
e7693a36 1963
e4a52bcb 1964 if (p->sched_class->task_waking)
74f8e4b2 1965 p->sched_class->task_waking(p);
efbbd05a 1966
ac66f547 1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1968 if (task_cpu(p) != cpu) {
1969 wake_flags |= WF_MIGRATED;
e4a52bcb 1970 set_task_cpu(p, cpu);
f339b9dc 1971 }
1da177e4 1972#endif /* CONFIG_SMP */
1da177e4 1973
c05fbafb
PZ
1974 ttwu_queue(p, cpu);
1975stat:
cb251765
MG
1976 if (schedstat_enabled())
1977 ttwu_stat(p, cpu, wake_flags);
1da177e4 1978out:
013fdb80 1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1980
1981 return success;
1982}
1983
21aa9af0
TH
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
2acca55e 1988 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1990 * the current task.
21aa9af0
TH
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994 struct rq *rq = task_rq(p);
21aa9af0 1995
383efcd0
TH
1996 if (WARN_ON_ONCE(rq != this_rq()) ||
1997 WARN_ON_ONCE(p == current))
1998 return;
1999
21aa9af0
TH
2000 lockdep_assert_held(&rq->lock);
2001
2acca55e 2002 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2003 /*
2004 * This is OK, because current is on_cpu, which avoids it being
2005 * picked for load-balance and preemption/IRQs are still
2006 * disabled avoiding further scheduler activity on it and we've
2007 * not yet picked a replacement task.
2008 */
2009 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2010 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&p->pi_lock);
2012 raw_spin_lock(&rq->lock);
cbce1a68 2013 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2014 }
2015
21aa9af0 2016 if (!(p->state & TASK_NORMAL))
2acca55e 2017 goto out;
21aa9af0 2018
fbd705a0
PZ
2019 trace_sched_waking(p);
2020
da0c1e65 2021 if (!task_on_rq_queued(p))
d7c01d27
PZ
2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
23f41eeb 2024 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2025 if (schedstat_enabled())
2026 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2027out:
2028 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2029}
2030
50fa610a
DH
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
7ad5b3a5 2043int wake_up_process(struct task_struct *p)
1da177e4 2044{
9067ac85 2045 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2046}
1da177e4
LT
2047EXPORT_SYMBOL(wake_up_process);
2048
7ad5b3a5 2049int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2050{
2051 return try_to_wake_up(p, state, 0);
2052}
2053
a5e7be3b
JL
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059 struct sched_dl_entity *dl_se = &p->dl;
2060
2061 dl_se->dl_runtime = 0;
2062 dl_se->dl_deadline = 0;
2063 dl_se->dl_period = 0;
2064 dl_se->flags = 0;
2065 dl_se->dl_bw = 0;
40767b0d
PZ
2066
2067 dl_se->dl_throttled = 0;
40767b0d 2068 dl_se->dl_yielded = 0;
a5e7be3b
JL
2069}
2070
1da177e4
LT
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
dd41f596
IM
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
5e1576ed 2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2078{
fd2f4419
PZ
2079 p->on_rq = 0;
2080
2081 p->se.on_rq = 0;
dd41f596
IM
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
f6cf891c 2084 p->se.prev_sum_exec_runtime = 0;
6c594c21 2085 p->se.nr_migrations = 0;
da7a735e 2086 p->se.vruntime = 0;
fd2f4419 2087 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2088
ad936d86
BP
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090 p->se.cfs_rq = NULL;
2091#endif
2092
6cfb0d5d 2093#ifdef CONFIG_SCHEDSTATS
cb251765 2094 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2096#endif
476d139c 2097
aab03e05 2098 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2099 init_dl_task_timer(&p->dl);
a5e7be3b 2100 __dl_clear_params(p);
aab03e05 2101
fa717060 2102 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2103 p->rt.timeout = 0;
2104 p->rt.time_slice = sched_rr_timeslice;
2105 p->rt.on_rq = 0;
2106 p->rt.on_list = 0;
476d139c 2107
e107be36
AK
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109 INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
cbee9f88
PZ
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2115 p->mm->numa_scan_seq = 0;
2116 }
2117
5e1576ed
RR
2118 if (clone_flags & CLONE_VM)
2119 p->numa_preferred_nid = current->numa_preferred_nid;
2120 else
2121 p->numa_preferred_nid = -1;
2122
cbee9f88
PZ
2123 p->node_stamp = 0ULL;
2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2126 p->numa_work.next = &p->numa_work;
44dba3d5 2127 p->numa_faults = NULL;
7e2703e6
RR
2128 p->last_task_numa_placement = 0;
2129 p->last_sum_exec_runtime = 0;
8c8a743c 2130
8c8a743c 2131 p->numa_group = NULL;
cbee9f88 2132#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2133}
2134
2a595721
SD
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
1a687c2e 2137#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2138
1a687c2e
MG
2139void set_numabalancing_state(bool enabled)
2140{
2141 if (enabled)
2a595721 2142 static_branch_enable(&sched_numa_balancing);
1a687c2e 2143 else
2a595721 2144 static_branch_disable(&sched_numa_balancing);
1a687c2e 2145}
54a43d54
AK
2146
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *lenp, loff_t *ppos)
2150{
2151 struct ctl_table t;
2152 int err;
2a595721 2153 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2154
2155 if (write && !capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 t = *table;
2159 t.data = &state;
2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 if (err < 0)
2162 return err;
2163 if (write)
2164 set_numabalancing_state(state);
2165 return err;
2166}
2167#endif
2168#endif
dd41f596 2169
cb251765
MG
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175 if (enabled)
2176 static_branch_enable(&sched_schedstats);
2177 else
2178 static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183 if (!schedstat_enabled()) {
2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 static_branch_enable(&sched_schedstats);
2186 }
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191 int ret = 0;
2192 if (!str)
2193 goto out;
2194
2195 if (!strcmp(str, "enable")) {
2196 set_schedstats(true);
2197 ret = 1;
2198 } else if (!strcmp(str, "disable")) {
2199 set_schedstats(false);
2200 ret = 1;
2201 }
2202out:
2203 if (!ret)
2204 pr_warn("Unable to parse schedstats=\n");
2205
2206 return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214 struct ctl_table t;
2215 int err;
2216 int state = static_branch_likely(&sched_schedstats);
2217
2218 if (write && !capable(CAP_SYS_ADMIN))
2219 return -EPERM;
2220
2221 t = *table;
2222 t.data = &state;
2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 if (err < 0)
2225 return err;
2226 if (write)
2227 set_schedstats(state);
2228 return err;
2229}
2230#endif
2231#endif
dd41f596
IM
2232
2233/*
2234 * fork()/clone()-time setup:
2235 */
aab03e05 2236int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2237{
0122ec5b 2238 unsigned long flags;
dd41f596
IM
2239 int cpu = get_cpu();
2240
5e1576ed 2241 __sched_fork(clone_flags, p);
06b83b5f 2242 /*
0017d735 2243 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2244 * nobody will actually run it, and a signal or other external
2245 * event cannot wake it up and insert it on the runqueue either.
2246 */
0017d735 2247 p->state = TASK_RUNNING;
dd41f596 2248
c350a04e
MG
2249 /*
2250 * Make sure we do not leak PI boosting priority to the child.
2251 */
2252 p->prio = current->normal_prio;
2253
b9dc29e7
MG
2254 /*
2255 * Revert to default priority/policy on fork if requested.
2256 */
2257 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2258 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2259 p->policy = SCHED_NORMAL;
6c697bdf 2260 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2261 p->rt_priority = 0;
2262 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2263 p->static_prio = NICE_TO_PRIO(0);
2264
2265 p->prio = p->normal_prio = __normal_prio(p);
2266 set_load_weight(p);
6c697bdf 2267
b9dc29e7
MG
2268 /*
2269 * We don't need the reset flag anymore after the fork. It has
2270 * fulfilled its duty:
2271 */
2272 p->sched_reset_on_fork = 0;
2273 }
ca94c442 2274
aab03e05
DF
2275 if (dl_prio(p->prio)) {
2276 put_cpu();
2277 return -EAGAIN;
2278 } else if (rt_prio(p->prio)) {
2279 p->sched_class = &rt_sched_class;
2280 } else {
2ddbf952 2281 p->sched_class = &fair_sched_class;
aab03e05 2282 }
b29739f9 2283
cd29fe6f
PZ
2284 if (p->sched_class->task_fork)
2285 p->sched_class->task_fork(p);
2286
86951599
PZ
2287 /*
2288 * The child is not yet in the pid-hash so no cgroup attach races,
2289 * and the cgroup is pinned to this child due to cgroup_fork()
2290 * is ran before sched_fork().
2291 *
2292 * Silence PROVE_RCU.
2293 */
0122ec5b 2294 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2295 set_task_cpu(p, cpu);
0122ec5b 2296 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2297
f6db8347 2298#ifdef CONFIG_SCHED_INFO
dd41f596 2299 if (likely(sched_info_on()))
52f17b6c 2300 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2301#endif
3ca7a440
PZ
2302#if defined(CONFIG_SMP)
2303 p->on_cpu = 0;
4866cde0 2304#endif
01028747 2305 init_task_preempt_count(p);
806c09a7 2306#ifdef CONFIG_SMP
917b627d 2307 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2308 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2309#endif
917b627d 2310
476d139c 2311 put_cpu();
aab03e05 2312 return 0;
1da177e4
LT
2313}
2314
332ac17e
DF
2315unsigned long to_ratio(u64 period, u64 runtime)
2316{
2317 if (runtime == RUNTIME_INF)
2318 return 1ULL << 20;
2319
2320 /*
2321 * Doing this here saves a lot of checks in all
2322 * the calling paths, and returning zero seems
2323 * safe for them anyway.
2324 */
2325 if (period == 0)
2326 return 0;
2327
2328 return div64_u64(runtime << 20, period);
2329}
2330
2331#ifdef CONFIG_SMP
2332inline struct dl_bw *dl_bw_of(int i)
2333{
f78f5b90
PM
2334 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2335 "sched RCU must be held");
332ac17e
DF
2336 return &cpu_rq(i)->rd->dl_bw;
2337}
2338
de212f18 2339static inline int dl_bw_cpus(int i)
332ac17e 2340{
de212f18
PZ
2341 struct root_domain *rd = cpu_rq(i)->rd;
2342 int cpus = 0;
2343
f78f5b90
PM
2344 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2345 "sched RCU must be held");
de212f18
PZ
2346 for_each_cpu_and(i, rd->span, cpu_active_mask)
2347 cpus++;
2348
2349 return cpus;
332ac17e
DF
2350}
2351#else
2352inline struct dl_bw *dl_bw_of(int i)
2353{
2354 return &cpu_rq(i)->dl.dl_bw;
2355}
2356
de212f18 2357static inline int dl_bw_cpus(int i)
332ac17e
DF
2358{
2359 return 1;
2360}
2361#endif
2362
332ac17e
DF
2363/*
2364 * We must be sure that accepting a new task (or allowing changing the
2365 * parameters of an existing one) is consistent with the bandwidth
2366 * constraints. If yes, this function also accordingly updates the currently
2367 * allocated bandwidth to reflect the new situation.
2368 *
2369 * This function is called while holding p's rq->lock.
40767b0d
PZ
2370 *
2371 * XXX we should delay bw change until the task's 0-lag point, see
2372 * __setparam_dl().
332ac17e
DF
2373 */
2374static int dl_overflow(struct task_struct *p, int policy,
2375 const struct sched_attr *attr)
2376{
2377
2378 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2379 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2380 u64 runtime = attr->sched_runtime;
2381 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2382 int cpus, err = -1;
332ac17e
DF
2383
2384 if (new_bw == p->dl.dl_bw)
2385 return 0;
2386
2387 /*
2388 * Either if a task, enters, leave, or stays -deadline but changes
2389 * its parameters, we may need to update accordingly the total
2390 * allocated bandwidth of the container.
2391 */
2392 raw_spin_lock(&dl_b->lock);
de212f18 2393 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2394 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2395 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2396 __dl_add(dl_b, new_bw);
2397 err = 0;
2398 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2399 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2400 __dl_clear(dl_b, p->dl.dl_bw);
2401 __dl_add(dl_b, new_bw);
2402 err = 0;
2403 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2404 __dl_clear(dl_b, p->dl.dl_bw);
2405 err = 0;
2406 }
2407 raw_spin_unlock(&dl_b->lock);
2408
2409 return err;
2410}
2411
2412extern void init_dl_bw(struct dl_bw *dl_b);
2413
1da177e4
LT
2414/*
2415 * wake_up_new_task - wake up a newly created task for the first time.
2416 *
2417 * This function will do some initial scheduler statistics housekeeping
2418 * that must be done for every newly created context, then puts the task
2419 * on the runqueue and wakes it.
2420 */
3e51e3ed 2421void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2422{
2423 unsigned long flags;
dd41f596 2424 struct rq *rq;
fabf318e 2425
ab2515c4 2426 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2427 /* Initialize new task's runnable average */
2428 init_entity_runnable_average(&p->se);
fabf318e
PZ
2429#ifdef CONFIG_SMP
2430 /*
2431 * Fork balancing, do it here and not earlier because:
2432 * - cpus_allowed can change in the fork path
2433 * - any previously selected cpu might disappear through hotplug
fabf318e 2434 */
ac66f547 2435 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2436#endif
2437
ab2515c4 2438 rq = __task_rq_lock(p);
cd29fe6f 2439 activate_task(rq, p, 0);
da0c1e65 2440 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2441 trace_sched_wakeup_new(p);
a7558e01 2442 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2443#ifdef CONFIG_SMP
0aaafaab
PZ
2444 if (p->sched_class->task_woken) {
2445 /*
2446 * Nothing relies on rq->lock after this, so its fine to
2447 * drop it.
2448 */
2449 lockdep_unpin_lock(&rq->lock);
efbbd05a 2450 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2451 lockdep_pin_lock(&rq->lock);
2452 }
9a897c5a 2453#endif
0122ec5b 2454 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2455}
2456
e107be36
AK
2457#ifdef CONFIG_PREEMPT_NOTIFIERS
2458
1cde2930
PZ
2459static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2460
2ecd9d29
PZ
2461void preempt_notifier_inc(void)
2462{
2463 static_key_slow_inc(&preempt_notifier_key);
2464}
2465EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2466
2467void preempt_notifier_dec(void)
2468{
2469 static_key_slow_dec(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2472
e107be36 2473/**
80dd99b3 2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2475 * @notifier: notifier struct to register
e107be36
AK
2476 */
2477void preempt_notifier_register(struct preempt_notifier *notifier)
2478{
2ecd9d29
PZ
2479 if (!static_key_false(&preempt_notifier_key))
2480 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2481
e107be36
AK
2482 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2483}
2484EXPORT_SYMBOL_GPL(preempt_notifier_register);
2485
2486/**
2487 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2488 * @notifier: notifier struct to unregister
e107be36 2489 *
d84525a8 2490 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2491 */
2492void preempt_notifier_unregister(struct preempt_notifier *notifier)
2493{
2494 hlist_del(&notifier->link);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2497
1cde2930 2498static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2499{
2500 struct preempt_notifier *notifier;
e107be36 2501
b67bfe0d 2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2503 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504}
2505
1cde2930
PZ
2506static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508 if (static_key_false(&preempt_notifier_key))
2509 __fire_sched_in_preempt_notifiers(curr);
2510}
2511
e107be36 2512static void
1cde2930
PZ
2513__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2514 struct task_struct *next)
e107be36
AK
2515{
2516 struct preempt_notifier *notifier;
e107be36 2517
b67bfe0d 2518 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2519 notifier->ops->sched_out(notifier, next);
2520}
2521
1cde2930
PZ
2522static __always_inline void
2523fire_sched_out_preempt_notifiers(struct task_struct *curr,
2524 struct task_struct *next)
2525{
2526 if (static_key_false(&preempt_notifier_key))
2527 __fire_sched_out_preempt_notifiers(curr, next);
2528}
2529
6d6bc0ad 2530#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2531
1cde2930 2532static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2533{
2534}
2535
1cde2930 2536static inline void
e107be36
AK
2537fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538 struct task_struct *next)
2539{
2540}
2541
6d6bc0ad 2542#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2543
4866cde0
NP
2544/**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
421cee29 2547 * @prev: the current task that is being switched out
4866cde0
NP
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
e107be36
AK
2557static inline void
2558prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559 struct task_struct *next)
4866cde0 2560{
43148951 2561 sched_info_switch(rq, prev, next);
fe4b04fa 2562 perf_event_task_sched_out(prev, next);
e107be36 2563 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566}
2567
1da177e4
LT
2568/**
2569 * finish_task_switch - clean up after a task-switch
2570 * @prev: the thread we just switched away from.
2571 *
4866cde0
NP
2572 * finish_task_switch must be called after the context switch, paired
2573 * with a prepare_task_switch call before the context switch.
2574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2576 *
2577 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2578 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2579 * with the lock held can cause deadlocks; see schedule() for
2580 * details.)
dfa50b60
ON
2581 *
2582 * The context switch have flipped the stack from under us and restored the
2583 * local variables which were saved when this task called schedule() in the
2584 * past. prev == current is still correct but we need to recalculate this_rq
2585 * because prev may have moved to another CPU.
1da177e4 2586 */
dfa50b60 2587static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2588 __releases(rq->lock)
2589{
dfa50b60 2590 struct rq *rq = this_rq();
1da177e4 2591 struct mm_struct *mm = rq->prev_mm;
55a101f8 2592 long prev_state;
1da177e4 2593
609ca066
PZ
2594 /*
2595 * The previous task will have left us with a preempt_count of 2
2596 * because it left us after:
2597 *
2598 * schedule()
2599 * preempt_disable(); // 1
2600 * __schedule()
2601 * raw_spin_lock_irq(&rq->lock) // 2
2602 *
2603 * Also, see FORK_PREEMPT_COUNT.
2604 */
e2bf1c4b
PZ
2605 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2606 "corrupted preempt_count: %s/%d/0x%x\n",
2607 current->comm, current->pid, preempt_count()))
2608 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2609
1da177e4
LT
2610 rq->prev_mm = NULL;
2611
2612 /*
2613 * A task struct has one reference for the use as "current".
c394cc9f 2614 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2615 * schedule one last time. The schedule call will never return, and
2616 * the scheduled task must drop that reference.
95913d97
PZ
2617 *
2618 * We must observe prev->state before clearing prev->on_cpu (in
2619 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2620 * running on another CPU and we could rave with its RUNNING -> DEAD
2621 * transition, resulting in a double drop.
1da177e4 2622 */
55a101f8 2623 prev_state = prev->state;
bf9fae9f 2624 vtime_task_switch(prev);
a8d757ef 2625 perf_event_task_sched_in(prev, current);
4866cde0 2626 finish_lock_switch(rq, prev);
01f23e16 2627 finish_arch_post_lock_switch();
e8fa1362 2628
e107be36 2629 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2630 if (mm)
2631 mmdrop(mm);
c394cc9f 2632 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2633 if (prev->sched_class->task_dead)
2634 prev->sched_class->task_dead(prev);
2635
c6fd91f0 2636 /*
2637 * Remove function-return probe instances associated with this
2638 * task and put them back on the free list.
9761eea8 2639 */
c6fd91f0 2640 kprobe_flush_task(prev);
1da177e4 2641 put_task_struct(prev);
c6fd91f0 2642 }
99e5ada9 2643
de734f89 2644 tick_nohz_task_switch();
dfa50b60 2645 return rq;
1da177e4
LT
2646}
2647
3f029d3c
GH
2648#ifdef CONFIG_SMP
2649
3f029d3c 2650/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2651static void __balance_callback(struct rq *rq)
3f029d3c 2652{
e3fca9e7
PZ
2653 struct callback_head *head, *next;
2654 void (*func)(struct rq *rq);
2655 unsigned long flags;
3f029d3c 2656
e3fca9e7
PZ
2657 raw_spin_lock_irqsave(&rq->lock, flags);
2658 head = rq->balance_callback;
2659 rq->balance_callback = NULL;
2660 while (head) {
2661 func = (void (*)(struct rq *))head->func;
2662 next = head->next;
2663 head->next = NULL;
2664 head = next;
3f029d3c 2665
e3fca9e7 2666 func(rq);
3f029d3c 2667 }
e3fca9e7
PZ
2668 raw_spin_unlock_irqrestore(&rq->lock, flags);
2669}
2670
2671static inline void balance_callback(struct rq *rq)
2672{
2673 if (unlikely(rq->balance_callback))
2674 __balance_callback(rq);
3f029d3c
GH
2675}
2676
2677#else
da19ab51 2678
e3fca9e7 2679static inline void balance_callback(struct rq *rq)
3f029d3c 2680{
1da177e4
LT
2681}
2682
3f029d3c
GH
2683#endif
2684
1da177e4
LT
2685/**
2686 * schedule_tail - first thing a freshly forked thread must call.
2687 * @prev: the thread we just switched away from.
2688 */
722a9f92 2689asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2690 __releases(rq->lock)
2691{
1a43a14a 2692 struct rq *rq;
da19ab51 2693
609ca066
PZ
2694 /*
2695 * New tasks start with FORK_PREEMPT_COUNT, see there and
2696 * finish_task_switch() for details.
2697 *
2698 * finish_task_switch() will drop rq->lock() and lower preempt_count
2699 * and the preempt_enable() will end up enabling preemption (on
2700 * PREEMPT_COUNT kernels).
2701 */
2702
dfa50b60 2703 rq = finish_task_switch(prev);
e3fca9e7 2704 balance_callback(rq);
1a43a14a 2705 preempt_enable();
70b97a7f 2706
1da177e4 2707 if (current->set_child_tid)
b488893a 2708 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2709}
2710
2711/*
dfa50b60 2712 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2713 */
04936948 2714static __always_inline struct rq *
70b97a7f 2715context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2716 struct task_struct *next)
1da177e4 2717{
dd41f596 2718 struct mm_struct *mm, *oldmm;
1da177e4 2719
e107be36 2720 prepare_task_switch(rq, prev, next);
fe4b04fa 2721
dd41f596
IM
2722 mm = next->mm;
2723 oldmm = prev->active_mm;
9226d125
ZA
2724 /*
2725 * For paravirt, this is coupled with an exit in switch_to to
2726 * combine the page table reload and the switch backend into
2727 * one hypercall.
2728 */
224101ed 2729 arch_start_context_switch(prev);
9226d125 2730
31915ab4 2731 if (!mm) {
1da177e4
LT
2732 next->active_mm = oldmm;
2733 atomic_inc(&oldmm->mm_count);
2734 enter_lazy_tlb(oldmm, next);
2735 } else
2736 switch_mm(oldmm, mm, next);
2737
31915ab4 2738 if (!prev->mm) {
1da177e4 2739 prev->active_mm = NULL;
1da177e4
LT
2740 rq->prev_mm = oldmm;
2741 }
3a5f5e48
IM
2742 /*
2743 * Since the runqueue lock will be released by the next
2744 * task (which is an invalid locking op but in the case
2745 * of the scheduler it's an obvious special-case), so we
2746 * do an early lockdep release here:
2747 */
cbce1a68 2748 lockdep_unpin_lock(&rq->lock);
8a25d5de 2749 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2750
2751 /* Here we just switch the register state and the stack. */
2752 switch_to(prev, next, prev);
dd41f596 2753 barrier();
dfa50b60
ON
2754
2755 return finish_task_switch(prev);
1da177e4
LT
2756}
2757
2758/*
1c3e8264 2759 * nr_running and nr_context_switches:
1da177e4
LT
2760 *
2761 * externally visible scheduler statistics: current number of runnable
1c3e8264 2762 * threads, total number of context switches performed since bootup.
1da177e4
LT
2763 */
2764unsigned long nr_running(void)
2765{
2766 unsigned long i, sum = 0;
2767
2768 for_each_online_cpu(i)
2769 sum += cpu_rq(i)->nr_running;
2770
2771 return sum;
f711f609 2772}
1da177e4 2773
2ee507c4
TC
2774/*
2775 * Check if only the current task is running on the cpu.
00cc1633
DD
2776 *
2777 * Caution: this function does not check that the caller has disabled
2778 * preemption, thus the result might have a time-of-check-to-time-of-use
2779 * race. The caller is responsible to use it correctly, for example:
2780 *
2781 * - from a non-preemptable section (of course)
2782 *
2783 * - from a thread that is bound to a single CPU
2784 *
2785 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2786 */
2787bool single_task_running(void)
2788{
00cc1633 2789 return raw_rq()->nr_running == 1;
2ee507c4
TC
2790}
2791EXPORT_SYMBOL(single_task_running);
2792
1da177e4 2793unsigned long long nr_context_switches(void)
46cb4b7c 2794{
cc94abfc
SR
2795 int i;
2796 unsigned long long sum = 0;
46cb4b7c 2797
0a945022 2798 for_each_possible_cpu(i)
1da177e4 2799 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2800
1da177e4
LT
2801 return sum;
2802}
483b4ee6 2803
1da177e4
LT
2804unsigned long nr_iowait(void)
2805{
2806 unsigned long i, sum = 0;
483b4ee6 2807
0a945022 2808 for_each_possible_cpu(i)
1da177e4 2809 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2810
1da177e4
LT
2811 return sum;
2812}
483b4ee6 2813
8c215bd3 2814unsigned long nr_iowait_cpu(int cpu)
69d25870 2815{
8c215bd3 2816 struct rq *this = cpu_rq(cpu);
69d25870
AV
2817 return atomic_read(&this->nr_iowait);
2818}
46cb4b7c 2819
372ba8cb
MG
2820void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2821{
3289bdb4
PZ
2822 struct rq *rq = this_rq();
2823 *nr_waiters = atomic_read(&rq->nr_iowait);
2824 *load = rq->load.weight;
372ba8cb
MG
2825}
2826
dd41f596 2827#ifdef CONFIG_SMP
8a0be9ef 2828
46cb4b7c 2829/*
38022906
PZ
2830 * sched_exec - execve() is a valuable balancing opportunity, because at
2831 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2832 */
38022906 2833void sched_exec(void)
46cb4b7c 2834{
38022906 2835 struct task_struct *p = current;
1da177e4 2836 unsigned long flags;
0017d735 2837 int dest_cpu;
46cb4b7c 2838
8f42ced9 2839 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2840 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2841 if (dest_cpu == smp_processor_id())
2842 goto unlock;
38022906 2843
8f42ced9 2844 if (likely(cpu_active(dest_cpu))) {
969c7921 2845 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2846
8f42ced9
PZ
2847 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2848 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2849 return;
2850 }
0017d735 2851unlock:
8f42ced9 2852 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2853}
dd41f596 2854
1da177e4
LT
2855#endif
2856
1da177e4 2857DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2858DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2859
2860EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2861EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2862
c5f8d995
HS
2863/*
2864 * Return accounted runtime for the task.
2865 * In case the task is currently running, return the runtime plus current's
2866 * pending runtime that have not been accounted yet.
2867 */
2868unsigned long long task_sched_runtime(struct task_struct *p)
2869{
2870 unsigned long flags;
2871 struct rq *rq;
6e998916 2872 u64 ns;
c5f8d995 2873
911b2898
PZ
2874#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2875 /*
2876 * 64-bit doesn't need locks to atomically read a 64bit value.
2877 * So we have a optimization chance when the task's delta_exec is 0.
2878 * Reading ->on_cpu is racy, but this is ok.
2879 *
2880 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2881 * If we race with it entering cpu, unaccounted time is 0. This is
2882 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2883 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2884 * been accounted, so we're correct here as well.
911b2898 2885 */
da0c1e65 2886 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2887 return p->se.sum_exec_runtime;
2888#endif
2889
c5f8d995 2890 rq = task_rq_lock(p, &flags);
6e998916
SG
2891 /*
2892 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2893 * project cycles that may never be accounted to this
2894 * thread, breaking clock_gettime().
2895 */
2896 if (task_current(rq, p) && task_on_rq_queued(p)) {
2897 update_rq_clock(rq);
2898 p->sched_class->update_curr(rq);
2899 }
2900 ns = p->se.sum_exec_runtime;
0122ec5b 2901 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2902
2903 return ns;
2904}
48f24c4d 2905
7835b98b
CL
2906/*
2907 * This function gets called by the timer code, with HZ frequency.
2908 * We call it with interrupts disabled.
7835b98b
CL
2909 */
2910void scheduler_tick(void)
2911{
7835b98b
CL
2912 int cpu = smp_processor_id();
2913 struct rq *rq = cpu_rq(cpu);
dd41f596 2914 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2915
2916 sched_clock_tick();
dd41f596 2917
05fa785c 2918 raw_spin_lock(&rq->lock);
3e51f33f 2919 update_rq_clock(rq);
fa85ae24 2920 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2921 update_cpu_load_active(rq);
3289bdb4 2922 calc_global_load_tick(rq);
05fa785c 2923 raw_spin_unlock(&rq->lock);
7835b98b 2924
e9d2b064 2925 perf_event_task_tick();
e220d2dc 2926
e418e1c2 2927#ifdef CONFIG_SMP
6eb57e0d 2928 rq->idle_balance = idle_cpu(cpu);
7caff66f 2929 trigger_load_balance(rq);
e418e1c2 2930#endif
265f22a9 2931 rq_last_tick_reset(rq);
1da177e4
LT
2932}
2933
265f22a9
FW
2934#ifdef CONFIG_NO_HZ_FULL
2935/**
2936 * scheduler_tick_max_deferment
2937 *
2938 * Keep at least one tick per second when a single
2939 * active task is running because the scheduler doesn't
2940 * yet completely support full dynticks environment.
2941 *
2942 * This makes sure that uptime, CFS vruntime, load
2943 * balancing, etc... continue to move forward, even
2944 * with a very low granularity.
e69f6186
YB
2945 *
2946 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2947 */
2948u64 scheduler_tick_max_deferment(void)
2949{
2950 struct rq *rq = this_rq();
316c1608 2951 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2952
2953 next = rq->last_sched_tick + HZ;
2954
2955 if (time_before_eq(next, now))
2956 return 0;
2957
8fe8ff09 2958 return jiffies_to_nsecs(next - now);
1da177e4 2959}
265f22a9 2960#endif
1da177e4 2961
7e49fcce
SR
2962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2963 defined(CONFIG_PREEMPT_TRACER))
2964
edafe3a5 2965void preempt_count_add(int val)
1da177e4 2966{
6cd8a4bb 2967#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2968 /*
2969 * Underflow?
2970 */
9a11b49a
IM
2971 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2972 return;
6cd8a4bb 2973#endif
bdb43806 2974 __preempt_count_add(val);
6cd8a4bb 2975#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2976 /*
2977 * Spinlock count overflowing soon?
2978 */
33859f7f
MOS
2979 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2980 PREEMPT_MASK - 10);
6cd8a4bb 2981#endif
8f47b187 2982 if (preempt_count() == val) {
f904f582 2983 unsigned long ip = get_lock_parent_ip();
8f47b187
TG
2984#ifdef CONFIG_DEBUG_PREEMPT
2985 current->preempt_disable_ip = ip;
2986#endif
2987 trace_preempt_off(CALLER_ADDR0, ip);
2988 }
1da177e4 2989}
bdb43806 2990EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2991NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2992
edafe3a5 2993void preempt_count_sub(int val)
1da177e4 2994{
6cd8a4bb 2995#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2996 /*
2997 * Underflow?
2998 */
01e3eb82 2999 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3000 return;
1da177e4
LT
3001 /*
3002 * Is the spinlock portion underflowing?
3003 */
9a11b49a
IM
3004 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3005 !(preempt_count() & PREEMPT_MASK)))
3006 return;
6cd8a4bb 3007#endif
9a11b49a 3008
6cd8a4bb 3009 if (preempt_count() == val)
f904f582 3010 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
bdb43806 3011 __preempt_count_sub(val);
1da177e4 3012}
bdb43806 3013EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3014NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
3015
3016#endif
3017
3018/*
dd41f596 3019 * Print scheduling while atomic bug:
1da177e4 3020 */
dd41f596 3021static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3022{
664dfa65
DJ
3023 if (oops_in_progress)
3024 return;
3025
3df0fc5b
PZ
3026 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3027 prev->comm, prev->pid, preempt_count());
838225b4 3028
dd41f596 3029 debug_show_held_locks(prev);
e21f5b15 3030 print_modules();
dd41f596
IM
3031 if (irqs_disabled())
3032 print_irqtrace_events(prev);
8f47b187
TG
3033#ifdef CONFIG_DEBUG_PREEMPT
3034 if (in_atomic_preempt_off()) {
3035 pr_err("Preemption disabled at:");
3036 print_ip_sym(current->preempt_disable_ip);
3037 pr_cont("\n");
3038 }
3039#endif
6135fc1e 3040 dump_stack();
373d4d09 3041 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3042}
1da177e4 3043
dd41f596
IM
3044/*
3045 * Various schedule()-time debugging checks and statistics:
3046 */
3047static inline void schedule_debug(struct task_struct *prev)
3048{
0d9e2632 3049#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3050 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3051#endif
b99def8b 3052
1dc0fffc 3053 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3054 __schedule_bug(prev);
1dc0fffc
PZ
3055 preempt_count_set(PREEMPT_DISABLED);
3056 }
b3fbab05 3057 rcu_sleep_check();
dd41f596 3058
1da177e4
LT
3059 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3060
2d72376b 3061 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3062}
3063
3064/*
3065 * Pick up the highest-prio task:
3066 */
3067static inline struct task_struct *
606dba2e 3068pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3069{
37e117c0 3070 const struct sched_class *class = &fair_sched_class;
dd41f596 3071 struct task_struct *p;
1da177e4
LT
3072
3073 /*
dd41f596
IM
3074 * Optimization: we know that if all tasks are in
3075 * the fair class we can call that function directly:
1da177e4 3076 */
37e117c0 3077 if (likely(prev->sched_class == class &&
38033c37 3078 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3079 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3080 if (unlikely(p == RETRY_TASK))
3081 goto again;
3082
3083 /* assumes fair_sched_class->next == idle_sched_class */
3084 if (unlikely(!p))
3085 p = idle_sched_class.pick_next_task(rq, prev);
3086
3087 return p;
1da177e4
LT
3088 }
3089
37e117c0 3090again:
34f971f6 3091 for_each_class(class) {
606dba2e 3092 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3093 if (p) {
3094 if (unlikely(p == RETRY_TASK))
3095 goto again;
dd41f596 3096 return p;
37e117c0 3097 }
dd41f596 3098 }
34f971f6
PZ
3099
3100 BUG(); /* the idle class will always have a runnable task */
dd41f596 3101}
1da177e4 3102
dd41f596 3103/*
c259e01a 3104 * __schedule() is the main scheduler function.
edde96ea
PE
3105 *
3106 * The main means of driving the scheduler and thus entering this function are:
3107 *
3108 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3109 *
3110 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3111 * paths. For example, see arch/x86/entry_64.S.
3112 *
3113 * To drive preemption between tasks, the scheduler sets the flag in timer
3114 * interrupt handler scheduler_tick().
3115 *
3116 * 3. Wakeups don't really cause entry into schedule(). They add a
3117 * task to the run-queue and that's it.
3118 *
3119 * Now, if the new task added to the run-queue preempts the current
3120 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3121 * called on the nearest possible occasion:
3122 *
3123 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3124 *
3125 * - in syscall or exception context, at the next outmost
3126 * preempt_enable(). (this might be as soon as the wake_up()'s
3127 * spin_unlock()!)
3128 *
3129 * - in IRQ context, return from interrupt-handler to
3130 * preemptible context
3131 *
3132 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3133 * then at the next:
3134 *
3135 * - cond_resched() call
3136 * - explicit schedule() call
3137 * - return from syscall or exception to user-space
3138 * - return from interrupt-handler to user-space
bfd9b2b5 3139 *
b30f0e3f 3140 * WARNING: must be called with preemption disabled!
dd41f596 3141 */
499d7955 3142static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3143{
3144 struct task_struct *prev, *next;
67ca7bde 3145 unsigned long *switch_count;
dd41f596 3146 struct rq *rq;
31656519 3147 int cpu;
dd41f596 3148
dd41f596
IM
3149 cpu = smp_processor_id();
3150 rq = cpu_rq(cpu);
dd41f596 3151 prev = rq->curr;
dd41f596 3152
b99def8b
PZ
3153 /*
3154 * do_exit() calls schedule() with preemption disabled as an exception;
3155 * however we must fix that up, otherwise the next task will see an
3156 * inconsistent (higher) preempt count.
3157 *
3158 * It also avoids the below schedule_debug() test from complaining
3159 * about this.
3160 */
3161 if (unlikely(prev->state == TASK_DEAD))
3162 preempt_enable_no_resched_notrace();
3163
dd41f596 3164 schedule_debug(prev);
1da177e4 3165
31656519 3166 if (sched_feat(HRTICK))
f333fdc9 3167 hrtick_clear(rq);
8f4d37ec 3168
46a5d164
PM
3169 local_irq_disable();
3170 rcu_note_context_switch();
3171
e0acd0a6
ON
3172 /*
3173 * Make sure that signal_pending_state()->signal_pending() below
3174 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3175 * done by the caller to avoid the race with signal_wake_up().
3176 */
3177 smp_mb__before_spinlock();
46a5d164 3178 raw_spin_lock(&rq->lock);
cbce1a68 3179 lockdep_pin_lock(&rq->lock);
1da177e4 3180
9edfbfed
PZ
3181 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3182
246d86b5 3183 switch_count = &prev->nivcsw;
fc13aeba 3184 if (!preempt && prev->state) {
21aa9af0 3185 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3186 prev->state = TASK_RUNNING;
21aa9af0 3187 } else {
2acca55e
PZ
3188 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3189 prev->on_rq = 0;
3190
21aa9af0 3191 /*
2acca55e
PZ
3192 * If a worker went to sleep, notify and ask workqueue
3193 * whether it wants to wake up a task to maintain
3194 * concurrency.
21aa9af0
TH
3195 */
3196 if (prev->flags & PF_WQ_WORKER) {
3197 struct task_struct *to_wakeup;
3198
9b7f6597 3199 to_wakeup = wq_worker_sleeping(prev);
21aa9af0
TH
3200 if (to_wakeup)
3201 try_to_wake_up_local(to_wakeup);
3202 }
21aa9af0 3203 }
dd41f596 3204 switch_count = &prev->nvcsw;
1da177e4
LT
3205 }
3206
9edfbfed 3207 if (task_on_rq_queued(prev))
606dba2e
PZ
3208 update_rq_clock(rq);
3209
3210 next = pick_next_task(rq, prev);
f26f9aff 3211 clear_tsk_need_resched(prev);
f27dde8d 3212 clear_preempt_need_resched();
9edfbfed 3213 rq->clock_skip_update = 0;
1da177e4 3214
1da177e4 3215 if (likely(prev != next)) {
1da177e4
LT
3216 rq->nr_switches++;
3217 rq->curr = next;
3218 ++*switch_count;
3219
c73464b1 3220 trace_sched_switch(preempt, prev, next);
dfa50b60 3221 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3222 } else {
3223 lockdep_unpin_lock(&rq->lock);
05fa785c 3224 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3225 }
1da177e4 3226
e3fca9e7 3227 balance_callback(rq);
1da177e4 3228}
8e05e96a 3229STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3230
9c40cef2
TG
3231static inline void sched_submit_work(struct task_struct *tsk)
3232{
3c7d5184 3233 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3234 return;
3235 /*
3236 * If we are going to sleep and we have plugged IO queued,
3237 * make sure to submit it to avoid deadlocks.
3238 */
3239 if (blk_needs_flush_plug(tsk))
3240 blk_schedule_flush_plug(tsk);
3241}
3242
722a9f92 3243asmlinkage __visible void __sched schedule(void)
c259e01a 3244{
9c40cef2
TG
3245 struct task_struct *tsk = current;
3246
3247 sched_submit_work(tsk);
bfd9b2b5 3248 do {
b30f0e3f 3249 preempt_disable();
fc13aeba 3250 __schedule(false);
b30f0e3f 3251 sched_preempt_enable_no_resched();
bfd9b2b5 3252 } while (need_resched());
c259e01a 3253}
1da177e4
LT
3254EXPORT_SYMBOL(schedule);
3255
91d1aa43 3256#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3257asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3258{
3259 /*
3260 * If we come here after a random call to set_need_resched(),
3261 * or we have been woken up remotely but the IPI has not yet arrived,
3262 * we haven't yet exited the RCU idle mode. Do it here manually until
3263 * we find a better solution.
7cc78f8f
AL
3264 *
3265 * NB: There are buggy callers of this function. Ideally we
c467ea76 3266 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3267 * too frequently to make sense yet.
20ab65e3 3268 */
7cc78f8f 3269 enum ctx_state prev_state = exception_enter();
20ab65e3 3270 schedule();
7cc78f8f 3271 exception_exit(prev_state);
20ab65e3
FW
3272}
3273#endif
3274
c5491ea7
TG
3275/**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280void __sched schedule_preempt_disabled(void)
3281{
ba74c144 3282 sched_preempt_enable_no_resched();
c5491ea7
TG
3283 schedule();
3284 preempt_disable();
3285}
3286
06b1f808 3287static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3288{
3289 do {
499d7955 3290 preempt_disable_notrace();
fc13aeba 3291 __schedule(true);
499d7955 3292 preempt_enable_no_resched_notrace();
a18b5d01
FW
3293
3294 /*
3295 * Check again in case we missed a preemption opportunity
3296 * between schedule and now.
3297 */
a18b5d01
FW
3298 } while (need_resched());
3299}
3300
1da177e4
LT
3301#ifdef CONFIG_PREEMPT
3302/*
2ed6e34f 3303 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3304 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3305 * occur there and call schedule directly.
3306 */
722a9f92 3307asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3308{
1da177e4
LT
3309 /*
3310 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3311 * we do not want to preempt the current task. Just return..
1da177e4 3312 */
fbb00b56 3313 if (likely(!preemptible()))
1da177e4
LT
3314 return;
3315
a18b5d01 3316 preempt_schedule_common();
1da177e4 3317}
376e2424 3318NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3319EXPORT_SYMBOL(preempt_schedule);
009f60e2 3320
009f60e2 3321/**
4eaca0a8 3322 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3323 *
3324 * The tracing infrastructure uses preempt_enable_notrace to prevent
3325 * recursion and tracing preempt enabling caused by the tracing
3326 * infrastructure itself. But as tracing can happen in areas coming
3327 * from userspace or just about to enter userspace, a preempt enable
3328 * can occur before user_exit() is called. This will cause the scheduler
3329 * to be called when the system is still in usermode.
3330 *
3331 * To prevent this, the preempt_enable_notrace will use this function
3332 * instead of preempt_schedule() to exit user context if needed before
3333 * calling the scheduler.
3334 */
4eaca0a8 3335asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3336{
3337 enum ctx_state prev_ctx;
3338
3339 if (likely(!preemptible()))
3340 return;
3341
3342 do {
3d8f74dd 3343 preempt_disable_notrace();
009f60e2
ON
3344 /*
3345 * Needs preempt disabled in case user_exit() is traced
3346 * and the tracer calls preempt_enable_notrace() causing
3347 * an infinite recursion.
3348 */
3349 prev_ctx = exception_enter();
fc13aeba 3350 __schedule(true);
009f60e2
ON
3351 exception_exit(prev_ctx);
3352
3d8f74dd 3353 preempt_enable_no_resched_notrace();
009f60e2
ON
3354 } while (need_resched());
3355}
4eaca0a8 3356EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3357
32e475d7 3358#endif /* CONFIG_PREEMPT */
1da177e4
LT
3359
3360/*
2ed6e34f 3361 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3362 * off of irq context.
3363 * Note, that this is called and return with irqs disabled. This will
3364 * protect us against recursive calling from irq.
3365 */
722a9f92 3366asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3367{
b22366cd 3368 enum ctx_state prev_state;
6478d880 3369
2ed6e34f 3370 /* Catch callers which need to be fixed */
f27dde8d 3371 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3372
b22366cd
FW
3373 prev_state = exception_enter();
3374
3a5c359a 3375 do {
3d8f74dd 3376 preempt_disable();
3a5c359a 3377 local_irq_enable();
fc13aeba 3378 __schedule(true);
3a5c359a 3379 local_irq_disable();
3d8f74dd 3380 sched_preempt_enable_no_resched();
5ed0cec0 3381 } while (need_resched());
b22366cd
FW
3382
3383 exception_exit(prev_state);
1da177e4
LT
3384}
3385
63859d4f 3386int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3387 void *key)
1da177e4 3388{
63859d4f 3389 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3390}
1da177e4
LT
3391EXPORT_SYMBOL(default_wake_function);
3392
b29739f9
IM
3393#ifdef CONFIG_RT_MUTEXES
3394
3395/*
3396 * rt_mutex_setprio - set the current priority of a task
3397 * @p: task
3398 * @prio: prio value (kernel-internal form)
3399 *
3400 * This function changes the 'effective' priority of a task. It does
3401 * not touch ->normal_prio like __setscheduler().
3402 *
c365c292
TG
3403 * Used by the rt_mutex code to implement priority inheritance
3404 * logic. Call site only calls if the priority of the task changed.
b29739f9 3405 */
36c8b586 3406void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3407{
ff77e468 3408 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3409 struct rq *rq;
83ab0aa0 3410 const struct sched_class *prev_class;
b29739f9 3411
aab03e05 3412 BUG_ON(prio > MAX_PRIO);
b29739f9 3413
0122ec5b 3414 rq = __task_rq_lock(p);
b29739f9 3415
1c4dd99b
TG
3416 /*
3417 * Idle task boosting is a nono in general. There is one
3418 * exception, when PREEMPT_RT and NOHZ is active:
3419 *
3420 * The idle task calls get_next_timer_interrupt() and holds
3421 * the timer wheel base->lock on the CPU and another CPU wants
3422 * to access the timer (probably to cancel it). We can safely
3423 * ignore the boosting request, as the idle CPU runs this code
3424 * with interrupts disabled and will complete the lock
3425 * protected section without being interrupted. So there is no
3426 * real need to boost.
3427 */
3428 if (unlikely(p == rq->idle)) {
3429 WARN_ON(p != rq->curr);
3430 WARN_ON(p->pi_blocked_on);
3431 goto out_unlock;
3432 }
3433
a8027073 3434 trace_sched_pi_setprio(p, prio);
d5f9f942 3435 oldprio = p->prio;
ff77e468
PZ
3436
3437 if (oldprio == prio)
3438 queue_flag &= ~DEQUEUE_MOVE;
3439
83ab0aa0 3440 prev_class = p->sched_class;
da0c1e65 3441 queued = task_on_rq_queued(p);
051a1d1a 3442 running = task_current(rq, p);
da0c1e65 3443 if (queued)
ff77e468 3444 dequeue_task(rq, p, queue_flag);
0e1f3483 3445 if (running)
f3cd1c4e 3446 put_prev_task(rq, p);
dd41f596 3447
2d3d891d
DF
3448 /*
3449 * Boosting condition are:
3450 * 1. -rt task is running and holds mutex A
3451 * --> -dl task blocks on mutex A
3452 *
3453 * 2. -dl task is running and holds mutex A
3454 * --> -dl task blocks on mutex A and could preempt the
3455 * running task
3456 */
3457 if (dl_prio(prio)) {
466af29b
ON
3458 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3459 if (!dl_prio(p->normal_prio) ||
3460 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3461 p->dl.dl_boosted = 1;
ff77e468 3462 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3463 } else
3464 p->dl.dl_boosted = 0;
aab03e05 3465 p->sched_class = &dl_sched_class;
2d3d891d
DF
3466 } else if (rt_prio(prio)) {
3467 if (dl_prio(oldprio))
3468 p->dl.dl_boosted = 0;
3469 if (oldprio < prio)
ff77e468 3470 queue_flag |= ENQUEUE_HEAD;
dd41f596 3471 p->sched_class = &rt_sched_class;
2d3d891d
DF
3472 } else {
3473 if (dl_prio(oldprio))
3474 p->dl.dl_boosted = 0;
746db944
BS
3475 if (rt_prio(oldprio))
3476 p->rt.timeout = 0;
dd41f596 3477 p->sched_class = &fair_sched_class;
2d3d891d 3478 }
dd41f596 3479
b29739f9
IM
3480 p->prio = prio;
3481
0e1f3483
HS
3482 if (running)
3483 p->sched_class->set_curr_task(rq);
da0c1e65 3484 if (queued)
ff77e468 3485 enqueue_task(rq, p, queue_flag);
cb469845 3486
da7a735e 3487 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3488out_unlock:
4c9a4bc8 3489 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3490 __task_rq_unlock(rq);
4c9a4bc8
PZ
3491
3492 balance_callback(rq);
3493 preempt_enable();
b29739f9 3494}
b29739f9 3495#endif
d50dde5a 3496
36c8b586 3497void set_user_nice(struct task_struct *p, long nice)
1da177e4 3498{
da0c1e65 3499 int old_prio, delta, queued;
1da177e4 3500 unsigned long flags;
70b97a7f 3501 struct rq *rq;
1da177e4 3502
75e45d51 3503 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3504 return;
3505 /*
3506 * We have to be careful, if called from sys_setpriority(),
3507 * the task might be in the middle of scheduling on another CPU.
3508 */
3509 rq = task_rq_lock(p, &flags);
3510 /*
3511 * The RT priorities are set via sched_setscheduler(), but we still
3512 * allow the 'normal' nice value to be set - but as expected
3513 * it wont have any effect on scheduling until the task is
aab03e05 3514 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3515 */
aab03e05 3516 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3517 p->static_prio = NICE_TO_PRIO(nice);
3518 goto out_unlock;
3519 }
da0c1e65
KT
3520 queued = task_on_rq_queued(p);
3521 if (queued)
1de64443 3522 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3523
1da177e4 3524 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3525 set_load_weight(p);
b29739f9
IM
3526 old_prio = p->prio;
3527 p->prio = effective_prio(p);
3528 delta = p->prio - old_prio;
1da177e4 3529
da0c1e65 3530 if (queued) {
1de64443 3531 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3532 /*
d5f9f942
AM
3533 * If the task increased its priority or is running and
3534 * lowered its priority, then reschedule its CPU:
1da177e4 3535 */
d5f9f942 3536 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3537 resched_curr(rq);
1da177e4
LT
3538 }
3539out_unlock:
0122ec5b 3540 task_rq_unlock(rq, p, &flags);
1da177e4 3541}
1da177e4
LT
3542EXPORT_SYMBOL(set_user_nice);
3543
e43379f1
MM
3544/*
3545 * can_nice - check if a task can reduce its nice value
3546 * @p: task
3547 * @nice: nice value
3548 */
36c8b586 3549int can_nice(const struct task_struct *p, const int nice)
e43379f1 3550{
024f4747 3551 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3552 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3553
78d7d407 3554 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3555 capable(CAP_SYS_NICE));
3556}
3557
1da177e4
LT
3558#ifdef __ARCH_WANT_SYS_NICE
3559
3560/*
3561 * sys_nice - change the priority of the current process.
3562 * @increment: priority increment
3563 *
3564 * sys_setpriority is a more generic, but much slower function that
3565 * does similar things.
3566 */
5add95d4 3567SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3568{
48f24c4d 3569 long nice, retval;
1da177e4
LT
3570
3571 /*
3572 * Setpriority might change our priority at the same moment.
3573 * We don't have to worry. Conceptually one call occurs first
3574 * and we have a single winner.
3575 */
a9467fa3 3576 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3577 nice = task_nice(current) + increment;
1da177e4 3578
a9467fa3 3579 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3580 if (increment < 0 && !can_nice(current, nice))
3581 return -EPERM;
3582
1da177e4
LT
3583 retval = security_task_setnice(current, nice);
3584 if (retval)
3585 return retval;
3586
3587 set_user_nice(current, nice);
3588 return 0;
3589}
3590
3591#endif
3592
3593/**
3594 * task_prio - return the priority value of a given task.
3595 * @p: the task in question.
3596 *
e69f6186 3597 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3598 * RT tasks are offset by -200. Normal tasks are centered
3599 * around 0, value goes from -16 to +15.
3600 */
36c8b586 3601int task_prio(const struct task_struct *p)
1da177e4
LT
3602{
3603 return p->prio - MAX_RT_PRIO;
3604}
3605
1da177e4
LT
3606/**
3607 * idle_cpu - is a given cpu idle currently?
3608 * @cpu: the processor in question.
e69f6186
YB
3609 *
3610 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3611 */
3612int idle_cpu(int cpu)
3613{
908a3283
TG
3614 struct rq *rq = cpu_rq(cpu);
3615
3616 if (rq->curr != rq->idle)
3617 return 0;
3618
3619 if (rq->nr_running)
3620 return 0;
3621
3622#ifdef CONFIG_SMP
3623 if (!llist_empty(&rq->wake_list))
3624 return 0;
3625#endif
3626
3627 return 1;
1da177e4
LT
3628}
3629
1da177e4
LT
3630/**
3631 * idle_task - return the idle task for a given cpu.
3632 * @cpu: the processor in question.
e69f6186
YB
3633 *
3634 * Return: The idle task for the cpu @cpu.
1da177e4 3635 */
36c8b586 3636struct task_struct *idle_task(int cpu)
1da177e4
LT
3637{
3638 return cpu_rq(cpu)->idle;
3639}
3640
3641/**
3642 * find_process_by_pid - find a process with a matching PID value.
3643 * @pid: the pid in question.
e69f6186
YB
3644 *
3645 * The task of @pid, if found. %NULL otherwise.
1da177e4 3646 */
a9957449 3647static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3648{
228ebcbe 3649 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3650}
3651
aab03e05
DF
3652/*
3653 * This function initializes the sched_dl_entity of a newly becoming
3654 * SCHED_DEADLINE task.
3655 *
3656 * Only the static values are considered here, the actual runtime and the
3657 * absolute deadline will be properly calculated when the task is enqueued
3658 * for the first time with its new policy.
3659 */
3660static void
3661__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3662{
3663 struct sched_dl_entity *dl_se = &p->dl;
3664
aab03e05
DF
3665 dl_se->dl_runtime = attr->sched_runtime;
3666 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3667 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3668 dl_se->flags = attr->sched_flags;
332ac17e 3669 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3670
3671 /*
3672 * Changing the parameters of a task is 'tricky' and we're not doing
3673 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3674 *
3675 * What we SHOULD do is delay the bandwidth release until the 0-lag
3676 * point. This would include retaining the task_struct until that time
3677 * and change dl_overflow() to not immediately decrement the current
3678 * amount.
3679 *
3680 * Instead we retain the current runtime/deadline and let the new
3681 * parameters take effect after the current reservation period lapses.
3682 * This is safe (albeit pessimistic) because the 0-lag point is always
3683 * before the current scheduling deadline.
3684 *
3685 * We can still have temporary overloads because we do not delay the
3686 * change in bandwidth until that time; so admission control is
3687 * not on the safe side. It does however guarantee tasks will never
3688 * consume more than promised.
3689 */
aab03e05
DF
3690}
3691
c13db6b1
SR
3692/*
3693 * sched_setparam() passes in -1 for its policy, to let the functions
3694 * it calls know not to change it.
3695 */
3696#define SETPARAM_POLICY -1
3697
c365c292
TG
3698static void __setscheduler_params(struct task_struct *p,
3699 const struct sched_attr *attr)
1da177e4 3700{
d50dde5a
DF
3701 int policy = attr->sched_policy;
3702
c13db6b1 3703 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3704 policy = p->policy;
3705
1da177e4 3706 p->policy = policy;
d50dde5a 3707
aab03e05
DF
3708 if (dl_policy(policy))
3709 __setparam_dl(p, attr);
39fd8fd2 3710 else if (fair_policy(policy))
d50dde5a
DF
3711 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3712
39fd8fd2
PZ
3713 /*
3714 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3715 * !rt_policy. Always setting this ensures that things like
3716 * getparam()/getattr() don't report silly values for !rt tasks.
3717 */
3718 p->rt_priority = attr->sched_priority;
383afd09 3719 p->normal_prio = normal_prio(p);
c365c292
TG
3720 set_load_weight(p);
3721}
39fd8fd2 3722
c365c292
TG
3723/* Actually do priority change: must hold pi & rq lock. */
3724static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3725 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3726{
3727 __setscheduler_params(p, attr);
d50dde5a 3728
383afd09 3729 /*
0782e63b
TG
3730 * Keep a potential priority boosting if called from
3731 * sched_setscheduler().
383afd09 3732 */
0782e63b
TG
3733 if (keep_boost)
3734 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3735 else
3736 p->prio = normal_prio(p);
383afd09 3737
aab03e05
DF
3738 if (dl_prio(p->prio))
3739 p->sched_class = &dl_sched_class;
3740 else if (rt_prio(p->prio))
ffd44db5
PZ
3741 p->sched_class = &rt_sched_class;
3742 else
3743 p->sched_class = &fair_sched_class;
1da177e4 3744}
aab03e05
DF
3745
3746static void
3747__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3748{
3749 struct sched_dl_entity *dl_se = &p->dl;
3750
3751 attr->sched_priority = p->rt_priority;
3752 attr->sched_runtime = dl_se->dl_runtime;
3753 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3754 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3755 attr->sched_flags = dl_se->flags;
3756}
3757
3758/*
3759 * This function validates the new parameters of a -deadline task.
3760 * We ask for the deadline not being zero, and greater or equal
755378a4 3761 * than the runtime, as well as the period of being zero or
332ac17e 3762 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3763 * user parameters are above the internal resolution of 1us (we
3764 * check sched_runtime only since it is always the smaller one) and
3765 * below 2^63 ns (we have to check both sched_deadline and
3766 * sched_period, as the latter can be zero).
aab03e05
DF
3767 */
3768static bool
3769__checkparam_dl(const struct sched_attr *attr)
3770{
b0827819
JL
3771 /* deadline != 0 */
3772 if (attr->sched_deadline == 0)
3773 return false;
3774
3775 /*
3776 * Since we truncate DL_SCALE bits, make sure we're at least
3777 * that big.
3778 */
3779 if (attr->sched_runtime < (1ULL << DL_SCALE))
3780 return false;
3781
3782 /*
3783 * Since we use the MSB for wrap-around and sign issues, make
3784 * sure it's not set (mind that period can be equal to zero).
3785 */
3786 if (attr->sched_deadline & (1ULL << 63) ||
3787 attr->sched_period & (1ULL << 63))
3788 return false;
3789
3790 /* runtime <= deadline <= period (if period != 0) */
3791 if ((attr->sched_period != 0 &&
3792 attr->sched_period < attr->sched_deadline) ||
3793 attr->sched_deadline < attr->sched_runtime)
3794 return false;
3795
3796 return true;
aab03e05
DF
3797}
3798
c69e8d9c
DH
3799/*
3800 * check the target process has a UID that matches the current process's
3801 */
3802static bool check_same_owner(struct task_struct *p)
3803{
3804 const struct cred *cred = current_cred(), *pcred;
3805 bool match;
3806
3807 rcu_read_lock();
3808 pcred = __task_cred(p);
9c806aa0
EB
3809 match = (uid_eq(cred->euid, pcred->euid) ||
3810 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3811 rcu_read_unlock();
3812 return match;
3813}
3814
75381608
WL
3815static bool dl_param_changed(struct task_struct *p,
3816 const struct sched_attr *attr)
3817{
3818 struct sched_dl_entity *dl_se = &p->dl;
3819
3820 if (dl_se->dl_runtime != attr->sched_runtime ||
3821 dl_se->dl_deadline != attr->sched_deadline ||
3822 dl_se->dl_period != attr->sched_period ||
3823 dl_se->flags != attr->sched_flags)
3824 return true;
3825
3826 return false;
3827}
3828
d50dde5a
DF
3829static int __sched_setscheduler(struct task_struct *p,
3830 const struct sched_attr *attr,
dbc7f069 3831 bool user, bool pi)
1da177e4 3832{
383afd09
SR
3833 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3834 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3835 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3836 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3837 unsigned long flags;
83ab0aa0 3838 const struct sched_class *prev_class;
70b97a7f 3839 struct rq *rq;
ca94c442 3840 int reset_on_fork;
ff77e468 3841 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3842
66e5393a
SR
3843 /* may grab non-irq protected spin_locks */
3844 BUG_ON(in_interrupt());
1da177e4
LT
3845recheck:
3846 /* double check policy once rq lock held */
ca94c442
LP
3847 if (policy < 0) {
3848 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3849 policy = oldpolicy = p->policy;
ca94c442 3850 } else {
7479f3c9 3851 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3852
20f9cd2a 3853 if (!valid_policy(policy))
ca94c442
LP
3854 return -EINVAL;
3855 }
3856
7479f3c9
PZ
3857 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3858 return -EINVAL;
3859
1da177e4
LT
3860 /*
3861 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3862 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3864 */
0bb040a4 3865 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3866 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3867 return -EINVAL;
aab03e05
DF
3868 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3869 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3870 return -EINVAL;
3871
37e4ab3f
OC
3872 /*
3873 * Allow unprivileged RT tasks to decrease priority:
3874 */
961ccddd 3875 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3876 if (fair_policy(policy)) {
d0ea0268 3877 if (attr->sched_nice < task_nice(p) &&
eaad4513 3878 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3879 return -EPERM;
3880 }
3881
e05606d3 3882 if (rt_policy(policy)) {
a44702e8
ON
3883 unsigned long rlim_rtprio =
3884 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3885
3886 /* can't set/change the rt policy */
3887 if (policy != p->policy && !rlim_rtprio)
3888 return -EPERM;
3889
3890 /* can't increase priority */
d50dde5a
DF
3891 if (attr->sched_priority > p->rt_priority &&
3892 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3893 return -EPERM;
3894 }
c02aa73b 3895
d44753b8
JL
3896 /*
3897 * Can't set/change SCHED_DEADLINE policy at all for now
3898 * (safest behavior); in the future we would like to allow
3899 * unprivileged DL tasks to increase their relative deadline
3900 * or reduce their runtime (both ways reducing utilization)
3901 */
3902 if (dl_policy(policy))
3903 return -EPERM;
3904
dd41f596 3905 /*
c02aa73b
DH
3906 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3907 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3908 */
20f9cd2a 3909 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3910 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3911 return -EPERM;
3912 }
5fe1d75f 3913
37e4ab3f 3914 /* can't change other user's priorities */
c69e8d9c 3915 if (!check_same_owner(p))
37e4ab3f 3916 return -EPERM;
ca94c442
LP
3917
3918 /* Normal users shall not reset the sched_reset_on_fork flag */
3919 if (p->sched_reset_on_fork && !reset_on_fork)
3920 return -EPERM;
37e4ab3f 3921 }
1da177e4 3922
725aad24 3923 if (user) {
b0ae1981 3924 retval = security_task_setscheduler(p);
725aad24
JF
3925 if (retval)
3926 return retval;
3927 }
3928
b29739f9
IM
3929 /*
3930 * make sure no PI-waiters arrive (or leave) while we are
3931 * changing the priority of the task:
0122ec5b 3932 *
25985edc 3933 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3934 * runqueue lock must be held.
3935 */
0122ec5b 3936 rq = task_rq_lock(p, &flags);
dc61b1d6 3937
34f971f6
PZ
3938 /*
3939 * Changing the policy of the stop threads its a very bad idea
3940 */
3941 if (p == rq->stop) {
0122ec5b 3942 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3943 return -EINVAL;
3944 }
3945
a51e9198 3946 /*
d6b1e911
TG
3947 * If not changing anything there's no need to proceed further,
3948 * but store a possible modification of reset_on_fork.
a51e9198 3949 */
d50dde5a 3950 if (unlikely(policy == p->policy)) {
d0ea0268 3951 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3952 goto change;
3953 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3954 goto change;
75381608 3955 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3956 goto change;
d50dde5a 3957
d6b1e911 3958 p->sched_reset_on_fork = reset_on_fork;
45afb173 3959 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3960 return 0;
3961 }
d50dde5a 3962change:
a51e9198 3963
dc61b1d6 3964 if (user) {
332ac17e 3965#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3966 /*
3967 * Do not allow realtime tasks into groups that have no runtime
3968 * assigned.
3969 */
3970 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3971 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3972 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3973 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3974 return -EPERM;
3975 }
dc61b1d6 3976#endif
332ac17e
DF
3977#ifdef CONFIG_SMP
3978 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3979 cpumask_t *span = rq->rd->span;
332ac17e
DF
3980
3981 /*
3982 * Don't allow tasks with an affinity mask smaller than
3983 * the entire root_domain to become SCHED_DEADLINE. We
3984 * will also fail if there's no bandwidth available.
3985 */
e4099a5e
PZ
3986 if (!cpumask_subset(span, &p->cpus_allowed) ||
3987 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3988 task_rq_unlock(rq, p, &flags);
3989 return -EPERM;
3990 }
3991 }
3992#endif
3993 }
dc61b1d6 3994
1da177e4
LT
3995 /* recheck policy now with rq lock held */
3996 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3997 policy = oldpolicy = -1;
0122ec5b 3998 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3999 goto recheck;
4000 }
332ac17e
DF
4001
4002 /*
4003 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4004 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4005 * is available.
4006 */
e4099a5e 4007 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4008 task_rq_unlock(rq, p, &flags);
4009 return -EBUSY;
4010 }
4011
c365c292
TG
4012 p->sched_reset_on_fork = reset_on_fork;
4013 oldprio = p->prio;
4014
dbc7f069
PZ
4015 if (pi) {
4016 /*
4017 * Take priority boosted tasks into account. If the new
4018 * effective priority is unchanged, we just store the new
4019 * normal parameters and do not touch the scheduler class and
4020 * the runqueue. This will be done when the task deboost
4021 * itself.
4022 */
4023 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4024 if (new_effective_prio == oldprio)
4025 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4026 }
4027
da0c1e65 4028 queued = task_on_rq_queued(p);
051a1d1a 4029 running = task_current(rq, p);
da0c1e65 4030 if (queued)
ff77e468 4031 dequeue_task(rq, p, queue_flags);
0e1f3483 4032 if (running)
f3cd1c4e 4033 put_prev_task(rq, p);
f6b53205 4034
83ab0aa0 4035 prev_class = p->sched_class;
dbc7f069 4036 __setscheduler(rq, p, attr, pi);
f6b53205 4037
0e1f3483
HS
4038 if (running)
4039 p->sched_class->set_curr_task(rq);
da0c1e65 4040 if (queued) {
81a44c54
TG
4041 /*
4042 * We enqueue to tail when the priority of a task is
4043 * increased (user space view).
4044 */
ff77e468
PZ
4045 if (oldprio < p->prio)
4046 queue_flags |= ENQUEUE_HEAD;
1de64443 4047
ff77e468 4048 enqueue_task(rq, p, queue_flags);
81a44c54 4049 }
cb469845 4050
da7a735e 4051 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4052 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4053 task_rq_unlock(rq, p, &flags);
b29739f9 4054
dbc7f069
PZ
4055 if (pi)
4056 rt_mutex_adjust_pi(p);
95e02ca9 4057
4c9a4bc8
PZ
4058 /*
4059 * Run balance callbacks after we've adjusted the PI chain.
4060 */
4061 balance_callback(rq);
4062 preempt_enable();
95e02ca9 4063
1da177e4
LT
4064 return 0;
4065}
961ccddd 4066
7479f3c9
PZ
4067static int _sched_setscheduler(struct task_struct *p, int policy,
4068 const struct sched_param *param, bool check)
4069{
4070 struct sched_attr attr = {
4071 .sched_policy = policy,
4072 .sched_priority = param->sched_priority,
4073 .sched_nice = PRIO_TO_NICE(p->static_prio),
4074 };
4075
c13db6b1
SR
4076 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4077 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4078 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4079 policy &= ~SCHED_RESET_ON_FORK;
4080 attr.sched_policy = policy;
4081 }
4082
dbc7f069 4083 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4084}
961ccddd
RR
4085/**
4086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4087 * @p: the task in question.
4088 * @policy: new policy.
4089 * @param: structure containing the new RT priority.
4090 *
e69f6186
YB
4091 * Return: 0 on success. An error code otherwise.
4092 *
961ccddd
RR
4093 * NOTE that the task may be already dead.
4094 */
4095int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4096 const struct sched_param *param)
961ccddd 4097{
7479f3c9 4098 return _sched_setscheduler(p, policy, param, true);
961ccddd 4099}
1da177e4
LT
4100EXPORT_SYMBOL_GPL(sched_setscheduler);
4101
d50dde5a
DF
4102int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4103{
dbc7f069 4104 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4105}
4106EXPORT_SYMBOL_GPL(sched_setattr);
4107
961ccddd
RR
4108/**
4109 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4110 * @p: the task in question.
4111 * @policy: new policy.
4112 * @param: structure containing the new RT priority.
4113 *
4114 * Just like sched_setscheduler, only don't bother checking if the
4115 * current context has permission. For example, this is needed in
4116 * stop_machine(): we create temporary high priority worker threads,
4117 * but our caller might not have that capability.
e69f6186
YB
4118 *
4119 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4120 */
4121int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4122 const struct sched_param *param)
961ccddd 4123{
7479f3c9 4124 return _sched_setscheduler(p, policy, param, false);
961ccddd 4125}
84778472 4126EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4127
95cdf3b7
IM
4128static int
4129do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4130{
1da177e4
LT
4131 struct sched_param lparam;
4132 struct task_struct *p;
36c8b586 4133 int retval;
1da177e4
LT
4134
4135 if (!param || pid < 0)
4136 return -EINVAL;
4137 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4138 return -EFAULT;
5fe1d75f
ON
4139
4140 rcu_read_lock();
4141 retval = -ESRCH;
1da177e4 4142 p = find_process_by_pid(pid);
5fe1d75f
ON
4143 if (p != NULL)
4144 retval = sched_setscheduler(p, policy, &lparam);
4145 rcu_read_unlock();
36c8b586 4146
1da177e4
LT
4147 return retval;
4148}
4149
d50dde5a
DF
4150/*
4151 * Mimics kernel/events/core.c perf_copy_attr().
4152 */
4153static int sched_copy_attr(struct sched_attr __user *uattr,
4154 struct sched_attr *attr)
4155{
4156 u32 size;
4157 int ret;
4158
4159 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4160 return -EFAULT;
4161
4162 /*
4163 * zero the full structure, so that a short copy will be nice.
4164 */
4165 memset(attr, 0, sizeof(*attr));
4166
4167 ret = get_user(size, &uattr->size);
4168 if (ret)
4169 return ret;
4170
4171 if (size > PAGE_SIZE) /* silly large */
4172 goto err_size;
4173
4174 if (!size) /* abi compat */
4175 size = SCHED_ATTR_SIZE_VER0;
4176
4177 if (size < SCHED_ATTR_SIZE_VER0)
4178 goto err_size;
4179
4180 /*
4181 * If we're handed a bigger struct than we know of,
4182 * ensure all the unknown bits are 0 - i.e. new
4183 * user-space does not rely on any kernel feature
4184 * extensions we dont know about yet.
4185 */
4186 if (size > sizeof(*attr)) {
4187 unsigned char __user *addr;
4188 unsigned char __user *end;
4189 unsigned char val;
4190
4191 addr = (void __user *)uattr + sizeof(*attr);
4192 end = (void __user *)uattr + size;
4193
4194 for (; addr < end; addr++) {
4195 ret = get_user(val, addr);
4196 if (ret)
4197 return ret;
4198 if (val)
4199 goto err_size;
4200 }
4201 size = sizeof(*attr);
4202 }
4203
4204 ret = copy_from_user(attr, uattr, size);
4205 if (ret)
4206 return -EFAULT;
4207
4208 /*
4209 * XXX: do we want to be lenient like existing syscalls; or do we want
4210 * to be strict and return an error on out-of-bounds values?
4211 */
75e45d51 4212 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4213
e78c7bca 4214 return 0;
d50dde5a
DF
4215
4216err_size:
4217 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4218 return -E2BIG;
d50dde5a
DF
4219}
4220
1da177e4
LT
4221/**
4222 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4223 * @pid: the pid in question.
4224 * @policy: new policy.
4225 * @param: structure containing the new RT priority.
e69f6186
YB
4226 *
4227 * Return: 0 on success. An error code otherwise.
1da177e4 4228 */
5add95d4
HC
4229SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4230 struct sched_param __user *, param)
1da177e4 4231{
c21761f1
JB
4232 /* negative values for policy are not valid */
4233 if (policy < 0)
4234 return -EINVAL;
4235
1da177e4
LT
4236 return do_sched_setscheduler(pid, policy, param);
4237}
4238
4239/**
4240 * sys_sched_setparam - set/change the RT priority of a thread
4241 * @pid: the pid in question.
4242 * @param: structure containing the new RT priority.
e69f6186
YB
4243 *
4244 * Return: 0 on success. An error code otherwise.
1da177e4 4245 */
5add95d4 4246SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4247{
c13db6b1 4248 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4249}
4250
d50dde5a
DF
4251/**
4252 * sys_sched_setattr - same as above, but with extended sched_attr
4253 * @pid: the pid in question.
5778fccf 4254 * @uattr: structure containing the extended parameters.
db66d756 4255 * @flags: for future extension.
d50dde5a 4256 */
6d35ab48
PZ
4257SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4258 unsigned int, flags)
d50dde5a
DF
4259{
4260 struct sched_attr attr;
4261 struct task_struct *p;
4262 int retval;
4263
6d35ab48 4264 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4265 return -EINVAL;
4266
143cf23d
MK
4267 retval = sched_copy_attr(uattr, &attr);
4268 if (retval)
4269 return retval;
d50dde5a 4270
b14ed2c2 4271 if ((int)attr.sched_policy < 0)
dbdb2275 4272 return -EINVAL;
d50dde5a
DF
4273
4274 rcu_read_lock();
4275 retval = -ESRCH;
4276 p = find_process_by_pid(pid);
4277 if (p != NULL)
4278 retval = sched_setattr(p, &attr);
4279 rcu_read_unlock();
4280
4281 return retval;
4282}
4283
1da177e4
LT
4284/**
4285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4286 * @pid: the pid in question.
e69f6186
YB
4287 *
4288 * Return: On success, the policy of the thread. Otherwise, a negative error
4289 * code.
1da177e4 4290 */
5add95d4 4291SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4292{
36c8b586 4293 struct task_struct *p;
3a5c359a 4294 int retval;
1da177e4
LT
4295
4296 if (pid < 0)
3a5c359a 4297 return -EINVAL;
1da177e4
LT
4298
4299 retval = -ESRCH;
5fe85be0 4300 rcu_read_lock();
1da177e4
LT
4301 p = find_process_by_pid(pid);
4302 if (p) {
4303 retval = security_task_getscheduler(p);
4304 if (!retval)
ca94c442
LP
4305 retval = p->policy
4306 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4307 }
5fe85be0 4308 rcu_read_unlock();
1da177e4
LT
4309 return retval;
4310}
4311
4312/**
ca94c442 4313 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4314 * @pid: the pid in question.
4315 * @param: structure containing the RT priority.
e69f6186
YB
4316 *
4317 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4318 * code.
1da177e4 4319 */
5add95d4 4320SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4321{
ce5f7f82 4322 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4323 struct task_struct *p;
3a5c359a 4324 int retval;
1da177e4
LT
4325
4326 if (!param || pid < 0)
3a5c359a 4327 return -EINVAL;
1da177e4 4328
5fe85be0 4329 rcu_read_lock();
1da177e4
LT
4330 p = find_process_by_pid(pid);
4331 retval = -ESRCH;
4332 if (!p)
4333 goto out_unlock;
4334
4335 retval = security_task_getscheduler(p);
4336 if (retval)
4337 goto out_unlock;
4338
ce5f7f82
PZ
4339 if (task_has_rt_policy(p))
4340 lp.sched_priority = p->rt_priority;
5fe85be0 4341 rcu_read_unlock();
1da177e4
LT
4342
4343 /*
4344 * This one might sleep, we cannot do it with a spinlock held ...
4345 */
4346 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347
1da177e4
LT
4348 return retval;
4349
4350out_unlock:
5fe85be0 4351 rcu_read_unlock();
1da177e4
LT
4352 return retval;
4353}
4354
d50dde5a
DF
4355static int sched_read_attr(struct sched_attr __user *uattr,
4356 struct sched_attr *attr,
4357 unsigned int usize)
4358{
4359 int ret;
4360
4361 if (!access_ok(VERIFY_WRITE, uattr, usize))
4362 return -EFAULT;
4363
4364 /*
4365 * If we're handed a smaller struct than we know of,
4366 * ensure all the unknown bits are 0 - i.e. old
4367 * user-space does not get uncomplete information.
4368 */
4369 if (usize < sizeof(*attr)) {
4370 unsigned char *addr;
4371 unsigned char *end;
4372
4373 addr = (void *)attr + usize;
4374 end = (void *)attr + sizeof(*attr);
4375
4376 for (; addr < end; addr++) {
4377 if (*addr)
22400674 4378 return -EFBIG;
d50dde5a
DF
4379 }
4380
4381 attr->size = usize;
4382 }
4383
4efbc454 4384 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4385 if (ret)
4386 return -EFAULT;
4387
22400674 4388 return 0;
d50dde5a
DF
4389}
4390
4391/**
aab03e05 4392 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4393 * @pid: the pid in question.
5778fccf 4394 * @uattr: structure containing the extended parameters.
d50dde5a 4395 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4396 * @flags: for future extension.
d50dde5a 4397 */
6d35ab48
PZ
4398SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4399 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4400{
4401 struct sched_attr attr = {
4402 .size = sizeof(struct sched_attr),
4403 };
4404 struct task_struct *p;
4405 int retval;
4406
4407 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4408 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4409 return -EINVAL;
4410
4411 rcu_read_lock();
4412 p = find_process_by_pid(pid);
4413 retval = -ESRCH;
4414 if (!p)
4415 goto out_unlock;
4416
4417 retval = security_task_getscheduler(p);
4418 if (retval)
4419 goto out_unlock;
4420
4421 attr.sched_policy = p->policy;
7479f3c9
PZ
4422 if (p->sched_reset_on_fork)
4423 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4424 if (task_has_dl_policy(p))
4425 __getparam_dl(p, &attr);
4426 else if (task_has_rt_policy(p))
d50dde5a
DF
4427 attr.sched_priority = p->rt_priority;
4428 else
d0ea0268 4429 attr.sched_nice = task_nice(p);
d50dde5a
DF
4430
4431 rcu_read_unlock();
4432
4433 retval = sched_read_attr(uattr, &attr, size);
4434 return retval;
4435
4436out_unlock:
4437 rcu_read_unlock();
4438 return retval;
4439}
4440
96f874e2 4441long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4442{
5a16f3d3 4443 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4444 struct task_struct *p;
4445 int retval;
1da177e4 4446
23f5d142 4447 rcu_read_lock();
1da177e4
LT
4448
4449 p = find_process_by_pid(pid);
4450 if (!p) {
23f5d142 4451 rcu_read_unlock();
1da177e4
LT
4452 return -ESRCH;
4453 }
4454
23f5d142 4455 /* Prevent p going away */
1da177e4 4456 get_task_struct(p);
23f5d142 4457 rcu_read_unlock();
1da177e4 4458
14a40ffc
TH
4459 if (p->flags & PF_NO_SETAFFINITY) {
4460 retval = -EINVAL;
4461 goto out_put_task;
4462 }
5a16f3d3
RR
4463 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4464 retval = -ENOMEM;
4465 goto out_put_task;
4466 }
4467 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4468 retval = -ENOMEM;
4469 goto out_free_cpus_allowed;
4470 }
1da177e4 4471 retval = -EPERM;
4c44aaaf
EB
4472 if (!check_same_owner(p)) {
4473 rcu_read_lock();
4474 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4475 rcu_read_unlock();
16303ab2 4476 goto out_free_new_mask;
4c44aaaf
EB
4477 }
4478 rcu_read_unlock();
4479 }
1da177e4 4480
b0ae1981 4481 retval = security_task_setscheduler(p);
e7834f8f 4482 if (retval)
16303ab2 4483 goto out_free_new_mask;
e7834f8f 4484
e4099a5e
PZ
4485
4486 cpuset_cpus_allowed(p, cpus_allowed);
4487 cpumask_and(new_mask, in_mask, cpus_allowed);
4488
332ac17e
DF
4489 /*
4490 * Since bandwidth control happens on root_domain basis,
4491 * if admission test is enabled, we only admit -deadline
4492 * tasks allowed to run on all the CPUs in the task's
4493 * root_domain.
4494 */
4495#ifdef CONFIG_SMP
f1e3a093
KT
4496 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4497 rcu_read_lock();
4498 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4499 retval = -EBUSY;
f1e3a093 4500 rcu_read_unlock();
16303ab2 4501 goto out_free_new_mask;
332ac17e 4502 }
f1e3a093 4503 rcu_read_unlock();
332ac17e
DF
4504 }
4505#endif
49246274 4506again:
25834c73 4507 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4508
8707d8b8 4509 if (!retval) {
5a16f3d3
RR
4510 cpuset_cpus_allowed(p, cpus_allowed);
4511 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4512 /*
4513 * We must have raced with a concurrent cpuset
4514 * update. Just reset the cpus_allowed to the
4515 * cpuset's cpus_allowed
4516 */
5a16f3d3 4517 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4518 goto again;
4519 }
4520 }
16303ab2 4521out_free_new_mask:
5a16f3d3
RR
4522 free_cpumask_var(new_mask);
4523out_free_cpus_allowed:
4524 free_cpumask_var(cpus_allowed);
4525out_put_task:
1da177e4 4526 put_task_struct(p);
1da177e4
LT
4527 return retval;
4528}
4529
4530static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4531 struct cpumask *new_mask)
1da177e4 4532{
96f874e2
RR
4533 if (len < cpumask_size())
4534 cpumask_clear(new_mask);
4535 else if (len > cpumask_size())
4536 len = cpumask_size();
4537
1da177e4
LT
4538 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4539}
4540
4541/**
4542 * sys_sched_setaffinity - set the cpu affinity of a process
4543 * @pid: pid of the process
4544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4545 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4546 *
4547 * Return: 0 on success. An error code otherwise.
1da177e4 4548 */
5add95d4
HC
4549SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4550 unsigned long __user *, user_mask_ptr)
1da177e4 4551{
5a16f3d3 4552 cpumask_var_t new_mask;
1da177e4
LT
4553 int retval;
4554
5a16f3d3
RR
4555 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4556 return -ENOMEM;
1da177e4 4557
5a16f3d3
RR
4558 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4559 if (retval == 0)
4560 retval = sched_setaffinity(pid, new_mask);
4561 free_cpumask_var(new_mask);
4562 return retval;
1da177e4
LT
4563}
4564
96f874e2 4565long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4566{
36c8b586 4567 struct task_struct *p;
31605683 4568 unsigned long flags;
1da177e4 4569 int retval;
1da177e4 4570
23f5d142 4571 rcu_read_lock();
1da177e4
LT
4572
4573 retval = -ESRCH;
4574 p = find_process_by_pid(pid);
4575 if (!p)
4576 goto out_unlock;
4577
e7834f8f
DQ
4578 retval = security_task_getscheduler(p);
4579 if (retval)
4580 goto out_unlock;
4581
013fdb80 4582 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4583 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4584 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4585
4586out_unlock:
23f5d142 4587 rcu_read_unlock();
1da177e4 4588
9531b62f 4589 return retval;
1da177e4
LT
4590}
4591
4592/**
4593 * sys_sched_getaffinity - get the cpu affinity of a process
4594 * @pid: pid of the process
4595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4596 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4597 *
4598 * Return: 0 on success. An error code otherwise.
1da177e4 4599 */
5add95d4
HC
4600SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4601 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4602{
4603 int ret;
f17c8607 4604 cpumask_var_t mask;
1da177e4 4605
84fba5ec 4606 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4607 return -EINVAL;
4608 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4609 return -EINVAL;
4610
f17c8607
RR
4611 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4612 return -ENOMEM;
1da177e4 4613
f17c8607
RR
4614 ret = sched_getaffinity(pid, mask);
4615 if (ret == 0) {
8bc037fb 4616 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4617
4618 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4619 ret = -EFAULT;
4620 else
cd3d8031 4621 ret = retlen;
f17c8607
RR
4622 }
4623 free_cpumask_var(mask);
1da177e4 4624
f17c8607 4625 return ret;
1da177e4
LT
4626}
4627
4628/**
4629 * sys_sched_yield - yield the current processor to other threads.
4630 *
dd41f596
IM
4631 * This function yields the current CPU to other tasks. If there are no
4632 * other threads running on this CPU then this function will return.
e69f6186
YB
4633 *
4634 * Return: 0.
1da177e4 4635 */
5add95d4 4636SYSCALL_DEFINE0(sched_yield)
1da177e4 4637{
70b97a7f 4638 struct rq *rq = this_rq_lock();
1da177e4 4639
2d72376b 4640 schedstat_inc(rq, yld_count);
4530d7ab 4641 current->sched_class->yield_task(rq);
1da177e4
LT
4642
4643 /*
4644 * Since we are going to call schedule() anyway, there's
4645 * no need to preempt or enable interrupts:
4646 */
4647 __release(rq->lock);
8a25d5de 4648 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4649 do_raw_spin_unlock(&rq->lock);
ba74c144 4650 sched_preempt_enable_no_resched();
1da177e4
LT
4651
4652 schedule();
4653
4654 return 0;
4655}
4656
02b67cc3 4657int __sched _cond_resched(void)
1da177e4 4658{
fe32d3cd 4659 if (should_resched(0)) {
a18b5d01 4660 preempt_schedule_common();
1da177e4
LT
4661 return 1;
4662 }
4663 return 0;
4664}
02b67cc3 4665EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4666
4667/*
613afbf8 4668 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4669 * call schedule, and on return reacquire the lock.
4670 *
41a2d6cf 4671 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4672 * operations here to prevent schedule() from being called twice (once via
4673 * spin_unlock(), once by hand).
4674 */
613afbf8 4675int __cond_resched_lock(spinlock_t *lock)
1da177e4 4676{
fe32d3cd 4677 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4678 int ret = 0;
4679
f607c668
PZ
4680 lockdep_assert_held(lock);
4681
4a81e832 4682 if (spin_needbreak(lock) || resched) {
1da177e4 4683 spin_unlock(lock);
d86ee480 4684 if (resched)
a18b5d01 4685 preempt_schedule_common();
95c354fe
NP
4686 else
4687 cpu_relax();
6df3cecb 4688 ret = 1;
1da177e4 4689 spin_lock(lock);
1da177e4 4690 }
6df3cecb 4691 return ret;
1da177e4 4692}
613afbf8 4693EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4694
613afbf8 4695int __sched __cond_resched_softirq(void)
1da177e4
LT
4696{
4697 BUG_ON(!in_softirq());
4698
fe32d3cd 4699 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4700 local_bh_enable();
a18b5d01 4701 preempt_schedule_common();
1da177e4
LT
4702 local_bh_disable();
4703 return 1;
4704 }
4705 return 0;
4706}
613afbf8 4707EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4708
1da177e4
LT
4709/**
4710 * yield - yield the current processor to other threads.
4711 *
8e3fabfd
PZ
4712 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4713 *
4714 * The scheduler is at all times free to pick the calling task as the most
4715 * eligible task to run, if removing the yield() call from your code breaks
4716 * it, its already broken.
4717 *
4718 * Typical broken usage is:
4719 *
4720 * while (!event)
4721 * yield();
4722 *
4723 * where one assumes that yield() will let 'the other' process run that will
4724 * make event true. If the current task is a SCHED_FIFO task that will never
4725 * happen. Never use yield() as a progress guarantee!!
4726 *
4727 * If you want to use yield() to wait for something, use wait_event().
4728 * If you want to use yield() to be 'nice' for others, use cond_resched().
4729 * If you still want to use yield(), do not!
1da177e4
LT
4730 */
4731void __sched yield(void)
4732{
4733 set_current_state(TASK_RUNNING);
4734 sys_sched_yield();
4735}
1da177e4
LT
4736EXPORT_SYMBOL(yield);
4737
d95f4122
MG
4738/**
4739 * yield_to - yield the current processor to another thread in
4740 * your thread group, or accelerate that thread toward the
4741 * processor it's on.
16addf95
RD
4742 * @p: target task
4743 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4744 *
4745 * It's the caller's job to ensure that the target task struct
4746 * can't go away on us before we can do any checks.
4747 *
e69f6186 4748 * Return:
7b270f60
PZ
4749 * true (>0) if we indeed boosted the target task.
4750 * false (0) if we failed to boost the target.
4751 * -ESRCH if there's no task to yield to.
d95f4122 4752 */
fa93384f 4753int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4754{
4755 struct task_struct *curr = current;
4756 struct rq *rq, *p_rq;
4757 unsigned long flags;
c3c18640 4758 int yielded = 0;
d95f4122
MG
4759
4760 local_irq_save(flags);
4761 rq = this_rq();
4762
4763again:
4764 p_rq = task_rq(p);
7b270f60
PZ
4765 /*
4766 * If we're the only runnable task on the rq and target rq also
4767 * has only one task, there's absolutely no point in yielding.
4768 */
4769 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4770 yielded = -ESRCH;
4771 goto out_irq;
4772 }
4773
d95f4122 4774 double_rq_lock(rq, p_rq);
39e24d8f 4775 if (task_rq(p) != p_rq) {
d95f4122
MG
4776 double_rq_unlock(rq, p_rq);
4777 goto again;
4778 }
4779
4780 if (!curr->sched_class->yield_to_task)
7b270f60 4781 goto out_unlock;
d95f4122
MG
4782
4783 if (curr->sched_class != p->sched_class)
7b270f60 4784 goto out_unlock;
d95f4122
MG
4785
4786 if (task_running(p_rq, p) || p->state)
7b270f60 4787 goto out_unlock;
d95f4122
MG
4788
4789 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4790 if (yielded) {
d95f4122 4791 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4792 /*
4793 * Make p's CPU reschedule; pick_next_entity takes care of
4794 * fairness.
4795 */
4796 if (preempt && rq != p_rq)
8875125e 4797 resched_curr(p_rq);
6d1cafd8 4798 }
d95f4122 4799
7b270f60 4800out_unlock:
d95f4122 4801 double_rq_unlock(rq, p_rq);
7b270f60 4802out_irq:
d95f4122
MG
4803 local_irq_restore(flags);
4804
7b270f60 4805 if (yielded > 0)
d95f4122
MG
4806 schedule();
4807
4808 return yielded;
4809}
4810EXPORT_SYMBOL_GPL(yield_to);
4811
1da177e4 4812/*
41a2d6cf 4813 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4814 * that process accounting knows that this is a task in IO wait state.
1da177e4 4815 */
1da177e4
LT
4816long __sched io_schedule_timeout(long timeout)
4817{
9cff8ade
N
4818 int old_iowait = current->in_iowait;
4819 struct rq *rq;
1da177e4
LT
4820 long ret;
4821
9cff8ade 4822 current->in_iowait = 1;
10d784ea 4823 blk_schedule_flush_plug(current);
9cff8ade 4824
0ff92245 4825 delayacct_blkio_start();
9cff8ade 4826 rq = raw_rq();
1da177e4
LT
4827 atomic_inc(&rq->nr_iowait);
4828 ret = schedule_timeout(timeout);
9cff8ade 4829 current->in_iowait = old_iowait;
1da177e4 4830 atomic_dec(&rq->nr_iowait);
0ff92245 4831 delayacct_blkio_end();
9cff8ade 4832
1da177e4
LT
4833 return ret;
4834}
9cff8ade 4835EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4836
4837/**
4838 * sys_sched_get_priority_max - return maximum RT priority.
4839 * @policy: scheduling class.
4840 *
e69f6186
YB
4841 * Return: On success, this syscall returns the maximum
4842 * rt_priority that can be used by a given scheduling class.
4843 * On failure, a negative error code is returned.
1da177e4 4844 */
5add95d4 4845SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4846{
4847 int ret = -EINVAL;
4848
4849 switch (policy) {
4850 case SCHED_FIFO:
4851 case SCHED_RR:
4852 ret = MAX_USER_RT_PRIO-1;
4853 break;
aab03e05 4854 case SCHED_DEADLINE:
1da177e4 4855 case SCHED_NORMAL:
b0a9499c 4856 case SCHED_BATCH:
dd41f596 4857 case SCHED_IDLE:
1da177e4
LT
4858 ret = 0;
4859 break;
4860 }
4861 return ret;
4862}
4863
4864/**
4865 * sys_sched_get_priority_min - return minimum RT priority.
4866 * @policy: scheduling class.
4867 *
e69f6186
YB
4868 * Return: On success, this syscall returns the minimum
4869 * rt_priority that can be used by a given scheduling class.
4870 * On failure, a negative error code is returned.
1da177e4 4871 */
5add95d4 4872SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4873{
4874 int ret = -EINVAL;
4875
4876 switch (policy) {
4877 case SCHED_FIFO:
4878 case SCHED_RR:
4879 ret = 1;
4880 break;
aab03e05 4881 case SCHED_DEADLINE:
1da177e4 4882 case SCHED_NORMAL:
b0a9499c 4883 case SCHED_BATCH:
dd41f596 4884 case SCHED_IDLE:
1da177e4
LT
4885 ret = 0;
4886 }
4887 return ret;
4888}
4889
4890/**
4891 * sys_sched_rr_get_interval - return the default timeslice of a process.
4892 * @pid: pid of the process.
4893 * @interval: userspace pointer to the timeslice value.
4894 *
4895 * this syscall writes the default timeslice value of a given process
4896 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4897 *
4898 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4899 * an error code.
1da177e4 4900 */
17da2bd9 4901SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4902 struct timespec __user *, interval)
1da177e4 4903{
36c8b586 4904 struct task_struct *p;
a4ec24b4 4905 unsigned int time_slice;
dba091b9
TG
4906 unsigned long flags;
4907 struct rq *rq;
3a5c359a 4908 int retval;
1da177e4 4909 struct timespec t;
1da177e4
LT
4910
4911 if (pid < 0)
3a5c359a 4912 return -EINVAL;
1da177e4
LT
4913
4914 retval = -ESRCH;
1a551ae7 4915 rcu_read_lock();
1da177e4
LT
4916 p = find_process_by_pid(pid);
4917 if (!p)
4918 goto out_unlock;
4919
4920 retval = security_task_getscheduler(p);
4921 if (retval)
4922 goto out_unlock;
4923
dba091b9 4924 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4925 time_slice = 0;
4926 if (p->sched_class->get_rr_interval)
4927 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4928 task_rq_unlock(rq, p, &flags);
a4ec24b4 4929
1a551ae7 4930 rcu_read_unlock();
a4ec24b4 4931 jiffies_to_timespec(time_slice, &t);
1da177e4 4932 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4933 return retval;
3a5c359a 4934
1da177e4 4935out_unlock:
1a551ae7 4936 rcu_read_unlock();
1da177e4
LT
4937 return retval;
4938}
4939
7c731e0a 4940static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4941
82a1fcb9 4942void sched_show_task(struct task_struct *p)
1da177e4 4943{
1da177e4 4944 unsigned long free = 0;
4e79752c 4945 int ppid;
1f8a7633 4946 unsigned long state = p->state;
1da177e4 4947
1f8a7633
TH
4948 if (state)
4949 state = __ffs(state) + 1;
28d0686c 4950 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4951 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4952#if BITS_PER_LONG == 32
1da177e4 4953 if (state == TASK_RUNNING)
3df0fc5b 4954 printk(KERN_CONT " running ");
1da177e4 4955 else
3df0fc5b 4956 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4957#else
4958 if (state == TASK_RUNNING)
3df0fc5b 4959 printk(KERN_CONT " running task ");
1da177e4 4960 else
3df0fc5b 4961 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4962#endif
4963#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4964 free = stack_not_used(p);
1da177e4 4965#endif
a90e984c 4966 ppid = 0;
4e79752c 4967 rcu_read_lock();
a90e984c
ON
4968 if (pid_alive(p))
4969 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4970 rcu_read_unlock();
3df0fc5b 4971 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4972 task_pid_nr(p), ppid,
aa47b7e0 4973 (unsigned long)task_thread_info(p)->flags);
1da177e4 4974
3d1cb205 4975 print_worker_info(KERN_INFO, p);
5fb5e6de 4976 show_stack(p, NULL);
1da177e4
LT
4977}
4978
e59e2ae2 4979void show_state_filter(unsigned long state_filter)
1da177e4 4980{
36c8b586 4981 struct task_struct *g, *p;
1da177e4 4982
4bd77321 4983#if BITS_PER_LONG == 32
3df0fc5b
PZ
4984 printk(KERN_INFO
4985 " task PC stack pid father\n");
1da177e4 4986#else
3df0fc5b
PZ
4987 printk(KERN_INFO
4988 " task PC stack pid father\n");
1da177e4 4989#endif
510f5acc 4990 rcu_read_lock();
5d07f420 4991 for_each_process_thread(g, p) {
1da177e4
LT
4992 /*
4993 * reset the NMI-timeout, listing all files on a slow
25985edc 4994 * console might take a lot of time:
1da177e4
LT
4995 */
4996 touch_nmi_watchdog();
39bc89fd 4997 if (!state_filter || (p->state & state_filter))
82a1fcb9 4998 sched_show_task(p);
5d07f420 4999 }
1da177e4 5000
04c9167f
JF
5001 touch_all_softlockup_watchdogs();
5002
dd41f596
IM
5003#ifdef CONFIG_SCHED_DEBUG
5004 sysrq_sched_debug_show();
5005#endif
510f5acc 5006 rcu_read_unlock();
e59e2ae2
IM
5007 /*
5008 * Only show locks if all tasks are dumped:
5009 */
93335a21 5010 if (!state_filter)
e59e2ae2 5011 debug_show_all_locks();
1da177e4
LT
5012}
5013
0db0628d 5014void init_idle_bootup_task(struct task_struct *idle)
1df21055 5015{
dd41f596 5016 idle->sched_class = &idle_sched_class;
1df21055
IM
5017}
5018
f340c0d1
IM
5019/**
5020 * init_idle - set up an idle thread for a given CPU
5021 * @idle: task in question
5022 * @cpu: cpu the idle task belongs to
5023 *
5024 * NOTE: this function does not set the idle thread's NEED_RESCHED
5025 * flag, to make booting more robust.
5026 */
0db0628d 5027void init_idle(struct task_struct *idle, int cpu)
1da177e4 5028{
70b97a7f 5029 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5030 unsigned long flags;
5031
25834c73
PZ
5032 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5033 raw_spin_lock(&rq->lock);
5cbd54ef 5034
5e1576ed 5035 __sched_fork(0, idle);
06b83b5f 5036 idle->state = TASK_RUNNING;
dd41f596
IM
5037 idle->se.exec_start = sched_clock();
5038
e1b77c92
MR
5039 kasan_unpoison_task_stack(idle);
5040
de9b8f5d
PZ
5041#ifdef CONFIG_SMP
5042 /*
5043 * Its possible that init_idle() gets called multiple times on a task,
5044 * in that case do_set_cpus_allowed() will not do the right thing.
5045 *
5046 * And since this is boot we can forgo the serialization.
5047 */
5048 set_cpus_allowed_common(idle, cpumask_of(cpu));
5049#endif
6506cf6c
PZ
5050 /*
5051 * We're having a chicken and egg problem, even though we are
5052 * holding rq->lock, the cpu isn't yet set to this cpu so the
5053 * lockdep check in task_group() will fail.
5054 *
5055 * Similar case to sched_fork(). / Alternatively we could
5056 * use task_rq_lock() here and obtain the other rq->lock.
5057 *
5058 * Silence PROVE_RCU
5059 */
5060 rcu_read_lock();
dd41f596 5061 __set_task_cpu(idle, cpu);
6506cf6c 5062 rcu_read_unlock();
1da177e4 5063
1da177e4 5064 rq->curr = rq->idle = idle;
da0c1e65 5065 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5066#ifdef CONFIG_SMP
3ca7a440 5067 idle->on_cpu = 1;
4866cde0 5068#endif
25834c73
PZ
5069 raw_spin_unlock(&rq->lock);
5070 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5071
5072 /* Set the preempt count _outside_ the spinlocks! */
01028747 5073 init_idle_preempt_count(idle, cpu);
55cd5340 5074
dd41f596
IM
5075 /*
5076 * The idle tasks have their own, simple scheduling class:
5077 */
5078 idle->sched_class = &idle_sched_class;
868baf07 5079 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5080 vtime_init_idle(idle, cpu);
de9b8f5d 5081#ifdef CONFIG_SMP
f1c6f1a7
CE
5082 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5083#endif
19978ca6
IM
5084}
5085
f82f8042
JL
5086int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5087 const struct cpumask *trial)
5088{
5089 int ret = 1, trial_cpus;
5090 struct dl_bw *cur_dl_b;
5091 unsigned long flags;
5092
bb2bc55a
MG
5093 if (!cpumask_weight(cur))
5094 return ret;
5095
75e23e49 5096 rcu_read_lock_sched();
f82f8042
JL
5097 cur_dl_b = dl_bw_of(cpumask_any(cur));
5098 trial_cpus = cpumask_weight(trial);
5099
5100 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5101 if (cur_dl_b->bw != -1 &&
5102 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5103 ret = 0;
5104 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5105 rcu_read_unlock_sched();
f82f8042
JL
5106
5107 return ret;
5108}
5109
7f51412a
JL
5110int task_can_attach(struct task_struct *p,
5111 const struct cpumask *cs_cpus_allowed)
5112{
5113 int ret = 0;
5114
5115 /*
5116 * Kthreads which disallow setaffinity shouldn't be moved
5117 * to a new cpuset; we don't want to change their cpu
5118 * affinity and isolating such threads by their set of
5119 * allowed nodes is unnecessary. Thus, cpusets are not
5120 * applicable for such threads. This prevents checking for
5121 * success of set_cpus_allowed_ptr() on all attached tasks
5122 * before cpus_allowed may be changed.
5123 */
5124 if (p->flags & PF_NO_SETAFFINITY) {
5125 ret = -EINVAL;
5126 goto out;
5127 }
5128
5129#ifdef CONFIG_SMP
5130 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5131 cs_cpus_allowed)) {
5132 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5133 cs_cpus_allowed);
75e23e49 5134 struct dl_bw *dl_b;
7f51412a
JL
5135 bool overflow;
5136 int cpus;
5137 unsigned long flags;
5138
75e23e49
JL
5139 rcu_read_lock_sched();
5140 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5141 raw_spin_lock_irqsave(&dl_b->lock, flags);
5142 cpus = dl_bw_cpus(dest_cpu);
5143 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5144 if (overflow)
5145 ret = -EBUSY;
5146 else {
5147 /*
5148 * We reserve space for this task in the destination
5149 * root_domain, as we can't fail after this point.
5150 * We will free resources in the source root_domain
5151 * later on (see set_cpus_allowed_dl()).
5152 */
5153 __dl_add(dl_b, p->dl.dl_bw);
5154 }
5155 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5156 rcu_read_unlock_sched();
7f51412a
JL
5157
5158 }
5159#endif
5160out:
5161 return ret;
5162}
5163
1da177e4 5164#ifdef CONFIG_SMP
1da177e4 5165
e6628d5b
MG
5166#ifdef CONFIG_NUMA_BALANCING
5167/* Migrate current task p to target_cpu */
5168int migrate_task_to(struct task_struct *p, int target_cpu)
5169{
5170 struct migration_arg arg = { p, target_cpu };
5171 int curr_cpu = task_cpu(p);
5172
5173 if (curr_cpu == target_cpu)
5174 return 0;
5175
5176 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5177 return -EINVAL;
5178
5179 /* TODO: This is not properly updating schedstats */
5180
286549dc 5181 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5182 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5183}
0ec8aa00
PZ
5184
5185/*
5186 * Requeue a task on a given node and accurately track the number of NUMA
5187 * tasks on the runqueues
5188 */
5189void sched_setnuma(struct task_struct *p, int nid)
5190{
5191 struct rq *rq;
5192 unsigned long flags;
da0c1e65 5193 bool queued, running;
0ec8aa00
PZ
5194
5195 rq = task_rq_lock(p, &flags);
da0c1e65 5196 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5197 running = task_current(rq, p);
5198
da0c1e65 5199 if (queued)
1de64443 5200 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5201 if (running)
f3cd1c4e 5202 put_prev_task(rq, p);
0ec8aa00
PZ
5203
5204 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5205
5206 if (running)
5207 p->sched_class->set_curr_task(rq);
da0c1e65 5208 if (queued)
1de64443 5209 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5210 task_rq_unlock(rq, p, &flags);
5211}
5cc389bc 5212#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5213
1da177e4 5214#ifdef CONFIG_HOTPLUG_CPU
054b9108 5215/*
48c5ccae
PZ
5216 * Ensures that the idle task is using init_mm right before its cpu goes
5217 * offline.
054b9108 5218 */
48c5ccae 5219void idle_task_exit(void)
1da177e4 5220{
48c5ccae 5221 struct mm_struct *mm = current->active_mm;
e76bd8d9 5222
48c5ccae 5223 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5224
a53efe5f 5225 if (mm != &init_mm) {
48c5ccae 5226 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5227 finish_arch_post_lock_switch();
5228 }
48c5ccae 5229 mmdrop(mm);
1da177e4
LT
5230}
5231
5232/*
5d180232
PZ
5233 * Since this CPU is going 'away' for a while, fold any nr_active delta
5234 * we might have. Assumes we're called after migrate_tasks() so that the
5235 * nr_active count is stable.
5236 *
5237 * Also see the comment "Global load-average calculations".
1da177e4 5238 */
5d180232 5239static void calc_load_migrate(struct rq *rq)
1da177e4 5240{
5d180232
PZ
5241 long delta = calc_load_fold_active(rq);
5242 if (delta)
5243 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5244}
5245
3f1d2a31
PZ
5246static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5247{
5248}
5249
5250static const struct sched_class fake_sched_class = {
5251 .put_prev_task = put_prev_task_fake,
5252};
5253
5254static struct task_struct fake_task = {
5255 /*
5256 * Avoid pull_{rt,dl}_task()
5257 */
5258 .prio = MAX_PRIO + 1,
5259 .sched_class = &fake_sched_class,
5260};
5261
48f24c4d 5262/*
48c5ccae
PZ
5263 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5264 * try_to_wake_up()->select_task_rq().
5265 *
5266 * Called with rq->lock held even though we'er in stop_machine() and
5267 * there's no concurrency possible, we hold the required locks anyway
5268 * because of lock validation efforts.
1da177e4 5269 */
5e16bbc2 5270static void migrate_tasks(struct rq *dead_rq)
1da177e4 5271{
5e16bbc2 5272 struct rq *rq = dead_rq;
48c5ccae
PZ
5273 struct task_struct *next, *stop = rq->stop;
5274 int dest_cpu;
1da177e4
LT
5275
5276 /*
48c5ccae
PZ
5277 * Fudge the rq selection such that the below task selection loop
5278 * doesn't get stuck on the currently eligible stop task.
5279 *
5280 * We're currently inside stop_machine() and the rq is either stuck
5281 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5282 * either way we should never end up calling schedule() until we're
5283 * done here.
1da177e4 5284 */
48c5ccae 5285 rq->stop = NULL;
48f24c4d 5286
77bd3970
FW
5287 /*
5288 * put_prev_task() and pick_next_task() sched
5289 * class method both need to have an up-to-date
5290 * value of rq->clock[_task]
5291 */
5292 update_rq_clock(rq);
5293
5e16bbc2 5294 for (;;) {
48c5ccae
PZ
5295 /*
5296 * There's this thread running, bail when that's the only
5297 * remaining thread.
5298 */
5299 if (rq->nr_running == 1)
dd41f596 5300 break;
48c5ccae 5301
cbce1a68 5302 /*
5473e0cc 5303 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5304 */
5305 lockdep_pin_lock(&rq->lock);
3f1d2a31 5306 next = pick_next_task(rq, &fake_task);
48c5ccae 5307 BUG_ON(!next);
79c53799 5308 next->sched_class->put_prev_task(rq, next);
e692ab53 5309
5473e0cc
WL
5310 /*
5311 * Rules for changing task_struct::cpus_allowed are holding
5312 * both pi_lock and rq->lock, such that holding either
5313 * stabilizes the mask.
5314 *
5315 * Drop rq->lock is not quite as disastrous as it usually is
5316 * because !cpu_active at this point, which means load-balance
5317 * will not interfere. Also, stop-machine.
5318 */
5319 lockdep_unpin_lock(&rq->lock);
5320 raw_spin_unlock(&rq->lock);
5321 raw_spin_lock(&next->pi_lock);
5322 raw_spin_lock(&rq->lock);
5323
5324 /*
5325 * Since we're inside stop-machine, _nothing_ should have
5326 * changed the task, WARN if weird stuff happened, because in
5327 * that case the above rq->lock drop is a fail too.
5328 */
5329 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5330 raw_spin_unlock(&next->pi_lock);
5331 continue;
5332 }
5333
48c5ccae 5334 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5335 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5336
5e16bbc2
PZ
5337 rq = __migrate_task(rq, next, dest_cpu);
5338 if (rq != dead_rq) {
5339 raw_spin_unlock(&rq->lock);
5340 rq = dead_rq;
5341 raw_spin_lock(&rq->lock);
5342 }
5473e0cc 5343 raw_spin_unlock(&next->pi_lock);
1da177e4 5344 }
dce48a84 5345
48c5ccae 5346 rq->stop = stop;
dce48a84 5347}
1da177e4
LT
5348#endif /* CONFIG_HOTPLUG_CPU */
5349
1f11eb6a
GH
5350static void set_rq_online(struct rq *rq)
5351{
5352 if (!rq->online) {
5353 const struct sched_class *class;
5354
c6c4927b 5355 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5356 rq->online = 1;
5357
5358 for_each_class(class) {
5359 if (class->rq_online)
5360 class->rq_online(rq);
5361 }
5362 }
5363}
5364
5365static void set_rq_offline(struct rq *rq)
5366{
5367 if (rq->online) {
5368 const struct sched_class *class;
5369
5370 for_each_class(class) {
5371 if (class->rq_offline)
5372 class->rq_offline(rq);
5373 }
5374
c6c4927b 5375 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5376 rq->online = 0;
5377 }
5378}
5379
1da177e4
LT
5380/*
5381 * migration_call - callback that gets triggered when a CPU is added.
5382 * Here we can start up the necessary migration thread for the new CPU.
5383 */
0db0628d 5384static int
48f24c4d 5385migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5386{
48f24c4d 5387 int cpu = (long)hcpu;
1da177e4 5388 unsigned long flags;
969c7921 5389 struct rq *rq = cpu_rq(cpu);
1da177e4 5390
48c5ccae 5391 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5392
1da177e4 5393 case CPU_UP_PREPARE:
a468d389 5394 rq->calc_load_update = calc_load_update;
e9532e69 5395 account_reset_rq(rq);
1da177e4 5396 break;
48f24c4d 5397
1da177e4 5398 case CPU_ONLINE:
1f94ef59 5399 /* Update our root-domain */
05fa785c 5400 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5401 if (rq->rd) {
c6c4927b 5402 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5403
5404 set_rq_online(rq);
1f94ef59 5405 }
05fa785c 5406 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5407 break;
48f24c4d 5408
1da177e4 5409#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5410 case CPU_DYING:
317f3941 5411 sched_ttwu_pending();
57d885fe 5412 /* Update our root-domain */
05fa785c 5413 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5414 if (rq->rd) {
c6c4927b 5415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5416 set_rq_offline(rq);
57d885fe 5417 }
5e16bbc2 5418 migrate_tasks(rq);
48c5ccae 5419 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5420 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5421 break;
48c5ccae 5422
5d180232 5423 case CPU_DEAD:
f319da0c 5424 calc_load_migrate(rq);
57d885fe 5425 break;
1da177e4
LT
5426#endif
5427 }
49c022e6
PZ
5428
5429 update_max_interval();
5430
1da177e4
LT
5431 return NOTIFY_OK;
5432}
5433
f38b0820
PM
5434/*
5435 * Register at high priority so that task migration (migrate_all_tasks)
5436 * happens before everything else. This has to be lower priority than
cdd6c482 5437 * the notifier in the perf_event subsystem, though.
1da177e4 5438 */
0db0628d 5439static struct notifier_block migration_notifier = {
1da177e4 5440 .notifier_call = migration_call,
50a323b7 5441 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5442};
5443
6a82b60d 5444static void set_cpu_rq_start_time(void)
a803f026
CM
5445{
5446 int cpu = smp_processor_id();
5447 struct rq *rq = cpu_rq(cpu);
5448 rq->age_stamp = sched_clock_cpu(cpu);
5449}
5450
0db0628d 5451static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5452 unsigned long action, void *hcpu)
5453{
07f06cb3
PZ
5454 int cpu = (long)hcpu;
5455
3a101d05 5456 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5457 case CPU_STARTING:
5458 set_cpu_rq_start_time();
5459 return NOTIFY_OK;
07f06cb3 5460
3a101d05 5461 case CPU_DOWN_FAILED:
07f06cb3 5462 set_cpu_active(cpu, true);
3a101d05 5463 return NOTIFY_OK;
07f06cb3 5464
3a101d05
TH
5465 default:
5466 return NOTIFY_DONE;
5467 }
5468}
5469
0db0628d 5470static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5471 unsigned long action, void *hcpu)
5472{
5473 switch (action & ~CPU_TASKS_FROZEN) {
5474 case CPU_DOWN_PREPARE:
3c18d447 5475 set_cpu_active((long)hcpu, false);
3a101d05 5476 return NOTIFY_OK;
3c18d447
JL
5477 default:
5478 return NOTIFY_DONE;
3a101d05
TH
5479 }
5480}
5481
7babe8db 5482static int __init migration_init(void)
1da177e4
LT
5483{
5484 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5485 int err;
48f24c4d 5486
3a101d05 5487 /* Initialize migration for the boot CPU */
07dccf33
AM
5488 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5489 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5490 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5491 register_cpu_notifier(&migration_notifier);
7babe8db 5492
3a101d05
TH
5493 /* Register cpu active notifiers */
5494 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5495 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5496
a004cd42 5497 return 0;
1da177e4 5498}
7babe8db 5499early_initcall(migration_init);
476f3534 5500
4cb98839
PZ
5501static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5502
3e9830dc 5503#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5504
d039ac60 5505static __read_mostly int sched_debug_enabled;
f6630114 5506
d039ac60 5507static int __init sched_debug_setup(char *str)
f6630114 5508{
d039ac60 5509 sched_debug_enabled = 1;
f6630114
MT
5510
5511 return 0;
5512}
d039ac60
PZ
5513early_param("sched_debug", sched_debug_setup);
5514
5515static inline bool sched_debug(void)
5516{
5517 return sched_debug_enabled;
5518}
f6630114 5519
7c16ec58 5520static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5521 struct cpumask *groupmask)
1da177e4 5522{
4dcf6aff 5523 struct sched_group *group = sd->groups;
1da177e4 5524
96f874e2 5525 cpumask_clear(groupmask);
4dcf6aff
IM
5526
5527 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5528
5529 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5530 printk("does not load-balance\n");
4dcf6aff 5531 if (sd->parent)
3df0fc5b
PZ
5532 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5533 " has parent");
4dcf6aff 5534 return -1;
41c7ce9a
NP
5535 }
5536
333470ee
TH
5537 printk(KERN_CONT "span %*pbl level %s\n",
5538 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5539
758b2cdc 5540 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5541 printk(KERN_ERR "ERROR: domain->span does not contain "
5542 "CPU%d\n", cpu);
4dcf6aff 5543 }
758b2cdc 5544 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5545 printk(KERN_ERR "ERROR: domain->groups does not contain"
5546 " CPU%d\n", cpu);
4dcf6aff 5547 }
1da177e4 5548
4dcf6aff 5549 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5550 do {
4dcf6aff 5551 if (!group) {
3df0fc5b
PZ
5552 printk("\n");
5553 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5554 break;
5555 }
5556
758b2cdc 5557 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5558 printk(KERN_CONT "\n");
5559 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5560 break;
5561 }
1da177e4 5562
cb83b629
PZ
5563 if (!(sd->flags & SD_OVERLAP) &&
5564 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5565 printk(KERN_CONT "\n");
5566 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5567 break;
5568 }
1da177e4 5569
758b2cdc 5570 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5571
333470ee
TH
5572 printk(KERN_CONT " %*pbl",
5573 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5574 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5575 printk(KERN_CONT " (cpu_capacity = %d)",
5576 group->sgc->capacity);
381512cf 5577 }
1da177e4 5578
4dcf6aff
IM
5579 group = group->next;
5580 } while (group != sd->groups);
3df0fc5b 5581 printk(KERN_CONT "\n");
1da177e4 5582
758b2cdc 5583 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5584 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5585
758b2cdc
RR
5586 if (sd->parent &&
5587 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5588 printk(KERN_ERR "ERROR: parent span is not a superset "
5589 "of domain->span\n");
4dcf6aff
IM
5590 return 0;
5591}
1da177e4 5592
4dcf6aff
IM
5593static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594{
5595 int level = 0;
1da177e4 5596
d039ac60 5597 if (!sched_debug_enabled)
f6630114
MT
5598 return;
5599
4dcf6aff
IM
5600 if (!sd) {
5601 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602 return;
5603 }
1da177e4 5604
4dcf6aff
IM
5605 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606
5607 for (;;) {
4cb98839 5608 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5609 break;
1da177e4
LT
5610 level++;
5611 sd = sd->parent;
33859f7f 5612 if (!sd)
4dcf6aff
IM
5613 break;
5614 }
1da177e4 5615}
6d6bc0ad 5616#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5617# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5618static inline bool sched_debug(void)
5619{
5620 return false;
5621}
6d6bc0ad 5622#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5623
1a20ff27 5624static int sd_degenerate(struct sched_domain *sd)
245af2c7 5625{
758b2cdc 5626 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5627 return 1;
5628
5629 /* Following flags need at least 2 groups */
5630 if (sd->flags & (SD_LOAD_BALANCE |
5631 SD_BALANCE_NEWIDLE |
5632 SD_BALANCE_FORK |
89c4710e 5633 SD_BALANCE_EXEC |
5d4dfddd 5634 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5635 SD_SHARE_PKG_RESOURCES |
5636 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5637 if (sd->groups != sd->groups->next)
5638 return 0;
5639 }
5640
5641 /* Following flags don't use groups */
c88d5910 5642 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5643 return 0;
5644
5645 return 1;
5646}
5647
48f24c4d
IM
5648static int
5649sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5650{
5651 unsigned long cflags = sd->flags, pflags = parent->flags;
5652
5653 if (sd_degenerate(parent))
5654 return 1;
5655
758b2cdc 5656 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5657 return 0;
5658
245af2c7
SS
5659 /* Flags needing groups don't count if only 1 group in parent */
5660 if (parent->groups == parent->groups->next) {
5661 pflags &= ~(SD_LOAD_BALANCE |
5662 SD_BALANCE_NEWIDLE |
5663 SD_BALANCE_FORK |
89c4710e 5664 SD_BALANCE_EXEC |
5d4dfddd 5665 SD_SHARE_CPUCAPACITY |
10866e62 5666 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5667 SD_PREFER_SIBLING |
5668 SD_SHARE_POWERDOMAIN);
5436499e
KC
5669 if (nr_node_ids == 1)
5670 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5671 }
5672 if (~cflags & pflags)
5673 return 0;
5674
5675 return 1;
5676}
5677
dce840a0 5678static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5679{
dce840a0 5680 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5681
68e74568 5682 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5683 cpudl_cleanup(&rd->cpudl);
1baca4ce 5684 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5685 free_cpumask_var(rd->rto_mask);
5686 free_cpumask_var(rd->online);
5687 free_cpumask_var(rd->span);
5688 kfree(rd);
5689}
5690
57d885fe
GH
5691static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5692{
a0490fa3 5693 struct root_domain *old_rd = NULL;
57d885fe 5694 unsigned long flags;
57d885fe 5695
05fa785c 5696 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5697
5698 if (rq->rd) {
a0490fa3 5699 old_rd = rq->rd;
57d885fe 5700
c6c4927b 5701 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5702 set_rq_offline(rq);
57d885fe 5703
c6c4927b 5704 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5705
a0490fa3 5706 /*
0515973f 5707 * If we dont want to free the old_rd yet then
a0490fa3
IM
5708 * set old_rd to NULL to skip the freeing later
5709 * in this function:
5710 */
5711 if (!atomic_dec_and_test(&old_rd->refcount))
5712 old_rd = NULL;
57d885fe
GH
5713 }
5714
5715 atomic_inc(&rd->refcount);
5716 rq->rd = rd;
5717
c6c4927b 5718 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5719 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5720 set_rq_online(rq);
57d885fe 5721
05fa785c 5722 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5723
5724 if (old_rd)
dce840a0 5725 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5726}
5727
68c38fc3 5728static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5729{
5730 memset(rd, 0, sizeof(*rd));
5731
8295c699 5732 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5733 goto out;
8295c699 5734 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5735 goto free_span;
8295c699 5736 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5737 goto free_online;
8295c699 5738 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5739 goto free_dlo_mask;
6e0534f2 5740
332ac17e 5741 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5742 if (cpudl_init(&rd->cpudl) != 0)
5743 goto free_dlo_mask;
332ac17e 5744
68c38fc3 5745 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5746 goto free_rto_mask;
c6c4927b 5747 return 0;
6e0534f2 5748
68e74568
RR
5749free_rto_mask:
5750 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5751free_dlo_mask:
5752 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5753free_online:
5754 free_cpumask_var(rd->online);
5755free_span:
5756 free_cpumask_var(rd->span);
0c910d28 5757out:
c6c4927b 5758 return -ENOMEM;
57d885fe
GH
5759}
5760
029632fb
PZ
5761/*
5762 * By default the system creates a single root-domain with all cpus as
5763 * members (mimicking the global state we have today).
5764 */
5765struct root_domain def_root_domain;
5766
57d885fe
GH
5767static void init_defrootdomain(void)
5768{
68c38fc3 5769 init_rootdomain(&def_root_domain);
c6c4927b 5770
57d885fe
GH
5771 atomic_set(&def_root_domain.refcount, 1);
5772}
5773
dc938520 5774static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5775{
5776 struct root_domain *rd;
5777
5778 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5779 if (!rd)
5780 return NULL;
5781
68c38fc3 5782 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5783 kfree(rd);
5784 return NULL;
5785 }
57d885fe
GH
5786
5787 return rd;
5788}
5789
63b2ca30 5790static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5791{
5792 struct sched_group *tmp, *first;
5793
5794 if (!sg)
5795 return;
5796
5797 first = sg;
5798 do {
5799 tmp = sg->next;
5800
63b2ca30
NP
5801 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5802 kfree(sg->sgc);
e3589f6c
PZ
5803
5804 kfree(sg);
5805 sg = tmp;
5806 } while (sg != first);
5807}
5808
dce840a0
PZ
5809static void free_sched_domain(struct rcu_head *rcu)
5810{
5811 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5812
5813 /*
5814 * If its an overlapping domain it has private groups, iterate and
5815 * nuke them all.
5816 */
5817 if (sd->flags & SD_OVERLAP) {
5818 free_sched_groups(sd->groups, 1);
5819 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5820 kfree(sd->groups->sgc);
dce840a0 5821 kfree(sd->groups);
9c3f75cb 5822 }
dce840a0
PZ
5823 kfree(sd);
5824}
5825
5826static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5827{
5828 call_rcu(&sd->rcu, free_sched_domain);
5829}
5830
5831static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5832{
5833 for (; sd; sd = sd->parent)
5834 destroy_sched_domain(sd, cpu);
5835}
5836
518cd623
PZ
5837/*
5838 * Keep a special pointer to the highest sched_domain that has
5839 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5840 * allows us to avoid some pointer chasing select_idle_sibling().
5841 *
5842 * Also keep a unique ID per domain (we use the first cpu number in
5843 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5844 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5845 */
5846DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5847DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5848DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5849DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5850DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5851DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5852
5853static void update_top_cache_domain(int cpu)
5854{
5855 struct sched_domain *sd;
5d4cf996 5856 struct sched_domain *busy_sd = NULL;
518cd623 5857 int id = cpu;
7d9ffa89 5858 int size = 1;
518cd623
PZ
5859
5860 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5861 if (sd) {
518cd623 5862 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5863 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5864 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5865 }
5d4cf996 5866 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5867
5868 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5869 per_cpu(sd_llc_size, cpu) = size;
518cd623 5870 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5871
5872 sd = lowest_flag_domain(cpu, SD_NUMA);
5873 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5874
5875 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5876 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5877}
5878
1da177e4 5879/*
0eab9146 5880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5881 * hold the hotplug lock.
5882 */
0eab9146
IM
5883static void
5884cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5885{
70b97a7f 5886 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5887 struct sched_domain *tmp;
5888
5889 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5890 for (tmp = sd; tmp; ) {
245af2c7
SS
5891 struct sched_domain *parent = tmp->parent;
5892 if (!parent)
5893 break;
f29c9b1c 5894
1a848870 5895 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5896 tmp->parent = parent->parent;
1a848870
SS
5897 if (parent->parent)
5898 parent->parent->child = tmp;
10866e62
PZ
5899 /*
5900 * Transfer SD_PREFER_SIBLING down in case of a
5901 * degenerate parent; the spans match for this
5902 * so the property transfers.
5903 */
5904 if (parent->flags & SD_PREFER_SIBLING)
5905 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5906 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5907 } else
5908 tmp = tmp->parent;
245af2c7
SS
5909 }
5910
1a848870 5911 if (sd && sd_degenerate(sd)) {
dce840a0 5912 tmp = sd;
245af2c7 5913 sd = sd->parent;
dce840a0 5914 destroy_sched_domain(tmp, cpu);
1a848870
SS
5915 if (sd)
5916 sd->child = NULL;
5917 }
1da177e4 5918
4cb98839 5919 sched_domain_debug(sd, cpu);
1da177e4 5920
57d885fe 5921 rq_attach_root(rq, rd);
dce840a0 5922 tmp = rq->sd;
674311d5 5923 rcu_assign_pointer(rq->sd, sd);
dce840a0 5924 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5925
5926 update_top_cache_domain(cpu);
1da177e4
LT
5927}
5928
1da177e4
LT
5929/* Setup the mask of cpus configured for isolated domains */
5930static int __init isolated_cpu_setup(char *str)
5931{
a6e4491c
PB
5932 int ret;
5933
bdddd296 5934 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5935 ret = cpulist_parse(str, cpu_isolated_map);
5936 if (ret) {
5937 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5938 return 0;
5939 }
1da177e4
LT
5940 return 1;
5941}
8927f494 5942__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5943
49a02c51 5944struct s_data {
21d42ccf 5945 struct sched_domain ** __percpu sd;
49a02c51
AH
5946 struct root_domain *rd;
5947};
5948
2109b99e 5949enum s_alloc {
2109b99e 5950 sa_rootdomain,
21d42ccf 5951 sa_sd,
dce840a0 5952 sa_sd_storage,
2109b99e
AH
5953 sa_none,
5954};
5955
c1174876
PZ
5956/*
5957 * Build an iteration mask that can exclude certain CPUs from the upwards
5958 * domain traversal.
5959 *
5960 * Asymmetric node setups can result in situations where the domain tree is of
5961 * unequal depth, make sure to skip domains that already cover the entire
5962 * range.
5963 *
5964 * In that case build_sched_domains() will have terminated the iteration early
5965 * and our sibling sd spans will be empty. Domains should always include the
5966 * cpu they're built on, so check that.
5967 *
5968 */
5969static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5970{
5971 const struct cpumask *span = sched_domain_span(sd);
5972 struct sd_data *sdd = sd->private;
5973 struct sched_domain *sibling;
5974 int i;
5975
5976 for_each_cpu(i, span) {
5977 sibling = *per_cpu_ptr(sdd->sd, i);
5978 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5979 continue;
5980
5981 cpumask_set_cpu(i, sched_group_mask(sg));
5982 }
5983}
5984
5985/*
5986 * Return the canonical balance cpu for this group, this is the first cpu
5987 * of this group that's also in the iteration mask.
5988 */
5989int group_balance_cpu(struct sched_group *sg)
5990{
5991 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5992}
5993
e3589f6c
PZ
5994static int
5995build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5996{
5997 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5998 const struct cpumask *span = sched_domain_span(sd);
5999 struct cpumask *covered = sched_domains_tmpmask;
6000 struct sd_data *sdd = sd->private;
aaecac4a 6001 struct sched_domain *sibling;
e3589f6c
PZ
6002 int i;
6003
6004 cpumask_clear(covered);
6005
6006 for_each_cpu(i, span) {
6007 struct cpumask *sg_span;
6008
6009 if (cpumask_test_cpu(i, covered))
6010 continue;
6011
aaecac4a 6012 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6013
6014 /* See the comment near build_group_mask(). */
aaecac4a 6015 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6016 continue;
6017
e3589f6c 6018 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6019 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6020
6021 if (!sg)
6022 goto fail;
6023
6024 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6025 if (sibling->child)
6026 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6027 else
e3589f6c
PZ
6028 cpumask_set_cpu(i, sg_span);
6029
6030 cpumask_or(covered, covered, sg_span);
6031
63b2ca30
NP
6032 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6033 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6034 build_group_mask(sd, sg);
6035
c3decf0d 6036 /*
63b2ca30 6037 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6038 * domains and no possible iteration will get us here, we won't
6039 * die on a /0 trap.
6040 */
ca8ce3d0 6041 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6042
c1174876
PZ
6043 /*
6044 * Make sure the first group of this domain contains the
6045 * canonical balance cpu. Otherwise the sched_domain iteration
6046 * breaks. See update_sg_lb_stats().
6047 */
74a5ce20 6048 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6049 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6050 groups = sg;
6051
6052 if (!first)
6053 first = sg;
6054 if (last)
6055 last->next = sg;
6056 last = sg;
6057 last->next = first;
6058 }
6059 sd->groups = groups;
6060
6061 return 0;
6062
6063fail:
6064 free_sched_groups(first, 0);
6065
6066 return -ENOMEM;
6067}
6068
dce840a0 6069static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6070{
dce840a0
PZ
6071 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6072 struct sched_domain *child = sd->child;
1da177e4 6073
dce840a0
PZ
6074 if (child)
6075 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6076
9c3f75cb 6077 if (sg) {
dce840a0 6078 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6079 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6080 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6081 }
dce840a0
PZ
6082
6083 return cpu;
1e9f28fa 6084}
1e9f28fa 6085
01a08546 6086/*
dce840a0
PZ
6087 * build_sched_groups will build a circular linked list of the groups
6088 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6089 * and ->cpu_capacity to 0.
e3589f6c
PZ
6090 *
6091 * Assumes the sched_domain tree is fully constructed
01a08546 6092 */
e3589f6c
PZ
6093static int
6094build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6095{
dce840a0
PZ
6096 struct sched_group *first = NULL, *last = NULL;
6097 struct sd_data *sdd = sd->private;
6098 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6099 struct cpumask *covered;
dce840a0 6100 int i;
9c1cfda2 6101
e3589f6c
PZ
6102 get_group(cpu, sdd, &sd->groups);
6103 atomic_inc(&sd->groups->ref);
6104
0936629f 6105 if (cpu != cpumask_first(span))
e3589f6c
PZ
6106 return 0;
6107
f96225fd
PZ
6108 lockdep_assert_held(&sched_domains_mutex);
6109 covered = sched_domains_tmpmask;
6110
dce840a0 6111 cpumask_clear(covered);
6711cab4 6112
dce840a0
PZ
6113 for_each_cpu(i, span) {
6114 struct sched_group *sg;
cd08e923 6115 int group, j;
6711cab4 6116
dce840a0
PZ
6117 if (cpumask_test_cpu(i, covered))
6118 continue;
6711cab4 6119
cd08e923 6120 group = get_group(i, sdd, &sg);
c1174876 6121 cpumask_setall(sched_group_mask(sg));
0601a88d 6122
dce840a0
PZ
6123 for_each_cpu(j, span) {
6124 if (get_group(j, sdd, NULL) != group)
6125 continue;
0601a88d 6126
dce840a0
PZ
6127 cpumask_set_cpu(j, covered);
6128 cpumask_set_cpu(j, sched_group_cpus(sg));
6129 }
0601a88d 6130
dce840a0
PZ
6131 if (!first)
6132 first = sg;
6133 if (last)
6134 last->next = sg;
6135 last = sg;
6136 }
6137 last->next = first;
e3589f6c
PZ
6138
6139 return 0;
0601a88d 6140}
51888ca2 6141
89c4710e 6142/*
63b2ca30 6143 * Initialize sched groups cpu_capacity.
89c4710e 6144 *
63b2ca30 6145 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6146 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6147 * Typically cpu_capacity for all the groups in a sched domain will be same
6148 * unless there are asymmetries in the topology. If there are asymmetries,
6149 * group having more cpu_capacity will pickup more load compared to the
6150 * group having less cpu_capacity.
89c4710e 6151 */
63b2ca30 6152static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6153{
e3589f6c 6154 struct sched_group *sg = sd->groups;
89c4710e 6155
94c95ba6 6156 WARN_ON(!sg);
e3589f6c
PZ
6157
6158 do {
6159 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6160 sg = sg->next;
6161 } while (sg != sd->groups);
89c4710e 6162
c1174876 6163 if (cpu != group_balance_cpu(sg))
e3589f6c 6164 return;
aae6d3dd 6165
63b2ca30
NP
6166 update_group_capacity(sd, cpu);
6167 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6168}
6169
7c16ec58
MT
6170/*
6171 * Initializers for schedule domains
6172 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6173 */
6174
1d3504fc 6175static int default_relax_domain_level = -1;
60495e77 6176int sched_domain_level_max;
1d3504fc
HS
6177
6178static int __init setup_relax_domain_level(char *str)
6179{
a841f8ce
DS
6180 if (kstrtoint(str, 0, &default_relax_domain_level))
6181 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6182
1d3504fc
HS
6183 return 1;
6184}
6185__setup("relax_domain_level=", setup_relax_domain_level);
6186
6187static void set_domain_attribute(struct sched_domain *sd,
6188 struct sched_domain_attr *attr)
6189{
6190 int request;
6191
6192 if (!attr || attr->relax_domain_level < 0) {
6193 if (default_relax_domain_level < 0)
6194 return;
6195 else
6196 request = default_relax_domain_level;
6197 } else
6198 request = attr->relax_domain_level;
6199 if (request < sd->level) {
6200 /* turn off idle balance on this domain */
c88d5910 6201 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6202 } else {
6203 /* turn on idle balance on this domain */
c88d5910 6204 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6205 }
6206}
6207
54ab4ff4
PZ
6208static void __sdt_free(const struct cpumask *cpu_map);
6209static int __sdt_alloc(const struct cpumask *cpu_map);
6210
2109b99e
AH
6211static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6212 const struct cpumask *cpu_map)
6213{
6214 switch (what) {
2109b99e 6215 case sa_rootdomain:
822ff793
PZ
6216 if (!atomic_read(&d->rd->refcount))
6217 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6218 case sa_sd:
6219 free_percpu(d->sd); /* fall through */
dce840a0 6220 case sa_sd_storage:
54ab4ff4 6221 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6222 case sa_none:
6223 break;
6224 }
6225}
3404c8d9 6226
2109b99e
AH
6227static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6228 const struct cpumask *cpu_map)
6229{
dce840a0
PZ
6230 memset(d, 0, sizeof(*d));
6231
54ab4ff4
PZ
6232 if (__sdt_alloc(cpu_map))
6233 return sa_sd_storage;
dce840a0
PZ
6234 d->sd = alloc_percpu(struct sched_domain *);
6235 if (!d->sd)
6236 return sa_sd_storage;
2109b99e 6237 d->rd = alloc_rootdomain();
dce840a0 6238 if (!d->rd)
21d42ccf 6239 return sa_sd;
2109b99e
AH
6240 return sa_rootdomain;
6241}
57d885fe 6242
dce840a0
PZ
6243/*
6244 * NULL the sd_data elements we've used to build the sched_domain and
6245 * sched_group structure so that the subsequent __free_domain_allocs()
6246 * will not free the data we're using.
6247 */
6248static void claim_allocations(int cpu, struct sched_domain *sd)
6249{
6250 struct sd_data *sdd = sd->private;
dce840a0
PZ
6251
6252 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6253 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6254
e3589f6c 6255 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6256 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6257
63b2ca30
NP
6258 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6259 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6260}
6261
cb83b629 6262#ifdef CONFIG_NUMA
cb83b629 6263static int sched_domains_numa_levels;
e3fe70b1 6264enum numa_topology_type sched_numa_topology_type;
cb83b629 6265static int *sched_domains_numa_distance;
9942f79b 6266int sched_max_numa_distance;
cb83b629
PZ
6267static struct cpumask ***sched_domains_numa_masks;
6268static int sched_domains_curr_level;
143e1e28 6269#endif
cb83b629 6270
143e1e28
VG
6271/*
6272 * SD_flags allowed in topology descriptions.
6273 *
5d4dfddd 6274 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6275 * SD_SHARE_PKG_RESOURCES - describes shared caches
6276 * SD_NUMA - describes NUMA topologies
d77b3ed5 6277 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6278 *
6279 * Odd one out:
6280 * SD_ASYM_PACKING - describes SMT quirks
6281 */
6282#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6283 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6284 SD_SHARE_PKG_RESOURCES | \
6285 SD_NUMA | \
d77b3ed5
VG
6286 SD_ASYM_PACKING | \
6287 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6288
6289static struct sched_domain *
143e1e28 6290sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6291{
6292 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6293 int sd_weight, sd_flags = 0;
6294
6295#ifdef CONFIG_NUMA
6296 /*
6297 * Ugly hack to pass state to sd_numa_mask()...
6298 */
6299 sched_domains_curr_level = tl->numa_level;
6300#endif
6301
6302 sd_weight = cpumask_weight(tl->mask(cpu));
6303
6304 if (tl->sd_flags)
6305 sd_flags = (*tl->sd_flags)();
6306 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6307 "wrong sd_flags in topology description\n"))
6308 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6309
6310 *sd = (struct sched_domain){
6311 .min_interval = sd_weight,
6312 .max_interval = 2*sd_weight,
6313 .busy_factor = 32,
870a0bb5 6314 .imbalance_pct = 125,
143e1e28
VG
6315
6316 .cache_nice_tries = 0,
6317 .busy_idx = 0,
6318 .idle_idx = 0,
cb83b629
PZ
6319 .newidle_idx = 0,
6320 .wake_idx = 0,
6321 .forkexec_idx = 0,
6322
6323 .flags = 1*SD_LOAD_BALANCE
6324 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6325 | 1*SD_BALANCE_EXEC
6326 | 1*SD_BALANCE_FORK
cb83b629 6327 | 0*SD_BALANCE_WAKE
143e1e28 6328 | 1*SD_WAKE_AFFINE
5d4dfddd 6329 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6330 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6331 | 0*SD_SERIALIZE
cb83b629 6332 | 0*SD_PREFER_SIBLING
143e1e28
VG
6333 | 0*SD_NUMA
6334 | sd_flags
cb83b629 6335 ,
143e1e28 6336
cb83b629
PZ
6337 .last_balance = jiffies,
6338 .balance_interval = sd_weight,
143e1e28 6339 .smt_gain = 0,
2b4cfe64
JL
6340 .max_newidle_lb_cost = 0,
6341 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6342#ifdef CONFIG_SCHED_DEBUG
6343 .name = tl->name,
6344#endif
cb83b629 6345 };
cb83b629
PZ
6346
6347 /*
143e1e28 6348 * Convert topological properties into behaviour.
cb83b629 6349 */
143e1e28 6350
5d4dfddd 6351 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6352 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6353 sd->imbalance_pct = 110;
6354 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6355
6356 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6357 sd->imbalance_pct = 117;
6358 sd->cache_nice_tries = 1;
6359 sd->busy_idx = 2;
6360
6361#ifdef CONFIG_NUMA
6362 } else if (sd->flags & SD_NUMA) {
6363 sd->cache_nice_tries = 2;
6364 sd->busy_idx = 3;
6365 sd->idle_idx = 2;
6366
6367 sd->flags |= SD_SERIALIZE;
6368 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6369 sd->flags &= ~(SD_BALANCE_EXEC |
6370 SD_BALANCE_FORK |
6371 SD_WAKE_AFFINE);
6372 }
6373
6374#endif
6375 } else {
6376 sd->flags |= SD_PREFER_SIBLING;
6377 sd->cache_nice_tries = 1;
6378 sd->busy_idx = 2;
6379 sd->idle_idx = 1;
6380 }
6381
6382 sd->private = &tl->data;
cb83b629
PZ
6383
6384 return sd;
6385}
6386
143e1e28
VG
6387/*
6388 * Topology list, bottom-up.
6389 */
6390static struct sched_domain_topology_level default_topology[] = {
6391#ifdef CONFIG_SCHED_SMT
6392 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6393#endif
6394#ifdef CONFIG_SCHED_MC
6395 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6396#endif
6397 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6398 { NULL, },
6399};
6400
c6e1e7b5
JG
6401static struct sched_domain_topology_level *sched_domain_topology =
6402 default_topology;
143e1e28
VG
6403
6404#define for_each_sd_topology(tl) \
6405 for (tl = sched_domain_topology; tl->mask; tl++)
6406
6407void set_sched_topology(struct sched_domain_topology_level *tl)
6408{
6409 sched_domain_topology = tl;
6410}
6411
6412#ifdef CONFIG_NUMA
6413
cb83b629
PZ
6414static const struct cpumask *sd_numa_mask(int cpu)
6415{
6416 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417}
6418
d039ac60
PZ
6419static void sched_numa_warn(const char *str)
6420{
6421 static int done = false;
6422 int i,j;
6423
6424 if (done)
6425 return;
6426
6427 done = true;
6428
6429 printk(KERN_WARNING "ERROR: %s\n\n", str);
6430
6431 for (i = 0; i < nr_node_ids; i++) {
6432 printk(KERN_WARNING " ");
6433 for (j = 0; j < nr_node_ids; j++)
6434 printk(KERN_CONT "%02d ", node_distance(i,j));
6435 printk(KERN_CONT "\n");
6436 }
6437 printk(KERN_WARNING "\n");
6438}
6439
9942f79b 6440bool find_numa_distance(int distance)
d039ac60
PZ
6441{
6442 int i;
6443
6444 if (distance == node_distance(0, 0))
6445 return true;
6446
6447 for (i = 0; i < sched_domains_numa_levels; i++) {
6448 if (sched_domains_numa_distance[i] == distance)
6449 return true;
6450 }
6451
6452 return false;
6453}
6454
e3fe70b1
RR
6455/*
6456 * A system can have three types of NUMA topology:
6457 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460 *
6461 * The difference between a glueless mesh topology and a backplane
6462 * topology lies in whether communication between not directly
6463 * connected nodes goes through intermediary nodes (where programs
6464 * could run), or through backplane controllers. This affects
6465 * placement of programs.
6466 *
6467 * The type of topology can be discerned with the following tests:
6468 * - If the maximum distance between any nodes is 1 hop, the system
6469 * is directly connected.
6470 * - If for two nodes A and B, located N > 1 hops away from each other,
6471 * there is an intermediary node C, which is < N hops away from both
6472 * nodes A and B, the system is a glueless mesh.
6473 */
6474static void init_numa_topology_type(void)
6475{
6476 int a, b, c, n;
6477
6478 n = sched_max_numa_distance;
6479
e237882b 6480 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6481 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6482 return;
6483 }
e3fe70b1
RR
6484
6485 for_each_online_node(a) {
6486 for_each_online_node(b) {
6487 /* Find two nodes furthest removed from each other. */
6488 if (node_distance(a, b) < n)
6489 continue;
6490
6491 /* Is there an intermediary node between a and b? */
6492 for_each_online_node(c) {
6493 if (node_distance(a, c) < n &&
6494 node_distance(b, c) < n) {
6495 sched_numa_topology_type =
6496 NUMA_GLUELESS_MESH;
6497 return;
6498 }
6499 }
6500
6501 sched_numa_topology_type = NUMA_BACKPLANE;
6502 return;
6503 }
6504 }
6505}
6506
cb83b629
PZ
6507static void sched_init_numa(void)
6508{
6509 int next_distance, curr_distance = node_distance(0, 0);
6510 struct sched_domain_topology_level *tl;
6511 int level = 0;
6512 int i, j, k;
6513
cb83b629
PZ
6514 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515 if (!sched_domains_numa_distance)
6516 return;
6517
6518 /*
6519 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520 * unique distances in the node_distance() table.
6521 *
6522 * Assumes node_distance(0,j) includes all distances in
6523 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6524 */
6525 next_distance = curr_distance;
6526 for (i = 0; i < nr_node_ids; i++) {
6527 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6528 for (k = 0; k < nr_node_ids; k++) {
6529 int distance = node_distance(i, k);
6530
6531 if (distance > curr_distance &&
6532 (distance < next_distance ||
6533 next_distance == curr_distance))
6534 next_distance = distance;
6535
6536 /*
6537 * While not a strong assumption it would be nice to know
6538 * about cases where if node A is connected to B, B is not
6539 * equally connected to A.
6540 */
6541 if (sched_debug() && node_distance(k, i) != distance)
6542 sched_numa_warn("Node-distance not symmetric");
6543
6544 if (sched_debug() && i && !find_numa_distance(distance))
6545 sched_numa_warn("Node-0 not representative");
6546 }
6547 if (next_distance != curr_distance) {
6548 sched_domains_numa_distance[level++] = next_distance;
6549 sched_domains_numa_levels = level;
6550 curr_distance = next_distance;
6551 } else break;
cb83b629 6552 }
d039ac60
PZ
6553
6554 /*
6555 * In case of sched_debug() we verify the above assumption.
6556 */
6557 if (!sched_debug())
6558 break;
cb83b629 6559 }
c123588b
AR
6560
6561 if (!level)
6562 return;
6563
cb83b629
PZ
6564 /*
6565 * 'level' contains the number of unique distances, excluding the
6566 * identity distance node_distance(i,i).
6567 *
28b4a521 6568 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6569 * numbers.
6570 */
6571
5f7865f3
TC
6572 /*
6573 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575 * the array will contain less then 'level' members. This could be
6576 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577 * in other functions.
6578 *
6579 * We reset it to 'level' at the end of this function.
6580 */
6581 sched_domains_numa_levels = 0;
6582
cb83b629
PZ
6583 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584 if (!sched_domains_numa_masks)
6585 return;
6586
6587 /*
6588 * Now for each level, construct a mask per node which contains all
6589 * cpus of nodes that are that many hops away from us.
6590 */
6591 for (i = 0; i < level; i++) {
6592 sched_domains_numa_masks[i] =
6593 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594 if (!sched_domains_numa_masks[i])
6595 return;
6596
6597 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6598 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6599 if (!mask)
6600 return;
6601
6602 sched_domains_numa_masks[i][j] = mask;
6603
9c03ee14 6604 for_each_node(k) {
dd7d8634 6605 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6606 continue;
6607
6608 cpumask_or(mask, mask, cpumask_of_node(k));
6609 }
6610 }
6611 }
6612
143e1e28
VG
6613 /* Compute default topology size */
6614 for (i = 0; sched_domain_topology[i].mask; i++);
6615
c515db8c 6616 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6617 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618 if (!tl)
6619 return;
6620
6621 /*
6622 * Copy the default topology bits..
6623 */
143e1e28
VG
6624 for (i = 0; sched_domain_topology[i].mask; i++)
6625 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6626
6627 /*
6628 * .. and append 'j' levels of NUMA goodness.
6629 */
6630 for (j = 0; j < level; i++, j++) {
6631 tl[i] = (struct sched_domain_topology_level){
cb83b629 6632 .mask = sd_numa_mask,
143e1e28 6633 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6634 .flags = SDTL_OVERLAP,
6635 .numa_level = j,
143e1e28 6636 SD_INIT_NAME(NUMA)
cb83b629
PZ
6637 };
6638 }
6639
6640 sched_domain_topology = tl;
5f7865f3
TC
6641
6642 sched_domains_numa_levels = level;
9942f79b 6643 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6644
6645 init_numa_topology_type();
cb83b629 6646}
301a5cba
TC
6647
6648static void sched_domains_numa_masks_set(int cpu)
6649{
6650 int i, j;
6651 int node = cpu_to_node(cpu);
6652
6653 for (i = 0; i < sched_domains_numa_levels; i++) {
6654 for (j = 0; j < nr_node_ids; j++) {
6655 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657 }
6658 }
6659}
6660
6661static void sched_domains_numa_masks_clear(int cpu)
6662{
6663 int i, j;
6664 for (i = 0; i < sched_domains_numa_levels; i++) {
6665 for (j = 0; j < nr_node_ids; j++)
6666 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667 }
6668}
6669
6670/*
6671 * Update sched_domains_numa_masks[level][node] array when new cpus
6672 * are onlined.
6673 */
6674static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675 unsigned long action,
6676 void *hcpu)
6677{
6678 int cpu = (long)hcpu;
6679
6680 switch (action & ~CPU_TASKS_FROZEN) {
6681 case CPU_ONLINE:
6682 sched_domains_numa_masks_set(cpu);
6683 break;
6684
6685 case CPU_DEAD:
6686 sched_domains_numa_masks_clear(cpu);
6687 break;
6688
6689 default:
6690 return NOTIFY_DONE;
6691 }
6692
6693 return NOTIFY_OK;
cb83b629
PZ
6694}
6695#else
6696static inline void sched_init_numa(void)
6697{
6698}
301a5cba
TC
6699
6700static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701 unsigned long action,
6702 void *hcpu)
6703{
6704 return 0;
6705}
cb83b629
PZ
6706#endif /* CONFIG_NUMA */
6707
54ab4ff4
PZ
6708static int __sdt_alloc(const struct cpumask *cpu_map)
6709{
6710 struct sched_domain_topology_level *tl;
6711 int j;
6712
27723a68 6713 for_each_sd_topology(tl) {
54ab4ff4
PZ
6714 struct sd_data *sdd = &tl->data;
6715
6716 sdd->sd = alloc_percpu(struct sched_domain *);
6717 if (!sdd->sd)
6718 return -ENOMEM;
6719
6720 sdd->sg = alloc_percpu(struct sched_group *);
6721 if (!sdd->sg)
6722 return -ENOMEM;
6723
63b2ca30
NP
6724 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725 if (!sdd->sgc)
9c3f75cb
PZ
6726 return -ENOMEM;
6727
54ab4ff4
PZ
6728 for_each_cpu(j, cpu_map) {
6729 struct sched_domain *sd;
6730 struct sched_group *sg;
63b2ca30 6731 struct sched_group_capacity *sgc;
54ab4ff4 6732
5cc389bc 6733 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6734 GFP_KERNEL, cpu_to_node(j));
6735 if (!sd)
6736 return -ENOMEM;
6737
6738 *per_cpu_ptr(sdd->sd, j) = sd;
6739
6740 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741 GFP_KERNEL, cpu_to_node(j));
6742 if (!sg)
6743 return -ENOMEM;
6744
30b4e9eb
IM
6745 sg->next = sg;
6746
54ab4ff4 6747 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6748
63b2ca30 6749 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6750 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6751 if (!sgc)
9c3f75cb
PZ
6752 return -ENOMEM;
6753
63b2ca30 6754 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6755 }
6756 }
6757
6758 return 0;
6759}
6760
6761static void __sdt_free(const struct cpumask *cpu_map)
6762{
6763 struct sched_domain_topology_level *tl;
6764 int j;
6765
27723a68 6766 for_each_sd_topology(tl) {
54ab4ff4
PZ
6767 struct sd_data *sdd = &tl->data;
6768
6769 for_each_cpu(j, cpu_map) {
fb2cf2c6 6770 struct sched_domain *sd;
6771
6772 if (sdd->sd) {
6773 sd = *per_cpu_ptr(sdd->sd, j);
6774 if (sd && (sd->flags & SD_OVERLAP))
6775 free_sched_groups(sd->groups, 0);
6776 kfree(*per_cpu_ptr(sdd->sd, j));
6777 }
6778
6779 if (sdd->sg)
6780 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6781 if (sdd->sgc)
6782 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6783 }
6784 free_percpu(sdd->sd);
fb2cf2c6 6785 sdd->sd = NULL;
54ab4ff4 6786 free_percpu(sdd->sg);
fb2cf2c6 6787 sdd->sg = NULL;
63b2ca30
NP
6788 free_percpu(sdd->sgc);
6789 sdd->sgc = NULL;
54ab4ff4
PZ
6790 }
6791}
6792
2c402dc3 6793struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6794 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795 struct sched_domain *child, int cpu)
2c402dc3 6796{
143e1e28 6797 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6798 if (!sd)
d069b916 6799 return child;
2c402dc3 6800
2c402dc3 6801 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6802 if (child) {
6803 sd->level = child->level + 1;
6804 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6805 child->parent = sd;
c75e0128 6806 sd->child = child;
6ae72dff
PZ
6807
6808 if (!cpumask_subset(sched_domain_span(child),
6809 sched_domain_span(sd))) {
6810 pr_err("BUG: arch topology borken\n");
6811#ifdef CONFIG_SCHED_DEBUG
6812 pr_err(" the %s domain not a subset of the %s domain\n",
6813 child->name, sd->name);
6814#endif
6815 /* Fixup, ensure @sd has at least @child cpus. */
6816 cpumask_or(sched_domain_span(sd),
6817 sched_domain_span(sd),
6818 sched_domain_span(child));
6819 }
6820
60495e77 6821 }
a841f8ce 6822 set_domain_attribute(sd, attr);
2c402dc3
PZ
6823
6824 return sd;
6825}
6826
2109b99e
AH
6827/*
6828 * Build sched domains for a given set of cpus and attach the sched domains
6829 * to the individual cpus
6830 */
dce840a0
PZ
6831static int build_sched_domains(const struct cpumask *cpu_map,
6832 struct sched_domain_attr *attr)
2109b99e 6833{
1c632169 6834 enum s_alloc alloc_state;
dce840a0 6835 struct sched_domain *sd;
2109b99e 6836 struct s_data d;
822ff793 6837 int i, ret = -ENOMEM;
9c1cfda2 6838
2109b99e
AH
6839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840 if (alloc_state != sa_rootdomain)
6841 goto error;
9c1cfda2 6842
dce840a0 6843 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6844 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6845 struct sched_domain_topology_level *tl;
6846
3bd65a80 6847 sd = NULL;
27723a68 6848 for_each_sd_topology(tl) {
4a850cbe 6849 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6850 if (tl == sched_domain_topology)
6851 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6852 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853 sd->flags |= SD_OVERLAP;
d110235d
PZ
6854 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855 break;
e3589f6c 6856 }
dce840a0
PZ
6857 }
6858
6859 /* Build the groups for the domains */
6860 for_each_cpu(i, cpu_map) {
6861 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6863 if (sd->flags & SD_OVERLAP) {
6864 if (build_overlap_sched_groups(sd, i))
6865 goto error;
6866 } else {
6867 if (build_sched_groups(sd, i))
6868 goto error;
6869 }
1cf51902 6870 }
a06dadbe 6871 }
9c1cfda2 6872
ced549fa 6873 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6874 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875 if (!cpumask_test_cpu(i, cpu_map))
6876 continue;
9c1cfda2 6877
dce840a0
PZ
6878 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879 claim_allocations(i, sd);
63b2ca30 6880 init_sched_groups_capacity(i, sd);
dce840a0 6881 }
f712c0c7 6882 }
9c1cfda2 6883
1da177e4 6884 /* Attach the domains */
dce840a0 6885 rcu_read_lock();
abcd083a 6886 for_each_cpu(i, cpu_map) {
21d42ccf 6887 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6888 cpu_attach_domain(sd, d.rd, i);
1da177e4 6889 }
dce840a0 6890 rcu_read_unlock();
51888ca2 6891
822ff793 6892 ret = 0;
51888ca2 6893error:
2109b99e 6894 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6895 return ret;
1da177e4 6896}
029190c5 6897
acc3f5d7 6898static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6899static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6900static struct sched_domain_attr *dattr_cur;
6901 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6902
6903/*
6904 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6905 * cpumask) fails, then fallback to a single sched domain,
6906 * as determined by the single cpumask fallback_doms.
029190c5 6907 */
4212823f 6908static cpumask_var_t fallback_doms;
029190c5 6909
ee79d1bd
HC
6910/*
6911 * arch_update_cpu_topology lets virtualized architectures update the
6912 * cpu core maps. It is supposed to return 1 if the topology changed
6913 * or 0 if it stayed the same.
6914 */
52f5684c 6915int __weak arch_update_cpu_topology(void)
22e52b07 6916{
ee79d1bd 6917 return 0;
22e52b07
HC
6918}
6919
acc3f5d7
RR
6920cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921{
6922 int i;
6923 cpumask_var_t *doms;
6924
6925 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926 if (!doms)
6927 return NULL;
6928 for (i = 0; i < ndoms; i++) {
6929 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930 free_sched_domains(doms, i);
6931 return NULL;
6932 }
6933 }
6934 return doms;
6935}
6936
6937void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938{
6939 unsigned int i;
6940 for (i = 0; i < ndoms; i++)
6941 free_cpumask_var(doms[i]);
6942 kfree(doms);
6943}
6944
1a20ff27 6945/*
41a2d6cf 6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6947 * For now this just excludes isolated cpus, but could be used to
6948 * exclude other special cases in the future.
1a20ff27 6949 */
c4a8849a 6950static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6951{
7378547f
MM
6952 int err;
6953
22e52b07 6954 arch_update_cpu_topology();
029190c5 6955 ndoms_cur = 1;
acc3f5d7 6956 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6957 if (!doms_cur)
acc3f5d7
RR
6958 doms_cur = &fallback_doms;
6959 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6960 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6961 register_sched_domain_sysctl();
7378547f
MM
6962
6963 return err;
1a20ff27
DG
6964}
6965
1a20ff27
DG
6966/*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
96f874e2 6970static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6971{
6972 int i;
6973
dce840a0 6974 rcu_read_lock();
abcd083a 6975 for_each_cpu(i, cpu_map)
57d885fe 6976 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6977 rcu_read_unlock();
1a20ff27
DG
6978}
6979
1d3504fc
HS
6980/* handle null as "default" */
6981static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982 struct sched_domain_attr *new, int idx_new)
6983{
6984 struct sched_domain_attr tmp;
6985
6986 /* fast path */
6987 if (!new && !cur)
6988 return 1;
6989
6990 tmp = SD_ATTR_INIT;
6991 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992 new ? (new + idx_new) : &tmp,
6993 sizeof(struct sched_domain_attr));
6994}
6995
029190c5
PJ
6996/*
6997 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6998 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6999 * doms_new[] to the current sched domain partitioning, doms_cur[].
7000 * It destroys each deleted domain and builds each new domain.
7001 *
acc3f5d7 7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7003 * The masks don't intersect (don't overlap.) We should setup one
7004 * sched domain for each mask. CPUs not in any of the cpumasks will
7005 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007 * it as it is.
7008 *
acc3f5d7
RR
7009 * The passed in 'doms_new' should be allocated using
7010 * alloc_sched_domains. This routine takes ownership of it and will
7011 * free_sched_domains it when done with it. If the caller failed the
7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013 * and partition_sched_domains() will fallback to the single partition
7014 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7015 *
96f874e2 7016 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7017 * ndoms_new == 0 is a special case for destroying existing domains,
7018 * and it will not create the default domain.
dfb512ec 7019 *
029190c5
PJ
7020 * Call with hotplug lock held
7021 */
acc3f5d7 7022void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7023 struct sched_domain_attr *dattr_new)
029190c5 7024{
dfb512ec 7025 int i, j, n;
d65bd5ec 7026 int new_topology;
029190c5 7027
712555ee 7028 mutex_lock(&sched_domains_mutex);
a1835615 7029
7378547f
MM
7030 /* always unregister in case we don't destroy any domains */
7031 unregister_sched_domain_sysctl();
7032
d65bd5ec
HC
7033 /* Let architecture update cpu core mappings. */
7034 new_topology = arch_update_cpu_topology();
7035
dfb512ec 7036 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7037
7038 /* Destroy deleted domains */
7039 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7040 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7041 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7042 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7043 goto match1;
7044 }
7045 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7046 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7047match1:
7048 ;
7049 }
7050
c8d2d47a 7051 n = ndoms_cur;
e761b772 7052 if (doms_new == NULL) {
c8d2d47a 7053 n = 0;
acc3f5d7 7054 doms_new = &fallback_doms;
6ad4c188 7055 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7056 WARN_ON_ONCE(dattr_new);
e761b772
MK
7057 }
7058
029190c5
PJ
7059 /* Build new domains */
7060 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7061 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7062 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7063 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7064 goto match2;
7065 }
7066 /* no match - add a new doms_new */
dce840a0 7067 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7068match2:
7069 ;
7070 }
7071
7072 /* Remember the new sched domains */
acc3f5d7
RR
7073 if (doms_cur != &fallback_doms)
7074 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7075 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7076 doms_cur = doms_new;
1d3504fc 7077 dattr_cur = dattr_new;
029190c5 7078 ndoms_cur = ndoms_new;
7378547f
MM
7079
7080 register_sched_domain_sysctl();
a1835615 7081
712555ee 7082 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7083}
7084
d35be8ba
SB
7085static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7086
1da177e4 7087/*
3a101d05
TH
7088 * Update cpusets according to cpu_active mask. If cpusets are
7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090 * around partition_sched_domains().
d35be8ba
SB
7091 *
7092 * If we come here as part of a suspend/resume, don't touch cpusets because we
7093 * want to restore it back to its original state upon resume anyway.
1da177e4 7094 */
0b2e918a
TH
7095static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096 void *hcpu)
e761b772 7097{
d35be8ba
SB
7098 switch (action) {
7099 case CPU_ONLINE_FROZEN:
7100 case CPU_DOWN_FAILED_FROZEN:
7101
7102 /*
7103 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104 * resume sequence. As long as this is not the last online
7105 * operation in the resume sequence, just build a single sched
7106 * domain, ignoring cpusets.
7107 */
7108 num_cpus_frozen--;
7109 if (likely(num_cpus_frozen)) {
7110 partition_sched_domains(1, NULL, NULL);
7111 break;
7112 }
7113
7114 /*
7115 * This is the last CPU online operation. So fall through and
7116 * restore the original sched domains by considering the
7117 * cpuset configurations.
7118 */
7119
e761b772 7120 case CPU_ONLINE:
7ddf96b0 7121 cpuset_update_active_cpus(true);
d35be8ba 7122 break;
3a101d05
TH
7123 default:
7124 return NOTIFY_DONE;
7125 }
d35be8ba 7126 return NOTIFY_OK;
3a101d05 7127}
e761b772 7128
0b2e918a
TH
7129static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130 void *hcpu)
3a101d05 7131{
3c18d447
JL
7132 unsigned long flags;
7133 long cpu = (long)hcpu;
7134 struct dl_bw *dl_b;
533445c6
OS
7135 bool overflow;
7136 int cpus;
3c18d447 7137
533445c6 7138 switch (action) {
3a101d05 7139 case CPU_DOWN_PREPARE:
533445c6
OS
7140 rcu_read_lock_sched();
7141 dl_b = dl_bw_of(cpu);
3c18d447 7142
533445c6
OS
7143 raw_spin_lock_irqsave(&dl_b->lock, flags);
7144 cpus = dl_bw_cpus(cpu);
7145 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7147
533445c6 7148 rcu_read_unlock_sched();
3c18d447 7149
533445c6
OS
7150 if (overflow)
7151 return notifier_from_errno(-EBUSY);
7ddf96b0 7152 cpuset_update_active_cpus(false);
d35be8ba
SB
7153 break;
7154 case CPU_DOWN_PREPARE_FROZEN:
7155 num_cpus_frozen++;
7156 partition_sched_domains(1, NULL, NULL);
7157 break;
e761b772
MK
7158 default:
7159 return NOTIFY_DONE;
7160 }
d35be8ba 7161 return NOTIFY_OK;
e761b772 7162}
e761b772 7163
1da177e4
LT
7164void __init sched_init_smp(void)
7165{
dcc30a35
RR
7166 cpumask_var_t non_isolated_cpus;
7167
7168 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7169 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7170
cb83b629
PZ
7171 sched_init_numa();
7172
6acce3ef
PZ
7173 /*
7174 * There's no userspace yet to cause hotplug operations; hence all the
7175 * cpu masks are stable and all blatant races in the below code cannot
7176 * happen.
7177 */
712555ee 7178 mutex_lock(&sched_domains_mutex);
c4a8849a 7179 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7180 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7181 if (cpumask_empty(non_isolated_cpus))
7182 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7183 mutex_unlock(&sched_domains_mutex);
e761b772 7184
301a5cba 7185 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7186 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7187 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7188
b328ca18 7189 init_hrtick();
5c1e1767
NP
7190
7191 /* Move init over to a non-isolated CPU */
dcc30a35 7192 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7193 BUG();
19978ca6 7194 sched_init_granularity();
dcc30a35 7195 free_cpumask_var(non_isolated_cpus);
4212823f 7196
0e3900e6 7197 init_sched_rt_class();
1baca4ce 7198 init_sched_dl_class();
1da177e4
LT
7199}
7200#else
7201void __init sched_init_smp(void)
7202{
19978ca6 7203 sched_init_granularity();
1da177e4
LT
7204}
7205#endif /* CONFIG_SMP */
7206
7207int in_sched_functions(unsigned long addr)
7208{
1da177e4
LT
7209 return in_lock_functions(addr) ||
7210 (addr >= (unsigned long)__sched_text_start
7211 && addr < (unsigned long)__sched_text_end);
7212}
7213
029632fb 7214#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7215/*
7216 * Default task group.
7217 * Every task in system belongs to this group at bootup.
7218 */
029632fb 7219struct task_group root_task_group;
35cf4e50 7220LIST_HEAD(task_groups);
b0367629
WL
7221
7222/* Cacheline aligned slab cache for task_group */
7223static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7224#endif
6f505b16 7225
e6252c3e 7226DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7227
1da177e4
LT
7228void __init sched_init(void)
7229{
dd41f596 7230 int i, j;
434d53b0
MT
7231 unsigned long alloc_size = 0, ptr;
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235#endif
7236#ifdef CONFIG_RT_GROUP_SCHED
7237 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
434d53b0 7239 if (alloc_size) {
36b7b6d4 7240 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7241
7242#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7243 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7244 ptr += nr_cpu_ids * sizeof(void **);
7245
07e06b01 7246 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7247 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7248
6d6bc0ad 7249#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7250#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7251 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7252 ptr += nr_cpu_ids * sizeof(void **);
7253
07e06b01 7254 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7255 ptr += nr_cpu_ids * sizeof(void **);
7256
6d6bc0ad 7257#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7258 }
df7c8e84 7259#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7260 for_each_possible_cpu(i) {
7261 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7263 }
b74e6278 7264#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7265
332ac17e
DF
7266 init_rt_bandwidth(&def_rt_bandwidth,
7267 global_rt_period(), global_rt_runtime());
7268 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7269 global_rt_period(), global_rt_runtime());
332ac17e 7270
57d885fe
GH
7271#ifdef CONFIG_SMP
7272 init_defrootdomain();
7273#endif
7274
d0b27fa7 7275#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7276 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7277 global_rt_period(), global_rt_runtime());
6d6bc0ad 7278#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7279
7c941438 7280#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7281 task_group_cache = KMEM_CACHE(task_group, 0);
7282
07e06b01
YZ
7283 list_add(&root_task_group.list, &task_groups);
7284 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7285 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7286 autogroup_init(&init_task);
7c941438 7287#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7288
0a945022 7289 for_each_possible_cpu(i) {
70b97a7f 7290 struct rq *rq;
1da177e4
LT
7291
7292 rq = cpu_rq(i);
05fa785c 7293 raw_spin_lock_init(&rq->lock);
7897986b 7294 rq->nr_running = 0;
dce48a84
TG
7295 rq->calc_load_active = 0;
7296 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7297 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7298 init_rt_rq(&rq->rt);
7299 init_dl_rq(&rq->dl);
dd41f596 7300#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7301 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7302 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7303 /*
07e06b01 7304 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7305 *
7306 * In case of task-groups formed thr' the cgroup filesystem, it
7307 * gets 100% of the cpu resources in the system. This overall
7308 * system cpu resource is divided among the tasks of
07e06b01 7309 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7310 * based on each entity's (task or task-group's) weight
7311 * (se->load.weight).
7312 *
07e06b01 7313 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7314 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7315 * then A0's share of the cpu resource is:
7316 *
0d905bca 7317 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7318 *
07e06b01
YZ
7319 * We achieve this by letting root_task_group's tasks sit
7320 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7321 */
ab84d31e 7322 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7323 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7324#endif /* CONFIG_FAIR_GROUP_SCHED */
7325
7326 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7327#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7328 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7329#endif
1da177e4 7330
dd41f596
IM
7331 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7332 rq->cpu_load[j] = 0;
fdf3e95d
VP
7333
7334 rq->last_load_update_tick = jiffies;
7335
1da177e4 7336#ifdef CONFIG_SMP
41c7ce9a 7337 rq->sd = NULL;
57d885fe 7338 rq->rd = NULL;
ca6d75e6 7339 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7340 rq->balance_callback = NULL;
1da177e4 7341 rq->active_balance = 0;
dd41f596 7342 rq->next_balance = jiffies;
1da177e4 7343 rq->push_cpu = 0;
0a2966b4 7344 rq->cpu = i;
1f11eb6a 7345 rq->online = 0;
eae0c9df
MG
7346 rq->idle_stamp = 0;
7347 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7348 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7349
7350 INIT_LIST_HEAD(&rq->cfs_tasks);
7351
dc938520 7352 rq_attach_root(rq, &def_root_domain);
3451d024 7353#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7354 rq->nohz_flags = 0;
83cd4fe2 7355#endif
265f22a9
FW
7356#ifdef CONFIG_NO_HZ_FULL
7357 rq->last_sched_tick = 0;
7358#endif
1da177e4 7359#endif
8f4d37ec 7360 init_rq_hrtick(rq);
1da177e4 7361 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7362 }
7363
2dd73a4f 7364 set_load_weight(&init_task);
b50f60ce 7365
e107be36
AK
7366#ifdef CONFIG_PREEMPT_NOTIFIERS
7367 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7368#endif
7369
1da177e4
LT
7370 /*
7371 * The boot idle thread does lazy MMU switching as well:
7372 */
7373 atomic_inc(&init_mm.mm_count);
7374 enter_lazy_tlb(&init_mm, current);
7375
1b537c7d
YD
7376 /*
7377 * During early bootup we pretend to be a normal task:
7378 */
7379 current->sched_class = &fair_sched_class;
7380
1da177e4
LT
7381 /*
7382 * Make us the idle thread. Technically, schedule() should not be
7383 * called from this thread, however somewhere below it might be,
7384 * but because we are the idle thread, we just pick up running again
7385 * when this runqueue becomes "idle".
7386 */
7387 init_idle(current, smp_processor_id());
dce48a84
TG
7388
7389 calc_load_update = jiffies + LOAD_FREQ;
7390
bf4d83f6 7391#ifdef CONFIG_SMP
4cb98839 7392 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7393 /* May be allocated at isolcpus cmdline parse time */
7394 if (cpu_isolated_map == NULL)
7395 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7396 idle_thread_set_boot_cpu();
a803f026 7397 set_cpu_rq_start_time();
029632fb
PZ
7398#endif
7399 init_sched_fair_class();
6a7b3dc3 7400
6892b75e 7401 scheduler_running = 1;
1da177e4
LT
7402}
7403
d902db1e 7404#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7405static inline int preempt_count_equals(int preempt_offset)
7406{
da7142e2 7407 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7408
4ba8216c 7409 return (nested == preempt_offset);
e4aafea2
FW
7410}
7411
d894837f 7412void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7413{
8eb23b9f
PZ
7414 /*
7415 * Blocking primitives will set (and therefore destroy) current->state,
7416 * since we will exit with TASK_RUNNING make sure we enter with it,
7417 * otherwise we will destroy state.
7418 */
00845eb9 7419 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7420 "do not call blocking ops when !TASK_RUNNING; "
7421 "state=%lx set at [<%p>] %pS\n",
7422 current->state,
7423 (void *)current->task_state_change,
00845eb9 7424 (void *)current->task_state_change);
8eb23b9f 7425
3427445a
PZ
7426 ___might_sleep(file, line, preempt_offset);
7427}
7428EXPORT_SYMBOL(__might_sleep);
7429
7430void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7431{
1da177e4
LT
7432 static unsigned long prev_jiffy; /* ratelimiting */
7433
b3fbab05 7434 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7435 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7436 !is_idle_task(current)) ||
e4aafea2 7437 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7438 return;
7439 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7440 return;
7441 prev_jiffy = jiffies;
7442
3df0fc5b
PZ
7443 printk(KERN_ERR
7444 "BUG: sleeping function called from invalid context at %s:%d\n",
7445 file, line);
7446 printk(KERN_ERR
7447 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7448 in_atomic(), irqs_disabled(),
7449 current->pid, current->comm);
aef745fc 7450
a8b686b3
ES
7451 if (task_stack_end_corrupted(current))
7452 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7453
aef745fc
IM
7454 debug_show_held_locks(current);
7455 if (irqs_disabled())
7456 print_irqtrace_events(current);
8f47b187
TG
7457#ifdef CONFIG_DEBUG_PREEMPT
7458 if (!preempt_count_equals(preempt_offset)) {
7459 pr_err("Preemption disabled at:");
7460 print_ip_sym(current->preempt_disable_ip);
7461 pr_cont("\n");
7462 }
7463#endif
aef745fc 7464 dump_stack();
1da177e4 7465}
3427445a 7466EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7467#endif
7468
7469#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7470void normalize_rt_tasks(void)
3a5e4dc1 7471{
dbc7f069 7472 struct task_struct *g, *p;
d50dde5a
DF
7473 struct sched_attr attr = {
7474 .sched_policy = SCHED_NORMAL,
7475 };
1da177e4 7476
3472eaa1 7477 read_lock(&tasklist_lock);
5d07f420 7478 for_each_process_thread(g, p) {
178be793
IM
7479 /*
7480 * Only normalize user tasks:
7481 */
3472eaa1 7482 if (p->flags & PF_KTHREAD)
178be793
IM
7483 continue;
7484
6cfb0d5d 7485 p->se.exec_start = 0;
6cfb0d5d 7486#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7487 p->se.statistics.wait_start = 0;
7488 p->se.statistics.sleep_start = 0;
7489 p->se.statistics.block_start = 0;
6cfb0d5d 7490#endif
dd41f596 7491
aab03e05 7492 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7493 /*
7494 * Renice negative nice level userspace
7495 * tasks back to 0:
7496 */
3472eaa1 7497 if (task_nice(p) < 0)
dd41f596 7498 set_user_nice(p, 0);
1da177e4 7499 continue;
dd41f596 7500 }
1da177e4 7501
dbc7f069 7502 __sched_setscheduler(p, &attr, false, false);
5d07f420 7503 }
3472eaa1 7504 read_unlock(&tasklist_lock);
1da177e4
LT
7505}
7506
7507#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7508
67fc4e0c 7509#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7510/*
67fc4e0c 7511 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7512 *
7513 * They can only be called when the whole system has been
7514 * stopped - every CPU needs to be quiescent, and no scheduling
7515 * activity can take place. Using them for anything else would
7516 * be a serious bug, and as a result, they aren't even visible
7517 * under any other configuration.
7518 */
7519
7520/**
7521 * curr_task - return the current task for a given cpu.
7522 * @cpu: the processor in question.
7523 *
7524 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7525 *
7526 * Return: The current task for @cpu.
1df5c10a 7527 */
36c8b586 7528struct task_struct *curr_task(int cpu)
1df5c10a
LT
7529{
7530 return cpu_curr(cpu);
7531}
7532
67fc4e0c
JW
7533#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7534
7535#ifdef CONFIG_IA64
1df5c10a
LT
7536/**
7537 * set_curr_task - set the current task for a given cpu.
7538 * @cpu: the processor in question.
7539 * @p: the task pointer to set.
7540 *
7541 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7542 * are serviced on a separate stack. It allows the architecture to switch the
7543 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7544 * must be called with all CPU's synchronized, and interrupts disabled, the
7545 * and caller must save the original value of the current task (see
7546 * curr_task() above) and restore that value before reenabling interrupts and
7547 * re-starting the system.
7548 *
7549 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7550 */
36c8b586 7551void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7552{
7553 cpu_curr(cpu) = p;
7554}
7555
7556#endif
29f59db3 7557
7c941438 7558#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7559/* task_group_lock serializes the addition/removal of task groups */
7560static DEFINE_SPINLOCK(task_group_lock);
7561
2f5177f0 7562static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7563{
7564 free_fair_sched_group(tg);
7565 free_rt_sched_group(tg);
e9aa1dd1 7566 autogroup_free(tg);
b0367629 7567 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7568}
7569
7570/* allocate runqueue etc for a new task group */
ec7dc8ac 7571struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7572{
7573 struct task_group *tg;
bccbe08a 7574
b0367629 7575 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7576 if (!tg)
7577 return ERR_PTR(-ENOMEM);
7578
ec7dc8ac 7579 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7580 goto err;
7581
ec7dc8ac 7582 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7583 goto err;
7584
ace783b9
LZ
7585 return tg;
7586
7587err:
2f5177f0 7588 sched_free_group(tg);
ace783b9
LZ
7589 return ERR_PTR(-ENOMEM);
7590}
7591
7592void sched_online_group(struct task_group *tg, struct task_group *parent)
7593{
7594 unsigned long flags;
7595
8ed36996 7596 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7597 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7598
7599 WARN_ON(!parent); /* root should already exist */
7600
7601 tg->parent = parent;
f473aa5e 7602 INIT_LIST_HEAD(&tg->children);
09f2724a 7603 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7604 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7605}
7606
9b5b7751 7607/* rcu callback to free various structures associated with a task group */
2f5177f0 7608static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7609{
29f59db3 7610 /* now it should be safe to free those cfs_rqs */
2f5177f0 7611 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7612}
7613
4cf86d77 7614void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7615{
7616 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7617 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7618}
7619
7620void sched_offline_group(struct task_group *tg)
29f59db3 7621{
8ed36996 7622 unsigned long flags;
29f59db3 7623
3d4b47b4 7624 /* end participation in shares distribution */
6fe1f348 7625 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7626
7627 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7628 list_del_rcu(&tg->list);
f473aa5e 7629 list_del_rcu(&tg->siblings);
8ed36996 7630 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7631}
7632
9b5b7751 7633/* change task's runqueue when it moves between groups.
3a252015
IM
7634 * The caller of this function should have put the task in its new group
7635 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7636 * reflect its new group.
9b5b7751
SV
7637 */
7638void sched_move_task(struct task_struct *tsk)
29f59db3 7639{
8323f26c 7640 struct task_group *tg;
da0c1e65 7641 int queued, running;
29f59db3
SV
7642 unsigned long flags;
7643 struct rq *rq;
7644
7645 rq = task_rq_lock(tsk, &flags);
7646
051a1d1a 7647 running = task_current(rq, tsk);
da0c1e65 7648 queued = task_on_rq_queued(tsk);
29f59db3 7649
da0c1e65 7650 if (queued)
ff77e468 7651 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7652 if (unlikely(running))
f3cd1c4e 7653 put_prev_task(rq, tsk);
29f59db3 7654
f7b8a47d
KT
7655 /*
7656 * All callers are synchronized by task_rq_lock(); we do not use RCU
7657 * which is pointless here. Thus, we pass "true" to task_css_check()
7658 * to prevent lockdep warnings.
7659 */
7660 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7661 struct task_group, css);
7662 tg = autogroup_task_group(tsk, tg);
7663 tsk->sched_task_group = tg;
7664
810b3817 7665#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7666 if (tsk->sched_class->task_move_group)
bc54da21 7667 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7668 else
810b3817 7669#endif
b2b5ce02 7670 set_task_rq(tsk, task_cpu(tsk));
810b3817 7671
0e1f3483
HS
7672 if (unlikely(running))
7673 tsk->sched_class->set_curr_task(rq);
da0c1e65 7674 if (queued)
ff77e468 7675 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7676
0122ec5b 7677 task_rq_unlock(rq, tsk, &flags);
29f59db3 7678}
7c941438 7679#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7680
a790de99
PT
7681#ifdef CONFIG_RT_GROUP_SCHED
7682/*
7683 * Ensure that the real time constraints are schedulable.
7684 */
7685static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7686
9a7e0b18
PZ
7687/* Must be called with tasklist_lock held */
7688static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7689{
9a7e0b18 7690 struct task_struct *g, *p;
b40b2e8e 7691
1fe89e1b
PZ
7692 /*
7693 * Autogroups do not have RT tasks; see autogroup_create().
7694 */
7695 if (task_group_is_autogroup(tg))
7696 return 0;
7697
5d07f420 7698 for_each_process_thread(g, p) {
8651c658 7699 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7700 return 1;
5d07f420 7701 }
b40b2e8e 7702
9a7e0b18
PZ
7703 return 0;
7704}
b40b2e8e 7705
9a7e0b18
PZ
7706struct rt_schedulable_data {
7707 struct task_group *tg;
7708 u64 rt_period;
7709 u64 rt_runtime;
7710};
b40b2e8e 7711
a790de99 7712static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7713{
7714 struct rt_schedulable_data *d = data;
7715 struct task_group *child;
7716 unsigned long total, sum = 0;
7717 u64 period, runtime;
b40b2e8e 7718
9a7e0b18
PZ
7719 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7720 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7721
9a7e0b18
PZ
7722 if (tg == d->tg) {
7723 period = d->rt_period;
7724 runtime = d->rt_runtime;
b40b2e8e 7725 }
b40b2e8e 7726
4653f803
PZ
7727 /*
7728 * Cannot have more runtime than the period.
7729 */
7730 if (runtime > period && runtime != RUNTIME_INF)
7731 return -EINVAL;
6f505b16 7732
4653f803
PZ
7733 /*
7734 * Ensure we don't starve existing RT tasks.
7735 */
9a7e0b18
PZ
7736 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7737 return -EBUSY;
6f505b16 7738
9a7e0b18 7739 total = to_ratio(period, runtime);
6f505b16 7740
4653f803
PZ
7741 /*
7742 * Nobody can have more than the global setting allows.
7743 */
7744 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7745 return -EINVAL;
6f505b16 7746
4653f803
PZ
7747 /*
7748 * The sum of our children's runtime should not exceed our own.
7749 */
9a7e0b18
PZ
7750 list_for_each_entry_rcu(child, &tg->children, siblings) {
7751 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7752 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7753
9a7e0b18
PZ
7754 if (child == d->tg) {
7755 period = d->rt_period;
7756 runtime = d->rt_runtime;
7757 }
6f505b16 7758
9a7e0b18 7759 sum += to_ratio(period, runtime);
9f0c1e56 7760 }
6f505b16 7761
9a7e0b18
PZ
7762 if (sum > total)
7763 return -EINVAL;
7764
7765 return 0;
6f505b16
PZ
7766}
7767
9a7e0b18 7768static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7769{
8277434e
PT
7770 int ret;
7771
9a7e0b18
PZ
7772 struct rt_schedulable_data data = {
7773 .tg = tg,
7774 .rt_period = period,
7775 .rt_runtime = runtime,
7776 };
7777
8277434e
PT
7778 rcu_read_lock();
7779 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7780 rcu_read_unlock();
7781
7782 return ret;
521f1a24
DG
7783}
7784
ab84d31e 7785static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7786 u64 rt_period, u64 rt_runtime)
6f505b16 7787{
ac086bc2 7788 int i, err = 0;
9f0c1e56 7789
2636ed5f
PZ
7790 /*
7791 * Disallowing the root group RT runtime is BAD, it would disallow the
7792 * kernel creating (and or operating) RT threads.
7793 */
7794 if (tg == &root_task_group && rt_runtime == 0)
7795 return -EINVAL;
7796
7797 /* No period doesn't make any sense. */
7798 if (rt_period == 0)
7799 return -EINVAL;
7800
9f0c1e56 7801 mutex_lock(&rt_constraints_mutex);
521f1a24 7802 read_lock(&tasklist_lock);
9a7e0b18
PZ
7803 err = __rt_schedulable(tg, rt_period, rt_runtime);
7804 if (err)
9f0c1e56 7805 goto unlock;
ac086bc2 7806
0986b11b 7807 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7808 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7809 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7810
7811 for_each_possible_cpu(i) {
7812 struct rt_rq *rt_rq = tg->rt_rq[i];
7813
0986b11b 7814 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7815 rt_rq->rt_runtime = rt_runtime;
0986b11b 7816 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7817 }
0986b11b 7818 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7819unlock:
521f1a24 7820 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7821 mutex_unlock(&rt_constraints_mutex);
7822
7823 return err;
6f505b16
PZ
7824}
7825
25cc7da7 7826static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7827{
7828 u64 rt_runtime, rt_period;
7829
7830 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7832 if (rt_runtime_us < 0)
7833 rt_runtime = RUNTIME_INF;
7834
ab84d31e 7835 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7836}
7837
25cc7da7 7838static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7839{
7840 u64 rt_runtime_us;
7841
d0b27fa7 7842 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7843 return -1;
7844
d0b27fa7 7845 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7846 do_div(rt_runtime_us, NSEC_PER_USEC);
7847 return rt_runtime_us;
7848}
d0b27fa7 7849
ce2f5fe4 7850static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7851{
7852 u64 rt_runtime, rt_period;
7853
ce2f5fe4 7854 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7855 rt_runtime = tg->rt_bandwidth.rt_runtime;
7856
ab84d31e 7857 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7858}
7859
25cc7da7 7860static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7861{
7862 u64 rt_period_us;
7863
7864 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7865 do_div(rt_period_us, NSEC_PER_USEC);
7866 return rt_period_us;
7867}
332ac17e 7868#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7869
332ac17e 7870#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7871static int sched_rt_global_constraints(void)
7872{
7873 int ret = 0;
7874
7875 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7876 read_lock(&tasklist_lock);
4653f803 7877 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7878 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7879 mutex_unlock(&rt_constraints_mutex);
7880
7881 return ret;
7882}
54e99124 7883
25cc7da7 7884static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7885{
7886 /* Don't accept realtime tasks when there is no way for them to run */
7887 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7888 return 0;
7889
7890 return 1;
7891}
7892
6d6bc0ad 7893#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7894static int sched_rt_global_constraints(void)
7895{
ac086bc2 7896 unsigned long flags;
332ac17e 7897 int i, ret = 0;
ec5d4989 7898
0986b11b 7899 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7900 for_each_possible_cpu(i) {
7901 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7902
0986b11b 7903 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7904 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7905 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7906 }
0986b11b 7907 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7908
332ac17e 7909 return ret;
d0b27fa7 7910}
6d6bc0ad 7911#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7912
a1963b81 7913static int sched_dl_global_validate(void)
332ac17e 7914{
1724813d
PZ
7915 u64 runtime = global_rt_runtime();
7916 u64 period = global_rt_period();
332ac17e 7917 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7918 struct dl_bw *dl_b;
1724813d 7919 int cpu, ret = 0;
49516342 7920 unsigned long flags;
332ac17e
DF
7921
7922 /*
7923 * Here we want to check the bandwidth not being set to some
7924 * value smaller than the currently allocated bandwidth in
7925 * any of the root_domains.
7926 *
7927 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7928 * cycling on root_domains... Discussion on different/better
7929 * solutions is welcome!
7930 */
1724813d 7931 for_each_possible_cpu(cpu) {
f10e00f4
KT
7932 rcu_read_lock_sched();
7933 dl_b = dl_bw_of(cpu);
332ac17e 7934
49516342 7935 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7936 if (new_bw < dl_b->total_bw)
7937 ret = -EBUSY;
49516342 7938 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7939
f10e00f4
KT
7940 rcu_read_unlock_sched();
7941
1724813d
PZ
7942 if (ret)
7943 break;
332ac17e
DF
7944 }
7945
1724813d 7946 return ret;
332ac17e
DF
7947}
7948
1724813d 7949static void sched_dl_do_global(void)
ce0dbbbb 7950{
1724813d 7951 u64 new_bw = -1;
f10e00f4 7952 struct dl_bw *dl_b;
1724813d 7953 int cpu;
49516342 7954 unsigned long flags;
ce0dbbbb 7955
1724813d
PZ
7956 def_dl_bandwidth.dl_period = global_rt_period();
7957 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7958
7959 if (global_rt_runtime() != RUNTIME_INF)
7960 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7961
7962 /*
7963 * FIXME: As above...
7964 */
7965 for_each_possible_cpu(cpu) {
f10e00f4
KT
7966 rcu_read_lock_sched();
7967 dl_b = dl_bw_of(cpu);
1724813d 7968
49516342 7969 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7970 dl_b->bw = new_bw;
49516342 7971 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7972
7973 rcu_read_unlock_sched();
ce0dbbbb 7974 }
1724813d
PZ
7975}
7976
7977static int sched_rt_global_validate(void)
7978{
7979 if (sysctl_sched_rt_period <= 0)
7980 return -EINVAL;
7981
e9e7cb38
JL
7982 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7983 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7984 return -EINVAL;
7985
7986 return 0;
7987}
7988
7989static void sched_rt_do_global(void)
7990{
7991 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7992 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7993}
7994
d0b27fa7 7995int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7996 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7997 loff_t *ppos)
7998{
d0b27fa7
PZ
7999 int old_period, old_runtime;
8000 static DEFINE_MUTEX(mutex);
1724813d 8001 int ret;
d0b27fa7
PZ
8002
8003 mutex_lock(&mutex);
8004 old_period = sysctl_sched_rt_period;
8005 old_runtime = sysctl_sched_rt_runtime;
8006
8d65af78 8007 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8008
8009 if (!ret && write) {
1724813d
PZ
8010 ret = sched_rt_global_validate();
8011 if (ret)
8012 goto undo;
8013
a1963b81 8014 ret = sched_dl_global_validate();
1724813d
PZ
8015 if (ret)
8016 goto undo;
8017
a1963b81 8018 ret = sched_rt_global_constraints();
1724813d
PZ
8019 if (ret)
8020 goto undo;
8021
8022 sched_rt_do_global();
8023 sched_dl_do_global();
8024 }
8025 if (0) {
8026undo:
8027 sysctl_sched_rt_period = old_period;
8028 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8029 }
8030 mutex_unlock(&mutex);
8031
8032 return ret;
8033}
68318b8e 8034
1724813d 8035int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8036 void __user *buffer, size_t *lenp,
8037 loff_t *ppos)
8038{
8039 int ret;
332ac17e 8040 static DEFINE_MUTEX(mutex);
332ac17e
DF
8041
8042 mutex_lock(&mutex);
332ac17e 8043 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8044 /* make sure that internally we keep jiffies */
8045 /* also, writing zero resets timeslice to default */
332ac17e 8046 if (!ret && write) {
1724813d
PZ
8047 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8048 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8049 }
8050 mutex_unlock(&mutex);
332ac17e
DF
8051 return ret;
8052}
8053
052f1dc7 8054#ifdef CONFIG_CGROUP_SCHED
68318b8e 8055
a7c6d554 8056static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8057{
a7c6d554 8058 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8059}
8060
eb95419b
TH
8061static struct cgroup_subsys_state *
8062cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8063{
eb95419b
TH
8064 struct task_group *parent = css_tg(parent_css);
8065 struct task_group *tg;
68318b8e 8066
eb95419b 8067 if (!parent) {
68318b8e 8068 /* This is early initialization for the top cgroup */
07e06b01 8069 return &root_task_group.css;
68318b8e
SV
8070 }
8071
ec7dc8ac 8072 tg = sched_create_group(parent);
68318b8e
SV
8073 if (IS_ERR(tg))
8074 return ERR_PTR(-ENOMEM);
8075
2f5177f0
PZ
8076 sched_online_group(tg, parent);
8077
68318b8e
SV
8078 return &tg->css;
8079}
8080
2f5177f0 8081static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8082{
eb95419b 8083 struct task_group *tg = css_tg(css);
ace783b9 8084
2f5177f0 8085 sched_offline_group(tg);
ace783b9
LZ
8086}
8087
eb95419b 8088static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8089{
eb95419b 8090 struct task_group *tg = css_tg(css);
68318b8e 8091
2f5177f0
PZ
8092 /*
8093 * Relies on the RCU grace period between css_released() and this.
8094 */
8095 sched_free_group(tg);
ace783b9
LZ
8096}
8097
b53202e6 8098static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8099{
8100 sched_move_task(task);
8101}
8102
1f7dd3e5 8103static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8104{
bb9d97b6 8105 struct task_struct *task;
1f7dd3e5 8106 struct cgroup_subsys_state *css;
bb9d97b6 8107
1f7dd3e5 8108 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8109#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8110 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8111 return -EINVAL;
b68aa230 8112#else
bb9d97b6
TH
8113 /* We don't support RT-tasks being in separate groups */
8114 if (task->sched_class != &fair_sched_class)
8115 return -EINVAL;
b68aa230 8116#endif
bb9d97b6 8117 }
be367d09
BB
8118 return 0;
8119}
68318b8e 8120
1f7dd3e5 8121static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8122{
bb9d97b6 8123 struct task_struct *task;
1f7dd3e5 8124 struct cgroup_subsys_state *css;
bb9d97b6 8125
1f7dd3e5 8126 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8127 sched_move_task(task);
68318b8e
SV
8128}
8129
052f1dc7 8130#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8131static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8132 struct cftype *cftype, u64 shareval)
68318b8e 8133{
182446d0 8134 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8135}
8136
182446d0
TH
8137static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8138 struct cftype *cft)
68318b8e 8139{
182446d0 8140 struct task_group *tg = css_tg(css);
68318b8e 8141
c8b28116 8142 return (u64) scale_load_down(tg->shares);
68318b8e 8143}
ab84d31e
PT
8144
8145#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8146static DEFINE_MUTEX(cfs_constraints_mutex);
8147
ab84d31e
PT
8148const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8149const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8150
a790de99
PT
8151static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8152
ab84d31e
PT
8153static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8154{
56f570e5 8155 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8156 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8157
8158 if (tg == &root_task_group)
8159 return -EINVAL;
8160
8161 /*
8162 * Ensure we have at some amount of bandwidth every period. This is
8163 * to prevent reaching a state of large arrears when throttled via
8164 * entity_tick() resulting in prolonged exit starvation.
8165 */
8166 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8167 return -EINVAL;
8168
8169 /*
8170 * Likewise, bound things on the otherside by preventing insane quota
8171 * periods. This also allows us to normalize in computing quota
8172 * feasibility.
8173 */
8174 if (period > max_cfs_quota_period)
8175 return -EINVAL;
8176
0e59bdae
KT
8177 /*
8178 * Prevent race between setting of cfs_rq->runtime_enabled and
8179 * unthrottle_offline_cfs_rqs().
8180 */
8181 get_online_cpus();
a790de99
PT
8182 mutex_lock(&cfs_constraints_mutex);
8183 ret = __cfs_schedulable(tg, period, quota);
8184 if (ret)
8185 goto out_unlock;
8186
58088ad0 8187 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8188 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8189 /*
8190 * If we need to toggle cfs_bandwidth_used, off->on must occur
8191 * before making related changes, and on->off must occur afterwards
8192 */
8193 if (runtime_enabled && !runtime_was_enabled)
8194 cfs_bandwidth_usage_inc();
ab84d31e
PT
8195 raw_spin_lock_irq(&cfs_b->lock);
8196 cfs_b->period = ns_to_ktime(period);
8197 cfs_b->quota = quota;
58088ad0 8198
a9cf55b2 8199 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8200 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8201 if (runtime_enabled)
8202 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8203 raw_spin_unlock_irq(&cfs_b->lock);
8204
0e59bdae 8205 for_each_online_cpu(i) {
ab84d31e 8206 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8207 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8208
8209 raw_spin_lock_irq(&rq->lock);
58088ad0 8210 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8211 cfs_rq->runtime_remaining = 0;
671fd9da 8212
029632fb 8213 if (cfs_rq->throttled)
671fd9da 8214 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8215 raw_spin_unlock_irq(&rq->lock);
8216 }
1ee14e6c
BS
8217 if (runtime_was_enabled && !runtime_enabled)
8218 cfs_bandwidth_usage_dec();
a790de99
PT
8219out_unlock:
8220 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8221 put_online_cpus();
ab84d31e 8222
a790de99 8223 return ret;
ab84d31e
PT
8224}
8225
8226int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8227{
8228 u64 quota, period;
8229
029632fb 8230 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8231 if (cfs_quota_us < 0)
8232 quota = RUNTIME_INF;
8233 else
8234 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8235
8236 return tg_set_cfs_bandwidth(tg, period, quota);
8237}
8238
8239long tg_get_cfs_quota(struct task_group *tg)
8240{
8241 u64 quota_us;
8242
029632fb 8243 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8244 return -1;
8245
029632fb 8246 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8247 do_div(quota_us, NSEC_PER_USEC);
8248
8249 return quota_us;
8250}
8251
8252int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8253{
8254 u64 quota, period;
8255
8256 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8257 quota = tg->cfs_bandwidth.quota;
ab84d31e 8258
ab84d31e
PT
8259 return tg_set_cfs_bandwidth(tg, period, quota);
8260}
8261
8262long tg_get_cfs_period(struct task_group *tg)
8263{
8264 u64 cfs_period_us;
8265
029632fb 8266 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8267 do_div(cfs_period_us, NSEC_PER_USEC);
8268
8269 return cfs_period_us;
8270}
8271
182446d0
TH
8272static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8273 struct cftype *cft)
ab84d31e 8274{
182446d0 8275 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8276}
8277
182446d0
TH
8278static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8279 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8280{
182446d0 8281 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8282}
8283
182446d0
TH
8284static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8285 struct cftype *cft)
ab84d31e 8286{
182446d0 8287 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8288}
8289
182446d0
TH
8290static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8291 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8292{
182446d0 8293 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8294}
8295
a790de99
PT
8296struct cfs_schedulable_data {
8297 struct task_group *tg;
8298 u64 period, quota;
8299};
8300
8301/*
8302 * normalize group quota/period to be quota/max_period
8303 * note: units are usecs
8304 */
8305static u64 normalize_cfs_quota(struct task_group *tg,
8306 struct cfs_schedulable_data *d)
8307{
8308 u64 quota, period;
8309
8310 if (tg == d->tg) {
8311 period = d->period;
8312 quota = d->quota;
8313 } else {
8314 period = tg_get_cfs_period(tg);
8315 quota = tg_get_cfs_quota(tg);
8316 }
8317
8318 /* note: these should typically be equivalent */
8319 if (quota == RUNTIME_INF || quota == -1)
8320 return RUNTIME_INF;
8321
8322 return to_ratio(period, quota);
8323}
8324
8325static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8326{
8327 struct cfs_schedulable_data *d = data;
029632fb 8328 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8329 s64 quota = 0, parent_quota = -1;
8330
8331 if (!tg->parent) {
8332 quota = RUNTIME_INF;
8333 } else {
029632fb 8334 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8335
8336 quota = normalize_cfs_quota(tg, d);
9c58c79a 8337 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8338
8339 /*
8340 * ensure max(child_quota) <= parent_quota, inherit when no
8341 * limit is set
8342 */
8343 if (quota == RUNTIME_INF)
8344 quota = parent_quota;
8345 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8346 return -EINVAL;
8347 }
9c58c79a 8348 cfs_b->hierarchical_quota = quota;
a790de99
PT
8349
8350 return 0;
8351}
8352
8353static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8354{
8277434e 8355 int ret;
a790de99
PT
8356 struct cfs_schedulable_data data = {
8357 .tg = tg,
8358 .period = period,
8359 .quota = quota,
8360 };
8361
8362 if (quota != RUNTIME_INF) {
8363 do_div(data.period, NSEC_PER_USEC);
8364 do_div(data.quota, NSEC_PER_USEC);
8365 }
8366
8277434e
PT
8367 rcu_read_lock();
8368 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8369 rcu_read_unlock();
8370
8371 return ret;
a790de99 8372}
e8da1b18 8373
2da8ca82 8374static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8375{
2da8ca82 8376 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8377 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8378
44ffc75b
TH
8379 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8380 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8381 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8382
8383 return 0;
8384}
ab84d31e 8385#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8386#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8387
052f1dc7 8388#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8389static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8390 struct cftype *cft, s64 val)
6f505b16 8391{
182446d0 8392 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8393}
8394
182446d0
TH
8395static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8396 struct cftype *cft)
6f505b16 8397{
182446d0 8398 return sched_group_rt_runtime(css_tg(css));
6f505b16 8399}
d0b27fa7 8400
182446d0
TH
8401static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8402 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8403{
182446d0 8404 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8405}
8406
182446d0
TH
8407static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8408 struct cftype *cft)
d0b27fa7 8409{
182446d0 8410 return sched_group_rt_period(css_tg(css));
d0b27fa7 8411}
6d6bc0ad 8412#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8413
fe5c7cc2 8414static struct cftype cpu_files[] = {
052f1dc7 8415#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8416 {
8417 .name = "shares",
f4c753b7
PM
8418 .read_u64 = cpu_shares_read_u64,
8419 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8420 },
052f1dc7 8421#endif
ab84d31e
PT
8422#ifdef CONFIG_CFS_BANDWIDTH
8423 {
8424 .name = "cfs_quota_us",
8425 .read_s64 = cpu_cfs_quota_read_s64,
8426 .write_s64 = cpu_cfs_quota_write_s64,
8427 },
8428 {
8429 .name = "cfs_period_us",
8430 .read_u64 = cpu_cfs_period_read_u64,
8431 .write_u64 = cpu_cfs_period_write_u64,
8432 },
e8da1b18
NR
8433 {
8434 .name = "stat",
2da8ca82 8435 .seq_show = cpu_stats_show,
e8da1b18 8436 },
ab84d31e 8437#endif
052f1dc7 8438#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8439 {
9f0c1e56 8440 .name = "rt_runtime_us",
06ecb27c
PM
8441 .read_s64 = cpu_rt_runtime_read,
8442 .write_s64 = cpu_rt_runtime_write,
6f505b16 8443 },
d0b27fa7
PZ
8444 {
8445 .name = "rt_period_us",
f4c753b7
PM
8446 .read_u64 = cpu_rt_period_read_uint,
8447 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8448 },
052f1dc7 8449#endif
4baf6e33 8450 { } /* terminate */
68318b8e
SV
8451};
8452
073219e9 8453struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8454 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8455 .css_released = cpu_cgroup_css_released,
92fb9748 8456 .css_free = cpu_cgroup_css_free,
eeb61e53 8457 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8458 .can_attach = cpu_cgroup_can_attach,
8459 .attach = cpu_cgroup_attach,
5577964e 8460 .legacy_cftypes = cpu_files,
b38e42e9 8461 .early_init = true,
68318b8e
SV
8462};
8463
052f1dc7 8464#endif /* CONFIG_CGROUP_SCHED */
d842de87 8465
b637a328
PM
8466void dump_cpu_task(int cpu)
8467{
8468 pr_info("Task dump for CPU %d:\n", cpu);
8469 sched_show_task(cpu_curr(cpu));
8470}
ed82b8a1
AK
8471
8472/*
8473 * Nice levels are multiplicative, with a gentle 10% change for every
8474 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8475 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8476 * that remained on nice 0.
8477 *
8478 * The "10% effect" is relative and cumulative: from _any_ nice level,
8479 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8480 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8481 * If a task goes up by ~10% and another task goes down by ~10% then
8482 * the relative distance between them is ~25%.)
8483 */
8484const int sched_prio_to_weight[40] = {
8485 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8486 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8487 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8488 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8489 /* 0 */ 1024, 820, 655, 526, 423,
8490 /* 5 */ 335, 272, 215, 172, 137,
8491 /* 10 */ 110, 87, 70, 56, 45,
8492 /* 15 */ 36, 29, 23, 18, 15,
8493};
8494
8495/*
8496 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8497 *
8498 * In cases where the weight does not change often, we can use the
8499 * precalculated inverse to speed up arithmetics by turning divisions
8500 * into multiplications:
8501 */
8502const u32 sched_prio_to_wmult[40] = {
8503 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8504 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8505 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8506 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8507 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8508 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8509 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8510 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8511};
This page took 3.008567 seconds and 5 git commands to generate.