sched: Replace post_schedule with a balance callback list
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
316c1608 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
76751049
PZ
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
c24d20db 569/*
8875125e 570 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
8875125e 576void resched_curr(struct rq *rq)
c24d20db 577{
8875125e 578 struct task_struct *curr = rq->curr;
c24d20db
IM
579 int cpu;
580
8875125e 581 lockdep_assert_held(&rq->lock);
c24d20db 582
8875125e 583 if (test_tsk_need_resched(curr))
c24d20db
IM
584 return;
585
8875125e 586 cpu = cpu_of(rq);
fd99f91a 587
f27dde8d 588 if (cpu == smp_processor_id()) {
8875125e 589 set_tsk_need_resched(curr);
f27dde8d 590 set_preempt_need_resched();
c24d20db 591 return;
f27dde8d 592 }
c24d20db 593
8875125e 594 if (set_nr_and_not_polling(curr))
c24d20db 595 smp_send_reschedule(cpu);
dfc68f29
AL
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
598}
599
029632fb 600void resched_cpu(int cpu)
c24d20db
IM
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
05fa785c 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 606 return;
8875125e 607 resched_curr(rq);
05fa785c 608 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 609}
06d8308c 610
b021fe3e 611#ifdef CONFIG_SMP
3451d024 612#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
6201b4d6 621int get_nohz_timer_target(int pinned)
83cd4fe2
VP
622{
623 int cpu = smp_processor_id();
624 int i;
625 struct sched_domain *sd;
626
6201b4d6
VK
627 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
628 return cpu;
629
057f3fad 630 rcu_read_lock();
83cd4fe2 631 for_each_domain(cpu, sd) {
057f3fad
PZ
632 for_each_cpu(i, sched_domain_span(sd)) {
633 if (!idle_cpu(i)) {
634 cpu = i;
635 goto unlock;
636 }
637 }
83cd4fe2 638 }
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7
KT
1003/*
1004 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1005 */
cb469845
SR
1006static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1007 const struct sched_class *prev_class,
da7a735e 1008 int oldprio)
cb469845
SR
1009{
1010 if (prev_class != p->sched_class) {
1011 if (prev_class->switched_from)
da7a735e 1012 prev_class->switched_from(rq, p);
67dfa1b7 1013 /* Possble rq->lock 'hole'. */
da7a735e 1014 p->sched_class->switched_to(rq, p);
2d3d891d 1015 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1016 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1017}
1018
029632fb 1019void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1020{
1021 const struct sched_class *class;
1022
1023 if (p->sched_class == rq->curr->sched_class) {
1024 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1025 } else {
1026 for_each_class(class) {
1027 if (class == rq->curr->sched_class)
1028 break;
1029 if (class == p->sched_class) {
8875125e 1030 resched_curr(rq);
1e5a7405
PZ
1031 break;
1032 }
1033 }
1034 }
1035
1036 /*
1037 * A queue event has occurred, and we're going to schedule. In
1038 * this case, we can save a useless back to back clock update.
1039 */
da0c1e65 1040 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1041 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1042}
1043
1da177e4 1044#ifdef CONFIG_SMP
dd41f596 1045void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1046{
e2912009
PZ
1047#ifdef CONFIG_SCHED_DEBUG
1048 /*
1049 * We should never call set_task_cpu() on a blocked task,
1050 * ttwu() will sort out the placement.
1051 */
077614ee 1052 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1053 !p->on_rq);
0122ec5b
PZ
1054
1055#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1056 /*
1057 * The caller should hold either p->pi_lock or rq->lock, when changing
1058 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1059 *
1060 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1061 * see task_group().
6c6c54e1
PZ
1062 *
1063 * Furthermore, all task_rq users should acquire both locks, see
1064 * task_rq_lock().
1065 */
0122ec5b
PZ
1066 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1067 lockdep_is_held(&task_rq(p)->lock)));
1068#endif
e2912009
PZ
1069#endif
1070
de1d7286 1071 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1072
0c69774e 1073 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1074 if (p->sched_class->migrate_task_rq)
1075 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1076 p->se.nr_migrations++;
86038c5e 1077 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1078 }
dd41f596
IM
1079
1080 __set_task_cpu(p, new_cpu);
c65cc870
IM
1081}
1082
ac66f547
PZ
1083static void __migrate_swap_task(struct task_struct *p, int cpu)
1084{
da0c1e65 1085 if (task_on_rq_queued(p)) {
ac66f547
PZ
1086 struct rq *src_rq, *dst_rq;
1087
1088 src_rq = task_rq(p);
1089 dst_rq = cpu_rq(cpu);
1090
1091 deactivate_task(src_rq, p, 0);
1092 set_task_cpu(p, cpu);
1093 activate_task(dst_rq, p, 0);
1094 check_preempt_curr(dst_rq, p, 0);
1095 } else {
1096 /*
1097 * Task isn't running anymore; make it appear like we migrated
1098 * it before it went to sleep. This means on wakeup we make the
1099 * previous cpu our targer instead of where it really is.
1100 */
1101 p->wake_cpu = cpu;
1102 }
1103}
1104
1105struct migration_swap_arg {
1106 struct task_struct *src_task, *dst_task;
1107 int src_cpu, dst_cpu;
1108};
1109
1110static int migrate_swap_stop(void *data)
1111{
1112 struct migration_swap_arg *arg = data;
1113 struct rq *src_rq, *dst_rq;
1114 int ret = -EAGAIN;
1115
1116 src_rq = cpu_rq(arg->src_cpu);
1117 dst_rq = cpu_rq(arg->dst_cpu);
1118
74602315
PZ
1119 double_raw_lock(&arg->src_task->pi_lock,
1120 &arg->dst_task->pi_lock);
ac66f547
PZ
1121 double_rq_lock(src_rq, dst_rq);
1122 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1123 goto unlock;
1124
1125 if (task_cpu(arg->src_task) != arg->src_cpu)
1126 goto unlock;
1127
1128 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1129 goto unlock;
1130
1131 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1132 goto unlock;
1133
1134 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1135 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1136
1137 ret = 0;
1138
1139unlock:
1140 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1141 raw_spin_unlock(&arg->dst_task->pi_lock);
1142 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1143
1144 return ret;
1145}
1146
1147/*
1148 * Cross migrate two tasks
1149 */
1150int migrate_swap(struct task_struct *cur, struct task_struct *p)
1151{
1152 struct migration_swap_arg arg;
1153 int ret = -EINVAL;
1154
ac66f547
PZ
1155 arg = (struct migration_swap_arg){
1156 .src_task = cur,
1157 .src_cpu = task_cpu(cur),
1158 .dst_task = p,
1159 .dst_cpu = task_cpu(p),
1160 };
1161
1162 if (arg.src_cpu == arg.dst_cpu)
1163 goto out;
1164
6acce3ef
PZ
1165 /*
1166 * These three tests are all lockless; this is OK since all of them
1167 * will be re-checked with proper locks held further down the line.
1168 */
ac66f547
PZ
1169 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1170 goto out;
1171
1172 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1173 goto out;
1174
1175 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1176 goto out;
1177
286549dc 1178 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1179 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1180
1181out:
ac66f547
PZ
1182 return ret;
1183}
1184
969c7921 1185struct migration_arg {
36c8b586 1186 struct task_struct *task;
1da177e4 1187 int dest_cpu;
70b97a7f 1188};
1da177e4 1189
969c7921
TH
1190static int migration_cpu_stop(void *data);
1191
1da177e4
LT
1192/*
1193 * wait_task_inactive - wait for a thread to unschedule.
1194 *
85ba2d86
RM
1195 * If @match_state is nonzero, it's the @p->state value just checked and
1196 * not expected to change. If it changes, i.e. @p might have woken up,
1197 * then return zero. When we succeed in waiting for @p to be off its CPU,
1198 * we return a positive number (its total switch count). If a second call
1199 * a short while later returns the same number, the caller can be sure that
1200 * @p has remained unscheduled the whole time.
1201 *
1da177e4
LT
1202 * The caller must ensure that the task *will* unschedule sometime soon,
1203 * else this function might spin for a *long* time. This function can't
1204 * be called with interrupts off, or it may introduce deadlock with
1205 * smp_call_function() if an IPI is sent by the same process we are
1206 * waiting to become inactive.
1207 */
85ba2d86 1208unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1209{
1210 unsigned long flags;
da0c1e65 1211 int running, queued;
85ba2d86 1212 unsigned long ncsw;
70b97a7f 1213 struct rq *rq;
1da177e4 1214
3a5c359a
AK
1215 for (;;) {
1216 /*
1217 * We do the initial early heuristics without holding
1218 * any task-queue locks at all. We'll only try to get
1219 * the runqueue lock when things look like they will
1220 * work out!
1221 */
1222 rq = task_rq(p);
fa490cfd 1223
3a5c359a
AK
1224 /*
1225 * If the task is actively running on another CPU
1226 * still, just relax and busy-wait without holding
1227 * any locks.
1228 *
1229 * NOTE! Since we don't hold any locks, it's not
1230 * even sure that "rq" stays as the right runqueue!
1231 * But we don't care, since "task_running()" will
1232 * return false if the runqueue has changed and p
1233 * is actually now running somewhere else!
1234 */
85ba2d86
RM
1235 while (task_running(rq, p)) {
1236 if (match_state && unlikely(p->state != match_state))
1237 return 0;
3a5c359a 1238 cpu_relax();
85ba2d86 1239 }
fa490cfd 1240
3a5c359a
AK
1241 /*
1242 * Ok, time to look more closely! We need the rq
1243 * lock now, to be *sure*. If we're wrong, we'll
1244 * just go back and repeat.
1245 */
1246 rq = task_rq_lock(p, &flags);
27a9da65 1247 trace_sched_wait_task(p);
3a5c359a 1248 running = task_running(rq, p);
da0c1e65 1249 queued = task_on_rq_queued(p);
85ba2d86 1250 ncsw = 0;
f31e11d8 1251 if (!match_state || p->state == match_state)
93dcf55f 1252 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1253 task_rq_unlock(rq, p, &flags);
fa490cfd 1254
85ba2d86
RM
1255 /*
1256 * If it changed from the expected state, bail out now.
1257 */
1258 if (unlikely(!ncsw))
1259 break;
1260
3a5c359a
AK
1261 /*
1262 * Was it really running after all now that we
1263 * checked with the proper locks actually held?
1264 *
1265 * Oops. Go back and try again..
1266 */
1267 if (unlikely(running)) {
1268 cpu_relax();
1269 continue;
1270 }
fa490cfd 1271
3a5c359a
AK
1272 /*
1273 * It's not enough that it's not actively running,
1274 * it must be off the runqueue _entirely_, and not
1275 * preempted!
1276 *
80dd99b3 1277 * So if it was still runnable (but just not actively
3a5c359a
AK
1278 * running right now), it's preempted, and we should
1279 * yield - it could be a while.
1280 */
da0c1e65 1281 if (unlikely(queued)) {
8eb90c30
TG
1282 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1283
1284 set_current_state(TASK_UNINTERRUPTIBLE);
1285 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1286 continue;
1287 }
fa490cfd 1288
3a5c359a
AK
1289 /*
1290 * Ahh, all good. It wasn't running, and it wasn't
1291 * runnable, which means that it will never become
1292 * running in the future either. We're all done!
1293 */
1294 break;
1295 }
85ba2d86
RM
1296
1297 return ncsw;
1da177e4
LT
1298}
1299
1300/***
1301 * kick_process - kick a running thread to enter/exit the kernel
1302 * @p: the to-be-kicked thread
1303 *
1304 * Cause a process which is running on another CPU to enter
1305 * kernel-mode, without any delay. (to get signals handled.)
1306 *
25985edc 1307 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1308 * because all it wants to ensure is that the remote task enters
1309 * the kernel. If the IPI races and the task has been migrated
1310 * to another CPU then no harm is done and the purpose has been
1311 * achieved as well.
1312 */
36c8b586 1313void kick_process(struct task_struct *p)
1da177e4
LT
1314{
1315 int cpu;
1316
1317 preempt_disable();
1318 cpu = task_cpu(p);
1319 if ((cpu != smp_processor_id()) && task_curr(p))
1320 smp_send_reschedule(cpu);
1321 preempt_enable();
1322}
b43e3521 1323EXPORT_SYMBOL_GPL(kick_process);
476d139c 1324#endif /* CONFIG_SMP */
1da177e4 1325
970b13ba 1326#ifdef CONFIG_SMP
30da688e 1327/*
013fdb80 1328 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1329 */
5da9a0fb
PZ
1330static int select_fallback_rq(int cpu, struct task_struct *p)
1331{
aa00d89c
TC
1332 int nid = cpu_to_node(cpu);
1333 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1334 enum { cpuset, possible, fail } state = cpuset;
1335 int dest_cpu;
5da9a0fb 1336
aa00d89c
TC
1337 /*
1338 * If the node that the cpu is on has been offlined, cpu_to_node()
1339 * will return -1. There is no cpu on the node, and we should
1340 * select the cpu on the other node.
1341 */
1342 if (nid != -1) {
1343 nodemask = cpumask_of_node(nid);
1344
1345 /* Look for allowed, online CPU in same node. */
1346 for_each_cpu(dest_cpu, nodemask) {
1347 if (!cpu_online(dest_cpu))
1348 continue;
1349 if (!cpu_active(dest_cpu))
1350 continue;
1351 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1352 return dest_cpu;
1353 }
2baab4e9 1354 }
5da9a0fb 1355
2baab4e9
PZ
1356 for (;;) {
1357 /* Any allowed, online CPU? */
e3831edd 1358 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1359 if (!cpu_online(dest_cpu))
1360 continue;
1361 if (!cpu_active(dest_cpu))
1362 continue;
1363 goto out;
1364 }
5da9a0fb 1365
2baab4e9
PZ
1366 switch (state) {
1367 case cpuset:
1368 /* No more Mr. Nice Guy. */
1369 cpuset_cpus_allowed_fallback(p);
1370 state = possible;
1371 break;
1372
1373 case possible:
1374 do_set_cpus_allowed(p, cpu_possible_mask);
1375 state = fail;
1376 break;
1377
1378 case fail:
1379 BUG();
1380 break;
1381 }
1382 }
1383
1384out:
1385 if (state != cpuset) {
1386 /*
1387 * Don't tell them about moving exiting tasks or
1388 * kernel threads (both mm NULL), since they never
1389 * leave kernel.
1390 */
1391 if (p->mm && printk_ratelimit()) {
aac74dc4 1392 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1393 task_pid_nr(p), p->comm, cpu);
1394 }
5da9a0fb
PZ
1395 }
1396
1397 return dest_cpu;
1398}
1399
e2912009 1400/*
013fdb80 1401 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1402 */
970b13ba 1403static inline
ac66f547 1404int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1405{
6c1d9410
WL
1406 if (p->nr_cpus_allowed > 1)
1407 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1408
1409 /*
1410 * In order not to call set_task_cpu() on a blocking task we need
1411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1412 * cpu.
1413 *
1414 * Since this is common to all placement strategies, this lives here.
1415 *
1416 * [ this allows ->select_task() to simply return task_cpu(p) and
1417 * not worry about this generic constraint ]
1418 */
fa17b507 1419 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1420 !cpu_online(cpu)))
5da9a0fb 1421 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1422
1423 return cpu;
970b13ba 1424}
09a40af5
MG
1425
1426static void update_avg(u64 *avg, u64 sample)
1427{
1428 s64 diff = sample - *avg;
1429 *avg += diff >> 3;
1430}
970b13ba
PZ
1431#endif
1432
d7c01d27 1433static void
b84cb5df 1434ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1435{
d7c01d27 1436#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1437 struct rq *rq = this_rq();
1438
d7c01d27
PZ
1439#ifdef CONFIG_SMP
1440 int this_cpu = smp_processor_id();
1441
1442 if (cpu == this_cpu) {
1443 schedstat_inc(rq, ttwu_local);
1444 schedstat_inc(p, se.statistics.nr_wakeups_local);
1445 } else {
1446 struct sched_domain *sd;
1447
1448 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1449 rcu_read_lock();
d7c01d27
PZ
1450 for_each_domain(this_cpu, sd) {
1451 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1452 schedstat_inc(sd, ttwu_wake_remote);
1453 break;
1454 }
1455 }
057f3fad 1456 rcu_read_unlock();
d7c01d27 1457 }
f339b9dc
PZ
1458
1459 if (wake_flags & WF_MIGRATED)
1460 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1461
d7c01d27
PZ
1462#endif /* CONFIG_SMP */
1463
1464 schedstat_inc(rq, ttwu_count);
9ed3811a 1465 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1466
1467 if (wake_flags & WF_SYNC)
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1469
d7c01d27
PZ
1470#endif /* CONFIG_SCHEDSTATS */
1471}
1472
1473static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1474{
9ed3811a 1475 activate_task(rq, p, en_flags);
da0c1e65 1476 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1477
1478 /* if a worker is waking up, notify workqueue */
1479 if (p->flags & PF_WQ_WORKER)
1480 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1481}
1482
23f41eeb
PZ
1483/*
1484 * Mark the task runnable and perform wakeup-preemption.
1485 */
89363381 1486static void
23f41eeb 1487ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1488{
9ed3811a 1489 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1490 trace_sched_wakeup(p, true);
9ed3811a
TH
1491
1492 p->state = TASK_RUNNING;
1493#ifdef CONFIG_SMP
1494 if (p->sched_class->task_woken)
1495 p->sched_class->task_woken(rq, p);
1496
e69c6341 1497 if (rq->idle_stamp) {
78becc27 1498 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1499 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1500
abfafa54
JL
1501 update_avg(&rq->avg_idle, delta);
1502
1503 if (rq->avg_idle > max)
9ed3811a 1504 rq->avg_idle = max;
abfafa54 1505
9ed3811a
TH
1506 rq->idle_stamp = 0;
1507 }
1508#endif
1509}
1510
c05fbafb
PZ
1511static void
1512ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1513{
1514#ifdef CONFIG_SMP
1515 if (p->sched_contributes_to_load)
1516 rq->nr_uninterruptible--;
1517#endif
1518
1519 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1520 ttwu_do_wakeup(rq, p, wake_flags);
1521}
1522
1523/*
1524 * Called in case the task @p isn't fully descheduled from its runqueue,
1525 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1526 * since all we need to do is flip p->state to TASK_RUNNING, since
1527 * the task is still ->on_rq.
1528 */
1529static int ttwu_remote(struct task_struct *p, int wake_flags)
1530{
1531 struct rq *rq;
1532 int ret = 0;
1533
1534 rq = __task_rq_lock(p);
da0c1e65 1535 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1536 /* check_preempt_curr() may use rq clock */
1537 update_rq_clock(rq);
c05fbafb
PZ
1538 ttwu_do_wakeup(rq, p, wake_flags);
1539 ret = 1;
1540 }
1541 __task_rq_unlock(rq);
1542
1543 return ret;
1544}
1545
317f3941 1546#ifdef CONFIG_SMP
e3baac47 1547void sched_ttwu_pending(void)
317f3941
PZ
1548{
1549 struct rq *rq = this_rq();
fa14ff4a
PZ
1550 struct llist_node *llist = llist_del_all(&rq->wake_list);
1551 struct task_struct *p;
e3baac47 1552 unsigned long flags;
317f3941 1553
e3baac47
PZ
1554 if (!llist)
1555 return;
1556
1557 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1558
fa14ff4a
PZ
1559 while (llist) {
1560 p = llist_entry(llist, struct task_struct, wake_entry);
1561 llist = llist_next(llist);
317f3941
PZ
1562 ttwu_do_activate(rq, p, 0);
1563 }
1564
e3baac47 1565 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1566}
1567
1568void scheduler_ipi(void)
1569{
f27dde8d
PZ
1570 /*
1571 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1572 * TIF_NEED_RESCHED remotely (for the first time) will also send
1573 * this IPI.
1574 */
8cb75e0c 1575 preempt_fold_need_resched();
f27dde8d 1576
fd2ac4f4 1577 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1578 return;
1579
1580 /*
1581 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1582 * traditionally all their work was done from the interrupt return
1583 * path. Now that we actually do some work, we need to make sure
1584 * we do call them.
1585 *
1586 * Some archs already do call them, luckily irq_enter/exit nest
1587 * properly.
1588 *
1589 * Arguably we should visit all archs and update all handlers,
1590 * however a fair share of IPIs are still resched only so this would
1591 * somewhat pessimize the simple resched case.
1592 */
1593 irq_enter();
fa14ff4a 1594 sched_ttwu_pending();
ca38062e
SS
1595
1596 /*
1597 * Check if someone kicked us for doing the nohz idle load balance.
1598 */
873b4c65 1599 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1600 this_rq()->idle_balance = 1;
ca38062e 1601 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1602 }
c5d753a5 1603 irq_exit();
317f3941
PZ
1604}
1605
1606static void ttwu_queue_remote(struct task_struct *p, int cpu)
1607{
e3baac47
PZ
1608 struct rq *rq = cpu_rq(cpu);
1609
1610 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1611 if (!set_nr_if_polling(rq->idle))
1612 smp_send_reschedule(cpu);
1613 else
1614 trace_sched_wake_idle_without_ipi(cpu);
1615 }
317f3941 1616}
d6aa8f85 1617
f6be8af1
CL
1618void wake_up_if_idle(int cpu)
1619{
1620 struct rq *rq = cpu_rq(cpu);
1621 unsigned long flags;
1622
fd7de1e8
AL
1623 rcu_read_lock();
1624
1625 if (!is_idle_task(rcu_dereference(rq->curr)))
1626 goto out;
f6be8af1
CL
1627
1628 if (set_nr_if_polling(rq->idle)) {
1629 trace_sched_wake_idle_without_ipi(cpu);
1630 } else {
1631 raw_spin_lock_irqsave(&rq->lock, flags);
1632 if (is_idle_task(rq->curr))
1633 smp_send_reschedule(cpu);
1634 /* Else cpu is not in idle, do nothing here */
1635 raw_spin_unlock_irqrestore(&rq->lock, flags);
1636 }
fd7de1e8
AL
1637
1638out:
1639 rcu_read_unlock();
f6be8af1
CL
1640}
1641
39be3501 1642bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1643{
1644 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1645}
d6aa8f85 1646#endif /* CONFIG_SMP */
317f3941 1647
c05fbafb
PZ
1648static void ttwu_queue(struct task_struct *p, int cpu)
1649{
1650 struct rq *rq = cpu_rq(cpu);
1651
17d9f311 1652#if defined(CONFIG_SMP)
39be3501 1653 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1654 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1655 ttwu_queue_remote(p, cpu);
1656 return;
1657 }
1658#endif
1659
c05fbafb
PZ
1660 raw_spin_lock(&rq->lock);
1661 ttwu_do_activate(rq, p, 0);
1662 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1663}
1664
1665/**
1da177e4 1666 * try_to_wake_up - wake up a thread
9ed3811a 1667 * @p: the thread to be awakened
1da177e4 1668 * @state: the mask of task states that can be woken
9ed3811a 1669 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1670 *
1671 * Put it on the run-queue if it's not already there. The "current"
1672 * thread is always on the run-queue (except when the actual
1673 * re-schedule is in progress), and as such you're allowed to do
1674 * the simpler "current->state = TASK_RUNNING" to mark yourself
1675 * runnable without the overhead of this.
1676 *
e69f6186 1677 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1678 * or @state didn't match @p's state.
1da177e4 1679 */
e4a52bcb
PZ
1680static int
1681try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1682{
1da177e4 1683 unsigned long flags;
c05fbafb 1684 int cpu, success = 0;
2398f2c6 1685
e0acd0a6
ON
1686 /*
1687 * If we are going to wake up a thread waiting for CONDITION we
1688 * need to ensure that CONDITION=1 done by the caller can not be
1689 * reordered with p->state check below. This pairs with mb() in
1690 * set_current_state() the waiting thread does.
1691 */
1692 smp_mb__before_spinlock();
013fdb80 1693 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1694 if (!(p->state & state))
1da177e4
LT
1695 goto out;
1696
c05fbafb 1697 success = 1; /* we're going to change ->state */
1da177e4 1698 cpu = task_cpu(p);
1da177e4 1699
c05fbafb
PZ
1700 if (p->on_rq && ttwu_remote(p, wake_flags))
1701 goto stat;
1da177e4 1702
1da177e4 1703#ifdef CONFIG_SMP
e9c84311 1704 /*
c05fbafb
PZ
1705 * If the owning (remote) cpu is still in the middle of schedule() with
1706 * this task as prev, wait until its done referencing the task.
e9c84311 1707 */
f3e94786 1708 while (p->on_cpu)
e4a52bcb 1709 cpu_relax();
0970d299 1710 /*
e4a52bcb 1711 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1712 */
e4a52bcb 1713 smp_rmb();
1da177e4 1714
a8e4f2ea 1715 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1716 p->state = TASK_WAKING;
e7693a36 1717
e4a52bcb 1718 if (p->sched_class->task_waking)
74f8e4b2 1719 p->sched_class->task_waking(p);
efbbd05a 1720
ac66f547 1721 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1722 if (task_cpu(p) != cpu) {
1723 wake_flags |= WF_MIGRATED;
e4a52bcb 1724 set_task_cpu(p, cpu);
f339b9dc 1725 }
1da177e4 1726#endif /* CONFIG_SMP */
1da177e4 1727
c05fbafb
PZ
1728 ttwu_queue(p, cpu);
1729stat:
b84cb5df 1730 ttwu_stat(p, cpu, wake_flags);
1da177e4 1731out:
013fdb80 1732 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1733
1734 return success;
1735}
1736
21aa9af0
TH
1737/**
1738 * try_to_wake_up_local - try to wake up a local task with rq lock held
1739 * @p: the thread to be awakened
1740 *
2acca55e 1741 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1742 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1743 * the current task.
21aa9af0
TH
1744 */
1745static void try_to_wake_up_local(struct task_struct *p)
1746{
1747 struct rq *rq = task_rq(p);
21aa9af0 1748
383efcd0
TH
1749 if (WARN_ON_ONCE(rq != this_rq()) ||
1750 WARN_ON_ONCE(p == current))
1751 return;
1752
21aa9af0
TH
1753 lockdep_assert_held(&rq->lock);
1754
2acca55e
PZ
1755 if (!raw_spin_trylock(&p->pi_lock)) {
1756 raw_spin_unlock(&rq->lock);
1757 raw_spin_lock(&p->pi_lock);
1758 raw_spin_lock(&rq->lock);
1759 }
1760
21aa9af0 1761 if (!(p->state & TASK_NORMAL))
2acca55e 1762 goto out;
21aa9af0 1763
da0c1e65 1764 if (!task_on_rq_queued(p))
d7c01d27
PZ
1765 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1766
23f41eeb 1767 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1768 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1769out:
1770 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1771}
1772
50fa610a
DH
1773/**
1774 * wake_up_process - Wake up a specific process
1775 * @p: The process to be woken up.
1776 *
1777 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1778 * processes.
1779 *
1780 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1781 *
1782 * It may be assumed that this function implies a write memory barrier before
1783 * changing the task state if and only if any tasks are woken up.
1784 */
7ad5b3a5 1785int wake_up_process(struct task_struct *p)
1da177e4 1786{
9067ac85
ON
1787 WARN_ON(task_is_stopped_or_traced(p));
1788 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1789}
1da177e4
LT
1790EXPORT_SYMBOL(wake_up_process);
1791
7ad5b3a5 1792int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1793{
1794 return try_to_wake_up(p, state, 0);
1795}
1796
a5e7be3b
JL
1797/*
1798 * This function clears the sched_dl_entity static params.
1799 */
1800void __dl_clear_params(struct task_struct *p)
1801{
1802 struct sched_dl_entity *dl_se = &p->dl;
1803
1804 dl_se->dl_runtime = 0;
1805 dl_se->dl_deadline = 0;
1806 dl_se->dl_period = 0;
1807 dl_se->flags = 0;
1808 dl_se->dl_bw = 0;
40767b0d
PZ
1809
1810 dl_se->dl_throttled = 0;
1811 dl_se->dl_new = 1;
1812 dl_se->dl_yielded = 0;
a5e7be3b
JL
1813}
1814
1da177e4
LT
1815/*
1816 * Perform scheduler related setup for a newly forked process p.
1817 * p is forked by current.
dd41f596
IM
1818 *
1819 * __sched_fork() is basic setup used by init_idle() too:
1820 */
5e1576ed 1821static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1822{
fd2f4419
PZ
1823 p->on_rq = 0;
1824
1825 p->se.on_rq = 0;
dd41f596
IM
1826 p->se.exec_start = 0;
1827 p->se.sum_exec_runtime = 0;
f6cf891c 1828 p->se.prev_sum_exec_runtime = 0;
6c594c21 1829 p->se.nr_migrations = 0;
da7a735e 1830 p->se.vruntime = 0;
bb04159d
KT
1831#ifdef CONFIG_SMP
1832 p->se.avg.decay_count = 0;
1833#endif
fd2f4419 1834 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1835
1836#ifdef CONFIG_SCHEDSTATS
41acab88 1837 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1838#endif
476d139c 1839
aab03e05 1840 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1841 init_dl_task_timer(&p->dl);
a5e7be3b 1842 __dl_clear_params(p);
aab03e05 1843
fa717060 1844 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1845
e107be36
AK
1846#ifdef CONFIG_PREEMPT_NOTIFIERS
1847 INIT_HLIST_HEAD(&p->preempt_notifiers);
1848#endif
cbee9f88
PZ
1849
1850#ifdef CONFIG_NUMA_BALANCING
1851 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1852 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1853 p->mm->numa_scan_seq = 0;
1854 }
1855
5e1576ed
RR
1856 if (clone_flags & CLONE_VM)
1857 p->numa_preferred_nid = current->numa_preferred_nid;
1858 else
1859 p->numa_preferred_nid = -1;
1860
cbee9f88
PZ
1861 p->node_stamp = 0ULL;
1862 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1863 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1864 p->numa_work.next = &p->numa_work;
44dba3d5 1865 p->numa_faults = NULL;
7e2703e6
RR
1866 p->last_task_numa_placement = 0;
1867 p->last_sum_exec_runtime = 0;
8c8a743c 1868
8c8a743c 1869 p->numa_group = NULL;
cbee9f88 1870#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1871}
1872
1a687c2e 1873#ifdef CONFIG_NUMA_BALANCING
3105b86a 1874#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1875void set_numabalancing_state(bool enabled)
1876{
1877 if (enabled)
1878 sched_feat_set("NUMA");
1879 else
1880 sched_feat_set("NO_NUMA");
1881}
3105b86a
MG
1882#else
1883__read_mostly bool numabalancing_enabled;
1884
1885void set_numabalancing_state(bool enabled)
1886{
1887 numabalancing_enabled = enabled;
dd41f596 1888}
3105b86a 1889#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1890
1891#ifdef CONFIG_PROC_SYSCTL
1892int sysctl_numa_balancing(struct ctl_table *table, int write,
1893 void __user *buffer, size_t *lenp, loff_t *ppos)
1894{
1895 struct ctl_table t;
1896 int err;
1897 int state = numabalancing_enabled;
1898
1899 if (write && !capable(CAP_SYS_ADMIN))
1900 return -EPERM;
1901
1902 t = *table;
1903 t.data = &state;
1904 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1905 if (err < 0)
1906 return err;
1907 if (write)
1908 set_numabalancing_state(state);
1909 return err;
1910}
1911#endif
1912#endif
dd41f596
IM
1913
1914/*
1915 * fork()/clone()-time setup:
1916 */
aab03e05 1917int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1918{
0122ec5b 1919 unsigned long flags;
dd41f596
IM
1920 int cpu = get_cpu();
1921
5e1576ed 1922 __sched_fork(clone_flags, p);
06b83b5f 1923 /*
0017d735 1924 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1925 * nobody will actually run it, and a signal or other external
1926 * event cannot wake it up and insert it on the runqueue either.
1927 */
0017d735 1928 p->state = TASK_RUNNING;
dd41f596 1929
c350a04e
MG
1930 /*
1931 * Make sure we do not leak PI boosting priority to the child.
1932 */
1933 p->prio = current->normal_prio;
1934
b9dc29e7
MG
1935 /*
1936 * Revert to default priority/policy on fork if requested.
1937 */
1938 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1939 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1940 p->policy = SCHED_NORMAL;
6c697bdf 1941 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1942 p->rt_priority = 0;
1943 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1944 p->static_prio = NICE_TO_PRIO(0);
1945
1946 p->prio = p->normal_prio = __normal_prio(p);
1947 set_load_weight(p);
6c697bdf 1948
b9dc29e7
MG
1949 /*
1950 * We don't need the reset flag anymore after the fork. It has
1951 * fulfilled its duty:
1952 */
1953 p->sched_reset_on_fork = 0;
1954 }
ca94c442 1955
aab03e05
DF
1956 if (dl_prio(p->prio)) {
1957 put_cpu();
1958 return -EAGAIN;
1959 } else if (rt_prio(p->prio)) {
1960 p->sched_class = &rt_sched_class;
1961 } else {
2ddbf952 1962 p->sched_class = &fair_sched_class;
aab03e05 1963 }
b29739f9 1964
cd29fe6f
PZ
1965 if (p->sched_class->task_fork)
1966 p->sched_class->task_fork(p);
1967
86951599
PZ
1968 /*
1969 * The child is not yet in the pid-hash so no cgroup attach races,
1970 * and the cgroup is pinned to this child due to cgroup_fork()
1971 * is ran before sched_fork().
1972 *
1973 * Silence PROVE_RCU.
1974 */
0122ec5b 1975 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1976 set_task_cpu(p, cpu);
0122ec5b 1977 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1978
52f17b6c 1979#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1980 if (likely(sched_info_on()))
52f17b6c 1981 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1982#endif
3ca7a440
PZ
1983#if defined(CONFIG_SMP)
1984 p->on_cpu = 0;
4866cde0 1985#endif
01028747 1986 init_task_preempt_count(p);
806c09a7 1987#ifdef CONFIG_SMP
917b627d 1988 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1989 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1990#endif
917b627d 1991
476d139c 1992 put_cpu();
aab03e05 1993 return 0;
1da177e4
LT
1994}
1995
332ac17e
DF
1996unsigned long to_ratio(u64 period, u64 runtime)
1997{
1998 if (runtime == RUNTIME_INF)
1999 return 1ULL << 20;
2000
2001 /*
2002 * Doing this here saves a lot of checks in all
2003 * the calling paths, and returning zero seems
2004 * safe for them anyway.
2005 */
2006 if (period == 0)
2007 return 0;
2008
2009 return div64_u64(runtime << 20, period);
2010}
2011
2012#ifdef CONFIG_SMP
2013inline struct dl_bw *dl_bw_of(int i)
2014{
66339c31
KT
2015 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2016 "sched RCU must be held");
332ac17e
DF
2017 return &cpu_rq(i)->rd->dl_bw;
2018}
2019
de212f18 2020static inline int dl_bw_cpus(int i)
332ac17e 2021{
de212f18
PZ
2022 struct root_domain *rd = cpu_rq(i)->rd;
2023 int cpus = 0;
2024
66339c31
KT
2025 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2026 "sched RCU must be held");
de212f18
PZ
2027 for_each_cpu_and(i, rd->span, cpu_active_mask)
2028 cpus++;
2029
2030 return cpus;
332ac17e
DF
2031}
2032#else
2033inline struct dl_bw *dl_bw_of(int i)
2034{
2035 return &cpu_rq(i)->dl.dl_bw;
2036}
2037
de212f18 2038static inline int dl_bw_cpus(int i)
332ac17e
DF
2039{
2040 return 1;
2041}
2042#endif
2043
332ac17e
DF
2044/*
2045 * We must be sure that accepting a new task (or allowing changing the
2046 * parameters of an existing one) is consistent with the bandwidth
2047 * constraints. If yes, this function also accordingly updates the currently
2048 * allocated bandwidth to reflect the new situation.
2049 *
2050 * This function is called while holding p's rq->lock.
40767b0d
PZ
2051 *
2052 * XXX we should delay bw change until the task's 0-lag point, see
2053 * __setparam_dl().
332ac17e
DF
2054 */
2055static int dl_overflow(struct task_struct *p, int policy,
2056 const struct sched_attr *attr)
2057{
2058
2059 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2060 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2061 u64 runtime = attr->sched_runtime;
2062 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2063 int cpus, err = -1;
332ac17e
DF
2064
2065 if (new_bw == p->dl.dl_bw)
2066 return 0;
2067
2068 /*
2069 * Either if a task, enters, leave, or stays -deadline but changes
2070 * its parameters, we may need to update accordingly the total
2071 * allocated bandwidth of the container.
2072 */
2073 raw_spin_lock(&dl_b->lock);
de212f18 2074 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2075 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2076 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2077 __dl_add(dl_b, new_bw);
2078 err = 0;
2079 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2080 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2081 __dl_clear(dl_b, p->dl.dl_bw);
2082 __dl_add(dl_b, new_bw);
2083 err = 0;
2084 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2085 __dl_clear(dl_b, p->dl.dl_bw);
2086 err = 0;
2087 }
2088 raw_spin_unlock(&dl_b->lock);
2089
2090 return err;
2091}
2092
2093extern void init_dl_bw(struct dl_bw *dl_b);
2094
1da177e4
LT
2095/*
2096 * wake_up_new_task - wake up a newly created task for the first time.
2097 *
2098 * This function will do some initial scheduler statistics housekeeping
2099 * that must be done for every newly created context, then puts the task
2100 * on the runqueue and wakes it.
2101 */
3e51e3ed 2102void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2103{
2104 unsigned long flags;
dd41f596 2105 struct rq *rq;
fabf318e 2106
ab2515c4 2107 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2108#ifdef CONFIG_SMP
2109 /*
2110 * Fork balancing, do it here and not earlier because:
2111 * - cpus_allowed can change in the fork path
2112 * - any previously selected cpu might disappear through hotplug
fabf318e 2113 */
ac66f547 2114 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2115#endif
2116
a75cdaa9
AS
2117 /* Initialize new task's runnable average */
2118 init_task_runnable_average(p);
ab2515c4 2119 rq = __task_rq_lock(p);
cd29fe6f 2120 activate_task(rq, p, 0);
da0c1e65 2121 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2122 trace_sched_wakeup_new(p, true);
a7558e01 2123 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2124#ifdef CONFIG_SMP
efbbd05a
PZ
2125 if (p->sched_class->task_woken)
2126 p->sched_class->task_woken(rq, p);
9a897c5a 2127#endif
0122ec5b 2128 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2129}
2130
e107be36
AK
2131#ifdef CONFIG_PREEMPT_NOTIFIERS
2132
2133/**
80dd99b3 2134 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2135 * @notifier: notifier struct to register
e107be36
AK
2136 */
2137void preempt_notifier_register(struct preempt_notifier *notifier)
2138{
2139 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2140}
2141EXPORT_SYMBOL_GPL(preempt_notifier_register);
2142
2143/**
2144 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2145 * @notifier: notifier struct to unregister
e107be36
AK
2146 *
2147 * This is safe to call from within a preemption notifier.
2148 */
2149void preempt_notifier_unregister(struct preempt_notifier *notifier)
2150{
2151 hlist_del(&notifier->link);
2152}
2153EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2154
2155static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2156{
2157 struct preempt_notifier *notifier;
e107be36 2158
b67bfe0d 2159 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2160 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2161}
2162
2163static void
2164fire_sched_out_preempt_notifiers(struct task_struct *curr,
2165 struct task_struct *next)
2166{
2167 struct preempt_notifier *notifier;
e107be36 2168
b67bfe0d 2169 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2170 notifier->ops->sched_out(notifier, next);
2171}
2172
6d6bc0ad 2173#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2174
2175static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2176{
2177}
2178
2179static void
2180fire_sched_out_preempt_notifiers(struct task_struct *curr,
2181 struct task_struct *next)
2182{
2183}
2184
6d6bc0ad 2185#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2186
4866cde0
NP
2187/**
2188 * prepare_task_switch - prepare to switch tasks
2189 * @rq: the runqueue preparing to switch
421cee29 2190 * @prev: the current task that is being switched out
4866cde0
NP
2191 * @next: the task we are going to switch to.
2192 *
2193 * This is called with the rq lock held and interrupts off. It must
2194 * be paired with a subsequent finish_task_switch after the context
2195 * switch.
2196 *
2197 * prepare_task_switch sets up locking and calls architecture specific
2198 * hooks.
2199 */
e107be36
AK
2200static inline void
2201prepare_task_switch(struct rq *rq, struct task_struct *prev,
2202 struct task_struct *next)
4866cde0 2203{
895dd92c 2204 trace_sched_switch(prev, next);
43148951 2205 sched_info_switch(rq, prev, next);
fe4b04fa 2206 perf_event_task_sched_out(prev, next);
e107be36 2207 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2208 prepare_lock_switch(rq, next);
2209 prepare_arch_switch(next);
2210}
2211
1da177e4
LT
2212/**
2213 * finish_task_switch - clean up after a task-switch
2214 * @prev: the thread we just switched away from.
2215 *
4866cde0
NP
2216 * finish_task_switch must be called after the context switch, paired
2217 * with a prepare_task_switch call before the context switch.
2218 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2219 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2220 *
2221 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2222 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2223 * with the lock held can cause deadlocks; see schedule() for
2224 * details.)
dfa50b60
ON
2225 *
2226 * The context switch have flipped the stack from under us and restored the
2227 * local variables which were saved when this task called schedule() in the
2228 * past. prev == current is still correct but we need to recalculate this_rq
2229 * because prev may have moved to another CPU.
1da177e4 2230 */
dfa50b60 2231static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2232 __releases(rq->lock)
2233{
dfa50b60 2234 struct rq *rq = this_rq();
1da177e4 2235 struct mm_struct *mm = rq->prev_mm;
55a101f8 2236 long prev_state;
1da177e4
LT
2237
2238 rq->prev_mm = NULL;
2239
2240 /*
2241 * A task struct has one reference for the use as "current".
c394cc9f 2242 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2243 * schedule one last time. The schedule call will never return, and
2244 * the scheduled task must drop that reference.
c394cc9f 2245 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2246 * still held, otherwise prev could be scheduled on another cpu, die
2247 * there before we look at prev->state, and then the reference would
2248 * be dropped twice.
2249 * Manfred Spraul <manfred@colorfullife.com>
2250 */
55a101f8 2251 prev_state = prev->state;
bf9fae9f 2252 vtime_task_switch(prev);
4866cde0 2253 finish_arch_switch(prev);
a8d757ef 2254 perf_event_task_sched_in(prev, current);
4866cde0 2255 finish_lock_switch(rq, prev);
01f23e16 2256 finish_arch_post_lock_switch();
e8fa1362 2257
e107be36 2258 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2259 if (mm)
2260 mmdrop(mm);
c394cc9f 2261 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2262 if (prev->sched_class->task_dead)
2263 prev->sched_class->task_dead(prev);
2264
c6fd91f0 2265 /*
2266 * Remove function-return probe instances associated with this
2267 * task and put them back on the free list.
9761eea8 2268 */
c6fd91f0 2269 kprobe_flush_task(prev);
1da177e4 2270 put_task_struct(prev);
c6fd91f0 2271 }
99e5ada9
FW
2272
2273 tick_nohz_task_switch(current);
dfa50b60 2274 return rq;
1da177e4
LT
2275}
2276
3f029d3c
GH
2277#ifdef CONFIG_SMP
2278
3f029d3c 2279/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2280static void __balance_callback(struct rq *rq)
3f029d3c 2281{
e3fca9e7
PZ
2282 struct callback_head *head, *next;
2283 void (*func)(struct rq *rq);
2284 unsigned long flags;
3f029d3c 2285
e3fca9e7
PZ
2286 raw_spin_lock_irqsave(&rq->lock, flags);
2287 head = rq->balance_callback;
2288 rq->balance_callback = NULL;
2289 while (head) {
2290 func = (void (*)(struct rq *))head->func;
2291 next = head->next;
2292 head->next = NULL;
2293 head = next;
3f029d3c 2294
e3fca9e7 2295 func(rq);
3f029d3c 2296 }
e3fca9e7
PZ
2297 raw_spin_unlock_irqrestore(&rq->lock, flags);
2298}
2299
2300static inline void balance_callback(struct rq *rq)
2301{
2302 if (unlikely(rq->balance_callback))
2303 __balance_callback(rq);
3f029d3c
GH
2304}
2305
2306#else
da19ab51 2307
e3fca9e7 2308static inline void balance_callback(struct rq *rq)
3f029d3c 2309{
1da177e4
LT
2310}
2311
3f029d3c
GH
2312#endif
2313
1da177e4
LT
2314/**
2315 * schedule_tail - first thing a freshly forked thread must call.
2316 * @prev: the thread we just switched away from.
2317 */
722a9f92 2318asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2319 __releases(rq->lock)
2320{
1a43a14a 2321 struct rq *rq;
da19ab51 2322
1a43a14a
ON
2323 /* finish_task_switch() drops rq->lock and enables preemtion */
2324 preempt_disable();
dfa50b60 2325 rq = finish_task_switch(prev);
e3fca9e7 2326 balance_callback(rq);
1a43a14a 2327 preempt_enable();
70b97a7f 2328
1da177e4 2329 if (current->set_child_tid)
b488893a 2330 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2331}
2332
2333/*
dfa50b60 2334 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2335 */
dfa50b60 2336static inline struct rq *
70b97a7f 2337context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2338 struct task_struct *next)
1da177e4 2339{
dd41f596 2340 struct mm_struct *mm, *oldmm;
1da177e4 2341
e107be36 2342 prepare_task_switch(rq, prev, next);
fe4b04fa 2343
dd41f596
IM
2344 mm = next->mm;
2345 oldmm = prev->active_mm;
9226d125
ZA
2346 /*
2347 * For paravirt, this is coupled with an exit in switch_to to
2348 * combine the page table reload and the switch backend into
2349 * one hypercall.
2350 */
224101ed 2351 arch_start_context_switch(prev);
9226d125 2352
31915ab4 2353 if (!mm) {
1da177e4
LT
2354 next->active_mm = oldmm;
2355 atomic_inc(&oldmm->mm_count);
2356 enter_lazy_tlb(oldmm, next);
2357 } else
2358 switch_mm(oldmm, mm, next);
2359
31915ab4 2360 if (!prev->mm) {
1da177e4 2361 prev->active_mm = NULL;
1da177e4
LT
2362 rq->prev_mm = oldmm;
2363 }
3a5f5e48
IM
2364 /*
2365 * Since the runqueue lock will be released by the next
2366 * task (which is an invalid locking op but in the case
2367 * of the scheduler it's an obvious special-case), so we
2368 * do an early lockdep release here:
2369 */
8a25d5de 2370 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2371
91d1aa43 2372 context_tracking_task_switch(prev, next);
1da177e4
LT
2373 /* Here we just switch the register state and the stack. */
2374 switch_to(prev, next, prev);
dd41f596 2375 barrier();
dfa50b60
ON
2376
2377 return finish_task_switch(prev);
1da177e4
LT
2378}
2379
2380/*
1c3e8264 2381 * nr_running and nr_context_switches:
1da177e4
LT
2382 *
2383 * externally visible scheduler statistics: current number of runnable
1c3e8264 2384 * threads, total number of context switches performed since bootup.
1da177e4
LT
2385 */
2386unsigned long nr_running(void)
2387{
2388 unsigned long i, sum = 0;
2389
2390 for_each_online_cpu(i)
2391 sum += cpu_rq(i)->nr_running;
2392
2393 return sum;
f711f609 2394}
1da177e4 2395
2ee507c4
TC
2396/*
2397 * Check if only the current task is running on the cpu.
2398 */
2399bool single_task_running(void)
2400{
2401 if (cpu_rq(smp_processor_id())->nr_running == 1)
2402 return true;
2403 else
2404 return false;
2405}
2406EXPORT_SYMBOL(single_task_running);
2407
1da177e4 2408unsigned long long nr_context_switches(void)
46cb4b7c 2409{
cc94abfc
SR
2410 int i;
2411 unsigned long long sum = 0;
46cb4b7c 2412
0a945022 2413 for_each_possible_cpu(i)
1da177e4 2414 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2415
1da177e4
LT
2416 return sum;
2417}
483b4ee6 2418
1da177e4
LT
2419unsigned long nr_iowait(void)
2420{
2421 unsigned long i, sum = 0;
483b4ee6 2422
0a945022 2423 for_each_possible_cpu(i)
1da177e4 2424 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2425
1da177e4
LT
2426 return sum;
2427}
483b4ee6 2428
8c215bd3 2429unsigned long nr_iowait_cpu(int cpu)
69d25870 2430{
8c215bd3 2431 struct rq *this = cpu_rq(cpu);
69d25870
AV
2432 return atomic_read(&this->nr_iowait);
2433}
46cb4b7c 2434
372ba8cb
MG
2435void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2436{
3289bdb4
PZ
2437 struct rq *rq = this_rq();
2438 *nr_waiters = atomic_read(&rq->nr_iowait);
2439 *load = rq->load.weight;
372ba8cb
MG
2440}
2441
dd41f596 2442#ifdef CONFIG_SMP
8a0be9ef 2443
46cb4b7c 2444/*
38022906
PZ
2445 * sched_exec - execve() is a valuable balancing opportunity, because at
2446 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2447 */
38022906 2448void sched_exec(void)
46cb4b7c 2449{
38022906 2450 struct task_struct *p = current;
1da177e4 2451 unsigned long flags;
0017d735 2452 int dest_cpu;
46cb4b7c 2453
8f42ced9 2454 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2455 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2456 if (dest_cpu == smp_processor_id())
2457 goto unlock;
38022906 2458
8f42ced9 2459 if (likely(cpu_active(dest_cpu))) {
969c7921 2460 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2461
8f42ced9
PZ
2462 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2463 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2464 return;
2465 }
0017d735 2466unlock:
8f42ced9 2467 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2468}
dd41f596 2469
1da177e4
LT
2470#endif
2471
1da177e4 2472DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2473DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2474
2475EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2476EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2477
c5f8d995
HS
2478/*
2479 * Return accounted runtime for the task.
2480 * In case the task is currently running, return the runtime plus current's
2481 * pending runtime that have not been accounted yet.
2482 */
2483unsigned long long task_sched_runtime(struct task_struct *p)
2484{
2485 unsigned long flags;
2486 struct rq *rq;
6e998916 2487 u64 ns;
c5f8d995 2488
911b2898
PZ
2489#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2490 /*
2491 * 64-bit doesn't need locks to atomically read a 64bit value.
2492 * So we have a optimization chance when the task's delta_exec is 0.
2493 * Reading ->on_cpu is racy, but this is ok.
2494 *
2495 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2496 * If we race with it entering cpu, unaccounted time is 0. This is
2497 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2498 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2499 * been accounted, so we're correct here as well.
911b2898 2500 */
da0c1e65 2501 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2502 return p->se.sum_exec_runtime;
2503#endif
2504
c5f8d995 2505 rq = task_rq_lock(p, &flags);
6e998916
SG
2506 /*
2507 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2508 * project cycles that may never be accounted to this
2509 * thread, breaking clock_gettime().
2510 */
2511 if (task_current(rq, p) && task_on_rq_queued(p)) {
2512 update_rq_clock(rq);
2513 p->sched_class->update_curr(rq);
2514 }
2515 ns = p->se.sum_exec_runtime;
0122ec5b 2516 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2517
2518 return ns;
2519}
48f24c4d 2520
7835b98b
CL
2521/*
2522 * This function gets called by the timer code, with HZ frequency.
2523 * We call it with interrupts disabled.
7835b98b
CL
2524 */
2525void scheduler_tick(void)
2526{
7835b98b
CL
2527 int cpu = smp_processor_id();
2528 struct rq *rq = cpu_rq(cpu);
dd41f596 2529 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2530
2531 sched_clock_tick();
dd41f596 2532
05fa785c 2533 raw_spin_lock(&rq->lock);
3e51f33f 2534 update_rq_clock(rq);
fa85ae24 2535 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2536 update_cpu_load_active(rq);
3289bdb4 2537 calc_global_load_tick(rq);
05fa785c 2538 raw_spin_unlock(&rq->lock);
7835b98b 2539
e9d2b064 2540 perf_event_task_tick();
e220d2dc 2541
e418e1c2 2542#ifdef CONFIG_SMP
6eb57e0d 2543 rq->idle_balance = idle_cpu(cpu);
7caff66f 2544 trigger_load_balance(rq);
e418e1c2 2545#endif
265f22a9 2546 rq_last_tick_reset(rq);
1da177e4
LT
2547}
2548
265f22a9
FW
2549#ifdef CONFIG_NO_HZ_FULL
2550/**
2551 * scheduler_tick_max_deferment
2552 *
2553 * Keep at least one tick per second when a single
2554 * active task is running because the scheduler doesn't
2555 * yet completely support full dynticks environment.
2556 *
2557 * This makes sure that uptime, CFS vruntime, load
2558 * balancing, etc... continue to move forward, even
2559 * with a very low granularity.
e69f6186
YB
2560 *
2561 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2562 */
2563u64 scheduler_tick_max_deferment(void)
2564{
2565 struct rq *rq = this_rq();
316c1608 2566 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2567
2568 next = rq->last_sched_tick + HZ;
2569
2570 if (time_before_eq(next, now))
2571 return 0;
2572
8fe8ff09 2573 return jiffies_to_nsecs(next - now);
1da177e4 2574}
265f22a9 2575#endif
1da177e4 2576
132380a0 2577notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2578{
2579 if (in_lock_functions(addr)) {
2580 addr = CALLER_ADDR2;
2581 if (in_lock_functions(addr))
2582 addr = CALLER_ADDR3;
2583 }
2584 return addr;
2585}
1da177e4 2586
7e49fcce
SR
2587#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2588 defined(CONFIG_PREEMPT_TRACER))
2589
edafe3a5 2590void preempt_count_add(int val)
1da177e4 2591{
6cd8a4bb 2592#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2593 /*
2594 * Underflow?
2595 */
9a11b49a
IM
2596 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2597 return;
6cd8a4bb 2598#endif
bdb43806 2599 __preempt_count_add(val);
6cd8a4bb 2600#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2601 /*
2602 * Spinlock count overflowing soon?
2603 */
33859f7f
MOS
2604 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2605 PREEMPT_MASK - 10);
6cd8a4bb 2606#endif
8f47b187
TG
2607 if (preempt_count() == val) {
2608 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2609#ifdef CONFIG_DEBUG_PREEMPT
2610 current->preempt_disable_ip = ip;
2611#endif
2612 trace_preempt_off(CALLER_ADDR0, ip);
2613 }
1da177e4 2614}
bdb43806 2615EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2616NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2617
edafe3a5 2618void preempt_count_sub(int val)
1da177e4 2619{
6cd8a4bb 2620#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2621 /*
2622 * Underflow?
2623 */
01e3eb82 2624 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2625 return;
1da177e4
LT
2626 /*
2627 * Is the spinlock portion underflowing?
2628 */
9a11b49a
IM
2629 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2630 !(preempt_count() & PREEMPT_MASK)))
2631 return;
6cd8a4bb 2632#endif
9a11b49a 2633
6cd8a4bb
SR
2634 if (preempt_count() == val)
2635 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2636 __preempt_count_sub(val);
1da177e4 2637}
bdb43806 2638EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2639NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2640
2641#endif
2642
2643/*
dd41f596 2644 * Print scheduling while atomic bug:
1da177e4 2645 */
dd41f596 2646static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2647{
664dfa65
DJ
2648 if (oops_in_progress)
2649 return;
2650
3df0fc5b
PZ
2651 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2652 prev->comm, prev->pid, preempt_count());
838225b4 2653
dd41f596 2654 debug_show_held_locks(prev);
e21f5b15 2655 print_modules();
dd41f596
IM
2656 if (irqs_disabled())
2657 print_irqtrace_events(prev);
8f47b187
TG
2658#ifdef CONFIG_DEBUG_PREEMPT
2659 if (in_atomic_preempt_off()) {
2660 pr_err("Preemption disabled at:");
2661 print_ip_sym(current->preempt_disable_ip);
2662 pr_cont("\n");
2663 }
2664#endif
6135fc1e 2665 dump_stack();
373d4d09 2666 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2667}
1da177e4 2668
dd41f596
IM
2669/*
2670 * Various schedule()-time debugging checks and statistics:
2671 */
2672static inline void schedule_debug(struct task_struct *prev)
2673{
0d9e2632
AT
2674#ifdef CONFIG_SCHED_STACK_END_CHECK
2675 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2676#endif
1da177e4 2677 /*
41a2d6cf 2678 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2679 * schedule() atomically, we ignore that path. Otherwise whine
2680 * if we are scheduling when we should not.
1da177e4 2681 */
192301e7 2682 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2683 __schedule_bug(prev);
b3fbab05 2684 rcu_sleep_check();
dd41f596 2685
1da177e4
LT
2686 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2687
2d72376b 2688 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2689}
2690
2691/*
2692 * Pick up the highest-prio task:
2693 */
2694static inline struct task_struct *
606dba2e 2695pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2696{
37e117c0 2697 const struct sched_class *class = &fair_sched_class;
dd41f596 2698 struct task_struct *p;
1da177e4
LT
2699
2700 /*
dd41f596
IM
2701 * Optimization: we know that if all tasks are in
2702 * the fair class we can call that function directly:
1da177e4 2703 */
37e117c0 2704 if (likely(prev->sched_class == class &&
38033c37 2705 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2706 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2707 if (unlikely(p == RETRY_TASK))
2708 goto again;
2709
2710 /* assumes fair_sched_class->next == idle_sched_class */
2711 if (unlikely(!p))
2712 p = idle_sched_class.pick_next_task(rq, prev);
2713
2714 return p;
1da177e4
LT
2715 }
2716
37e117c0 2717again:
34f971f6 2718 for_each_class(class) {
606dba2e 2719 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2720 if (p) {
2721 if (unlikely(p == RETRY_TASK))
2722 goto again;
dd41f596 2723 return p;
37e117c0 2724 }
dd41f596 2725 }
34f971f6
PZ
2726
2727 BUG(); /* the idle class will always have a runnable task */
dd41f596 2728}
1da177e4 2729
dd41f596 2730/*
c259e01a 2731 * __schedule() is the main scheduler function.
edde96ea
PE
2732 *
2733 * The main means of driving the scheduler and thus entering this function are:
2734 *
2735 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2736 *
2737 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2738 * paths. For example, see arch/x86/entry_64.S.
2739 *
2740 * To drive preemption between tasks, the scheduler sets the flag in timer
2741 * interrupt handler scheduler_tick().
2742 *
2743 * 3. Wakeups don't really cause entry into schedule(). They add a
2744 * task to the run-queue and that's it.
2745 *
2746 * Now, if the new task added to the run-queue preempts the current
2747 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2748 * called on the nearest possible occasion:
2749 *
2750 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2751 *
2752 * - in syscall or exception context, at the next outmost
2753 * preempt_enable(). (this might be as soon as the wake_up()'s
2754 * spin_unlock()!)
2755 *
2756 * - in IRQ context, return from interrupt-handler to
2757 * preemptible context
2758 *
2759 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2760 * then at the next:
2761 *
2762 * - cond_resched() call
2763 * - explicit schedule() call
2764 * - return from syscall or exception to user-space
2765 * - return from interrupt-handler to user-space
bfd9b2b5 2766 *
b30f0e3f 2767 * WARNING: must be called with preemption disabled!
dd41f596 2768 */
c259e01a 2769static void __sched __schedule(void)
dd41f596
IM
2770{
2771 struct task_struct *prev, *next;
67ca7bde 2772 unsigned long *switch_count;
dd41f596 2773 struct rq *rq;
31656519 2774 int cpu;
dd41f596 2775
dd41f596
IM
2776 cpu = smp_processor_id();
2777 rq = cpu_rq(cpu);
38200cf2 2778 rcu_note_context_switch();
dd41f596 2779 prev = rq->curr;
dd41f596 2780
dd41f596 2781 schedule_debug(prev);
1da177e4 2782
31656519 2783 if (sched_feat(HRTICK))
f333fdc9 2784 hrtick_clear(rq);
8f4d37ec 2785
e0acd0a6
ON
2786 /*
2787 * Make sure that signal_pending_state()->signal_pending() below
2788 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2789 * done by the caller to avoid the race with signal_wake_up().
2790 */
2791 smp_mb__before_spinlock();
05fa785c 2792 raw_spin_lock_irq(&rq->lock);
1da177e4 2793
9edfbfed
PZ
2794 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2795
246d86b5 2796 switch_count = &prev->nivcsw;
1da177e4 2797 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2798 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2799 prev->state = TASK_RUNNING;
21aa9af0 2800 } else {
2acca55e
PZ
2801 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2802 prev->on_rq = 0;
2803
21aa9af0 2804 /*
2acca55e
PZ
2805 * If a worker went to sleep, notify and ask workqueue
2806 * whether it wants to wake up a task to maintain
2807 * concurrency.
21aa9af0
TH
2808 */
2809 if (prev->flags & PF_WQ_WORKER) {
2810 struct task_struct *to_wakeup;
2811
2812 to_wakeup = wq_worker_sleeping(prev, cpu);
2813 if (to_wakeup)
2814 try_to_wake_up_local(to_wakeup);
2815 }
21aa9af0 2816 }
dd41f596 2817 switch_count = &prev->nvcsw;
1da177e4
LT
2818 }
2819
9edfbfed 2820 if (task_on_rq_queued(prev))
606dba2e
PZ
2821 update_rq_clock(rq);
2822
2823 next = pick_next_task(rq, prev);
f26f9aff 2824 clear_tsk_need_resched(prev);
f27dde8d 2825 clear_preempt_need_resched();
9edfbfed 2826 rq->clock_skip_update = 0;
1da177e4 2827
1da177e4 2828 if (likely(prev != next)) {
1da177e4
LT
2829 rq->nr_switches++;
2830 rq->curr = next;
2831 ++*switch_count;
2832
dfa50b60
ON
2833 rq = context_switch(rq, prev, next); /* unlocks the rq */
2834 cpu = cpu_of(rq);
1da177e4 2835 } else
05fa785c 2836 raw_spin_unlock_irq(&rq->lock);
1da177e4 2837
e3fca9e7 2838 balance_callback(rq);
1da177e4 2839}
c259e01a 2840
9c40cef2
TG
2841static inline void sched_submit_work(struct task_struct *tsk)
2842{
3c7d5184 2843 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2844 return;
2845 /*
2846 * If we are going to sleep and we have plugged IO queued,
2847 * make sure to submit it to avoid deadlocks.
2848 */
2849 if (blk_needs_flush_plug(tsk))
2850 blk_schedule_flush_plug(tsk);
2851}
2852
722a9f92 2853asmlinkage __visible void __sched schedule(void)
c259e01a 2854{
9c40cef2
TG
2855 struct task_struct *tsk = current;
2856
2857 sched_submit_work(tsk);
bfd9b2b5 2858 do {
b30f0e3f 2859 preempt_disable();
bfd9b2b5 2860 __schedule();
b30f0e3f 2861 sched_preempt_enable_no_resched();
bfd9b2b5 2862 } while (need_resched());
c259e01a 2863}
1da177e4
LT
2864EXPORT_SYMBOL(schedule);
2865
91d1aa43 2866#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2867asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2868{
2869 /*
2870 * If we come here after a random call to set_need_resched(),
2871 * or we have been woken up remotely but the IPI has not yet arrived,
2872 * we haven't yet exited the RCU idle mode. Do it here manually until
2873 * we find a better solution.
7cc78f8f
AL
2874 *
2875 * NB: There are buggy callers of this function. Ideally we
c467ea76 2876 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 2877 * too frequently to make sense yet.
20ab65e3 2878 */
7cc78f8f 2879 enum ctx_state prev_state = exception_enter();
20ab65e3 2880 schedule();
7cc78f8f 2881 exception_exit(prev_state);
20ab65e3
FW
2882}
2883#endif
2884
c5491ea7
TG
2885/**
2886 * schedule_preempt_disabled - called with preemption disabled
2887 *
2888 * Returns with preemption disabled. Note: preempt_count must be 1
2889 */
2890void __sched schedule_preempt_disabled(void)
2891{
ba74c144 2892 sched_preempt_enable_no_resched();
c5491ea7
TG
2893 schedule();
2894 preempt_disable();
2895}
2896
06b1f808 2897static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2898{
2899 do {
b30f0e3f 2900 preempt_active_enter();
a18b5d01 2901 __schedule();
b30f0e3f 2902 preempt_active_exit();
a18b5d01
FW
2903
2904 /*
2905 * Check again in case we missed a preemption opportunity
2906 * between schedule and now.
2907 */
a18b5d01
FW
2908 } while (need_resched());
2909}
2910
1da177e4
LT
2911#ifdef CONFIG_PREEMPT
2912/*
2ed6e34f 2913 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2914 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2915 * occur there and call schedule directly.
2916 */
722a9f92 2917asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2918{
1da177e4
LT
2919 /*
2920 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2921 * we do not want to preempt the current task. Just return..
1da177e4 2922 */
fbb00b56 2923 if (likely(!preemptible()))
1da177e4
LT
2924 return;
2925
a18b5d01 2926 preempt_schedule_common();
1da177e4 2927}
376e2424 2928NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2929EXPORT_SYMBOL(preempt_schedule);
009f60e2 2930
009f60e2 2931/**
4eaca0a8 2932 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
2933 *
2934 * The tracing infrastructure uses preempt_enable_notrace to prevent
2935 * recursion and tracing preempt enabling caused by the tracing
2936 * infrastructure itself. But as tracing can happen in areas coming
2937 * from userspace or just about to enter userspace, a preempt enable
2938 * can occur before user_exit() is called. This will cause the scheduler
2939 * to be called when the system is still in usermode.
2940 *
2941 * To prevent this, the preempt_enable_notrace will use this function
2942 * instead of preempt_schedule() to exit user context if needed before
2943 * calling the scheduler.
2944 */
4eaca0a8 2945asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
2946{
2947 enum ctx_state prev_ctx;
2948
2949 if (likely(!preemptible()))
2950 return;
2951
2952 do {
be690035
FW
2953 /*
2954 * Use raw __prempt_count() ops that don't call function.
2955 * We can't call functions before disabling preemption which
2956 * disarm preemption tracing recursions.
2957 */
2958 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
2959 barrier();
009f60e2
ON
2960 /*
2961 * Needs preempt disabled in case user_exit() is traced
2962 * and the tracer calls preempt_enable_notrace() causing
2963 * an infinite recursion.
2964 */
2965 prev_ctx = exception_enter();
2966 __schedule();
2967 exception_exit(prev_ctx);
2968
be690035
FW
2969 barrier();
2970 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
2971 } while (need_resched());
2972}
4eaca0a8 2973EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 2974
32e475d7 2975#endif /* CONFIG_PREEMPT */
1da177e4
LT
2976
2977/*
2ed6e34f 2978 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2979 * off of irq context.
2980 * Note, that this is called and return with irqs disabled. This will
2981 * protect us against recursive calling from irq.
2982 */
722a9f92 2983asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2984{
b22366cd 2985 enum ctx_state prev_state;
6478d880 2986
2ed6e34f 2987 /* Catch callers which need to be fixed */
f27dde8d 2988 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2989
b22366cd
FW
2990 prev_state = exception_enter();
2991
3a5c359a 2992 do {
b30f0e3f 2993 preempt_active_enter();
3a5c359a 2994 local_irq_enable();
c259e01a 2995 __schedule();
3a5c359a 2996 local_irq_disable();
b30f0e3f 2997 preempt_active_exit();
5ed0cec0 2998 } while (need_resched());
b22366cd
FW
2999
3000 exception_exit(prev_state);
1da177e4
LT
3001}
3002
63859d4f 3003int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3004 void *key)
1da177e4 3005{
63859d4f 3006 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3007}
1da177e4
LT
3008EXPORT_SYMBOL(default_wake_function);
3009
b29739f9
IM
3010#ifdef CONFIG_RT_MUTEXES
3011
3012/*
3013 * rt_mutex_setprio - set the current priority of a task
3014 * @p: task
3015 * @prio: prio value (kernel-internal form)
3016 *
3017 * This function changes the 'effective' priority of a task. It does
3018 * not touch ->normal_prio like __setscheduler().
3019 *
c365c292
TG
3020 * Used by the rt_mutex code to implement priority inheritance
3021 * logic. Call site only calls if the priority of the task changed.
b29739f9 3022 */
36c8b586 3023void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3024{
da0c1e65 3025 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3026 struct rq *rq;
83ab0aa0 3027 const struct sched_class *prev_class;
b29739f9 3028
aab03e05 3029 BUG_ON(prio > MAX_PRIO);
b29739f9 3030
0122ec5b 3031 rq = __task_rq_lock(p);
b29739f9 3032
1c4dd99b
TG
3033 /*
3034 * Idle task boosting is a nono in general. There is one
3035 * exception, when PREEMPT_RT and NOHZ is active:
3036 *
3037 * The idle task calls get_next_timer_interrupt() and holds
3038 * the timer wheel base->lock on the CPU and another CPU wants
3039 * to access the timer (probably to cancel it). We can safely
3040 * ignore the boosting request, as the idle CPU runs this code
3041 * with interrupts disabled and will complete the lock
3042 * protected section without being interrupted. So there is no
3043 * real need to boost.
3044 */
3045 if (unlikely(p == rq->idle)) {
3046 WARN_ON(p != rq->curr);
3047 WARN_ON(p->pi_blocked_on);
3048 goto out_unlock;
3049 }
3050
a8027073 3051 trace_sched_pi_setprio(p, prio);
d5f9f942 3052 oldprio = p->prio;
83ab0aa0 3053 prev_class = p->sched_class;
da0c1e65 3054 queued = task_on_rq_queued(p);
051a1d1a 3055 running = task_current(rq, p);
da0c1e65 3056 if (queued)
69be72c1 3057 dequeue_task(rq, p, 0);
0e1f3483 3058 if (running)
f3cd1c4e 3059 put_prev_task(rq, p);
dd41f596 3060
2d3d891d
DF
3061 /*
3062 * Boosting condition are:
3063 * 1. -rt task is running and holds mutex A
3064 * --> -dl task blocks on mutex A
3065 *
3066 * 2. -dl task is running and holds mutex A
3067 * --> -dl task blocks on mutex A and could preempt the
3068 * running task
3069 */
3070 if (dl_prio(prio)) {
466af29b
ON
3071 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3072 if (!dl_prio(p->normal_prio) ||
3073 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3074 p->dl.dl_boosted = 1;
3075 p->dl.dl_throttled = 0;
3076 enqueue_flag = ENQUEUE_REPLENISH;
3077 } else
3078 p->dl.dl_boosted = 0;
aab03e05 3079 p->sched_class = &dl_sched_class;
2d3d891d
DF
3080 } else if (rt_prio(prio)) {
3081 if (dl_prio(oldprio))
3082 p->dl.dl_boosted = 0;
3083 if (oldprio < prio)
3084 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3085 p->sched_class = &rt_sched_class;
2d3d891d
DF
3086 } else {
3087 if (dl_prio(oldprio))
3088 p->dl.dl_boosted = 0;
746db944
BS
3089 if (rt_prio(oldprio))
3090 p->rt.timeout = 0;
dd41f596 3091 p->sched_class = &fair_sched_class;
2d3d891d 3092 }
dd41f596 3093
b29739f9
IM
3094 p->prio = prio;
3095
0e1f3483
HS
3096 if (running)
3097 p->sched_class->set_curr_task(rq);
da0c1e65 3098 if (queued)
2d3d891d 3099 enqueue_task(rq, p, enqueue_flag);
cb469845 3100
da7a735e 3101 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3102out_unlock:
0122ec5b 3103 __task_rq_unlock(rq);
b29739f9 3104}
b29739f9 3105#endif
d50dde5a 3106
36c8b586 3107void set_user_nice(struct task_struct *p, long nice)
1da177e4 3108{
da0c1e65 3109 int old_prio, delta, queued;
1da177e4 3110 unsigned long flags;
70b97a7f 3111 struct rq *rq;
1da177e4 3112
75e45d51 3113 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3114 return;
3115 /*
3116 * We have to be careful, if called from sys_setpriority(),
3117 * the task might be in the middle of scheduling on another CPU.
3118 */
3119 rq = task_rq_lock(p, &flags);
3120 /*
3121 * The RT priorities are set via sched_setscheduler(), but we still
3122 * allow the 'normal' nice value to be set - but as expected
3123 * it wont have any effect on scheduling until the task is
aab03e05 3124 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3125 */
aab03e05 3126 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3127 p->static_prio = NICE_TO_PRIO(nice);
3128 goto out_unlock;
3129 }
da0c1e65
KT
3130 queued = task_on_rq_queued(p);
3131 if (queued)
69be72c1 3132 dequeue_task(rq, p, 0);
1da177e4 3133
1da177e4 3134 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3135 set_load_weight(p);
b29739f9
IM
3136 old_prio = p->prio;
3137 p->prio = effective_prio(p);
3138 delta = p->prio - old_prio;
1da177e4 3139
da0c1e65 3140 if (queued) {
371fd7e7 3141 enqueue_task(rq, p, 0);
1da177e4 3142 /*
d5f9f942
AM
3143 * If the task increased its priority or is running and
3144 * lowered its priority, then reschedule its CPU:
1da177e4 3145 */
d5f9f942 3146 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3147 resched_curr(rq);
1da177e4
LT
3148 }
3149out_unlock:
0122ec5b 3150 task_rq_unlock(rq, p, &flags);
1da177e4 3151}
1da177e4
LT
3152EXPORT_SYMBOL(set_user_nice);
3153
e43379f1
MM
3154/*
3155 * can_nice - check if a task can reduce its nice value
3156 * @p: task
3157 * @nice: nice value
3158 */
36c8b586 3159int can_nice(const struct task_struct *p, const int nice)
e43379f1 3160{
024f4747 3161 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3162 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3163
78d7d407 3164 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3165 capable(CAP_SYS_NICE));
3166}
3167
1da177e4
LT
3168#ifdef __ARCH_WANT_SYS_NICE
3169
3170/*
3171 * sys_nice - change the priority of the current process.
3172 * @increment: priority increment
3173 *
3174 * sys_setpriority is a more generic, but much slower function that
3175 * does similar things.
3176 */
5add95d4 3177SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3178{
48f24c4d 3179 long nice, retval;
1da177e4
LT
3180
3181 /*
3182 * Setpriority might change our priority at the same moment.
3183 * We don't have to worry. Conceptually one call occurs first
3184 * and we have a single winner.
3185 */
a9467fa3 3186 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3187 nice = task_nice(current) + increment;
1da177e4 3188
a9467fa3 3189 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3190 if (increment < 0 && !can_nice(current, nice))
3191 return -EPERM;
3192
1da177e4
LT
3193 retval = security_task_setnice(current, nice);
3194 if (retval)
3195 return retval;
3196
3197 set_user_nice(current, nice);
3198 return 0;
3199}
3200
3201#endif
3202
3203/**
3204 * task_prio - return the priority value of a given task.
3205 * @p: the task in question.
3206 *
e69f6186 3207 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3208 * RT tasks are offset by -200. Normal tasks are centered
3209 * around 0, value goes from -16 to +15.
3210 */
36c8b586 3211int task_prio(const struct task_struct *p)
1da177e4
LT
3212{
3213 return p->prio - MAX_RT_PRIO;
3214}
3215
1da177e4
LT
3216/**
3217 * idle_cpu - is a given cpu idle currently?
3218 * @cpu: the processor in question.
e69f6186
YB
3219 *
3220 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3221 */
3222int idle_cpu(int cpu)
3223{
908a3283
TG
3224 struct rq *rq = cpu_rq(cpu);
3225
3226 if (rq->curr != rq->idle)
3227 return 0;
3228
3229 if (rq->nr_running)
3230 return 0;
3231
3232#ifdef CONFIG_SMP
3233 if (!llist_empty(&rq->wake_list))
3234 return 0;
3235#endif
3236
3237 return 1;
1da177e4
LT
3238}
3239
1da177e4
LT
3240/**
3241 * idle_task - return the idle task for a given cpu.
3242 * @cpu: the processor in question.
e69f6186
YB
3243 *
3244 * Return: The idle task for the cpu @cpu.
1da177e4 3245 */
36c8b586 3246struct task_struct *idle_task(int cpu)
1da177e4
LT
3247{
3248 return cpu_rq(cpu)->idle;
3249}
3250
3251/**
3252 * find_process_by_pid - find a process with a matching PID value.
3253 * @pid: the pid in question.
e69f6186
YB
3254 *
3255 * The task of @pid, if found. %NULL otherwise.
1da177e4 3256 */
a9957449 3257static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3258{
228ebcbe 3259 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3260}
3261
aab03e05
DF
3262/*
3263 * This function initializes the sched_dl_entity of a newly becoming
3264 * SCHED_DEADLINE task.
3265 *
3266 * Only the static values are considered here, the actual runtime and the
3267 * absolute deadline will be properly calculated when the task is enqueued
3268 * for the first time with its new policy.
3269 */
3270static void
3271__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3272{
3273 struct sched_dl_entity *dl_se = &p->dl;
3274
aab03e05
DF
3275 dl_se->dl_runtime = attr->sched_runtime;
3276 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3277 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3278 dl_se->flags = attr->sched_flags;
332ac17e 3279 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3280
3281 /*
3282 * Changing the parameters of a task is 'tricky' and we're not doing
3283 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3284 *
3285 * What we SHOULD do is delay the bandwidth release until the 0-lag
3286 * point. This would include retaining the task_struct until that time
3287 * and change dl_overflow() to not immediately decrement the current
3288 * amount.
3289 *
3290 * Instead we retain the current runtime/deadline and let the new
3291 * parameters take effect after the current reservation period lapses.
3292 * This is safe (albeit pessimistic) because the 0-lag point is always
3293 * before the current scheduling deadline.
3294 *
3295 * We can still have temporary overloads because we do not delay the
3296 * change in bandwidth until that time; so admission control is
3297 * not on the safe side. It does however guarantee tasks will never
3298 * consume more than promised.
3299 */
aab03e05
DF
3300}
3301
c13db6b1
SR
3302/*
3303 * sched_setparam() passes in -1 for its policy, to let the functions
3304 * it calls know not to change it.
3305 */
3306#define SETPARAM_POLICY -1
3307
c365c292
TG
3308static void __setscheduler_params(struct task_struct *p,
3309 const struct sched_attr *attr)
1da177e4 3310{
d50dde5a
DF
3311 int policy = attr->sched_policy;
3312
c13db6b1 3313 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3314 policy = p->policy;
3315
1da177e4 3316 p->policy = policy;
d50dde5a 3317
aab03e05
DF
3318 if (dl_policy(policy))
3319 __setparam_dl(p, attr);
39fd8fd2 3320 else if (fair_policy(policy))
d50dde5a
DF
3321 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3322
39fd8fd2
PZ
3323 /*
3324 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3325 * !rt_policy. Always setting this ensures that things like
3326 * getparam()/getattr() don't report silly values for !rt tasks.
3327 */
3328 p->rt_priority = attr->sched_priority;
383afd09 3329 p->normal_prio = normal_prio(p);
c365c292
TG
3330 set_load_weight(p);
3331}
39fd8fd2 3332
c365c292
TG
3333/* Actually do priority change: must hold pi & rq lock. */
3334static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3335 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3336{
3337 __setscheduler_params(p, attr);
d50dde5a 3338
383afd09 3339 /*
0782e63b
TG
3340 * Keep a potential priority boosting if called from
3341 * sched_setscheduler().
383afd09 3342 */
0782e63b
TG
3343 if (keep_boost)
3344 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3345 else
3346 p->prio = normal_prio(p);
383afd09 3347
aab03e05
DF
3348 if (dl_prio(p->prio))
3349 p->sched_class = &dl_sched_class;
3350 else if (rt_prio(p->prio))
ffd44db5
PZ
3351 p->sched_class = &rt_sched_class;
3352 else
3353 p->sched_class = &fair_sched_class;
1da177e4 3354}
aab03e05
DF
3355
3356static void
3357__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3358{
3359 struct sched_dl_entity *dl_se = &p->dl;
3360
3361 attr->sched_priority = p->rt_priority;
3362 attr->sched_runtime = dl_se->dl_runtime;
3363 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3364 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3365 attr->sched_flags = dl_se->flags;
3366}
3367
3368/*
3369 * This function validates the new parameters of a -deadline task.
3370 * We ask for the deadline not being zero, and greater or equal
755378a4 3371 * than the runtime, as well as the period of being zero or
332ac17e 3372 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3373 * user parameters are above the internal resolution of 1us (we
3374 * check sched_runtime only since it is always the smaller one) and
3375 * below 2^63 ns (we have to check both sched_deadline and
3376 * sched_period, as the latter can be zero).
aab03e05
DF
3377 */
3378static bool
3379__checkparam_dl(const struct sched_attr *attr)
3380{
b0827819
JL
3381 /* deadline != 0 */
3382 if (attr->sched_deadline == 0)
3383 return false;
3384
3385 /*
3386 * Since we truncate DL_SCALE bits, make sure we're at least
3387 * that big.
3388 */
3389 if (attr->sched_runtime < (1ULL << DL_SCALE))
3390 return false;
3391
3392 /*
3393 * Since we use the MSB for wrap-around and sign issues, make
3394 * sure it's not set (mind that period can be equal to zero).
3395 */
3396 if (attr->sched_deadline & (1ULL << 63) ||
3397 attr->sched_period & (1ULL << 63))
3398 return false;
3399
3400 /* runtime <= deadline <= period (if period != 0) */
3401 if ((attr->sched_period != 0 &&
3402 attr->sched_period < attr->sched_deadline) ||
3403 attr->sched_deadline < attr->sched_runtime)
3404 return false;
3405
3406 return true;
aab03e05
DF
3407}
3408
c69e8d9c
DH
3409/*
3410 * check the target process has a UID that matches the current process's
3411 */
3412static bool check_same_owner(struct task_struct *p)
3413{
3414 const struct cred *cred = current_cred(), *pcred;
3415 bool match;
3416
3417 rcu_read_lock();
3418 pcred = __task_cred(p);
9c806aa0
EB
3419 match = (uid_eq(cred->euid, pcred->euid) ||
3420 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3421 rcu_read_unlock();
3422 return match;
3423}
3424
75381608
WL
3425static bool dl_param_changed(struct task_struct *p,
3426 const struct sched_attr *attr)
3427{
3428 struct sched_dl_entity *dl_se = &p->dl;
3429
3430 if (dl_se->dl_runtime != attr->sched_runtime ||
3431 dl_se->dl_deadline != attr->sched_deadline ||
3432 dl_se->dl_period != attr->sched_period ||
3433 dl_se->flags != attr->sched_flags)
3434 return true;
3435
3436 return false;
3437}
3438
d50dde5a
DF
3439static int __sched_setscheduler(struct task_struct *p,
3440 const struct sched_attr *attr,
3441 bool user)
1da177e4 3442{
383afd09
SR
3443 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3444 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3445 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3446 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3447 unsigned long flags;
83ab0aa0 3448 const struct sched_class *prev_class;
70b97a7f 3449 struct rq *rq;
ca94c442 3450 int reset_on_fork;
1da177e4 3451
66e5393a
SR
3452 /* may grab non-irq protected spin_locks */
3453 BUG_ON(in_interrupt());
1da177e4
LT
3454recheck:
3455 /* double check policy once rq lock held */
ca94c442
LP
3456 if (policy < 0) {
3457 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3458 policy = oldpolicy = p->policy;
ca94c442 3459 } else {
7479f3c9 3460 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3461
aab03e05
DF
3462 if (policy != SCHED_DEADLINE &&
3463 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3464 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3465 policy != SCHED_IDLE)
3466 return -EINVAL;
3467 }
3468
7479f3c9
PZ
3469 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3470 return -EINVAL;
3471
1da177e4
LT
3472 /*
3473 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3474 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3475 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3476 */
0bb040a4 3477 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3478 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3479 return -EINVAL;
aab03e05
DF
3480 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3481 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3482 return -EINVAL;
3483
37e4ab3f
OC
3484 /*
3485 * Allow unprivileged RT tasks to decrease priority:
3486 */
961ccddd 3487 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3488 if (fair_policy(policy)) {
d0ea0268 3489 if (attr->sched_nice < task_nice(p) &&
eaad4513 3490 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3491 return -EPERM;
3492 }
3493
e05606d3 3494 if (rt_policy(policy)) {
a44702e8
ON
3495 unsigned long rlim_rtprio =
3496 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3497
3498 /* can't set/change the rt policy */
3499 if (policy != p->policy && !rlim_rtprio)
3500 return -EPERM;
3501
3502 /* can't increase priority */
d50dde5a
DF
3503 if (attr->sched_priority > p->rt_priority &&
3504 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3505 return -EPERM;
3506 }
c02aa73b 3507
d44753b8
JL
3508 /*
3509 * Can't set/change SCHED_DEADLINE policy at all for now
3510 * (safest behavior); in the future we would like to allow
3511 * unprivileged DL tasks to increase their relative deadline
3512 * or reduce their runtime (both ways reducing utilization)
3513 */
3514 if (dl_policy(policy))
3515 return -EPERM;
3516
dd41f596 3517 /*
c02aa73b
DH
3518 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3519 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3520 */
c02aa73b 3521 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3522 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3523 return -EPERM;
3524 }
5fe1d75f 3525
37e4ab3f 3526 /* can't change other user's priorities */
c69e8d9c 3527 if (!check_same_owner(p))
37e4ab3f 3528 return -EPERM;
ca94c442
LP
3529
3530 /* Normal users shall not reset the sched_reset_on_fork flag */
3531 if (p->sched_reset_on_fork && !reset_on_fork)
3532 return -EPERM;
37e4ab3f 3533 }
1da177e4 3534
725aad24 3535 if (user) {
b0ae1981 3536 retval = security_task_setscheduler(p);
725aad24
JF
3537 if (retval)
3538 return retval;
3539 }
3540
b29739f9
IM
3541 /*
3542 * make sure no PI-waiters arrive (or leave) while we are
3543 * changing the priority of the task:
0122ec5b 3544 *
25985edc 3545 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3546 * runqueue lock must be held.
3547 */
0122ec5b 3548 rq = task_rq_lock(p, &flags);
dc61b1d6 3549
34f971f6
PZ
3550 /*
3551 * Changing the policy of the stop threads its a very bad idea
3552 */
3553 if (p == rq->stop) {
0122ec5b 3554 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3555 return -EINVAL;
3556 }
3557
a51e9198 3558 /*
d6b1e911
TG
3559 * If not changing anything there's no need to proceed further,
3560 * but store a possible modification of reset_on_fork.
a51e9198 3561 */
d50dde5a 3562 if (unlikely(policy == p->policy)) {
d0ea0268 3563 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3564 goto change;
3565 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3566 goto change;
75381608 3567 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3568 goto change;
d50dde5a 3569
d6b1e911 3570 p->sched_reset_on_fork = reset_on_fork;
45afb173 3571 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3572 return 0;
3573 }
d50dde5a 3574change:
a51e9198 3575
dc61b1d6 3576 if (user) {
332ac17e 3577#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3578 /*
3579 * Do not allow realtime tasks into groups that have no runtime
3580 * assigned.
3581 */
3582 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3583 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3584 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3585 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3586 return -EPERM;
3587 }
dc61b1d6 3588#endif
332ac17e
DF
3589#ifdef CONFIG_SMP
3590 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3591 cpumask_t *span = rq->rd->span;
332ac17e
DF
3592
3593 /*
3594 * Don't allow tasks with an affinity mask smaller than
3595 * the entire root_domain to become SCHED_DEADLINE. We
3596 * will also fail if there's no bandwidth available.
3597 */
e4099a5e
PZ
3598 if (!cpumask_subset(span, &p->cpus_allowed) ||
3599 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3600 task_rq_unlock(rq, p, &flags);
3601 return -EPERM;
3602 }
3603 }
3604#endif
3605 }
dc61b1d6 3606
1da177e4
LT
3607 /* recheck policy now with rq lock held */
3608 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3609 policy = oldpolicy = -1;
0122ec5b 3610 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3611 goto recheck;
3612 }
332ac17e
DF
3613
3614 /*
3615 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3616 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3617 * is available.
3618 */
e4099a5e 3619 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3620 task_rq_unlock(rq, p, &flags);
3621 return -EBUSY;
3622 }
3623
c365c292
TG
3624 p->sched_reset_on_fork = reset_on_fork;
3625 oldprio = p->prio;
3626
3627 /*
0782e63b
TG
3628 * Take priority boosted tasks into account. If the new
3629 * effective priority is unchanged, we just store the new
c365c292
TG
3630 * normal parameters and do not touch the scheduler class and
3631 * the runqueue. This will be done when the task deboost
3632 * itself.
3633 */
0782e63b
TG
3634 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3635 if (new_effective_prio == oldprio) {
c365c292
TG
3636 __setscheduler_params(p, attr);
3637 task_rq_unlock(rq, p, &flags);
3638 return 0;
3639 }
3640
da0c1e65 3641 queued = task_on_rq_queued(p);
051a1d1a 3642 running = task_current(rq, p);
da0c1e65 3643 if (queued)
4ca9b72b 3644 dequeue_task(rq, p, 0);
0e1f3483 3645 if (running)
f3cd1c4e 3646 put_prev_task(rq, p);
f6b53205 3647
83ab0aa0 3648 prev_class = p->sched_class;
0782e63b 3649 __setscheduler(rq, p, attr, true);
f6b53205 3650
0e1f3483
HS
3651 if (running)
3652 p->sched_class->set_curr_task(rq);
da0c1e65 3653 if (queued) {
81a44c54
TG
3654 /*
3655 * We enqueue to tail when the priority of a task is
3656 * increased (user space view).
3657 */
3658 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3659 }
cb469845 3660
da7a735e 3661 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3662 task_rq_unlock(rq, p, &flags);
b29739f9 3663
95e02ca9
TG
3664 rt_mutex_adjust_pi(p);
3665
1da177e4
LT
3666 return 0;
3667}
961ccddd 3668
7479f3c9
PZ
3669static int _sched_setscheduler(struct task_struct *p, int policy,
3670 const struct sched_param *param, bool check)
3671{
3672 struct sched_attr attr = {
3673 .sched_policy = policy,
3674 .sched_priority = param->sched_priority,
3675 .sched_nice = PRIO_TO_NICE(p->static_prio),
3676 };
3677
c13db6b1
SR
3678 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3679 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3680 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3681 policy &= ~SCHED_RESET_ON_FORK;
3682 attr.sched_policy = policy;
3683 }
3684
3685 return __sched_setscheduler(p, &attr, check);
3686}
961ccddd
RR
3687/**
3688 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3689 * @p: the task in question.
3690 * @policy: new policy.
3691 * @param: structure containing the new RT priority.
3692 *
e69f6186
YB
3693 * Return: 0 on success. An error code otherwise.
3694 *
961ccddd
RR
3695 * NOTE that the task may be already dead.
3696 */
3697int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3698 const struct sched_param *param)
961ccddd 3699{
7479f3c9 3700 return _sched_setscheduler(p, policy, param, true);
961ccddd 3701}
1da177e4
LT
3702EXPORT_SYMBOL_GPL(sched_setscheduler);
3703
d50dde5a
DF
3704int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3705{
3706 return __sched_setscheduler(p, attr, true);
3707}
3708EXPORT_SYMBOL_GPL(sched_setattr);
3709
961ccddd
RR
3710/**
3711 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3712 * @p: the task in question.
3713 * @policy: new policy.
3714 * @param: structure containing the new RT priority.
3715 *
3716 * Just like sched_setscheduler, only don't bother checking if the
3717 * current context has permission. For example, this is needed in
3718 * stop_machine(): we create temporary high priority worker threads,
3719 * but our caller might not have that capability.
e69f6186
YB
3720 *
3721 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3722 */
3723int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3724 const struct sched_param *param)
961ccddd 3725{
7479f3c9 3726 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3727}
3728
95cdf3b7
IM
3729static int
3730do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3731{
1da177e4
LT
3732 struct sched_param lparam;
3733 struct task_struct *p;
36c8b586 3734 int retval;
1da177e4
LT
3735
3736 if (!param || pid < 0)
3737 return -EINVAL;
3738 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3739 return -EFAULT;
5fe1d75f
ON
3740
3741 rcu_read_lock();
3742 retval = -ESRCH;
1da177e4 3743 p = find_process_by_pid(pid);
5fe1d75f
ON
3744 if (p != NULL)
3745 retval = sched_setscheduler(p, policy, &lparam);
3746 rcu_read_unlock();
36c8b586 3747
1da177e4
LT
3748 return retval;
3749}
3750
d50dde5a
DF
3751/*
3752 * Mimics kernel/events/core.c perf_copy_attr().
3753 */
3754static int sched_copy_attr(struct sched_attr __user *uattr,
3755 struct sched_attr *attr)
3756{
3757 u32 size;
3758 int ret;
3759
3760 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3761 return -EFAULT;
3762
3763 /*
3764 * zero the full structure, so that a short copy will be nice.
3765 */
3766 memset(attr, 0, sizeof(*attr));
3767
3768 ret = get_user(size, &uattr->size);
3769 if (ret)
3770 return ret;
3771
3772 if (size > PAGE_SIZE) /* silly large */
3773 goto err_size;
3774
3775 if (!size) /* abi compat */
3776 size = SCHED_ATTR_SIZE_VER0;
3777
3778 if (size < SCHED_ATTR_SIZE_VER0)
3779 goto err_size;
3780
3781 /*
3782 * If we're handed a bigger struct than we know of,
3783 * ensure all the unknown bits are 0 - i.e. new
3784 * user-space does not rely on any kernel feature
3785 * extensions we dont know about yet.
3786 */
3787 if (size > sizeof(*attr)) {
3788 unsigned char __user *addr;
3789 unsigned char __user *end;
3790 unsigned char val;
3791
3792 addr = (void __user *)uattr + sizeof(*attr);
3793 end = (void __user *)uattr + size;
3794
3795 for (; addr < end; addr++) {
3796 ret = get_user(val, addr);
3797 if (ret)
3798 return ret;
3799 if (val)
3800 goto err_size;
3801 }
3802 size = sizeof(*attr);
3803 }
3804
3805 ret = copy_from_user(attr, uattr, size);
3806 if (ret)
3807 return -EFAULT;
3808
3809 /*
3810 * XXX: do we want to be lenient like existing syscalls; or do we want
3811 * to be strict and return an error on out-of-bounds values?
3812 */
75e45d51 3813 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3814
e78c7bca 3815 return 0;
d50dde5a
DF
3816
3817err_size:
3818 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3819 return -E2BIG;
d50dde5a
DF
3820}
3821
1da177e4
LT
3822/**
3823 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3824 * @pid: the pid in question.
3825 * @policy: new policy.
3826 * @param: structure containing the new RT priority.
e69f6186
YB
3827 *
3828 * Return: 0 on success. An error code otherwise.
1da177e4 3829 */
5add95d4
HC
3830SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3831 struct sched_param __user *, param)
1da177e4 3832{
c21761f1
JB
3833 /* negative values for policy are not valid */
3834 if (policy < 0)
3835 return -EINVAL;
3836
1da177e4
LT
3837 return do_sched_setscheduler(pid, policy, param);
3838}
3839
3840/**
3841 * sys_sched_setparam - set/change the RT priority of a thread
3842 * @pid: the pid in question.
3843 * @param: structure containing the new RT priority.
e69f6186
YB
3844 *
3845 * Return: 0 on success. An error code otherwise.
1da177e4 3846 */
5add95d4 3847SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3848{
c13db6b1 3849 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3850}
3851
d50dde5a
DF
3852/**
3853 * sys_sched_setattr - same as above, but with extended sched_attr
3854 * @pid: the pid in question.
5778fccf 3855 * @uattr: structure containing the extended parameters.
db66d756 3856 * @flags: for future extension.
d50dde5a 3857 */
6d35ab48
PZ
3858SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3859 unsigned int, flags)
d50dde5a
DF
3860{
3861 struct sched_attr attr;
3862 struct task_struct *p;
3863 int retval;
3864
6d35ab48 3865 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3866 return -EINVAL;
3867
143cf23d
MK
3868 retval = sched_copy_attr(uattr, &attr);
3869 if (retval)
3870 return retval;
d50dde5a 3871
b14ed2c2 3872 if ((int)attr.sched_policy < 0)
dbdb2275 3873 return -EINVAL;
d50dde5a
DF
3874
3875 rcu_read_lock();
3876 retval = -ESRCH;
3877 p = find_process_by_pid(pid);
3878 if (p != NULL)
3879 retval = sched_setattr(p, &attr);
3880 rcu_read_unlock();
3881
3882 return retval;
3883}
3884
1da177e4
LT
3885/**
3886 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3887 * @pid: the pid in question.
e69f6186
YB
3888 *
3889 * Return: On success, the policy of the thread. Otherwise, a negative error
3890 * code.
1da177e4 3891 */
5add95d4 3892SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3893{
36c8b586 3894 struct task_struct *p;
3a5c359a 3895 int retval;
1da177e4
LT
3896
3897 if (pid < 0)
3a5c359a 3898 return -EINVAL;
1da177e4
LT
3899
3900 retval = -ESRCH;
5fe85be0 3901 rcu_read_lock();
1da177e4
LT
3902 p = find_process_by_pid(pid);
3903 if (p) {
3904 retval = security_task_getscheduler(p);
3905 if (!retval)
ca94c442
LP
3906 retval = p->policy
3907 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3908 }
5fe85be0 3909 rcu_read_unlock();
1da177e4
LT
3910 return retval;
3911}
3912
3913/**
ca94c442 3914 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3915 * @pid: the pid in question.
3916 * @param: structure containing the RT priority.
e69f6186
YB
3917 *
3918 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3919 * code.
1da177e4 3920 */
5add95d4 3921SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3922{
ce5f7f82 3923 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3924 struct task_struct *p;
3a5c359a 3925 int retval;
1da177e4
LT
3926
3927 if (!param || pid < 0)
3a5c359a 3928 return -EINVAL;
1da177e4 3929
5fe85be0 3930 rcu_read_lock();
1da177e4
LT
3931 p = find_process_by_pid(pid);
3932 retval = -ESRCH;
3933 if (!p)
3934 goto out_unlock;
3935
3936 retval = security_task_getscheduler(p);
3937 if (retval)
3938 goto out_unlock;
3939
ce5f7f82
PZ
3940 if (task_has_rt_policy(p))
3941 lp.sched_priority = p->rt_priority;
5fe85be0 3942 rcu_read_unlock();
1da177e4
LT
3943
3944 /*
3945 * This one might sleep, we cannot do it with a spinlock held ...
3946 */
3947 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3948
1da177e4
LT
3949 return retval;
3950
3951out_unlock:
5fe85be0 3952 rcu_read_unlock();
1da177e4
LT
3953 return retval;
3954}
3955
d50dde5a
DF
3956static int sched_read_attr(struct sched_attr __user *uattr,
3957 struct sched_attr *attr,
3958 unsigned int usize)
3959{
3960 int ret;
3961
3962 if (!access_ok(VERIFY_WRITE, uattr, usize))
3963 return -EFAULT;
3964
3965 /*
3966 * If we're handed a smaller struct than we know of,
3967 * ensure all the unknown bits are 0 - i.e. old
3968 * user-space does not get uncomplete information.
3969 */
3970 if (usize < sizeof(*attr)) {
3971 unsigned char *addr;
3972 unsigned char *end;
3973
3974 addr = (void *)attr + usize;
3975 end = (void *)attr + sizeof(*attr);
3976
3977 for (; addr < end; addr++) {
3978 if (*addr)
22400674 3979 return -EFBIG;
d50dde5a
DF
3980 }
3981
3982 attr->size = usize;
3983 }
3984
4efbc454 3985 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3986 if (ret)
3987 return -EFAULT;
3988
22400674 3989 return 0;
d50dde5a
DF
3990}
3991
3992/**
aab03e05 3993 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3994 * @pid: the pid in question.
5778fccf 3995 * @uattr: structure containing the extended parameters.
d50dde5a 3996 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3997 * @flags: for future extension.
d50dde5a 3998 */
6d35ab48
PZ
3999SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4000 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4001{
4002 struct sched_attr attr = {
4003 .size = sizeof(struct sched_attr),
4004 };
4005 struct task_struct *p;
4006 int retval;
4007
4008 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4009 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4010 return -EINVAL;
4011
4012 rcu_read_lock();
4013 p = find_process_by_pid(pid);
4014 retval = -ESRCH;
4015 if (!p)
4016 goto out_unlock;
4017
4018 retval = security_task_getscheduler(p);
4019 if (retval)
4020 goto out_unlock;
4021
4022 attr.sched_policy = p->policy;
7479f3c9
PZ
4023 if (p->sched_reset_on_fork)
4024 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4025 if (task_has_dl_policy(p))
4026 __getparam_dl(p, &attr);
4027 else if (task_has_rt_policy(p))
d50dde5a
DF
4028 attr.sched_priority = p->rt_priority;
4029 else
d0ea0268 4030 attr.sched_nice = task_nice(p);
d50dde5a
DF
4031
4032 rcu_read_unlock();
4033
4034 retval = sched_read_attr(uattr, &attr, size);
4035 return retval;
4036
4037out_unlock:
4038 rcu_read_unlock();
4039 return retval;
4040}
4041
96f874e2 4042long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4043{
5a16f3d3 4044 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4045 struct task_struct *p;
4046 int retval;
1da177e4 4047
23f5d142 4048 rcu_read_lock();
1da177e4
LT
4049
4050 p = find_process_by_pid(pid);
4051 if (!p) {
23f5d142 4052 rcu_read_unlock();
1da177e4
LT
4053 return -ESRCH;
4054 }
4055
23f5d142 4056 /* Prevent p going away */
1da177e4 4057 get_task_struct(p);
23f5d142 4058 rcu_read_unlock();
1da177e4 4059
14a40ffc
TH
4060 if (p->flags & PF_NO_SETAFFINITY) {
4061 retval = -EINVAL;
4062 goto out_put_task;
4063 }
5a16f3d3
RR
4064 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4065 retval = -ENOMEM;
4066 goto out_put_task;
4067 }
4068 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4069 retval = -ENOMEM;
4070 goto out_free_cpus_allowed;
4071 }
1da177e4 4072 retval = -EPERM;
4c44aaaf
EB
4073 if (!check_same_owner(p)) {
4074 rcu_read_lock();
4075 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4076 rcu_read_unlock();
16303ab2 4077 goto out_free_new_mask;
4c44aaaf
EB
4078 }
4079 rcu_read_unlock();
4080 }
1da177e4 4081
b0ae1981 4082 retval = security_task_setscheduler(p);
e7834f8f 4083 if (retval)
16303ab2 4084 goto out_free_new_mask;
e7834f8f 4085
e4099a5e
PZ
4086
4087 cpuset_cpus_allowed(p, cpus_allowed);
4088 cpumask_and(new_mask, in_mask, cpus_allowed);
4089
332ac17e
DF
4090 /*
4091 * Since bandwidth control happens on root_domain basis,
4092 * if admission test is enabled, we only admit -deadline
4093 * tasks allowed to run on all the CPUs in the task's
4094 * root_domain.
4095 */
4096#ifdef CONFIG_SMP
f1e3a093
KT
4097 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4098 rcu_read_lock();
4099 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4100 retval = -EBUSY;
f1e3a093 4101 rcu_read_unlock();
16303ab2 4102 goto out_free_new_mask;
332ac17e 4103 }
f1e3a093 4104 rcu_read_unlock();
332ac17e
DF
4105 }
4106#endif
49246274 4107again:
5a16f3d3 4108 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4109
8707d8b8 4110 if (!retval) {
5a16f3d3
RR
4111 cpuset_cpus_allowed(p, cpus_allowed);
4112 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4113 /*
4114 * We must have raced with a concurrent cpuset
4115 * update. Just reset the cpus_allowed to the
4116 * cpuset's cpus_allowed
4117 */
5a16f3d3 4118 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4119 goto again;
4120 }
4121 }
16303ab2 4122out_free_new_mask:
5a16f3d3
RR
4123 free_cpumask_var(new_mask);
4124out_free_cpus_allowed:
4125 free_cpumask_var(cpus_allowed);
4126out_put_task:
1da177e4 4127 put_task_struct(p);
1da177e4
LT
4128 return retval;
4129}
4130
4131static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4132 struct cpumask *new_mask)
1da177e4 4133{
96f874e2
RR
4134 if (len < cpumask_size())
4135 cpumask_clear(new_mask);
4136 else if (len > cpumask_size())
4137 len = cpumask_size();
4138
1da177e4
LT
4139 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4140}
4141
4142/**
4143 * sys_sched_setaffinity - set the cpu affinity of a process
4144 * @pid: pid of the process
4145 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4146 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4147 *
4148 * Return: 0 on success. An error code otherwise.
1da177e4 4149 */
5add95d4
HC
4150SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4151 unsigned long __user *, user_mask_ptr)
1da177e4 4152{
5a16f3d3 4153 cpumask_var_t new_mask;
1da177e4
LT
4154 int retval;
4155
5a16f3d3
RR
4156 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4157 return -ENOMEM;
1da177e4 4158
5a16f3d3
RR
4159 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4160 if (retval == 0)
4161 retval = sched_setaffinity(pid, new_mask);
4162 free_cpumask_var(new_mask);
4163 return retval;
1da177e4
LT
4164}
4165
96f874e2 4166long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4167{
36c8b586 4168 struct task_struct *p;
31605683 4169 unsigned long flags;
1da177e4 4170 int retval;
1da177e4 4171
23f5d142 4172 rcu_read_lock();
1da177e4
LT
4173
4174 retval = -ESRCH;
4175 p = find_process_by_pid(pid);
4176 if (!p)
4177 goto out_unlock;
4178
e7834f8f
DQ
4179 retval = security_task_getscheduler(p);
4180 if (retval)
4181 goto out_unlock;
4182
013fdb80 4183 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4184 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4185 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4186
4187out_unlock:
23f5d142 4188 rcu_read_unlock();
1da177e4 4189
9531b62f 4190 return retval;
1da177e4
LT
4191}
4192
4193/**
4194 * sys_sched_getaffinity - get the cpu affinity of a process
4195 * @pid: pid of the process
4196 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4197 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4198 *
4199 * Return: 0 on success. An error code otherwise.
1da177e4 4200 */
5add95d4
HC
4201SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4202 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4203{
4204 int ret;
f17c8607 4205 cpumask_var_t mask;
1da177e4 4206
84fba5ec 4207 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4208 return -EINVAL;
4209 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4210 return -EINVAL;
4211
f17c8607
RR
4212 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4213 return -ENOMEM;
1da177e4 4214
f17c8607
RR
4215 ret = sched_getaffinity(pid, mask);
4216 if (ret == 0) {
8bc037fb 4217 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4218
4219 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4220 ret = -EFAULT;
4221 else
cd3d8031 4222 ret = retlen;
f17c8607
RR
4223 }
4224 free_cpumask_var(mask);
1da177e4 4225
f17c8607 4226 return ret;
1da177e4
LT
4227}
4228
4229/**
4230 * sys_sched_yield - yield the current processor to other threads.
4231 *
dd41f596
IM
4232 * This function yields the current CPU to other tasks. If there are no
4233 * other threads running on this CPU then this function will return.
e69f6186
YB
4234 *
4235 * Return: 0.
1da177e4 4236 */
5add95d4 4237SYSCALL_DEFINE0(sched_yield)
1da177e4 4238{
70b97a7f 4239 struct rq *rq = this_rq_lock();
1da177e4 4240
2d72376b 4241 schedstat_inc(rq, yld_count);
4530d7ab 4242 current->sched_class->yield_task(rq);
1da177e4
LT
4243
4244 /*
4245 * Since we are going to call schedule() anyway, there's
4246 * no need to preempt or enable interrupts:
4247 */
4248 __release(rq->lock);
8a25d5de 4249 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4250 do_raw_spin_unlock(&rq->lock);
ba74c144 4251 sched_preempt_enable_no_resched();
1da177e4
LT
4252
4253 schedule();
4254
4255 return 0;
4256}
4257
02b67cc3 4258int __sched _cond_resched(void)
1da177e4 4259{
d86ee480 4260 if (should_resched()) {
a18b5d01 4261 preempt_schedule_common();
1da177e4
LT
4262 return 1;
4263 }
4264 return 0;
4265}
02b67cc3 4266EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4267
4268/*
613afbf8 4269 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4270 * call schedule, and on return reacquire the lock.
4271 *
41a2d6cf 4272 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4273 * operations here to prevent schedule() from being called twice (once via
4274 * spin_unlock(), once by hand).
4275 */
613afbf8 4276int __cond_resched_lock(spinlock_t *lock)
1da177e4 4277{
d86ee480 4278 int resched = should_resched();
6df3cecb
JK
4279 int ret = 0;
4280
f607c668
PZ
4281 lockdep_assert_held(lock);
4282
4a81e832 4283 if (spin_needbreak(lock) || resched) {
1da177e4 4284 spin_unlock(lock);
d86ee480 4285 if (resched)
a18b5d01 4286 preempt_schedule_common();
95c354fe
NP
4287 else
4288 cpu_relax();
6df3cecb 4289 ret = 1;
1da177e4 4290 spin_lock(lock);
1da177e4 4291 }
6df3cecb 4292 return ret;
1da177e4 4293}
613afbf8 4294EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4295
613afbf8 4296int __sched __cond_resched_softirq(void)
1da177e4
LT
4297{
4298 BUG_ON(!in_softirq());
4299
d86ee480 4300 if (should_resched()) {
98d82567 4301 local_bh_enable();
a18b5d01 4302 preempt_schedule_common();
1da177e4
LT
4303 local_bh_disable();
4304 return 1;
4305 }
4306 return 0;
4307}
613afbf8 4308EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4309
1da177e4
LT
4310/**
4311 * yield - yield the current processor to other threads.
4312 *
8e3fabfd
PZ
4313 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4314 *
4315 * The scheduler is at all times free to pick the calling task as the most
4316 * eligible task to run, if removing the yield() call from your code breaks
4317 * it, its already broken.
4318 *
4319 * Typical broken usage is:
4320 *
4321 * while (!event)
4322 * yield();
4323 *
4324 * where one assumes that yield() will let 'the other' process run that will
4325 * make event true. If the current task is a SCHED_FIFO task that will never
4326 * happen. Never use yield() as a progress guarantee!!
4327 *
4328 * If you want to use yield() to wait for something, use wait_event().
4329 * If you want to use yield() to be 'nice' for others, use cond_resched().
4330 * If you still want to use yield(), do not!
1da177e4
LT
4331 */
4332void __sched yield(void)
4333{
4334 set_current_state(TASK_RUNNING);
4335 sys_sched_yield();
4336}
1da177e4
LT
4337EXPORT_SYMBOL(yield);
4338
d95f4122
MG
4339/**
4340 * yield_to - yield the current processor to another thread in
4341 * your thread group, or accelerate that thread toward the
4342 * processor it's on.
16addf95
RD
4343 * @p: target task
4344 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4345 *
4346 * It's the caller's job to ensure that the target task struct
4347 * can't go away on us before we can do any checks.
4348 *
e69f6186 4349 * Return:
7b270f60
PZ
4350 * true (>0) if we indeed boosted the target task.
4351 * false (0) if we failed to boost the target.
4352 * -ESRCH if there's no task to yield to.
d95f4122 4353 */
fa93384f 4354int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4355{
4356 struct task_struct *curr = current;
4357 struct rq *rq, *p_rq;
4358 unsigned long flags;
c3c18640 4359 int yielded = 0;
d95f4122
MG
4360
4361 local_irq_save(flags);
4362 rq = this_rq();
4363
4364again:
4365 p_rq = task_rq(p);
7b270f60
PZ
4366 /*
4367 * If we're the only runnable task on the rq and target rq also
4368 * has only one task, there's absolutely no point in yielding.
4369 */
4370 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4371 yielded = -ESRCH;
4372 goto out_irq;
4373 }
4374
d95f4122 4375 double_rq_lock(rq, p_rq);
39e24d8f 4376 if (task_rq(p) != p_rq) {
d95f4122
MG
4377 double_rq_unlock(rq, p_rq);
4378 goto again;
4379 }
4380
4381 if (!curr->sched_class->yield_to_task)
7b270f60 4382 goto out_unlock;
d95f4122
MG
4383
4384 if (curr->sched_class != p->sched_class)
7b270f60 4385 goto out_unlock;
d95f4122
MG
4386
4387 if (task_running(p_rq, p) || p->state)
7b270f60 4388 goto out_unlock;
d95f4122
MG
4389
4390 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4391 if (yielded) {
d95f4122 4392 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4393 /*
4394 * Make p's CPU reschedule; pick_next_entity takes care of
4395 * fairness.
4396 */
4397 if (preempt && rq != p_rq)
8875125e 4398 resched_curr(p_rq);
6d1cafd8 4399 }
d95f4122 4400
7b270f60 4401out_unlock:
d95f4122 4402 double_rq_unlock(rq, p_rq);
7b270f60 4403out_irq:
d95f4122
MG
4404 local_irq_restore(flags);
4405
7b270f60 4406 if (yielded > 0)
d95f4122
MG
4407 schedule();
4408
4409 return yielded;
4410}
4411EXPORT_SYMBOL_GPL(yield_to);
4412
1da177e4 4413/*
41a2d6cf 4414 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4415 * that process accounting knows that this is a task in IO wait state.
1da177e4 4416 */
1da177e4
LT
4417long __sched io_schedule_timeout(long timeout)
4418{
9cff8ade
N
4419 int old_iowait = current->in_iowait;
4420 struct rq *rq;
1da177e4
LT
4421 long ret;
4422
9cff8ade 4423 current->in_iowait = 1;
10d784ea 4424 blk_schedule_flush_plug(current);
9cff8ade 4425
0ff92245 4426 delayacct_blkio_start();
9cff8ade 4427 rq = raw_rq();
1da177e4
LT
4428 atomic_inc(&rq->nr_iowait);
4429 ret = schedule_timeout(timeout);
9cff8ade 4430 current->in_iowait = old_iowait;
1da177e4 4431 atomic_dec(&rq->nr_iowait);
0ff92245 4432 delayacct_blkio_end();
9cff8ade 4433
1da177e4
LT
4434 return ret;
4435}
9cff8ade 4436EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4437
4438/**
4439 * sys_sched_get_priority_max - return maximum RT priority.
4440 * @policy: scheduling class.
4441 *
e69f6186
YB
4442 * Return: On success, this syscall returns the maximum
4443 * rt_priority that can be used by a given scheduling class.
4444 * On failure, a negative error code is returned.
1da177e4 4445 */
5add95d4 4446SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4447{
4448 int ret = -EINVAL;
4449
4450 switch (policy) {
4451 case SCHED_FIFO:
4452 case SCHED_RR:
4453 ret = MAX_USER_RT_PRIO-1;
4454 break;
aab03e05 4455 case SCHED_DEADLINE:
1da177e4 4456 case SCHED_NORMAL:
b0a9499c 4457 case SCHED_BATCH:
dd41f596 4458 case SCHED_IDLE:
1da177e4
LT
4459 ret = 0;
4460 break;
4461 }
4462 return ret;
4463}
4464
4465/**
4466 * sys_sched_get_priority_min - return minimum RT priority.
4467 * @policy: scheduling class.
4468 *
e69f6186
YB
4469 * Return: On success, this syscall returns the minimum
4470 * rt_priority that can be used by a given scheduling class.
4471 * On failure, a negative error code is returned.
1da177e4 4472 */
5add95d4 4473SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4474{
4475 int ret = -EINVAL;
4476
4477 switch (policy) {
4478 case SCHED_FIFO:
4479 case SCHED_RR:
4480 ret = 1;
4481 break;
aab03e05 4482 case SCHED_DEADLINE:
1da177e4 4483 case SCHED_NORMAL:
b0a9499c 4484 case SCHED_BATCH:
dd41f596 4485 case SCHED_IDLE:
1da177e4
LT
4486 ret = 0;
4487 }
4488 return ret;
4489}
4490
4491/**
4492 * sys_sched_rr_get_interval - return the default timeslice of a process.
4493 * @pid: pid of the process.
4494 * @interval: userspace pointer to the timeslice value.
4495 *
4496 * this syscall writes the default timeslice value of a given process
4497 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4498 *
4499 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4500 * an error code.
1da177e4 4501 */
17da2bd9 4502SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4503 struct timespec __user *, interval)
1da177e4 4504{
36c8b586 4505 struct task_struct *p;
a4ec24b4 4506 unsigned int time_slice;
dba091b9
TG
4507 unsigned long flags;
4508 struct rq *rq;
3a5c359a 4509 int retval;
1da177e4 4510 struct timespec t;
1da177e4
LT
4511
4512 if (pid < 0)
3a5c359a 4513 return -EINVAL;
1da177e4
LT
4514
4515 retval = -ESRCH;
1a551ae7 4516 rcu_read_lock();
1da177e4
LT
4517 p = find_process_by_pid(pid);
4518 if (!p)
4519 goto out_unlock;
4520
4521 retval = security_task_getscheduler(p);
4522 if (retval)
4523 goto out_unlock;
4524
dba091b9 4525 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4526 time_slice = 0;
4527 if (p->sched_class->get_rr_interval)
4528 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4529 task_rq_unlock(rq, p, &flags);
a4ec24b4 4530
1a551ae7 4531 rcu_read_unlock();
a4ec24b4 4532 jiffies_to_timespec(time_slice, &t);
1da177e4 4533 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4534 return retval;
3a5c359a 4535
1da177e4 4536out_unlock:
1a551ae7 4537 rcu_read_unlock();
1da177e4
LT
4538 return retval;
4539}
4540
7c731e0a 4541static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4542
82a1fcb9 4543void sched_show_task(struct task_struct *p)
1da177e4 4544{
1da177e4 4545 unsigned long free = 0;
4e79752c 4546 int ppid;
1f8a7633 4547 unsigned long state = p->state;
1da177e4 4548
1f8a7633
TH
4549 if (state)
4550 state = __ffs(state) + 1;
28d0686c 4551 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4552 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4553#if BITS_PER_LONG == 32
1da177e4 4554 if (state == TASK_RUNNING)
3df0fc5b 4555 printk(KERN_CONT " running ");
1da177e4 4556 else
3df0fc5b 4557 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4558#else
4559 if (state == TASK_RUNNING)
3df0fc5b 4560 printk(KERN_CONT " running task ");
1da177e4 4561 else
3df0fc5b 4562 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4563#endif
4564#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4565 free = stack_not_used(p);
1da177e4 4566#endif
a90e984c 4567 ppid = 0;
4e79752c 4568 rcu_read_lock();
a90e984c
ON
4569 if (pid_alive(p))
4570 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4571 rcu_read_unlock();
3df0fc5b 4572 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4573 task_pid_nr(p), ppid,
aa47b7e0 4574 (unsigned long)task_thread_info(p)->flags);
1da177e4 4575
3d1cb205 4576 print_worker_info(KERN_INFO, p);
5fb5e6de 4577 show_stack(p, NULL);
1da177e4
LT
4578}
4579
e59e2ae2 4580void show_state_filter(unsigned long state_filter)
1da177e4 4581{
36c8b586 4582 struct task_struct *g, *p;
1da177e4 4583
4bd77321 4584#if BITS_PER_LONG == 32
3df0fc5b
PZ
4585 printk(KERN_INFO
4586 " task PC stack pid father\n");
1da177e4 4587#else
3df0fc5b
PZ
4588 printk(KERN_INFO
4589 " task PC stack pid father\n");
1da177e4 4590#endif
510f5acc 4591 rcu_read_lock();
5d07f420 4592 for_each_process_thread(g, p) {
1da177e4
LT
4593 /*
4594 * reset the NMI-timeout, listing all files on a slow
25985edc 4595 * console might take a lot of time:
1da177e4
LT
4596 */
4597 touch_nmi_watchdog();
39bc89fd 4598 if (!state_filter || (p->state & state_filter))
82a1fcb9 4599 sched_show_task(p);
5d07f420 4600 }
1da177e4 4601
04c9167f
JF
4602 touch_all_softlockup_watchdogs();
4603
dd41f596
IM
4604#ifdef CONFIG_SCHED_DEBUG
4605 sysrq_sched_debug_show();
4606#endif
510f5acc 4607 rcu_read_unlock();
e59e2ae2
IM
4608 /*
4609 * Only show locks if all tasks are dumped:
4610 */
93335a21 4611 if (!state_filter)
e59e2ae2 4612 debug_show_all_locks();
1da177e4
LT
4613}
4614
0db0628d 4615void init_idle_bootup_task(struct task_struct *idle)
1df21055 4616{
dd41f596 4617 idle->sched_class = &idle_sched_class;
1df21055
IM
4618}
4619
f340c0d1
IM
4620/**
4621 * init_idle - set up an idle thread for a given CPU
4622 * @idle: task in question
4623 * @cpu: cpu the idle task belongs to
4624 *
4625 * NOTE: this function does not set the idle thread's NEED_RESCHED
4626 * flag, to make booting more robust.
4627 */
0db0628d 4628void init_idle(struct task_struct *idle, int cpu)
1da177e4 4629{
70b97a7f 4630 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4631 unsigned long flags;
4632
05fa785c 4633 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4634
5e1576ed 4635 __sched_fork(0, idle);
06b83b5f 4636 idle->state = TASK_RUNNING;
dd41f596
IM
4637 idle->se.exec_start = sched_clock();
4638
1e1b6c51 4639 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4640 /*
4641 * We're having a chicken and egg problem, even though we are
4642 * holding rq->lock, the cpu isn't yet set to this cpu so the
4643 * lockdep check in task_group() will fail.
4644 *
4645 * Similar case to sched_fork(). / Alternatively we could
4646 * use task_rq_lock() here and obtain the other rq->lock.
4647 *
4648 * Silence PROVE_RCU
4649 */
4650 rcu_read_lock();
dd41f596 4651 __set_task_cpu(idle, cpu);
6506cf6c 4652 rcu_read_unlock();
1da177e4 4653
1da177e4 4654 rq->curr = rq->idle = idle;
da0c1e65 4655 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4656#if defined(CONFIG_SMP)
4657 idle->on_cpu = 1;
4866cde0 4658#endif
05fa785c 4659 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4660
4661 /* Set the preempt count _outside_ the spinlocks! */
01028747 4662 init_idle_preempt_count(idle, cpu);
55cd5340 4663
dd41f596
IM
4664 /*
4665 * The idle tasks have their own, simple scheduling class:
4666 */
4667 idle->sched_class = &idle_sched_class;
868baf07 4668 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4669 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4670#if defined(CONFIG_SMP)
4671 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4672#endif
19978ca6
IM
4673}
4674
f82f8042
JL
4675int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4676 const struct cpumask *trial)
4677{
4678 int ret = 1, trial_cpus;
4679 struct dl_bw *cur_dl_b;
4680 unsigned long flags;
4681
bb2bc55a
MG
4682 if (!cpumask_weight(cur))
4683 return ret;
4684
75e23e49 4685 rcu_read_lock_sched();
f82f8042
JL
4686 cur_dl_b = dl_bw_of(cpumask_any(cur));
4687 trial_cpus = cpumask_weight(trial);
4688
4689 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4690 if (cur_dl_b->bw != -1 &&
4691 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4692 ret = 0;
4693 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4694 rcu_read_unlock_sched();
f82f8042
JL
4695
4696 return ret;
4697}
4698
7f51412a
JL
4699int task_can_attach(struct task_struct *p,
4700 const struct cpumask *cs_cpus_allowed)
4701{
4702 int ret = 0;
4703
4704 /*
4705 * Kthreads which disallow setaffinity shouldn't be moved
4706 * to a new cpuset; we don't want to change their cpu
4707 * affinity and isolating such threads by their set of
4708 * allowed nodes is unnecessary. Thus, cpusets are not
4709 * applicable for such threads. This prevents checking for
4710 * success of set_cpus_allowed_ptr() on all attached tasks
4711 * before cpus_allowed may be changed.
4712 */
4713 if (p->flags & PF_NO_SETAFFINITY) {
4714 ret = -EINVAL;
4715 goto out;
4716 }
4717
4718#ifdef CONFIG_SMP
4719 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4720 cs_cpus_allowed)) {
4721 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4722 cs_cpus_allowed);
75e23e49 4723 struct dl_bw *dl_b;
7f51412a
JL
4724 bool overflow;
4725 int cpus;
4726 unsigned long flags;
4727
75e23e49
JL
4728 rcu_read_lock_sched();
4729 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4730 raw_spin_lock_irqsave(&dl_b->lock, flags);
4731 cpus = dl_bw_cpus(dest_cpu);
4732 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4733 if (overflow)
4734 ret = -EBUSY;
4735 else {
4736 /*
4737 * We reserve space for this task in the destination
4738 * root_domain, as we can't fail after this point.
4739 * We will free resources in the source root_domain
4740 * later on (see set_cpus_allowed_dl()).
4741 */
4742 __dl_add(dl_b, p->dl.dl_bw);
4743 }
4744 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4745 rcu_read_unlock_sched();
7f51412a
JL
4746
4747 }
4748#endif
4749out:
4750 return ret;
4751}
4752
1da177e4 4753#ifdef CONFIG_SMP
a15b12ac
KT
4754/*
4755 * move_queued_task - move a queued task to new rq.
4756 *
4757 * Returns (locked) new rq. Old rq's lock is released.
4758 */
4759static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4760{
4761 struct rq *rq = task_rq(p);
4762
4763 lockdep_assert_held(&rq->lock);
4764
4765 dequeue_task(rq, p, 0);
4766 p->on_rq = TASK_ON_RQ_MIGRATING;
4767 set_task_cpu(p, new_cpu);
4768 raw_spin_unlock(&rq->lock);
4769
4770 rq = cpu_rq(new_cpu);
4771
4772 raw_spin_lock(&rq->lock);
4773 BUG_ON(task_cpu(p) != new_cpu);
4774 p->on_rq = TASK_ON_RQ_QUEUED;
4775 enqueue_task(rq, p, 0);
4776 check_preempt_curr(rq, p, 0);
4777
4778 return rq;
4779}
4780
1e1b6c51
KM
4781void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4782{
1b537c7d 4783 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4784 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4785
4786 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4787 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4788}
4789
1da177e4
LT
4790/*
4791 * This is how migration works:
4792 *
969c7921
TH
4793 * 1) we invoke migration_cpu_stop() on the target CPU using
4794 * stop_one_cpu().
4795 * 2) stopper starts to run (implicitly forcing the migrated thread
4796 * off the CPU)
4797 * 3) it checks whether the migrated task is still in the wrong runqueue.
4798 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4799 * it and puts it into the right queue.
969c7921
TH
4800 * 5) stopper completes and stop_one_cpu() returns and the migration
4801 * is done.
1da177e4
LT
4802 */
4803
4804/*
4805 * Change a given task's CPU affinity. Migrate the thread to a
4806 * proper CPU and schedule it away if the CPU it's executing on
4807 * is removed from the allowed bitmask.
4808 *
4809 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4810 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4811 * call is not atomic; no spinlocks may be held.
4812 */
96f874e2 4813int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4814{
4815 unsigned long flags;
70b97a7f 4816 struct rq *rq;
969c7921 4817 unsigned int dest_cpu;
48f24c4d 4818 int ret = 0;
1da177e4
LT
4819
4820 rq = task_rq_lock(p, &flags);
e2912009 4821
db44fc01
YZ
4822 if (cpumask_equal(&p->cpus_allowed, new_mask))
4823 goto out;
4824
6ad4c188 4825 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4826 ret = -EINVAL;
4827 goto out;
4828 }
4829
1e1b6c51 4830 do_set_cpus_allowed(p, new_mask);
73fe6aae 4831
1da177e4 4832 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4833 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4834 goto out;
4835
969c7921 4836 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4837 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4838 struct migration_arg arg = { p, dest_cpu };
1da177e4 4839 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4840 task_rq_unlock(rq, p, &flags);
969c7921 4841 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4842 tlb_migrate_finish(p->mm);
4843 return 0;
a15b12ac
KT
4844 } else if (task_on_rq_queued(p))
4845 rq = move_queued_task(p, dest_cpu);
1da177e4 4846out:
0122ec5b 4847 task_rq_unlock(rq, p, &flags);
48f24c4d 4848
1da177e4
LT
4849 return ret;
4850}
cd8ba7cd 4851EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4852
4853/*
41a2d6cf 4854 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4855 * this because either it can't run here any more (set_cpus_allowed()
4856 * away from this CPU, or CPU going down), or because we're
4857 * attempting to rebalance this task on exec (sched_exec).
4858 *
4859 * So we race with normal scheduler movements, but that's OK, as long
4860 * as the task is no longer on this CPU.
efc30814
KK
4861 *
4862 * Returns non-zero if task was successfully migrated.
1da177e4 4863 */
efc30814 4864static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4865{
a1e01829 4866 struct rq *rq;
e2912009 4867 int ret = 0;
1da177e4 4868
e761b772 4869 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4870 return ret;
1da177e4 4871
a1e01829 4872 rq = cpu_rq(src_cpu);
1da177e4 4873
0122ec5b 4874 raw_spin_lock(&p->pi_lock);
a1e01829 4875 raw_spin_lock(&rq->lock);
1da177e4
LT
4876 /* Already moved. */
4877 if (task_cpu(p) != src_cpu)
b1e38734 4878 goto done;
a1e01829 4879
1da177e4 4880 /* Affinity changed (again). */
fa17b507 4881 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4882 goto fail;
1da177e4 4883
e2912009
PZ
4884 /*
4885 * If we're not on a rq, the next wake-up will ensure we're
4886 * placed properly.
4887 */
a15b12ac
KT
4888 if (task_on_rq_queued(p))
4889 rq = move_queued_task(p, dest_cpu);
b1e38734 4890done:
efc30814 4891 ret = 1;
b1e38734 4892fail:
a1e01829 4893 raw_spin_unlock(&rq->lock);
0122ec5b 4894 raw_spin_unlock(&p->pi_lock);
efc30814 4895 return ret;
1da177e4
LT
4896}
4897
e6628d5b
MG
4898#ifdef CONFIG_NUMA_BALANCING
4899/* Migrate current task p to target_cpu */
4900int migrate_task_to(struct task_struct *p, int target_cpu)
4901{
4902 struct migration_arg arg = { p, target_cpu };
4903 int curr_cpu = task_cpu(p);
4904
4905 if (curr_cpu == target_cpu)
4906 return 0;
4907
4908 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4909 return -EINVAL;
4910
4911 /* TODO: This is not properly updating schedstats */
4912
286549dc 4913 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4914 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4915}
0ec8aa00
PZ
4916
4917/*
4918 * Requeue a task on a given node and accurately track the number of NUMA
4919 * tasks on the runqueues
4920 */
4921void sched_setnuma(struct task_struct *p, int nid)
4922{
4923 struct rq *rq;
4924 unsigned long flags;
da0c1e65 4925 bool queued, running;
0ec8aa00
PZ
4926
4927 rq = task_rq_lock(p, &flags);
da0c1e65 4928 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4929 running = task_current(rq, p);
4930
da0c1e65 4931 if (queued)
0ec8aa00
PZ
4932 dequeue_task(rq, p, 0);
4933 if (running)
f3cd1c4e 4934 put_prev_task(rq, p);
0ec8aa00
PZ
4935
4936 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4937
4938 if (running)
4939 p->sched_class->set_curr_task(rq);
da0c1e65 4940 if (queued)
0ec8aa00
PZ
4941 enqueue_task(rq, p, 0);
4942 task_rq_unlock(rq, p, &flags);
4943}
e6628d5b
MG
4944#endif
4945
1da177e4 4946/*
969c7921
TH
4947 * migration_cpu_stop - this will be executed by a highprio stopper thread
4948 * and performs thread migration by bumping thread off CPU then
4949 * 'pushing' onto another runqueue.
1da177e4 4950 */
969c7921 4951static int migration_cpu_stop(void *data)
1da177e4 4952{
969c7921 4953 struct migration_arg *arg = data;
f7b4cddc 4954
969c7921
TH
4955 /*
4956 * The original target cpu might have gone down and we might
4957 * be on another cpu but it doesn't matter.
4958 */
f7b4cddc 4959 local_irq_disable();
5cd038f5
LJ
4960 /*
4961 * We need to explicitly wake pending tasks before running
4962 * __migrate_task() such that we will not miss enforcing cpus_allowed
4963 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4964 */
4965 sched_ttwu_pending();
969c7921 4966 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4967 local_irq_enable();
1da177e4 4968 return 0;
f7b4cddc
ON
4969}
4970
1da177e4 4971#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4972
054b9108 4973/*
48c5ccae
PZ
4974 * Ensures that the idle task is using init_mm right before its cpu goes
4975 * offline.
054b9108 4976 */
48c5ccae 4977void idle_task_exit(void)
1da177e4 4978{
48c5ccae 4979 struct mm_struct *mm = current->active_mm;
e76bd8d9 4980
48c5ccae 4981 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4982
a53efe5f 4983 if (mm != &init_mm) {
48c5ccae 4984 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4985 finish_arch_post_lock_switch();
4986 }
48c5ccae 4987 mmdrop(mm);
1da177e4
LT
4988}
4989
4990/*
5d180232
PZ
4991 * Since this CPU is going 'away' for a while, fold any nr_active delta
4992 * we might have. Assumes we're called after migrate_tasks() so that the
4993 * nr_active count is stable.
4994 *
4995 * Also see the comment "Global load-average calculations".
1da177e4 4996 */
5d180232 4997static void calc_load_migrate(struct rq *rq)
1da177e4 4998{
5d180232
PZ
4999 long delta = calc_load_fold_active(rq);
5000 if (delta)
5001 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5002}
5003
3f1d2a31
PZ
5004static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5005{
5006}
5007
5008static const struct sched_class fake_sched_class = {
5009 .put_prev_task = put_prev_task_fake,
5010};
5011
5012static struct task_struct fake_task = {
5013 /*
5014 * Avoid pull_{rt,dl}_task()
5015 */
5016 .prio = MAX_PRIO + 1,
5017 .sched_class = &fake_sched_class,
5018};
5019
48f24c4d 5020/*
48c5ccae
PZ
5021 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5022 * try_to_wake_up()->select_task_rq().
5023 *
5024 * Called with rq->lock held even though we'er in stop_machine() and
5025 * there's no concurrency possible, we hold the required locks anyway
5026 * because of lock validation efforts.
1da177e4 5027 */
48c5ccae 5028static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5029{
70b97a7f 5030 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5031 struct task_struct *next, *stop = rq->stop;
5032 int dest_cpu;
1da177e4
LT
5033
5034 /*
48c5ccae
PZ
5035 * Fudge the rq selection such that the below task selection loop
5036 * doesn't get stuck on the currently eligible stop task.
5037 *
5038 * We're currently inside stop_machine() and the rq is either stuck
5039 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5040 * either way we should never end up calling schedule() until we're
5041 * done here.
1da177e4 5042 */
48c5ccae 5043 rq->stop = NULL;
48f24c4d 5044
77bd3970
FW
5045 /*
5046 * put_prev_task() and pick_next_task() sched
5047 * class method both need to have an up-to-date
5048 * value of rq->clock[_task]
5049 */
5050 update_rq_clock(rq);
5051
dd41f596 5052 for ( ; ; ) {
48c5ccae
PZ
5053 /*
5054 * There's this thread running, bail when that's the only
5055 * remaining thread.
5056 */
5057 if (rq->nr_running == 1)
dd41f596 5058 break;
48c5ccae 5059
3f1d2a31 5060 next = pick_next_task(rq, &fake_task);
48c5ccae 5061 BUG_ON(!next);
79c53799 5062 next->sched_class->put_prev_task(rq, next);
e692ab53 5063
48c5ccae
PZ
5064 /* Find suitable destination for @next, with force if needed. */
5065 dest_cpu = select_fallback_rq(dead_cpu, next);
5066 raw_spin_unlock(&rq->lock);
5067
5068 __migrate_task(next, dead_cpu, dest_cpu);
5069
5070 raw_spin_lock(&rq->lock);
1da177e4 5071 }
dce48a84 5072
48c5ccae 5073 rq->stop = stop;
dce48a84 5074}
48c5ccae 5075
1da177e4
LT
5076#endif /* CONFIG_HOTPLUG_CPU */
5077
e692ab53
NP
5078#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5079
5080static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5081 {
5082 .procname = "sched_domain",
c57baf1e 5083 .mode = 0555,
e0361851 5084 },
56992309 5085 {}
e692ab53
NP
5086};
5087
5088static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5089 {
5090 .procname = "kernel",
c57baf1e 5091 .mode = 0555,
e0361851
AD
5092 .child = sd_ctl_dir,
5093 },
56992309 5094 {}
e692ab53
NP
5095};
5096
5097static struct ctl_table *sd_alloc_ctl_entry(int n)
5098{
5099 struct ctl_table *entry =
5cf9f062 5100 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5101
e692ab53
NP
5102 return entry;
5103}
5104
6382bc90
MM
5105static void sd_free_ctl_entry(struct ctl_table **tablep)
5106{
cd790076 5107 struct ctl_table *entry;
6382bc90 5108
cd790076
MM
5109 /*
5110 * In the intermediate directories, both the child directory and
5111 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5112 * will always be set. In the lowest directory the names are
cd790076
MM
5113 * static strings and all have proc handlers.
5114 */
5115 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5116 if (entry->child)
5117 sd_free_ctl_entry(&entry->child);
cd790076
MM
5118 if (entry->proc_handler == NULL)
5119 kfree(entry->procname);
5120 }
6382bc90
MM
5121
5122 kfree(*tablep);
5123 *tablep = NULL;
5124}
5125
201c373e 5126static int min_load_idx = 0;
fd9b86d3 5127static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5128
e692ab53 5129static void
e0361851 5130set_table_entry(struct ctl_table *entry,
e692ab53 5131 const char *procname, void *data, int maxlen,
201c373e
NK
5132 umode_t mode, proc_handler *proc_handler,
5133 bool load_idx)
e692ab53 5134{
e692ab53
NP
5135 entry->procname = procname;
5136 entry->data = data;
5137 entry->maxlen = maxlen;
5138 entry->mode = mode;
5139 entry->proc_handler = proc_handler;
201c373e
NK
5140
5141 if (load_idx) {
5142 entry->extra1 = &min_load_idx;
5143 entry->extra2 = &max_load_idx;
5144 }
e692ab53
NP
5145}
5146
5147static struct ctl_table *
5148sd_alloc_ctl_domain_table(struct sched_domain *sd)
5149{
37e6bae8 5150 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5151
ad1cdc1d
MM
5152 if (table == NULL)
5153 return NULL;
5154
e0361851 5155 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5156 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5157 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5158 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5159 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5160 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5161 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5162 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5163 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5164 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5165 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5166 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5167 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5168 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5169 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5170 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5171 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5172 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5173 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5174 &sd->cache_nice_tries,
201c373e 5175 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5176 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5177 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5178 set_table_entry(&table[11], "max_newidle_lb_cost",
5179 &sd->max_newidle_lb_cost,
5180 sizeof(long), 0644, proc_doulongvec_minmax, false);
5181 set_table_entry(&table[12], "name", sd->name,
201c373e 5182 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5183 /* &table[13] is terminator */
e692ab53
NP
5184
5185 return table;
5186}
5187
be7002e6 5188static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5189{
5190 struct ctl_table *entry, *table;
5191 struct sched_domain *sd;
5192 int domain_num = 0, i;
5193 char buf[32];
5194
5195 for_each_domain(cpu, sd)
5196 domain_num++;
5197 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5198 if (table == NULL)
5199 return NULL;
e692ab53
NP
5200
5201 i = 0;
5202 for_each_domain(cpu, sd) {
5203 snprintf(buf, 32, "domain%d", i);
e692ab53 5204 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5205 entry->mode = 0555;
e692ab53
NP
5206 entry->child = sd_alloc_ctl_domain_table(sd);
5207 entry++;
5208 i++;
5209 }
5210 return table;
5211}
5212
5213static struct ctl_table_header *sd_sysctl_header;
6382bc90 5214static void register_sched_domain_sysctl(void)
e692ab53 5215{
6ad4c188 5216 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5217 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5218 char buf[32];
5219
7378547f
MM
5220 WARN_ON(sd_ctl_dir[0].child);
5221 sd_ctl_dir[0].child = entry;
5222
ad1cdc1d
MM
5223 if (entry == NULL)
5224 return;
5225
6ad4c188 5226 for_each_possible_cpu(i) {
e692ab53 5227 snprintf(buf, 32, "cpu%d", i);
e692ab53 5228 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5229 entry->mode = 0555;
e692ab53 5230 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5231 entry++;
e692ab53 5232 }
7378547f
MM
5233
5234 WARN_ON(sd_sysctl_header);
e692ab53
NP
5235 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5236}
6382bc90 5237
7378547f 5238/* may be called multiple times per register */
6382bc90
MM
5239static void unregister_sched_domain_sysctl(void)
5240{
7378547f
MM
5241 if (sd_sysctl_header)
5242 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5243 sd_sysctl_header = NULL;
7378547f
MM
5244 if (sd_ctl_dir[0].child)
5245 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5246}
e692ab53 5247#else
6382bc90
MM
5248static void register_sched_domain_sysctl(void)
5249{
5250}
5251static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5252{
5253}
5254#endif
5255
1f11eb6a
GH
5256static void set_rq_online(struct rq *rq)
5257{
5258 if (!rq->online) {
5259 const struct sched_class *class;
5260
c6c4927b 5261 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5262 rq->online = 1;
5263
5264 for_each_class(class) {
5265 if (class->rq_online)
5266 class->rq_online(rq);
5267 }
5268 }
5269}
5270
5271static void set_rq_offline(struct rq *rq)
5272{
5273 if (rq->online) {
5274 const struct sched_class *class;
5275
5276 for_each_class(class) {
5277 if (class->rq_offline)
5278 class->rq_offline(rq);
5279 }
5280
c6c4927b 5281 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5282 rq->online = 0;
5283 }
5284}
5285
1da177e4
LT
5286/*
5287 * migration_call - callback that gets triggered when a CPU is added.
5288 * Here we can start up the necessary migration thread for the new CPU.
5289 */
0db0628d 5290static int
48f24c4d 5291migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5292{
48f24c4d 5293 int cpu = (long)hcpu;
1da177e4 5294 unsigned long flags;
969c7921 5295 struct rq *rq = cpu_rq(cpu);
1da177e4 5296
48c5ccae 5297 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5298
1da177e4 5299 case CPU_UP_PREPARE:
a468d389 5300 rq->calc_load_update = calc_load_update;
1da177e4 5301 break;
48f24c4d 5302
1da177e4 5303 case CPU_ONLINE:
1f94ef59 5304 /* Update our root-domain */
05fa785c 5305 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5306 if (rq->rd) {
c6c4927b 5307 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5308
5309 set_rq_online(rq);
1f94ef59 5310 }
05fa785c 5311 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5312 break;
48f24c4d 5313
1da177e4 5314#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5315 case CPU_DYING:
317f3941 5316 sched_ttwu_pending();
57d885fe 5317 /* Update our root-domain */
05fa785c 5318 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5319 if (rq->rd) {
c6c4927b 5320 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5321 set_rq_offline(rq);
57d885fe 5322 }
48c5ccae
PZ
5323 migrate_tasks(cpu);
5324 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5325 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5326 break;
48c5ccae 5327
5d180232 5328 case CPU_DEAD:
f319da0c 5329 calc_load_migrate(rq);
57d885fe 5330 break;
1da177e4
LT
5331#endif
5332 }
49c022e6
PZ
5333
5334 update_max_interval();
5335
1da177e4
LT
5336 return NOTIFY_OK;
5337}
5338
f38b0820
PM
5339/*
5340 * Register at high priority so that task migration (migrate_all_tasks)
5341 * happens before everything else. This has to be lower priority than
cdd6c482 5342 * the notifier in the perf_event subsystem, though.
1da177e4 5343 */
0db0628d 5344static struct notifier_block migration_notifier = {
1da177e4 5345 .notifier_call = migration_call,
50a323b7 5346 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5347};
5348
6a82b60d 5349static void set_cpu_rq_start_time(void)
a803f026
CM
5350{
5351 int cpu = smp_processor_id();
5352 struct rq *rq = cpu_rq(cpu);
5353 rq->age_stamp = sched_clock_cpu(cpu);
5354}
5355
0db0628d 5356static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5357 unsigned long action, void *hcpu)
5358{
5359 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5360 case CPU_STARTING:
5361 set_cpu_rq_start_time();
5362 return NOTIFY_OK;
3a101d05
TH
5363 case CPU_DOWN_FAILED:
5364 set_cpu_active((long)hcpu, true);
5365 return NOTIFY_OK;
5366 default:
5367 return NOTIFY_DONE;
5368 }
5369}
5370
0db0628d 5371static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5372 unsigned long action, void *hcpu)
5373{
5374 switch (action & ~CPU_TASKS_FROZEN) {
5375 case CPU_DOWN_PREPARE:
3c18d447 5376 set_cpu_active((long)hcpu, false);
3a101d05 5377 return NOTIFY_OK;
3c18d447
JL
5378 default:
5379 return NOTIFY_DONE;
3a101d05
TH
5380 }
5381}
5382
7babe8db 5383static int __init migration_init(void)
1da177e4
LT
5384{
5385 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5386 int err;
48f24c4d 5387
3a101d05 5388 /* Initialize migration for the boot CPU */
07dccf33
AM
5389 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5390 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5391 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5392 register_cpu_notifier(&migration_notifier);
7babe8db 5393
3a101d05
TH
5394 /* Register cpu active notifiers */
5395 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5396 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5397
a004cd42 5398 return 0;
1da177e4 5399}
7babe8db 5400early_initcall(migration_init);
1da177e4
LT
5401#endif
5402
5403#ifdef CONFIG_SMP
476f3534 5404
4cb98839
PZ
5405static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5406
3e9830dc 5407#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5408
d039ac60 5409static __read_mostly int sched_debug_enabled;
f6630114 5410
d039ac60 5411static int __init sched_debug_setup(char *str)
f6630114 5412{
d039ac60 5413 sched_debug_enabled = 1;
f6630114
MT
5414
5415 return 0;
5416}
d039ac60
PZ
5417early_param("sched_debug", sched_debug_setup);
5418
5419static inline bool sched_debug(void)
5420{
5421 return sched_debug_enabled;
5422}
f6630114 5423
7c16ec58 5424static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5425 struct cpumask *groupmask)
1da177e4 5426{
4dcf6aff 5427 struct sched_group *group = sd->groups;
1da177e4 5428
96f874e2 5429 cpumask_clear(groupmask);
4dcf6aff
IM
5430
5431 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5432
5433 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5434 printk("does not load-balance\n");
4dcf6aff 5435 if (sd->parent)
3df0fc5b
PZ
5436 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5437 " has parent");
4dcf6aff 5438 return -1;
41c7ce9a
NP
5439 }
5440
333470ee
TH
5441 printk(KERN_CONT "span %*pbl level %s\n",
5442 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5443
758b2cdc 5444 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5445 printk(KERN_ERR "ERROR: domain->span does not contain "
5446 "CPU%d\n", cpu);
4dcf6aff 5447 }
758b2cdc 5448 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5449 printk(KERN_ERR "ERROR: domain->groups does not contain"
5450 " CPU%d\n", cpu);
4dcf6aff 5451 }
1da177e4 5452
4dcf6aff 5453 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5454 do {
4dcf6aff 5455 if (!group) {
3df0fc5b
PZ
5456 printk("\n");
5457 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5458 break;
5459 }
5460
758b2cdc 5461 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5462 printk(KERN_CONT "\n");
5463 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5464 break;
5465 }
1da177e4 5466
cb83b629
PZ
5467 if (!(sd->flags & SD_OVERLAP) &&
5468 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5469 printk(KERN_CONT "\n");
5470 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5471 break;
5472 }
1da177e4 5473
758b2cdc 5474 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5475
333470ee
TH
5476 printk(KERN_CONT " %*pbl",
5477 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5478 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5479 printk(KERN_CONT " (cpu_capacity = %d)",
5480 group->sgc->capacity);
381512cf 5481 }
1da177e4 5482
4dcf6aff
IM
5483 group = group->next;
5484 } while (group != sd->groups);
3df0fc5b 5485 printk(KERN_CONT "\n");
1da177e4 5486
758b2cdc 5487 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5488 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5489
758b2cdc
RR
5490 if (sd->parent &&
5491 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5492 printk(KERN_ERR "ERROR: parent span is not a superset "
5493 "of domain->span\n");
4dcf6aff
IM
5494 return 0;
5495}
1da177e4 5496
4dcf6aff
IM
5497static void sched_domain_debug(struct sched_domain *sd, int cpu)
5498{
5499 int level = 0;
1da177e4 5500
d039ac60 5501 if (!sched_debug_enabled)
f6630114
MT
5502 return;
5503
4dcf6aff
IM
5504 if (!sd) {
5505 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5506 return;
5507 }
1da177e4 5508
4dcf6aff
IM
5509 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5510
5511 for (;;) {
4cb98839 5512 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5513 break;
1da177e4
LT
5514 level++;
5515 sd = sd->parent;
33859f7f 5516 if (!sd)
4dcf6aff
IM
5517 break;
5518 }
1da177e4 5519}
6d6bc0ad 5520#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5521# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5522static inline bool sched_debug(void)
5523{
5524 return false;
5525}
6d6bc0ad 5526#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5527
1a20ff27 5528static int sd_degenerate(struct sched_domain *sd)
245af2c7 5529{
758b2cdc 5530 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5531 return 1;
5532
5533 /* Following flags need at least 2 groups */
5534 if (sd->flags & (SD_LOAD_BALANCE |
5535 SD_BALANCE_NEWIDLE |
5536 SD_BALANCE_FORK |
89c4710e 5537 SD_BALANCE_EXEC |
5d4dfddd 5538 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5539 SD_SHARE_PKG_RESOURCES |
5540 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5541 if (sd->groups != sd->groups->next)
5542 return 0;
5543 }
5544
5545 /* Following flags don't use groups */
c88d5910 5546 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5547 return 0;
5548
5549 return 1;
5550}
5551
48f24c4d
IM
5552static int
5553sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5554{
5555 unsigned long cflags = sd->flags, pflags = parent->flags;
5556
5557 if (sd_degenerate(parent))
5558 return 1;
5559
758b2cdc 5560 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5561 return 0;
5562
245af2c7
SS
5563 /* Flags needing groups don't count if only 1 group in parent */
5564 if (parent->groups == parent->groups->next) {
5565 pflags &= ~(SD_LOAD_BALANCE |
5566 SD_BALANCE_NEWIDLE |
5567 SD_BALANCE_FORK |
89c4710e 5568 SD_BALANCE_EXEC |
5d4dfddd 5569 SD_SHARE_CPUCAPACITY |
10866e62 5570 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5571 SD_PREFER_SIBLING |
5572 SD_SHARE_POWERDOMAIN);
5436499e
KC
5573 if (nr_node_ids == 1)
5574 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5575 }
5576 if (~cflags & pflags)
5577 return 0;
5578
5579 return 1;
5580}
5581
dce840a0 5582static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5583{
dce840a0 5584 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5585
68e74568 5586 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5587 cpudl_cleanup(&rd->cpudl);
1baca4ce 5588 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5589 free_cpumask_var(rd->rto_mask);
5590 free_cpumask_var(rd->online);
5591 free_cpumask_var(rd->span);
5592 kfree(rd);
5593}
5594
57d885fe
GH
5595static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5596{
a0490fa3 5597 struct root_domain *old_rd = NULL;
57d885fe 5598 unsigned long flags;
57d885fe 5599
05fa785c 5600 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5601
5602 if (rq->rd) {
a0490fa3 5603 old_rd = rq->rd;
57d885fe 5604
c6c4927b 5605 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5606 set_rq_offline(rq);
57d885fe 5607
c6c4927b 5608 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5609
a0490fa3 5610 /*
0515973f 5611 * If we dont want to free the old_rd yet then
a0490fa3
IM
5612 * set old_rd to NULL to skip the freeing later
5613 * in this function:
5614 */
5615 if (!atomic_dec_and_test(&old_rd->refcount))
5616 old_rd = NULL;
57d885fe
GH
5617 }
5618
5619 atomic_inc(&rd->refcount);
5620 rq->rd = rd;
5621
c6c4927b 5622 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5623 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5624 set_rq_online(rq);
57d885fe 5625
05fa785c 5626 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5627
5628 if (old_rd)
dce840a0 5629 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5630}
5631
68c38fc3 5632static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5633{
5634 memset(rd, 0, sizeof(*rd));
5635
68c38fc3 5636 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5637 goto out;
68c38fc3 5638 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5639 goto free_span;
1baca4ce 5640 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5641 goto free_online;
1baca4ce
JL
5642 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5643 goto free_dlo_mask;
6e0534f2 5644
332ac17e 5645 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5646 if (cpudl_init(&rd->cpudl) != 0)
5647 goto free_dlo_mask;
332ac17e 5648
68c38fc3 5649 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5650 goto free_rto_mask;
c6c4927b 5651 return 0;
6e0534f2 5652
68e74568
RR
5653free_rto_mask:
5654 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5655free_dlo_mask:
5656 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5657free_online:
5658 free_cpumask_var(rd->online);
5659free_span:
5660 free_cpumask_var(rd->span);
0c910d28 5661out:
c6c4927b 5662 return -ENOMEM;
57d885fe
GH
5663}
5664
029632fb
PZ
5665/*
5666 * By default the system creates a single root-domain with all cpus as
5667 * members (mimicking the global state we have today).
5668 */
5669struct root_domain def_root_domain;
5670
57d885fe
GH
5671static void init_defrootdomain(void)
5672{
68c38fc3 5673 init_rootdomain(&def_root_domain);
c6c4927b 5674
57d885fe
GH
5675 atomic_set(&def_root_domain.refcount, 1);
5676}
5677
dc938520 5678static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5679{
5680 struct root_domain *rd;
5681
5682 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5683 if (!rd)
5684 return NULL;
5685
68c38fc3 5686 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5687 kfree(rd);
5688 return NULL;
5689 }
57d885fe
GH
5690
5691 return rd;
5692}
5693
63b2ca30 5694static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5695{
5696 struct sched_group *tmp, *first;
5697
5698 if (!sg)
5699 return;
5700
5701 first = sg;
5702 do {
5703 tmp = sg->next;
5704
63b2ca30
NP
5705 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5706 kfree(sg->sgc);
e3589f6c
PZ
5707
5708 kfree(sg);
5709 sg = tmp;
5710 } while (sg != first);
5711}
5712
dce840a0
PZ
5713static void free_sched_domain(struct rcu_head *rcu)
5714{
5715 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5716
5717 /*
5718 * If its an overlapping domain it has private groups, iterate and
5719 * nuke them all.
5720 */
5721 if (sd->flags & SD_OVERLAP) {
5722 free_sched_groups(sd->groups, 1);
5723 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5724 kfree(sd->groups->sgc);
dce840a0 5725 kfree(sd->groups);
9c3f75cb 5726 }
dce840a0
PZ
5727 kfree(sd);
5728}
5729
5730static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5731{
5732 call_rcu(&sd->rcu, free_sched_domain);
5733}
5734
5735static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5736{
5737 for (; sd; sd = sd->parent)
5738 destroy_sched_domain(sd, cpu);
5739}
5740
518cd623
PZ
5741/*
5742 * Keep a special pointer to the highest sched_domain that has
5743 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5744 * allows us to avoid some pointer chasing select_idle_sibling().
5745 *
5746 * Also keep a unique ID per domain (we use the first cpu number in
5747 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5748 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5749 */
5750DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5751DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5752DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5753DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5754DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5755DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5756
5757static void update_top_cache_domain(int cpu)
5758{
5759 struct sched_domain *sd;
5d4cf996 5760 struct sched_domain *busy_sd = NULL;
518cd623 5761 int id = cpu;
7d9ffa89 5762 int size = 1;
518cd623
PZ
5763
5764 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5765 if (sd) {
518cd623 5766 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5767 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5768 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5769 }
5d4cf996 5770 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5771
5772 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5773 per_cpu(sd_llc_size, cpu) = size;
518cd623 5774 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5775
5776 sd = lowest_flag_domain(cpu, SD_NUMA);
5777 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5778
5779 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5780 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5781}
5782
1da177e4 5783/*
0eab9146 5784 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5785 * hold the hotplug lock.
5786 */
0eab9146
IM
5787static void
5788cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5789{
70b97a7f 5790 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5791 struct sched_domain *tmp;
5792
5793 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5794 for (tmp = sd; tmp; ) {
245af2c7
SS
5795 struct sched_domain *parent = tmp->parent;
5796 if (!parent)
5797 break;
f29c9b1c 5798
1a848870 5799 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5800 tmp->parent = parent->parent;
1a848870
SS
5801 if (parent->parent)
5802 parent->parent->child = tmp;
10866e62
PZ
5803 /*
5804 * Transfer SD_PREFER_SIBLING down in case of a
5805 * degenerate parent; the spans match for this
5806 * so the property transfers.
5807 */
5808 if (parent->flags & SD_PREFER_SIBLING)
5809 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5810 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5811 } else
5812 tmp = tmp->parent;
245af2c7
SS
5813 }
5814
1a848870 5815 if (sd && sd_degenerate(sd)) {
dce840a0 5816 tmp = sd;
245af2c7 5817 sd = sd->parent;
dce840a0 5818 destroy_sched_domain(tmp, cpu);
1a848870
SS
5819 if (sd)
5820 sd->child = NULL;
5821 }
1da177e4 5822
4cb98839 5823 sched_domain_debug(sd, cpu);
1da177e4 5824
57d885fe 5825 rq_attach_root(rq, rd);
dce840a0 5826 tmp = rq->sd;
674311d5 5827 rcu_assign_pointer(rq->sd, sd);
dce840a0 5828 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5829
5830 update_top_cache_domain(cpu);
1da177e4
LT
5831}
5832
1da177e4
LT
5833/* Setup the mask of cpus configured for isolated domains */
5834static int __init isolated_cpu_setup(char *str)
5835{
bdddd296 5836 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5837 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5838 return 1;
5839}
5840
8927f494 5841__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5842
49a02c51 5843struct s_data {
21d42ccf 5844 struct sched_domain ** __percpu sd;
49a02c51
AH
5845 struct root_domain *rd;
5846};
5847
2109b99e 5848enum s_alloc {
2109b99e 5849 sa_rootdomain,
21d42ccf 5850 sa_sd,
dce840a0 5851 sa_sd_storage,
2109b99e
AH
5852 sa_none,
5853};
5854
c1174876
PZ
5855/*
5856 * Build an iteration mask that can exclude certain CPUs from the upwards
5857 * domain traversal.
5858 *
5859 * Asymmetric node setups can result in situations where the domain tree is of
5860 * unequal depth, make sure to skip domains that already cover the entire
5861 * range.
5862 *
5863 * In that case build_sched_domains() will have terminated the iteration early
5864 * and our sibling sd spans will be empty. Domains should always include the
5865 * cpu they're built on, so check that.
5866 *
5867 */
5868static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5869{
5870 const struct cpumask *span = sched_domain_span(sd);
5871 struct sd_data *sdd = sd->private;
5872 struct sched_domain *sibling;
5873 int i;
5874
5875 for_each_cpu(i, span) {
5876 sibling = *per_cpu_ptr(sdd->sd, i);
5877 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5878 continue;
5879
5880 cpumask_set_cpu(i, sched_group_mask(sg));
5881 }
5882}
5883
5884/*
5885 * Return the canonical balance cpu for this group, this is the first cpu
5886 * of this group that's also in the iteration mask.
5887 */
5888int group_balance_cpu(struct sched_group *sg)
5889{
5890 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5891}
5892
e3589f6c
PZ
5893static int
5894build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5895{
5896 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5897 const struct cpumask *span = sched_domain_span(sd);
5898 struct cpumask *covered = sched_domains_tmpmask;
5899 struct sd_data *sdd = sd->private;
aaecac4a 5900 struct sched_domain *sibling;
e3589f6c
PZ
5901 int i;
5902
5903 cpumask_clear(covered);
5904
5905 for_each_cpu(i, span) {
5906 struct cpumask *sg_span;
5907
5908 if (cpumask_test_cpu(i, covered))
5909 continue;
5910
aaecac4a 5911 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5912
5913 /* See the comment near build_group_mask(). */
aaecac4a 5914 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5915 continue;
5916
e3589f6c 5917 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5918 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5919
5920 if (!sg)
5921 goto fail;
5922
5923 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5924 if (sibling->child)
5925 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5926 else
e3589f6c
PZ
5927 cpumask_set_cpu(i, sg_span);
5928
5929 cpumask_or(covered, covered, sg_span);
5930
63b2ca30
NP
5931 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5932 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5933 build_group_mask(sd, sg);
5934
c3decf0d 5935 /*
63b2ca30 5936 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5937 * domains and no possible iteration will get us here, we won't
5938 * die on a /0 trap.
5939 */
ca8ce3d0 5940 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5941
c1174876
PZ
5942 /*
5943 * Make sure the first group of this domain contains the
5944 * canonical balance cpu. Otherwise the sched_domain iteration
5945 * breaks. See update_sg_lb_stats().
5946 */
74a5ce20 5947 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5948 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5949 groups = sg;
5950
5951 if (!first)
5952 first = sg;
5953 if (last)
5954 last->next = sg;
5955 last = sg;
5956 last->next = first;
5957 }
5958 sd->groups = groups;
5959
5960 return 0;
5961
5962fail:
5963 free_sched_groups(first, 0);
5964
5965 return -ENOMEM;
5966}
5967
dce840a0 5968static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5969{
dce840a0
PZ
5970 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5971 struct sched_domain *child = sd->child;
1da177e4 5972
dce840a0
PZ
5973 if (child)
5974 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5975
9c3f75cb 5976 if (sg) {
dce840a0 5977 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5978 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5979 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5980 }
dce840a0
PZ
5981
5982 return cpu;
1e9f28fa 5983}
1e9f28fa 5984
01a08546 5985/*
dce840a0
PZ
5986 * build_sched_groups will build a circular linked list of the groups
5987 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5988 * and ->cpu_capacity to 0.
e3589f6c
PZ
5989 *
5990 * Assumes the sched_domain tree is fully constructed
01a08546 5991 */
e3589f6c
PZ
5992static int
5993build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5994{
dce840a0
PZ
5995 struct sched_group *first = NULL, *last = NULL;
5996 struct sd_data *sdd = sd->private;
5997 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5998 struct cpumask *covered;
dce840a0 5999 int i;
9c1cfda2 6000
e3589f6c
PZ
6001 get_group(cpu, sdd, &sd->groups);
6002 atomic_inc(&sd->groups->ref);
6003
0936629f 6004 if (cpu != cpumask_first(span))
e3589f6c
PZ
6005 return 0;
6006
f96225fd
PZ
6007 lockdep_assert_held(&sched_domains_mutex);
6008 covered = sched_domains_tmpmask;
6009
dce840a0 6010 cpumask_clear(covered);
6711cab4 6011
dce840a0
PZ
6012 for_each_cpu(i, span) {
6013 struct sched_group *sg;
cd08e923 6014 int group, j;
6711cab4 6015
dce840a0
PZ
6016 if (cpumask_test_cpu(i, covered))
6017 continue;
6711cab4 6018
cd08e923 6019 group = get_group(i, sdd, &sg);
c1174876 6020 cpumask_setall(sched_group_mask(sg));
0601a88d 6021
dce840a0
PZ
6022 for_each_cpu(j, span) {
6023 if (get_group(j, sdd, NULL) != group)
6024 continue;
0601a88d 6025
dce840a0
PZ
6026 cpumask_set_cpu(j, covered);
6027 cpumask_set_cpu(j, sched_group_cpus(sg));
6028 }
0601a88d 6029
dce840a0
PZ
6030 if (!first)
6031 first = sg;
6032 if (last)
6033 last->next = sg;
6034 last = sg;
6035 }
6036 last->next = first;
e3589f6c
PZ
6037
6038 return 0;
0601a88d 6039}
51888ca2 6040
89c4710e 6041/*
63b2ca30 6042 * Initialize sched groups cpu_capacity.
89c4710e 6043 *
63b2ca30 6044 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6045 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6046 * Typically cpu_capacity for all the groups in a sched domain will be same
6047 * unless there are asymmetries in the topology. If there are asymmetries,
6048 * group having more cpu_capacity will pickup more load compared to the
6049 * group having less cpu_capacity.
89c4710e 6050 */
63b2ca30 6051static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6052{
e3589f6c 6053 struct sched_group *sg = sd->groups;
89c4710e 6054
94c95ba6 6055 WARN_ON(!sg);
e3589f6c
PZ
6056
6057 do {
6058 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6059 sg = sg->next;
6060 } while (sg != sd->groups);
89c4710e 6061
c1174876 6062 if (cpu != group_balance_cpu(sg))
e3589f6c 6063 return;
aae6d3dd 6064
63b2ca30
NP
6065 update_group_capacity(sd, cpu);
6066 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6067}
6068
7c16ec58
MT
6069/*
6070 * Initializers for schedule domains
6071 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6072 */
6073
1d3504fc 6074static int default_relax_domain_level = -1;
60495e77 6075int sched_domain_level_max;
1d3504fc
HS
6076
6077static int __init setup_relax_domain_level(char *str)
6078{
a841f8ce
DS
6079 if (kstrtoint(str, 0, &default_relax_domain_level))
6080 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6081
1d3504fc
HS
6082 return 1;
6083}
6084__setup("relax_domain_level=", setup_relax_domain_level);
6085
6086static void set_domain_attribute(struct sched_domain *sd,
6087 struct sched_domain_attr *attr)
6088{
6089 int request;
6090
6091 if (!attr || attr->relax_domain_level < 0) {
6092 if (default_relax_domain_level < 0)
6093 return;
6094 else
6095 request = default_relax_domain_level;
6096 } else
6097 request = attr->relax_domain_level;
6098 if (request < sd->level) {
6099 /* turn off idle balance on this domain */
c88d5910 6100 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6101 } else {
6102 /* turn on idle balance on this domain */
c88d5910 6103 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6104 }
6105}
6106
54ab4ff4
PZ
6107static void __sdt_free(const struct cpumask *cpu_map);
6108static int __sdt_alloc(const struct cpumask *cpu_map);
6109
2109b99e
AH
6110static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6111 const struct cpumask *cpu_map)
6112{
6113 switch (what) {
2109b99e 6114 case sa_rootdomain:
822ff793
PZ
6115 if (!atomic_read(&d->rd->refcount))
6116 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6117 case sa_sd:
6118 free_percpu(d->sd); /* fall through */
dce840a0 6119 case sa_sd_storage:
54ab4ff4 6120 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6121 case sa_none:
6122 break;
6123 }
6124}
3404c8d9 6125
2109b99e
AH
6126static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6127 const struct cpumask *cpu_map)
6128{
dce840a0
PZ
6129 memset(d, 0, sizeof(*d));
6130
54ab4ff4
PZ
6131 if (__sdt_alloc(cpu_map))
6132 return sa_sd_storage;
dce840a0
PZ
6133 d->sd = alloc_percpu(struct sched_domain *);
6134 if (!d->sd)
6135 return sa_sd_storage;
2109b99e 6136 d->rd = alloc_rootdomain();
dce840a0 6137 if (!d->rd)
21d42ccf 6138 return sa_sd;
2109b99e
AH
6139 return sa_rootdomain;
6140}
57d885fe 6141
dce840a0
PZ
6142/*
6143 * NULL the sd_data elements we've used to build the sched_domain and
6144 * sched_group structure so that the subsequent __free_domain_allocs()
6145 * will not free the data we're using.
6146 */
6147static void claim_allocations(int cpu, struct sched_domain *sd)
6148{
6149 struct sd_data *sdd = sd->private;
dce840a0
PZ
6150
6151 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6152 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6153
e3589f6c 6154 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6155 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6156
63b2ca30
NP
6157 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6158 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6159}
6160
cb83b629 6161#ifdef CONFIG_NUMA
cb83b629 6162static int sched_domains_numa_levels;
e3fe70b1 6163enum numa_topology_type sched_numa_topology_type;
cb83b629 6164static int *sched_domains_numa_distance;
9942f79b 6165int sched_max_numa_distance;
cb83b629
PZ
6166static struct cpumask ***sched_domains_numa_masks;
6167static int sched_domains_curr_level;
143e1e28 6168#endif
cb83b629 6169
143e1e28
VG
6170/*
6171 * SD_flags allowed in topology descriptions.
6172 *
5d4dfddd 6173 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6174 * SD_SHARE_PKG_RESOURCES - describes shared caches
6175 * SD_NUMA - describes NUMA topologies
d77b3ed5 6176 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6177 *
6178 * Odd one out:
6179 * SD_ASYM_PACKING - describes SMT quirks
6180 */
6181#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6182 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6183 SD_SHARE_PKG_RESOURCES | \
6184 SD_NUMA | \
d77b3ed5
VG
6185 SD_ASYM_PACKING | \
6186 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6187
6188static struct sched_domain *
143e1e28 6189sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6190{
6191 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6192 int sd_weight, sd_flags = 0;
6193
6194#ifdef CONFIG_NUMA
6195 /*
6196 * Ugly hack to pass state to sd_numa_mask()...
6197 */
6198 sched_domains_curr_level = tl->numa_level;
6199#endif
6200
6201 sd_weight = cpumask_weight(tl->mask(cpu));
6202
6203 if (tl->sd_flags)
6204 sd_flags = (*tl->sd_flags)();
6205 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6206 "wrong sd_flags in topology description\n"))
6207 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6208
6209 *sd = (struct sched_domain){
6210 .min_interval = sd_weight,
6211 .max_interval = 2*sd_weight,
6212 .busy_factor = 32,
870a0bb5 6213 .imbalance_pct = 125,
143e1e28
VG
6214
6215 .cache_nice_tries = 0,
6216 .busy_idx = 0,
6217 .idle_idx = 0,
cb83b629
PZ
6218 .newidle_idx = 0,
6219 .wake_idx = 0,
6220 .forkexec_idx = 0,
6221
6222 .flags = 1*SD_LOAD_BALANCE
6223 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6224 | 1*SD_BALANCE_EXEC
6225 | 1*SD_BALANCE_FORK
cb83b629 6226 | 0*SD_BALANCE_WAKE
143e1e28 6227 | 1*SD_WAKE_AFFINE
5d4dfddd 6228 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6229 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6230 | 0*SD_SERIALIZE
cb83b629 6231 | 0*SD_PREFER_SIBLING
143e1e28
VG
6232 | 0*SD_NUMA
6233 | sd_flags
cb83b629 6234 ,
143e1e28 6235
cb83b629
PZ
6236 .last_balance = jiffies,
6237 .balance_interval = sd_weight,
143e1e28 6238 .smt_gain = 0,
2b4cfe64
JL
6239 .max_newidle_lb_cost = 0,
6240 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6241#ifdef CONFIG_SCHED_DEBUG
6242 .name = tl->name,
6243#endif
cb83b629 6244 };
cb83b629
PZ
6245
6246 /*
143e1e28 6247 * Convert topological properties into behaviour.
cb83b629 6248 */
143e1e28 6249
5d4dfddd 6250 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6251 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6252 sd->imbalance_pct = 110;
6253 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6254
6255 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6256 sd->imbalance_pct = 117;
6257 sd->cache_nice_tries = 1;
6258 sd->busy_idx = 2;
6259
6260#ifdef CONFIG_NUMA
6261 } else if (sd->flags & SD_NUMA) {
6262 sd->cache_nice_tries = 2;
6263 sd->busy_idx = 3;
6264 sd->idle_idx = 2;
6265
6266 sd->flags |= SD_SERIALIZE;
6267 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6268 sd->flags &= ~(SD_BALANCE_EXEC |
6269 SD_BALANCE_FORK |
6270 SD_WAKE_AFFINE);
6271 }
6272
6273#endif
6274 } else {
6275 sd->flags |= SD_PREFER_SIBLING;
6276 sd->cache_nice_tries = 1;
6277 sd->busy_idx = 2;
6278 sd->idle_idx = 1;
6279 }
6280
6281 sd->private = &tl->data;
cb83b629
PZ
6282
6283 return sd;
6284}
6285
143e1e28
VG
6286/*
6287 * Topology list, bottom-up.
6288 */
6289static struct sched_domain_topology_level default_topology[] = {
6290#ifdef CONFIG_SCHED_SMT
6291 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6292#endif
6293#ifdef CONFIG_SCHED_MC
6294 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6295#endif
6296 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6297 { NULL, },
6298};
6299
6300struct sched_domain_topology_level *sched_domain_topology = default_topology;
6301
6302#define for_each_sd_topology(tl) \
6303 for (tl = sched_domain_topology; tl->mask; tl++)
6304
6305void set_sched_topology(struct sched_domain_topology_level *tl)
6306{
6307 sched_domain_topology = tl;
6308}
6309
6310#ifdef CONFIG_NUMA
6311
cb83b629
PZ
6312static const struct cpumask *sd_numa_mask(int cpu)
6313{
6314 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6315}
6316
d039ac60
PZ
6317static void sched_numa_warn(const char *str)
6318{
6319 static int done = false;
6320 int i,j;
6321
6322 if (done)
6323 return;
6324
6325 done = true;
6326
6327 printk(KERN_WARNING "ERROR: %s\n\n", str);
6328
6329 for (i = 0; i < nr_node_ids; i++) {
6330 printk(KERN_WARNING " ");
6331 for (j = 0; j < nr_node_ids; j++)
6332 printk(KERN_CONT "%02d ", node_distance(i,j));
6333 printk(KERN_CONT "\n");
6334 }
6335 printk(KERN_WARNING "\n");
6336}
6337
9942f79b 6338bool find_numa_distance(int distance)
d039ac60
PZ
6339{
6340 int i;
6341
6342 if (distance == node_distance(0, 0))
6343 return true;
6344
6345 for (i = 0; i < sched_domains_numa_levels; i++) {
6346 if (sched_domains_numa_distance[i] == distance)
6347 return true;
6348 }
6349
6350 return false;
6351}
6352
e3fe70b1
RR
6353/*
6354 * A system can have three types of NUMA topology:
6355 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6356 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6357 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6358 *
6359 * The difference between a glueless mesh topology and a backplane
6360 * topology lies in whether communication between not directly
6361 * connected nodes goes through intermediary nodes (where programs
6362 * could run), or through backplane controllers. This affects
6363 * placement of programs.
6364 *
6365 * The type of topology can be discerned with the following tests:
6366 * - If the maximum distance between any nodes is 1 hop, the system
6367 * is directly connected.
6368 * - If for two nodes A and B, located N > 1 hops away from each other,
6369 * there is an intermediary node C, which is < N hops away from both
6370 * nodes A and B, the system is a glueless mesh.
6371 */
6372static void init_numa_topology_type(void)
6373{
6374 int a, b, c, n;
6375
6376 n = sched_max_numa_distance;
6377
6378 if (n <= 1)
6379 sched_numa_topology_type = NUMA_DIRECT;
6380
6381 for_each_online_node(a) {
6382 for_each_online_node(b) {
6383 /* Find two nodes furthest removed from each other. */
6384 if (node_distance(a, b) < n)
6385 continue;
6386
6387 /* Is there an intermediary node between a and b? */
6388 for_each_online_node(c) {
6389 if (node_distance(a, c) < n &&
6390 node_distance(b, c) < n) {
6391 sched_numa_topology_type =
6392 NUMA_GLUELESS_MESH;
6393 return;
6394 }
6395 }
6396
6397 sched_numa_topology_type = NUMA_BACKPLANE;
6398 return;
6399 }
6400 }
6401}
6402
cb83b629
PZ
6403static void sched_init_numa(void)
6404{
6405 int next_distance, curr_distance = node_distance(0, 0);
6406 struct sched_domain_topology_level *tl;
6407 int level = 0;
6408 int i, j, k;
6409
cb83b629
PZ
6410 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6411 if (!sched_domains_numa_distance)
6412 return;
6413
6414 /*
6415 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6416 * unique distances in the node_distance() table.
6417 *
6418 * Assumes node_distance(0,j) includes all distances in
6419 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6420 */
6421 next_distance = curr_distance;
6422 for (i = 0; i < nr_node_ids; i++) {
6423 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6424 for (k = 0; k < nr_node_ids; k++) {
6425 int distance = node_distance(i, k);
6426
6427 if (distance > curr_distance &&
6428 (distance < next_distance ||
6429 next_distance == curr_distance))
6430 next_distance = distance;
6431
6432 /*
6433 * While not a strong assumption it would be nice to know
6434 * about cases where if node A is connected to B, B is not
6435 * equally connected to A.
6436 */
6437 if (sched_debug() && node_distance(k, i) != distance)
6438 sched_numa_warn("Node-distance not symmetric");
6439
6440 if (sched_debug() && i && !find_numa_distance(distance))
6441 sched_numa_warn("Node-0 not representative");
6442 }
6443 if (next_distance != curr_distance) {
6444 sched_domains_numa_distance[level++] = next_distance;
6445 sched_domains_numa_levels = level;
6446 curr_distance = next_distance;
6447 } else break;
cb83b629 6448 }
d039ac60
PZ
6449
6450 /*
6451 * In case of sched_debug() we verify the above assumption.
6452 */
6453 if (!sched_debug())
6454 break;
cb83b629 6455 }
c123588b
AR
6456
6457 if (!level)
6458 return;
6459
cb83b629
PZ
6460 /*
6461 * 'level' contains the number of unique distances, excluding the
6462 * identity distance node_distance(i,i).
6463 *
28b4a521 6464 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6465 * numbers.
6466 */
6467
5f7865f3
TC
6468 /*
6469 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6470 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6471 * the array will contain less then 'level' members. This could be
6472 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6473 * in other functions.
6474 *
6475 * We reset it to 'level' at the end of this function.
6476 */
6477 sched_domains_numa_levels = 0;
6478
cb83b629
PZ
6479 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6480 if (!sched_domains_numa_masks)
6481 return;
6482
6483 /*
6484 * Now for each level, construct a mask per node which contains all
6485 * cpus of nodes that are that many hops away from us.
6486 */
6487 for (i = 0; i < level; i++) {
6488 sched_domains_numa_masks[i] =
6489 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6490 if (!sched_domains_numa_masks[i])
6491 return;
6492
6493 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6494 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6495 if (!mask)
6496 return;
6497
6498 sched_domains_numa_masks[i][j] = mask;
6499
6500 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6501 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6502 continue;
6503
6504 cpumask_or(mask, mask, cpumask_of_node(k));
6505 }
6506 }
6507 }
6508
143e1e28
VG
6509 /* Compute default topology size */
6510 for (i = 0; sched_domain_topology[i].mask; i++);
6511
c515db8c 6512 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6513 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6514 if (!tl)
6515 return;
6516
6517 /*
6518 * Copy the default topology bits..
6519 */
143e1e28
VG
6520 for (i = 0; sched_domain_topology[i].mask; i++)
6521 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6522
6523 /*
6524 * .. and append 'j' levels of NUMA goodness.
6525 */
6526 for (j = 0; j < level; i++, j++) {
6527 tl[i] = (struct sched_domain_topology_level){
cb83b629 6528 .mask = sd_numa_mask,
143e1e28 6529 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6530 .flags = SDTL_OVERLAP,
6531 .numa_level = j,
143e1e28 6532 SD_INIT_NAME(NUMA)
cb83b629
PZ
6533 };
6534 }
6535
6536 sched_domain_topology = tl;
5f7865f3
TC
6537
6538 sched_domains_numa_levels = level;
9942f79b 6539 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6540
6541 init_numa_topology_type();
cb83b629 6542}
301a5cba
TC
6543
6544static void sched_domains_numa_masks_set(int cpu)
6545{
6546 int i, j;
6547 int node = cpu_to_node(cpu);
6548
6549 for (i = 0; i < sched_domains_numa_levels; i++) {
6550 for (j = 0; j < nr_node_ids; j++) {
6551 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6552 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6553 }
6554 }
6555}
6556
6557static void sched_domains_numa_masks_clear(int cpu)
6558{
6559 int i, j;
6560 for (i = 0; i < sched_domains_numa_levels; i++) {
6561 for (j = 0; j < nr_node_ids; j++)
6562 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6563 }
6564}
6565
6566/*
6567 * Update sched_domains_numa_masks[level][node] array when new cpus
6568 * are onlined.
6569 */
6570static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6571 unsigned long action,
6572 void *hcpu)
6573{
6574 int cpu = (long)hcpu;
6575
6576 switch (action & ~CPU_TASKS_FROZEN) {
6577 case CPU_ONLINE:
6578 sched_domains_numa_masks_set(cpu);
6579 break;
6580
6581 case CPU_DEAD:
6582 sched_domains_numa_masks_clear(cpu);
6583 break;
6584
6585 default:
6586 return NOTIFY_DONE;
6587 }
6588
6589 return NOTIFY_OK;
cb83b629
PZ
6590}
6591#else
6592static inline void sched_init_numa(void)
6593{
6594}
301a5cba
TC
6595
6596static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6597 unsigned long action,
6598 void *hcpu)
6599{
6600 return 0;
6601}
cb83b629
PZ
6602#endif /* CONFIG_NUMA */
6603
54ab4ff4
PZ
6604static int __sdt_alloc(const struct cpumask *cpu_map)
6605{
6606 struct sched_domain_topology_level *tl;
6607 int j;
6608
27723a68 6609 for_each_sd_topology(tl) {
54ab4ff4
PZ
6610 struct sd_data *sdd = &tl->data;
6611
6612 sdd->sd = alloc_percpu(struct sched_domain *);
6613 if (!sdd->sd)
6614 return -ENOMEM;
6615
6616 sdd->sg = alloc_percpu(struct sched_group *);
6617 if (!sdd->sg)
6618 return -ENOMEM;
6619
63b2ca30
NP
6620 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6621 if (!sdd->sgc)
9c3f75cb
PZ
6622 return -ENOMEM;
6623
54ab4ff4
PZ
6624 for_each_cpu(j, cpu_map) {
6625 struct sched_domain *sd;
6626 struct sched_group *sg;
63b2ca30 6627 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6628
6629 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6630 GFP_KERNEL, cpu_to_node(j));
6631 if (!sd)
6632 return -ENOMEM;
6633
6634 *per_cpu_ptr(sdd->sd, j) = sd;
6635
6636 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6637 GFP_KERNEL, cpu_to_node(j));
6638 if (!sg)
6639 return -ENOMEM;
6640
30b4e9eb
IM
6641 sg->next = sg;
6642
54ab4ff4 6643 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6644
63b2ca30 6645 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6646 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6647 if (!sgc)
9c3f75cb
PZ
6648 return -ENOMEM;
6649
63b2ca30 6650 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6651 }
6652 }
6653
6654 return 0;
6655}
6656
6657static void __sdt_free(const struct cpumask *cpu_map)
6658{
6659 struct sched_domain_topology_level *tl;
6660 int j;
6661
27723a68 6662 for_each_sd_topology(tl) {
54ab4ff4
PZ
6663 struct sd_data *sdd = &tl->data;
6664
6665 for_each_cpu(j, cpu_map) {
fb2cf2c6 6666 struct sched_domain *sd;
6667
6668 if (sdd->sd) {
6669 sd = *per_cpu_ptr(sdd->sd, j);
6670 if (sd && (sd->flags & SD_OVERLAP))
6671 free_sched_groups(sd->groups, 0);
6672 kfree(*per_cpu_ptr(sdd->sd, j));
6673 }
6674
6675 if (sdd->sg)
6676 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6677 if (sdd->sgc)
6678 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6679 }
6680 free_percpu(sdd->sd);
fb2cf2c6 6681 sdd->sd = NULL;
54ab4ff4 6682 free_percpu(sdd->sg);
fb2cf2c6 6683 sdd->sg = NULL;
63b2ca30
NP
6684 free_percpu(sdd->sgc);
6685 sdd->sgc = NULL;
54ab4ff4
PZ
6686 }
6687}
6688
2c402dc3 6689struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6690 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6691 struct sched_domain *child, int cpu)
2c402dc3 6692{
143e1e28 6693 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6694 if (!sd)
d069b916 6695 return child;
2c402dc3 6696
2c402dc3 6697 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6698 if (child) {
6699 sd->level = child->level + 1;
6700 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6701 child->parent = sd;
c75e0128 6702 sd->child = child;
6ae72dff
PZ
6703
6704 if (!cpumask_subset(sched_domain_span(child),
6705 sched_domain_span(sd))) {
6706 pr_err("BUG: arch topology borken\n");
6707#ifdef CONFIG_SCHED_DEBUG
6708 pr_err(" the %s domain not a subset of the %s domain\n",
6709 child->name, sd->name);
6710#endif
6711 /* Fixup, ensure @sd has at least @child cpus. */
6712 cpumask_or(sched_domain_span(sd),
6713 sched_domain_span(sd),
6714 sched_domain_span(child));
6715 }
6716
60495e77 6717 }
a841f8ce 6718 set_domain_attribute(sd, attr);
2c402dc3
PZ
6719
6720 return sd;
6721}
6722
2109b99e
AH
6723/*
6724 * Build sched domains for a given set of cpus and attach the sched domains
6725 * to the individual cpus
6726 */
dce840a0
PZ
6727static int build_sched_domains(const struct cpumask *cpu_map,
6728 struct sched_domain_attr *attr)
2109b99e 6729{
1c632169 6730 enum s_alloc alloc_state;
dce840a0 6731 struct sched_domain *sd;
2109b99e 6732 struct s_data d;
822ff793 6733 int i, ret = -ENOMEM;
9c1cfda2 6734
2109b99e
AH
6735 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6736 if (alloc_state != sa_rootdomain)
6737 goto error;
9c1cfda2 6738
dce840a0 6739 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6740 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6741 struct sched_domain_topology_level *tl;
6742
3bd65a80 6743 sd = NULL;
27723a68 6744 for_each_sd_topology(tl) {
4a850cbe 6745 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6746 if (tl == sched_domain_topology)
6747 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6748 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6749 sd->flags |= SD_OVERLAP;
d110235d
PZ
6750 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6751 break;
e3589f6c 6752 }
dce840a0
PZ
6753 }
6754
6755 /* Build the groups for the domains */
6756 for_each_cpu(i, cpu_map) {
6757 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6758 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6759 if (sd->flags & SD_OVERLAP) {
6760 if (build_overlap_sched_groups(sd, i))
6761 goto error;
6762 } else {
6763 if (build_sched_groups(sd, i))
6764 goto error;
6765 }
1cf51902 6766 }
a06dadbe 6767 }
9c1cfda2 6768
ced549fa 6769 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6770 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6771 if (!cpumask_test_cpu(i, cpu_map))
6772 continue;
9c1cfda2 6773
dce840a0
PZ
6774 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6775 claim_allocations(i, sd);
63b2ca30 6776 init_sched_groups_capacity(i, sd);
dce840a0 6777 }
f712c0c7 6778 }
9c1cfda2 6779
1da177e4 6780 /* Attach the domains */
dce840a0 6781 rcu_read_lock();
abcd083a 6782 for_each_cpu(i, cpu_map) {
21d42ccf 6783 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6784 cpu_attach_domain(sd, d.rd, i);
1da177e4 6785 }
dce840a0 6786 rcu_read_unlock();
51888ca2 6787
822ff793 6788 ret = 0;
51888ca2 6789error:
2109b99e 6790 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6791 return ret;
1da177e4 6792}
029190c5 6793
acc3f5d7 6794static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6795static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6796static struct sched_domain_attr *dattr_cur;
6797 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6798
6799/*
6800 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6801 * cpumask) fails, then fallback to a single sched domain,
6802 * as determined by the single cpumask fallback_doms.
029190c5 6803 */
4212823f 6804static cpumask_var_t fallback_doms;
029190c5 6805
ee79d1bd
HC
6806/*
6807 * arch_update_cpu_topology lets virtualized architectures update the
6808 * cpu core maps. It is supposed to return 1 if the topology changed
6809 * or 0 if it stayed the same.
6810 */
52f5684c 6811int __weak arch_update_cpu_topology(void)
22e52b07 6812{
ee79d1bd 6813 return 0;
22e52b07
HC
6814}
6815
acc3f5d7
RR
6816cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6817{
6818 int i;
6819 cpumask_var_t *doms;
6820
6821 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6822 if (!doms)
6823 return NULL;
6824 for (i = 0; i < ndoms; i++) {
6825 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6826 free_sched_domains(doms, i);
6827 return NULL;
6828 }
6829 }
6830 return doms;
6831}
6832
6833void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6834{
6835 unsigned int i;
6836 for (i = 0; i < ndoms; i++)
6837 free_cpumask_var(doms[i]);
6838 kfree(doms);
6839}
6840
1a20ff27 6841/*
41a2d6cf 6842 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6843 * For now this just excludes isolated cpus, but could be used to
6844 * exclude other special cases in the future.
1a20ff27 6845 */
c4a8849a 6846static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6847{
7378547f
MM
6848 int err;
6849
22e52b07 6850 arch_update_cpu_topology();
029190c5 6851 ndoms_cur = 1;
acc3f5d7 6852 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6853 if (!doms_cur)
acc3f5d7
RR
6854 doms_cur = &fallback_doms;
6855 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6856 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6857 register_sched_domain_sysctl();
7378547f
MM
6858
6859 return err;
1a20ff27
DG
6860}
6861
1a20ff27
DG
6862/*
6863 * Detach sched domains from a group of cpus specified in cpu_map
6864 * These cpus will now be attached to the NULL domain
6865 */
96f874e2 6866static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6867{
6868 int i;
6869
dce840a0 6870 rcu_read_lock();
abcd083a 6871 for_each_cpu(i, cpu_map)
57d885fe 6872 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6873 rcu_read_unlock();
1a20ff27
DG
6874}
6875
1d3504fc
HS
6876/* handle null as "default" */
6877static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6878 struct sched_domain_attr *new, int idx_new)
6879{
6880 struct sched_domain_attr tmp;
6881
6882 /* fast path */
6883 if (!new && !cur)
6884 return 1;
6885
6886 tmp = SD_ATTR_INIT;
6887 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6888 new ? (new + idx_new) : &tmp,
6889 sizeof(struct sched_domain_attr));
6890}
6891
029190c5
PJ
6892/*
6893 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6894 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6895 * doms_new[] to the current sched domain partitioning, doms_cur[].
6896 * It destroys each deleted domain and builds each new domain.
6897 *
acc3f5d7 6898 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6899 * The masks don't intersect (don't overlap.) We should setup one
6900 * sched domain for each mask. CPUs not in any of the cpumasks will
6901 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6902 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6903 * it as it is.
6904 *
acc3f5d7
RR
6905 * The passed in 'doms_new' should be allocated using
6906 * alloc_sched_domains. This routine takes ownership of it and will
6907 * free_sched_domains it when done with it. If the caller failed the
6908 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6909 * and partition_sched_domains() will fallback to the single partition
6910 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6911 *
96f874e2 6912 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6913 * ndoms_new == 0 is a special case for destroying existing domains,
6914 * and it will not create the default domain.
dfb512ec 6915 *
029190c5
PJ
6916 * Call with hotplug lock held
6917 */
acc3f5d7 6918void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6919 struct sched_domain_attr *dattr_new)
029190c5 6920{
dfb512ec 6921 int i, j, n;
d65bd5ec 6922 int new_topology;
029190c5 6923
712555ee 6924 mutex_lock(&sched_domains_mutex);
a1835615 6925
7378547f
MM
6926 /* always unregister in case we don't destroy any domains */
6927 unregister_sched_domain_sysctl();
6928
d65bd5ec
HC
6929 /* Let architecture update cpu core mappings. */
6930 new_topology = arch_update_cpu_topology();
6931
dfb512ec 6932 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6933
6934 /* Destroy deleted domains */
6935 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6936 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6937 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6938 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6939 goto match1;
6940 }
6941 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6942 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6943match1:
6944 ;
6945 }
6946
c8d2d47a 6947 n = ndoms_cur;
e761b772 6948 if (doms_new == NULL) {
c8d2d47a 6949 n = 0;
acc3f5d7 6950 doms_new = &fallback_doms;
6ad4c188 6951 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6952 WARN_ON_ONCE(dattr_new);
e761b772
MK
6953 }
6954
029190c5
PJ
6955 /* Build new domains */
6956 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6957 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6958 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6959 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6960 goto match2;
6961 }
6962 /* no match - add a new doms_new */
dce840a0 6963 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6964match2:
6965 ;
6966 }
6967
6968 /* Remember the new sched domains */
acc3f5d7
RR
6969 if (doms_cur != &fallback_doms)
6970 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6971 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6972 doms_cur = doms_new;
1d3504fc 6973 dattr_cur = dattr_new;
029190c5 6974 ndoms_cur = ndoms_new;
7378547f
MM
6975
6976 register_sched_domain_sysctl();
a1835615 6977
712555ee 6978 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6979}
6980
d35be8ba
SB
6981static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6982
1da177e4 6983/*
3a101d05
TH
6984 * Update cpusets according to cpu_active mask. If cpusets are
6985 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6986 * around partition_sched_domains().
d35be8ba
SB
6987 *
6988 * If we come here as part of a suspend/resume, don't touch cpusets because we
6989 * want to restore it back to its original state upon resume anyway.
1da177e4 6990 */
0b2e918a
TH
6991static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6992 void *hcpu)
e761b772 6993{
d35be8ba
SB
6994 switch (action) {
6995 case CPU_ONLINE_FROZEN:
6996 case CPU_DOWN_FAILED_FROZEN:
6997
6998 /*
6999 * num_cpus_frozen tracks how many CPUs are involved in suspend
7000 * resume sequence. As long as this is not the last online
7001 * operation in the resume sequence, just build a single sched
7002 * domain, ignoring cpusets.
7003 */
7004 num_cpus_frozen--;
7005 if (likely(num_cpus_frozen)) {
7006 partition_sched_domains(1, NULL, NULL);
7007 break;
7008 }
7009
7010 /*
7011 * This is the last CPU online operation. So fall through and
7012 * restore the original sched domains by considering the
7013 * cpuset configurations.
7014 */
7015
e761b772 7016 case CPU_ONLINE:
7ddf96b0 7017 cpuset_update_active_cpus(true);
d35be8ba 7018 break;
3a101d05
TH
7019 default:
7020 return NOTIFY_DONE;
7021 }
d35be8ba 7022 return NOTIFY_OK;
3a101d05 7023}
e761b772 7024
0b2e918a
TH
7025static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7026 void *hcpu)
3a101d05 7027{
3c18d447
JL
7028 unsigned long flags;
7029 long cpu = (long)hcpu;
7030 struct dl_bw *dl_b;
533445c6
OS
7031 bool overflow;
7032 int cpus;
3c18d447 7033
533445c6 7034 switch (action) {
3a101d05 7035 case CPU_DOWN_PREPARE:
533445c6
OS
7036 rcu_read_lock_sched();
7037 dl_b = dl_bw_of(cpu);
3c18d447 7038
533445c6
OS
7039 raw_spin_lock_irqsave(&dl_b->lock, flags);
7040 cpus = dl_bw_cpus(cpu);
7041 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7042 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7043
533445c6 7044 rcu_read_unlock_sched();
3c18d447 7045
533445c6
OS
7046 if (overflow)
7047 return notifier_from_errno(-EBUSY);
7ddf96b0 7048 cpuset_update_active_cpus(false);
d35be8ba
SB
7049 break;
7050 case CPU_DOWN_PREPARE_FROZEN:
7051 num_cpus_frozen++;
7052 partition_sched_domains(1, NULL, NULL);
7053 break;
e761b772
MK
7054 default:
7055 return NOTIFY_DONE;
7056 }
d35be8ba 7057 return NOTIFY_OK;
e761b772 7058}
e761b772 7059
1da177e4
LT
7060void __init sched_init_smp(void)
7061{
dcc30a35
RR
7062 cpumask_var_t non_isolated_cpus;
7063
7064 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7065 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7066
cb83b629
PZ
7067 sched_init_numa();
7068
6acce3ef
PZ
7069 /*
7070 * There's no userspace yet to cause hotplug operations; hence all the
7071 * cpu masks are stable and all blatant races in the below code cannot
7072 * happen.
7073 */
712555ee 7074 mutex_lock(&sched_domains_mutex);
c4a8849a 7075 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7076 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7077 if (cpumask_empty(non_isolated_cpus))
7078 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7079 mutex_unlock(&sched_domains_mutex);
e761b772 7080
301a5cba 7081 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7082 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7083 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7084
b328ca18 7085 init_hrtick();
5c1e1767
NP
7086
7087 /* Move init over to a non-isolated CPU */
dcc30a35 7088 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7089 BUG();
19978ca6 7090 sched_init_granularity();
dcc30a35 7091 free_cpumask_var(non_isolated_cpus);
4212823f 7092
0e3900e6 7093 init_sched_rt_class();
1baca4ce 7094 init_sched_dl_class();
1da177e4
LT
7095}
7096#else
7097void __init sched_init_smp(void)
7098{
19978ca6 7099 sched_init_granularity();
1da177e4
LT
7100}
7101#endif /* CONFIG_SMP */
7102
cd1bb94b
AB
7103const_debug unsigned int sysctl_timer_migration = 1;
7104
1da177e4
LT
7105int in_sched_functions(unsigned long addr)
7106{
1da177e4
LT
7107 return in_lock_functions(addr) ||
7108 (addr >= (unsigned long)__sched_text_start
7109 && addr < (unsigned long)__sched_text_end);
7110}
7111
029632fb 7112#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7113/*
7114 * Default task group.
7115 * Every task in system belongs to this group at bootup.
7116 */
029632fb 7117struct task_group root_task_group;
35cf4e50 7118LIST_HEAD(task_groups);
052f1dc7 7119#endif
6f505b16 7120
e6252c3e 7121DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7122
1da177e4
LT
7123void __init sched_init(void)
7124{
dd41f596 7125 int i, j;
434d53b0
MT
7126 unsigned long alloc_size = 0, ptr;
7127
7128#ifdef CONFIG_FAIR_GROUP_SCHED
7129 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7130#endif
7131#ifdef CONFIG_RT_GROUP_SCHED
7132 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7133#endif
434d53b0 7134 if (alloc_size) {
36b7b6d4 7135 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7136
7137#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7138 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7139 ptr += nr_cpu_ids * sizeof(void **);
7140
07e06b01 7141 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7142 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7143
6d6bc0ad 7144#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7145#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7146 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7147 ptr += nr_cpu_ids * sizeof(void **);
7148
07e06b01 7149 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7150 ptr += nr_cpu_ids * sizeof(void **);
7151
6d6bc0ad 7152#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7153 }
df7c8e84 7154#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7155 for_each_possible_cpu(i) {
7156 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7157 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7158 }
b74e6278 7159#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7160
332ac17e
DF
7161 init_rt_bandwidth(&def_rt_bandwidth,
7162 global_rt_period(), global_rt_runtime());
7163 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7164 global_rt_period(), global_rt_runtime());
332ac17e 7165
57d885fe
GH
7166#ifdef CONFIG_SMP
7167 init_defrootdomain();
7168#endif
7169
d0b27fa7 7170#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7171 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7172 global_rt_period(), global_rt_runtime());
6d6bc0ad 7173#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7174
7c941438 7175#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7176 list_add(&root_task_group.list, &task_groups);
7177 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7178 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7179 autogroup_init(&init_task);
54c707e9 7180
7c941438 7181#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7182
0a945022 7183 for_each_possible_cpu(i) {
70b97a7f 7184 struct rq *rq;
1da177e4
LT
7185
7186 rq = cpu_rq(i);
05fa785c 7187 raw_spin_lock_init(&rq->lock);
7897986b 7188 rq->nr_running = 0;
dce48a84
TG
7189 rq->calc_load_active = 0;
7190 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7191 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7192 init_rt_rq(&rq->rt);
7193 init_dl_rq(&rq->dl);
dd41f596 7194#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7195 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7196 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7197 /*
07e06b01 7198 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7199 *
7200 * In case of task-groups formed thr' the cgroup filesystem, it
7201 * gets 100% of the cpu resources in the system. This overall
7202 * system cpu resource is divided among the tasks of
07e06b01 7203 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7204 * based on each entity's (task or task-group's) weight
7205 * (se->load.weight).
7206 *
07e06b01 7207 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7208 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7209 * then A0's share of the cpu resource is:
7210 *
0d905bca 7211 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7212 *
07e06b01
YZ
7213 * We achieve this by letting root_task_group's tasks sit
7214 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7215 */
ab84d31e 7216 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7217 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7218#endif /* CONFIG_FAIR_GROUP_SCHED */
7219
7220 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7221#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7222 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7223#endif
1da177e4 7224
dd41f596
IM
7225 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7226 rq->cpu_load[j] = 0;
fdf3e95d
VP
7227
7228 rq->last_load_update_tick = jiffies;
7229
1da177e4 7230#ifdef CONFIG_SMP
41c7ce9a 7231 rq->sd = NULL;
57d885fe 7232 rq->rd = NULL;
ca6d75e6 7233 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7234 rq->balance_callback = NULL;
1da177e4 7235 rq->active_balance = 0;
dd41f596 7236 rq->next_balance = jiffies;
1da177e4 7237 rq->push_cpu = 0;
0a2966b4 7238 rq->cpu = i;
1f11eb6a 7239 rq->online = 0;
eae0c9df
MG
7240 rq->idle_stamp = 0;
7241 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7242 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7243
7244 INIT_LIST_HEAD(&rq->cfs_tasks);
7245
dc938520 7246 rq_attach_root(rq, &def_root_domain);
3451d024 7247#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7248 rq->nohz_flags = 0;
83cd4fe2 7249#endif
265f22a9
FW
7250#ifdef CONFIG_NO_HZ_FULL
7251 rq->last_sched_tick = 0;
7252#endif
1da177e4 7253#endif
8f4d37ec 7254 init_rq_hrtick(rq);
1da177e4 7255 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7256 }
7257
2dd73a4f 7258 set_load_weight(&init_task);
b50f60ce 7259
e107be36
AK
7260#ifdef CONFIG_PREEMPT_NOTIFIERS
7261 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7262#endif
7263
1da177e4
LT
7264 /*
7265 * The boot idle thread does lazy MMU switching as well:
7266 */
7267 atomic_inc(&init_mm.mm_count);
7268 enter_lazy_tlb(&init_mm, current);
7269
1b537c7d
YD
7270 /*
7271 * During early bootup we pretend to be a normal task:
7272 */
7273 current->sched_class = &fair_sched_class;
7274
1da177e4
LT
7275 /*
7276 * Make us the idle thread. Technically, schedule() should not be
7277 * called from this thread, however somewhere below it might be,
7278 * but because we are the idle thread, we just pick up running again
7279 * when this runqueue becomes "idle".
7280 */
7281 init_idle(current, smp_processor_id());
dce48a84
TG
7282
7283 calc_load_update = jiffies + LOAD_FREQ;
7284
bf4d83f6 7285#ifdef CONFIG_SMP
4cb98839 7286 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7287 /* May be allocated at isolcpus cmdline parse time */
7288 if (cpu_isolated_map == NULL)
7289 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7290 idle_thread_set_boot_cpu();
a803f026 7291 set_cpu_rq_start_time();
029632fb
PZ
7292#endif
7293 init_sched_fair_class();
6a7b3dc3 7294
6892b75e 7295 scheduler_running = 1;
1da177e4
LT
7296}
7297
d902db1e 7298#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7299static inline int preempt_count_equals(int preempt_offset)
7300{
234da7bc 7301 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7302
4ba8216c 7303 return (nested == preempt_offset);
e4aafea2
FW
7304}
7305
d894837f 7306void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7307{
8eb23b9f
PZ
7308 /*
7309 * Blocking primitives will set (and therefore destroy) current->state,
7310 * since we will exit with TASK_RUNNING make sure we enter with it,
7311 * otherwise we will destroy state.
7312 */
00845eb9 7313 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7314 "do not call blocking ops when !TASK_RUNNING; "
7315 "state=%lx set at [<%p>] %pS\n",
7316 current->state,
7317 (void *)current->task_state_change,
00845eb9 7318 (void *)current->task_state_change);
8eb23b9f 7319
3427445a
PZ
7320 ___might_sleep(file, line, preempt_offset);
7321}
7322EXPORT_SYMBOL(__might_sleep);
7323
7324void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7325{
1da177e4
LT
7326 static unsigned long prev_jiffy; /* ratelimiting */
7327
b3fbab05 7328 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7329 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7330 !is_idle_task(current)) ||
e4aafea2 7331 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7332 return;
7333 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7334 return;
7335 prev_jiffy = jiffies;
7336
3df0fc5b
PZ
7337 printk(KERN_ERR
7338 "BUG: sleeping function called from invalid context at %s:%d\n",
7339 file, line);
7340 printk(KERN_ERR
7341 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7342 in_atomic(), irqs_disabled(),
7343 current->pid, current->comm);
aef745fc 7344
a8b686b3
ES
7345 if (task_stack_end_corrupted(current))
7346 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7347
aef745fc
IM
7348 debug_show_held_locks(current);
7349 if (irqs_disabled())
7350 print_irqtrace_events(current);
8f47b187
TG
7351#ifdef CONFIG_DEBUG_PREEMPT
7352 if (!preempt_count_equals(preempt_offset)) {
7353 pr_err("Preemption disabled at:");
7354 print_ip_sym(current->preempt_disable_ip);
7355 pr_cont("\n");
7356 }
7357#endif
aef745fc 7358 dump_stack();
1da177e4 7359}
3427445a 7360EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7361#endif
7362
7363#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7364static void normalize_task(struct rq *rq, struct task_struct *p)
7365{
da7a735e 7366 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7367 struct sched_attr attr = {
7368 .sched_policy = SCHED_NORMAL,
7369 };
da7a735e 7370 int old_prio = p->prio;
da0c1e65 7371 int queued;
3e51f33f 7372
da0c1e65
KT
7373 queued = task_on_rq_queued(p);
7374 if (queued)
4ca9b72b 7375 dequeue_task(rq, p, 0);
0782e63b 7376 __setscheduler(rq, p, &attr, false);
da0c1e65 7377 if (queued) {
4ca9b72b 7378 enqueue_task(rq, p, 0);
8875125e 7379 resched_curr(rq);
3a5e4dc1 7380 }
da7a735e
PZ
7381
7382 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7383}
7384
1da177e4
LT
7385void normalize_rt_tasks(void)
7386{
a0f98a1c 7387 struct task_struct *g, *p;
1da177e4 7388 unsigned long flags;
70b97a7f 7389 struct rq *rq;
1da177e4 7390
3472eaa1 7391 read_lock(&tasklist_lock);
5d07f420 7392 for_each_process_thread(g, p) {
178be793
IM
7393 /*
7394 * Only normalize user tasks:
7395 */
3472eaa1 7396 if (p->flags & PF_KTHREAD)
178be793
IM
7397 continue;
7398
6cfb0d5d 7399 p->se.exec_start = 0;
6cfb0d5d 7400#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7401 p->se.statistics.wait_start = 0;
7402 p->se.statistics.sleep_start = 0;
7403 p->se.statistics.block_start = 0;
6cfb0d5d 7404#endif
dd41f596 7405
aab03e05 7406 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7407 /*
7408 * Renice negative nice level userspace
7409 * tasks back to 0:
7410 */
3472eaa1 7411 if (task_nice(p) < 0)
dd41f596 7412 set_user_nice(p, 0);
1da177e4 7413 continue;
dd41f596 7414 }
1da177e4 7415
3472eaa1 7416 rq = task_rq_lock(p, &flags);
178be793 7417 normalize_task(rq, p);
3472eaa1 7418 task_rq_unlock(rq, p, &flags);
5d07f420 7419 }
3472eaa1 7420 read_unlock(&tasklist_lock);
1da177e4
LT
7421}
7422
7423#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7424
67fc4e0c 7425#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7426/*
67fc4e0c 7427 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7428 *
7429 * They can only be called when the whole system has been
7430 * stopped - every CPU needs to be quiescent, and no scheduling
7431 * activity can take place. Using them for anything else would
7432 * be a serious bug, and as a result, they aren't even visible
7433 * under any other configuration.
7434 */
7435
7436/**
7437 * curr_task - return the current task for a given cpu.
7438 * @cpu: the processor in question.
7439 *
7440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7441 *
7442 * Return: The current task for @cpu.
1df5c10a 7443 */
36c8b586 7444struct task_struct *curr_task(int cpu)
1df5c10a
LT
7445{
7446 return cpu_curr(cpu);
7447}
7448
67fc4e0c
JW
7449#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7450
7451#ifdef CONFIG_IA64
1df5c10a
LT
7452/**
7453 * set_curr_task - set the current task for a given cpu.
7454 * @cpu: the processor in question.
7455 * @p: the task pointer to set.
7456 *
7457 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7458 * are serviced on a separate stack. It allows the architecture to switch the
7459 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7460 * must be called with all CPU's synchronized, and interrupts disabled, the
7461 * and caller must save the original value of the current task (see
7462 * curr_task() above) and restore that value before reenabling interrupts and
7463 * re-starting the system.
7464 *
7465 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7466 */
36c8b586 7467void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7468{
7469 cpu_curr(cpu) = p;
7470}
7471
7472#endif
29f59db3 7473
7c941438 7474#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7475/* task_group_lock serializes the addition/removal of task groups */
7476static DEFINE_SPINLOCK(task_group_lock);
7477
bccbe08a
PZ
7478static void free_sched_group(struct task_group *tg)
7479{
7480 free_fair_sched_group(tg);
7481 free_rt_sched_group(tg);
e9aa1dd1 7482 autogroup_free(tg);
bccbe08a
PZ
7483 kfree(tg);
7484}
7485
7486/* allocate runqueue etc for a new task group */
ec7dc8ac 7487struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7488{
7489 struct task_group *tg;
bccbe08a
PZ
7490
7491 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7492 if (!tg)
7493 return ERR_PTR(-ENOMEM);
7494
ec7dc8ac 7495 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7496 goto err;
7497
ec7dc8ac 7498 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7499 goto err;
7500
ace783b9
LZ
7501 return tg;
7502
7503err:
7504 free_sched_group(tg);
7505 return ERR_PTR(-ENOMEM);
7506}
7507
7508void sched_online_group(struct task_group *tg, struct task_group *parent)
7509{
7510 unsigned long flags;
7511
8ed36996 7512 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7513 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7514
7515 WARN_ON(!parent); /* root should already exist */
7516
7517 tg->parent = parent;
f473aa5e 7518 INIT_LIST_HEAD(&tg->children);
09f2724a 7519 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7520 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7521}
7522
9b5b7751 7523/* rcu callback to free various structures associated with a task group */
6f505b16 7524static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7525{
29f59db3 7526 /* now it should be safe to free those cfs_rqs */
6f505b16 7527 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7528}
7529
9b5b7751 7530/* Destroy runqueue etc associated with a task group */
4cf86d77 7531void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7532{
7533 /* wait for possible concurrent references to cfs_rqs complete */
7534 call_rcu(&tg->rcu, free_sched_group_rcu);
7535}
7536
7537void sched_offline_group(struct task_group *tg)
29f59db3 7538{
8ed36996 7539 unsigned long flags;
9b5b7751 7540 int i;
29f59db3 7541
3d4b47b4
PZ
7542 /* end participation in shares distribution */
7543 for_each_possible_cpu(i)
bccbe08a 7544 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7545
7546 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7547 list_del_rcu(&tg->list);
f473aa5e 7548 list_del_rcu(&tg->siblings);
8ed36996 7549 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7550}
7551
9b5b7751 7552/* change task's runqueue when it moves between groups.
3a252015
IM
7553 * The caller of this function should have put the task in its new group
7554 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7555 * reflect its new group.
9b5b7751
SV
7556 */
7557void sched_move_task(struct task_struct *tsk)
29f59db3 7558{
8323f26c 7559 struct task_group *tg;
da0c1e65 7560 int queued, running;
29f59db3
SV
7561 unsigned long flags;
7562 struct rq *rq;
7563
7564 rq = task_rq_lock(tsk, &flags);
7565
051a1d1a 7566 running = task_current(rq, tsk);
da0c1e65 7567 queued = task_on_rq_queued(tsk);
29f59db3 7568
da0c1e65 7569 if (queued)
29f59db3 7570 dequeue_task(rq, tsk, 0);
0e1f3483 7571 if (unlikely(running))
f3cd1c4e 7572 put_prev_task(rq, tsk);
29f59db3 7573
f7b8a47d
KT
7574 /*
7575 * All callers are synchronized by task_rq_lock(); we do not use RCU
7576 * which is pointless here. Thus, we pass "true" to task_css_check()
7577 * to prevent lockdep warnings.
7578 */
7579 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7580 struct task_group, css);
7581 tg = autogroup_task_group(tsk, tg);
7582 tsk->sched_task_group = tg;
7583
810b3817 7584#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7585 if (tsk->sched_class->task_move_group)
da0c1e65 7586 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7587 else
810b3817 7588#endif
b2b5ce02 7589 set_task_rq(tsk, task_cpu(tsk));
810b3817 7590
0e1f3483
HS
7591 if (unlikely(running))
7592 tsk->sched_class->set_curr_task(rq);
da0c1e65 7593 if (queued)
371fd7e7 7594 enqueue_task(rq, tsk, 0);
29f59db3 7595
0122ec5b 7596 task_rq_unlock(rq, tsk, &flags);
29f59db3 7597}
7c941438 7598#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7599
a790de99
PT
7600#ifdef CONFIG_RT_GROUP_SCHED
7601/*
7602 * Ensure that the real time constraints are schedulable.
7603 */
7604static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7605
9a7e0b18
PZ
7606/* Must be called with tasklist_lock held */
7607static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7608{
9a7e0b18 7609 struct task_struct *g, *p;
b40b2e8e 7610
1fe89e1b
PZ
7611 /*
7612 * Autogroups do not have RT tasks; see autogroup_create().
7613 */
7614 if (task_group_is_autogroup(tg))
7615 return 0;
7616
5d07f420 7617 for_each_process_thread(g, p) {
8651c658 7618 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7619 return 1;
5d07f420 7620 }
b40b2e8e 7621
9a7e0b18
PZ
7622 return 0;
7623}
b40b2e8e 7624
9a7e0b18
PZ
7625struct rt_schedulable_data {
7626 struct task_group *tg;
7627 u64 rt_period;
7628 u64 rt_runtime;
7629};
b40b2e8e 7630
a790de99 7631static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7632{
7633 struct rt_schedulable_data *d = data;
7634 struct task_group *child;
7635 unsigned long total, sum = 0;
7636 u64 period, runtime;
b40b2e8e 7637
9a7e0b18
PZ
7638 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7639 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7640
9a7e0b18
PZ
7641 if (tg == d->tg) {
7642 period = d->rt_period;
7643 runtime = d->rt_runtime;
b40b2e8e 7644 }
b40b2e8e 7645
4653f803
PZ
7646 /*
7647 * Cannot have more runtime than the period.
7648 */
7649 if (runtime > period && runtime != RUNTIME_INF)
7650 return -EINVAL;
6f505b16 7651
4653f803
PZ
7652 /*
7653 * Ensure we don't starve existing RT tasks.
7654 */
9a7e0b18
PZ
7655 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7656 return -EBUSY;
6f505b16 7657
9a7e0b18 7658 total = to_ratio(period, runtime);
6f505b16 7659
4653f803
PZ
7660 /*
7661 * Nobody can have more than the global setting allows.
7662 */
7663 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7664 return -EINVAL;
6f505b16 7665
4653f803
PZ
7666 /*
7667 * The sum of our children's runtime should not exceed our own.
7668 */
9a7e0b18
PZ
7669 list_for_each_entry_rcu(child, &tg->children, siblings) {
7670 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7671 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7672
9a7e0b18
PZ
7673 if (child == d->tg) {
7674 period = d->rt_period;
7675 runtime = d->rt_runtime;
7676 }
6f505b16 7677
9a7e0b18 7678 sum += to_ratio(period, runtime);
9f0c1e56 7679 }
6f505b16 7680
9a7e0b18
PZ
7681 if (sum > total)
7682 return -EINVAL;
7683
7684 return 0;
6f505b16
PZ
7685}
7686
9a7e0b18 7687static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7688{
8277434e
PT
7689 int ret;
7690
9a7e0b18
PZ
7691 struct rt_schedulable_data data = {
7692 .tg = tg,
7693 .rt_period = period,
7694 .rt_runtime = runtime,
7695 };
7696
8277434e
PT
7697 rcu_read_lock();
7698 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7699 rcu_read_unlock();
7700
7701 return ret;
521f1a24
DG
7702}
7703
ab84d31e 7704static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7705 u64 rt_period, u64 rt_runtime)
6f505b16 7706{
ac086bc2 7707 int i, err = 0;
9f0c1e56 7708
2636ed5f
PZ
7709 /*
7710 * Disallowing the root group RT runtime is BAD, it would disallow the
7711 * kernel creating (and or operating) RT threads.
7712 */
7713 if (tg == &root_task_group && rt_runtime == 0)
7714 return -EINVAL;
7715
7716 /* No period doesn't make any sense. */
7717 if (rt_period == 0)
7718 return -EINVAL;
7719
9f0c1e56 7720 mutex_lock(&rt_constraints_mutex);
521f1a24 7721 read_lock(&tasklist_lock);
9a7e0b18
PZ
7722 err = __rt_schedulable(tg, rt_period, rt_runtime);
7723 if (err)
9f0c1e56 7724 goto unlock;
ac086bc2 7725
0986b11b 7726 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7727 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7728 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7729
7730 for_each_possible_cpu(i) {
7731 struct rt_rq *rt_rq = tg->rt_rq[i];
7732
0986b11b 7733 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7734 rt_rq->rt_runtime = rt_runtime;
0986b11b 7735 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7736 }
0986b11b 7737 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7738unlock:
521f1a24 7739 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7740 mutex_unlock(&rt_constraints_mutex);
7741
7742 return err;
6f505b16
PZ
7743}
7744
25cc7da7 7745static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7746{
7747 u64 rt_runtime, rt_period;
7748
7749 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7750 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7751 if (rt_runtime_us < 0)
7752 rt_runtime = RUNTIME_INF;
7753
ab84d31e 7754 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7755}
7756
25cc7da7 7757static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7758{
7759 u64 rt_runtime_us;
7760
d0b27fa7 7761 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7762 return -1;
7763
d0b27fa7 7764 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7765 do_div(rt_runtime_us, NSEC_PER_USEC);
7766 return rt_runtime_us;
7767}
d0b27fa7 7768
ce2f5fe4 7769static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7770{
7771 u64 rt_runtime, rt_period;
7772
ce2f5fe4 7773 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7774 rt_runtime = tg->rt_bandwidth.rt_runtime;
7775
ab84d31e 7776 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7777}
7778
25cc7da7 7779static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7780{
7781 u64 rt_period_us;
7782
7783 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7784 do_div(rt_period_us, NSEC_PER_USEC);
7785 return rt_period_us;
7786}
332ac17e 7787#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7788
332ac17e 7789#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7790static int sched_rt_global_constraints(void)
7791{
7792 int ret = 0;
7793
7794 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7795 read_lock(&tasklist_lock);
4653f803 7796 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7797 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7798 mutex_unlock(&rt_constraints_mutex);
7799
7800 return ret;
7801}
54e99124 7802
25cc7da7 7803static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7804{
7805 /* Don't accept realtime tasks when there is no way for them to run */
7806 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7807 return 0;
7808
7809 return 1;
7810}
7811
6d6bc0ad 7812#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7813static int sched_rt_global_constraints(void)
7814{
ac086bc2 7815 unsigned long flags;
332ac17e 7816 int i, ret = 0;
ec5d4989 7817
0986b11b 7818 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7819 for_each_possible_cpu(i) {
7820 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7821
0986b11b 7822 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7823 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7825 }
0986b11b 7826 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7827
332ac17e 7828 return ret;
d0b27fa7 7829}
6d6bc0ad 7830#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7831
a1963b81 7832static int sched_dl_global_validate(void)
332ac17e 7833{
1724813d
PZ
7834 u64 runtime = global_rt_runtime();
7835 u64 period = global_rt_period();
332ac17e 7836 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7837 struct dl_bw *dl_b;
1724813d 7838 int cpu, ret = 0;
49516342 7839 unsigned long flags;
332ac17e
DF
7840
7841 /*
7842 * Here we want to check the bandwidth not being set to some
7843 * value smaller than the currently allocated bandwidth in
7844 * any of the root_domains.
7845 *
7846 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7847 * cycling on root_domains... Discussion on different/better
7848 * solutions is welcome!
7849 */
1724813d 7850 for_each_possible_cpu(cpu) {
f10e00f4
KT
7851 rcu_read_lock_sched();
7852 dl_b = dl_bw_of(cpu);
332ac17e 7853
49516342 7854 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7855 if (new_bw < dl_b->total_bw)
7856 ret = -EBUSY;
49516342 7857 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7858
f10e00f4
KT
7859 rcu_read_unlock_sched();
7860
1724813d
PZ
7861 if (ret)
7862 break;
332ac17e
DF
7863 }
7864
1724813d 7865 return ret;
332ac17e
DF
7866}
7867
1724813d 7868static void sched_dl_do_global(void)
ce0dbbbb 7869{
1724813d 7870 u64 new_bw = -1;
f10e00f4 7871 struct dl_bw *dl_b;
1724813d 7872 int cpu;
49516342 7873 unsigned long flags;
ce0dbbbb 7874
1724813d
PZ
7875 def_dl_bandwidth.dl_period = global_rt_period();
7876 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7877
7878 if (global_rt_runtime() != RUNTIME_INF)
7879 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7880
7881 /*
7882 * FIXME: As above...
7883 */
7884 for_each_possible_cpu(cpu) {
f10e00f4
KT
7885 rcu_read_lock_sched();
7886 dl_b = dl_bw_of(cpu);
1724813d 7887
49516342 7888 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7889 dl_b->bw = new_bw;
49516342 7890 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7891
7892 rcu_read_unlock_sched();
ce0dbbbb 7893 }
1724813d
PZ
7894}
7895
7896static int sched_rt_global_validate(void)
7897{
7898 if (sysctl_sched_rt_period <= 0)
7899 return -EINVAL;
7900
e9e7cb38
JL
7901 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7902 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7903 return -EINVAL;
7904
7905 return 0;
7906}
7907
7908static void sched_rt_do_global(void)
7909{
7910 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7911 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7912}
7913
d0b27fa7 7914int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7915 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7916 loff_t *ppos)
7917{
d0b27fa7
PZ
7918 int old_period, old_runtime;
7919 static DEFINE_MUTEX(mutex);
1724813d 7920 int ret;
d0b27fa7
PZ
7921
7922 mutex_lock(&mutex);
7923 old_period = sysctl_sched_rt_period;
7924 old_runtime = sysctl_sched_rt_runtime;
7925
8d65af78 7926 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7927
7928 if (!ret && write) {
1724813d
PZ
7929 ret = sched_rt_global_validate();
7930 if (ret)
7931 goto undo;
7932
a1963b81 7933 ret = sched_dl_global_validate();
1724813d
PZ
7934 if (ret)
7935 goto undo;
7936
a1963b81 7937 ret = sched_rt_global_constraints();
1724813d
PZ
7938 if (ret)
7939 goto undo;
7940
7941 sched_rt_do_global();
7942 sched_dl_do_global();
7943 }
7944 if (0) {
7945undo:
7946 sysctl_sched_rt_period = old_period;
7947 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7948 }
7949 mutex_unlock(&mutex);
7950
7951 return ret;
7952}
68318b8e 7953
1724813d 7954int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7955 void __user *buffer, size_t *lenp,
7956 loff_t *ppos)
7957{
7958 int ret;
332ac17e 7959 static DEFINE_MUTEX(mutex);
332ac17e
DF
7960
7961 mutex_lock(&mutex);
332ac17e 7962 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7963 /* make sure that internally we keep jiffies */
7964 /* also, writing zero resets timeslice to default */
332ac17e 7965 if (!ret && write) {
1724813d
PZ
7966 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7967 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7968 }
7969 mutex_unlock(&mutex);
332ac17e
DF
7970 return ret;
7971}
7972
052f1dc7 7973#ifdef CONFIG_CGROUP_SCHED
68318b8e 7974
a7c6d554 7975static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7976{
a7c6d554 7977 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7978}
7979
eb95419b
TH
7980static struct cgroup_subsys_state *
7981cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7982{
eb95419b
TH
7983 struct task_group *parent = css_tg(parent_css);
7984 struct task_group *tg;
68318b8e 7985
eb95419b 7986 if (!parent) {
68318b8e 7987 /* This is early initialization for the top cgroup */
07e06b01 7988 return &root_task_group.css;
68318b8e
SV
7989 }
7990
ec7dc8ac 7991 tg = sched_create_group(parent);
68318b8e
SV
7992 if (IS_ERR(tg))
7993 return ERR_PTR(-ENOMEM);
7994
68318b8e
SV
7995 return &tg->css;
7996}
7997
eb95419b 7998static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7999{
eb95419b 8000 struct task_group *tg = css_tg(css);
5c9d535b 8001 struct task_group *parent = css_tg(css->parent);
ace783b9 8002
63876986
TH
8003 if (parent)
8004 sched_online_group(tg, parent);
ace783b9
LZ
8005 return 0;
8006}
8007
eb95419b 8008static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8009{
eb95419b 8010 struct task_group *tg = css_tg(css);
68318b8e
SV
8011
8012 sched_destroy_group(tg);
8013}
8014
eb95419b 8015static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8016{
eb95419b 8017 struct task_group *tg = css_tg(css);
ace783b9
LZ
8018
8019 sched_offline_group(tg);
8020}
8021
eeb61e53
KT
8022static void cpu_cgroup_fork(struct task_struct *task)
8023{
8024 sched_move_task(task);
8025}
8026
eb95419b 8027static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8028 struct cgroup_taskset *tset)
68318b8e 8029{
bb9d97b6
TH
8030 struct task_struct *task;
8031
924f0d9a 8032 cgroup_taskset_for_each(task, tset) {
b68aa230 8033#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8034 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8035 return -EINVAL;
b68aa230 8036#else
bb9d97b6
TH
8037 /* We don't support RT-tasks being in separate groups */
8038 if (task->sched_class != &fair_sched_class)
8039 return -EINVAL;
b68aa230 8040#endif
bb9d97b6 8041 }
be367d09
BB
8042 return 0;
8043}
68318b8e 8044
eb95419b 8045static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8046 struct cgroup_taskset *tset)
68318b8e 8047{
bb9d97b6
TH
8048 struct task_struct *task;
8049
924f0d9a 8050 cgroup_taskset_for_each(task, tset)
bb9d97b6 8051 sched_move_task(task);
68318b8e
SV
8052}
8053
eb95419b
TH
8054static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8055 struct cgroup_subsys_state *old_css,
8056 struct task_struct *task)
068c5cc5
PZ
8057{
8058 /*
8059 * cgroup_exit() is called in the copy_process() failure path.
8060 * Ignore this case since the task hasn't ran yet, this avoids
8061 * trying to poke a half freed task state from generic code.
8062 */
8063 if (!(task->flags & PF_EXITING))
8064 return;
8065
8066 sched_move_task(task);
8067}
8068
052f1dc7 8069#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8070static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8071 struct cftype *cftype, u64 shareval)
68318b8e 8072{
182446d0 8073 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8074}
8075
182446d0
TH
8076static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8077 struct cftype *cft)
68318b8e 8078{
182446d0 8079 struct task_group *tg = css_tg(css);
68318b8e 8080
c8b28116 8081 return (u64) scale_load_down(tg->shares);
68318b8e 8082}
ab84d31e
PT
8083
8084#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8085static DEFINE_MUTEX(cfs_constraints_mutex);
8086
ab84d31e
PT
8087const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8088const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8089
a790de99
PT
8090static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8091
ab84d31e
PT
8092static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8093{
56f570e5 8094 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8095 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8096
8097 if (tg == &root_task_group)
8098 return -EINVAL;
8099
8100 /*
8101 * Ensure we have at some amount of bandwidth every period. This is
8102 * to prevent reaching a state of large arrears when throttled via
8103 * entity_tick() resulting in prolonged exit starvation.
8104 */
8105 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8106 return -EINVAL;
8107
8108 /*
8109 * Likewise, bound things on the otherside by preventing insane quota
8110 * periods. This also allows us to normalize in computing quota
8111 * feasibility.
8112 */
8113 if (period > max_cfs_quota_period)
8114 return -EINVAL;
8115
0e59bdae
KT
8116 /*
8117 * Prevent race between setting of cfs_rq->runtime_enabled and
8118 * unthrottle_offline_cfs_rqs().
8119 */
8120 get_online_cpus();
a790de99
PT
8121 mutex_lock(&cfs_constraints_mutex);
8122 ret = __cfs_schedulable(tg, period, quota);
8123 if (ret)
8124 goto out_unlock;
8125
58088ad0 8126 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8127 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8128 /*
8129 * If we need to toggle cfs_bandwidth_used, off->on must occur
8130 * before making related changes, and on->off must occur afterwards
8131 */
8132 if (runtime_enabled && !runtime_was_enabled)
8133 cfs_bandwidth_usage_inc();
ab84d31e
PT
8134 raw_spin_lock_irq(&cfs_b->lock);
8135 cfs_b->period = ns_to_ktime(period);
8136 cfs_b->quota = quota;
58088ad0 8137
a9cf55b2 8138 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8139 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8140 if (runtime_enabled)
8141 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8142 raw_spin_unlock_irq(&cfs_b->lock);
8143
0e59bdae 8144 for_each_online_cpu(i) {
ab84d31e 8145 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8146 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8147
8148 raw_spin_lock_irq(&rq->lock);
58088ad0 8149 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8150 cfs_rq->runtime_remaining = 0;
671fd9da 8151
029632fb 8152 if (cfs_rq->throttled)
671fd9da 8153 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8154 raw_spin_unlock_irq(&rq->lock);
8155 }
1ee14e6c
BS
8156 if (runtime_was_enabled && !runtime_enabled)
8157 cfs_bandwidth_usage_dec();
a790de99
PT
8158out_unlock:
8159 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8160 put_online_cpus();
ab84d31e 8161
a790de99 8162 return ret;
ab84d31e
PT
8163}
8164
8165int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8166{
8167 u64 quota, period;
8168
029632fb 8169 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8170 if (cfs_quota_us < 0)
8171 quota = RUNTIME_INF;
8172 else
8173 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8174
8175 return tg_set_cfs_bandwidth(tg, period, quota);
8176}
8177
8178long tg_get_cfs_quota(struct task_group *tg)
8179{
8180 u64 quota_us;
8181
029632fb 8182 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8183 return -1;
8184
029632fb 8185 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8186 do_div(quota_us, NSEC_PER_USEC);
8187
8188 return quota_us;
8189}
8190
8191int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8192{
8193 u64 quota, period;
8194
8195 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8196 quota = tg->cfs_bandwidth.quota;
ab84d31e 8197
ab84d31e
PT
8198 return tg_set_cfs_bandwidth(tg, period, quota);
8199}
8200
8201long tg_get_cfs_period(struct task_group *tg)
8202{
8203 u64 cfs_period_us;
8204
029632fb 8205 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8206 do_div(cfs_period_us, NSEC_PER_USEC);
8207
8208 return cfs_period_us;
8209}
8210
182446d0
TH
8211static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8212 struct cftype *cft)
ab84d31e 8213{
182446d0 8214 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8215}
8216
182446d0
TH
8217static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8218 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8219{
182446d0 8220 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8221}
8222
182446d0
TH
8223static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8224 struct cftype *cft)
ab84d31e 8225{
182446d0 8226 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8227}
8228
182446d0
TH
8229static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8230 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8231{
182446d0 8232 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8233}
8234
a790de99
PT
8235struct cfs_schedulable_data {
8236 struct task_group *tg;
8237 u64 period, quota;
8238};
8239
8240/*
8241 * normalize group quota/period to be quota/max_period
8242 * note: units are usecs
8243 */
8244static u64 normalize_cfs_quota(struct task_group *tg,
8245 struct cfs_schedulable_data *d)
8246{
8247 u64 quota, period;
8248
8249 if (tg == d->tg) {
8250 period = d->period;
8251 quota = d->quota;
8252 } else {
8253 period = tg_get_cfs_period(tg);
8254 quota = tg_get_cfs_quota(tg);
8255 }
8256
8257 /* note: these should typically be equivalent */
8258 if (quota == RUNTIME_INF || quota == -1)
8259 return RUNTIME_INF;
8260
8261 return to_ratio(period, quota);
8262}
8263
8264static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8265{
8266 struct cfs_schedulable_data *d = data;
029632fb 8267 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8268 s64 quota = 0, parent_quota = -1;
8269
8270 if (!tg->parent) {
8271 quota = RUNTIME_INF;
8272 } else {
029632fb 8273 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8274
8275 quota = normalize_cfs_quota(tg, d);
9c58c79a 8276 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8277
8278 /*
8279 * ensure max(child_quota) <= parent_quota, inherit when no
8280 * limit is set
8281 */
8282 if (quota == RUNTIME_INF)
8283 quota = parent_quota;
8284 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8285 return -EINVAL;
8286 }
9c58c79a 8287 cfs_b->hierarchical_quota = quota;
a790de99
PT
8288
8289 return 0;
8290}
8291
8292static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8293{
8277434e 8294 int ret;
a790de99
PT
8295 struct cfs_schedulable_data data = {
8296 .tg = tg,
8297 .period = period,
8298 .quota = quota,
8299 };
8300
8301 if (quota != RUNTIME_INF) {
8302 do_div(data.period, NSEC_PER_USEC);
8303 do_div(data.quota, NSEC_PER_USEC);
8304 }
8305
8277434e
PT
8306 rcu_read_lock();
8307 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8308 rcu_read_unlock();
8309
8310 return ret;
a790de99 8311}
e8da1b18 8312
2da8ca82 8313static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8314{
2da8ca82 8315 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8316 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8317
44ffc75b
TH
8318 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8319 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8320 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8321
8322 return 0;
8323}
ab84d31e 8324#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8325#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8326
052f1dc7 8327#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8328static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8329 struct cftype *cft, s64 val)
6f505b16 8330{
182446d0 8331 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8332}
8333
182446d0
TH
8334static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8335 struct cftype *cft)
6f505b16 8336{
182446d0 8337 return sched_group_rt_runtime(css_tg(css));
6f505b16 8338}
d0b27fa7 8339
182446d0
TH
8340static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8341 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8342{
182446d0 8343 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8344}
8345
182446d0
TH
8346static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8347 struct cftype *cft)
d0b27fa7 8348{
182446d0 8349 return sched_group_rt_period(css_tg(css));
d0b27fa7 8350}
6d6bc0ad 8351#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8352
fe5c7cc2 8353static struct cftype cpu_files[] = {
052f1dc7 8354#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8355 {
8356 .name = "shares",
f4c753b7
PM
8357 .read_u64 = cpu_shares_read_u64,
8358 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8359 },
052f1dc7 8360#endif
ab84d31e
PT
8361#ifdef CONFIG_CFS_BANDWIDTH
8362 {
8363 .name = "cfs_quota_us",
8364 .read_s64 = cpu_cfs_quota_read_s64,
8365 .write_s64 = cpu_cfs_quota_write_s64,
8366 },
8367 {
8368 .name = "cfs_period_us",
8369 .read_u64 = cpu_cfs_period_read_u64,
8370 .write_u64 = cpu_cfs_period_write_u64,
8371 },
e8da1b18
NR
8372 {
8373 .name = "stat",
2da8ca82 8374 .seq_show = cpu_stats_show,
e8da1b18 8375 },
ab84d31e 8376#endif
052f1dc7 8377#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8378 {
9f0c1e56 8379 .name = "rt_runtime_us",
06ecb27c
PM
8380 .read_s64 = cpu_rt_runtime_read,
8381 .write_s64 = cpu_rt_runtime_write,
6f505b16 8382 },
d0b27fa7
PZ
8383 {
8384 .name = "rt_period_us",
f4c753b7
PM
8385 .read_u64 = cpu_rt_period_read_uint,
8386 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8387 },
052f1dc7 8388#endif
4baf6e33 8389 { } /* terminate */
68318b8e
SV
8390};
8391
073219e9 8392struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8393 .css_alloc = cpu_cgroup_css_alloc,
8394 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8395 .css_online = cpu_cgroup_css_online,
8396 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8397 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8398 .can_attach = cpu_cgroup_can_attach,
8399 .attach = cpu_cgroup_attach,
068c5cc5 8400 .exit = cpu_cgroup_exit,
5577964e 8401 .legacy_cftypes = cpu_files,
68318b8e
SV
8402 .early_init = 1,
8403};
8404
052f1dc7 8405#endif /* CONFIG_CGROUP_SCHED */
d842de87 8406
b637a328
PM
8407void dump_cpu_task(int cpu)
8408{
8409 pr_info("Task dump for CPU %d:\n", cpu);
8410 sched_show_task(cpu_curr(cpu));
8411}
This page took 2.669215 seconds and 5 git commands to generate.