page_cgroup: drop multi CONFIG_MEMORY_HOTPLUG
[deliverable/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
110
111 for_each_populated_zone(zone)
112 nr_zones++;
113
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117 /*
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
122 */
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
130
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
135}
136late_initcall(set_recommended_min_free_kbytes);
137
ba76149f
AA
138static int start_khugepaged(void)
139{
140 int err = 0;
141 if (khugepaged_enabled()) {
142 int wakeup;
143 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 err = -ENOMEM;
145 goto out;
146 }
147 mutex_lock(&khugepaged_mutex);
148 if (!khugepaged_thread)
149 khugepaged_thread = kthread_run(khugepaged, NULL,
150 "khugepaged");
151 if (unlikely(IS_ERR(khugepaged_thread))) {
152 printk(KERN_ERR
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err = PTR_ERR(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
157 wakeup = !list_empty(&khugepaged_scan.mm_head);
158 mutex_unlock(&khugepaged_mutex);
159 if (wakeup)
160 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
161
162 set_recommended_min_free_kbytes();
ba76149f
AA
163 } else
164 /* wakeup to exit */
165 wake_up_interruptible(&khugepaged_wait);
166out:
167 return err;
168}
71e3aac0
AA
169
170#ifdef CONFIG_SYSFS
ba76149f 171
71e3aac0
AA
172static ssize_t double_flag_show(struct kobject *kobj,
173 struct kobj_attribute *attr, char *buf,
174 enum transparent_hugepage_flag enabled,
175 enum transparent_hugepage_flag req_madv)
176{
177 if (test_bit(enabled, &transparent_hugepage_flags)) {
178 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 return sprintf(buf, "[always] madvise never\n");
180 } else if (test_bit(req_madv, &transparent_hugepage_flags))
181 return sprintf(buf, "always [madvise] never\n");
182 else
183 return sprintf(buf, "always madvise [never]\n");
184}
185static ssize_t double_flag_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count,
188 enum transparent_hugepage_flag enabled,
189 enum transparent_hugepage_flag req_madv)
190{
191 if (!memcmp("always", buf,
192 min(sizeof("always")-1, count))) {
193 set_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else if (!memcmp("madvise", buf,
196 min(sizeof("madvise")-1, count))) {
197 clear_bit(enabled, &transparent_hugepage_flags);
198 set_bit(req_madv, &transparent_hugepage_flags);
199 } else if (!memcmp("never", buf,
200 min(sizeof("never")-1, count))) {
201 clear_bit(enabled, &transparent_hugepage_flags);
202 clear_bit(req_madv, &transparent_hugepage_flags);
203 } else
204 return -EINVAL;
205
206 return count;
207}
208
209static ssize_t enabled_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
211{
212 return double_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_FLAG,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215}
216static ssize_t enabled_store(struct kobject *kobj,
217 struct kobj_attribute *attr,
218 const char *buf, size_t count)
219{
ba76149f
AA
220 ssize_t ret;
221
222 ret = double_flag_store(kobj, attr, buf, count,
223 TRANSPARENT_HUGEPAGE_FLAG,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225
226 if (ret > 0) {
227 int err = start_khugepaged();
228 if (err)
229 ret = err;
230 }
231
f000565a
AA
232 if (ret > 0 &&
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 &transparent_hugepage_flags) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 &transparent_hugepage_flags)))
237 set_recommended_min_free_kbytes();
238
ba76149f 239 return ret;
71e3aac0
AA
240}
241static struct kobj_attribute enabled_attr =
242 __ATTR(enabled, 0644, enabled_show, enabled_store);
243
244static ssize_t single_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag flag)
247{
e27e6151
BH
248 return sprintf(buf, "%d\n",
249 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 250}
e27e6151 251
71e3aac0
AA
252static ssize_t single_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag flag)
256{
e27e6151
BH
257 unsigned long value;
258 int ret;
259
260 ret = kstrtoul(buf, 10, &value);
261 if (ret < 0)
262 return ret;
263 if (value > 1)
264 return -EINVAL;
265
266 if (value)
71e3aac0 267 set_bit(flag, &transparent_hugepage_flags);
e27e6151 268 else
71e3aac0 269 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
270
271 return count;
272}
273
274/*
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
278 */
279static ssize_t defrag_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
281{
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285}
286static ssize_t defrag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
289{
290 return double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293}
294static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
297#ifdef CONFIG_DEBUG_VM
298static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return single_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303}
304static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307{
308 return single_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310}
311static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313#endif /* CONFIG_DEBUG_VM */
314
315static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318#ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr.attr,
320#endif
321 NULL,
322};
323
324static struct attribute_group hugepage_attr_group = {
325 .attrs = hugepage_attr,
ba76149f
AA
326};
327
328static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 char *buf)
331{
332 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333}
334
335static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
338{
339 unsigned long msecs;
340 int err;
341
342 err = strict_strtoul(buf, 10, &msecs);
343 if (err || msecs > UINT_MAX)
344 return -EINVAL;
345
346 khugepaged_scan_sleep_millisecs = msecs;
347 wake_up_interruptible(&khugepaged_wait);
348
349 return count;
350}
351static struct kobj_attribute scan_sleep_millisecs_attr =
352 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 scan_sleep_millisecs_store);
354
355static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 char *buf)
358{
359 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360}
361
362static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365{
366 unsigned long msecs;
367 int err;
368
369 err = strict_strtoul(buf, 10, &msecs);
370 if (err || msecs > UINT_MAX)
371 return -EINVAL;
372
373 khugepaged_alloc_sleep_millisecs = msecs;
374 wake_up_interruptible(&khugepaged_wait);
375
376 return count;
377}
378static struct kobj_attribute alloc_sleep_millisecs_attr =
379 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 alloc_sleep_millisecs_store);
381
382static ssize_t pages_to_scan_show(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 char *buf)
385{
386 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387}
388static ssize_t pages_to_scan_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
391{
392 int err;
393 unsigned long pages;
394
395 err = strict_strtoul(buf, 10, &pages);
396 if (err || !pages || pages > UINT_MAX)
397 return -EINVAL;
398
399 khugepaged_pages_to_scan = pages;
400
401 return count;
402}
403static struct kobj_attribute pages_to_scan_attr =
404 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 pages_to_scan_store);
406
407static ssize_t pages_collapsed_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410{
411 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412}
413static struct kobj_attribute pages_collapsed_attr =
414 __ATTR_RO(pages_collapsed);
415
416static ssize_t full_scans_show(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 char *buf)
419{
420 return sprintf(buf, "%u\n", khugepaged_full_scans);
421}
422static struct kobj_attribute full_scans_attr =
423 __ATTR_RO(full_scans);
424
425static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 struct kobj_attribute *attr, char *buf)
427{
428 return single_flag_show(kobj, attr, buf,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430}
431static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 struct kobj_attribute *attr,
433 const char *buf, size_t count)
434{
435 return single_flag_store(kobj, attr, buf, count,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437}
438static struct kobj_attribute khugepaged_defrag_attr =
439 __ATTR(defrag, 0644, khugepaged_defrag_show,
440 khugepaged_defrag_store);
441
442/*
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
449 */
450static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 char *buf)
453{
454 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455}
456static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 struct kobj_attribute *attr,
458 const char *buf, size_t count)
459{
460 int err;
461 unsigned long max_ptes_none;
462
463 err = strict_strtoul(buf, 10, &max_ptes_none);
464 if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 return -EINVAL;
466
467 khugepaged_max_ptes_none = max_ptes_none;
468
469 return count;
470}
471static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 khugepaged_max_ptes_none_store);
474
475static struct attribute *khugepaged_attr[] = {
476 &khugepaged_defrag_attr.attr,
477 &khugepaged_max_ptes_none_attr.attr,
478 &pages_to_scan_attr.attr,
479 &pages_collapsed_attr.attr,
480 &full_scans_attr.attr,
481 &scan_sleep_millisecs_attr.attr,
482 &alloc_sleep_millisecs_attr.attr,
483 NULL,
484};
485
486static struct attribute_group khugepaged_attr_group = {
487 .attrs = khugepaged_attr,
488 .name = "khugepaged",
71e3aac0
AA
489};
490#endif /* CONFIG_SYSFS */
491
492static int __init hugepage_init(void)
493{
71e3aac0 494 int err;
ba76149f
AA
495#ifdef CONFIG_SYSFS
496 static struct kobject *hugepage_kobj;
4b7167b9 497#endif
71e3aac0 498
4b7167b9
AA
499 err = -EINVAL;
500 if (!has_transparent_hugepage()) {
501 transparent_hugepage_flags = 0;
502 goto out;
503 }
504
505#ifdef CONFIG_SYSFS
ba76149f
AA
506 err = -ENOMEM;
507 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
508 if (unlikely(!hugepage_kobj)) {
509 printk(KERN_ERR "hugepage: failed kobject create\n");
510 goto out;
511 }
512
513 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
514 if (err) {
515 printk(KERN_ERR "hugepage: failed register hugeage group\n");
516 goto out;
517 }
518
519 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
520 if (err) {
521 printk(KERN_ERR "hugepage: failed register hugeage group\n");
522 goto out;
523 }
71e3aac0 524#endif
ba76149f
AA
525
526 err = khugepaged_slab_init();
527 if (err)
528 goto out;
529
530 err = mm_slots_hash_init();
531 if (err) {
532 khugepaged_slab_free();
533 goto out;
534 }
535
97562cd2
RR
536 /*
537 * By default disable transparent hugepages on smaller systems,
538 * where the extra memory used could hurt more than TLB overhead
539 * is likely to save. The admin can still enable it through /sys.
540 */
541 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
542 transparent_hugepage_flags = 0;
543
ba76149f
AA
544 start_khugepaged();
545
f000565a
AA
546 set_recommended_min_free_kbytes();
547
ba76149f
AA
548out:
549 return err;
71e3aac0
AA
550}
551module_init(hugepage_init)
552
553static int __init setup_transparent_hugepage(char *str)
554{
555 int ret = 0;
556 if (!str)
557 goto out;
558 if (!strcmp(str, "always")) {
559 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
560 &transparent_hugepage_flags);
561 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
562 &transparent_hugepage_flags);
563 ret = 1;
564 } else if (!strcmp(str, "madvise")) {
565 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
566 &transparent_hugepage_flags);
567 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
568 &transparent_hugepage_flags);
569 ret = 1;
570 } else if (!strcmp(str, "never")) {
571 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
572 &transparent_hugepage_flags);
573 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
574 &transparent_hugepage_flags);
575 ret = 1;
576 }
577out:
578 if (!ret)
579 printk(KERN_WARNING
580 "transparent_hugepage= cannot parse, ignored\n");
581 return ret;
582}
583__setup("transparent_hugepage=", setup_transparent_hugepage);
584
585static void prepare_pmd_huge_pte(pgtable_t pgtable,
586 struct mm_struct *mm)
587{
588 assert_spin_locked(&mm->page_table_lock);
589
590 /* FIFO */
591 if (!mm->pmd_huge_pte)
592 INIT_LIST_HEAD(&pgtable->lru);
593 else
594 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
595 mm->pmd_huge_pte = pgtable;
596}
597
598static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
599{
600 if (likely(vma->vm_flags & VM_WRITE))
601 pmd = pmd_mkwrite(pmd);
602 return pmd;
603}
604
605static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
606 struct vm_area_struct *vma,
607 unsigned long haddr, pmd_t *pmd,
608 struct page *page)
609{
610 int ret = 0;
611 pgtable_t pgtable;
612
613 VM_BUG_ON(!PageCompound(page));
614 pgtable = pte_alloc_one(mm, haddr);
615 if (unlikely(!pgtable)) {
b9bbfbe3 616 mem_cgroup_uncharge_page(page);
71e3aac0
AA
617 put_page(page);
618 return VM_FAULT_OOM;
619 }
620
621 clear_huge_page(page, haddr, HPAGE_PMD_NR);
622 __SetPageUptodate(page);
623
624 spin_lock(&mm->page_table_lock);
625 if (unlikely(!pmd_none(*pmd))) {
626 spin_unlock(&mm->page_table_lock);
b9bbfbe3 627 mem_cgroup_uncharge_page(page);
71e3aac0
AA
628 put_page(page);
629 pte_free(mm, pgtable);
630 } else {
631 pmd_t entry;
632 entry = mk_pmd(page, vma->vm_page_prot);
633 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 entry = pmd_mkhuge(entry);
635 /*
636 * The spinlocking to take the lru_lock inside
637 * page_add_new_anon_rmap() acts as a full memory
638 * barrier to be sure clear_huge_page writes become
639 * visible after the set_pmd_at() write.
640 */
641 page_add_new_anon_rmap(page, vma, haddr);
642 set_pmd_at(mm, haddr, pmd, entry);
643 prepare_pmd_huge_pte(pgtable, mm);
644 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 spin_unlock(&mm->page_table_lock);
646 }
647
648 return ret;
649}
650
cc5d462f 651static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 652{
cc5d462f 653 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
654}
655
656static inline struct page *alloc_hugepage_vma(int defrag,
657 struct vm_area_struct *vma,
cc5d462f
AK
658 unsigned long haddr, int nd,
659 gfp_t extra_gfp)
0bbbc0b3 660{
cc5d462f 661 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 662 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
663}
664
665#ifndef CONFIG_NUMA
71e3aac0
AA
666static inline struct page *alloc_hugepage(int defrag)
667{
cc5d462f 668 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
669 HPAGE_PMD_ORDER);
670}
0bbbc0b3 671#endif
71e3aac0
AA
672
673int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674 unsigned long address, pmd_t *pmd,
675 unsigned int flags)
676{
677 struct page *page;
678 unsigned long haddr = address & HPAGE_PMD_MASK;
679 pte_t *pte;
680
681 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682 if (unlikely(anon_vma_prepare(vma)))
683 return VM_FAULT_OOM;
ba76149f
AA
684 if (unlikely(khugepaged_enter(vma)))
685 return VM_FAULT_OOM;
0bbbc0b3 686 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 687 vma, haddr, numa_node_id(), 0);
81ab4201
AK
688 if (unlikely(!page)) {
689 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 690 goto out;
81ab4201
AK
691 }
692 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
693 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694 put_page(page);
695 goto out;
696 }
71e3aac0
AA
697
698 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
699 }
700out:
701 /*
702 * Use __pte_alloc instead of pte_alloc_map, because we can't
703 * run pte_offset_map on the pmd, if an huge pmd could
704 * materialize from under us from a different thread.
705 */
706 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
707 return VM_FAULT_OOM;
708 /* if an huge pmd materialized from under us just retry later */
709 if (unlikely(pmd_trans_huge(*pmd)))
710 return 0;
711 /*
712 * A regular pmd is established and it can't morph into a huge pmd
713 * from under us anymore at this point because we hold the mmap_sem
714 * read mode and khugepaged takes it in write mode. So now it's
715 * safe to run pte_offset_map().
716 */
717 pte = pte_offset_map(pmd, address);
718 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
719}
720
721int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
722 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
723 struct vm_area_struct *vma)
724{
725 struct page *src_page;
726 pmd_t pmd;
727 pgtable_t pgtable;
728 int ret;
729
730 ret = -ENOMEM;
731 pgtable = pte_alloc_one(dst_mm, addr);
732 if (unlikely(!pgtable))
733 goto out;
734
735 spin_lock(&dst_mm->page_table_lock);
736 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
737
738 ret = -EAGAIN;
739 pmd = *src_pmd;
740 if (unlikely(!pmd_trans_huge(pmd))) {
741 pte_free(dst_mm, pgtable);
742 goto out_unlock;
743 }
744 if (unlikely(pmd_trans_splitting(pmd))) {
745 /* split huge page running from under us */
746 spin_unlock(&src_mm->page_table_lock);
747 spin_unlock(&dst_mm->page_table_lock);
748 pte_free(dst_mm, pgtable);
749
750 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
751 goto out;
752 }
753 src_page = pmd_page(pmd);
754 VM_BUG_ON(!PageHead(src_page));
755 get_page(src_page);
756 page_dup_rmap(src_page);
757 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
758
759 pmdp_set_wrprotect(src_mm, addr, src_pmd);
760 pmd = pmd_mkold(pmd_wrprotect(pmd));
761 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
762 prepare_pmd_huge_pte(pgtable, dst_mm);
763
764 ret = 0;
765out_unlock:
766 spin_unlock(&src_mm->page_table_lock);
767 spin_unlock(&dst_mm->page_table_lock);
768out:
769 return ret;
770}
771
772/* no "address" argument so destroys page coloring of some arch */
773pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
774{
775 pgtable_t pgtable;
776
777 assert_spin_locked(&mm->page_table_lock);
778
779 /* FIFO */
780 pgtable = mm->pmd_huge_pte;
781 if (list_empty(&pgtable->lru))
782 mm->pmd_huge_pte = NULL;
783 else {
784 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
785 struct page, lru);
786 list_del(&pgtable->lru);
787 }
788 return pgtable;
789}
790
791static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
792 struct vm_area_struct *vma,
793 unsigned long address,
794 pmd_t *pmd, pmd_t orig_pmd,
795 struct page *page,
796 unsigned long haddr)
797{
798 pgtable_t pgtable;
799 pmd_t _pmd;
800 int ret = 0, i;
801 struct page **pages;
802
803 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
804 GFP_KERNEL);
805 if (unlikely(!pages)) {
806 ret |= VM_FAULT_OOM;
807 goto out;
808 }
809
810 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
811 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
812 __GFP_OTHER_NODE,
19ee151e 813 vma, address, page_to_nid(page));
b9bbfbe3
AA
814 if (unlikely(!pages[i] ||
815 mem_cgroup_newpage_charge(pages[i], mm,
816 GFP_KERNEL))) {
817 if (pages[i])
71e3aac0 818 put_page(pages[i]);
b9bbfbe3
AA
819 mem_cgroup_uncharge_start();
820 while (--i >= 0) {
821 mem_cgroup_uncharge_page(pages[i]);
822 put_page(pages[i]);
823 }
824 mem_cgroup_uncharge_end();
71e3aac0
AA
825 kfree(pages);
826 ret |= VM_FAULT_OOM;
827 goto out;
828 }
829 }
830
831 for (i = 0; i < HPAGE_PMD_NR; i++) {
832 copy_user_highpage(pages[i], page + i,
0089e485 833 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
834 __SetPageUptodate(pages[i]);
835 cond_resched();
836 }
837
838 spin_lock(&mm->page_table_lock);
839 if (unlikely(!pmd_same(*pmd, orig_pmd)))
840 goto out_free_pages;
841 VM_BUG_ON(!PageHead(page));
842
843 pmdp_clear_flush_notify(vma, haddr, pmd);
844 /* leave pmd empty until pte is filled */
845
846 pgtable = get_pmd_huge_pte(mm);
847 pmd_populate(mm, &_pmd, pgtable);
848
849 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
850 pte_t *pte, entry;
851 entry = mk_pte(pages[i], vma->vm_page_prot);
852 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
853 page_add_new_anon_rmap(pages[i], vma, haddr);
854 pte = pte_offset_map(&_pmd, haddr);
855 VM_BUG_ON(!pte_none(*pte));
856 set_pte_at(mm, haddr, pte, entry);
857 pte_unmap(pte);
858 }
859 kfree(pages);
860
861 mm->nr_ptes++;
862 smp_wmb(); /* make pte visible before pmd */
863 pmd_populate(mm, pmd, pgtable);
864 page_remove_rmap(page);
865 spin_unlock(&mm->page_table_lock);
866
867 ret |= VM_FAULT_WRITE;
868 put_page(page);
869
870out:
871 return ret;
872
873out_free_pages:
874 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
875 mem_cgroup_uncharge_start();
876 for (i = 0; i < HPAGE_PMD_NR; i++) {
877 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 878 put_page(pages[i]);
b9bbfbe3
AA
879 }
880 mem_cgroup_uncharge_end();
71e3aac0
AA
881 kfree(pages);
882 goto out;
883}
884
885int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
886 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
887{
888 int ret = 0;
889 struct page *page, *new_page;
890 unsigned long haddr;
891
892 VM_BUG_ON(!vma->anon_vma);
893 spin_lock(&mm->page_table_lock);
894 if (unlikely(!pmd_same(*pmd, orig_pmd)))
895 goto out_unlock;
896
897 page = pmd_page(orig_pmd);
898 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
899 haddr = address & HPAGE_PMD_MASK;
900 if (page_mapcount(page) == 1) {
901 pmd_t entry;
902 entry = pmd_mkyoung(orig_pmd);
903 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
904 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
905 update_mmu_cache(vma, address, entry);
906 ret |= VM_FAULT_WRITE;
907 goto out_unlock;
908 }
909 get_page(page);
910 spin_unlock(&mm->page_table_lock);
911
912 if (transparent_hugepage_enabled(vma) &&
913 !transparent_hugepage_debug_cow())
0bbbc0b3 914 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 915 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
916 else
917 new_page = NULL;
918
919 if (unlikely(!new_page)) {
81ab4201 920 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
921 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
922 pmd, orig_pmd, page, haddr);
923 put_page(page);
924 goto out;
925 }
81ab4201 926 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 927
b9bbfbe3
AA
928 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
929 put_page(new_page);
930 put_page(page);
931 ret |= VM_FAULT_OOM;
932 goto out;
933 }
934
71e3aac0
AA
935 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
936 __SetPageUptodate(new_page);
937
938 spin_lock(&mm->page_table_lock);
939 put_page(page);
b9bbfbe3
AA
940 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
941 mem_cgroup_uncharge_page(new_page);
71e3aac0 942 put_page(new_page);
b9bbfbe3 943 } else {
71e3aac0
AA
944 pmd_t entry;
945 VM_BUG_ON(!PageHead(page));
946 entry = mk_pmd(new_page, vma->vm_page_prot);
947 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
948 entry = pmd_mkhuge(entry);
949 pmdp_clear_flush_notify(vma, haddr, pmd);
950 page_add_new_anon_rmap(new_page, vma, haddr);
951 set_pmd_at(mm, haddr, pmd, entry);
952 update_mmu_cache(vma, address, entry);
953 page_remove_rmap(page);
954 put_page(page);
955 ret |= VM_FAULT_WRITE;
956 }
957out_unlock:
958 spin_unlock(&mm->page_table_lock);
959out:
960 return ret;
961}
962
963struct page *follow_trans_huge_pmd(struct mm_struct *mm,
964 unsigned long addr,
965 pmd_t *pmd,
966 unsigned int flags)
967{
968 struct page *page = NULL;
969
970 assert_spin_locked(&mm->page_table_lock);
971
972 if (flags & FOLL_WRITE && !pmd_write(*pmd))
973 goto out;
974
975 page = pmd_page(*pmd);
976 VM_BUG_ON(!PageHead(page));
977 if (flags & FOLL_TOUCH) {
978 pmd_t _pmd;
979 /*
980 * We should set the dirty bit only for FOLL_WRITE but
981 * for now the dirty bit in the pmd is meaningless.
982 * And if the dirty bit will become meaningful and
983 * we'll only set it with FOLL_WRITE, an atomic
984 * set_bit will be required on the pmd to set the
985 * young bit, instead of the current set_pmd_at.
986 */
987 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
988 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
989 }
990 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
991 VM_BUG_ON(!PageCompound(page));
992 if (flags & FOLL_GET)
70b50f94 993 get_page_foll(page);
71e3aac0
AA
994
995out:
996 return page;
997}
998
999int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1000 pmd_t *pmd)
1001{
1002 int ret = 0;
1003
1004 spin_lock(&tlb->mm->page_table_lock);
1005 if (likely(pmd_trans_huge(*pmd))) {
1006 if (unlikely(pmd_trans_splitting(*pmd))) {
1007 spin_unlock(&tlb->mm->page_table_lock);
1008 wait_split_huge_page(vma->anon_vma,
1009 pmd);
1010 } else {
1011 struct page *page;
1012 pgtable_t pgtable;
1013 pgtable = get_pmd_huge_pte(tlb->mm);
1014 page = pmd_page(*pmd);
1015 pmd_clear(pmd);
1016 page_remove_rmap(page);
1017 VM_BUG_ON(page_mapcount(page) < 0);
1018 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1019 VM_BUG_ON(!PageHead(page));
1020 spin_unlock(&tlb->mm->page_table_lock);
1021 tlb_remove_page(tlb, page);
1022 pte_free(tlb->mm, pgtable);
1023 ret = 1;
1024 }
1025 } else
1026 spin_unlock(&tlb->mm->page_table_lock);
1027
1028 return ret;
1029}
1030
0ca1634d
JW
1031int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1032 unsigned long addr, unsigned long end,
1033 unsigned char *vec)
1034{
1035 int ret = 0;
1036
1037 spin_lock(&vma->vm_mm->page_table_lock);
1038 if (likely(pmd_trans_huge(*pmd))) {
1039 ret = !pmd_trans_splitting(*pmd);
1040 spin_unlock(&vma->vm_mm->page_table_lock);
1041 if (unlikely(!ret))
1042 wait_split_huge_page(vma->anon_vma, pmd);
1043 else {
1044 /*
1045 * All logical pages in the range are present
1046 * if backed by a huge page.
1047 */
1048 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1049 }
1050 } else
1051 spin_unlock(&vma->vm_mm->page_table_lock);
1052
1053 return ret;
1054}
1055
37a1c49a
AA
1056int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1057 unsigned long old_addr,
1058 unsigned long new_addr, unsigned long old_end,
1059 pmd_t *old_pmd, pmd_t *new_pmd)
1060{
1061 int ret = 0;
1062 pmd_t pmd;
1063
1064 struct mm_struct *mm = vma->vm_mm;
1065
1066 if ((old_addr & ~HPAGE_PMD_MASK) ||
1067 (new_addr & ~HPAGE_PMD_MASK) ||
1068 old_end - old_addr < HPAGE_PMD_SIZE ||
1069 (new_vma->vm_flags & VM_NOHUGEPAGE))
1070 goto out;
1071
1072 /*
1073 * The destination pmd shouldn't be established, free_pgtables()
1074 * should have release it.
1075 */
1076 if (WARN_ON(!pmd_none(*new_pmd))) {
1077 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1078 goto out;
1079 }
1080
1081 spin_lock(&mm->page_table_lock);
1082 if (likely(pmd_trans_huge(*old_pmd))) {
1083 if (pmd_trans_splitting(*old_pmd)) {
1084 spin_unlock(&mm->page_table_lock);
1085 wait_split_huge_page(vma->anon_vma, old_pmd);
1086 ret = -1;
1087 } else {
1088 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1089 VM_BUG_ON(!pmd_none(*new_pmd));
1090 set_pmd_at(mm, new_addr, new_pmd, pmd);
1091 spin_unlock(&mm->page_table_lock);
1092 ret = 1;
1093 }
1094 } else {
1095 spin_unlock(&mm->page_table_lock);
1096 }
1097out:
1098 return ret;
1099}
1100
cd7548ab
JW
1101int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1102 unsigned long addr, pgprot_t newprot)
1103{
1104 struct mm_struct *mm = vma->vm_mm;
1105 int ret = 0;
1106
1107 spin_lock(&mm->page_table_lock);
1108 if (likely(pmd_trans_huge(*pmd))) {
1109 if (unlikely(pmd_trans_splitting(*pmd))) {
1110 spin_unlock(&mm->page_table_lock);
1111 wait_split_huge_page(vma->anon_vma, pmd);
1112 } else {
1113 pmd_t entry;
1114
1115 entry = pmdp_get_and_clear(mm, addr, pmd);
1116 entry = pmd_modify(entry, newprot);
1117 set_pmd_at(mm, addr, pmd, entry);
1118 spin_unlock(&vma->vm_mm->page_table_lock);
1119 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1120 ret = 1;
1121 }
1122 } else
1123 spin_unlock(&vma->vm_mm->page_table_lock);
1124
1125 return ret;
1126}
1127
71e3aac0
AA
1128pmd_t *page_check_address_pmd(struct page *page,
1129 struct mm_struct *mm,
1130 unsigned long address,
1131 enum page_check_address_pmd_flag flag)
1132{
1133 pgd_t *pgd;
1134 pud_t *pud;
1135 pmd_t *pmd, *ret = NULL;
1136
1137 if (address & ~HPAGE_PMD_MASK)
1138 goto out;
1139
1140 pgd = pgd_offset(mm, address);
1141 if (!pgd_present(*pgd))
1142 goto out;
1143
1144 pud = pud_offset(pgd, address);
1145 if (!pud_present(*pud))
1146 goto out;
1147
1148 pmd = pmd_offset(pud, address);
1149 if (pmd_none(*pmd))
1150 goto out;
1151 if (pmd_page(*pmd) != page)
1152 goto out;
94fcc585
AA
1153 /*
1154 * split_vma() may create temporary aliased mappings. There is
1155 * no risk as long as all huge pmd are found and have their
1156 * splitting bit set before __split_huge_page_refcount
1157 * runs. Finding the same huge pmd more than once during the
1158 * same rmap walk is not a problem.
1159 */
1160 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1161 pmd_trans_splitting(*pmd))
1162 goto out;
71e3aac0
AA
1163 if (pmd_trans_huge(*pmd)) {
1164 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1165 !pmd_trans_splitting(*pmd));
1166 ret = pmd;
1167 }
1168out:
1169 return ret;
1170}
1171
1172static int __split_huge_page_splitting(struct page *page,
1173 struct vm_area_struct *vma,
1174 unsigned long address)
1175{
1176 struct mm_struct *mm = vma->vm_mm;
1177 pmd_t *pmd;
1178 int ret = 0;
1179
1180 spin_lock(&mm->page_table_lock);
1181 pmd = page_check_address_pmd(page, mm, address,
1182 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1183 if (pmd) {
1184 /*
1185 * We can't temporarily set the pmd to null in order
1186 * to split it, the pmd must remain marked huge at all
1187 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1188 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1189 * serialize against split_huge_page*.
1190 */
1191 pmdp_splitting_flush_notify(vma, address, pmd);
1192 ret = 1;
1193 }
1194 spin_unlock(&mm->page_table_lock);
1195
1196 return ret;
1197}
1198
1199static void __split_huge_page_refcount(struct page *page)
1200{
1201 int i;
1202 unsigned long head_index = page->index;
1203 struct zone *zone = page_zone(page);
2c888cfb 1204 int zonestat;
70b50f94 1205 int tail_count = 0;
71e3aac0
AA
1206
1207 /* prevent PageLRU to go away from under us, and freeze lru stats */
1208 spin_lock_irq(&zone->lru_lock);
1209 compound_lock(page);
e94c8a9c
KH
1210 /* complete memcg works before add pages to LRU */
1211 mem_cgroup_split_huge_fixup(page);
71e3aac0
AA
1212
1213 for (i = 1; i < HPAGE_PMD_NR; i++) {
1214 struct page *page_tail = page + i;
1215
70b50f94
AA
1216 /* tail_page->_mapcount cannot change */
1217 BUG_ON(page_mapcount(page_tail) < 0);
1218 tail_count += page_mapcount(page_tail);
1219 /* check for overflow */
1220 BUG_ON(tail_count < 0);
1221 BUG_ON(atomic_read(&page_tail->_count) != 0);
1222 /*
1223 * tail_page->_count is zero and not changing from
1224 * under us. But get_page_unless_zero() may be running
1225 * from under us on the tail_page. If we used
1226 * atomic_set() below instead of atomic_add(), we
1227 * would then run atomic_set() concurrently with
1228 * get_page_unless_zero(), and atomic_set() is
1229 * implemented in C not using locked ops. spin_unlock
1230 * on x86 sometime uses locked ops because of PPro
1231 * errata 66, 92, so unless somebody can guarantee
1232 * atomic_set() here would be safe on all archs (and
1233 * not only on x86), it's safer to use atomic_add().
1234 */
1235 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1236 &page_tail->_count);
71e3aac0
AA
1237
1238 /* after clearing PageTail the gup refcount can be released */
1239 smp_mb();
1240
a6d30ddd
JD
1241 /*
1242 * retain hwpoison flag of the poisoned tail page:
1243 * fix for the unsuitable process killed on Guest Machine(KVM)
1244 * by the memory-failure.
1245 */
1246 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1247 page_tail->flags |= (page->flags &
1248 ((1L << PG_referenced) |
1249 (1L << PG_swapbacked) |
1250 (1L << PG_mlocked) |
1251 (1L << PG_uptodate)));
1252 page_tail->flags |= (1L << PG_dirty);
1253
70b50f94 1254 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1255 smp_wmb();
1256
1257 /*
1258 * __split_huge_page_splitting() already set the
1259 * splitting bit in all pmd that could map this
1260 * hugepage, that will ensure no CPU can alter the
1261 * mapcount on the head page. The mapcount is only
1262 * accounted in the head page and it has to be
1263 * transferred to all tail pages in the below code. So
1264 * for this code to be safe, the split the mapcount
1265 * can't change. But that doesn't mean userland can't
1266 * keep changing and reading the page contents while
1267 * we transfer the mapcount, so the pmd splitting
1268 * status is achieved setting a reserved bit in the
1269 * pmd, not by clearing the present bit.
1270 */
71e3aac0
AA
1271 page_tail->_mapcount = page->_mapcount;
1272
1273 BUG_ON(page_tail->mapping);
1274 page_tail->mapping = page->mapping;
1275
1276 page_tail->index = ++head_index;
1277
1278 BUG_ON(!PageAnon(page_tail));
1279 BUG_ON(!PageUptodate(page_tail));
1280 BUG_ON(!PageDirty(page_tail));
1281 BUG_ON(!PageSwapBacked(page_tail));
1282
ca3e0214 1283
71e3aac0
AA
1284 lru_add_page_tail(zone, page, page_tail);
1285 }
70b50f94
AA
1286 atomic_sub(tail_count, &page->_count);
1287 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1288
79134171
AA
1289 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1290 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1291
2c888cfb
RR
1292 /*
1293 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1294 * so adjust those appropriately if this page is on the LRU.
1295 */
1296 if (PageLRU(page)) {
1297 zonestat = NR_LRU_BASE + page_lru(page);
1298 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1299 }
1300
71e3aac0
AA
1301 ClearPageCompound(page);
1302 compound_unlock(page);
1303 spin_unlock_irq(&zone->lru_lock);
1304
1305 for (i = 1; i < HPAGE_PMD_NR; i++) {
1306 struct page *page_tail = page + i;
1307 BUG_ON(page_count(page_tail) <= 0);
1308 /*
1309 * Tail pages may be freed if there wasn't any mapping
1310 * like if add_to_swap() is running on a lru page that
1311 * had its mapping zapped. And freeing these pages
1312 * requires taking the lru_lock so we do the put_page
1313 * of the tail pages after the split is complete.
1314 */
1315 put_page(page_tail);
1316 }
1317
1318 /*
1319 * Only the head page (now become a regular page) is required
1320 * to be pinned by the caller.
1321 */
1322 BUG_ON(page_count(page) <= 0);
1323}
1324
1325static int __split_huge_page_map(struct page *page,
1326 struct vm_area_struct *vma,
1327 unsigned long address)
1328{
1329 struct mm_struct *mm = vma->vm_mm;
1330 pmd_t *pmd, _pmd;
1331 int ret = 0, i;
1332 pgtable_t pgtable;
1333 unsigned long haddr;
1334
1335 spin_lock(&mm->page_table_lock);
1336 pmd = page_check_address_pmd(page, mm, address,
1337 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1338 if (pmd) {
1339 pgtable = get_pmd_huge_pte(mm);
1340 pmd_populate(mm, &_pmd, pgtable);
1341
1342 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1343 i++, haddr += PAGE_SIZE) {
1344 pte_t *pte, entry;
1345 BUG_ON(PageCompound(page+i));
1346 entry = mk_pte(page + i, vma->vm_page_prot);
1347 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1348 if (!pmd_write(*pmd))
1349 entry = pte_wrprotect(entry);
1350 else
1351 BUG_ON(page_mapcount(page) != 1);
1352 if (!pmd_young(*pmd))
1353 entry = pte_mkold(entry);
1354 pte = pte_offset_map(&_pmd, haddr);
1355 BUG_ON(!pte_none(*pte));
1356 set_pte_at(mm, haddr, pte, entry);
1357 pte_unmap(pte);
1358 }
1359
1360 mm->nr_ptes++;
1361 smp_wmb(); /* make pte visible before pmd */
1362 /*
1363 * Up to this point the pmd is present and huge and
1364 * userland has the whole access to the hugepage
1365 * during the split (which happens in place). If we
1366 * overwrite the pmd with the not-huge version
1367 * pointing to the pte here (which of course we could
1368 * if all CPUs were bug free), userland could trigger
1369 * a small page size TLB miss on the small sized TLB
1370 * while the hugepage TLB entry is still established
1371 * in the huge TLB. Some CPU doesn't like that. See
1372 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1373 * Erratum 383 on page 93. Intel should be safe but is
1374 * also warns that it's only safe if the permission
1375 * and cache attributes of the two entries loaded in
1376 * the two TLB is identical (which should be the case
1377 * here). But it is generally safer to never allow
1378 * small and huge TLB entries for the same virtual
1379 * address to be loaded simultaneously. So instead of
1380 * doing "pmd_populate(); flush_tlb_range();" we first
1381 * mark the current pmd notpresent (atomically because
1382 * here the pmd_trans_huge and pmd_trans_splitting
1383 * must remain set at all times on the pmd until the
1384 * split is complete for this pmd), then we flush the
1385 * SMP TLB and finally we write the non-huge version
1386 * of the pmd entry with pmd_populate.
1387 */
1388 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1389 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1390 pmd_populate(mm, pmd, pgtable);
1391 ret = 1;
1392 }
1393 spin_unlock(&mm->page_table_lock);
1394
1395 return ret;
1396}
1397
2b575eb6 1398/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1399static void __split_huge_page(struct page *page,
1400 struct anon_vma *anon_vma)
1401{
1402 int mapcount, mapcount2;
1403 struct anon_vma_chain *avc;
1404
1405 BUG_ON(!PageHead(page));
1406 BUG_ON(PageTail(page));
1407
1408 mapcount = 0;
1409 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1410 struct vm_area_struct *vma = avc->vma;
1411 unsigned long addr = vma_address(page, vma);
1412 BUG_ON(is_vma_temporary_stack(vma));
1413 if (addr == -EFAULT)
1414 continue;
1415 mapcount += __split_huge_page_splitting(page, vma, addr);
1416 }
05759d38
AA
1417 /*
1418 * It is critical that new vmas are added to the tail of the
1419 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1420 * and establishes a child pmd before
1421 * __split_huge_page_splitting() freezes the parent pmd (so if
1422 * we fail to prevent copy_huge_pmd() from running until the
1423 * whole __split_huge_page() is complete), we will still see
1424 * the newly established pmd of the child later during the
1425 * walk, to be able to set it as pmd_trans_splitting too.
1426 */
1427 if (mapcount != page_mapcount(page))
1428 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1429 mapcount, page_mapcount(page));
71e3aac0
AA
1430 BUG_ON(mapcount != page_mapcount(page));
1431
1432 __split_huge_page_refcount(page);
1433
1434 mapcount2 = 0;
1435 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1436 struct vm_area_struct *vma = avc->vma;
1437 unsigned long addr = vma_address(page, vma);
1438 BUG_ON(is_vma_temporary_stack(vma));
1439 if (addr == -EFAULT)
1440 continue;
1441 mapcount2 += __split_huge_page_map(page, vma, addr);
1442 }
05759d38
AA
1443 if (mapcount != mapcount2)
1444 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1445 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1446 BUG_ON(mapcount != mapcount2);
1447}
1448
1449int split_huge_page(struct page *page)
1450{
1451 struct anon_vma *anon_vma;
1452 int ret = 1;
1453
1454 BUG_ON(!PageAnon(page));
1455 anon_vma = page_lock_anon_vma(page);
1456 if (!anon_vma)
1457 goto out;
1458 ret = 0;
1459 if (!PageCompound(page))
1460 goto out_unlock;
1461
1462 BUG_ON(!PageSwapBacked(page));
1463 __split_huge_page(page, anon_vma);
81ab4201 1464 count_vm_event(THP_SPLIT);
71e3aac0
AA
1465
1466 BUG_ON(PageCompound(page));
1467out_unlock:
1468 page_unlock_anon_vma(anon_vma);
1469out:
1470 return ret;
1471}
1472
78f11a25
AA
1473#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1474 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1475
60ab3244
AA
1476int hugepage_madvise(struct vm_area_struct *vma,
1477 unsigned long *vm_flags, int advice)
0af4e98b 1478{
a664b2d8
AA
1479 switch (advice) {
1480 case MADV_HUGEPAGE:
1481 /*
1482 * Be somewhat over-protective like KSM for now!
1483 */
78f11a25 1484 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1485 return -EINVAL;
1486 *vm_flags &= ~VM_NOHUGEPAGE;
1487 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1488 /*
1489 * If the vma become good for khugepaged to scan,
1490 * register it here without waiting a page fault that
1491 * may not happen any time soon.
1492 */
1493 if (unlikely(khugepaged_enter_vma_merge(vma)))
1494 return -ENOMEM;
a664b2d8
AA
1495 break;
1496 case MADV_NOHUGEPAGE:
1497 /*
1498 * Be somewhat over-protective like KSM for now!
1499 */
78f11a25 1500 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1501 return -EINVAL;
1502 *vm_flags &= ~VM_HUGEPAGE;
1503 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1504 /*
1505 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1506 * this vma even if we leave the mm registered in khugepaged if
1507 * it got registered before VM_NOHUGEPAGE was set.
1508 */
a664b2d8
AA
1509 break;
1510 }
0af4e98b
AA
1511
1512 return 0;
1513}
1514
ba76149f
AA
1515static int __init khugepaged_slab_init(void)
1516{
1517 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1518 sizeof(struct mm_slot),
1519 __alignof__(struct mm_slot), 0, NULL);
1520 if (!mm_slot_cache)
1521 return -ENOMEM;
1522
1523 return 0;
1524}
1525
1526static void __init khugepaged_slab_free(void)
1527{
1528 kmem_cache_destroy(mm_slot_cache);
1529 mm_slot_cache = NULL;
1530}
1531
1532static inline struct mm_slot *alloc_mm_slot(void)
1533{
1534 if (!mm_slot_cache) /* initialization failed */
1535 return NULL;
1536 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1537}
1538
1539static inline void free_mm_slot(struct mm_slot *mm_slot)
1540{
1541 kmem_cache_free(mm_slot_cache, mm_slot);
1542}
1543
1544static int __init mm_slots_hash_init(void)
1545{
1546 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1547 GFP_KERNEL);
1548 if (!mm_slots_hash)
1549 return -ENOMEM;
1550 return 0;
1551}
1552
1553#if 0
1554static void __init mm_slots_hash_free(void)
1555{
1556 kfree(mm_slots_hash);
1557 mm_slots_hash = NULL;
1558}
1559#endif
1560
1561static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1562{
1563 struct mm_slot *mm_slot;
1564 struct hlist_head *bucket;
1565 struct hlist_node *node;
1566
1567 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1568 % MM_SLOTS_HASH_HEADS];
1569 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1570 if (mm == mm_slot->mm)
1571 return mm_slot;
1572 }
1573 return NULL;
1574}
1575
1576static void insert_to_mm_slots_hash(struct mm_struct *mm,
1577 struct mm_slot *mm_slot)
1578{
1579 struct hlist_head *bucket;
1580
1581 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1582 % MM_SLOTS_HASH_HEADS];
1583 mm_slot->mm = mm;
1584 hlist_add_head(&mm_slot->hash, bucket);
1585}
1586
1587static inline int khugepaged_test_exit(struct mm_struct *mm)
1588{
1589 return atomic_read(&mm->mm_users) == 0;
1590}
1591
1592int __khugepaged_enter(struct mm_struct *mm)
1593{
1594 struct mm_slot *mm_slot;
1595 int wakeup;
1596
1597 mm_slot = alloc_mm_slot();
1598 if (!mm_slot)
1599 return -ENOMEM;
1600
1601 /* __khugepaged_exit() must not run from under us */
1602 VM_BUG_ON(khugepaged_test_exit(mm));
1603 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1604 free_mm_slot(mm_slot);
1605 return 0;
1606 }
1607
1608 spin_lock(&khugepaged_mm_lock);
1609 insert_to_mm_slots_hash(mm, mm_slot);
1610 /*
1611 * Insert just behind the scanning cursor, to let the area settle
1612 * down a little.
1613 */
1614 wakeup = list_empty(&khugepaged_scan.mm_head);
1615 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1616 spin_unlock(&khugepaged_mm_lock);
1617
1618 atomic_inc(&mm->mm_count);
1619 if (wakeup)
1620 wake_up_interruptible(&khugepaged_wait);
1621
1622 return 0;
1623}
1624
1625int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1626{
1627 unsigned long hstart, hend;
1628 if (!vma->anon_vma)
1629 /*
1630 * Not yet faulted in so we will register later in the
1631 * page fault if needed.
1632 */
1633 return 0;
78f11a25 1634 if (vma->vm_ops)
ba76149f
AA
1635 /* khugepaged not yet working on file or special mappings */
1636 return 0;
78f11a25
AA
1637 /*
1638 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1639 * true too, verify it here.
1640 */
1641 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
ba76149f
AA
1642 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1643 hend = vma->vm_end & HPAGE_PMD_MASK;
1644 if (hstart < hend)
1645 return khugepaged_enter(vma);
1646 return 0;
1647}
1648
1649void __khugepaged_exit(struct mm_struct *mm)
1650{
1651 struct mm_slot *mm_slot;
1652 int free = 0;
1653
1654 spin_lock(&khugepaged_mm_lock);
1655 mm_slot = get_mm_slot(mm);
1656 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1657 hlist_del(&mm_slot->hash);
1658 list_del(&mm_slot->mm_node);
1659 free = 1;
1660 }
d788e80a 1661 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1662
1663 if (free) {
ba76149f
AA
1664 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1665 free_mm_slot(mm_slot);
1666 mmdrop(mm);
1667 } else if (mm_slot) {
ba76149f
AA
1668 /*
1669 * This is required to serialize against
1670 * khugepaged_test_exit() (which is guaranteed to run
1671 * under mmap sem read mode). Stop here (after we
1672 * return all pagetables will be destroyed) until
1673 * khugepaged has finished working on the pagetables
1674 * under the mmap_sem.
1675 */
1676 down_write(&mm->mmap_sem);
1677 up_write(&mm->mmap_sem);
d788e80a 1678 }
ba76149f
AA
1679}
1680
1681static void release_pte_page(struct page *page)
1682{
1683 /* 0 stands for page_is_file_cache(page) == false */
1684 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1685 unlock_page(page);
1686 putback_lru_page(page);
1687}
1688
1689static void release_pte_pages(pte_t *pte, pte_t *_pte)
1690{
1691 while (--_pte >= pte) {
1692 pte_t pteval = *_pte;
1693 if (!pte_none(pteval))
1694 release_pte_page(pte_page(pteval));
1695 }
1696}
1697
1698static void release_all_pte_pages(pte_t *pte)
1699{
1700 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1701}
1702
1703static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1704 unsigned long address,
1705 pte_t *pte)
1706{
1707 struct page *page;
1708 pte_t *_pte;
1709 int referenced = 0, isolated = 0, none = 0;
1710 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1711 _pte++, address += PAGE_SIZE) {
1712 pte_t pteval = *_pte;
1713 if (pte_none(pteval)) {
1714 if (++none <= khugepaged_max_ptes_none)
1715 continue;
1716 else {
1717 release_pte_pages(pte, _pte);
1718 goto out;
1719 }
1720 }
1721 if (!pte_present(pteval) || !pte_write(pteval)) {
1722 release_pte_pages(pte, _pte);
1723 goto out;
1724 }
1725 page = vm_normal_page(vma, address, pteval);
1726 if (unlikely(!page)) {
1727 release_pte_pages(pte, _pte);
1728 goto out;
1729 }
1730 VM_BUG_ON(PageCompound(page));
1731 BUG_ON(!PageAnon(page));
1732 VM_BUG_ON(!PageSwapBacked(page));
1733
1734 /* cannot use mapcount: can't collapse if there's a gup pin */
1735 if (page_count(page) != 1) {
1736 release_pte_pages(pte, _pte);
1737 goto out;
1738 }
1739 /*
1740 * We can do it before isolate_lru_page because the
1741 * page can't be freed from under us. NOTE: PG_lock
1742 * is needed to serialize against split_huge_page
1743 * when invoked from the VM.
1744 */
1745 if (!trylock_page(page)) {
1746 release_pte_pages(pte, _pte);
1747 goto out;
1748 }
1749 /*
1750 * Isolate the page to avoid collapsing an hugepage
1751 * currently in use by the VM.
1752 */
1753 if (isolate_lru_page(page)) {
1754 unlock_page(page);
1755 release_pte_pages(pte, _pte);
1756 goto out;
1757 }
1758 /* 0 stands for page_is_file_cache(page) == false */
1759 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1760 VM_BUG_ON(!PageLocked(page));
1761 VM_BUG_ON(PageLRU(page));
1762
1763 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1764 if (pte_young(pteval) || PageReferenced(page) ||
1765 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1766 referenced = 1;
1767 }
1768 if (unlikely(!referenced))
1769 release_all_pte_pages(pte);
1770 else
1771 isolated = 1;
1772out:
1773 return isolated;
1774}
1775
1776static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1777 struct vm_area_struct *vma,
1778 unsigned long address,
1779 spinlock_t *ptl)
1780{
1781 pte_t *_pte;
1782 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1783 pte_t pteval = *_pte;
1784 struct page *src_page;
1785
1786 if (pte_none(pteval)) {
1787 clear_user_highpage(page, address);
1788 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1789 } else {
1790 src_page = pte_page(pteval);
1791 copy_user_highpage(page, src_page, address, vma);
1792 VM_BUG_ON(page_mapcount(src_page) != 1);
1793 VM_BUG_ON(page_count(src_page) != 2);
1794 release_pte_page(src_page);
1795 /*
1796 * ptl mostly unnecessary, but preempt has to
1797 * be disabled to update the per-cpu stats
1798 * inside page_remove_rmap().
1799 */
1800 spin_lock(ptl);
1801 /*
1802 * paravirt calls inside pte_clear here are
1803 * superfluous.
1804 */
1805 pte_clear(vma->vm_mm, address, _pte);
1806 page_remove_rmap(src_page);
1807 spin_unlock(ptl);
1808 free_page_and_swap_cache(src_page);
1809 }
1810
1811 address += PAGE_SIZE;
1812 page++;
1813 }
1814}
1815
1816static void collapse_huge_page(struct mm_struct *mm,
1817 unsigned long address,
ce83d217 1818 struct page **hpage,
5c4b4be3
AK
1819 struct vm_area_struct *vma,
1820 int node)
ba76149f 1821{
ba76149f
AA
1822 pgd_t *pgd;
1823 pud_t *pud;
1824 pmd_t *pmd, _pmd;
1825 pte_t *pte;
1826 pgtable_t pgtable;
1827 struct page *new_page;
1828 spinlock_t *ptl;
1829 int isolated;
1830 unsigned long hstart, hend;
1831
1832 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0bbbc0b3 1833#ifndef CONFIG_NUMA
692e0b35 1834 up_read(&mm->mmap_sem);
ba76149f 1835 VM_BUG_ON(!*hpage);
ce83d217 1836 new_page = *hpage;
0bbbc0b3
AA
1837#else
1838 VM_BUG_ON(*hpage);
ce83d217
AA
1839 /*
1840 * Allocate the page while the vma is still valid and under
1841 * the mmap_sem read mode so there is no memory allocation
1842 * later when we take the mmap_sem in write mode. This is more
1843 * friendly behavior (OTOH it may actually hide bugs) to
1844 * filesystems in userland with daemons allocating memory in
1845 * the userland I/O paths. Allocating memory with the
1846 * mmap_sem in read mode is good idea also to allow greater
1847 * scalability.
1848 */
5c4b4be3 1849 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1850 node, __GFP_OTHER_NODE);
692e0b35
AA
1851
1852 /*
1853 * After allocating the hugepage, release the mmap_sem read lock in
1854 * preparation for taking it in write mode.
1855 */
1856 up_read(&mm->mmap_sem);
ce83d217 1857 if (unlikely(!new_page)) {
81ab4201 1858 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217
AA
1859 *hpage = ERR_PTR(-ENOMEM);
1860 return;
1861 }
692e0b35
AA
1862#endif
1863
81ab4201 1864 count_vm_event(THP_COLLAPSE_ALLOC);
ce83d217 1865 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
692e0b35 1866#ifdef CONFIG_NUMA
ce83d217 1867 put_page(new_page);
692e0b35 1868#endif
ce83d217
AA
1869 return;
1870 }
ba76149f
AA
1871
1872 /*
1873 * Prevent all access to pagetables with the exception of
1874 * gup_fast later hanlded by the ptep_clear_flush and the VM
1875 * handled by the anon_vma lock + PG_lock.
1876 */
1877 down_write(&mm->mmap_sem);
1878 if (unlikely(khugepaged_test_exit(mm)))
1879 goto out;
1880
1881 vma = find_vma(mm, address);
1882 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1883 hend = vma->vm_end & HPAGE_PMD_MASK;
1884 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1885 goto out;
1886
60ab3244
AA
1887 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1888 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1889 goto out;
1890
78f11a25 1891 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1892 goto out;
a7d6e4ec
AA
1893 if (is_vma_temporary_stack(vma))
1894 goto out;
78f11a25
AA
1895 /*
1896 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1897 * true too, verify it here.
1898 */
1899 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
ba76149f
AA
1900
1901 pgd = pgd_offset(mm, address);
1902 if (!pgd_present(*pgd))
1903 goto out;
1904
1905 pud = pud_offset(pgd, address);
1906 if (!pud_present(*pud))
1907 goto out;
1908
1909 pmd = pmd_offset(pud, address);
1910 /* pmd can't go away or become huge under us */
1911 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1912 goto out;
1913
ba76149f
AA
1914 anon_vma_lock(vma->anon_vma);
1915
1916 pte = pte_offset_map(pmd, address);
1917 ptl = pte_lockptr(mm, pmd);
1918
1919 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1920 /*
1921 * After this gup_fast can't run anymore. This also removes
1922 * any huge TLB entry from the CPU so we won't allow
1923 * huge and small TLB entries for the same virtual address
1924 * to avoid the risk of CPU bugs in that area.
1925 */
1926 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1927 spin_unlock(&mm->page_table_lock);
1928
1929 spin_lock(ptl);
1930 isolated = __collapse_huge_page_isolate(vma, address, pte);
1931 spin_unlock(ptl);
ba76149f
AA
1932
1933 if (unlikely(!isolated)) {
453c7192 1934 pte_unmap(pte);
ba76149f
AA
1935 spin_lock(&mm->page_table_lock);
1936 BUG_ON(!pmd_none(*pmd));
1937 set_pmd_at(mm, address, pmd, _pmd);
1938 spin_unlock(&mm->page_table_lock);
1939 anon_vma_unlock(vma->anon_vma);
ce83d217 1940 goto out;
ba76149f
AA
1941 }
1942
1943 /*
1944 * All pages are isolated and locked so anon_vma rmap
1945 * can't run anymore.
1946 */
1947 anon_vma_unlock(vma->anon_vma);
1948
1949 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 1950 pte_unmap(pte);
ba76149f
AA
1951 __SetPageUptodate(new_page);
1952 pgtable = pmd_pgtable(_pmd);
1953 VM_BUG_ON(page_count(pgtable) != 1);
1954 VM_BUG_ON(page_mapcount(pgtable) != 0);
1955
1956 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1957 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1958 _pmd = pmd_mkhuge(_pmd);
1959
1960 /*
1961 * spin_lock() below is not the equivalent of smp_wmb(), so
1962 * this is needed to avoid the copy_huge_page writes to become
1963 * visible after the set_pmd_at() write.
1964 */
1965 smp_wmb();
1966
1967 spin_lock(&mm->page_table_lock);
1968 BUG_ON(!pmd_none(*pmd));
1969 page_add_new_anon_rmap(new_page, vma, address);
1970 set_pmd_at(mm, address, pmd, _pmd);
35d8c7ad 1971 update_mmu_cache(vma, address, _pmd);
ba76149f
AA
1972 prepare_pmd_huge_pte(pgtable, mm);
1973 mm->nr_ptes--;
1974 spin_unlock(&mm->page_table_lock);
1975
0bbbc0b3 1976#ifndef CONFIG_NUMA
ba76149f 1977 *hpage = NULL;
0bbbc0b3 1978#endif
ba76149f 1979 khugepaged_pages_collapsed++;
ce83d217 1980out_up_write:
ba76149f 1981 up_write(&mm->mmap_sem);
0bbbc0b3
AA
1982 return;
1983
ce83d217 1984out:
678ff896 1985 mem_cgroup_uncharge_page(new_page);
0bbbc0b3
AA
1986#ifdef CONFIG_NUMA
1987 put_page(new_page);
1988#endif
ce83d217 1989 goto out_up_write;
ba76149f
AA
1990}
1991
1992static int khugepaged_scan_pmd(struct mm_struct *mm,
1993 struct vm_area_struct *vma,
1994 unsigned long address,
1995 struct page **hpage)
1996{
1997 pgd_t *pgd;
1998 pud_t *pud;
1999 pmd_t *pmd;
2000 pte_t *pte, *_pte;
2001 int ret = 0, referenced = 0, none = 0;
2002 struct page *page;
2003 unsigned long _address;
2004 spinlock_t *ptl;
5c4b4be3 2005 int node = -1;
ba76149f
AA
2006
2007 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2008
2009 pgd = pgd_offset(mm, address);
2010 if (!pgd_present(*pgd))
2011 goto out;
2012
2013 pud = pud_offset(pgd, address);
2014 if (!pud_present(*pud))
2015 goto out;
2016
2017 pmd = pmd_offset(pud, address);
2018 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2019 goto out;
2020
2021 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2022 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2023 _pte++, _address += PAGE_SIZE) {
2024 pte_t pteval = *_pte;
2025 if (pte_none(pteval)) {
2026 if (++none <= khugepaged_max_ptes_none)
2027 continue;
2028 else
2029 goto out_unmap;
2030 }
2031 if (!pte_present(pteval) || !pte_write(pteval))
2032 goto out_unmap;
2033 page = vm_normal_page(vma, _address, pteval);
2034 if (unlikely(!page))
2035 goto out_unmap;
5c4b4be3
AK
2036 /*
2037 * Chose the node of the first page. This could
2038 * be more sophisticated and look at more pages,
2039 * but isn't for now.
2040 */
2041 if (node == -1)
2042 node = page_to_nid(page);
ba76149f
AA
2043 VM_BUG_ON(PageCompound(page));
2044 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2045 goto out_unmap;
2046 /* cannot use mapcount: can't collapse if there's a gup pin */
2047 if (page_count(page) != 1)
2048 goto out_unmap;
8ee53820
AA
2049 if (pte_young(pteval) || PageReferenced(page) ||
2050 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2051 referenced = 1;
2052 }
2053 if (referenced)
2054 ret = 1;
2055out_unmap:
2056 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2057 if (ret)
2058 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2059 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2060out:
2061 return ret;
2062}
2063
2064static void collect_mm_slot(struct mm_slot *mm_slot)
2065{
2066 struct mm_struct *mm = mm_slot->mm;
2067
2068 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2069
2070 if (khugepaged_test_exit(mm)) {
2071 /* free mm_slot */
2072 hlist_del(&mm_slot->hash);
2073 list_del(&mm_slot->mm_node);
2074
2075 /*
2076 * Not strictly needed because the mm exited already.
2077 *
2078 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2079 */
2080
2081 /* khugepaged_mm_lock actually not necessary for the below */
2082 free_mm_slot(mm_slot);
2083 mmdrop(mm);
2084 }
2085}
2086
2087static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2088 struct page **hpage)
2f1da642
HS
2089 __releases(&khugepaged_mm_lock)
2090 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2091{
2092 struct mm_slot *mm_slot;
2093 struct mm_struct *mm;
2094 struct vm_area_struct *vma;
2095 int progress = 0;
2096
2097 VM_BUG_ON(!pages);
2098 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2099
2100 if (khugepaged_scan.mm_slot)
2101 mm_slot = khugepaged_scan.mm_slot;
2102 else {
2103 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2104 struct mm_slot, mm_node);
2105 khugepaged_scan.address = 0;
2106 khugepaged_scan.mm_slot = mm_slot;
2107 }
2108 spin_unlock(&khugepaged_mm_lock);
2109
2110 mm = mm_slot->mm;
2111 down_read(&mm->mmap_sem);
2112 if (unlikely(khugepaged_test_exit(mm)))
2113 vma = NULL;
2114 else
2115 vma = find_vma(mm, khugepaged_scan.address);
2116
2117 progress++;
2118 for (; vma; vma = vma->vm_next) {
2119 unsigned long hstart, hend;
2120
2121 cond_resched();
2122 if (unlikely(khugepaged_test_exit(mm))) {
2123 progress++;
2124 break;
2125 }
2126
60ab3244
AA
2127 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2128 !khugepaged_always()) ||
2129 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2130 skip:
ba76149f
AA
2131 progress++;
2132 continue;
2133 }
78f11a25 2134 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2135 goto skip;
2136 if (is_vma_temporary_stack(vma))
2137 goto skip;
78f11a25
AA
2138 /*
2139 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2140 * must be true too, verify it here.
2141 */
2142 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2143 vma->vm_flags & VM_NO_THP);
ba76149f
AA
2144
2145 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2146 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2147 if (hstart >= hend)
2148 goto skip;
2149 if (khugepaged_scan.address > hend)
2150 goto skip;
ba76149f
AA
2151 if (khugepaged_scan.address < hstart)
2152 khugepaged_scan.address = hstart;
a7d6e4ec 2153 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2154
2155 while (khugepaged_scan.address < hend) {
2156 int ret;
2157 cond_resched();
2158 if (unlikely(khugepaged_test_exit(mm)))
2159 goto breakouterloop;
2160
2161 VM_BUG_ON(khugepaged_scan.address < hstart ||
2162 khugepaged_scan.address + HPAGE_PMD_SIZE >
2163 hend);
2164 ret = khugepaged_scan_pmd(mm, vma,
2165 khugepaged_scan.address,
2166 hpage);
2167 /* move to next address */
2168 khugepaged_scan.address += HPAGE_PMD_SIZE;
2169 progress += HPAGE_PMD_NR;
2170 if (ret)
2171 /* we released mmap_sem so break loop */
2172 goto breakouterloop_mmap_sem;
2173 if (progress >= pages)
2174 goto breakouterloop;
2175 }
2176 }
2177breakouterloop:
2178 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2179breakouterloop_mmap_sem:
2180
2181 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2182 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2183 /*
2184 * Release the current mm_slot if this mm is about to die, or
2185 * if we scanned all vmas of this mm.
2186 */
2187 if (khugepaged_test_exit(mm) || !vma) {
2188 /*
2189 * Make sure that if mm_users is reaching zero while
2190 * khugepaged runs here, khugepaged_exit will find
2191 * mm_slot not pointing to the exiting mm.
2192 */
2193 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2194 khugepaged_scan.mm_slot = list_entry(
2195 mm_slot->mm_node.next,
2196 struct mm_slot, mm_node);
2197 khugepaged_scan.address = 0;
2198 } else {
2199 khugepaged_scan.mm_slot = NULL;
2200 khugepaged_full_scans++;
2201 }
2202
2203 collect_mm_slot(mm_slot);
2204 }
2205
2206 return progress;
2207}
2208
2209static int khugepaged_has_work(void)
2210{
2211 return !list_empty(&khugepaged_scan.mm_head) &&
2212 khugepaged_enabled();
2213}
2214
2215static int khugepaged_wait_event(void)
2216{
2217 return !list_empty(&khugepaged_scan.mm_head) ||
2218 !khugepaged_enabled();
2219}
2220
2221static void khugepaged_do_scan(struct page **hpage)
2222{
2223 unsigned int progress = 0, pass_through_head = 0;
2224 unsigned int pages = khugepaged_pages_to_scan;
2225
2226 barrier(); /* write khugepaged_pages_to_scan to local stack */
2227
2228 while (progress < pages) {
2229 cond_resched();
2230
0bbbc0b3 2231#ifndef CONFIG_NUMA
ba76149f
AA
2232 if (!*hpage) {
2233 *hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2234 if (unlikely(!*hpage)) {
2235 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ba76149f 2236 break;
81ab4201
AK
2237 }
2238 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f 2239 }
0bbbc0b3
AA
2240#else
2241 if (IS_ERR(*hpage))
2242 break;
2243#endif
ba76149f 2244
878aee7d
AA
2245 if (unlikely(kthread_should_stop() || freezing(current)))
2246 break;
2247
ba76149f
AA
2248 spin_lock(&khugepaged_mm_lock);
2249 if (!khugepaged_scan.mm_slot)
2250 pass_through_head++;
2251 if (khugepaged_has_work() &&
2252 pass_through_head < 2)
2253 progress += khugepaged_scan_mm_slot(pages - progress,
2254 hpage);
2255 else
2256 progress = pages;
2257 spin_unlock(&khugepaged_mm_lock);
2258 }
2259}
2260
0bbbc0b3
AA
2261static void khugepaged_alloc_sleep(void)
2262{
1dfb059b
AA
2263 wait_event_freezable_timeout(khugepaged_wait, false,
2264 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
0bbbc0b3
AA
2265}
2266
2267#ifndef CONFIG_NUMA
ba76149f
AA
2268static struct page *khugepaged_alloc_hugepage(void)
2269{
2270 struct page *hpage;
2271
2272 do {
2273 hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2274 if (!hpage) {
2275 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
0bbbc0b3 2276 khugepaged_alloc_sleep();
81ab4201
AK
2277 } else
2278 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f
AA
2279 } while (unlikely(!hpage) &&
2280 likely(khugepaged_enabled()));
2281 return hpage;
2282}
0bbbc0b3 2283#endif
ba76149f
AA
2284
2285static void khugepaged_loop(void)
2286{
2287 struct page *hpage;
2288
0bbbc0b3
AA
2289#ifdef CONFIG_NUMA
2290 hpage = NULL;
2291#endif
ba76149f 2292 while (likely(khugepaged_enabled())) {
0bbbc0b3 2293#ifndef CONFIG_NUMA
ba76149f 2294 hpage = khugepaged_alloc_hugepage();
f300ea49 2295 if (unlikely(!hpage))
ba76149f 2296 break;
0bbbc0b3
AA
2297#else
2298 if (IS_ERR(hpage)) {
2299 khugepaged_alloc_sleep();
2300 hpage = NULL;
2301 }
2302#endif
ba76149f
AA
2303
2304 khugepaged_do_scan(&hpage);
0bbbc0b3 2305#ifndef CONFIG_NUMA
ba76149f
AA
2306 if (hpage)
2307 put_page(hpage);
0bbbc0b3 2308#endif
878aee7d
AA
2309 try_to_freeze();
2310 if (unlikely(kthread_should_stop()))
2311 break;
ba76149f 2312 if (khugepaged_has_work()) {
ba76149f
AA
2313 if (!khugepaged_scan_sleep_millisecs)
2314 continue;
1dfb059b
AA
2315 wait_event_freezable_timeout(khugepaged_wait, false,
2316 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
ba76149f 2317 } else if (khugepaged_enabled())
878aee7d
AA
2318 wait_event_freezable(khugepaged_wait,
2319 khugepaged_wait_event());
ba76149f
AA
2320 }
2321}
2322
2323static int khugepaged(void *none)
2324{
2325 struct mm_slot *mm_slot;
2326
878aee7d 2327 set_freezable();
ba76149f
AA
2328 set_user_nice(current, 19);
2329
2330 /* serialize with start_khugepaged() */
2331 mutex_lock(&khugepaged_mutex);
2332
2333 for (;;) {
2334 mutex_unlock(&khugepaged_mutex);
a7d6e4ec 2335 VM_BUG_ON(khugepaged_thread != current);
ba76149f 2336 khugepaged_loop();
a7d6e4ec 2337 VM_BUG_ON(khugepaged_thread != current);
ba76149f
AA
2338
2339 mutex_lock(&khugepaged_mutex);
2340 if (!khugepaged_enabled())
2341 break;
878aee7d
AA
2342 if (unlikely(kthread_should_stop()))
2343 break;
ba76149f
AA
2344 }
2345
2346 spin_lock(&khugepaged_mm_lock);
2347 mm_slot = khugepaged_scan.mm_slot;
2348 khugepaged_scan.mm_slot = NULL;
2349 if (mm_slot)
2350 collect_mm_slot(mm_slot);
2351 spin_unlock(&khugepaged_mm_lock);
2352
2353 khugepaged_thread = NULL;
2354 mutex_unlock(&khugepaged_mutex);
2355
2356 return 0;
2357}
2358
71e3aac0
AA
2359void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2360{
2361 struct page *page;
2362
2363 spin_lock(&mm->page_table_lock);
2364 if (unlikely(!pmd_trans_huge(*pmd))) {
2365 spin_unlock(&mm->page_table_lock);
2366 return;
2367 }
2368 page = pmd_page(*pmd);
2369 VM_BUG_ON(!page_count(page));
2370 get_page(page);
2371 spin_unlock(&mm->page_table_lock);
2372
2373 split_huge_page(page);
2374
2375 put_page(page);
2376 BUG_ON(pmd_trans_huge(*pmd));
2377}
94fcc585
AA
2378
2379static void split_huge_page_address(struct mm_struct *mm,
2380 unsigned long address)
2381{
2382 pgd_t *pgd;
2383 pud_t *pud;
2384 pmd_t *pmd;
2385
2386 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2387
2388 pgd = pgd_offset(mm, address);
2389 if (!pgd_present(*pgd))
2390 return;
2391
2392 pud = pud_offset(pgd, address);
2393 if (!pud_present(*pud))
2394 return;
2395
2396 pmd = pmd_offset(pud, address);
2397 if (!pmd_present(*pmd))
2398 return;
2399 /*
2400 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2401 * materialize from under us.
2402 */
2403 split_huge_page_pmd(mm, pmd);
2404}
2405
2406void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2407 unsigned long start,
2408 unsigned long end,
2409 long adjust_next)
2410{
2411 /*
2412 * If the new start address isn't hpage aligned and it could
2413 * previously contain an hugepage: check if we need to split
2414 * an huge pmd.
2415 */
2416 if (start & ~HPAGE_PMD_MASK &&
2417 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2418 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2419 split_huge_page_address(vma->vm_mm, start);
2420
2421 /*
2422 * If the new end address isn't hpage aligned and it could
2423 * previously contain an hugepage: check if we need to split
2424 * an huge pmd.
2425 */
2426 if (end & ~HPAGE_PMD_MASK &&
2427 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2428 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2429 split_huge_page_address(vma->vm_mm, end);
2430
2431 /*
2432 * If we're also updating the vma->vm_next->vm_start, if the new
2433 * vm_next->vm_start isn't page aligned and it could previously
2434 * contain an hugepage: check if we need to split an huge pmd.
2435 */
2436 if (adjust_next > 0) {
2437 struct vm_area_struct *next = vma->vm_next;
2438 unsigned long nstart = next->vm_start;
2439 nstart += adjust_next << PAGE_SHIFT;
2440 if (nstart & ~HPAGE_PMD_MASK &&
2441 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2442 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2443 split_huge_page_address(next->vm_mm, nstart);
2444 }
2445}
This page took 0.189438 seconds and 5 git commands to generate.