mm: cleanup size checks in filemap_fault() and filemap_map_pages()
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1da177e4 63
6952b61d 64#include <asm/io.h>
1da177e4
LT
65#include <asm/pgalloc.h>
66#include <asm/uaccess.h>
67#include <asm/tlb.h>
68#include <asm/tlbflush.h>
69#include <asm/pgtable.h>
70
42b77728
JB
71#include "internal.h"
72
90572890
PZ
73#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
74#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
75#endif
76
d41dee36 77#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
78/* use the per-pgdat data instead for discontigmem - mbligh */
79unsigned long max_mapnr;
80struct page *mem_map;
81
82EXPORT_SYMBOL(max_mapnr);
83EXPORT_SYMBOL(mem_map);
84#endif
85
1da177e4
LT
86/*
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
92 */
93void * high_memory;
1da177e4 94
1da177e4 95EXPORT_SYMBOL(high_memory);
1da177e4 96
32a93233
IM
97/*
98 * Randomize the address space (stacks, mmaps, brk, etc.).
99 *
100 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
101 * as ancient (libc5 based) binaries can segfault. )
102 */
103int randomize_va_space __read_mostly =
104#ifdef CONFIG_COMPAT_BRK
105 1;
106#else
107 2;
108#endif
a62eaf15
AK
109
110static int __init disable_randmaps(char *s)
111{
112 randomize_va_space = 0;
9b41046c 113 return 1;
a62eaf15
AK
114}
115__setup("norandmaps", disable_randmaps);
116
62eede62 117unsigned long zero_pfn __read_mostly;
03f6462a 118unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
119
120/*
121 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
122 */
123static int __init init_zero_pfn(void)
124{
125 zero_pfn = page_to_pfn(ZERO_PAGE(0));
126 return 0;
127}
128core_initcall(init_zero_pfn);
a62eaf15 129
d559db08 130
34e55232
KH
131#if defined(SPLIT_RSS_COUNTING)
132
ea48cf78 133void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
134{
135 int i;
136
137 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
138 if (current->rss_stat.count[i]) {
139 add_mm_counter(mm, i, current->rss_stat.count[i]);
140 current->rss_stat.count[i] = 0;
34e55232
KH
141 }
142 }
05af2e10 143 current->rss_stat.events = 0;
34e55232
KH
144}
145
146static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
147{
148 struct task_struct *task = current;
149
150 if (likely(task->mm == mm))
151 task->rss_stat.count[member] += val;
152 else
153 add_mm_counter(mm, member, val);
154}
155#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
156#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
157
158/* sync counter once per 64 page faults */
159#define TASK_RSS_EVENTS_THRESH (64)
160static void check_sync_rss_stat(struct task_struct *task)
161{
162 if (unlikely(task != current))
163 return;
164 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 165 sync_mm_rss(task->mm);
34e55232 166}
9547d01b 167#else /* SPLIT_RSS_COUNTING */
34e55232
KH
168
169#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
170#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
171
172static void check_sync_rss_stat(struct task_struct *task)
173{
174}
175
9547d01b
PZ
176#endif /* SPLIT_RSS_COUNTING */
177
178#ifdef HAVE_GENERIC_MMU_GATHER
179
180static int tlb_next_batch(struct mmu_gather *tlb)
181{
182 struct mmu_gather_batch *batch;
183
184 batch = tlb->active;
185 if (batch->next) {
186 tlb->active = batch->next;
187 return 1;
188 }
189
53a59fc6
MH
190 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
191 return 0;
192
9547d01b
PZ
193 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
194 if (!batch)
195 return 0;
196
53a59fc6 197 tlb->batch_count++;
9547d01b
PZ
198 batch->next = NULL;
199 batch->nr = 0;
200 batch->max = MAX_GATHER_BATCH;
201
202 tlb->active->next = batch;
203 tlb->active = batch;
204
205 return 1;
206}
207
208/* tlb_gather_mmu
209 * Called to initialize an (on-stack) mmu_gather structure for page-table
210 * tear-down from @mm. The @fullmm argument is used when @mm is without
211 * users and we're going to destroy the full address space (exit/execve).
212 */
2b047252 213void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
214{
215 tlb->mm = mm;
216
2b047252
LT
217 /* Is it from 0 to ~0? */
218 tlb->fullmm = !(start | (end+1));
1de14c3c 219 tlb->need_flush_all = 0;
2b047252
LT
220 tlb->start = start;
221 tlb->end = end;
9547d01b 222 tlb->need_flush = 0;
9547d01b
PZ
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
53a59fc6 227 tlb->batch_count = 0;
9547d01b
PZ
228
229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231#endif
232}
233
234void tlb_flush_mmu(struct mmu_gather *tlb)
235{
236 struct mmu_gather_batch *batch;
237
238 if (!tlb->need_flush)
239 return;
240 tlb->need_flush = 0;
241 tlb_flush(tlb);
242#ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
34e55232
KH
244#endif
245
9547d01b
PZ
246 for (batch = &tlb->local; batch; batch = batch->next) {
247 free_pages_and_swap_cache(batch->pages, batch->nr);
248 batch->nr = 0;
249 }
250 tlb->active = &tlb->local;
251}
252
253/* tlb_finish_mmu
254 * Called at the end of the shootdown operation to free up any resources
255 * that were required.
256 */
257void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258{
259 struct mmu_gather_batch *batch, *next;
260
261 tlb_flush_mmu(tlb);
262
263 /* keep the page table cache within bounds */
264 check_pgt_cache();
265
266 for (batch = tlb->local.next; batch; batch = next) {
267 next = batch->next;
268 free_pages((unsigned long)batch, 0);
269 }
270 tlb->local.next = NULL;
271}
272
273/* __tlb_remove_page
274 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
275 * handling the additional races in SMP caused by other CPUs caching valid
276 * mappings in their TLBs. Returns the number of free page slots left.
277 * When out of page slots we must call tlb_flush_mmu().
278 */
279int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
280{
281 struct mmu_gather_batch *batch;
282
f21760b1 283 VM_BUG_ON(!tlb->need_flush);
9547d01b 284
9547d01b
PZ
285 batch = tlb->active;
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
289 return 0;
0b43c3aa 290 batch = tlb->active;
9547d01b 291 }
309381fe 292 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
293
294 return batch->max - batch->nr;
295}
296
297#endif /* HAVE_GENERIC_MMU_GATHER */
298
26723911
PZ
299#ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301/*
302 * See the comment near struct mmu_table_batch.
303 */
304
305static void tlb_remove_table_smp_sync(void *arg)
306{
307 /* Simply deliver the interrupt */
308}
309
310static void tlb_remove_table_one(void *table)
311{
312 /*
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
315 *
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
318 */
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
321}
322
323static void tlb_remove_table_rcu(struct rcu_head *head)
324{
325 struct mmu_table_batch *batch;
326 int i;
327
328 batch = container_of(head, struct mmu_table_batch, rcu);
329
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
332
333 free_page((unsigned long)batch);
334}
335
336void tlb_table_flush(struct mmu_gather *tlb)
337{
338 struct mmu_table_batch **batch = &tlb->batch;
339
340 if (*batch) {
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 *batch = NULL;
343 }
344}
345
346void tlb_remove_table(struct mmu_gather *tlb, void *table)
347{
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 tlb->need_flush = 1;
351
352 /*
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
355 */
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
358 return;
359 }
360
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
365 return;
366 }
367 (*batch)->nr = 0;
368 }
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
372}
373
9547d01b 374#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 375
1da177e4
LT
376/*
377 * Note: this doesn't free the actual pages themselves. That
378 * has been handled earlier when unmapping all the memory regions.
379 */
9e1b32ca
BH
380static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
381 unsigned long addr)
1da177e4 382{
2f569afd 383 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 384 pmd_clear(pmd);
9e1b32ca 385 pte_free_tlb(tlb, token, addr);
e1f56c89 386 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
387}
388
e0da382c
HD
389static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
390 unsigned long addr, unsigned long end,
391 unsigned long floor, unsigned long ceiling)
1da177e4
LT
392{
393 pmd_t *pmd;
394 unsigned long next;
e0da382c 395 unsigned long start;
1da177e4 396
e0da382c 397 start = addr;
1da177e4 398 pmd = pmd_offset(pud, addr);
1da177e4
LT
399 do {
400 next = pmd_addr_end(addr, end);
401 if (pmd_none_or_clear_bad(pmd))
402 continue;
9e1b32ca 403 free_pte_range(tlb, pmd, addr);
1da177e4
LT
404 } while (pmd++, addr = next, addr != end);
405
e0da382c
HD
406 start &= PUD_MASK;
407 if (start < floor)
408 return;
409 if (ceiling) {
410 ceiling &= PUD_MASK;
411 if (!ceiling)
412 return;
1da177e4 413 }
e0da382c
HD
414 if (end - 1 > ceiling - 1)
415 return;
416
417 pmd = pmd_offset(pud, start);
418 pud_clear(pud);
9e1b32ca 419 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
420}
421
e0da382c
HD
422static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
423 unsigned long addr, unsigned long end,
424 unsigned long floor, unsigned long ceiling)
1da177e4
LT
425{
426 pud_t *pud;
427 unsigned long next;
e0da382c 428 unsigned long start;
1da177e4 429
e0da382c 430 start = addr;
1da177e4 431 pud = pud_offset(pgd, addr);
1da177e4
LT
432 do {
433 next = pud_addr_end(addr, end);
434 if (pud_none_or_clear_bad(pud))
435 continue;
e0da382c 436 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
437 } while (pud++, addr = next, addr != end);
438
e0da382c
HD
439 start &= PGDIR_MASK;
440 if (start < floor)
441 return;
442 if (ceiling) {
443 ceiling &= PGDIR_MASK;
444 if (!ceiling)
445 return;
1da177e4 446 }
e0da382c
HD
447 if (end - 1 > ceiling - 1)
448 return;
449
450 pud = pud_offset(pgd, start);
451 pgd_clear(pgd);
9e1b32ca 452 pud_free_tlb(tlb, pud, start);
1da177e4
LT
453}
454
455/*
e0da382c 456 * This function frees user-level page tables of a process.
1da177e4 457 */
42b77728 458void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
459 unsigned long addr, unsigned long end,
460 unsigned long floor, unsigned long ceiling)
1da177e4
LT
461{
462 pgd_t *pgd;
463 unsigned long next;
e0da382c
HD
464
465 /*
466 * The next few lines have given us lots of grief...
467 *
468 * Why are we testing PMD* at this top level? Because often
469 * there will be no work to do at all, and we'd prefer not to
470 * go all the way down to the bottom just to discover that.
471 *
472 * Why all these "- 1"s? Because 0 represents both the bottom
473 * of the address space and the top of it (using -1 for the
474 * top wouldn't help much: the masks would do the wrong thing).
475 * The rule is that addr 0 and floor 0 refer to the bottom of
476 * the address space, but end 0 and ceiling 0 refer to the top
477 * Comparisons need to use "end - 1" and "ceiling - 1" (though
478 * that end 0 case should be mythical).
479 *
480 * Wherever addr is brought up or ceiling brought down, we must
481 * be careful to reject "the opposite 0" before it confuses the
482 * subsequent tests. But what about where end is brought down
483 * by PMD_SIZE below? no, end can't go down to 0 there.
484 *
485 * Whereas we round start (addr) and ceiling down, by different
486 * masks at different levels, in order to test whether a table
487 * now has no other vmas using it, so can be freed, we don't
488 * bother to round floor or end up - the tests don't need that.
489 */
1da177e4 490
e0da382c
HD
491 addr &= PMD_MASK;
492 if (addr < floor) {
493 addr += PMD_SIZE;
494 if (!addr)
495 return;
496 }
497 if (ceiling) {
498 ceiling &= PMD_MASK;
499 if (!ceiling)
500 return;
501 }
502 if (end - 1 > ceiling - 1)
503 end -= PMD_SIZE;
504 if (addr > end - 1)
505 return;
506
42b77728 507 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
508 do {
509 next = pgd_addr_end(addr, end);
510 if (pgd_none_or_clear_bad(pgd))
511 continue;
42b77728 512 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 513 } while (pgd++, addr = next, addr != end);
e0da382c
HD
514}
515
42b77728 516void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 517 unsigned long floor, unsigned long ceiling)
e0da382c
HD
518{
519 while (vma) {
520 struct vm_area_struct *next = vma->vm_next;
521 unsigned long addr = vma->vm_start;
522
8f4f8c16 523 /*
25d9e2d1 524 * Hide vma from rmap and truncate_pagecache before freeing
525 * pgtables
8f4f8c16 526 */
5beb4930 527 unlink_anon_vmas(vma);
8f4f8c16
HD
528 unlink_file_vma(vma);
529
9da61aef 530 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 531 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 532 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
533 } else {
534 /*
535 * Optimization: gather nearby vmas into one call down
536 */
537 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 538 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
539 vma = next;
540 next = vma->vm_next;
5beb4930 541 unlink_anon_vmas(vma);
8f4f8c16 542 unlink_file_vma(vma);
3bf5ee95
HD
543 }
544 free_pgd_range(tlb, addr, vma->vm_end,
545 floor, next? next->vm_start: ceiling);
546 }
e0da382c
HD
547 vma = next;
548 }
1da177e4
LT
549}
550
8ac1f832
AA
551int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
552 pmd_t *pmd, unsigned long address)
1da177e4 553{
c4088ebd 554 spinlock_t *ptl;
2f569afd 555 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 556 int wait_split_huge_page;
1bb3630e
HD
557 if (!new)
558 return -ENOMEM;
559
362a61ad
NP
560 /*
561 * Ensure all pte setup (eg. pte page lock and page clearing) are
562 * visible before the pte is made visible to other CPUs by being
563 * put into page tables.
564 *
565 * The other side of the story is the pointer chasing in the page
566 * table walking code (when walking the page table without locking;
567 * ie. most of the time). Fortunately, these data accesses consist
568 * of a chain of data-dependent loads, meaning most CPUs (alpha
569 * being the notable exception) will already guarantee loads are
570 * seen in-order. See the alpha page table accessors for the
571 * smp_read_barrier_depends() barriers in page table walking code.
572 */
573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
574
c4088ebd 575 ptl = pmd_lock(mm, pmd);
8ac1f832
AA
576 wait_split_huge_page = 0;
577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 578 atomic_long_inc(&mm->nr_ptes);
1da177e4 579 pmd_populate(mm, pmd, new);
2f569afd 580 new = NULL;
8ac1f832
AA
581 } else if (unlikely(pmd_trans_splitting(*pmd)))
582 wait_split_huge_page = 1;
c4088ebd 583 spin_unlock(ptl);
2f569afd
MS
584 if (new)
585 pte_free(mm, new);
8ac1f832
AA
586 if (wait_split_huge_page)
587 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 588 return 0;
1da177e4
LT
589}
590
1bb3630e 591int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 592{
1bb3630e
HD
593 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594 if (!new)
595 return -ENOMEM;
596
362a61ad
NP
597 smp_wmb(); /* See comment in __pte_alloc */
598
1bb3630e 599 spin_lock(&init_mm.page_table_lock);
8ac1f832 600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 601 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 602 new = NULL;
8ac1f832
AA
603 } else
604 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 605 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
606 if (new)
607 pte_free_kernel(&init_mm, new);
1bb3630e 608 return 0;
1da177e4
LT
609}
610
d559db08
KH
611static inline void init_rss_vec(int *rss)
612{
613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
614}
615
616static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 617{
d559db08
KH
618 int i;
619
34e55232 620 if (current->mm == mm)
05af2e10 621 sync_mm_rss(mm);
d559db08
KH
622 for (i = 0; i < NR_MM_COUNTERS; i++)
623 if (rss[i])
624 add_mm_counter(mm, i, rss[i]);
ae859762
HD
625}
626
b5810039 627/*
6aab341e
LT
628 * This function is called to print an error when a bad pte
629 * is found. For example, we might have a PFN-mapped pte in
630 * a region that doesn't allow it.
b5810039
NP
631 *
632 * The calling function must still handle the error.
633 */
3dc14741
HD
634static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635 pte_t pte, struct page *page)
b5810039 636{
3dc14741
HD
637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638 pud_t *pud = pud_offset(pgd, addr);
639 pmd_t *pmd = pmd_offset(pud, addr);
640 struct address_space *mapping;
641 pgoff_t index;
d936cf9b
HD
642 static unsigned long resume;
643 static unsigned long nr_shown;
644 static unsigned long nr_unshown;
645
646 /*
647 * Allow a burst of 60 reports, then keep quiet for that minute;
648 * or allow a steady drip of one report per second.
649 */
650 if (nr_shown == 60) {
651 if (time_before(jiffies, resume)) {
652 nr_unshown++;
653 return;
654 }
655 if (nr_unshown) {
1e9e6365
HD
656 printk(KERN_ALERT
657 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
658 nr_unshown);
659 nr_unshown = 0;
660 }
661 nr_shown = 0;
662 }
663 if (nr_shown++ == 0)
664 resume = jiffies + 60 * HZ;
3dc14741
HD
665
666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667 index = linear_page_index(vma, addr);
668
1e9e6365
HD
669 printk(KERN_ALERT
670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
671 current->comm,
672 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 673 if (page)
f0b791a3 674 dump_page(page, "bad pte");
1e9e6365 675 printk(KERN_ALERT
3dc14741
HD
676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
678 /*
679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
680 */
681 if (vma->vm_ops)
071361d3
JP
682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683 vma->vm_ops->fault);
72c2d531 684 if (vma->vm_file)
071361d3
JP
685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686 vma->vm_file->f_op->mmap);
b5810039 687 dump_stack();
373d4d09 688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
689}
690
2ec74c3e 691static inline bool is_cow_mapping(vm_flags_t flags)
67121172
LT
692{
693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694}
695
ee498ed7 696/*
7e675137 697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 698 *
7e675137
NP
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 702 *
7e675137
NP
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
707 *
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 711 *
b379d790
JH
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
6aab341e
LT
716 *
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 *
7e675137
NP
719 * And for normal mappings this is false.
720 *
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
b379d790 725 *
b379d790 726 *
7e675137 727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
728 *
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
736 *
ee498ed7 737 */
7e675137
NP
738#ifdef __HAVE_ARCH_PTE_SPECIAL
739# define HAVE_PTE_SPECIAL 1
740#else
741# define HAVE_PTE_SPECIAL 0
742#endif
743struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte)
ee498ed7 745{
22b31eec 746 unsigned long pfn = pte_pfn(pte);
7e675137
NP
747
748 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
749 if (likely(!pte_special(pte)))
750 goto check_pfn;
a13ea5b7
HD
751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 return NULL;
62eede62 753 if (!is_zero_pfn(pfn))
22b31eec 754 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
755 return NULL;
756 }
757
758 /* !HAVE_PTE_SPECIAL case follows: */
759
b379d790
JH
760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 if (vma->vm_flags & VM_MIXEDMAP) {
762 if (!pfn_valid(pfn))
763 return NULL;
764 goto out;
765 } else {
7e675137
NP
766 unsigned long off;
767 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
768 if (pfn == vma->vm_pgoff + off)
769 return NULL;
770 if (!is_cow_mapping(vma->vm_flags))
771 return NULL;
772 }
6aab341e
LT
773 }
774
62eede62
HD
775 if (is_zero_pfn(pfn))
776 return NULL;
22b31eec
HD
777check_pfn:
778 if (unlikely(pfn > highest_memmap_pfn)) {
779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL;
781 }
6aab341e
LT
782
783 /*
7e675137 784 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 785 * eg. VDSO mappings can cause them to exist.
6aab341e 786 */
b379d790 787out:
6aab341e 788 return pfn_to_page(pfn);
ee498ed7
HD
789}
790
1da177e4
LT
791/*
792 * copy one vm_area from one task to the other. Assumes the page tables
793 * already present in the new task to be cleared in the whole range
794 * covered by this vma.
1da177e4
LT
795 */
796
570a335b 797static inline unsigned long
1da177e4 798copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 800 unsigned long addr, int *rss)
1da177e4 801{
b5810039 802 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
803 pte_t pte = *src_pte;
804 struct page *page;
1da177e4
LT
805
806 /* pte contains position in swap or file, so copy. */
807 if (unlikely(!pte_present(pte))) {
808 if (!pte_file(pte)) {
0697212a
CL
809 swp_entry_t entry = pte_to_swp_entry(pte);
810
570a335b
HD
811 if (swap_duplicate(entry) < 0)
812 return entry.val;
813
1da177e4
LT
814 /* make sure dst_mm is on swapoff's mmlist. */
815 if (unlikely(list_empty(&dst_mm->mmlist))) {
816 spin_lock(&mmlist_lock);
f412ac08
HD
817 if (list_empty(&dst_mm->mmlist))
818 list_add(&dst_mm->mmlist,
819 &src_mm->mmlist);
1da177e4
LT
820 spin_unlock(&mmlist_lock);
821 }
b084d435
KH
822 if (likely(!non_swap_entry(entry)))
823 rss[MM_SWAPENTS]++;
9f9f1acd
KK
824 else if (is_migration_entry(entry)) {
825 page = migration_entry_to_page(entry);
826
827 if (PageAnon(page))
828 rss[MM_ANONPAGES]++;
829 else
830 rss[MM_FILEPAGES]++;
831
832 if (is_write_migration_entry(entry) &&
833 is_cow_mapping(vm_flags)) {
834 /*
835 * COW mappings require pages in both
836 * parent and child to be set to read.
837 */
838 make_migration_entry_read(&entry);
839 pte = swp_entry_to_pte(entry);
c3d16e16
CG
840 if (pte_swp_soft_dirty(*src_pte))
841 pte = pte_swp_mksoft_dirty(pte);
9f9f1acd
KK
842 set_pte_at(src_mm, addr, src_pte, pte);
843 }
0697212a 844 }
1da177e4 845 }
ae859762 846 goto out_set_pte;
1da177e4
LT
847 }
848
1da177e4
LT
849 /*
850 * If it's a COW mapping, write protect it both
851 * in the parent and the child
852 */
67121172 853 if (is_cow_mapping(vm_flags)) {
1da177e4 854 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 855 pte = pte_wrprotect(pte);
1da177e4
LT
856 }
857
858 /*
859 * If it's a shared mapping, mark it clean in
860 * the child
861 */
862 if (vm_flags & VM_SHARED)
863 pte = pte_mkclean(pte);
864 pte = pte_mkold(pte);
6aab341e
LT
865
866 page = vm_normal_page(vma, addr, pte);
867 if (page) {
868 get_page(page);
21333b2b 869 page_dup_rmap(page);
d559db08
KH
870 if (PageAnon(page))
871 rss[MM_ANONPAGES]++;
872 else
873 rss[MM_FILEPAGES]++;
6aab341e 874 }
ae859762
HD
875
876out_set_pte:
877 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 878 return 0;
1da177e4
LT
879}
880
71e3aac0
AA
881int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
1da177e4 884{
c36987e2 885 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 886 pte_t *src_pte, *dst_pte;
c74df32c 887 spinlock_t *src_ptl, *dst_ptl;
e040f218 888 int progress = 0;
d559db08 889 int rss[NR_MM_COUNTERS];
570a335b 890 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
891
892again:
d559db08
KH
893 init_rss_vec(rss);
894
c74df32c 895 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
896 if (!dst_pte)
897 return -ENOMEM;
ece0e2b6 898 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 899 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 900 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
901 orig_src_pte = src_pte;
902 orig_dst_pte = dst_pte;
6606c3e0 903 arch_enter_lazy_mmu_mode();
1da177e4 904
1da177e4
LT
905 do {
906 /*
907 * We are holding two locks at this point - either of them
908 * could generate latencies in another task on another CPU.
909 */
e040f218
HD
910 if (progress >= 32) {
911 progress = 0;
912 if (need_resched() ||
95c354fe 913 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
914 break;
915 }
1da177e4
LT
916 if (pte_none(*src_pte)) {
917 progress++;
918 continue;
919 }
570a335b
HD
920 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
921 vma, addr, rss);
922 if (entry.val)
923 break;
1da177e4
LT
924 progress += 8;
925 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 926
6606c3e0 927 arch_leave_lazy_mmu_mode();
c74df32c 928 spin_unlock(src_ptl);
ece0e2b6 929 pte_unmap(orig_src_pte);
d559db08 930 add_mm_rss_vec(dst_mm, rss);
c36987e2 931 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 932 cond_resched();
570a335b
HD
933
934 if (entry.val) {
935 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
936 return -ENOMEM;
937 progress = 0;
938 }
1da177e4
LT
939 if (addr != end)
940 goto again;
941 return 0;
942}
943
944static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end)
947{
948 pmd_t *src_pmd, *dst_pmd;
949 unsigned long next;
950
951 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
952 if (!dst_pmd)
953 return -ENOMEM;
954 src_pmd = pmd_offset(src_pud, addr);
955 do {
956 next = pmd_addr_end(addr, end);
71e3aac0
AA
957 if (pmd_trans_huge(*src_pmd)) {
958 int err;
14d1a55c 959 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
960 err = copy_huge_pmd(dst_mm, src_mm,
961 dst_pmd, src_pmd, addr, vma);
962 if (err == -ENOMEM)
963 return -ENOMEM;
964 if (!err)
965 continue;
966 /* fall through */
967 }
1da177e4
LT
968 if (pmd_none_or_clear_bad(src_pmd))
969 continue;
970 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
971 vma, addr, next))
972 return -ENOMEM;
973 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
974 return 0;
975}
976
977static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
980{
981 pud_t *src_pud, *dst_pud;
982 unsigned long next;
983
984 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
985 if (!dst_pud)
986 return -ENOMEM;
987 src_pud = pud_offset(src_pgd, addr);
988 do {
989 next = pud_addr_end(addr, end);
990 if (pud_none_or_clear_bad(src_pud))
991 continue;
992 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
993 vma, addr, next))
994 return -ENOMEM;
995 } while (dst_pud++, src_pud++, addr = next, addr != end);
996 return 0;
997}
998
999int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 struct vm_area_struct *vma)
1001{
1002 pgd_t *src_pgd, *dst_pgd;
1003 unsigned long next;
1004 unsigned long addr = vma->vm_start;
1005 unsigned long end = vma->vm_end;
2ec74c3e
SG
1006 unsigned long mmun_start; /* For mmu_notifiers */
1007 unsigned long mmun_end; /* For mmu_notifiers */
1008 bool is_cow;
cddb8a5c 1009 int ret;
1da177e4 1010
d992895b
NP
1011 /*
1012 * Don't copy ptes where a page fault will fill them correctly.
1013 * Fork becomes much lighter when there are big shared or private
1014 * readonly mappings. The tradeoff is that copy_page_range is more
1015 * efficient than faulting.
1016 */
4b6e1e37
KK
1017 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1018 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1019 if (!vma->anon_vma)
1020 return 0;
1021 }
1022
1da177e4
LT
1023 if (is_vm_hugetlb_page(vma))
1024 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1025
b3b9c293 1026 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1027 /*
1028 * We do not free on error cases below as remove_vma
1029 * gets called on error from higher level routine
1030 */
5180da41 1031 ret = track_pfn_copy(vma);
2ab64037 1032 if (ret)
1033 return ret;
1034 }
1035
cddb8a5c
AA
1036 /*
1037 * We need to invalidate the secondary MMU mappings only when
1038 * there could be a permission downgrade on the ptes of the
1039 * parent mm. And a permission downgrade will only happen if
1040 * is_cow_mapping() returns true.
1041 */
2ec74c3e
SG
1042 is_cow = is_cow_mapping(vma->vm_flags);
1043 mmun_start = addr;
1044 mmun_end = end;
1045 if (is_cow)
1046 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1047 mmun_end);
cddb8a5c
AA
1048
1049 ret = 0;
1da177e4
LT
1050 dst_pgd = pgd_offset(dst_mm, addr);
1051 src_pgd = pgd_offset(src_mm, addr);
1052 do {
1053 next = pgd_addr_end(addr, end);
1054 if (pgd_none_or_clear_bad(src_pgd))
1055 continue;
cddb8a5c
AA
1056 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1057 vma, addr, next))) {
1058 ret = -ENOMEM;
1059 break;
1060 }
1da177e4 1061 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1062
2ec74c3e
SG
1063 if (is_cow)
1064 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1065 return ret;
1da177e4
LT
1066}
1067
51c6f666 1068static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1069 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1070 unsigned long addr, unsigned long end,
97a89413 1071 struct zap_details *details)
1da177e4 1072{
b5810039 1073 struct mm_struct *mm = tlb->mm;
d16dfc55 1074 int force_flush = 0;
d559db08 1075 int rss[NR_MM_COUNTERS];
97a89413 1076 spinlock_t *ptl;
5f1a1907 1077 pte_t *start_pte;
97a89413 1078 pte_t *pte;
d559db08 1079
d16dfc55 1080again:
e303297e 1081 init_rss_vec(rss);
5f1a1907
SR
1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 pte = start_pte;
6606c3e0 1084 arch_enter_lazy_mmu_mode();
1da177e4
LT
1085 do {
1086 pte_t ptent = *pte;
51c6f666 1087 if (pte_none(ptent)) {
1da177e4 1088 continue;
51c6f666 1089 }
6f5e6b9e 1090
1da177e4 1091 if (pte_present(ptent)) {
ee498ed7 1092 struct page *page;
51c6f666 1093
6aab341e 1094 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1095 if (unlikely(details) && page) {
1096 /*
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1100 */
1101 if (details->check_mapping &&
1102 details->check_mapping != page->mapping)
1103 continue;
1104 /*
1105 * Each page->index must be checked when
1106 * invalidating or truncating nonlinear.
1107 */
1108 if (details->nonlinear_vma &&
1109 (page->index < details->first_index ||
1110 page->index > details->last_index))
1111 continue;
1112 }
b5810039 1113 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1114 tlb->fullmm);
1da177e4
LT
1115 tlb_remove_tlb_entry(tlb, pte, addr);
1116 if (unlikely(!page))
1117 continue;
1118 if (unlikely(details) && details->nonlinear_vma
1119 && linear_page_index(details->nonlinear_vma,
41bb3476
CG
1120 addr) != page->index) {
1121 pte_t ptfile = pgoff_to_pte(page->index);
1122 if (pte_soft_dirty(ptent))
1123 pte_file_mksoft_dirty(ptfile);
1124 set_pte_at(mm, addr, pte, ptfile);
1125 }
1da177e4 1126 if (PageAnon(page))
d559db08 1127 rss[MM_ANONPAGES]--;
6237bcd9
HD
1128 else {
1129 if (pte_dirty(ptent))
1130 set_page_dirty(page);
4917e5d0 1131 if (pte_young(ptent) &&
64363aad 1132 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1133 mark_page_accessed(page);
d559db08 1134 rss[MM_FILEPAGES]--;
6237bcd9 1135 }
edc315fd 1136 page_remove_rmap(page);
3dc14741
HD
1137 if (unlikely(page_mapcount(page) < 0))
1138 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1139 force_flush = !__tlb_remove_page(tlb, page);
1140 if (force_flush)
1141 break;
1da177e4
LT
1142 continue;
1143 }
1144 /*
1145 * If details->check_mapping, we leave swap entries;
1146 * if details->nonlinear_vma, we leave file entries.
1147 */
1148 if (unlikely(details))
1149 continue;
2509ef26
HD
1150 if (pte_file(ptent)) {
1151 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1152 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1153 } else {
1154 swp_entry_t entry = pte_to_swp_entry(ptent);
1155
1156 if (!non_swap_entry(entry))
1157 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1158 else if (is_migration_entry(entry)) {
1159 struct page *page;
1160
1161 page = migration_entry_to_page(entry);
1162
1163 if (PageAnon(page))
1164 rss[MM_ANONPAGES]--;
1165 else
1166 rss[MM_FILEPAGES]--;
1167 }
b084d435
KH
1168 if (unlikely(!free_swap_and_cache(entry)))
1169 print_bad_pte(vma, addr, ptent, NULL);
1170 }
9888a1ca 1171 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1172 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1173
d559db08 1174 add_mm_rss_vec(mm, rss);
6606c3e0 1175 arch_leave_lazy_mmu_mode();
5f1a1907 1176 pte_unmap_unlock(start_pte, ptl);
51c6f666 1177
d16dfc55
PZ
1178 /*
1179 * mmu_gather ran out of room to batch pages, we break out of
1180 * the PTE lock to avoid doing the potential expensive TLB invalidate
1181 * and page-free while holding it.
1182 */
1183 if (force_flush) {
2b047252
LT
1184 unsigned long old_end;
1185
d16dfc55 1186 force_flush = 0;
597e1c35 1187
2b047252
LT
1188 /*
1189 * Flush the TLB just for the previous segment,
1190 * then update the range to be the remaining
1191 * TLB range.
1192 */
1193 old_end = tlb->end;
e6c495a9 1194 tlb->end = addr;
2b047252 1195
d16dfc55 1196 tlb_flush_mmu(tlb);
2b047252
LT
1197
1198 tlb->start = addr;
1199 tlb->end = old_end;
1200
1201 if (addr != end)
d16dfc55
PZ
1202 goto again;
1203 }
1204
51c6f666 1205 return addr;
1da177e4
LT
1206}
1207
51c6f666 1208static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1209 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1210 unsigned long addr, unsigned long end,
97a89413 1211 struct zap_details *details)
1da177e4
LT
1212{
1213 pmd_t *pmd;
1214 unsigned long next;
1215
1216 pmd = pmd_offset(pud, addr);
1217 do {
1218 next = pmd_addr_end(addr, end);
71e3aac0 1219 if (pmd_trans_huge(*pmd)) {
1a5a9906 1220 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1221#ifdef CONFIG_DEBUG_VM
1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 __func__, addr, end,
1225 vma->vm_start,
1226 vma->vm_end);
1227 BUG();
1228 }
1229#endif
e180377f 1230 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1232 goto next;
71e3aac0
AA
1233 /* fall through */
1234 }
1a5a9906
AA
1235 /*
1236 * Here there can be other concurrent MADV_DONTNEED or
1237 * trans huge page faults running, and if the pmd is
1238 * none or trans huge it can change under us. This is
1239 * because MADV_DONTNEED holds the mmap_sem in read
1240 * mode.
1241 */
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 goto next;
97a89413 1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1245next:
97a89413
PZ
1246 cond_resched();
1247 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1248
1249 return addr;
1da177e4
LT
1250}
1251
51c6f666 1252static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1253 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1254 unsigned long addr, unsigned long end,
97a89413 1255 struct zap_details *details)
1da177e4
LT
1256{
1257 pud_t *pud;
1258 unsigned long next;
1259
1260 pud = pud_offset(pgd, addr);
1261 do {
1262 next = pud_addr_end(addr, end);
97a89413 1263 if (pud_none_or_clear_bad(pud))
1da177e4 1264 continue;
97a89413
PZ
1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 } while (pud++, addr = next, addr != end);
51c6f666
RH
1267
1268 return addr;
1da177e4
LT
1269}
1270
038c7aa1
AV
1271static void unmap_page_range(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma,
1273 unsigned long addr, unsigned long end,
1274 struct zap_details *details)
1da177e4
LT
1275{
1276 pgd_t *pgd;
1277 unsigned long next;
1278
1279 if (details && !details->check_mapping && !details->nonlinear_vma)
1280 details = NULL;
1281
1282 BUG_ON(addr >= end);
569b846d 1283 mem_cgroup_uncharge_start();
1da177e4
LT
1284 tlb_start_vma(tlb, vma);
1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
97a89413 1288 if (pgd_none_or_clear_bad(pgd))
1da177e4 1289 continue;
97a89413
PZ
1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 } while (pgd++, addr = next, addr != end);
1da177e4 1292 tlb_end_vma(tlb, vma);
569b846d 1293 mem_cgroup_uncharge_end();
1da177e4 1294}
51c6f666 1295
f5cc4eef
AV
1296
1297static void unmap_single_vma(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1299 unsigned long end_addr,
f5cc4eef
AV
1300 struct zap_details *details)
1301{
1302 unsigned long start = max(vma->vm_start, start_addr);
1303 unsigned long end;
1304
1305 if (start >= vma->vm_end)
1306 return;
1307 end = min(vma->vm_end, end_addr);
1308 if (end <= vma->vm_start)
1309 return;
1310
cbc91f71
SD
1311 if (vma->vm_file)
1312 uprobe_munmap(vma, start, end);
1313
b3b9c293 1314 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1315 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1316
1317 if (start != end) {
1318 if (unlikely(is_vm_hugetlb_page(vma))) {
1319 /*
1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error
7aa6b4ad 1323 * cleanup path of mmap_region. When
f5cc4eef 1324 * hugetlbfs ->mmap method fails,
7aa6b4ad 1325 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case.
1329 */
24669e58
AK
1330 if (vma->vm_file) {
1331 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1333 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1334 }
f5cc4eef
AV
1335 } else
1336 unmap_page_range(tlb, vma, start, end, details);
1337 }
1da177e4
LT
1338}
1339
1da177e4
LT
1340/**
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1342 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1da177e4 1346 *
508034a3 1347 * Unmap all pages in the vma list.
1da177e4 1348 *
1da177e4
LT
1349 * Only addresses between `start' and `end' will be unmapped.
1350 *
1351 * The VMA list must be sorted in ascending virtual address order.
1352 *
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1357 */
6e8bb019 1358void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1359 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1360 unsigned long end_addr)
1da177e4 1361{
cddb8a5c 1362 struct mm_struct *mm = vma->vm_mm;
1da177e4 1363
cddb8a5c 1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1368}
1369
1370/**
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1373 * @start: starting address of pages to zap
1da177e4
LT
1374 * @size: number of bytes to zap
1375 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1376 *
1377 * Caller must protect the VMA list
1da177e4 1378 */
7e027b14 1379void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1380 unsigned long size, struct zap_details *details)
1381{
1382 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1383 struct mmu_gather tlb;
7e027b14 1384 unsigned long end = start + size;
1da177e4 1385
1da177e4 1386 lru_add_drain();
2b047252 1387 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1388 update_hiwater_rss(mm);
7e027b14
LT
1389 mmu_notifier_invalidate_range_start(mm, start, end);
1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1391 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1392 mmu_notifier_invalidate_range_end(mm, start, end);
1393 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1394}
1395
f5cc4eef
AV
1396/**
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation
1402 *
1403 * The range must fit into one VMA.
1da177e4 1404 */
f5cc4eef 1405static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1406 unsigned long size, struct zap_details *details)
1407{
1408 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1409 struct mmu_gather tlb;
1da177e4 1410 unsigned long end = address + size;
1da177e4 1411
1da177e4 1412 lru_add_drain();
2b047252 1413 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1414 update_hiwater_rss(mm);
f5cc4eef 1415 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1416 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1417 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1418 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1419}
1420
c627f9cc
JS
1421/**
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1426 *
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 *
1429 * The entire address range must be fully contained within the vma.
1430 *
1431 * Returns 0 if successful.
1432 */
1433int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size)
1435{
1436 if (address < vma->vm_start || address + size > vma->vm_end ||
1437 !(vma->vm_flags & VM_PFNMAP))
1438 return -1;
f5cc4eef 1439 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1440 return 0;
1441}
1442EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443
142762bd 1444/**
240aadee 1445 * follow_page_mask - look up a page descriptor from a user-virtual address
142762bd
JW
1446 * @vma: vm_area_struct mapping @address
1447 * @address: virtual address to look up
1448 * @flags: flags modifying lookup behaviour
240aadee 1449 * @page_mask: on output, *page_mask is set according to the size of the page
142762bd
JW
1450 *
1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1452 *
1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1454 * an error pointer if there is a mapping to something not represented
1455 * by a page descriptor (see also vm_normal_page()).
1da177e4 1456 */
240aadee
ML
1457struct page *follow_page_mask(struct vm_area_struct *vma,
1458 unsigned long address, unsigned int flags,
1459 unsigned int *page_mask)
1da177e4
LT
1460{
1461 pgd_t *pgd;
1462 pud_t *pud;
1463 pmd_t *pmd;
1464 pte_t *ptep, pte;
deceb6cd 1465 spinlock_t *ptl;
1da177e4 1466 struct page *page;
6aab341e 1467 struct mm_struct *mm = vma->vm_mm;
1da177e4 1468
240aadee
ML
1469 *page_mask = 0;
1470
deceb6cd
HD
1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 if (!IS_ERR(page)) {
1473 BUG_ON(flags & FOLL_GET);
1474 goto out;
1475 }
1da177e4 1476
deceb6cd 1477 page = NULL;
1da177e4
LT
1478 pgd = pgd_offset(mm, address);
1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1480 goto no_page_table;
1da177e4
LT
1481
1482 pud = pud_offset(pgd, address);
ceb86879 1483 if (pud_none(*pud))
deceb6cd 1484 goto no_page_table;
8a07651e 1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e632a938
NH
1486 if (flags & FOLL_GET)
1487 goto out;
ceb86879
AK
1488 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489 goto out;
1490 }
1491 if (unlikely(pud_bad(*pud)))
1492 goto no_page_table;
1493
1da177e4 1494 pmd = pmd_offset(pud, address);
aeed5fce 1495 if (pmd_none(*pmd))
deceb6cd 1496 goto no_page_table;
71e3aac0 1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd 1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
e632a938
NH
1499 if (flags & FOLL_GET) {
1500 /*
1501 * Refcount on tail pages are not well-defined and
1502 * shouldn't be taken. The caller should handle a NULL
1503 * return when trying to follow tail pages.
1504 */
1505 if (PageHead(page))
1506 get_page(page);
1507 else {
1508 page = NULL;
1509 goto out;
1510 }
1511 }
1da177e4 1512 goto out;
deceb6cd 1513 }
0b9d7052
AA
1514 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515 goto no_page_table;
71e3aac0 1516 if (pmd_trans_huge(*pmd)) {
500d65d4 1517 if (flags & FOLL_SPLIT) {
e180377f 1518 split_huge_page_pmd(vma, address, pmd);
500d65d4
AA
1519 goto split_fallthrough;
1520 }
c4088ebd 1521 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1522 if (likely(pmd_trans_huge(*pmd))) {
1523 if (unlikely(pmd_trans_splitting(*pmd))) {
c4088ebd 1524 spin_unlock(ptl);
71e3aac0
AA
1525 wait_split_huge_page(vma->anon_vma, pmd);
1526 } else {
b676b293 1527 page = follow_trans_huge_pmd(vma, address,
71e3aac0 1528 pmd, flags);
c4088ebd 1529 spin_unlock(ptl);
240aadee 1530 *page_mask = HPAGE_PMD_NR - 1;
71e3aac0
AA
1531 goto out;
1532 }
1533 } else
c4088ebd 1534 spin_unlock(ptl);
71e3aac0
AA
1535 /* fall through */
1536 }
500d65d4 1537split_fallthrough:
aeed5fce
HD
1538 if (unlikely(pmd_bad(*pmd)))
1539 goto no_page_table;
1540
deceb6cd 1541 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1542
1543 pte = *ptep;
5117b3b8
HD
1544 if (!pte_present(pte)) {
1545 swp_entry_t entry;
1546 /*
1547 * KSM's break_ksm() relies upon recognizing a ksm page
1548 * even while it is being migrated, so for that case we
1549 * need migration_entry_wait().
1550 */
1551 if (likely(!(flags & FOLL_MIGRATION)))
1552 goto no_page;
1553 if (pte_none(pte) || pte_file(pte))
1554 goto no_page;
1555 entry = pte_to_swp_entry(pte);
1556 if (!is_migration_entry(entry))
1557 goto no_page;
1558 pte_unmap_unlock(ptep, ptl);
1559 migration_entry_wait(mm, pmd, address);
1560 goto split_fallthrough;
1561 }
0b9d7052
AA
1562 if ((flags & FOLL_NUMA) && pte_numa(pte))
1563 goto no_page;
deceb6cd
HD
1564 if ((flags & FOLL_WRITE) && !pte_write(pte))
1565 goto unlock;
a13ea5b7 1566
6aab341e 1567 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1568 if (unlikely(!page)) {
1569 if ((flags & FOLL_DUMP) ||
62eede62 1570 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1571 goto bad_page;
1572 page = pte_page(pte);
1573 }
1da177e4 1574
deceb6cd 1575 if (flags & FOLL_GET)
70b50f94 1576 get_page_foll(page);
deceb6cd
HD
1577 if (flags & FOLL_TOUCH) {
1578 if ((flags & FOLL_WRITE) &&
1579 !pte_dirty(pte) && !PageDirty(page))
1580 set_page_dirty(page);
bd775c42
KM
1581 /*
1582 * pte_mkyoung() would be more correct here, but atomic care
1583 * is needed to avoid losing the dirty bit: it is easier to use
1584 * mark_page_accessed().
1585 */
deceb6cd
HD
1586 mark_page_accessed(page);
1587 }
a1fde08c 1588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1589 /*
1590 * The preliminary mapping check is mainly to avoid the
1591 * pointless overhead of lock_page on the ZERO_PAGE
1592 * which might bounce very badly if there is contention.
1593 *
1594 * If the page is already locked, we don't need to
1595 * handle it now - vmscan will handle it later if and
1596 * when it attempts to reclaim the page.
1597 */
1598 if (page->mapping && trylock_page(page)) {
1599 lru_add_drain(); /* push cached pages to LRU */
1600 /*
e6c509f8
HD
1601 * Because we lock page here, and migration is
1602 * blocked by the pte's page reference, and we
1603 * know the page is still mapped, we don't even
1604 * need to check for file-cache page truncation.
110d74a9 1605 */
e6c509f8 1606 mlock_vma_page(page);
110d74a9
ML
1607 unlock_page(page);
1608 }
1609 }
deceb6cd
HD
1610unlock:
1611 pte_unmap_unlock(ptep, ptl);
1da177e4 1612out:
deceb6cd 1613 return page;
1da177e4 1614
89f5b7da
LT
1615bad_page:
1616 pte_unmap_unlock(ptep, ptl);
1617 return ERR_PTR(-EFAULT);
1618
1619no_page:
1620 pte_unmap_unlock(ptep, ptl);
1621 if (!pte_none(pte))
1622 return page;
8e4b9a60 1623
deceb6cd
HD
1624no_page_table:
1625 /*
1626 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1627 * has touched so far, we don't want to allocate unnecessary pages or
1628 * page tables. Return error instead of NULL to skip handle_mm_fault,
1629 * then get_dump_page() will return NULL to leave a hole in the dump.
1630 * But we can only make this optimization where a hole would surely
1631 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1632 */
8e4b9a60
HD
1633 if ((flags & FOLL_DUMP) &&
1634 (!vma->vm_ops || !vma->vm_ops->fault))
1635 return ERR_PTR(-EFAULT);
deceb6cd 1636 return page;
1da177e4
LT
1637}
1638
95042f9e
LT
1639static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1640{
a09a79f6
MP
1641 return stack_guard_page_start(vma, addr) ||
1642 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1643}
1644
0014bd99
HY
1645/**
1646 * __get_user_pages() - pin user pages in memory
1647 * @tsk: task_struct of target task
1648 * @mm: mm_struct of target mm
1649 * @start: starting user address
1650 * @nr_pages: number of pages from start to pin
1651 * @gup_flags: flags modifying pin behaviour
1652 * @pages: array that receives pointers to the pages pinned.
1653 * Should be at least nr_pages long. Or NULL, if caller
1654 * only intends to ensure the pages are faulted in.
1655 * @vmas: array of pointers to vmas corresponding to each page.
1656 * Or NULL if the caller does not require them.
1657 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1658 *
1659 * Returns number of pages pinned. This may be fewer than the number
1660 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1661 * were pinned, returns -errno. Each page returned must be released
1662 * with a put_page() call when it is finished with. vmas will only
1663 * remain valid while mmap_sem is held.
1664 *
1665 * Must be called with mmap_sem held for read or write.
1666 *
1667 * __get_user_pages walks a process's page tables and takes a reference to
1668 * each struct page that each user address corresponds to at a given
1669 * instant. That is, it takes the page that would be accessed if a user
1670 * thread accesses the given user virtual address at that instant.
1671 *
1672 * This does not guarantee that the page exists in the user mappings when
1673 * __get_user_pages returns, and there may even be a completely different
1674 * page there in some cases (eg. if mmapped pagecache has been invalidated
1675 * and subsequently re faulted). However it does guarantee that the page
1676 * won't be freed completely. And mostly callers simply care that the page
1677 * contains data that was valid *at some point in time*. Typically, an IO
1678 * or similar operation cannot guarantee anything stronger anyway because
1679 * locks can't be held over the syscall boundary.
1680 *
1681 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1682 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1683 * appropriate) must be called after the page is finished with, and
1684 * before put_page is called.
1685 *
1686 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1687 * or mmap_sem contention, and if waiting is needed to pin all pages,
1688 * *@nonblocking will be set to 0.
1689 *
1690 * In most cases, get_user_pages or get_user_pages_fast should be used
1691 * instead of __get_user_pages. __get_user_pages should be used only if
1692 * you need some special @gup_flags.
1693 */
28a35716
ML
1694long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1695 unsigned long start, unsigned long nr_pages,
1696 unsigned int gup_flags, struct page **pages,
1697 struct vm_area_struct **vmas, int *nonblocking)
1da177e4 1698{
28a35716 1699 long i;
58fa879e 1700 unsigned long vm_flags;
240aadee 1701 unsigned int page_mask;
1da177e4 1702
28a35716 1703 if (!nr_pages)
900cf086 1704 return 0;
58fa879e
HD
1705
1706 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1707
0b9d7052
AA
1708 /*
1709 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1710 * would be called on PROT_NONE ranges. We must never invoke
1711 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1712 * page faults would unprotect the PROT_NONE ranges if
1713 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1714 * bitflag. So to avoid that, don't set FOLL_NUMA if
1715 * FOLL_FORCE is set.
1716 */
1717 if (!(gup_flags & FOLL_FORCE))
1718 gup_flags |= FOLL_NUMA;
1719
1da177e4
LT
1720 i = 0;
1721
1722 do {
deceb6cd 1723 struct vm_area_struct *vma;
1da177e4
LT
1724
1725 vma = find_extend_vma(mm, start);
e7f22e20 1726 if (!vma && in_gate_area(mm, start)) {
1da177e4 1727 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1728 pgd_t *pgd;
1729 pud_t *pud;
1730 pmd_t *pmd;
1731 pte_t *pte;
b291f000
NP
1732
1733 /* user gate pages are read-only */
58fa879e 1734 if (gup_flags & FOLL_WRITE)
cda540ac 1735 goto efault;
1da177e4
LT
1736 if (pg > TASK_SIZE)
1737 pgd = pgd_offset_k(pg);
1738 else
1739 pgd = pgd_offset_gate(mm, pg);
1740 BUG_ON(pgd_none(*pgd));
1741 pud = pud_offset(pgd, pg);
1742 BUG_ON(pud_none(*pud));
1743 pmd = pmd_offset(pud, pg);
690dbe1c 1744 if (pmd_none(*pmd))
cda540ac 1745 goto efault;
f66055ab 1746 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1747 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1748 if (pte_none(*pte)) {
1749 pte_unmap(pte);
cda540ac 1750 goto efault;
690dbe1c 1751 }
95042f9e 1752 vma = get_gate_vma(mm);
1da177e4 1753 if (pages) {
de51257a
HD
1754 struct page *page;
1755
95042f9e 1756 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1757 if (!page) {
1758 if (!(gup_flags & FOLL_DUMP) &&
1759 is_zero_pfn(pte_pfn(*pte)))
1760 page = pte_page(*pte);
1761 else {
1762 pte_unmap(pte);
cda540ac 1763 goto efault;
de51257a
HD
1764 }
1765 }
6aab341e 1766 pages[i] = page;
de51257a 1767 get_page(page);
1da177e4
LT
1768 }
1769 pte_unmap(pte);
240aadee 1770 page_mask = 0;
95042f9e 1771 goto next_page;
1da177e4
LT
1772 }
1773
cda540ac
HD
1774 if (!vma)
1775 goto efault;
1776 vm_flags = vma->vm_flags;
1777 if (vm_flags & (VM_IO | VM_PFNMAP))
1778 goto efault;
1779
1780 if (gup_flags & FOLL_WRITE) {
1781 if (!(vm_flags & VM_WRITE)) {
1782 if (!(gup_flags & FOLL_FORCE))
1783 goto efault;
1784 /*
1785 * We used to let the write,force case do COW
1786 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1787 * ptrace could set a breakpoint in a read-only
1788 * mapping of an executable, without corrupting
1789 * the file (yet only when that file had been
1790 * opened for writing!). Anon pages in shared
1791 * mappings are surprising: now just reject it.
1792 */
1793 if (!is_cow_mapping(vm_flags)) {
1794 WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1795 goto efault;
1796 }
1797 }
1798 } else {
1799 if (!(vm_flags & VM_READ)) {
1800 if (!(gup_flags & FOLL_FORCE))
1801 goto efault;
1802 /*
1803 * Is there actually any vma we can reach here
1804 * which does not have VM_MAYREAD set?
1805 */
1806 if (!(vm_flags & VM_MAYREAD))
1807 goto efault;
1808 }
1809 }
1da177e4 1810
2a15efc9
HD
1811 if (is_vm_hugetlb_page(vma)) {
1812 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1813 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1814 continue;
1815 }
deceb6cd 1816
1da177e4 1817 do {
08ef4729 1818 struct page *page;
58fa879e 1819 unsigned int foll_flags = gup_flags;
240aadee 1820 unsigned int page_increm;
1da177e4 1821
462e00cc 1822 /*
4779280d 1823 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1824 * pages and potentially allocating memory.
462e00cc 1825 */
1c3aff1c 1826 if (unlikely(fatal_signal_pending(current)))
4779280d 1827 return i ? i : -ERESTARTSYS;
462e00cc 1828
deceb6cd 1829 cond_resched();
240aadee
ML
1830 while (!(page = follow_page_mask(vma, start,
1831 foll_flags, &page_mask))) {
deceb6cd 1832 int ret;
53a7706d
ML
1833 unsigned int fault_flags = 0;
1834
a09a79f6
MP
1835 /* For mlock, just skip the stack guard page. */
1836 if (foll_flags & FOLL_MLOCK) {
1837 if (stack_guard_page(vma, start))
1838 goto next_page;
1839 }
53a7706d
ML
1840 if (foll_flags & FOLL_WRITE)
1841 fault_flags |= FAULT_FLAG_WRITE;
1842 if (nonblocking)
1843 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1844 if (foll_flags & FOLL_NOWAIT)
1845 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1846
d26ed650 1847 ret = handle_mm_fault(mm, vma, start,
53a7706d 1848 fault_flags);
d26ed650 1849
83c54070
NP
1850 if (ret & VM_FAULT_ERROR) {
1851 if (ret & VM_FAULT_OOM)
1852 return i ? i : -ENOMEM;
69ebb83e
HY
1853 if (ret & (VM_FAULT_HWPOISON |
1854 VM_FAULT_HWPOISON_LARGE)) {
1855 if (i)
1856 return i;
1857 else if (gup_flags & FOLL_HWPOISON)
1858 return -EHWPOISON;
1859 else
1860 return -EFAULT;
1861 }
1862 if (ret & VM_FAULT_SIGBUS)
cda540ac 1863 goto efault;
83c54070
NP
1864 BUG();
1865 }
e7f22e20
SW
1866
1867 if (tsk) {
1868 if (ret & VM_FAULT_MAJOR)
1869 tsk->maj_flt++;
1870 else
1871 tsk->min_flt++;
1872 }
83c54070 1873
53a7706d 1874 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1875 if (nonblocking)
1876 *nonblocking = 0;
53a7706d
ML
1877 return i;
1878 }
1879
a68d2ebc 1880 /*
83c54070
NP
1881 * The VM_FAULT_WRITE bit tells us that
1882 * do_wp_page has broken COW when necessary,
1883 * even if maybe_mkwrite decided not to set
1884 * pte_write. We can thus safely do subsequent
878b63ac
HD
1885 * page lookups as if they were reads. But only
1886 * do so when looping for pte_write is futile:
1887 * in some cases userspace may also be wanting
1888 * to write to the gotten user page, which a
1889 * read fault here might prevent (a readonly
1890 * page might get reCOWed by userspace write).
a68d2ebc 1891 */
878b63ac
HD
1892 if ((ret & VM_FAULT_WRITE) &&
1893 !(vma->vm_flags & VM_WRITE))
deceb6cd 1894 foll_flags &= ~FOLL_WRITE;
83c54070 1895
7f7bbbe5 1896 cond_resched();
1da177e4 1897 }
89f5b7da
LT
1898 if (IS_ERR(page))
1899 return i ? i : PTR_ERR(page);
1da177e4 1900 if (pages) {
08ef4729 1901 pages[i] = page;
03beb076 1902
a6f36be3 1903 flush_anon_page(vma, page, start);
08ef4729 1904 flush_dcache_page(page);
240aadee 1905 page_mask = 0;
1da177e4 1906 }
95042f9e 1907next_page:
240aadee 1908 if (vmas) {
1da177e4 1909 vmas[i] = vma;
240aadee
ML
1910 page_mask = 0;
1911 }
1912 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1913 if (page_increm > nr_pages)
1914 page_increm = nr_pages;
1915 i += page_increm;
1916 start += page_increm * PAGE_SIZE;
1917 nr_pages -= page_increm;
9d73777e
PZ
1918 } while (nr_pages && start < vma->vm_end);
1919 } while (nr_pages);
1da177e4 1920 return i;
cda540ac
HD
1921efault:
1922 return i ? : -EFAULT;
1da177e4 1923}
0014bd99 1924EXPORT_SYMBOL(__get_user_pages);
b291f000 1925
2efaca92
BH
1926/*
1927 * fixup_user_fault() - manually resolve a user page fault
1928 * @tsk: the task_struct to use for page fault accounting, or
1929 * NULL if faults are not to be recorded.
1930 * @mm: mm_struct of target mm
1931 * @address: user address
1932 * @fault_flags:flags to pass down to handle_mm_fault()
1933 *
1934 * This is meant to be called in the specific scenario where for locking reasons
1935 * we try to access user memory in atomic context (within a pagefault_disable()
1936 * section), this returns -EFAULT, and we want to resolve the user fault before
1937 * trying again.
1938 *
1939 * Typically this is meant to be used by the futex code.
1940 *
1941 * The main difference with get_user_pages() is that this function will
1942 * unconditionally call handle_mm_fault() which will in turn perform all the
1943 * necessary SW fixup of the dirty and young bits in the PTE, while
1944 * handle_mm_fault() only guarantees to update these in the struct page.
1945 *
1946 * This is important for some architectures where those bits also gate the
1947 * access permission to the page because they are maintained in software. On
1948 * such architectures, gup() will not be enough to make a subsequent access
1949 * succeed.
1950 *
1951 * This should be called with the mm_sem held for read.
1952 */
1953int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1954 unsigned long address, unsigned int fault_flags)
1955{
1956 struct vm_area_struct *vma;
1957 int ret;
1958
1959 vma = find_extend_vma(mm, address);
1960 if (!vma || address < vma->vm_start)
1961 return -EFAULT;
1962
1963 ret = handle_mm_fault(mm, vma, address, fault_flags);
1964 if (ret & VM_FAULT_ERROR) {
1965 if (ret & VM_FAULT_OOM)
1966 return -ENOMEM;
1967 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1968 return -EHWPOISON;
1969 if (ret & VM_FAULT_SIGBUS)
1970 return -EFAULT;
1971 BUG();
1972 }
1973 if (tsk) {
1974 if (ret & VM_FAULT_MAJOR)
1975 tsk->maj_flt++;
1976 else
1977 tsk->min_flt++;
1978 }
1979 return 0;
1980}
1981
1982/*
d2bf6be8 1983 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1984 * @tsk: the task_struct to use for page fault accounting, or
1985 * NULL if faults are not to be recorded.
d2bf6be8
NP
1986 * @mm: mm_struct of target mm
1987 * @start: starting user address
9d73777e 1988 * @nr_pages: number of pages from start to pin
d2bf6be8 1989 * @write: whether pages will be written to by the caller
cda540ac
HD
1990 * @force: whether to force access even when user mapping is currently
1991 * protected (but never forces write access to shared mapping).
d2bf6be8
NP
1992 * @pages: array that receives pointers to the pages pinned.
1993 * Should be at least nr_pages long. Or NULL, if caller
1994 * only intends to ensure the pages are faulted in.
1995 * @vmas: array of pointers to vmas corresponding to each page.
1996 * Or NULL if the caller does not require them.
1997 *
1998 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1999 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
2000 * were pinned, returns -errno. Each page returned must be released
2001 * with a put_page() call when it is finished with. vmas will only
2002 * remain valid while mmap_sem is held.
2003 *
2004 * Must be called with mmap_sem held for read or write.
2005 *
2006 * get_user_pages walks a process's page tables and takes a reference to
2007 * each struct page that each user address corresponds to at a given
2008 * instant. That is, it takes the page that would be accessed if a user
2009 * thread accesses the given user virtual address at that instant.
2010 *
2011 * This does not guarantee that the page exists in the user mappings when
2012 * get_user_pages returns, and there may even be a completely different
2013 * page there in some cases (eg. if mmapped pagecache has been invalidated
2014 * and subsequently re faulted). However it does guarantee that the page
2015 * won't be freed completely. And mostly callers simply care that the page
2016 * contains data that was valid *at some point in time*. Typically, an IO
2017 * or similar operation cannot guarantee anything stronger anyway because
2018 * locks can't be held over the syscall boundary.
2019 *
2020 * If write=0, the page must not be written to. If the page is written to,
2021 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2022 * after the page is finished with, and before put_page is called.
2023 *
2024 * get_user_pages is typically used for fewer-copy IO operations, to get a
2025 * handle on the memory by some means other than accesses via the user virtual
2026 * addresses. The pages may be submitted for DMA to devices or accessed via
2027 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2028 * use the correct cache flushing APIs.
2029 *
2030 * See also get_user_pages_fast, for performance critical applications.
2031 */
28a35716
ML
2032long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2033 unsigned long start, unsigned long nr_pages, int write,
2034 int force, struct page **pages, struct vm_area_struct **vmas)
b291f000 2035{
58fa879e 2036 int flags = FOLL_TOUCH;
b291f000 2037
58fa879e
HD
2038 if (pages)
2039 flags |= FOLL_GET;
b291f000 2040 if (write)
58fa879e 2041 flags |= FOLL_WRITE;
b291f000 2042 if (force)
58fa879e 2043 flags |= FOLL_FORCE;
b291f000 2044
53a7706d
ML
2045 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2046 NULL);
b291f000 2047}
1da177e4
LT
2048EXPORT_SYMBOL(get_user_pages);
2049
f3e8fccd
HD
2050/**
2051 * get_dump_page() - pin user page in memory while writing it to core dump
2052 * @addr: user address
2053 *
2054 * Returns struct page pointer of user page pinned for dump,
2055 * to be freed afterwards by page_cache_release() or put_page().
2056 *
2057 * Returns NULL on any kind of failure - a hole must then be inserted into
2058 * the corefile, to preserve alignment with its headers; and also returns
2059 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2060 * allowing a hole to be left in the corefile to save diskspace.
2061 *
2062 * Called without mmap_sem, but after all other threads have been killed.
2063 */
2064#ifdef CONFIG_ELF_CORE
2065struct page *get_dump_page(unsigned long addr)
2066{
2067 struct vm_area_struct *vma;
2068 struct page *page;
2069
2070 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
2071 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2072 NULL) < 1)
f3e8fccd 2073 return NULL;
f3e8fccd
HD
2074 flush_cache_page(vma, addr, page_to_pfn(page));
2075 return page;
2076}
2077#endif /* CONFIG_ELF_CORE */
2078
25ca1d6c 2079pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 2080 spinlock_t **ptl)
c9cfcddf
LT
2081{
2082 pgd_t * pgd = pgd_offset(mm, addr);
2083 pud_t * pud = pud_alloc(mm, pgd, addr);
2084 if (pud) {
49c91fb0 2085 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2086 if (pmd) {
2087 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2088 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2089 }
c9cfcddf
LT
2090 }
2091 return NULL;
2092}
2093
238f58d8
LT
2094/*
2095 * This is the old fallback for page remapping.
2096 *
2097 * For historical reasons, it only allows reserved pages. Only
2098 * old drivers should use this, and they needed to mark their
2099 * pages reserved for the old functions anyway.
2100 */
423bad60
NP
2101static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2102 struct page *page, pgprot_t prot)
238f58d8 2103{
423bad60 2104 struct mm_struct *mm = vma->vm_mm;
238f58d8 2105 int retval;
c9cfcddf 2106 pte_t *pte;
8a9f3ccd
BS
2107 spinlock_t *ptl;
2108
238f58d8 2109 retval = -EINVAL;
a145dd41 2110 if (PageAnon(page))
5b4e655e 2111 goto out;
238f58d8
LT
2112 retval = -ENOMEM;
2113 flush_dcache_page(page);
c9cfcddf 2114 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2115 if (!pte)
5b4e655e 2116 goto out;
238f58d8
LT
2117 retval = -EBUSY;
2118 if (!pte_none(*pte))
2119 goto out_unlock;
2120
2121 /* Ok, finally just insert the thing.. */
2122 get_page(page);
34e55232 2123 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2124 page_add_file_rmap(page);
2125 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2126
2127 retval = 0;
8a9f3ccd
BS
2128 pte_unmap_unlock(pte, ptl);
2129 return retval;
238f58d8
LT
2130out_unlock:
2131 pte_unmap_unlock(pte, ptl);
2132out:
2133 return retval;
2134}
2135
bfa5bf6d
REB
2136/**
2137 * vm_insert_page - insert single page into user vma
2138 * @vma: user vma to map to
2139 * @addr: target user address of this page
2140 * @page: source kernel page
2141 *
a145dd41
LT
2142 * This allows drivers to insert individual pages they've allocated
2143 * into a user vma.
2144 *
2145 * The page has to be a nice clean _individual_ kernel allocation.
2146 * If you allocate a compound page, you need to have marked it as
2147 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2148 * (see split_page()).
a145dd41
LT
2149 *
2150 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2151 * took an arbitrary page protection parameter. This doesn't allow
2152 * that. Your vma protection will have to be set up correctly, which
2153 * means that if you want a shared writable mapping, you'd better
2154 * ask for a shared writable mapping!
2155 *
2156 * The page does not need to be reserved.
4b6e1e37
KK
2157 *
2158 * Usually this function is called from f_op->mmap() handler
2159 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2160 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2161 * function from other places, for example from page-fault handler.
a145dd41 2162 */
423bad60
NP
2163int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2164 struct page *page)
a145dd41
LT
2165{
2166 if (addr < vma->vm_start || addr >= vma->vm_end)
2167 return -EFAULT;
2168 if (!page_count(page))
2169 return -EINVAL;
4b6e1e37
KK
2170 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2171 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2172 BUG_ON(vma->vm_flags & VM_PFNMAP);
2173 vma->vm_flags |= VM_MIXEDMAP;
2174 }
423bad60 2175 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2176}
e3c3374f 2177EXPORT_SYMBOL(vm_insert_page);
a145dd41 2178
423bad60
NP
2179static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2180 unsigned long pfn, pgprot_t prot)
2181{
2182 struct mm_struct *mm = vma->vm_mm;
2183 int retval;
2184 pte_t *pte, entry;
2185 spinlock_t *ptl;
2186
2187 retval = -ENOMEM;
2188 pte = get_locked_pte(mm, addr, &ptl);
2189 if (!pte)
2190 goto out;
2191 retval = -EBUSY;
2192 if (!pte_none(*pte))
2193 goto out_unlock;
2194
2195 /* Ok, finally just insert the thing.. */
2196 entry = pte_mkspecial(pfn_pte(pfn, prot));
2197 set_pte_at(mm, addr, pte, entry);
4b3073e1 2198 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2199
2200 retval = 0;
2201out_unlock:
2202 pte_unmap_unlock(pte, ptl);
2203out:
2204 return retval;
2205}
2206
e0dc0d8f
NP
2207/**
2208 * vm_insert_pfn - insert single pfn into user vma
2209 * @vma: user vma to map to
2210 * @addr: target user address of this page
2211 * @pfn: source kernel pfn
2212 *
c462f179 2213 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
2214 * they've allocated into a user vma. Same comments apply.
2215 *
2216 * This function should only be called from a vm_ops->fault handler, and
2217 * in that case the handler should return NULL.
0d71d10a
NP
2218 *
2219 * vma cannot be a COW mapping.
2220 *
2221 * As this is called only for pages that do not currently exist, we
2222 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2223 */
2224int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2225 unsigned long pfn)
e0dc0d8f 2226{
2ab64037 2227 int ret;
e4b866ed 2228 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2229 /*
2230 * Technically, architectures with pte_special can avoid all these
2231 * restrictions (same for remap_pfn_range). However we would like
2232 * consistency in testing and feature parity among all, so we should
2233 * try to keep these invariants in place for everybody.
2234 */
b379d790
JH
2235 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2236 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2237 (VM_PFNMAP|VM_MIXEDMAP));
2238 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2239 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2240
423bad60
NP
2241 if (addr < vma->vm_start || addr >= vma->vm_end)
2242 return -EFAULT;
5180da41 2243 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 2244 return -EINVAL;
2245
e4b866ed 2246 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2247
2ab64037 2248 return ret;
423bad60
NP
2249}
2250EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2251
423bad60
NP
2252int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2253 unsigned long pfn)
2254{
2255 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2256
423bad60
NP
2257 if (addr < vma->vm_start || addr >= vma->vm_end)
2258 return -EFAULT;
e0dc0d8f 2259
423bad60
NP
2260 /*
2261 * If we don't have pte special, then we have to use the pfn_valid()
2262 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2263 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2264 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2265 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2266 */
2267 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2268 struct page *page;
2269
2270 page = pfn_to_page(pfn);
2271 return insert_page(vma, addr, page, vma->vm_page_prot);
2272 }
2273 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2274}
423bad60 2275EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2276
1da177e4
LT
2277/*
2278 * maps a range of physical memory into the requested pages. the old
2279 * mappings are removed. any references to nonexistent pages results
2280 * in null mappings (currently treated as "copy-on-access")
2281 */
2282static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2283 unsigned long addr, unsigned long end,
2284 unsigned long pfn, pgprot_t prot)
2285{
2286 pte_t *pte;
c74df32c 2287 spinlock_t *ptl;
1da177e4 2288
c74df32c 2289 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2290 if (!pte)
2291 return -ENOMEM;
6606c3e0 2292 arch_enter_lazy_mmu_mode();
1da177e4
LT
2293 do {
2294 BUG_ON(!pte_none(*pte));
7e675137 2295 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2296 pfn++;
2297 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2298 arch_leave_lazy_mmu_mode();
c74df32c 2299 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2300 return 0;
2301}
2302
2303static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2304 unsigned long addr, unsigned long end,
2305 unsigned long pfn, pgprot_t prot)
2306{
2307 pmd_t *pmd;
2308 unsigned long next;
2309
2310 pfn -= addr >> PAGE_SHIFT;
2311 pmd = pmd_alloc(mm, pud, addr);
2312 if (!pmd)
2313 return -ENOMEM;
f66055ab 2314 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2315 do {
2316 next = pmd_addr_end(addr, end);
2317 if (remap_pte_range(mm, pmd, addr, next,
2318 pfn + (addr >> PAGE_SHIFT), prot))
2319 return -ENOMEM;
2320 } while (pmd++, addr = next, addr != end);
2321 return 0;
2322}
2323
2324static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2325 unsigned long addr, unsigned long end,
2326 unsigned long pfn, pgprot_t prot)
2327{
2328 pud_t *pud;
2329 unsigned long next;
2330
2331 pfn -= addr >> PAGE_SHIFT;
2332 pud = pud_alloc(mm, pgd, addr);
2333 if (!pud)
2334 return -ENOMEM;
2335 do {
2336 next = pud_addr_end(addr, end);
2337 if (remap_pmd_range(mm, pud, addr, next,
2338 pfn + (addr >> PAGE_SHIFT), prot))
2339 return -ENOMEM;
2340 } while (pud++, addr = next, addr != end);
2341 return 0;
2342}
2343
bfa5bf6d
REB
2344/**
2345 * remap_pfn_range - remap kernel memory to userspace
2346 * @vma: user vma to map to
2347 * @addr: target user address to start at
2348 * @pfn: physical address of kernel memory
2349 * @size: size of map area
2350 * @prot: page protection flags for this mapping
2351 *
2352 * Note: this is only safe if the mm semaphore is held when called.
2353 */
1da177e4
LT
2354int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2355 unsigned long pfn, unsigned long size, pgprot_t prot)
2356{
2357 pgd_t *pgd;
2358 unsigned long next;
2d15cab8 2359 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2360 struct mm_struct *mm = vma->vm_mm;
2361 int err;
2362
2363 /*
2364 * Physically remapped pages are special. Tell the
2365 * rest of the world about it:
2366 * VM_IO tells people not to look at these pages
2367 * (accesses can have side effects).
6aab341e
LT
2368 * VM_PFNMAP tells the core MM that the base pages are just
2369 * raw PFN mappings, and do not have a "struct page" associated
2370 * with them.
314e51b9
KK
2371 * VM_DONTEXPAND
2372 * Disable vma merging and expanding with mremap().
2373 * VM_DONTDUMP
2374 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2375 *
2376 * There's a horrible special case to handle copy-on-write
2377 * behaviour that some programs depend on. We mark the "original"
2378 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2379 * See vm_normal_page() for details.
1da177e4 2380 */
b3b9c293
KK
2381 if (is_cow_mapping(vma->vm_flags)) {
2382 if (addr != vma->vm_start || end != vma->vm_end)
2383 return -EINVAL;
fb155c16 2384 vma->vm_pgoff = pfn;
b3b9c293
KK
2385 }
2386
2387 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2388 if (err)
3c8bb73a 2389 return -EINVAL;
fb155c16 2390
314e51b9 2391 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2392
2393 BUG_ON(addr >= end);
2394 pfn -= addr >> PAGE_SHIFT;
2395 pgd = pgd_offset(mm, addr);
2396 flush_cache_range(vma, addr, end);
1da177e4
LT
2397 do {
2398 next = pgd_addr_end(addr, end);
2399 err = remap_pud_range(mm, pgd, addr, next,
2400 pfn + (addr >> PAGE_SHIFT), prot);
2401 if (err)
2402 break;
2403 } while (pgd++, addr = next, addr != end);
2ab64037 2404
2405 if (err)
5180da41 2406 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 2407
1da177e4
LT
2408 return err;
2409}
2410EXPORT_SYMBOL(remap_pfn_range);
2411
b4cbb197
LT
2412/**
2413 * vm_iomap_memory - remap memory to userspace
2414 * @vma: user vma to map to
2415 * @start: start of area
2416 * @len: size of area
2417 *
2418 * This is a simplified io_remap_pfn_range() for common driver use. The
2419 * driver just needs to give us the physical memory range to be mapped,
2420 * we'll figure out the rest from the vma information.
2421 *
2422 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2423 * whatever write-combining details or similar.
2424 */
2425int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2426{
2427 unsigned long vm_len, pfn, pages;
2428
2429 /* Check that the physical memory area passed in looks valid */
2430 if (start + len < start)
2431 return -EINVAL;
2432 /*
2433 * You *really* shouldn't map things that aren't page-aligned,
2434 * but we've historically allowed it because IO memory might
2435 * just have smaller alignment.
2436 */
2437 len += start & ~PAGE_MASK;
2438 pfn = start >> PAGE_SHIFT;
2439 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2440 if (pfn + pages < pfn)
2441 return -EINVAL;
2442
2443 /* We start the mapping 'vm_pgoff' pages into the area */
2444 if (vma->vm_pgoff > pages)
2445 return -EINVAL;
2446 pfn += vma->vm_pgoff;
2447 pages -= vma->vm_pgoff;
2448
2449 /* Can we fit all of the mapping? */
2450 vm_len = vma->vm_end - vma->vm_start;
2451 if (vm_len >> PAGE_SHIFT > pages)
2452 return -EINVAL;
2453
2454 /* Ok, let it rip */
2455 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2456}
2457EXPORT_SYMBOL(vm_iomap_memory);
2458
aee16b3c
JF
2459static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2460 unsigned long addr, unsigned long end,
2461 pte_fn_t fn, void *data)
2462{
2463 pte_t *pte;
2464 int err;
2f569afd 2465 pgtable_t token;
94909914 2466 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2467
2468 pte = (mm == &init_mm) ?
2469 pte_alloc_kernel(pmd, addr) :
2470 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2471 if (!pte)
2472 return -ENOMEM;
2473
2474 BUG_ON(pmd_huge(*pmd));
2475
38e0edb1
JF
2476 arch_enter_lazy_mmu_mode();
2477
2f569afd 2478 token = pmd_pgtable(*pmd);
aee16b3c
JF
2479
2480 do {
c36987e2 2481 err = fn(pte++, token, addr, data);
aee16b3c
JF
2482 if (err)
2483 break;
c36987e2 2484 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2485
38e0edb1
JF
2486 arch_leave_lazy_mmu_mode();
2487
aee16b3c
JF
2488 if (mm != &init_mm)
2489 pte_unmap_unlock(pte-1, ptl);
2490 return err;
2491}
2492
2493static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2494 unsigned long addr, unsigned long end,
2495 pte_fn_t fn, void *data)
2496{
2497 pmd_t *pmd;
2498 unsigned long next;
2499 int err;
2500
ceb86879
AK
2501 BUG_ON(pud_huge(*pud));
2502
aee16b3c
JF
2503 pmd = pmd_alloc(mm, pud, addr);
2504 if (!pmd)
2505 return -ENOMEM;
2506 do {
2507 next = pmd_addr_end(addr, end);
2508 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2509 if (err)
2510 break;
2511 } while (pmd++, addr = next, addr != end);
2512 return err;
2513}
2514
2515static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2516 unsigned long addr, unsigned long end,
2517 pte_fn_t fn, void *data)
2518{
2519 pud_t *pud;
2520 unsigned long next;
2521 int err;
2522
2523 pud = pud_alloc(mm, pgd, addr);
2524 if (!pud)
2525 return -ENOMEM;
2526 do {
2527 next = pud_addr_end(addr, end);
2528 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2529 if (err)
2530 break;
2531 } while (pud++, addr = next, addr != end);
2532 return err;
2533}
2534
2535/*
2536 * Scan a region of virtual memory, filling in page tables as necessary
2537 * and calling a provided function on each leaf page table.
2538 */
2539int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2540 unsigned long size, pte_fn_t fn, void *data)
2541{
2542 pgd_t *pgd;
2543 unsigned long next;
57250a5b 2544 unsigned long end = addr + size;
aee16b3c
JF
2545 int err;
2546
2547 BUG_ON(addr >= end);
2548 pgd = pgd_offset(mm, addr);
2549 do {
2550 next = pgd_addr_end(addr, end);
2551 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2552 if (err)
2553 break;
2554 } while (pgd++, addr = next, addr != end);
57250a5b 2555
aee16b3c
JF
2556 return err;
2557}
2558EXPORT_SYMBOL_GPL(apply_to_page_range);
2559
8f4e2101
HD
2560/*
2561 * handle_pte_fault chooses page fault handler according to an entry
2562 * which was read non-atomically. Before making any commitment, on
2563 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2564 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2565 * must check under lock before unmapping the pte and proceeding
2566 * (but do_wp_page is only called after already making such a check;
a335b2e1 2567 * and do_anonymous_page can safely check later on).
8f4e2101 2568 */
4c21e2f2 2569static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2570 pte_t *page_table, pte_t orig_pte)
2571{
2572 int same = 1;
2573#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2574 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2575 spinlock_t *ptl = pte_lockptr(mm, pmd);
2576 spin_lock(ptl);
8f4e2101 2577 same = pte_same(*page_table, orig_pte);
4c21e2f2 2578 spin_unlock(ptl);
8f4e2101
HD
2579 }
2580#endif
2581 pte_unmap(page_table);
2582 return same;
2583}
2584
9de455b2 2585static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2586{
0abdd7a8
DW
2587 debug_dma_assert_idle(src);
2588
6aab341e
LT
2589 /*
2590 * If the source page was a PFN mapping, we don't have
2591 * a "struct page" for it. We do a best-effort copy by
2592 * just copying from the original user address. If that
2593 * fails, we just zero-fill it. Live with it.
2594 */
2595 if (unlikely(!src)) {
9b04c5fe 2596 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2597 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2598
2599 /*
2600 * This really shouldn't fail, because the page is there
2601 * in the page tables. But it might just be unreadable,
2602 * in which case we just give up and fill the result with
2603 * zeroes.
2604 */
2605 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2606 clear_page(kaddr);
9b04c5fe 2607 kunmap_atomic(kaddr);
c4ec7b0d 2608 flush_dcache_page(dst);
0ed361de
NP
2609 } else
2610 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2611}
2612
fb09a464
KS
2613/*
2614 * Notify the address space that the page is about to become writable so that
2615 * it can prohibit this or wait for the page to get into an appropriate state.
2616 *
2617 * We do this without the lock held, so that it can sleep if it needs to.
2618 */
2619static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2620 unsigned long address)
2621{
2622 struct vm_fault vmf;
2623 int ret;
2624
2625 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2626 vmf.pgoff = page->index;
2627 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2628 vmf.page = page;
2629
2630 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2631 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2632 return ret;
2633 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2634 lock_page(page);
2635 if (!page->mapping) {
2636 unlock_page(page);
2637 return 0; /* retry */
2638 }
2639 ret |= VM_FAULT_LOCKED;
2640 } else
2641 VM_BUG_ON_PAGE(!PageLocked(page), page);
2642 return ret;
2643}
2644
1da177e4
LT
2645/*
2646 * This routine handles present pages, when users try to write
2647 * to a shared page. It is done by copying the page to a new address
2648 * and decrementing the shared-page counter for the old page.
2649 *
1da177e4
LT
2650 * Note that this routine assumes that the protection checks have been
2651 * done by the caller (the low-level page fault routine in most cases).
2652 * Thus we can safely just mark it writable once we've done any necessary
2653 * COW.
2654 *
2655 * We also mark the page dirty at this point even though the page will
2656 * change only once the write actually happens. This avoids a few races,
2657 * and potentially makes it more efficient.
2658 *
8f4e2101
HD
2659 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2660 * but allow concurrent faults), with pte both mapped and locked.
2661 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2662 */
65500d23
HD
2663static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2664 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2665 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2666 __releases(ptl)
1da177e4 2667{
2ec74c3e 2668 struct page *old_page, *new_page = NULL;
1da177e4 2669 pte_t entry;
b009c024 2670 int ret = 0;
a200ee18 2671 int page_mkwrite = 0;
d08b3851 2672 struct page *dirty_page = NULL;
1756954c
DR
2673 unsigned long mmun_start = 0; /* For mmu_notifiers */
2674 unsigned long mmun_end = 0; /* For mmu_notifiers */
1da177e4 2675
6aab341e 2676 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2677 if (!old_page) {
2678 /*
2679 * VM_MIXEDMAP !pfn_valid() case
2680 *
2681 * We should not cow pages in a shared writeable mapping.
2682 * Just mark the pages writable as we can't do any dirty
2683 * accounting on raw pfn maps.
2684 */
2685 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2686 (VM_WRITE|VM_SHARED))
2687 goto reuse;
6aab341e 2688 goto gotten;
251b97f5 2689 }
1da177e4 2690
d08b3851 2691 /*
ee6a6457
PZ
2692 * Take out anonymous pages first, anonymous shared vmas are
2693 * not dirty accountable.
d08b3851 2694 */
9a840895 2695 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2696 if (!trylock_page(old_page)) {
2697 page_cache_get(old_page);
2698 pte_unmap_unlock(page_table, ptl);
2699 lock_page(old_page);
2700 page_table = pte_offset_map_lock(mm, pmd, address,
2701 &ptl);
2702 if (!pte_same(*page_table, orig_pte)) {
2703 unlock_page(old_page);
ab967d86
HD
2704 goto unlock;
2705 }
2706 page_cache_release(old_page);
ee6a6457 2707 }
b009c024 2708 if (reuse_swap_page(old_page)) {
c44b6743
RR
2709 /*
2710 * The page is all ours. Move it to our anon_vma so
2711 * the rmap code will not search our parent or siblings.
2712 * Protected against the rmap code by the page lock.
2713 */
2714 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2715 unlock_page(old_page);
2716 goto reuse;
2717 }
ab967d86 2718 unlock_page(old_page);
ee6a6457 2719 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2720 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2721 /*
2722 * Only catch write-faults on shared writable pages,
2723 * read-only shared pages can get COWed by
2724 * get_user_pages(.write=1, .force=1).
2725 */
9637a5ef 2726 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c 2727 int tmp;
9637a5ef
DH
2728 page_cache_get(old_page);
2729 pte_unmap_unlock(page_table, ptl);
fb09a464
KS
2730 tmp = do_page_mkwrite(vma, old_page, address);
2731 if (unlikely(!tmp || (tmp &
2732 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2733 page_cache_release(old_page);
2734 return tmp;
c2ec175c 2735 }
9637a5ef
DH
2736 /*
2737 * Since we dropped the lock we need to revalidate
2738 * the PTE as someone else may have changed it. If
2739 * they did, we just return, as we can count on the
2740 * MMU to tell us if they didn't also make it writable.
2741 */
2742 page_table = pte_offset_map_lock(mm, pmd, address,
2743 &ptl);
b827e496
NP
2744 if (!pte_same(*page_table, orig_pte)) {
2745 unlock_page(old_page);
9637a5ef 2746 goto unlock;
b827e496 2747 }
a200ee18
PZ
2748
2749 page_mkwrite = 1;
1da177e4 2750 }
d08b3851
PZ
2751 dirty_page = old_page;
2752 get_page(dirty_page);
9637a5ef 2753
251b97f5 2754reuse:
8c8a743c
PZ
2755 /*
2756 * Clear the pages cpupid information as the existing
2757 * information potentially belongs to a now completely
2758 * unrelated process.
2759 */
2760 if (old_page)
2761 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2762
9637a5ef
DH
2763 flush_cache_page(vma, address, pte_pfn(orig_pte));
2764 entry = pte_mkyoung(orig_pte);
2765 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2766 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2767 update_mmu_cache(vma, address, page_table);
72ddc8f7 2768 pte_unmap_unlock(page_table, ptl);
9637a5ef 2769 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2770
2771 if (!dirty_page)
2772 return ret;
2773
2774 /*
2775 * Yes, Virginia, this is actually required to prevent a race
2776 * with clear_page_dirty_for_io() from clearing the page dirty
2777 * bit after it clear all dirty ptes, but before a racing
2778 * do_wp_page installs a dirty pte.
2779 *
f0c6d4d2 2780 * do_shared_fault is protected similarly.
72ddc8f7
ML
2781 */
2782 if (!page_mkwrite) {
2783 wait_on_page_locked(dirty_page);
2784 set_page_dirty_balance(dirty_page, page_mkwrite);
41c4d25f
JK
2785 /* file_update_time outside page_lock */
2786 if (vma->vm_file)
2787 file_update_time(vma->vm_file);
72ddc8f7
ML
2788 }
2789 put_page(dirty_page);
2790 if (page_mkwrite) {
2791 struct address_space *mapping = dirty_page->mapping;
2792
2793 set_page_dirty(dirty_page);
2794 unlock_page(dirty_page);
2795 page_cache_release(dirty_page);
2796 if (mapping) {
2797 /*
2798 * Some device drivers do not set page.mapping
2799 * but still dirty their pages
2800 */
2801 balance_dirty_pages_ratelimited(mapping);
2802 }
2803 }
2804
72ddc8f7 2805 return ret;
1da177e4 2806 }
1da177e4
LT
2807
2808 /*
2809 * Ok, we need to copy. Oh, well..
2810 */
b5810039 2811 page_cache_get(old_page);
920fc356 2812gotten:
8f4e2101 2813 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2814
2815 if (unlikely(anon_vma_prepare(vma)))
65500d23 2816 goto oom;
a13ea5b7 2817
62eede62 2818 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2819 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2820 if (!new_page)
2821 goto oom;
2822 } else {
2823 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2824 if (!new_page)
2825 goto oom;
2826 cow_user_page(new_page, old_page, address, vma);
2827 }
2828 __SetPageUptodate(new_page);
2829
2c26fdd7 2830 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2831 goto oom_free_new;
2832
6bdb913f 2833 mmun_start = address & PAGE_MASK;
1756954c 2834 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2835 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2836
1da177e4
LT
2837 /*
2838 * Re-check the pte - we dropped the lock
2839 */
8f4e2101 2840 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2841 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2842 if (old_page) {
920fc356 2843 if (!PageAnon(old_page)) {
34e55232
KH
2844 dec_mm_counter_fast(mm, MM_FILEPAGES);
2845 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2846 }
2847 } else
34e55232 2848 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2849 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2850 entry = mk_pte(new_page, vma->vm_page_prot);
2851 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2852 /*
2853 * Clear the pte entry and flush it first, before updating the
2854 * pte with the new entry. This will avoid a race condition
2855 * seen in the presence of one thread doing SMC and another
2856 * thread doing COW.
2857 */
828502d3 2858 ptep_clear_flush(vma, address, page_table);
9617d95e 2859 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2860 /*
2861 * We call the notify macro here because, when using secondary
2862 * mmu page tables (such as kvm shadow page tables), we want the
2863 * new page to be mapped directly into the secondary page table.
2864 */
2865 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2866 update_mmu_cache(vma, address, page_table);
945754a1
NP
2867 if (old_page) {
2868 /*
2869 * Only after switching the pte to the new page may
2870 * we remove the mapcount here. Otherwise another
2871 * process may come and find the rmap count decremented
2872 * before the pte is switched to the new page, and
2873 * "reuse" the old page writing into it while our pte
2874 * here still points into it and can be read by other
2875 * threads.
2876 *
2877 * The critical issue is to order this
2878 * page_remove_rmap with the ptp_clear_flush above.
2879 * Those stores are ordered by (if nothing else,)
2880 * the barrier present in the atomic_add_negative
2881 * in page_remove_rmap.
2882 *
2883 * Then the TLB flush in ptep_clear_flush ensures that
2884 * no process can access the old page before the
2885 * decremented mapcount is visible. And the old page
2886 * cannot be reused until after the decremented
2887 * mapcount is visible. So transitively, TLBs to
2888 * old page will be flushed before it can be reused.
2889 */
edc315fd 2890 page_remove_rmap(old_page);
945754a1
NP
2891 }
2892
1da177e4
LT
2893 /* Free the old page.. */
2894 new_page = old_page;
f33ea7f4 2895 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2896 } else
2897 mem_cgroup_uncharge_page(new_page);
2898
6bdb913f
HE
2899 if (new_page)
2900 page_cache_release(new_page);
65500d23 2901unlock:
8f4e2101 2902 pte_unmap_unlock(page_table, ptl);
1756954c 2903 if (mmun_end > mmun_start)
6bdb913f 2904 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2905 if (old_page) {
2906 /*
2907 * Don't let another task, with possibly unlocked vma,
2908 * keep the mlocked page.
2909 */
2910 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2911 lock_page(old_page); /* LRU manipulation */
2912 munlock_vma_page(old_page);
2913 unlock_page(old_page);
2914 }
2915 page_cache_release(old_page);
2916 }
f33ea7f4 2917 return ret;
8a9f3ccd 2918oom_free_new:
6dbf6d3b 2919 page_cache_release(new_page);
65500d23 2920oom:
66521d5a 2921 if (old_page)
920fc356 2922 page_cache_release(old_page);
1da177e4
LT
2923 return VM_FAULT_OOM;
2924}
2925
97a89413 2926static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2927 unsigned long start_addr, unsigned long end_addr,
2928 struct zap_details *details)
2929{
f5cc4eef 2930 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2931}
2932
6b2dbba8 2933static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2934 struct zap_details *details)
2935{
2936 struct vm_area_struct *vma;
1da177e4
LT
2937 pgoff_t vba, vea, zba, zea;
2938
6b2dbba8 2939 vma_interval_tree_foreach(vma, root,
1da177e4 2940 details->first_index, details->last_index) {
1da177e4
LT
2941
2942 vba = vma->vm_pgoff;
d6e93217 2943 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2944 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2945 zba = details->first_index;
2946 if (zba < vba)
2947 zba = vba;
2948 zea = details->last_index;
2949 if (zea > vea)
2950 zea = vea;
2951
97a89413 2952 unmap_mapping_range_vma(vma,
1da177e4
LT
2953 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2954 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2955 details);
1da177e4
LT
2956 }
2957}
2958
2959static inline void unmap_mapping_range_list(struct list_head *head,
2960 struct zap_details *details)
2961{
2962 struct vm_area_struct *vma;
2963
2964 /*
2965 * In nonlinear VMAs there is no correspondence between virtual address
2966 * offset and file offset. So we must perform an exhaustive search
2967 * across *all* the pages in each nonlinear VMA, not just the pages
2968 * whose virtual address lies outside the file truncation point.
2969 */
6b2dbba8 2970 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2971 details->nonlinear_vma = vma;
97a89413 2972 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2973 }
2974}
2975
2976/**
72fd4a35 2977 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2978 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2979 * @holebegin: byte in first page to unmap, relative to the start of
2980 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2981 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2982 * must keep the partial page. In contrast, we must get rid of
2983 * partial pages.
2984 * @holelen: size of prospective hole in bytes. This will be rounded
2985 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2986 * end of the file.
2987 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2988 * but 0 when invalidating pagecache, don't throw away private data.
2989 */
2990void unmap_mapping_range(struct address_space *mapping,
2991 loff_t const holebegin, loff_t const holelen, int even_cows)
2992{
2993 struct zap_details details;
2994 pgoff_t hba = holebegin >> PAGE_SHIFT;
2995 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2996
2997 /* Check for overflow. */
2998 if (sizeof(holelen) > sizeof(hlen)) {
2999 long long holeend =
3000 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3001 if (holeend & ~(long long)ULONG_MAX)
3002 hlen = ULONG_MAX - hba + 1;
3003 }
3004
3005 details.check_mapping = even_cows? NULL: mapping;
3006 details.nonlinear_vma = NULL;
3007 details.first_index = hba;
3008 details.last_index = hba + hlen - 1;
3009 if (details.last_index < details.first_index)
3010 details.last_index = ULONG_MAX;
1da177e4 3011
1da177e4 3012
3d48ae45 3013 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 3014 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
3015 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3016 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3017 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 3018 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
3019}
3020EXPORT_SYMBOL(unmap_mapping_range);
3021
1da177e4 3022/*
8f4e2101
HD
3023 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3024 * but allow concurrent faults), and pte mapped but not yet locked.
3025 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3026 */
65500d23
HD
3027static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3028 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3029 unsigned int flags, pte_t orig_pte)
1da177e4 3030{
8f4e2101 3031 spinlock_t *ptl;
56f31801 3032 struct page *page, *swapcache;
65500d23 3033 swp_entry_t entry;
1da177e4 3034 pte_t pte;
d065bd81 3035 int locked;
56039efa 3036 struct mem_cgroup *ptr;
ad8c2ee8 3037 int exclusive = 0;
83c54070 3038 int ret = 0;
1da177e4 3039
4c21e2f2 3040 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 3041 goto out;
65500d23
HD
3042
3043 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
3044 if (unlikely(non_swap_entry(entry))) {
3045 if (is_migration_entry(entry)) {
3046 migration_entry_wait(mm, pmd, address);
3047 } else if (is_hwpoison_entry(entry)) {
3048 ret = VM_FAULT_HWPOISON;
3049 } else {
3050 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3051 ret = VM_FAULT_SIGBUS;
d1737fdb 3052 }
0697212a
CL
3053 goto out;
3054 }
0ff92245 3055 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
3056 page = lookup_swap_cache(entry);
3057 if (!page) {
02098fea
HD
3058 page = swapin_readahead(entry,
3059 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
3060 if (!page) {
3061 /*
8f4e2101
HD
3062 * Back out if somebody else faulted in this pte
3063 * while we released the pte lock.
1da177e4 3064 */
8f4e2101 3065 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3066 if (likely(pte_same(*page_table, orig_pte)))
3067 ret = VM_FAULT_OOM;
0ff92245 3068 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3069 goto unlock;
1da177e4
LT
3070 }
3071
3072 /* Had to read the page from swap area: Major fault */
3073 ret = VM_FAULT_MAJOR;
f8891e5e 3074 count_vm_event(PGMAJFAULT);
456f998e 3075 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 3076 } else if (PageHWPoison(page)) {
71f72525
WF
3077 /*
3078 * hwpoisoned dirty swapcache pages are kept for killing
3079 * owner processes (which may be unknown at hwpoison time)
3080 */
d1737fdb
AK
3081 ret = VM_FAULT_HWPOISON;
3082 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 3083 swapcache = page;
4779cb31 3084 goto out_release;
1da177e4
LT
3085 }
3086
56f31801 3087 swapcache = page;
d065bd81 3088 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 3089
073e587e 3090 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3091 if (!locked) {
3092 ret |= VM_FAULT_RETRY;
3093 goto out_release;
3094 }
073e587e 3095
4969c119 3096 /*
31c4a3d3
HD
3097 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3098 * release the swapcache from under us. The page pin, and pte_same
3099 * test below, are not enough to exclude that. Even if it is still
3100 * swapcache, we need to check that the page's swap has not changed.
4969c119 3101 */
31c4a3d3 3102 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
3103 goto out_page;
3104
cbf86cfe
HD
3105 page = ksm_might_need_to_copy(page, vma, address);
3106 if (unlikely(!page)) {
3107 ret = VM_FAULT_OOM;
3108 page = swapcache;
cbf86cfe 3109 goto out_page;
5ad64688
HD
3110 }
3111
2c26fdd7 3112 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 3113 ret = VM_FAULT_OOM;
bc43f75c 3114 goto out_page;
8a9f3ccd
BS
3115 }
3116
1da177e4 3117 /*
8f4e2101 3118 * Back out if somebody else already faulted in this pte.
1da177e4 3119 */
8f4e2101 3120 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 3121 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 3122 goto out_nomap;
b8107480
KK
3123
3124 if (unlikely(!PageUptodate(page))) {
3125 ret = VM_FAULT_SIGBUS;
3126 goto out_nomap;
1da177e4
LT
3127 }
3128
8c7c6e34
KH
3129 /*
3130 * The page isn't present yet, go ahead with the fault.
3131 *
3132 * Be careful about the sequence of operations here.
3133 * To get its accounting right, reuse_swap_page() must be called
3134 * while the page is counted on swap but not yet in mapcount i.e.
3135 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3136 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
3137 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3138 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3139 * in page->private. In this case, a record in swap_cgroup is silently
3140 * discarded at swap_free().
8c7c6e34 3141 */
1da177e4 3142
34e55232 3143 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3144 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3145 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3146 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3147 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3148 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3149 ret |= VM_FAULT_WRITE;
ad8c2ee8 3150 exclusive = 1;
1da177e4 3151 }
1da177e4 3152 flush_icache_page(vma, page);
179ef71c
CG
3153 if (pte_swp_soft_dirty(orig_pte))
3154 pte = pte_mksoft_dirty(pte);
1da177e4 3155 set_pte_at(mm, address, page_table, pte);
56f31801 3156 if (page == swapcache)
af34770e 3157 do_page_add_anon_rmap(page, vma, address, exclusive);
56f31801
HD
3158 else /* ksm created a completely new copy */
3159 page_add_new_anon_rmap(page, vma, address);
03f3c433
KH
3160 /* It's better to call commit-charge after rmap is established */
3161 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3162
c475a8ab 3163 swap_free(entry);
b291f000 3164 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3165 try_to_free_swap(page);
c475a8ab 3166 unlock_page(page);
56f31801 3167 if (page != swapcache) {
4969c119
AA
3168 /*
3169 * Hold the lock to avoid the swap entry to be reused
3170 * until we take the PT lock for the pte_same() check
3171 * (to avoid false positives from pte_same). For
3172 * further safety release the lock after the swap_free
3173 * so that the swap count won't change under a
3174 * parallel locked swapcache.
3175 */
3176 unlock_page(swapcache);
3177 page_cache_release(swapcache);
3178 }
c475a8ab 3179
30c9f3a9 3180 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3181 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3182 if (ret & VM_FAULT_ERROR)
3183 ret &= VM_FAULT_ERROR;
1da177e4
LT
3184 goto out;
3185 }
3186
3187 /* No need to invalidate - it was non-present before */
4b3073e1 3188 update_mmu_cache(vma, address, page_table);
65500d23 3189unlock:
8f4e2101 3190 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3191out:
3192 return ret;
b8107480 3193out_nomap:
7a81b88c 3194 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3195 pte_unmap_unlock(page_table, ptl);
bc43f75c 3196out_page:
b8107480 3197 unlock_page(page);
4779cb31 3198out_release:
b8107480 3199 page_cache_release(page);
56f31801 3200 if (page != swapcache) {
4969c119
AA
3201 unlock_page(swapcache);
3202 page_cache_release(swapcache);
3203 }
65500d23 3204 return ret;
1da177e4
LT
3205}
3206
320b2b8d 3207/*
8ca3eb08
LT
3208 * This is like a special single-page "expand_{down|up}wards()",
3209 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3210 * doesn't hit another vma.
320b2b8d
LT
3211 */
3212static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3213{
3214 address &= PAGE_MASK;
3215 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3216 struct vm_area_struct *prev = vma->vm_prev;
3217
3218 /*
3219 * Is there a mapping abutting this one below?
3220 *
3221 * That's only ok if it's the same stack mapping
3222 * that has gotten split..
3223 */
3224 if (prev && prev->vm_end == address)
3225 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3226
d05f3169 3227 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3228 }
8ca3eb08
LT
3229 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3230 struct vm_area_struct *next = vma->vm_next;
3231
3232 /* As VM_GROWSDOWN but s/below/above/ */
3233 if (next && next->vm_start == address + PAGE_SIZE)
3234 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3235
3236 expand_upwards(vma, address + PAGE_SIZE);
3237 }
320b2b8d
LT
3238 return 0;
3239}
3240
1da177e4 3241/*
8f4e2101
HD
3242 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3243 * but allow concurrent faults), and pte mapped but not yet locked.
3244 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3245 */
65500d23
HD
3246static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3247 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3248 unsigned int flags)
1da177e4 3249{
8f4e2101
HD
3250 struct page *page;
3251 spinlock_t *ptl;
1da177e4 3252 pte_t entry;
1da177e4 3253
11ac5524
LT
3254 pte_unmap(page_table);
3255
3256 /* Check if we need to add a guard page to the stack */
3257 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3258 return VM_FAULT_SIGBUS;
3259
11ac5524 3260 /* Use the zero-page for reads */
62eede62
HD
3261 if (!(flags & FAULT_FLAG_WRITE)) {
3262 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3263 vma->vm_page_prot));
11ac5524 3264 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3265 if (!pte_none(*page_table))
3266 goto unlock;
3267 goto setpte;
3268 }
3269
557ed1fa 3270 /* Allocate our own private page. */
557ed1fa
NP
3271 if (unlikely(anon_vma_prepare(vma)))
3272 goto oom;
3273 page = alloc_zeroed_user_highpage_movable(vma, address);
3274 if (!page)
3275 goto oom;
52f37629
MK
3276 /*
3277 * The memory barrier inside __SetPageUptodate makes sure that
3278 * preceeding stores to the page contents become visible before
3279 * the set_pte_at() write.
3280 */
0ed361de 3281 __SetPageUptodate(page);
8f4e2101 3282
2c26fdd7 3283 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3284 goto oom_free_page;
3285
557ed1fa 3286 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3287 if (vma->vm_flags & VM_WRITE)
3288 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3289
557ed1fa 3290 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3291 if (!pte_none(*page_table))
557ed1fa 3292 goto release;
9ba69294 3293
34e55232 3294 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3295 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3296setpte:
65500d23 3297 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3298
3299 /* No need to invalidate - it was non-present before */
4b3073e1 3300 update_mmu_cache(vma, address, page_table);
65500d23 3301unlock:
8f4e2101 3302 pte_unmap_unlock(page_table, ptl);
83c54070 3303 return 0;
8f4e2101 3304release:
8a9f3ccd 3305 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3306 page_cache_release(page);
3307 goto unlock;
8a9f3ccd 3308oom_free_page:
6dbf6d3b 3309 page_cache_release(page);
65500d23 3310oom:
1da177e4
LT
3311 return VM_FAULT_OOM;
3312}
3313
7eae74af
KS
3314static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3315 pgoff_t pgoff, unsigned int flags, struct page **page)
3316{
3317 struct vm_fault vmf;
3318 int ret;
3319
3320 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3321 vmf.pgoff = pgoff;
3322 vmf.flags = flags;
3323 vmf.page = NULL;
3324
3325 ret = vma->vm_ops->fault(vma, &vmf);
3326 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3327 return ret;
3328
3329 if (unlikely(PageHWPoison(vmf.page))) {
3330 if (ret & VM_FAULT_LOCKED)
3331 unlock_page(vmf.page);
3332 page_cache_release(vmf.page);
3333 return VM_FAULT_HWPOISON;
3334 }
3335
3336 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3337 lock_page(vmf.page);
3338 else
3339 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3340
3341 *page = vmf.page;
3342 return ret;
3343}
3344
8c6e50b0
KS
3345/**
3346 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3347 *
3348 * @vma: virtual memory area
3349 * @address: user virtual address
3350 * @page: page to map
3351 * @pte: pointer to target page table entry
3352 * @write: true, if new entry is writable
3353 * @anon: true, if it's anonymous page
3354 *
3355 * Caller must hold page table lock relevant for @pte.
3356 *
3357 * Target users are page handler itself and implementations of
3358 * vm_ops->map_pages.
3359 */
3360void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
3361 struct page *page, pte_t *pte, bool write, bool anon)
3362{
3363 pte_t entry;
3364
3365 flush_icache_page(vma, page);
3366 entry = mk_pte(page, vma->vm_page_prot);
3367 if (write)
3368 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3369 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3370 pte_mksoft_dirty(entry);
3371 if (anon) {
3372 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3373 page_add_new_anon_rmap(page, vma, address);
3374 } else {
3375 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3376 page_add_file_rmap(page);
3377 }
3378 set_pte_at(vma->vm_mm, address, pte, entry);
3379
3380 /* no need to invalidate: a not-present page won't be cached */
3381 update_mmu_cache(vma, address, pte);
3382}
3383
8c6e50b0
KS
3384#define FAULT_AROUND_ORDER 4
3385#define FAULT_AROUND_PAGES (1UL << FAULT_AROUND_ORDER)
3386#define FAULT_AROUND_MASK ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1)
3387
3388static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3389 pte_t *pte, pgoff_t pgoff, unsigned int flags)
3390{
3391 unsigned long start_addr;
3392 pgoff_t max_pgoff;
3393 struct vm_fault vmf;
3394 int off;
3395
3396 BUILD_BUG_ON(FAULT_AROUND_PAGES > PTRS_PER_PTE);
3397
3398 start_addr = max(address & FAULT_AROUND_MASK, vma->vm_start);
3399 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3400 pte -= off;
3401 pgoff -= off;
3402
3403 /*
3404 * max_pgoff is either end of page table or end of vma
3405 * or FAULT_AROUND_PAGES from pgoff, depending what is neast.
3406 */
3407 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3408 PTRS_PER_PTE - 1;
3409 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3410 pgoff + FAULT_AROUND_PAGES - 1);
3411
3412 /* Check if it makes any sense to call ->map_pages */
3413 while (!pte_none(*pte)) {
3414 if (++pgoff > max_pgoff)
3415 return;
3416 start_addr += PAGE_SIZE;
3417 if (start_addr >= vma->vm_end)
3418 return;
3419 pte++;
3420 }
3421
3422 vmf.virtual_address = (void __user *) start_addr;
3423 vmf.pte = pte;
3424 vmf.pgoff = pgoff;
3425 vmf.max_pgoff = max_pgoff;
3426 vmf.flags = flags;
3427 vma->vm_ops->map_pages(vma, &vmf);
3428}
3429
e655fb29
KS
3430static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3431 unsigned long address, pmd_t *pmd,
3432 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3433{
3434 struct page *fault_page;
3435 spinlock_t *ptl;
3bb97794 3436 pte_t *pte;
8c6e50b0
KS
3437 int ret = 0;
3438
3439 /*
3440 * Let's call ->map_pages() first and use ->fault() as fallback
3441 * if page by the offset is not ready to be mapped (cold cache or
3442 * something).
3443 */
3444 if (vma->vm_ops->map_pages) {
3445 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3446 do_fault_around(vma, address, pte, pgoff, flags);
3447 if (!pte_same(*pte, orig_pte))
3448 goto unlock_out;
3449 pte_unmap_unlock(pte, ptl);
3450 }
e655fb29
KS
3451
3452 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3453 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3454 return ret;
3455
3456 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3457 if (unlikely(!pte_same(*pte, orig_pte))) {
3458 pte_unmap_unlock(pte, ptl);
3459 unlock_page(fault_page);
3460 page_cache_release(fault_page);
3461 return ret;
3462 }
3bb97794 3463 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 3464 unlock_page(fault_page);
8c6e50b0
KS
3465unlock_out:
3466 pte_unmap_unlock(pte, ptl);
e655fb29
KS
3467 return ret;
3468}
3469
ec47c3b9
KS
3470static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3471 unsigned long address, pmd_t *pmd,
3472 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3473{
3474 struct page *fault_page, *new_page;
3475 spinlock_t *ptl;
3bb97794 3476 pte_t *pte;
ec47c3b9
KS
3477 int ret;
3478
3479 if (unlikely(anon_vma_prepare(vma)))
3480 return VM_FAULT_OOM;
3481
3482 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3483 if (!new_page)
3484 return VM_FAULT_OOM;
3485
3486 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) {
3487 page_cache_release(new_page);
3488 return VM_FAULT_OOM;
3489 }
3490
3491 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3492 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3493 goto uncharge_out;
3494
3495 copy_user_highpage(new_page, fault_page, address, vma);
3496 __SetPageUptodate(new_page);
3497
3498 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3499 if (unlikely(!pte_same(*pte, orig_pte))) {
3500 pte_unmap_unlock(pte, ptl);
3501 unlock_page(fault_page);
3502 page_cache_release(fault_page);
3503 goto uncharge_out;
3504 }
3bb97794 3505 do_set_pte(vma, address, new_page, pte, true, true);
ec47c3b9
KS
3506 pte_unmap_unlock(pte, ptl);
3507 unlock_page(fault_page);
3508 page_cache_release(fault_page);
3509 return ret;
3510uncharge_out:
3511 mem_cgroup_uncharge_page(new_page);
3512 page_cache_release(new_page);
3513 return ret;
3514}
3515
f0c6d4d2 3516static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3517 unsigned long address, pmd_t *pmd,
54cb8821 3518 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3519{
f0c6d4d2
KS
3520 struct page *fault_page;
3521 struct address_space *mapping;
8f4e2101 3522 spinlock_t *ptl;
3bb97794 3523 pte_t *pte;
f0c6d4d2 3524 int dirtied = 0;
f0c6d4d2 3525 int ret, tmp;
1d65f86d 3526
7eae74af
KS
3527 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3528 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3529 return ret;
1da177e4
LT
3530
3531 /*
f0c6d4d2
KS
3532 * Check if the backing address space wants to know that the page is
3533 * about to become writable
1da177e4 3534 */
fb09a464
KS
3535 if (vma->vm_ops->page_mkwrite) {
3536 unlock_page(fault_page);
3537 tmp = do_page_mkwrite(vma, fault_page, address);
3538 if (unlikely(!tmp ||
3539 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 3540 page_cache_release(fault_page);
fb09a464 3541 return tmp;
4294621f 3542 }
fb09a464
KS
3543 }
3544
f0c6d4d2
KS
3545 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3546 if (unlikely(!pte_same(*pte, orig_pte))) {
3547 pte_unmap_unlock(pte, ptl);
3548 unlock_page(fault_page);
3549 page_cache_release(fault_page);
3550 return ret;
1da177e4 3551 }
3bb97794 3552 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3553 pte_unmap_unlock(pte, ptl);
b827e496 3554
f0c6d4d2
KS
3555 if (set_page_dirty(fault_page))
3556 dirtied = 1;
3557 mapping = fault_page->mapping;
3558 unlock_page(fault_page);
3559 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3560 /*
3561 * Some device drivers do not set page.mapping but still
3562 * dirty their pages
3563 */
3564 balance_dirty_pages_ratelimited(mapping);
d08b3851 3565 }
d00806b1 3566
f0c6d4d2
KS
3567 /* file_update_time outside page_lock */
3568 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3569 file_update_time(vma->vm_file);
b827e496 3570
1d65f86d 3571 return ret;
54cb8821 3572}
d00806b1 3573
54cb8821
NP
3574static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3575 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3576 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3577{
3578 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3579 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3580
16abfa08 3581 pte_unmap(page_table);
e655fb29
KS
3582 if (!(flags & FAULT_FLAG_WRITE))
3583 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3584 orig_pte);
ec47c3b9
KS
3585 if (!(vma->vm_flags & VM_SHARED))
3586 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3587 orig_pte);
f0c6d4d2 3588 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3589}
3590
1da177e4
LT
3591/*
3592 * Fault of a previously existing named mapping. Repopulate the pte
3593 * from the encoded file_pte if possible. This enables swappable
3594 * nonlinear vmas.
8f4e2101
HD
3595 *
3596 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3597 * but allow concurrent faults), and pte mapped but not yet locked.
3598 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3599 */
d0217ac0 3600static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3601 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3602 unsigned int flags, pte_t orig_pte)
1da177e4 3603{
65500d23 3604 pgoff_t pgoff;
1da177e4 3605
30c9f3a9
LT
3606 flags |= FAULT_FLAG_NONLINEAR;
3607
4c21e2f2 3608 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3609 return 0;
1da177e4 3610
2509ef26 3611 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3612 /*
3613 * Page table corrupted: show pte and kill process.
3614 */
3dc14741 3615 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3616 return VM_FAULT_SIGBUS;
65500d23 3617 }
65500d23
HD
3618
3619 pgoff = pte_to_pgoff(orig_pte);
e655fb29
KS
3620 if (!(flags & FAULT_FLAG_WRITE))
3621 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3622 orig_pte);
ec47c3b9
KS
3623 if (!(vma->vm_flags & VM_SHARED))
3624 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3625 orig_pte);
f0c6d4d2 3626 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3627}
3628
b19a9939 3629static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3630 unsigned long addr, int page_nid,
3631 int *flags)
9532fec1
MG
3632{
3633 get_page(page);
3634
3635 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3636 if (page_nid == numa_node_id()) {
9532fec1 3637 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3638 *flags |= TNF_FAULT_LOCAL;
3639 }
9532fec1
MG
3640
3641 return mpol_misplaced(page, vma, addr);
3642}
3643
b19a9939 3644static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3645 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3646{
4daae3b4 3647 struct page *page = NULL;
d10e63f2 3648 spinlock_t *ptl;
8191acbd 3649 int page_nid = -1;
90572890 3650 int last_cpupid;
cbee9f88 3651 int target_nid;
b8593bfd 3652 bool migrated = false;
6688cc05 3653 int flags = 0;
d10e63f2
MG
3654
3655 /*
3656 * The "pte" at this point cannot be used safely without
3657 * validation through pte_unmap_same(). It's of NUMA type but
3658 * the pfn may be screwed if the read is non atomic.
3659 *
3660 * ptep_modify_prot_start is not called as this is clearing
3661 * the _PAGE_NUMA bit and it is not really expected that there
3662 * would be concurrent hardware modifications to the PTE.
3663 */
3664 ptl = pte_lockptr(mm, pmd);
3665 spin_lock(ptl);
4daae3b4
MG
3666 if (unlikely(!pte_same(*ptep, pte))) {
3667 pte_unmap_unlock(ptep, ptl);
3668 goto out;
3669 }
3670
d10e63f2
MG
3671 pte = pte_mknonnuma(pte);
3672 set_pte_at(mm, addr, ptep, pte);
3673 update_mmu_cache(vma, addr, ptep);
3674
3675 page = vm_normal_page(vma, addr, pte);
3676 if (!page) {
3677 pte_unmap_unlock(ptep, ptl);
3678 return 0;
3679 }
a1a46184 3680 BUG_ON(is_zero_pfn(page_to_pfn(page)));
d10e63f2 3681
6688cc05
PZ
3682 /*
3683 * Avoid grouping on DSO/COW pages in specific and RO pages
3684 * in general, RO pages shouldn't hurt as much anyway since
3685 * they can be in shared cache state.
3686 */
3687 if (!pte_write(pte))
3688 flags |= TNF_NO_GROUP;
3689
dabe1d99
RR
3690 /*
3691 * Flag if the page is shared between multiple address spaces. This
3692 * is later used when determining whether to group tasks together
3693 */
3694 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3695 flags |= TNF_SHARED;
3696
90572890 3697 last_cpupid = page_cpupid_last(page);
8191acbd 3698 page_nid = page_to_nid(page);
04bb2f94 3699 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3700 pte_unmap_unlock(ptep, ptl);
4daae3b4 3701 if (target_nid == -1) {
4daae3b4
MG
3702 put_page(page);
3703 goto out;
3704 }
3705
3706 /* Migrate to the requested node */
1bc115d8 3707 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3708 if (migrated) {
8191acbd 3709 page_nid = target_nid;
6688cc05
PZ
3710 flags |= TNF_MIGRATED;
3711 }
4daae3b4
MG
3712
3713out:
8191acbd 3714 if (page_nid != -1)
6688cc05 3715 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3716 return 0;
3717}
3718
1da177e4
LT
3719/*
3720 * These routines also need to handle stuff like marking pages dirty
3721 * and/or accessed for architectures that don't do it in hardware (most
3722 * RISC architectures). The early dirtying is also good on the i386.
3723 *
3724 * There is also a hook called "update_mmu_cache()" that architectures
3725 * with external mmu caches can use to update those (ie the Sparc or
3726 * PowerPC hashed page tables that act as extended TLBs).
3727 *
c74df32c
HD
3728 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3729 * but allow concurrent faults), and pte mapped but not yet locked.
3730 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3731 */
c0292554 3732static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3733 struct vm_area_struct *vma, unsigned long address,
3734 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3735{
3736 pte_t entry;
8f4e2101 3737 spinlock_t *ptl;
1da177e4 3738
8dab5241 3739 entry = *pte;
1da177e4 3740 if (!pte_present(entry)) {
65500d23 3741 if (pte_none(entry)) {
f4b81804 3742 if (vma->vm_ops) {
3c18ddd1 3743 if (likely(vma->vm_ops->fault))
54cb8821 3744 return do_linear_fault(mm, vma, address,
30c9f3a9 3745 pte, pmd, flags, entry);
f4b81804
JS
3746 }
3747 return do_anonymous_page(mm, vma, address,
30c9f3a9 3748 pte, pmd, flags);
65500d23 3749 }
1da177e4 3750 if (pte_file(entry))
d0217ac0 3751 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3752 pte, pmd, flags, entry);
65500d23 3753 return do_swap_page(mm, vma, address,
30c9f3a9 3754 pte, pmd, flags, entry);
1da177e4
LT
3755 }
3756
d10e63f2
MG
3757 if (pte_numa(entry))
3758 return do_numa_page(mm, vma, address, entry, pte, pmd);
3759
4c21e2f2 3760 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3761 spin_lock(ptl);
3762 if (unlikely(!pte_same(*pte, entry)))
3763 goto unlock;
30c9f3a9 3764 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3765 if (!pte_write(entry))
8f4e2101
HD
3766 return do_wp_page(mm, vma, address,
3767 pte, pmd, ptl, entry);
1da177e4
LT
3768 entry = pte_mkdirty(entry);
3769 }
3770 entry = pte_mkyoung(entry);
30c9f3a9 3771 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3772 update_mmu_cache(vma, address, pte);
1a44e149
AA
3773 } else {
3774 /*
3775 * This is needed only for protection faults but the arch code
3776 * is not yet telling us if this is a protection fault or not.
3777 * This still avoids useless tlb flushes for .text page faults
3778 * with threads.
3779 */
30c9f3a9 3780 if (flags & FAULT_FLAG_WRITE)
61c77326 3781 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3782 }
8f4e2101
HD
3783unlock:
3784 pte_unmap_unlock(pte, ptl);
83c54070 3785 return 0;
1da177e4
LT
3786}
3787
3788/*
3789 * By the time we get here, we already hold the mm semaphore
3790 */
519e5247
JW
3791static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3792 unsigned long address, unsigned int flags)
1da177e4
LT
3793{
3794 pgd_t *pgd;
3795 pud_t *pud;
3796 pmd_t *pmd;
3797 pte_t *pte;
3798
ac9b9c66 3799 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3800 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3801
1da177e4 3802 pgd = pgd_offset(mm, address);
1da177e4
LT
3803 pud = pud_alloc(mm, pgd, address);
3804 if (!pud)
c74df32c 3805 return VM_FAULT_OOM;
1da177e4
LT
3806 pmd = pmd_alloc(mm, pud, address);
3807 if (!pmd)
c74df32c 3808 return VM_FAULT_OOM;
71e3aac0 3809 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
c0292554 3810 int ret = VM_FAULT_FALLBACK;
71e3aac0 3811 if (!vma->vm_ops)
c0292554
KS
3812 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3813 pmd, flags);
3814 if (!(ret & VM_FAULT_FALLBACK))
3815 return ret;
71e3aac0
AA
3816 } else {
3817 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3818 int ret;
3819
71e3aac0
AA
3820 barrier();
3821 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3822 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3823
e53289c0
LT
3824 /*
3825 * If the pmd is splitting, return and retry the
3826 * the fault. Alternative: wait until the split
3827 * is done, and goto retry.
3828 */
3829 if (pmd_trans_splitting(orig_pmd))
3830 return 0;
3831
3d59eebc 3832 if (pmd_numa(orig_pmd))
4daae3b4 3833 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3834 orig_pmd, pmd);
3835
3d59eebc 3836 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3837 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3838 orig_pmd);
9845cbbd
KS
3839 if (!(ret & VM_FAULT_FALLBACK))
3840 return ret;
a1dd450b
WD
3841 } else {
3842 huge_pmd_set_accessed(mm, vma, address, pmd,
3843 orig_pmd, dirty);
9845cbbd 3844 return 0;
1f1d06c3 3845 }
71e3aac0
AA
3846 }
3847 }
3848
0f19c179
MG
3849 /* THP should already have been handled */
3850 BUG_ON(pmd_numa(*pmd));
d10e63f2 3851
71e3aac0
AA
3852 /*
3853 * Use __pte_alloc instead of pte_alloc_map, because we can't
3854 * run pte_offset_map on the pmd, if an huge pmd could
3855 * materialize from under us from a different thread.
3856 */
4fd01770
MG
3857 if (unlikely(pmd_none(*pmd)) &&
3858 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3859 return VM_FAULT_OOM;
71e3aac0
AA
3860 /* if an huge pmd materialized from under us just retry later */
3861 if (unlikely(pmd_trans_huge(*pmd)))
3862 return 0;
3863 /*
3864 * A regular pmd is established and it can't morph into a huge pmd
3865 * from under us anymore at this point because we hold the mmap_sem
3866 * read mode and khugepaged takes it in write mode. So now it's
3867 * safe to run pte_offset_map().
3868 */
3869 pte = pte_offset_map(pmd, address);
1da177e4 3870
30c9f3a9 3871 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3872}
3873
519e5247
JW
3874int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3875 unsigned long address, unsigned int flags)
3876{
3877 int ret;
3878
3879 __set_current_state(TASK_RUNNING);
3880
3881 count_vm_event(PGFAULT);
3882 mem_cgroup_count_vm_event(mm, PGFAULT);
3883
3884 /* do counter updates before entering really critical section. */
3885 check_sync_rss_stat(current);
3886
3887 /*
3888 * Enable the memcg OOM handling for faults triggered in user
3889 * space. Kernel faults are handled more gracefully.
3890 */
3891 if (flags & FAULT_FLAG_USER)
49426420 3892 mem_cgroup_oom_enable();
519e5247
JW
3893
3894 ret = __handle_mm_fault(mm, vma, address, flags);
3895
49426420
JW
3896 if (flags & FAULT_FLAG_USER) {
3897 mem_cgroup_oom_disable();
3898 /*
3899 * The task may have entered a memcg OOM situation but
3900 * if the allocation error was handled gracefully (no
3901 * VM_FAULT_OOM), there is no need to kill anything.
3902 * Just clean up the OOM state peacefully.
3903 */
3904 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3905 mem_cgroup_oom_synchronize(false);
3906 }
3812c8c8 3907
519e5247
JW
3908 return ret;
3909}
3910
1da177e4
LT
3911#ifndef __PAGETABLE_PUD_FOLDED
3912/*
3913 * Allocate page upper directory.
872fec16 3914 * We've already handled the fast-path in-line.
1da177e4 3915 */
1bb3630e 3916int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3917{
c74df32c
HD
3918 pud_t *new = pud_alloc_one(mm, address);
3919 if (!new)
1bb3630e 3920 return -ENOMEM;
1da177e4 3921
362a61ad
NP
3922 smp_wmb(); /* See comment in __pte_alloc */
3923
872fec16 3924 spin_lock(&mm->page_table_lock);
1bb3630e 3925 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3926 pud_free(mm, new);
1bb3630e
HD
3927 else
3928 pgd_populate(mm, pgd, new);
c74df32c 3929 spin_unlock(&mm->page_table_lock);
1bb3630e 3930 return 0;
1da177e4
LT
3931}
3932#endif /* __PAGETABLE_PUD_FOLDED */
3933
3934#ifndef __PAGETABLE_PMD_FOLDED
3935/*
3936 * Allocate page middle directory.
872fec16 3937 * We've already handled the fast-path in-line.
1da177e4 3938 */
1bb3630e 3939int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3940{
c74df32c
HD
3941 pmd_t *new = pmd_alloc_one(mm, address);
3942 if (!new)
1bb3630e 3943 return -ENOMEM;
1da177e4 3944
362a61ad
NP
3945 smp_wmb(); /* See comment in __pte_alloc */
3946
872fec16 3947 spin_lock(&mm->page_table_lock);
1da177e4 3948#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3949 if (pud_present(*pud)) /* Another has populated it */
5e541973 3950 pmd_free(mm, new);
1bb3630e
HD
3951 else
3952 pud_populate(mm, pud, new);
1da177e4 3953#else
1bb3630e 3954 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3955 pmd_free(mm, new);
1bb3630e
HD
3956 else
3957 pgd_populate(mm, pud, new);
1da177e4 3958#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3959 spin_unlock(&mm->page_table_lock);
1bb3630e 3960 return 0;
e0f39591 3961}
1da177e4
LT
3962#endif /* __PAGETABLE_PMD_FOLDED */
3963
1da177e4
LT
3964#if !defined(__HAVE_ARCH_GATE_AREA)
3965
3966#if defined(AT_SYSINFO_EHDR)
5ce7852c 3967static struct vm_area_struct gate_vma;
1da177e4
LT
3968
3969static int __init gate_vma_init(void)
3970{
3971 gate_vma.vm_mm = NULL;
3972 gate_vma.vm_start = FIXADDR_USER_START;
3973 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3974 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3975 gate_vma.vm_page_prot = __P101;
909af768 3976
1da177e4
LT
3977 return 0;
3978}
3979__initcall(gate_vma_init);
3980#endif
3981
31db58b3 3982struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3983{
3984#ifdef AT_SYSINFO_EHDR
3985 return &gate_vma;
3986#else
3987 return NULL;
3988#endif
3989}
3990
cae5d390 3991int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3992{
3993#ifdef AT_SYSINFO_EHDR
3994 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3995 return 1;
3996#endif
3997 return 0;
3998}
3999
4000#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 4001
1b36ba81 4002static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
4003 pte_t **ptepp, spinlock_t **ptlp)
4004{
4005 pgd_t *pgd;
4006 pud_t *pud;
4007 pmd_t *pmd;
4008 pte_t *ptep;
4009
4010 pgd = pgd_offset(mm, address);
4011 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4012 goto out;
4013
4014 pud = pud_offset(pgd, address);
4015 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4016 goto out;
4017
4018 pmd = pmd_offset(pud, address);
f66055ab 4019 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
4020 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4021 goto out;
4022
4023 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4024 if (pmd_huge(*pmd))
4025 goto out;
4026
4027 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4028 if (!ptep)
4029 goto out;
4030 if (!pte_present(*ptep))
4031 goto unlock;
4032 *ptepp = ptep;
4033 return 0;
4034unlock:
4035 pte_unmap_unlock(ptep, *ptlp);
4036out:
4037 return -EINVAL;
4038}
4039
1b36ba81
NK
4040static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4041 pte_t **ptepp, spinlock_t **ptlp)
4042{
4043 int res;
4044
4045 /* (void) is needed to make gcc happy */
4046 (void) __cond_lock(*ptlp,
4047 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4048 return res;
4049}
4050
3b6748e2
JW
4051/**
4052 * follow_pfn - look up PFN at a user virtual address
4053 * @vma: memory mapping
4054 * @address: user virtual address
4055 * @pfn: location to store found PFN
4056 *
4057 * Only IO mappings and raw PFN mappings are allowed.
4058 *
4059 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4060 */
4061int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4062 unsigned long *pfn)
4063{
4064 int ret = -EINVAL;
4065 spinlock_t *ptl;
4066 pte_t *ptep;
4067
4068 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4069 return ret;
4070
4071 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4072 if (ret)
4073 return ret;
4074 *pfn = pte_pfn(*ptep);
4075 pte_unmap_unlock(ptep, ptl);
4076 return 0;
4077}
4078EXPORT_SYMBOL(follow_pfn);
4079
28b2ee20 4080#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4081int follow_phys(struct vm_area_struct *vma,
4082 unsigned long address, unsigned int flags,
4083 unsigned long *prot, resource_size_t *phys)
28b2ee20 4084{
03668a4d 4085 int ret = -EINVAL;
28b2ee20
RR
4086 pte_t *ptep, pte;
4087 spinlock_t *ptl;
28b2ee20 4088
d87fe660 4089 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4090 goto out;
28b2ee20 4091
03668a4d 4092 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4093 goto out;
28b2ee20 4094 pte = *ptep;
03668a4d 4095
28b2ee20
RR
4096 if ((flags & FOLL_WRITE) && !pte_write(pte))
4097 goto unlock;
28b2ee20
RR
4098
4099 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4100 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4101
03668a4d 4102 ret = 0;
28b2ee20
RR
4103unlock:
4104 pte_unmap_unlock(ptep, ptl);
4105out:
d87fe660 4106 return ret;
28b2ee20
RR
4107}
4108
4109int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4110 void *buf, int len, int write)
4111{
4112 resource_size_t phys_addr;
4113 unsigned long prot = 0;
2bc7273b 4114 void __iomem *maddr;
28b2ee20
RR
4115 int offset = addr & (PAGE_SIZE-1);
4116
d87fe660 4117 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4118 return -EINVAL;
4119
4120 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4121 if (write)
4122 memcpy_toio(maddr + offset, buf, len);
4123 else
4124 memcpy_fromio(buf, maddr + offset, len);
4125 iounmap(maddr);
4126
4127 return len;
4128}
5a73633e 4129EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4130#endif
4131
0ec76a11 4132/*
206cb636
SW
4133 * Access another process' address space as given in mm. If non-NULL, use the
4134 * given task for page fault accounting.
0ec76a11 4135 */
206cb636
SW
4136static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4137 unsigned long addr, void *buf, int len, int write)
0ec76a11 4138{
0ec76a11 4139 struct vm_area_struct *vma;
0ec76a11
DH
4140 void *old_buf = buf;
4141
0ec76a11 4142 down_read(&mm->mmap_sem);
183ff22b 4143 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4144 while (len) {
4145 int bytes, ret, offset;
4146 void *maddr;
28b2ee20 4147 struct page *page = NULL;
0ec76a11
DH
4148
4149 ret = get_user_pages(tsk, mm, addr, 1,
4150 write, 1, &page, &vma);
28b2ee20
RR
4151 if (ret <= 0) {
4152 /*
4153 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4154 * we can access using slightly different code.
4155 */
4156#ifdef CONFIG_HAVE_IOREMAP_PROT
4157 vma = find_vma(mm, addr);
fe936dfc 4158 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4159 break;
4160 if (vma->vm_ops && vma->vm_ops->access)
4161 ret = vma->vm_ops->access(vma, addr, buf,
4162 len, write);
4163 if (ret <= 0)
4164#endif
4165 break;
4166 bytes = ret;
0ec76a11 4167 } else {
28b2ee20
RR
4168 bytes = len;
4169 offset = addr & (PAGE_SIZE-1);
4170 if (bytes > PAGE_SIZE-offset)
4171 bytes = PAGE_SIZE-offset;
4172
4173 maddr = kmap(page);
4174 if (write) {
4175 copy_to_user_page(vma, page, addr,
4176 maddr + offset, buf, bytes);
4177 set_page_dirty_lock(page);
4178 } else {
4179 copy_from_user_page(vma, page, addr,
4180 buf, maddr + offset, bytes);
4181 }
4182 kunmap(page);
4183 page_cache_release(page);
0ec76a11 4184 }
0ec76a11
DH
4185 len -= bytes;
4186 buf += bytes;
4187 addr += bytes;
4188 }
4189 up_read(&mm->mmap_sem);
0ec76a11
DH
4190
4191 return buf - old_buf;
4192}
03252919 4193
5ddd36b9 4194/**
ae91dbfc 4195 * access_remote_vm - access another process' address space
5ddd36b9
SW
4196 * @mm: the mm_struct of the target address space
4197 * @addr: start address to access
4198 * @buf: source or destination buffer
4199 * @len: number of bytes to transfer
4200 * @write: whether the access is a write
4201 *
4202 * The caller must hold a reference on @mm.
4203 */
4204int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4205 void *buf, int len, int write)
4206{
4207 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4208}
4209
206cb636
SW
4210/*
4211 * Access another process' address space.
4212 * Source/target buffer must be kernel space,
4213 * Do not walk the page table directly, use get_user_pages
4214 */
4215int access_process_vm(struct task_struct *tsk, unsigned long addr,
4216 void *buf, int len, int write)
4217{
4218 struct mm_struct *mm;
4219 int ret;
4220
4221 mm = get_task_mm(tsk);
4222 if (!mm)
4223 return 0;
4224
4225 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4226 mmput(mm);
4227
4228 return ret;
4229}
4230
03252919
AK
4231/*
4232 * Print the name of a VMA.
4233 */
4234void print_vma_addr(char *prefix, unsigned long ip)
4235{
4236 struct mm_struct *mm = current->mm;
4237 struct vm_area_struct *vma;
4238
e8bff74a
IM
4239 /*
4240 * Do not print if we are in atomic
4241 * contexts (in exception stacks, etc.):
4242 */
4243 if (preempt_count())
4244 return;
4245
03252919
AK
4246 down_read(&mm->mmap_sem);
4247 vma = find_vma(mm, ip);
4248 if (vma && vma->vm_file) {
4249 struct file *f = vma->vm_file;
4250 char *buf = (char *)__get_free_page(GFP_KERNEL);
4251 if (buf) {
2fbc57c5 4252 char *p;
03252919 4253
cf28b486 4254 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
4255 if (IS_ERR(p))
4256 p = "?";
2fbc57c5 4257 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4258 vma->vm_start,
4259 vma->vm_end - vma->vm_start);
4260 free_page((unsigned long)buf);
4261 }
4262 }
51a07e50 4263 up_read(&mm->mmap_sem);
03252919 4264}
3ee1afa3 4265
662bbcb2 4266#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
4267void might_fault(void)
4268{
95156f00
PZ
4269 /*
4270 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4271 * holding the mmap_sem, this is safe because kernel memory doesn't
4272 * get paged out, therefore we'll never actually fault, and the
4273 * below annotations will generate false positives.
4274 */
4275 if (segment_eq(get_fs(), KERNEL_DS))
4276 return;
4277
3ee1afa3
NP
4278 /*
4279 * it would be nicer only to annotate paths which are not under
4280 * pagefault_disable, however that requires a larger audit and
4281 * providing helpers like get_user_atomic.
4282 */
662bbcb2
MT
4283 if (in_atomic())
4284 return;
4285
4286 __might_sleep(__FILE__, __LINE__, 0);
4287
4288 if (current->mm)
3ee1afa3
NP
4289 might_lock_read(&current->mm->mmap_sem);
4290}
4291EXPORT_SYMBOL(might_fault);
4292#endif
47ad8475
AA
4293
4294#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4295static void clear_gigantic_page(struct page *page,
4296 unsigned long addr,
4297 unsigned int pages_per_huge_page)
4298{
4299 int i;
4300 struct page *p = page;
4301
4302 might_sleep();
4303 for (i = 0; i < pages_per_huge_page;
4304 i++, p = mem_map_next(p, page, i)) {
4305 cond_resched();
4306 clear_user_highpage(p, addr + i * PAGE_SIZE);
4307 }
4308}
4309void clear_huge_page(struct page *page,
4310 unsigned long addr, unsigned int pages_per_huge_page)
4311{
4312 int i;
4313
4314 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4315 clear_gigantic_page(page, addr, pages_per_huge_page);
4316 return;
4317 }
4318
4319 might_sleep();
4320 for (i = 0; i < pages_per_huge_page; i++) {
4321 cond_resched();
4322 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4323 }
4324}
4325
4326static void copy_user_gigantic_page(struct page *dst, struct page *src,
4327 unsigned long addr,
4328 struct vm_area_struct *vma,
4329 unsigned int pages_per_huge_page)
4330{
4331 int i;
4332 struct page *dst_base = dst;
4333 struct page *src_base = src;
4334
4335 for (i = 0; i < pages_per_huge_page; ) {
4336 cond_resched();
4337 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4338
4339 i++;
4340 dst = mem_map_next(dst, dst_base, i);
4341 src = mem_map_next(src, src_base, i);
4342 }
4343}
4344
4345void copy_user_huge_page(struct page *dst, struct page *src,
4346 unsigned long addr, struct vm_area_struct *vma,
4347 unsigned int pages_per_huge_page)
4348{
4349 int i;
4350
4351 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4352 copy_user_gigantic_page(dst, src, addr, vma,
4353 pages_per_huge_page);
4354 return;
4355 }
4356
4357 might_sleep();
4358 for (i = 0; i < pages_per_huge_page; i++) {
4359 cond_resched();
4360 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4361 }
4362}
4363#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4364
40b64acd 4365#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4366
4367static struct kmem_cache *page_ptl_cachep;
4368
4369void __init ptlock_cache_init(void)
4370{
4371 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4372 SLAB_PANIC, NULL);
4373}
4374
539edb58 4375bool ptlock_alloc(struct page *page)
49076ec2
KS
4376{
4377 spinlock_t *ptl;
4378
b35f1819 4379 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4380 if (!ptl)
4381 return false;
539edb58 4382 page->ptl = ptl;
49076ec2
KS
4383 return true;
4384}
4385
539edb58 4386void ptlock_free(struct page *page)
49076ec2 4387{
b35f1819 4388 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4389}
4390#endif
This page took 1.141989 seconds and 5 git commands to generate.