page-allocator: preserve PFN ordering when __GFP_COLD is set
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
ac924c60 53#include <asm/div64.h>
1da177e4
LT
54#include "internal.h"
55
56/*
13808910 57 * Array of node states.
1da177e4 58 */
13808910
CL
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67 [N_CPU] = { { [0] = 1UL } },
68#endif /* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
6c231b7b 72unsigned long totalram_pages __read_mostly;
cb45b0e9 73unsigned long totalreserve_pages __read_mostly;
22b31eec 74unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 75int percpu_pagelist_fraction;
dcce284a 76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 77
d9c23400
MG
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
d98c7a09 82static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 83
1da177e4
LT
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
1da177e4 94 */
2f1b6248 95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 96#ifdef CONFIG_ZONE_DMA
2f1b6248 97 256,
4b51d669 98#endif
fb0e7942 99#ifdef CONFIG_ZONE_DMA32
2f1b6248 100 256,
fb0e7942 101#endif
e53ef38d 102#ifdef CONFIG_HIGHMEM
2a1e274a 103 32,
e53ef38d 104#endif
2a1e274a 105 32,
2f1b6248 106};
1da177e4
LT
107
108EXPORT_SYMBOL(totalram_pages);
1da177e4 109
15ad7cdc 110static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 111#ifdef CONFIG_ZONE_DMA
2f1b6248 112 "DMA",
4b51d669 113#endif
fb0e7942 114#ifdef CONFIG_ZONE_DMA32
2f1b6248 115 "DMA32",
fb0e7942 116#endif
2f1b6248 117 "Normal",
e53ef38d 118#ifdef CONFIG_HIGHMEM
2a1e274a 119 "HighMem",
e53ef38d 120#endif
2a1e274a 121 "Movable",
2f1b6248
CL
122};
123
1da177e4
LT
124int min_free_kbytes = 1024;
125
86356ab1
YG
126unsigned long __meminitdata nr_kernel_pages;
127unsigned long __meminitdata nr_all_pages;
a3142c8e 128static unsigned long __meminitdata dma_reserve;
1da177e4 129
c713216d
MG
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
183ff22b 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
98011f56
JB
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 155 static unsigned long __initdata required_kernelcore;
484f51f8 156 static unsigned long __initdata required_movablecore;
b69a7288 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
c713216d
MG
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
418508c1
MS
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 166int nr_online_nodes __read_mostly = 1;
418508c1 167EXPORT_SYMBOL(nr_node_ids);
62bc62a8 168EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
169#endif
170
9ef9acb0
MG
171int page_group_by_mobility_disabled __read_mostly;
172
b2a0ac88
MG
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
49255c61
MG
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
b2a0ac88
MG
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181}
182
7f33d49a
RW
183bool oom_killer_disabled __read_mostly;
184
13e7444b 185#ifdef CONFIG_DEBUG_VM
c6a57e19 186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 187{
bdc8cb98
DH
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
c6a57e19 191
bdc8cb98
DH
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
c6a57e19
DH
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
14e07298 205 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 206 return 0;
1da177e4 207 if (zone != page_zone(page))
c6a57e19
DH
208 return 0;
209
210 return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217 if (page_outside_zone_boundaries(zone, page))
1da177e4 218 return 1;
c6a57e19
DH
219 if (!page_is_consistent(zone, page))
220 return 1;
221
1da177e4
LT
222 return 0;
223}
13e7444b
NP
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227 return 0;
228}
229#endif
230
224abf92 231static void bad_page(struct page *page)
1da177e4 232{
d936cf9b
HD
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
1e9e6365
HD
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
1e9e6365 257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 258 current->comm, page_to_pfn(page));
1e9e6365 259 printk(KERN_ALERT
3dc14741
HD
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
3dc14741 263
1da177e4 264 dump_stack();
d936cf9b 265out:
8cc3b392
HD
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
9f158333 268 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
269}
270
1da177e4
LT
271/*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
41d78ba5
HD
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
1da177e4 284 */
d98c7a09
HD
285
286static void free_compound_page(struct page *page)
287{
d85f3385 288 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
289}
290
01ad1c08 291void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
292{
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305}
306
8cc3b392 307static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
308{
309 int i;
310 int nr_pages = 1 << order;
8cc3b392 311 int bad = 0;
1da177e4 312
8cc3b392
HD
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
224abf92 315 bad_page(page);
8cc3b392
HD
316 bad++;
317 }
1da177e4 318
6d777953 319 __ClearPageHead(page);
8cc3b392 320
18229df5
AW
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
1da177e4 323
e713a21d 324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 325 bad_page(page);
8cc3b392
HD
326 bad++;
327 }
d85f3385 328 __ClearPageTail(p);
1da177e4 329 }
8cc3b392
HD
330
331 return bad;
1da177e4 332}
1da177e4 333
17cf4406
NP
334static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335{
336 int i;
337
6626c5d5
AM
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
725d704e 342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345}
346
6aa3001b
AM
347static inline void set_page_order(struct page *page, int order)
348{
4c21e2f2 349 set_page_private(page, order);
676165a8 350 __SetPageBuddy(page);
1da177e4
LT
351}
352
353static inline void rmv_page_order(struct page *page)
354{
676165a8 355 __ClearPageBuddy(page);
4c21e2f2 356 set_page_private(page, 0);
1da177e4
LT
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
d6e05edc 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387 return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
13e7444b 393 * (a) the buddy is not in a hole &&
676165a8 394 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
676165a8
NP
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 400 *
676165a8 401 * For recording page's order, we use page_private(page).
1da177e4 402 */
cb2b95e1
AW
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
1da177e4 405{
14e07298 406 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 407 return 0;
13e7444b 408
cb2b95e1
AW
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 413 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 414 return 1;
676165a8 415 }
6aa3001b 416 return 0;
1da177e4
LT
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
676165a8 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 433 * order is recorded in page_private(page) field.
1da177e4
LT
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
48db57f8 443static inline void __free_one_page(struct page *page,
ed0ae21d
MG
444 struct zone *zone, unsigned int order,
445 int migratetype)
1da177e4
LT
446{
447 unsigned long page_idx;
1da177e4 448
224abf92 449 if (unlikely(PageCompound(page)))
8cc3b392
HD
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
1da177e4 452
ed0ae21d
MG
453 VM_BUG_ON(migratetype == -1);
454
1da177e4
LT
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
f2260e6b 457 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 458 VM_BUG_ON(bad_range(zone, page));
1da177e4 459
1da177e4
LT
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
1da177e4
LT
462 struct page *buddy;
463
1da177e4 464 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 465 if (!page_is_buddy(page, buddy, order))
3c82d0ce 466 break;
13e7444b 467
3c82d0ce 468 /* Our buddy is free, merge with it and move up one order. */
1da177e4 469 list_del(&buddy->lru);
b2a0ac88 470 zone->free_area[order].nr_free--;
1da177e4 471 rmv_page_order(buddy);
13e7444b 472 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
b2a0ac88
MG
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
480 zone->free_area[order].nr_free++;
481}
482
092cead6
KM
483#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484/*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489static inline void free_page_mlock(struct page *page)
490{
092cead6
KM
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
224abf92 498static inline int free_pages_check(struct page *page)
1da177e4 499{
92be2e33
NP
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
a3af9c38 502 (atomic_read(&page->_count) != 0) |
8cc3b392 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 504 bad_page(page);
79f4b7bf 505 return 1;
8cc3b392 506 }
79f4b7bf
HD
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
1da177e4
LT
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
207f36ee 515 * count is the number of pages to free.
1da177e4
LT
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
48db57f8
NP
523static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
1da177e4 525{
c54ad30c 526 spin_lock(&zone->lock);
e815af95 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 528 zone->pages_scanned = 0;
f2260e6b
MG
529
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
48db57f8
NP
531 while (count--) {
532 struct page *page;
533
725d704e 534 VM_BUG_ON(list_empty(list));
1da177e4 535 page = list_entry(list->prev, struct page, lru);
48db57f8 536 /* have to delete it as __free_one_page list manipulates */
1da177e4 537 list_del(&page->lru);
ed0ae21d 538 __free_one_page(page, zone, order, page_private(page));
1da177e4 539 }
c54ad30c 540 spin_unlock(&zone->lock);
1da177e4
LT
541}
542
ed0ae21d
MG
543static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
1da177e4 545{
006d22d9 546 spin_lock(&zone->lock);
e815af95 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 548 zone->pages_scanned = 0;
f2260e6b
MG
549
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 551 __free_one_page(page, zone, order, migratetype);
006d22d9 552 spin_unlock(&zone->lock);
48db57f8
NP
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557 unsigned long flags;
1da177e4 558 int i;
8cc3b392 559 int bad = 0;
c277331d 560 int wasMlocked = TestClearPageMlocked(page);
1da177e4 561
b1eeab67
VN
562 kmemcheck_free_shadow(page, order);
563
1da177e4 564 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
565 bad += free_pages_check(page + i);
566 if (bad)
689bcebf
HD
567 return;
568
3ac7fe5a 569 if (!PageHighMem(page)) {
9858db50 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
573 }
dafb1367 574 arch_free_page(page, order);
48db57f8 575 kernel_map_pages(page, 1 << order, 0);
dafb1367 576
c54ad30c 577 local_irq_save(flags);
c277331d 578 if (unlikely(wasMlocked))
da456f14 579 free_page_mlock(page);
f8891e5e 580 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
c54ad30c 583 local_irq_restore(flags);
1da177e4
LT
584}
585
a226f6c8
DH
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
af370fb8 589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
590{
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
7835e98b 594 set_page_refcounted(page);
545b1ea9 595 __free_page(page);
a226f6c8 596 } else {
a226f6c8
DH
597 int loop;
598
545b1ea9 599 prefetchw(page);
a226f6c8
DH
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
602
545b1ea9
NP
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
a226f6c8
DH
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
607 }
608
7835e98b 609 set_page_refcounted(page);
545b1ea9 610 __free_pages(page, order);
a226f6c8
DH
611 }
612}
613
1da177e4
LT
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
085cc7d5 629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
630 int low, int high, struct free_area *area,
631 int migratetype)
1da177e4
LT
632{
633 unsigned long size = 1 << high;
634
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
725d704e 639 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 640 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
641 area->nr_free++;
642 set_page_order(&page[size], high);
643 }
1da177e4
LT
644}
645
1da177e4
LT
646/*
647 * This page is about to be returned from the page allocator
648 */
17cf4406 649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 650{
92be2e33
NP
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
a3af9c38 653 (atomic_read(&page->_count) != 0) |
8cc3b392 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 655 bad_page(page);
689bcebf 656 return 1;
8cc3b392 657 }
689bcebf 658
4c21e2f2 659 set_page_private(page, 0);
7835e98b 660 set_page_refcounted(page);
cc102509
NP
661
662 arch_alloc_page(page, order);
1da177e4 663 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
664
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
667
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
670
689bcebf 671 return 0;
1da177e4
LT
672}
673
56fd56b8
MG
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
728ec980
MG
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
680 int migratetype)
681{
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
685
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
691
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
56fd56b8
MG
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
699 }
700
701 return NULL;
702}
703
704
b2a0ac88
MG
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
714};
715
c361be55
MG
716/*
717 * Move the free pages in a range to the free lists of the requested type.
d9c23400 718 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
719 * boundary. If alignment is required, use move_freepages_block()
720 */
b69a7288
AB
721static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
c361be55
MG
724{
725 struct page *page;
726 unsigned long order;
d100313f 727 int pages_moved = 0;
c361be55
MG
728
729#ifndef CONFIG_HOLES_IN_ZONE
730 /*
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
ac0e5b7a 735 * grouping pages by mobility
c361be55
MG
736 */
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740 for (page = start_page; page <= end_page;) {
344c790e
AL
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
c361be55
MG
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
747 }
748
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
752 }
753
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
d100313f 759 pages_moved += 1 << order;
c361be55
MG
760 }
761
d100313f 762 return pages_moved;
c361be55
MG
763}
764
b69a7288
AB
765static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
c361be55
MG
767{
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
770
771 start_pfn = page_to_pfn(page);
d9c23400 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 773 start_page = pfn_to_page(start_pfn);
d9c23400
MG
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
776
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
782
783 return move_freepages(zone, start_page, end_page, migratetype);
784}
785
b2a0ac88 786/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
787static inline struct page *
788__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
789{
790 struct free_area * area;
791 int current_order;
792 struct page *page;
793 int migratetype, i;
794
795 /* Find the largest possible block of pages in the other list */
796 for (current_order = MAX_ORDER-1; current_order >= order;
797 --current_order) {
798 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 migratetype = fallbacks[start_migratetype][i];
800
56fd56b8
MG
801 /* MIGRATE_RESERVE handled later if necessary */
802 if (migratetype == MIGRATE_RESERVE)
803 continue;
e010487d 804
b2a0ac88
MG
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
808
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 area->nr_free--;
812
813 /*
c361be55 814 * If breaking a large block of pages, move all free
46dafbca
MG
815 * pages to the preferred allocation list. If falling
816 * back for a reclaimable kernel allocation, be more
817 * agressive about taking ownership of free pages
b2a0ac88 818 */
d9c23400 819 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
820 start_migratetype == MIGRATE_RECLAIMABLE) {
821 unsigned long pages;
822 pages = move_freepages_block(zone, page,
823 start_migratetype);
824
825 /* Claim the whole block if over half of it is free */
d9c23400 826 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
827 set_pageblock_migratetype(page,
828 start_migratetype);
829
b2a0ac88 830 migratetype = start_migratetype;
c361be55 831 }
b2a0ac88
MG
832
833 /* Remove the page from the freelists */
834 list_del(&page->lru);
835 rmv_page_order(page);
b2a0ac88 836
d9c23400 837 if (current_order == pageblock_order)
b2a0ac88
MG
838 set_pageblock_migratetype(page,
839 start_migratetype);
840
841 expand(zone, page, order, current_order, area, migratetype);
842 return page;
843 }
844 }
845
728ec980 846 return NULL;
b2a0ac88
MG
847}
848
56fd56b8 849/*
1da177e4
LT
850 * Do the hard work of removing an element from the buddy allocator.
851 * Call me with the zone->lock already held.
852 */
b2a0ac88
MG
853static struct page *__rmqueue(struct zone *zone, unsigned int order,
854 int migratetype)
1da177e4 855{
1da177e4
LT
856 struct page *page;
857
728ec980 858retry_reserve:
56fd56b8 859 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 860
728ec980 861 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 862 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 863
728ec980
MG
864 /*
865 * Use MIGRATE_RESERVE rather than fail an allocation. goto
866 * is used because __rmqueue_smallest is an inline function
867 * and we want just one call site
868 */
869 if (!page) {
870 migratetype = MIGRATE_RESERVE;
871 goto retry_reserve;
872 }
873 }
874
b2a0ac88 875 return page;
1da177e4
LT
876}
877
878/*
879 * Obtain a specified number of elements from the buddy allocator, all under
880 * a single hold of the lock, for efficiency. Add them to the supplied list.
881 * Returns the number of new pages which were placed at *list.
882 */
883static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 884 unsigned long count, struct list_head *list,
e084b2d9 885 int migratetype, int cold)
1da177e4 886{
1da177e4 887 int i;
1da177e4 888
c54ad30c 889 spin_lock(&zone->lock);
1da177e4 890 for (i = 0; i < count; ++i) {
b2a0ac88 891 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 892 if (unlikely(page == NULL))
1da177e4 893 break;
81eabcbe
MG
894
895 /*
896 * Split buddy pages returned by expand() are received here
897 * in physical page order. The page is added to the callers and
898 * list and the list head then moves forward. From the callers
899 * perspective, the linked list is ordered by page number in
900 * some conditions. This is useful for IO devices that can
901 * merge IO requests if the physical pages are ordered
902 * properly.
903 */
e084b2d9
MG
904 if (likely(cold == 0))
905 list_add(&page->lru, list);
906 else
907 list_add_tail(&page->lru, list);
535131e6 908 set_page_private(page, migratetype);
81eabcbe 909 list = &page->lru;
1da177e4 910 }
f2260e6b 911 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 912 spin_unlock(&zone->lock);
085cc7d5 913 return i;
1da177e4
LT
914}
915
4ae7c039 916#ifdef CONFIG_NUMA
8fce4d8e 917/*
4037d452
CL
918 * Called from the vmstat counter updater to drain pagesets of this
919 * currently executing processor on remote nodes after they have
920 * expired.
921 *
879336c3
CL
922 * Note that this function must be called with the thread pinned to
923 * a single processor.
8fce4d8e 924 */
4037d452 925void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 926{
4ae7c039 927 unsigned long flags;
4037d452 928 int to_drain;
4ae7c039 929
4037d452
CL
930 local_irq_save(flags);
931 if (pcp->count >= pcp->batch)
932 to_drain = pcp->batch;
933 else
934 to_drain = pcp->count;
935 free_pages_bulk(zone, to_drain, &pcp->list, 0);
936 pcp->count -= to_drain;
937 local_irq_restore(flags);
4ae7c039
CL
938}
939#endif
940
9f8f2172
CL
941/*
942 * Drain pages of the indicated processor.
943 *
944 * The processor must either be the current processor and the
945 * thread pinned to the current processor or a processor that
946 * is not online.
947 */
948static void drain_pages(unsigned int cpu)
1da177e4 949{
c54ad30c 950 unsigned long flags;
1da177e4 951 struct zone *zone;
1da177e4 952
ee99c71c 953 for_each_populated_zone(zone) {
1da177e4 954 struct per_cpu_pageset *pset;
3dfa5721 955 struct per_cpu_pages *pcp;
1da177e4 956
e7c8d5c9 957 pset = zone_pcp(zone, cpu);
3dfa5721
CL
958
959 pcp = &pset->pcp;
960 local_irq_save(flags);
961 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
962 pcp->count = 0;
963 local_irq_restore(flags);
1da177e4
LT
964 }
965}
1da177e4 966
9f8f2172
CL
967/*
968 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
969 */
970void drain_local_pages(void *arg)
971{
972 drain_pages(smp_processor_id());
973}
974
975/*
976 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
977 */
978void drain_all_pages(void)
979{
15c8b6c1 980 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
981}
982
296699de 983#ifdef CONFIG_HIBERNATION
1da177e4
LT
984
985void mark_free_pages(struct zone *zone)
986{
f623f0db
RW
987 unsigned long pfn, max_zone_pfn;
988 unsigned long flags;
b2a0ac88 989 int order, t;
1da177e4
LT
990 struct list_head *curr;
991
992 if (!zone->spanned_pages)
993 return;
994
995 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
996
997 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
998 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
999 if (pfn_valid(pfn)) {
1000 struct page *page = pfn_to_page(pfn);
1001
7be98234
RW
1002 if (!swsusp_page_is_forbidden(page))
1003 swsusp_unset_page_free(page);
f623f0db 1004 }
1da177e4 1005
b2a0ac88
MG
1006 for_each_migratetype_order(order, t) {
1007 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1008 unsigned long i;
1da177e4 1009
f623f0db
RW
1010 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1011 for (i = 0; i < (1UL << order); i++)
7be98234 1012 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1013 }
b2a0ac88 1014 }
1da177e4
LT
1015 spin_unlock_irqrestore(&zone->lock, flags);
1016}
e2c55dc8 1017#endif /* CONFIG_PM */
1da177e4 1018
1da177e4
LT
1019/*
1020 * Free a 0-order page
1021 */
920c7a5d 1022static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1023{
1024 struct zone *zone = page_zone(page);
1025 struct per_cpu_pages *pcp;
1026 unsigned long flags;
c277331d 1027 int wasMlocked = TestClearPageMlocked(page);
1da177e4 1028
b1eeab67
VN
1029 kmemcheck_free_shadow(page, 0);
1030
1da177e4
LT
1031 if (PageAnon(page))
1032 page->mapping = NULL;
224abf92 1033 if (free_pages_check(page))
689bcebf
HD
1034 return;
1035
3ac7fe5a 1036 if (!PageHighMem(page)) {
9858db50 1037 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1038 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1039 }
dafb1367 1040 arch_free_page(page, 0);
689bcebf
HD
1041 kernel_map_pages(page, 1, 0);
1042
3dfa5721 1043 pcp = &zone_pcp(zone, get_cpu())->pcp;
974709bd 1044 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1045 local_irq_save(flags);
c277331d 1046 if (unlikely(wasMlocked))
da456f14 1047 free_page_mlock(page);
f8891e5e 1048 __count_vm_event(PGFREE);
da456f14 1049
3dfa5721
CL
1050 if (cold)
1051 list_add_tail(&page->lru, &pcp->list);
1052 else
1053 list_add(&page->lru, &pcp->list);
1da177e4 1054 pcp->count++;
48db57f8
NP
1055 if (pcp->count >= pcp->high) {
1056 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1057 pcp->count -= pcp->batch;
1058 }
1da177e4
LT
1059 local_irq_restore(flags);
1060 put_cpu();
1061}
1062
920c7a5d 1063void free_hot_page(struct page *page)
1da177e4
LT
1064{
1065 free_hot_cold_page(page, 0);
1066}
1067
920c7a5d 1068void free_cold_page(struct page *page)
1da177e4
LT
1069{
1070 free_hot_cold_page(page, 1);
1071}
1072
8dfcc9ba
NP
1073/*
1074 * split_page takes a non-compound higher-order page, and splits it into
1075 * n (1<<order) sub-pages: page[0..n]
1076 * Each sub-page must be freed individually.
1077 *
1078 * Note: this is probably too low level an operation for use in drivers.
1079 * Please consult with lkml before using this in your driver.
1080 */
1081void split_page(struct page *page, unsigned int order)
1082{
1083 int i;
1084
725d704e
NP
1085 VM_BUG_ON(PageCompound(page));
1086 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1087
1088#ifdef CONFIG_KMEMCHECK
1089 /*
1090 * Split shadow pages too, because free(page[0]) would
1091 * otherwise free the whole shadow.
1092 */
1093 if (kmemcheck_page_is_tracked(page))
1094 split_page(virt_to_page(page[0].shadow), order);
1095#endif
1096
7835e98b
NP
1097 for (i = 1; i < (1 << order); i++)
1098 set_page_refcounted(page + i);
8dfcc9ba 1099}
8dfcc9ba 1100
1da177e4
LT
1101/*
1102 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1103 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1104 * or two.
1105 */
0a15c3e9
MG
1106static inline
1107struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1108 struct zone *zone, int order, gfp_t gfp_flags,
1109 int migratetype)
1da177e4
LT
1110{
1111 unsigned long flags;
689bcebf 1112 struct page *page;
1da177e4 1113 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1114 int cpu;
1da177e4 1115
689bcebf 1116again:
a74609fa 1117 cpu = get_cpu();
48db57f8 1118 if (likely(order == 0)) {
1da177e4
LT
1119 struct per_cpu_pages *pcp;
1120
3dfa5721 1121 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1122 local_irq_save(flags);
a74609fa 1123 if (!pcp->count) {
941c7105 1124 pcp->count = rmqueue_bulk(zone, 0,
e084b2d9
MG
1125 pcp->batch, &pcp->list,
1126 migratetype, cold);
a74609fa
NP
1127 if (unlikely(!pcp->count))
1128 goto failed;
1da177e4 1129 }
b92a6edd 1130
535131e6 1131 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1132 if (cold) {
1133 list_for_each_entry_reverse(page, &pcp->list, lru)
1134 if (page_private(page) == migratetype)
1135 break;
1136 } else {
1137 list_for_each_entry(page, &pcp->list, lru)
1138 if (page_private(page) == migratetype)
1139 break;
1140 }
535131e6 1141
b92a6edd
MG
1142 /* Allocate more to the pcp list if necessary */
1143 if (unlikely(&page->lru == &pcp->list)) {
535131e6 1144 pcp->count += rmqueue_bulk(zone, 0,
e084b2d9
MG
1145 pcp->batch, &pcp->list,
1146 migratetype, cold);
535131e6 1147 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1148 }
b92a6edd
MG
1149
1150 list_del(&page->lru);
1151 pcp->count--;
7fb1d9fc 1152 } else {
dab48dab
AM
1153 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1154 /*
1155 * __GFP_NOFAIL is not to be used in new code.
1156 *
1157 * All __GFP_NOFAIL callers should be fixed so that they
1158 * properly detect and handle allocation failures.
1159 *
1160 * We most definitely don't want callers attempting to
4923abf9 1161 * allocate greater than order-1 page units with
dab48dab
AM
1162 * __GFP_NOFAIL.
1163 */
4923abf9 1164 WARN_ON_ONCE(order > 1);
dab48dab 1165 }
1da177e4 1166 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1167 page = __rmqueue(zone, order, migratetype);
f2260e6b 1168 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1169 spin_unlock(&zone->lock);
1170 if (!page)
1171 goto failed;
1da177e4
LT
1172 }
1173
f8891e5e 1174 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1175 zone_statistics(preferred_zone, zone);
a74609fa
NP
1176 local_irq_restore(flags);
1177 put_cpu();
1da177e4 1178
725d704e 1179 VM_BUG_ON(bad_range(zone, page));
17cf4406 1180 if (prep_new_page(page, order, gfp_flags))
a74609fa 1181 goto again;
1da177e4 1182 return page;
a74609fa
NP
1183
1184failed:
1185 local_irq_restore(flags);
1186 put_cpu();
1187 return NULL;
1da177e4
LT
1188}
1189
41858966
MG
1190/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1191#define ALLOC_WMARK_MIN WMARK_MIN
1192#define ALLOC_WMARK_LOW WMARK_LOW
1193#define ALLOC_WMARK_HIGH WMARK_HIGH
1194#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1195
1196/* Mask to get the watermark bits */
1197#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1198
3148890b
NP
1199#define ALLOC_HARDER 0x10 /* try to alloc harder */
1200#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1201#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1202
933e312e
AM
1203#ifdef CONFIG_FAIL_PAGE_ALLOC
1204
1205static struct fail_page_alloc_attr {
1206 struct fault_attr attr;
1207
1208 u32 ignore_gfp_highmem;
1209 u32 ignore_gfp_wait;
54114994 1210 u32 min_order;
933e312e
AM
1211
1212#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1213
1214 struct dentry *ignore_gfp_highmem_file;
1215 struct dentry *ignore_gfp_wait_file;
54114994 1216 struct dentry *min_order_file;
933e312e
AM
1217
1218#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1219
1220} fail_page_alloc = {
1221 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1222 .ignore_gfp_wait = 1,
1223 .ignore_gfp_highmem = 1,
54114994 1224 .min_order = 1,
933e312e
AM
1225};
1226
1227static int __init setup_fail_page_alloc(char *str)
1228{
1229 return setup_fault_attr(&fail_page_alloc.attr, str);
1230}
1231__setup("fail_page_alloc=", setup_fail_page_alloc);
1232
1233static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1234{
54114994
AM
1235 if (order < fail_page_alloc.min_order)
1236 return 0;
933e312e
AM
1237 if (gfp_mask & __GFP_NOFAIL)
1238 return 0;
1239 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1240 return 0;
1241 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1242 return 0;
1243
1244 return should_fail(&fail_page_alloc.attr, 1 << order);
1245}
1246
1247#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1248
1249static int __init fail_page_alloc_debugfs(void)
1250{
1251 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1252 struct dentry *dir;
1253 int err;
1254
1255 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1256 "fail_page_alloc");
1257 if (err)
1258 return err;
1259 dir = fail_page_alloc.attr.dentries.dir;
1260
1261 fail_page_alloc.ignore_gfp_wait_file =
1262 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1263 &fail_page_alloc.ignore_gfp_wait);
1264
1265 fail_page_alloc.ignore_gfp_highmem_file =
1266 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1267 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1268 fail_page_alloc.min_order_file =
1269 debugfs_create_u32("min-order", mode, dir,
1270 &fail_page_alloc.min_order);
933e312e
AM
1271
1272 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1273 !fail_page_alloc.ignore_gfp_highmem_file ||
1274 !fail_page_alloc.min_order_file) {
933e312e
AM
1275 err = -ENOMEM;
1276 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1277 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1278 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1279 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1280 }
1281
1282 return err;
1283}
1284
1285late_initcall(fail_page_alloc_debugfs);
1286
1287#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1288
1289#else /* CONFIG_FAIL_PAGE_ALLOC */
1290
1291static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1292{
1293 return 0;
1294}
1295
1296#endif /* CONFIG_FAIL_PAGE_ALLOC */
1297
1da177e4
LT
1298/*
1299 * Return 1 if free pages are above 'mark'. This takes into account the order
1300 * of the allocation.
1301 */
1302int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1303 int classzone_idx, int alloc_flags)
1da177e4
LT
1304{
1305 /* free_pages my go negative - that's OK */
d23ad423
CL
1306 long min = mark;
1307 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1308 int o;
1309
7fb1d9fc 1310 if (alloc_flags & ALLOC_HIGH)
1da177e4 1311 min -= min / 2;
7fb1d9fc 1312 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1313 min -= min / 4;
1314
1315 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1316 return 0;
1317 for (o = 0; o < order; o++) {
1318 /* At the next order, this order's pages become unavailable */
1319 free_pages -= z->free_area[o].nr_free << o;
1320
1321 /* Require fewer higher order pages to be free */
1322 min >>= 1;
1323
1324 if (free_pages <= min)
1325 return 0;
1326 }
1327 return 1;
1328}
1329
9276b1bc
PJ
1330#ifdef CONFIG_NUMA
1331/*
1332 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1333 * skip over zones that are not allowed by the cpuset, or that have
1334 * been recently (in last second) found to be nearly full. See further
1335 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1336 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1337 *
1338 * If the zonelist cache is present in the passed in zonelist, then
1339 * returns a pointer to the allowed node mask (either the current
37b07e41 1340 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1341 *
1342 * If the zonelist cache is not available for this zonelist, does
1343 * nothing and returns NULL.
1344 *
1345 * If the fullzones BITMAP in the zonelist cache is stale (more than
1346 * a second since last zap'd) then we zap it out (clear its bits.)
1347 *
1348 * We hold off even calling zlc_setup, until after we've checked the
1349 * first zone in the zonelist, on the theory that most allocations will
1350 * be satisfied from that first zone, so best to examine that zone as
1351 * quickly as we can.
1352 */
1353static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1354{
1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1356 nodemask_t *allowednodes; /* zonelist_cache approximation */
1357
1358 zlc = zonelist->zlcache_ptr;
1359 if (!zlc)
1360 return NULL;
1361
f05111f5 1362 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1363 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1364 zlc->last_full_zap = jiffies;
1365 }
1366
1367 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1368 &cpuset_current_mems_allowed :
37b07e41 1369 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1370 return allowednodes;
1371}
1372
1373/*
1374 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1375 * if it is worth looking at further for free memory:
1376 * 1) Check that the zone isn't thought to be full (doesn't have its
1377 * bit set in the zonelist_cache fullzones BITMAP).
1378 * 2) Check that the zones node (obtained from the zonelist_cache
1379 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1380 * Return true (non-zero) if zone is worth looking at further, or
1381 * else return false (zero) if it is not.
1382 *
1383 * This check -ignores- the distinction between various watermarks,
1384 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1385 * found to be full for any variation of these watermarks, it will
1386 * be considered full for up to one second by all requests, unless
1387 * we are so low on memory on all allowed nodes that we are forced
1388 * into the second scan of the zonelist.
1389 *
1390 * In the second scan we ignore this zonelist cache and exactly
1391 * apply the watermarks to all zones, even it is slower to do so.
1392 * We are low on memory in the second scan, and should leave no stone
1393 * unturned looking for a free page.
1394 */
dd1a239f 1395static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1396 nodemask_t *allowednodes)
1397{
1398 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1399 int i; /* index of *z in zonelist zones */
1400 int n; /* node that zone *z is on */
1401
1402 zlc = zonelist->zlcache_ptr;
1403 if (!zlc)
1404 return 1;
1405
dd1a239f 1406 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1407 n = zlc->z_to_n[i];
1408
1409 /* This zone is worth trying if it is allowed but not full */
1410 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1411}
1412
1413/*
1414 * Given 'z' scanning a zonelist, set the corresponding bit in
1415 * zlc->fullzones, so that subsequent attempts to allocate a page
1416 * from that zone don't waste time re-examining it.
1417 */
dd1a239f 1418static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1419{
1420 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1421 int i; /* index of *z in zonelist zones */
1422
1423 zlc = zonelist->zlcache_ptr;
1424 if (!zlc)
1425 return;
1426
dd1a239f 1427 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1428
1429 set_bit(i, zlc->fullzones);
1430}
1431
1432#else /* CONFIG_NUMA */
1433
1434static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1435{
1436 return NULL;
1437}
1438
dd1a239f 1439static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1440 nodemask_t *allowednodes)
1441{
1442 return 1;
1443}
1444
dd1a239f 1445static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1446{
1447}
1448#endif /* CONFIG_NUMA */
1449
7fb1d9fc 1450/*
0798e519 1451 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1452 * a page.
1453 */
1454static struct page *
19770b32 1455get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1456 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1457 struct zone *preferred_zone, int migratetype)
753ee728 1458{
dd1a239f 1459 struct zoneref *z;
7fb1d9fc 1460 struct page *page = NULL;
54a6eb5c 1461 int classzone_idx;
5117f45d 1462 struct zone *zone;
9276b1bc
PJ
1463 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1464 int zlc_active = 0; /* set if using zonelist_cache */
1465 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1466
19770b32 1467 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1468zonelist_scan:
7fb1d9fc 1469 /*
9276b1bc 1470 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1471 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1472 */
19770b32
MG
1473 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1474 high_zoneidx, nodemask) {
9276b1bc
PJ
1475 if (NUMA_BUILD && zlc_active &&
1476 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1477 continue;
7fb1d9fc 1478 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1479 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1480 goto try_next_zone;
7fb1d9fc 1481
41858966 1482 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1483 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1484 unsigned long mark;
fa5e084e
MG
1485 int ret;
1486
41858966 1487 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1488 if (zone_watermark_ok(zone, order, mark,
1489 classzone_idx, alloc_flags))
1490 goto try_this_zone;
1491
1492 if (zone_reclaim_mode == 0)
1493 goto this_zone_full;
1494
1495 ret = zone_reclaim(zone, gfp_mask, order);
1496 switch (ret) {
1497 case ZONE_RECLAIM_NOSCAN:
1498 /* did not scan */
1499 goto try_next_zone;
1500 case ZONE_RECLAIM_FULL:
1501 /* scanned but unreclaimable */
1502 goto this_zone_full;
1503 default:
1504 /* did we reclaim enough */
1505 if (!zone_watermark_ok(zone, order, mark,
1506 classzone_idx, alloc_flags))
9276b1bc 1507 goto this_zone_full;
0798e519 1508 }
7fb1d9fc
RS
1509 }
1510
fa5e084e 1511try_this_zone:
3dd28266
MG
1512 page = buffered_rmqueue(preferred_zone, zone, order,
1513 gfp_mask, migratetype);
0798e519 1514 if (page)
7fb1d9fc 1515 break;
9276b1bc
PJ
1516this_zone_full:
1517 if (NUMA_BUILD)
1518 zlc_mark_zone_full(zonelist, z);
1519try_next_zone:
62bc62a8 1520 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1521 /*
1522 * we do zlc_setup after the first zone is tried but only
1523 * if there are multiple nodes make it worthwhile
1524 */
9276b1bc
PJ
1525 allowednodes = zlc_setup(zonelist, alloc_flags);
1526 zlc_active = 1;
1527 did_zlc_setup = 1;
1528 }
54a6eb5c 1529 }
9276b1bc
PJ
1530
1531 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1532 /* Disable zlc cache for second zonelist scan */
1533 zlc_active = 0;
1534 goto zonelist_scan;
1535 }
7fb1d9fc 1536 return page;
753ee728
MH
1537}
1538
11e33f6a
MG
1539static inline int
1540should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1541 unsigned long pages_reclaimed)
1da177e4 1542{
11e33f6a
MG
1543 /* Do not loop if specifically requested */
1544 if (gfp_mask & __GFP_NORETRY)
1545 return 0;
1da177e4 1546
11e33f6a
MG
1547 /*
1548 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1549 * means __GFP_NOFAIL, but that may not be true in other
1550 * implementations.
1551 */
1552 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1553 return 1;
1554
1555 /*
1556 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1557 * specified, then we retry until we no longer reclaim any pages
1558 * (above), or we've reclaimed an order of pages at least as
1559 * large as the allocation's order. In both cases, if the
1560 * allocation still fails, we stop retrying.
1561 */
1562 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1563 return 1;
cf40bd16 1564
11e33f6a
MG
1565 /*
1566 * Don't let big-order allocations loop unless the caller
1567 * explicitly requests that.
1568 */
1569 if (gfp_mask & __GFP_NOFAIL)
1570 return 1;
1da177e4 1571
11e33f6a
MG
1572 return 0;
1573}
933e312e 1574
11e33f6a
MG
1575static inline struct page *
1576__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1577 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1578 nodemask_t *nodemask, struct zone *preferred_zone,
1579 int migratetype)
11e33f6a
MG
1580{
1581 struct page *page;
1582
1583 /* Acquire the OOM killer lock for the zones in zonelist */
1584 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1585 schedule_timeout_uninterruptible(1);
1da177e4
LT
1586 return NULL;
1587 }
6b1de916 1588
11e33f6a
MG
1589 /*
1590 * Go through the zonelist yet one more time, keep very high watermark
1591 * here, this is only to catch a parallel oom killing, we must fail if
1592 * we're still under heavy pressure.
1593 */
1594 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1595 order, zonelist, high_zoneidx,
5117f45d 1596 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1597 preferred_zone, migratetype);
7fb1d9fc 1598 if (page)
11e33f6a
MG
1599 goto out;
1600
1601 /* The OOM killer will not help higher order allocs */
82553a93 1602 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1603 goto out;
1604
1605 /* Exhausted what can be done so it's blamo time */
1606 out_of_memory(zonelist, gfp_mask, order);
1607
1608out:
1609 clear_zonelist_oom(zonelist, gfp_mask);
1610 return page;
1611}
1612
1613/* The really slow allocator path where we enter direct reclaim */
1614static inline struct page *
1615__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1616 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1617 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1618 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1619{
1620 struct page *page = NULL;
1621 struct reclaim_state reclaim_state;
1622 struct task_struct *p = current;
1623
1624 cond_resched();
1625
1626 /* We now go into synchronous reclaim */
1627 cpuset_memory_pressure_bump();
1628
1629 /*
1630 * The task's cpuset might have expanded its set of allowable nodes
1631 */
1632 p->flags |= PF_MEMALLOC;
1633 lockdep_set_current_reclaim_state(gfp_mask);
1634 reclaim_state.reclaimed_slab = 0;
1635 p->reclaim_state = &reclaim_state;
1636
1637 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1638
1639 p->reclaim_state = NULL;
1640 lockdep_clear_current_reclaim_state();
1641 p->flags &= ~PF_MEMALLOC;
1642
1643 cond_resched();
1644
1645 if (order != 0)
1646 drain_all_pages();
1647
1648 if (likely(*did_some_progress))
1649 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1650 zonelist, high_zoneidx,
3dd28266
MG
1651 alloc_flags, preferred_zone,
1652 migratetype);
11e33f6a
MG
1653 return page;
1654}
1655
1da177e4 1656/*
11e33f6a
MG
1657 * This is called in the allocator slow-path if the allocation request is of
1658 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1659 */
11e33f6a
MG
1660static inline struct page *
1661__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1662 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1663 nodemask_t *nodemask, struct zone *preferred_zone,
1664 int migratetype)
11e33f6a
MG
1665{
1666 struct page *page;
1667
1668 do {
1669 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1670 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1671 preferred_zone, migratetype);
11e33f6a
MG
1672
1673 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1674 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1675 } while (!page && (gfp_mask & __GFP_NOFAIL));
1676
1677 return page;
1678}
1679
1680static inline
1681void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1682 enum zone_type high_zoneidx)
1da177e4 1683{
dd1a239f
MG
1684 struct zoneref *z;
1685 struct zone *zone;
1da177e4 1686
11e33f6a
MG
1687 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1688 wakeup_kswapd(zone, order);
1689}
cf40bd16 1690
341ce06f
PZ
1691static inline int
1692gfp_to_alloc_flags(gfp_t gfp_mask)
1693{
1694 struct task_struct *p = current;
1695 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1696 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1697
a56f57ff
MG
1698 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1699 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1700
341ce06f
PZ
1701 /*
1702 * The caller may dip into page reserves a bit more if the caller
1703 * cannot run direct reclaim, or if the caller has realtime scheduling
1704 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1705 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1706 */
a56f57ff 1707 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1708
341ce06f
PZ
1709 if (!wait) {
1710 alloc_flags |= ALLOC_HARDER;
523b9458 1711 /*
341ce06f
PZ
1712 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1713 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1714 */
341ce06f
PZ
1715 alloc_flags &= ~ALLOC_CPUSET;
1716 } else if (unlikely(rt_task(p)))
1717 alloc_flags |= ALLOC_HARDER;
1718
1719 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1720 if (!in_interrupt() &&
1721 ((p->flags & PF_MEMALLOC) ||
1722 unlikely(test_thread_flag(TIF_MEMDIE))))
1723 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1724 }
6b1de916 1725
341ce06f
PZ
1726 return alloc_flags;
1727}
1728
11e33f6a
MG
1729static inline struct page *
1730__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1731 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1732 nodemask_t *nodemask, struct zone *preferred_zone,
1733 int migratetype)
11e33f6a
MG
1734{
1735 const gfp_t wait = gfp_mask & __GFP_WAIT;
1736 struct page *page = NULL;
1737 int alloc_flags;
1738 unsigned long pages_reclaimed = 0;
1739 unsigned long did_some_progress;
1740 struct task_struct *p = current;
1da177e4 1741
72807a74
MG
1742 /*
1743 * In the slowpath, we sanity check order to avoid ever trying to
1744 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1745 * be using allocators in order of preference for an area that is
1746 * too large.
1747 */
1748 if (WARN_ON_ONCE(order >= MAX_ORDER))
1749 return NULL;
1da177e4 1750
952f3b51
CL
1751 /*
1752 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1753 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1754 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1755 * using a larger set of nodes after it has established that the
1756 * allowed per node queues are empty and that nodes are
1757 * over allocated.
1758 */
1759 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1760 goto nopage;
1761
11e33f6a 1762 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1763
9bf2229f 1764 /*
7fb1d9fc
RS
1765 * OK, we're below the kswapd watermark and have kicked background
1766 * reclaim. Now things get more complex, so set up alloc_flags according
1767 * to how we want to proceed.
9bf2229f 1768 */
341ce06f 1769 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1770
11e33f6a 1771restart:
341ce06f 1772 /* This is the last chance, in general, before the goto nopage. */
19770b32 1773 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1774 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1775 preferred_zone, migratetype);
7fb1d9fc
RS
1776 if (page)
1777 goto got_pg;
1da177e4 1778
b43a57bb 1779rebalance:
11e33f6a 1780 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1781 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1782 page = __alloc_pages_high_priority(gfp_mask, order,
1783 zonelist, high_zoneidx, nodemask,
1784 preferred_zone, migratetype);
1785 if (page)
1786 goto got_pg;
1da177e4
LT
1787 }
1788
1789 /* Atomic allocations - we can't balance anything */
1790 if (!wait)
1791 goto nopage;
1792
341ce06f
PZ
1793 /* Avoid recursion of direct reclaim */
1794 if (p->flags & PF_MEMALLOC)
1795 goto nopage;
1796
11e33f6a
MG
1797 /* Try direct reclaim and then allocating */
1798 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1799 zonelist, high_zoneidx,
1800 nodemask,
5117f45d 1801 alloc_flags, preferred_zone,
3dd28266 1802 migratetype, &did_some_progress);
11e33f6a
MG
1803 if (page)
1804 goto got_pg;
1da177e4 1805
e33c3b5e 1806 /*
11e33f6a
MG
1807 * If we failed to make any progress reclaiming, then we are
1808 * running out of options and have to consider going OOM
e33c3b5e 1809 */
11e33f6a
MG
1810 if (!did_some_progress) {
1811 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1812 if (oom_killer_disabled)
1813 goto nopage;
11e33f6a
MG
1814 page = __alloc_pages_may_oom(gfp_mask, order,
1815 zonelist, high_zoneidx,
3dd28266
MG
1816 nodemask, preferred_zone,
1817 migratetype);
11e33f6a
MG
1818 if (page)
1819 goto got_pg;
1da177e4 1820
11e33f6a 1821 /*
82553a93
DR
1822 * The OOM killer does not trigger for high-order
1823 * ~__GFP_NOFAIL allocations so if no progress is being
1824 * made, there are no other options and retrying is
1825 * unlikely to help.
11e33f6a 1826 */
82553a93
DR
1827 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1828 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1829 goto nopage;
e2c55dc8 1830
ff0ceb9d
DR
1831 goto restart;
1832 }
1da177e4
LT
1833 }
1834
11e33f6a 1835 /* Check if we should retry the allocation */
a41f24ea 1836 pages_reclaimed += did_some_progress;
11e33f6a
MG
1837 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1838 /* Wait for some write requests to complete then retry */
8aa7e847 1839 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1840 goto rebalance;
1841 }
1842
1843nopage:
1844 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1845 printk(KERN_WARNING "%s: page allocation failure."
1846 " order:%d, mode:0x%x\n",
1847 p->comm, order, gfp_mask);
1848 dump_stack();
578c2fd6 1849 show_mem();
1da177e4 1850 }
b1eeab67 1851 return page;
1da177e4 1852got_pg:
b1eeab67
VN
1853 if (kmemcheck_enabled)
1854 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1855 return page;
11e33f6a 1856
1da177e4 1857}
11e33f6a
MG
1858
1859/*
1860 * This is the 'heart' of the zoned buddy allocator.
1861 */
1862struct page *
1863__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1864 struct zonelist *zonelist, nodemask_t *nodemask)
1865{
1866 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1867 struct zone *preferred_zone;
11e33f6a 1868 struct page *page;
3dd28266 1869 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1870
dcce284a
BH
1871 gfp_mask &= gfp_allowed_mask;
1872
11e33f6a
MG
1873 lockdep_trace_alloc(gfp_mask);
1874
1875 might_sleep_if(gfp_mask & __GFP_WAIT);
1876
1877 if (should_fail_alloc_page(gfp_mask, order))
1878 return NULL;
1879
1880 /*
1881 * Check the zones suitable for the gfp_mask contain at least one
1882 * valid zone. It's possible to have an empty zonelist as a result
1883 * of GFP_THISNODE and a memoryless node
1884 */
1885 if (unlikely(!zonelist->_zonerefs->zone))
1886 return NULL;
1887
5117f45d
MG
1888 /* The preferred zone is used for statistics later */
1889 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1890 if (!preferred_zone)
1891 return NULL;
1892
1893 /* First allocation attempt */
11e33f6a 1894 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1895 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1896 preferred_zone, migratetype);
11e33f6a
MG
1897 if (unlikely(!page))
1898 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1899 zonelist, high_zoneidx, nodemask,
3dd28266 1900 preferred_zone, migratetype);
11e33f6a
MG
1901
1902 return page;
1da177e4 1903}
d239171e 1904EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1905
1906/*
1907 * Common helper functions.
1908 */
920c7a5d 1909unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1910{
1911 struct page * page;
1912 page = alloc_pages(gfp_mask, order);
1913 if (!page)
1914 return 0;
1915 return (unsigned long) page_address(page);
1916}
1917
1918EXPORT_SYMBOL(__get_free_pages);
1919
920c7a5d 1920unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1921{
1922 struct page * page;
1923
1924 /*
1925 * get_zeroed_page() returns a 32-bit address, which cannot represent
1926 * a highmem page
1927 */
725d704e 1928 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1929
1930 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1931 if (page)
1932 return (unsigned long) page_address(page);
1933 return 0;
1934}
1935
1936EXPORT_SYMBOL(get_zeroed_page);
1937
1938void __pagevec_free(struct pagevec *pvec)
1939{
1940 int i = pagevec_count(pvec);
1941
1942 while (--i >= 0)
1943 free_hot_cold_page(pvec->pages[i], pvec->cold);
1944}
1945
920c7a5d 1946void __free_pages(struct page *page, unsigned int order)
1da177e4 1947{
b5810039 1948 if (put_page_testzero(page)) {
1da177e4
LT
1949 if (order == 0)
1950 free_hot_page(page);
1951 else
1952 __free_pages_ok(page, order);
1953 }
1954}
1955
1956EXPORT_SYMBOL(__free_pages);
1957
920c7a5d 1958void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1959{
1960 if (addr != 0) {
725d704e 1961 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1962 __free_pages(virt_to_page((void *)addr), order);
1963 }
1964}
1965
1966EXPORT_SYMBOL(free_pages);
1967
2be0ffe2
TT
1968/**
1969 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1970 * @size: the number of bytes to allocate
1971 * @gfp_mask: GFP flags for the allocation
1972 *
1973 * This function is similar to alloc_pages(), except that it allocates the
1974 * minimum number of pages to satisfy the request. alloc_pages() can only
1975 * allocate memory in power-of-two pages.
1976 *
1977 * This function is also limited by MAX_ORDER.
1978 *
1979 * Memory allocated by this function must be released by free_pages_exact().
1980 */
1981void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1982{
1983 unsigned int order = get_order(size);
1984 unsigned long addr;
1985
1986 addr = __get_free_pages(gfp_mask, order);
1987 if (addr) {
1988 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1989 unsigned long used = addr + PAGE_ALIGN(size);
1990
5bfd7560 1991 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
1992 while (used < alloc_end) {
1993 free_page(used);
1994 used += PAGE_SIZE;
1995 }
1996 }
1997
1998 return (void *)addr;
1999}
2000EXPORT_SYMBOL(alloc_pages_exact);
2001
2002/**
2003 * free_pages_exact - release memory allocated via alloc_pages_exact()
2004 * @virt: the value returned by alloc_pages_exact.
2005 * @size: size of allocation, same value as passed to alloc_pages_exact().
2006 *
2007 * Release the memory allocated by a previous call to alloc_pages_exact.
2008 */
2009void free_pages_exact(void *virt, size_t size)
2010{
2011 unsigned long addr = (unsigned long)virt;
2012 unsigned long end = addr + PAGE_ALIGN(size);
2013
2014 while (addr < end) {
2015 free_page(addr);
2016 addr += PAGE_SIZE;
2017 }
2018}
2019EXPORT_SYMBOL(free_pages_exact);
2020
1da177e4
LT
2021static unsigned int nr_free_zone_pages(int offset)
2022{
dd1a239f 2023 struct zoneref *z;
54a6eb5c
MG
2024 struct zone *zone;
2025
e310fd43 2026 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2027 unsigned int sum = 0;
2028
0e88460d 2029 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2030
54a6eb5c 2031 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2032 unsigned long size = zone->present_pages;
41858966 2033 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2034 if (size > high)
2035 sum += size - high;
1da177e4
LT
2036 }
2037
2038 return sum;
2039}
2040
2041/*
2042 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2043 */
2044unsigned int nr_free_buffer_pages(void)
2045{
af4ca457 2046 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2047}
c2f1a551 2048EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2049
2050/*
2051 * Amount of free RAM allocatable within all zones
2052 */
2053unsigned int nr_free_pagecache_pages(void)
2054{
2a1e274a 2055 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2056}
08e0f6a9
CL
2057
2058static inline void show_node(struct zone *zone)
1da177e4 2059{
08e0f6a9 2060 if (NUMA_BUILD)
25ba77c1 2061 printk("Node %d ", zone_to_nid(zone));
1da177e4 2062}
1da177e4 2063
1da177e4
LT
2064void si_meminfo(struct sysinfo *val)
2065{
2066 val->totalram = totalram_pages;
2067 val->sharedram = 0;
d23ad423 2068 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2069 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2070 val->totalhigh = totalhigh_pages;
2071 val->freehigh = nr_free_highpages();
1da177e4
LT
2072 val->mem_unit = PAGE_SIZE;
2073}
2074
2075EXPORT_SYMBOL(si_meminfo);
2076
2077#ifdef CONFIG_NUMA
2078void si_meminfo_node(struct sysinfo *val, int nid)
2079{
2080 pg_data_t *pgdat = NODE_DATA(nid);
2081
2082 val->totalram = pgdat->node_present_pages;
d23ad423 2083 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2084#ifdef CONFIG_HIGHMEM
1da177e4 2085 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2086 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2087 NR_FREE_PAGES);
98d2b0eb
CL
2088#else
2089 val->totalhigh = 0;
2090 val->freehigh = 0;
2091#endif
1da177e4
LT
2092 val->mem_unit = PAGE_SIZE;
2093}
2094#endif
2095
2096#define K(x) ((x) << (PAGE_SHIFT-10))
2097
2098/*
2099 * Show free area list (used inside shift_scroll-lock stuff)
2100 * We also calculate the percentage fragmentation. We do this by counting the
2101 * memory on each free list with the exception of the first item on the list.
2102 */
2103void show_free_areas(void)
2104{
c7241913 2105 int cpu;
1da177e4
LT
2106 struct zone *zone;
2107
ee99c71c 2108 for_each_populated_zone(zone) {
c7241913
JS
2109 show_node(zone);
2110 printk("%s per-cpu:\n", zone->name);
1da177e4 2111
6b482c67 2112 for_each_online_cpu(cpu) {
1da177e4
LT
2113 struct per_cpu_pageset *pageset;
2114
e7c8d5c9 2115 pageset = zone_pcp(zone, cpu);
1da177e4 2116
3dfa5721
CL
2117 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2118 cpu, pageset->pcp.high,
2119 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2120 }
2121 }
2122
7b854121
LS
2123 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2124 " inactive_file:%lu"
7b854121 2125 " unevictable:%lu"
7b854121 2126 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2127 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2128 global_page_state(NR_ACTIVE_ANON),
2129 global_page_state(NR_ACTIVE_FILE),
2130 global_page_state(NR_INACTIVE_ANON),
2131 global_page_state(NR_INACTIVE_FILE),
7b854121 2132 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2133 global_page_state(NR_FILE_DIRTY),
ce866b34 2134 global_page_state(NR_WRITEBACK),
fd39fc85 2135 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2136 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2137 global_page_state(NR_SLAB_RECLAIMABLE) +
2138 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2139 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2140 global_page_state(NR_PAGETABLE),
2141 global_page_state(NR_BOUNCE));
1da177e4 2142
ee99c71c 2143 for_each_populated_zone(zone) {
1da177e4
LT
2144 int i;
2145
2146 show_node(zone);
2147 printk("%s"
2148 " free:%lukB"
2149 " min:%lukB"
2150 " low:%lukB"
2151 " high:%lukB"
4f98a2fe
RR
2152 " active_anon:%lukB"
2153 " inactive_anon:%lukB"
2154 " active_file:%lukB"
2155 " inactive_file:%lukB"
7b854121 2156 " unevictable:%lukB"
1da177e4
LT
2157 " present:%lukB"
2158 " pages_scanned:%lu"
2159 " all_unreclaimable? %s"
2160 "\n",
2161 zone->name,
d23ad423 2162 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2163 K(min_wmark_pages(zone)),
2164 K(low_wmark_pages(zone)),
2165 K(high_wmark_pages(zone)),
4f98a2fe
RR
2166 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2167 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2168 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2169 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2170 K(zone_page_state(zone, NR_UNEVICTABLE)),
1da177e4
LT
2171 K(zone->present_pages),
2172 zone->pages_scanned,
e815af95 2173 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2174 );
2175 printk("lowmem_reserve[]:");
2176 for (i = 0; i < MAX_NR_ZONES; i++)
2177 printk(" %lu", zone->lowmem_reserve[i]);
2178 printk("\n");
2179 }
2180
ee99c71c 2181 for_each_populated_zone(zone) {
8f9de51a 2182 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2183
2184 show_node(zone);
2185 printk("%s: ", zone->name);
1da177e4
LT
2186
2187 spin_lock_irqsave(&zone->lock, flags);
2188 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2189 nr[order] = zone->free_area[order].nr_free;
2190 total += nr[order] << order;
1da177e4
LT
2191 }
2192 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2193 for (order = 0; order < MAX_ORDER; order++)
2194 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2195 printk("= %lukB\n", K(total));
2196 }
2197
e6f3602d
LW
2198 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2199
1da177e4
LT
2200 show_swap_cache_info();
2201}
2202
19770b32
MG
2203static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2204{
2205 zoneref->zone = zone;
2206 zoneref->zone_idx = zone_idx(zone);
2207}
2208
1da177e4
LT
2209/*
2210 * Builds allocation fallback zone lists.
1a93205b
CL
2211 *
2212 * Add all populated zones of a node to the zonelist.
1da177e4 2213 */
f0c0b2b8
KH
2214static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2215 int nr_zones, enum zone_type zone_type)
1da177e4 2216{
1a93205b
CL
2217 struct zone *zone;
2218
98d2b0eb 2219 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2220 zone_type++;
02a68a5e
CL
2221
2222 do {
2f6726e5 2223 zone_type--;
070f8032 2224 zone = pgdat->node_zones + zone_type;
1a93205b 2225 if (populated_zone(zone)) {
dd1a239f
MG
2226 zoneref_set_zone(zone,
2227 &zonelist->_zonerefs[nr_zones++]);
070f8032 2228 check_highest_zone(zone_type);
1da177e4 2229 }
02a68a5e 2230
2f6726e5 2231 } while (zone_type);
070f8032 2232 return nr_zones;
1da177e4
LT
2233}
2234
f0c0b2b8
KH
2235
2236/*
2237 * zonelist_order:
2238 * 0 = automatic detection of better ordering.
2239 * 1 = order by ([node] distance, -zonetype)
2240 * 2 = order by (-zonetype, [node] distance)
2241 *
2242 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2243 * the same zonelist. So only NUMA can configure this param.
2244 */
2245#define ZONELIST_ORDER_DEFAULT 0
2246#define ZONELIST_ORDER_NODE 1
2247#define ZONELIST_ORDER_ZONE 2
2248
2249/* zonelist order in the kernel.
2250 * set_zonelist_order() will set this to NODE or ZONE.
2251 */
2252static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2253static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2254
2255
1da177e4 2256#ifdef CONFIG_NUMA
f0c0b2b8
KH
2257/* The value user specified ....changed by config */
2258static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2259/* string for sysctl */
2260#define NUMA_ZONELIST_ORDER_LEN 16
2261char numa_zonelist_order[16] = "default";
2262
2263/*
2264 * interface for configure zonelist ordering.
2265 * command line option "numa_zonelist_order"
2266 * = "[dD]efault - default, automatic configuration.
2267 * = "[nN]ode - order by node locality, then by zone within node
2268 * = "[zZ]one - order by zone, then by locality within zone
2269 */
2270
2271static int __parse_numa_zonelist_order(char *s)
2272{
2273 if (*s == 'd' || *s == 'D') {
2274 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2275 } else if (*s == 'n' || *s == 'N') {
2276 user_zonelist_order = ZONELIST_ORDER_NODE;
2277 } else if (*s == 'z' || *s == 'Z') {
2278 user_zonelist_order = ZONELIST_ORDER_ZONE;
2279 } else {
2280 printk(KERN_WARNING
2281 "Ignoring invalid numa_zonelist_order value: "
2282 "%s\n", s);
2283 return -EINVAL;
2284 }
2285 return 0;
2286}
2287
2288static __init int setup_numa_zonelist_order(char *s)
2289{
2290 if (s)
2291 return __parse_numa_zonelist_order(s);
2292 return 0;
2293}
2294early_param("numa_zonelist_order", setup_numa_zonelist_order);
2295
2296/*
2297 * sysctl handler for numa_zonelist_order
2298 */
2299int numa_zonelist_order_handler(ctl_table *table, int write,
2300 struct file *file, void __user *buffer, size_t *length,
2301 loff_t *ppos)
2302{
2303 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2304 int ret;
2305
2306 if (write)
2307 strncpy(saved_string, (char*)table->data,
2308 NUMA_ZONELIST_ORDER_LEN);
2309 ret = proc_dostring(table, write, file, buffer, length, ppos);
2310 if (ret)
2311 return ret;
2312 if (write) {
2313 int oldval = user_zonelist_order;
2314 if (__parse_numa_zonelist_order((char*)table->data)) {
2315 /*
2316 * bogus value. restore saved string
2317 */
2318 strncpy((char*)table->data, saved_string,
2319 NUMA_ZONELIST_ORDER_LEN);
2320 user_zonelist_order = oldval;
2321 } else if (oldval != user_zonelist_order)
2322 build_all_zonelists();
2323 }
2324 return 0;
2325}
2326
2327
62bc62a8 2328#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2329static int node_load[MAX_NUMNODES];
2330
1da177e4 2331/**
4dc3b16b 2332 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2333 * @node: node whose fallback list we're appending
2334 * @used_node_mask: nodemask_t of already used nodes
2335 *
2336 * We use a number of factors to determine which is the next node that should
2337 * appear on a given node's fallback list. The node should not have appeared
2338 * already in @node's fallback list, and it should be the next closest node
2339 * according to the distance array (which contains arbitrary distance values
2340 * from each node to each node in the system), and should also prefer nodes
2341 * with no CPUs, since presumably they'll have very little allocation pressure
2342 * on them otherwise.
2343 * It returns -1 if no node is found.
2344 */
f0c0b2b8 2345static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2346{
4cf808eb 2347 int n, val;
1da177e4
LT
2348 int min_val = INT_MAX;
2349 int best_node = -1;
a70f7302 2350 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2351
4cf808eb
LT
2352 /* Use the local node if we haven't already */
2353 if (!node_isset(node, *used_node_mask)) {
2354 node_set(node, *used_node_mask);
2355 return node;
2356 }
1da177e4 2357
37b07e41 2358 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2359
2360 /* Don't want a node to appear more than once */
2361 if (node_isset(n, *used_node_mask))
2362 continue;
2363
1da177e4
LT
2364 /* Use the distance array to find the distance */
2365 val = node_distance(node, n);
2366
4cf808eb
LT
2367 /* Penalize nodes under us ("prefer the next node") */
2368 val += (n < node);
2369
1da177e4 2370 /* Give preference to headless and unused nodes */
a70f7302
RR
2371 tmp = cpumask_of_node(n);
2372 if (!cpumask_empty(tmp))
1da177e4
LT
2373 val += PENALTY_FOR_NODE_WITH_CPUS;
2374
2375 /* Slight preference for less loaded node */
2376 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2377 val += node_load[n];
2378
2379 if (val < min_val) {
2380 min_val = val;
2381 best_node = n;
2382 }
2383 }
2384
2385 if (best_node >= 0)
2386 node_set(best_node, *used_node_mask);
2387
2388 return best_node;
2389}
2390
f0c0b2b8
KH
2391
2392/*
2393 * Build zonelists ordered by node and zones within node.
2394 * This results in maximum locality--normal zone overflows into local
2395 * DMA zone, if any--but risks exhausting DMA zone.
2396 */
2397static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2398{
f0c0b2b8 2399 int j;
1da177e4 2400 struct zonelist *zonelist;
f0c0b2b8 2401
54a6eb5c 2402 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2403 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2404 ;
2405 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2406 MAX_NR_ZONES - 1);
dd1a239f
MG
2407 zonelist->_zonerefs[j].zone = NULL;
2408 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2409}
2410
523b9458
CL
2411/*
2412 * Build gfp_thisnode zonelists
2413 */
2414static void build_thisnode_zonelists(pg_data_t *pgdat)
2415{
523b9458
CL
2416 int j;
2417 struct zonelist *zonelist;
2418
54a6eb5c
MG
2419 zonelist = &pgdat->node_zonelists[1];
2420 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2421 zonelist->_zonerefs[j].zone = NULL;
2422 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2423}
2424
f0c0b2b8
KH
2425/*
2426 * Build zonelists ordered by zone and nodes within zones.
2427 * This results in conserving DMA zone[s] until all Normal memory is
2428 * exhausted, but results in overflowing to remote node while memory
2429 * may still exist in local DMA zone.
2430 */
2431static int node_order[MAX_NUMNODES];
2432
2433static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2434{
f0c0b2b8
KH
2435 int pos, j, node;
2436 int zone_type; /* needs to be signed */
2437 struct zone *z;
2438 struct zonelist *zonelist;
2439
54a6eb5c
MG
2440 zonelist = &pgdat->node_zonelists[0];
2441 pos = 0;
2442 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2443 for (j = 0; j < nr_nodes; j++) {
2444 node = node_order[j];
2445 z = &NODE_DATA(node)->node_zones[zone_type];
2446 if (populated_zone(z)) {
dd1a239f
MG
2447 zoneref_set_zone(z,
2448 &zonelist->_zonerefs[pos++]);
54a6eb5c 2449 check_highest_zone(zone_type);
f0c0b2b8
KH
2450 }
2451 }
f0c0b2b8 2452 }
dd1a239f
MG
2453 zonelist->_zonerefs[pos].zone = NULL;
2454 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2455}
2456
2457static int default_zonelist_order(void)
2458{
2459 int nid, zone_type;
2460 unsigned long low_kmem_size,total_size;
2461 struct zone *z;
2462 int average_size;
2463 /*
2464 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2465 * If they are really small and used heavily, the system can fall
2466 * into OOM very easily.
2467 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2468 */
2469 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2470 low_kmem_size = 0;
2471 total_size = 0;
2472 for_each_online_node(nid) {
2473 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2474 z = &NODE_DATA(nid)->node_zones[zone_type];
2475 if (populated_zone(z)) {
2476 if (zone_type < ZONE_NORMAL)
2477 low_kmem_size += z->present_pages;
2478 total_size += z->present_pages;
2479 }
2480 }
2481 }
2482 if (!low_kmem_size || /* there are no DMA area. */
2483 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2484 return ZONELIST_ORDER_NODE;
2485 /*
2486 * look into each node's config.
2487 * If there is a node whose DMA/DMA32 memory is very big area on
2488 * local memory, NODE_ORDER may be suitable.
2489 */
37b07e41
LS
2490 average_size = total_size /
2491 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2492 for_each_online_node(nid) {
2493 low_kmem_size = 0;
2494 total_size = 0;
2495 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2496 z = &NODE_DATA(nid)->node_zones[zone_type];
2497 if (populated_zone(z)) {
2498 if (zone_type < ZONE_NORMAL)
2499 low_kmem_size += z->present_pages;
2500 total_size += z->present_pages;
2501 }
2502 }
2503 if (low_kmem_size &&
2504 total_size > average_size && /* ignore small node */
2505 low_kmem_size > total_size * 70/100)
2506 return ZONELIST_ORDER_NODE;
2507 }
2508 return ZONELIST_ORDER_ZONE;
2509}
2510
2511static void set_zonelist_order(void)
2512{
2513 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2514 current_zonelist_order = default_zonelist_order();
2515 else
2516 current_zonelist_order = user_zonelist_order;
2517}
2518
2519static void build_zonelists(pg_data_t *pgdat)
2520{
2521 int j, node, load;
2522 enum zone_type i;
1da177e4 2523 nodemask_t used_mask;
f0c0b2b8
KH
2524 int local_node, prev_node;
2525 struct zonelist *zonelist;
2526 int order = current_zonelist_order;
1da177e4
LT
2527
2528 /* initialize zonelists */
523b9458 2529 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2530 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2531 zonelist->_zonerefs[0].zone = NULL;
2532 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2533 }
2534
2535 /* NUMA-aware ordering of nodes */
2536 local_node = pgdat->node_id;
62bc62a8 2537 load = nr_online_nodes;
1da177e4
LT
2538 prev_node = local_node;
2539 nodes_clear(used_mask);
f0c0b2b8
KH
2540
2541 memset(node_load, 0, sizeof(node_load));
2542 memset(node_order, 0, sizeof(node_order));
2543 j = 0;
2544
1da177e4 2545 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2546 int distance = node_distance(local_node, node);
2547
2548 /*
2549 * If another node is sufficiently far away then it is better
2550 * to reclaim pages in a zone before going off node.
2551 */
2552 if (distance > RECLAIM_DISTANCE)
2553 zone_reclaim_mode = 1;
2554
1da177e4
LT
2555 /*
2556 * We don't want to pressure a particular node.
2557 * So adding penalty to the first node in same
2558 * distance group to make it round-robin.
2559 */
9eeff239 2560 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2561 node_load[node] = load;
2562
1da177e4
LT
2563 prev_node = node;
2564 load--;
f0c0b2b8
KH
2565 if (order == ZONELIST_ORDER_NODE)
2566 build_zonelists_in_node_order(pgdat, node);
2567 else
2568 node_order[j++] = node; /* remember order */
2569 }
1da177e4 2570
f0c0b2b8
KH
2571 if (order == ZONELIST_ORDER_ZONE) {
2572 /* calculate node order -- i.e., DMA last! */
2573 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2574 }
523b9458
CL
2575
2576 build_thisnode_zonelists(pgdat);
1da177e4
LT
2577}
2578
9276b1bc 2579/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2580static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2581{
54a6eb5c
MG
2582 struct zonelist *zonelist;
2583 struct zonelist_cache *zlc;
dd1a239f 2584 struct zoneref *z;
9276b1bc 2585
54a6eb5c
MG
2586 zonelist = &pgdat->node_zonelists[0];
2587 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2588 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2589 for (z = zonelist->_zonerefs; z->zone; z++)
2590 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2591}
2592
f0c0b2b8 2593
1da177e4
LT
2594#else /* CONFIG_NUMA */
2595
f0c0b2b8
KH
2596static void set_zonelist_order(void)
2597{
2598 current_zonelist_order = ZONELIST_ORDER_ZONE;
2599}
2600
2601static void build_zonelists(pg_data_t *pgdat)
1da177e4 2602{
19655d34 2603 int node, local_node;
54a6eb5c
MG
2604 enum zone_type j;
2605 struct zonelist *zonelist;
1da177e4
LT
2606
2607 local_node = pgdat->node_id;
1da177e4 2608
54a6eb5c
MG
2609 zonelist = &pgdat->node_zonelists[0];
2610 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2611
54a6eb5c
MG
2612 /*
2613 * Now we build the zonelist so that it contains the zones
2614 * of all the other nodes.
2615 * We don't want to pressure a particular node, so when
2616 * building the zones for node N, we make sure that the
2617 * zones coming right after the local ones are those from
2618 * node N+1 (modulo N)
2619 */
2620 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2621 if (!node_online(node))
2622 continue;
2623 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2624 MAX_NR_ZONES - 1);
1da177e4 2625 }
54a6eb5c
MG
2626 for (node = 0; node < local_node; node++) {
2627 if (!node_online(node))
2628 continue;
2629 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2630 MAX_NR_ZONES - 1);
2631 }
2632
dd1a239f
MG
2633 zonelist->_zonerefs[j].zone = NULL;
2634 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2635}
2636
9276b1bc 2637/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2638static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2639{
54a6eb5c 2640 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2641}
2642
1da177e4
LT
2643#endif /* CONFIG_NUMA */
2644
9b1a4d38 2645/* return values int ....just for stop_machine() */
f0c0b2b8 2646static int __build_all_zonelists(void *dummy)
1da177e4 2647{
6811378e 2648 int nid;
9276b1bc
PJ
2649
2650 for_each_online_node(nid) {
7ea1530a
CL
2651 pg_data_t *pgdat = NODE_DATA(nid);
2652
2653 build_zonelists(pgdat);
2654 build_zonelist_cache(pgdat);
9276b1bc 2655 }
6811378e
YG
2656 return 0;
2657}
2658
f0c0b2b8 2659void build_all_zonelists(void)
6811378e 2660{
f0c0b2b8
KH
2661 set_zonelist_order();
2662
6811378e 2663 if (system_state == SYSTEM_BOOTING) {
423b41d7 2664 __build_all_zonelists(NULL);
68ad8df4 2665 mminit_verify_zonelist();
6811378e
YG
2666 cpuset_init_current_mems_allowed();
2667 } else {
183ff22b 2668 /* we have to stop all cpus to guarantee there is no user
6811378e 2669 of zonelist */
9b1a4d38 2670 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2671 /* cpuset refresh routine should be here */
2672 }
bd1e22b8 2673 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2674 /*
2675 * Disable grouping by mobility if the number of pages in the
2676 * system is too low to allow the mechanism to work. It would be
2677 * more accurate, but expensive to check per-zone. This check is
2678 * made on memory-hotadd so a system can start with mobility
2679 * disabled and enable it later
2680 */
d9c23400 2681 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2682 page_group_by_mobility_disabled = 1;
2683 else
2684 page_group_by_mobility_disabled = 0;
2685
2686 printk("Built %i zonelists in %s order, mobility grouping %s. "
2687 "Total pages: %ld\n",
62bc62a8 2688 nr_online_nodes,
f0c0b2b8 2689 zonelist_order_name[current_zonelist_order],
9ef9acb0 2690 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2691 vm_total_pages);
2692#ifdef CONFIG_NUMA
2693 printk("Policy zone: %s\n", zone_names[policy_zone]);
2694#endif
1da177e4
LT
2695}
2696
2697/*
2698 * Helper functions to size the waitqueue hash table.
2699 * Essentially these want to choose hash table sizes sufficiently
2700 * large so that collisions trying to wait on pages are rare.
2701 * But in fact, the number of active page waitqueues on typical
2702 * systems is ridiculously low, less than 200. So this is even
2703 * conservative, even though it seems large.
2704 *
2705 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2706 * waitqueues, i.e. the size of the waitq table given the number of pages.
2707 */
2708#define PAGES_PER_WAITQUEUE 256
2709
cca448fe 2710#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2711static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2712{
2713 unsigned long size = 1;
2714
2715 pages /= PAGES_PER_WAITQUEUE;
2716
2717 while (size < pages)
2718 size <<= 1;
2719
2720 /*
2721 * Once we have dozens or even hundreds of threads sleeping
2722 * on IO we've got bigger problems than wait queue collision.
2723 * Limit the size of the wait table to a reasonable size.
2724 */
2725 size = min(size, 4096UL);
2726
2727 return max(size, 4UL);
2728}
cca448fe
YG
2729#else
2730/*
2731 * A zone's size might be changed by hot-add, so it is not possible to determine
2732 * a suitable size for its wait_table. So we use the maximum size now.
2733 *
2734 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2735 *
2736 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2737 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2738 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2739 *
2740 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2741 * or more by the traditional way. (See above). It equals:
2742 *
2743 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2744 * ia64(16K page size) : = ( 8G + 4M)byte.
2745 * powerpc (64K page size) : = (32G +16M)byte.
2746 */
2747static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2748{
2749 return 4096UL;
2750}
2751#endif
1da177e4
LT
2752
2753/*
2754 * This is an integer logarithm so that shifts can be used later
2755 * to extract the more random high bits from the multiplicative
2756 * hash function before the remainder is taken.
2757 */
2758static inline unsigned long wait_table_bits(unsigned long size)
2759{
2760 return ffz(~size);
2761}
2762
2763#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2764
56fd56b8 2765/*
d9c23400 2766 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2767 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2768 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2769 * higher will lead to a bigger reserve which will get freed as contiguous
2770 * blocks as reclaim kicks in
2771 */
2772static void setup_zone_migrate_reserve(struct zone *zone)
2773{
2774 unsigned long start_pfn, pfn, end_pfn;
2775 struct page *page;
2776 unsigned long reserve, block_migratetype;
2777
2778 /* Get the start pfn, end pfn and the number of blocks to reserve */
2779 start_pfn = zone->zone_start_pfn;
2780 end_pfn = start_pfn + zone->spanned_pages;
41858966 2781 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2782 pageblock_order;
56fd56b8 2783
d9c23400 2784 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2785 if (!pfn_valid(pfn))
2786 continue;
2787 page = pfn_to_page(pfn);
2788
344c790e
AL
2789 /* Watch out for overlapping nodes */
2790 if (page_to_nid(page) != zone_to_nid(zone))
2791 continue;
2792
56fd56b8
MG
2793 /* Blocks with reserved pages will never free, skip them. */
2794 if (PageReserved(page))
2795 continue;
2796
2797 block_migratetype = get_pageblock_migratetype(page);
2798
2799 /* If this block is reserved, account for it */
2800 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2801 reserve--;
2802 continue;
2803 }
2804
2805 /* Suitable for reserving if this block is movable */
2806 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2807 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2808 move_freepages_block(zone, page, MIGRATE_RESERVE);
2809 reserve--;
2810 continue;
2811 }
2812
2813 /*
2814 * If the reserve is met and this is a previous reserved block,
2815 * take it back
2816 */
2817 if (block_migratetype == MIGRATE_RESERVE) {
2818 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2819 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2820 }
2821 }
2822}
ac0e5b7a 2823
1da177e4
LT
2824/*
2825 * Initially all pages are reserved - free ones are freed
2826 * up by free_all_bootmem() once the early boot process is
2827 * done. Non-atomic initialization, single-pass.
2828 */
c09b4240 2829void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2830 unsigned long start_pfn, enum memmap_context context)
1da177e4 2831{
1da177e4 2832 struct page *page;
29751f69
AW
2833 unsigned long end_pfn = start_pfn + size;
2834 unsigned long pfn;
86051ca5 2835 struct zone *z;
1da177e4 2836
22b31eec
HD
2837 if (highest_memmap_pfn < end_pfn - 1)
2838 highest_memmap_pfn = end_pfn - 1;
2839
86051ca5 2840 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2841 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2842 /*
2843 * There can be holes in boot-time mem_map[]s
2844 * handed to this function. They do not
2845 * exist on hotplugged memory.
2846 */
2847 if (context == MEMMAP_EARLY) {
2848 if (!early_pfn_valid(pfn))
2849 continue;
2850 if (!early_pfn_in_nid(pfn, nid))
2851 continue;
2852 }
d41dee36
AW
2853 page = pfn_to_page(pfn);
2854 set_page_links(page, zone, nid, pfn);
708614e6 2855 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2856 init_page_count(page);
1da177e4
LT
2857 reset_page_mapcount(page);
2858 SetPageReserved(page);
b2a0ac88
MG
2859 /*
2860 * Mark the block movable so that blocks are reserved for
2861 * movable at startup. This will force kernel allocations
2862 * to reserve their blocks rather than leaking throughout
2863 * the address space during boot when many long-lived
56fd56b8
MG
2864 * kernel allocations are made. Later some blocks near
2865 * the start are marked MIGRATE_RESERVE by
2866 * setup_zone_migrate_reserve()
86051ca5
KH
2867 *
2868 * bitmap is created for zone's valid pfn range. but memmap
2869 * can be created for invalid pages (for alignment)
2870 * check here not to call set_pageblock_migratetype() against
2871 * pfn out of zone.
b2a0ac88 2872 */
86051ca5
KH
2873 if ((z->zone_start_pfn <= pfn)
2874 && (pfn < z->zone_start_pfn + z->spanned_pages)
2875 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2876 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2877
1da177e4
LT
2878 INIT_LIST_HEAD(&page->lru);
2879#ifdef WANT_PAGE_VIRTUAL
2880 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2881 if (!is_highmem_idx(zone))
3212c6be 2882 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2883#endif
1da177e4
LT
2884 }
2885}
2886
1e548deb 2887static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2888{
b2a0ac88
MG
2889 int order, t;
2890 for_each_migratetype_order(order, t) {
2891 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2892 zone->free_area[order].nr_free = 0;
2893 }
2894}
2895
2896#ifndef __HAVE_ARCH_MEMMAP_INIT
2897#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2898 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2899#endif
2900
1d6f4e60 2901static int zone_batchsize(struct zone *zone)
e7c8d5c9 2902{
3a6be87f 2903#ifdef CONFIG_MMU
e7c8d5c9
CL
2904 int batch;
2905
2906 /*
2907 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2908 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2909 *
2910 * OK, so we don't know how big the cache is. So guess.
2911 */
2912 batch = zone->present_pages / 1024;
ba56e91c
SR
2913 if (batch * PAGE_SIZE > 512 * 1024)
2914 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2915 batch /= 4; /* We effectively *= 4 below */
2916 if (batch < 1)
2917 batch = 1;
2918
2919 /*
0ceaacc9
NP
2920 * Clamp the batch to a 2^n - 1 value. Having a power
2921 * of 2 value was found to be more likely to have
2922 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2923 *
0ceaacc9
NP
2924 * For example if 2 tasks are alternately allocating
2925 * batches of pages, one task can end up with a lot
2926 * of pages of one half of the possible page colors
2927 * and the other with pages of the other colors.
e7c8d5c9 2928 */
9155203a 2929 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2930
e7c8d5c9 2931 return batch;
3a6be87f
DH
2932
2933#else
2934 /* The deferral and batching of frees should be suppressed under NOMMU
2935 * conditions.
2936 *
2937 * The problem is that NOMMU needs to be able to allocate large chunks
2938 * of contiguous memory as there's no hardware page translation to
2939 * assemble apparent contiguous memory from discontiguous pages.
2940 *
2941 * Queueing large contiguous runs of pages for batching, however,
2942 * causes the pages to actually be freed in smaller chunks. As there
2943 * can be a significant delay between the individual batches being
2944 * recycled, this leads to the once large chunks of space being
2945 * fragmented and becoming unavailable for high-order allocations.
2946 */
2947 return 0;
2948#endif
e7c8d5c9
CL
2949}
2950
b69a7288 2951static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2952{
2953 struct per_cpu_pages *pcp;
2954
1c6fe946
MD
2955 memset(p, 0, sizeof(*p));
2956
3dfa5721 2957 pcp = &p->pcp;
2caaad41 2958 pcp->count = 0;
2caaad41
CL
2959 pcp->high = 6 * batch;
2960 pcp->batch = max(1UL, 1 * batch);
2961 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2962}
2963
8ad4b1fb
RS
2964/*
2965 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2966 * to the value high for the pageset p.
2967 */
2968
2969static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2970 unsigned long high)
2971{
2972 struct per_cpu_pages *pcp;
2973
3dfa5721 2974 pcp = &p->pcp;
8ad4b1fb
RS
2975 pcp->high = high;
2976 pcp->batch = max(1UL, high/4);
2977 if ((high/4) > (PAGE_SHIFT * 8))
2978 pcp->batch = PAGE_SHIFT * 8;
2979}
2980
2981
e7c8d5c9
CL
2982#ifdef CONFIG_NUMA
2983/*
2caaad41
CL
2984 * Boot pageset table. One per cpu which is going to be used for all
2985 * zones and all nodes. The parameters will be set in such a way
2986 * that an item put on a list will immediately be handed over to
2987 * the buddy list. This is safe since pageset manipulation is done
2988 * with interrupts disabled.
2989 *
2990 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2991 *
2992 * The boot_pagesets must be kept even after bootup is complete for
2993 * unused processors and/or zones. They do play a role for bootstrapping
2994 * hotplugged processors.
2995 *
2996 * zoneinfo_show() and maybe other functions do
2997 * not check if the processor is online before following the pageset pointer.
2998 * Other parts of the kernel may not check if the zone is available.
2caaad41 2999 */
88a2a4ac 3000static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
3001
3002/*
3003 * Dynamically allocate memory for the
e7c8d5c9
CL
3004 * per cpu pageset array in struct zone.
3005 */
6292d9aa 3006static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3007{
3008 struct zone *zone, *dzone;
37c0708d
CL
3009 int node = cpu_to_node(cpu);
3010
3011 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3012
ee99c71c 3013 for_each_populated_zone(zone) {
23316bc8 3014 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3015 GFP_KERNEL, node);
23316bc8 3016 if (!zone_pcp(zone, cpu))
e7c8d5c9 3017 goto bad;
e7c8d5c9 3018
23316bc8 3019 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3020
3021 if (percpu_pagelist_fraction)
3022 setup_pagelist_highmark(zone_pcp(zone, cpu),
3023 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3024 }
3025
3026 return 0;
3027bad:
3028 for_each_zone(dzone) {
64191688
AM
3029 if (!populated_zone(dzone))
3030 continue;
e7c8d5c9
CL
3031 if (dzone == zone)
3032 break;
23316bc8 3033 kfree(zone_pcp(dzone, cpu));
364df0eb 3034 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
e7c8d5c9
CL
3035 }
3036 return -ENOMEM;
3037}
3038
3039static inline void free_zone_pagesets(int cpu)
3040{
e7c8d5c9
CL
3041 struct zone *zone;
3042
3043 for_each_zone(zone) {
3044 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3045
f3ef9ead
DR
3046 /* Free per_cpu_pageset if it is slab allocated */
3047 if (pset != &boot_pageset[cpu])
3048 kfree(pset);
364df0eb 3049 zone_pcp(zone, cpu) = &boot_pageset[cpu];
e7c8d5c9 3050 }
e7c8d5c9
CL
3051}
3052
9c7b216d 3053static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3054 unsigned long action,
3055 void *hcpu)
3056{
3057 int cpu = (long)hcpu;
3058 int ret = NOTIFY_OK;
3059
3060 switch (action) {
ce421c79 3061 case CPU_UP_PREPARE:
8bb78442 3062 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3063 if (process_zones(cpu))
3064 ret = NOTIFY_BAD;
3065 break;
3066 case CPU_UP_CANCELED:
8bb78442 3067 case CPU_UP_CANCELED_FROZEN:
ce421c79 3068 case CPU_DEAD:
8bb78442 3069 case CPU_DEAD_FROZEN:
ce421c79
AW
3070 free_zone_pagesets(cpu);
3071 break;
3072 default:
3073 break;
e7c8d5c9
CL
3074 }
3075 return ret;
3076}
3077
74b85f37 3078static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3079 { &pageset_cpuup_callback, NULL, 0 };
3080
78d9955b 3081void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3082{
3083 int err;
3084
3085 /* Initialize per_cpu_pageset for cpu 0.
3086 * A cpuup callback will do this for every cpu
3087 * as it comes online
3088 */
3089 err = process_zones(smp_processor_id());
3090 BUG_ON(err);
3091 register_cpu_notifier(&pageset_notifier);
3092}
3093
3094#endif
3095
577a32f6 3096static noinline __init_refok
cca448fe 3097int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3098{
3099 int i;
3100 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3101 size_t alloc_size;
ed8ece2e
DH
3102
3103 /*
3104 * The per-page waitqueue mechanism uses hashed waitqueues
3105 * per zone.
3106 */
02b694de
YG
3107 zone->wait_table_hash_nr_entries =
3108 wait_table_hash_nr_entries(zone_size_pages);
3109 zone->wait_table_bits =
3110 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3111 alloc_size = zone->wait_table_hash_nr_entries
3112 * sizeof(wait_queue_head_t);
3113
cd94b9db 3114 if (!slab_is_available()) {
cca448fe
YG
3115 zone->wait_table = (wait_queue_head_t *)
3116 alloc_bootmem_node(pgdat, alloc_size);
3117 } else {
3118 /*
3119 * This case means that a zone whose size was 0 gets new memory
3120 * via memory hot-add.
3121 * But it may be the case that a new node was hot-added. In
3122 * this case vmalloc() will not be able to use this new node's
3123 * memory - this wait_table must be initialized to use this new
3124 * node itself as well.
3125 * To use this new node's memory, further consideration will be
3126 * necessary.
3127 */
8691f3a7 3128 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3129 }
3130 if (!zone->wait_table)
3131 return -ENOMEM;
ed8ece2e 3132
02b694de 3133 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3134 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3135
3136 return 0;
ed8ece2e
DH
3137}
3138
c09b4240 3139static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3140{
3141 int cpu;
3142 unsigned long batch = zone_batchsize(zone);
3143
3144 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3145#ifdef CONFIG_NUMA
3146 /* Early boot. Slab allocator not functional yet */
23316bc8 3147 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3148 setup_pageset(&boot_pageset[cpu],0);
3149#else
3150 setup_pageset(zone_pcp(zone,cpu), batch);
3151#endif
3152 }
f5335c0f
AB
3153 if (zone->present_pages)
3154 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3155 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3156}
3157
718127cc
YG
3158__meminit int init_currently_empty_zone(struct zone *zone,
3159 unsigned long zone_start_pfn,
a2f3aa02
DH
3160 unsigned long size,
3161 enum memmap_context context)
ed8ece2e
DH
3162{
3163 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3164 int ret;
3165 ret = zone_wait_table_init(zone, size);
3166 if (ret)
3167 return ret;
ed8ece2e
DH
3168 pgdat->nr_zones = zone_idx(zone) + 1;
3169
ed8ece2e
DH
3170 zone->zone_start_pfn = zone_start_pfn;
3171
708614e6
MG
3172 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3173 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3174 pgdat->node_id,
3175 (unsigned long)zone_idx(zone),
3176 zone_start_pfn, (zone_start_pfn + size));
3177
1e548deb 3178 zone_init_free_lists(zone);
718127cc
YG
3179
3180 return 0;
ed8ece2e
DH
3181}
3182
c713216d
MG
3183#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3184/*
3185 * Basic iterator support. Return the first range of PFNs for a node
3186 * Note: nid == MAX_NUMNODES returns first region regardless of node
3187 */
a3142c8e 3188static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3189{
3190 int i;
3191
3192 for (i = 0; i < nr_nodemap_entries; i++)
3193 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3194 return i;
3195
3196 return -1;
3197}
3198
3199/*
3200 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3201 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3202 */
a3142c8e 3203static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3204{
3205 for (index = index + 1; index < nr_nodemap_entries; index++)
3206 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3207 return index;
3208
3209 return -1;
3210}
3211
3212#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3213/*
3214 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3215 * Architectures may implement their own version but if add_active_range()
3216 * was used and there are no special requirements, this is a convenient
3217 * alternative
3218 */
f2dbcfa7 3219int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3220{
3221 int i;
3222
3223 for (i = 0; i < nr_nodemap_entries; i++) {
3224 unsigned long start_pfn = early_node_map[i].start_pfn;
3225 unsigned long end_pfn = early_node_map[i].end_pfn;
3226
3227 if (start_pfn <= pfn && pfn < end_pfn)
3228 return early_node_map[i].nid;
3229 }
cc2559bc
KH
3230 /* This is a memory hole */
3231 return -1;
c713216d
MG
3232}
3233#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3234
f2dbcfa7
KH
3235int __meminit early_pfn_to_nid(unsigned long pfn)
3236{
cc2559bc
KH
3237 int nid;
3238
3239 nid = __early_pfn_to_nid(pfn);
3240 if (nid >= 0)
3241 return nid;
3242 /* just returns 0 */
3243 return 0;
f2dbcfa7
KH
3244}
3245
cc2559bc
KH
3246#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3247bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3248{
3249 int nid;
3250
3251 nid = __early_pfn_to_nid(pfn);
3252 if (nid >= 0 && nid != node)
3253 return false;
3254 return true;
3255}
3256#endif
f2dbcfa7 3257
c713216d
MG
3258/* Basic iterator support to walk early_node_map[] */
3259#define for_each_active_range_index_in_nid(i, nid) \
3260 for (i = first_active_region_index_in_nid(nid); i != -1; \
3261 i = next_active_region_index_in_nid(i, nid))
3262
3263/**
3264 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3265 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3266 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3267 *
3268 * If an architecture guarantees that all ranges registered with
3269 * add_active_ranges() contain no holes and may be freed, this
3270 * this function may be used instead of calling free_bootmem() manually.
3271 */
3272void __init free_bootmem_with_active_regions(int nid,
3273 unsigned long max_low_pfn)
3274{
3275 int i;
3276
3277 for_each_active_range_index_in_nid(i, nid) {
3278 unsigned long size_pages = 0;
3279 unsigned long end_pfn = early_node_map[i].end_pfn;
3280
3281 if (early_node_map[i].start_pfn >= max_low_pfn)
3282 continue;
3283
3284 if (end_pfn > max_low_pfn)
3285 end_pfn = max_low_pfn;
3286
3287 size_pages = end_pfn - early_node_map[i].start_pfn;
3288 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3289 PFN_PHYS(early_node_map[i].start_pfn),
3290 size_pages << PAGE_SHIFT);
3291 }
3292}
3293
b5bc6c0e
YL
3294void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3295{
3296 int i;
d52d53b8 3297 int ret;
b5bc6c0e 3298
d52d53b8
YL
3299 for_each_active_range_index_in_nid(i, nid) {
3300 ret = work_fn(early_node_map[i].start_pfn,
3301 early_node_map[i].end_pfn, data);
3302 if (ret)
3303 break;
3304 }
b5bc6c0e 3305}
c713216d
MG
3306/**
3307 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3308 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3309 *
3310 * If an architecture guarantees that all ranges registered with
3311 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3312 * function may be used instead of calling memory_present() manually.
c713216d
MG
3313 */
3314void __init sparse_memory_present_with_active_regions(int nid)
3315{
3316 int i;
3317
3318 for_each_active_range_index_in_nid(i, nid)
3319 memory_present(early_node_map[i].nid,
3320 early_node_map[i].start_pfn,
3321 early_node_map[i].end_pfn);
3322}
3323
3324/**
3325 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3326 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3327 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3328 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3329 *
3330 * It returns the start and end page frame of a node based on information
3331 * provided by an arch calling add_active_range(). If called for a node
3332 * with no available memory, a warning is printed and the start and end
88ca3b94 3333 * PFNs will be 0.
c713216d 3334 */
a3142c8e 3335void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3336 unsigned long *start_pfn, unsigned long *end_pfn)
3337{
3338 int i;
3339 *start_pfn = -1UL;
3340 *end_pfn = 0;
3341
3342 for_each_active_range_index_in_nid(i, nid) {
3343 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3344 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3345 }
3346
633c0666 3347 if (*start_pfn == -1UL)
c713216d 3348 *start_pfn = 0;
c713216d
MG
3349}
3350
2a1e274a
MG
3351/*
3352 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3353 * assumption is made that zones within a node are ordered in monotonic
3354 * increasing memory addresses so that the "highest" populated zone is used
3355 */
b69a7288 3356static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3357{
3358 int zone_index;
3359 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3360 if (zone_index == ZONE_MOVABLE)
3361 continue;
3362
3363 if (arch_zone_highest_possible_pfn[zone_index] >
3364 arch_zone_lowest_possible_pfn[zone_index])
3365 break;
3366 }
3367
3368 VM_BUG_ON(zone_index == -1);
3369 movable_zone = zone_index;
3370}
3371
3372/*
3373 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3374 * because it is sized independant of architecture. Unlike the other zones,
3375 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3376 * in each node depending on the size of each node and how evenly kernelcore
3377 * is distributed. This helper function adjusts the zone ranges
3378 * provided by the architecture for a given node by using the end of the
3379 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3380 * zones within a node are in order of monotonic increases memory addresses
3381 */
b69a7288 3382static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3383 unsigned long zone_type,
3384 unsigned long node_start_pfn,
3385 unsigned long node_end_pfn,
3386 unsigned long *zone_start_pfn,
3387 unsigned long *zone_end_pfn)
3388{
3389 /* Only adjust if ZONE_MOVABLE is on this node */
3390 if (zone_movable_pfn[nid]) {
3391 /* Size ZONE_MOVABLE */
3392 if (zone_type == ZONE_MOVABLE) {
3393 *zone_start_pfn = zone_movable_pfn[nid];
3394 *zone_end_pfn = min(node_end_pfn,
3395 arch_zone_highest_possible_pfn[movable_zone]);
3396
3397 /* Adjust for ZONE_MOVABLE starting within this range */
3398 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3399 *zone_end_pfn > zone_movable_pfn[nid]) {
3400 *zone_end_pfn = zone_movable_pfn[nid];
3401
3402 /* Check if this whole range is within ZONE_MOVABLE */
3403 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3404 *zone_start_pfn = *zone_end_pfn;
3405 }
3406}
3407
c713216d
MG
3408/*
3409 * Return the number of pages a zone spans in a node, including holes
3410 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3411 */
6ea6e688 3412static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3413 unsigned long zone_type,
3414 unsigned long *ignored)
3415{
3416 unsigned long node_start_pfn, node_end_pfn;
3417 unsigned long zone_start_pfn, zone_end_pfn;
3418
3419 /* Get the start and end of the node and zone */
3420 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3421 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3422 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3423 adjust_zone_range_for_zone_movable(nid, zone_type,
3424 node_start_pfn, node_end_pfn,
3425 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3426
3427 /* Check that this node has pages within the zone's required range */
3428 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3429 return 0;
3430
3431 /* Move the zone boundaries inside the node if necessary */
3432 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3433 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3434
3435 /* Return the spanned pages */
3436 return zone_end_pfn - zone_start_pfn;
3437}
3438
3439/*
3440 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3441 * then all holes in the requested range will be accounted for.
c713216d 3442 */
b69a7288 3443static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3444 unsigned long range_start_pfn,
3445 unsigned long range_end_pfn)
3446{
3447 int i = 0;
3448 unsigned long prev_end_pfn = 0, hole_pages = 0;
3449 unsigned long start_pfn;
3450
3451 /* Find the end_pfn of the first active range of pfns in the node */
3452 i = first_active_region_index_in_nid(nid);
3453 if (i == -1)
3454 return 0;
3455
b5445f95
MG
3456 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3457
9c7cd687
MG
3458 /* Account for ranges before physical memory on this node */
3459 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3460 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3461
3462 /* Find all holes for the zone within the node */
3463 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3464
3465 /* No need to continue if prev_end_pfn is outside the zone */
3466 if (prev_end_pfn >= range_end_pfn)
3467 break;
3468
3469 /* Make sure the end of the zone is not within the hole */
3470 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3471 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3472
3473 /* Update the hole size cound and move on */
3474 if (start_pfn > range_start_pfn) {
3475 BUG_ON(prev_end_pfn > start_pfn);
3476 hole_pages += start_pfn - prev_end_pfn;
3477 }
3478 prev_end_pfn = early_node_map[i].end_pfn;
3479 }
3480
9c7cd687
MG
3481 /* Account for ranges past physical memory on this node */
3482 if (range_end_pfn > prev_end_pfn)
0c6cb974 3483 hole_pages += range_end_pfn -
9c7cd687
MG
3484 max(range_start_pfn, prev_end_pfn);
3485
c713216d
MG
3486 return hole_pages;
3487}
3488
3489/**
3490 * absent_pages_in_range - Return number of page frames in holes within a range
3491 * @start_pfn: The start PFN to start searching for holes
3492 * @end_pfn: The end PFN to stop searching for holes
3493 *
88ca3b94 3494 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3495 */
3496unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3497 unsigned long end_pfn)
3498{
3499 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3500}
3501
3502/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3503static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3504 unsigned long zone_type,
3505 unsigned long *ignored)
3506{
9c7cd687
MG
3507 unsigned long node_start_pfn, node_end_pfn;
3508 unsigned long zone_start_pfn, zone_end_pfn;
3509
3510 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3511 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3512 node_start_pfn);
3513 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3514 node_end_pfn);
3515
2a1e274a
MG
3516 adjust_zone_range_for_zone_movable(nid, zone_type,
3517 node_start_pfn, node_end_pfn,
3518 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3519 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3520}
0e0b864e 3521
c713216d 3522#else
6ea6e688 3523static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3524 unsigned long zone_type,
3525 unsigned long *zones_size)
3526{
3527 return zones_size[zone_type];
3528}
3529
6ea6e688 3530static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3531 unsigned long zone_type,
3532 unsigned long *zholes_size)
3533{
3534 if (!zholes_size)
3535 return 0;
3536
3537 return zholes_size[zone_type];
3538}
0e0b864e 3539
c713216d
MG
3540#endif
3541
a3142c8e 3542static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3543 unsigned long *zones_size, unsigned long *zholes_size)
3544{
3545 unsigned long realtotalpages, totalpages = 0;
3546 enum zone_type i;
3547
3548 for (i = 0; i < MAX_NR_ZONES; i++)
3549 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3550 zones_size);
3551 pgdat->node_spanned_pages = totalpages;
3552
3553 realtotalpages = totalpages;
3554 for (i = 0; i < MAX_NR_ZONES; i++)
3555 realtotalpages -=
3556 zone_absent_pages_in_node(pgdat->node_id, i,
3557 zholes_size);
3558 pgdat->node_present_pages = realtotalpages;
3559 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3560 realtotalpages);
3561}
3562
835c134e
MG
3563#ifndef CONFIG_SPARSEMEM
3564/*
3565 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3566 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3567 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3568 * round what is now in bits to nearest long in bits, then return it in
3569 * bytes.
3570 */
3571static unsigned long __init usemap_size(unsigned long zonesize)
3572{
3573 unsigned long usemapsize;
3574
d9c23400
MG
3575 usemapsize = roundup(zonesize, pageblock_nr_pages);
3576 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3577 usemapsize *= NR_PAGEBLOCK_BITS;
3578 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3579
3580 return usemapsize / 8;
3581}
3582
3583static void __init setup_usemap(struct pglist_data *pgdat,
3584 struct zone *zone, unsigned long zonesize)
3585{
3586 unsigned long usemapsize = usemap_size(zonesize);
3587 zone->pageblock_flags = NULL;
58a01a45 3588 if (usemapsize)
835c134e 3589 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3590}
3591#else
3592static void inline setup_usemap(struct pglist_data *pgdat,
3593 struct zone *zone, unsigned long zonesize) {}
3594#endif /* CONFIG_SPARSEMEM */
3595
d9c23400 3596#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3597
3598/* Return a sensible default order for the pageblock size. */
3599static inline int pageblock_default_order(void)
3600{
3601 if (HPAGE_SHIFT > PAGE_SHIFT)
3602 return HUGETLB_PAGE_ORDER;
3603
3604 return MAX_ORDER-1;
3605}
3606
d9c23400
MG
3607/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3608static inline void __init set_pageblock_order(unsigned int order)
3609{
3610 /* Check that pageblock_nr_pages has not already been setup */
3611 if (pageblock_order)
3612 return;
3613
3614 /*
3615 * Assume the largest contiguous order of interest is a huge page.
3616 * This value may be variable depending on boot parameters on IA64
3617 */
3618 pageblock_order = order;
3619}
3620#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3621
ba72cb8c
MG
3622/*
3623 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3624 * and pageblock_default_order() are unused as pageblock_order is set
3625 * at compile-time. See include/linux/pageblock-flags.h for the values of
3626 * pageblock_order based on the kernel config
3627 */
3628static inline int pageblock_default_order(unsigned int order)
3629{
3630 return MAX_ORDER-1;
3631}
d9c23400
MG
3632#define set_pageblock_order(x) do {} while (0)
3633
3634#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3635
1da177e4
LT
3636/*
3637 * Set up the zone data structures:
3638 * - mark all pages reserved
3639 * - mark all memory queues empty
3640 * - clear the memory bitmaps
3641 */
b5a0e011 3642static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3643 unsigned long *zones_size, unsigned long *zholes_size)
3644{
2f1b6248 3645 enum zone_type j;
ed8ece2e 3646 int nid = pgdat->node_id;
1da177e4 3647 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3648 int ret;
1da177e4 3649
208d54e5 3650 pgdat_resize_init(pgdat);
1da177e4
LT
3651 pgdat->nr_zones = 0;
3652 init_waitqueue_head(&pgdat->kswapd_wait);
3653 pgdat->kswapd_max_order = 0;
52d4b9ac 3654 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3655
3656 for (j = 0; j < MAX_NR_ZONES; j++) {
3657 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3658 unsigned long size, realsize, memmap_pages;
b69408e8 3659 enum lru_list l;
1da177e4 3660
c713216d
MG
3661 size = zone_spanned_pages_in_node(nid, j, zones_size);
3662 realsize = size - zone_absent_pages_in_node(nid, j,
3663 zholes_size);
1da177e4 3664
0e0b864e
MG
3665 /*
3666 * Adjust realsize so that it accounts for how much memory
3667 * is used by this zone for memmap. This affects the watermark
3668 * and per-cpu initialisations
3669 */
f7232154
JW
3670 memmap_pages =
3671 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3672 if (realsize >= memmap_pages) {
3673 realsize -= memmap_pages;
5594c8c8
YL
3674 if (memmap_pages)
3675 printk(KERN_DEBUG
3676 " %s zone: %lu pages used for memmap\n",
3677 zone_names[j], memmap_pages);
0e0b864e
MG
3678 } else
3679 printk(KERN_WARNING
3680 " %s zone: %lu pages exceeds realsize %lu\n",
3681 zone_names[j], memmap_pages, realsize);
3682
6267276f
CL
3683 /* Account for reserved pages */
3684 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3685 realsize -= dma_reserve;
d903ef9f 3686 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3687 zone_names[0], dma_reserve);
0e0b864e
MG
3688 }
3689
98d2b0eb 3690 if (!is_highmem_idx(j))
1da177e4
LT
3691 nr_kernel_pages += realsize;
3692 nr_all_pages += realsize;
3693
3694 zone->spanned_pages = size;
3695 zone->present_pages = realsize;
9614634f 3696#ifdef CONFIG_NUMA
d5f541ed 3697 zone->node = nid;
8417bba4 3698 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3699 / 100;
0ff38490 3700 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3701#endif
1da177e4
LT
3702 zone->name = zone_names[j];
3703 spin_lock_init(&zone->lock);
3704 spin_lock_init(&zone->lru_lock);
bdc8cb98 3705 zone_seqlock_init(zone);
1da177e4 3706 zone->zone_pgdat = pgdat;
1da177e4 3707
3bb1a852 3708 zone->prev_priority = DEF_PRIORITY;
1da177e4 3709
ed8ece2e 3710 zone_pcp_init(zone);
b69408e8
CL
3711 for_each_lru(l) {
3712 INIT_LIST_HEAD(&zone->lru[l].list);
6e08a369 3713 zone->lru[l].nr_saved_scan = 0;
b69408e8 3714 }
6e901571
KM
3715 zone->reclaim_stat.recent_rotated[0] = 0;
3716 zone->reclaim_stat.recent_rotated[1] = 0;
3717 zone->reclaim_stat.recent_scanned[0] = 0;
3718 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3719 zap_zone_vm_stats(zone);
e815af95 3720 zone->flags = 0;
1da177e4
LT
3721 if (!size)
3722 continue;
3723
ba72cb8c 3724 set_pageblock_order(pageblock_default_order());
835c134e 3725 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3726 ret = init_currently_empty_zone(zone, zone_start_pfn,
3727 size, MEMMAP_EARLY);
718127cc 3728 BUG_ON(ret);
76cdd58e 3729 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3730 zone_start_pfn += size;
1da177e4
LT
3731 }
3732}
3733
577a32f6 3734static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3735{
1da177e4
LT
3736 /* Skip empty nodes */
3737 if (!pgdat->node_spanned_pages)
3738 return;
3739
d41dee36 3740#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3741 /* ia64 gets its own node_mem_map, before this, without bootmem */
3742 if (!pgdat->node_mem_map) {
e984bb43 3743 unsigned long size, start, end;
d41dee36
AW
3744 struct page *map;
3745
e984bb43
BP
3746 /*
3747 * The zone's endpoints aren't required to be MAX_ORDER
3748 * aligned but the node_mem_map endpoints must be in order
3749 * for the buddy allocator to function correctly.
3750 */
3751 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3752 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3753 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3754 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3755 map = alloc_remap(pgdat->node_id, size);
3756 if (!map)
3757 map = alloc_bootmem_node(pgdat, size);
e984bb43 3758 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3759 }
12d810c1 3760#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3761 /*
3762 * With no DISCONTIG, the global mem_map is just set as node 0's
3763 */
c713216d 3764 if (pgdat == NODE_DATA(0)) {
1da177e4 3765 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3766#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3767 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3768 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3769#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3770 }
1da177e4 3771#endif
d41dee36 3772#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3773}
3774
9109fb7b
JW
3775void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3776 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3777{
9109fb7b
JW
3778 pg_data_t *pgdat = NODE_DATA(nid);
3779
1da177e4
LT
3780 pgdat->node_id = nid;
3781 pgdat->node_start_pfn = node_start_pfn;
c713216d 3782 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3783
3784 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3785#ifdef CONFIG_FLAT_NODE_MEM_MAP
3786 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3787 nid, (unsigned long)pgdat,
3788 (unsigned long)pgdat->node_mem_map);
3789#endif
1da177e4
LT
3790
3791 free_area_init_core(pgdat, zones_size, zholes_size);
3792}
3793
c713216d 3794#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3795
3796#if MAX_NUMNODES > 1
3797/*
3798 * Figure out the number of possible node ids.
3799 */
3800static void __init setup_nr_node_ids(void)
3801{
3802 unsigned int node;
3803 unsigned int highest = 0;
3804
3805 for_each_node_mask(node, node_possible_map)
3806 highest = node;
3807 nr_node_ids = highest + 1;
3808}
3809#else
3810static inline void setup_nr_node_ids(void)
3811{
3812}
3813#endif
3814
c713216d
MG
3815/**
3816 * add_active_range - Register a range of PFNs backed by physical memory
3817 * @nid: The node ID the range resides on
3818 * @start_pfn: The start PFN of the available physical memory
3819 * @end_pfn: The end PFN of the available physical memory
3820 *
3821 * These ranges are stored in an early_node_map[] and later used by
3822 * free_area_init_nodes() to calculate zone sizes and holes. If the
3823 * range spans a memory hole, it is up to the architecture to ensure
3824 * the memory is not freed by the bootmem allocator. If possible
3825 * the range being registered will be merged with existing ranges.
3826 */
3827void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3828 unsigned long end_pfn)
3829{
3830 int i;
3831
6b74ab97
MG
3832 mminit_dprintk(MMINIT_TRACE, "memory_register",
3833 "Entering add_active_range(%d, %#lx, %#lx) "
3834 "%d entries of %d used\n",
3835 nid, start_pfn, end_pfn,
3836 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3837
2dbb51c4
MG
3838 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3839
c713216d
MG
3840 /* Merge with existing active regions if possible */
3841 for (i = 0; i < nr_nodemap_entries; i++) {
3842 if (early_node_map[i].nid != nid)
3843 continue;
3844
3845 /* Skip if an existing region covers this new one */
3846 if (start_pfn >= early_node_map[i].start_pfn &&
3847 end_pfn <= early_node_map[i].end_pfn)
3848 return;
3849
3850 /* Merge forward if suitable */
3851 if (start_pfn <= early_node_map[i].end_pfn &&
3852 end_pfn > early_node_map[i].end_pfn) {
3853 early_node_map[i].end_pfn = end_pfn;
3854 return;
3855 }
3856
3857 /* Merge backward if suitable */
3858 if (start_pfn < early_node_map[i].end_pfn &&
3859 end_pfn >= early_node_map[i].start_pfn) {
3860 early_node_map[i].start_pfn = start_pfn;
3861 return;
3862 }
3863 }
3864
3865 /* Check that early_node_map is large enough */
3866 if (i >= MAX_ACTIVE_REGIONS) {
3867 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3868 MAX_ACTIVE_REGIONS);
3869 return;
3870 }
3871
3872 early_node_map[i].nid = nid;
3873 early_node_map[i].start_pfn = start_pfn;
3874 early_node_map[i].end_pfn = end_pfn;
3875 nr_nodemap_entries = i + 1;
3876}
3877
3878/**
cc1050ba 3879 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3880 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3881 * @start_pfn: The new PFN of the range
3882 * @end_pfn: The new PFN of the range
c713216d
MG
3883 *
3884 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3885 * The map is kept near the end physical page range that has already been
3886 * registered. This function allows an arch to shrink an existing registered
3887 * range.
c713216d 3888 */
cc1050ba
YL
3889void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3890 unsigned long end_pfn)
c713216d 3891{
cc1a9d86
YL
3892 int i, j;
3893 int removed = 0;
c713216d 3894
cc1050ba
YL
3895 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3896 nid, start_pfn, end_pfn);
3897
c713216d 3898 /* Find the old active region end and shrink */
cc1a9d86 3899 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3900 if (early_node_map[i].start_pfn >= start_pfn &&
3901 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3902 /* clear it */
cc1050ba 3903 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3904 early_node_map[i].end_pfn = 0;
3905 removed = 1;
3906 continue;
3907 }
cc1050ba
YL
3908 if (early_node_map[i].start_pfn < start_pfn &&
3909 early_node_map[i].end_pfn > start_pfn) {
3910 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3911 early_node_map[i].end_pfn = start_pfn;
3912 if (temp_end_pfn > end_pfn)
3913 add_active_range(nid, end_pfn, temp_end_pfn);
3914 continue;
3915 }
3916 if (early_node_map[i].start_pfn >= start_pfn &&
3917 early_node_map[i].end_pfn > end_pfn &&
3918 early_node_map[i].start_pfn < end_pfn) {
3919 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3920 continue;
c713216d 3921 }
cc1a9d86
YL
3922 }
3923
3924 if (!removed)
3925 return;
3926
3927 /* remove the blank ones */
3928 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3929 if (early_node_map[i].nid != nid)
3930 continue;
3931 if (early_node_map[i].end_pfn)
3932 continue;
3933 /* we found it, get rid of it */
3934 for (j = i; j < nr_nodemap_entries - 1; j++)
3935 memcpy(&early_node_map[j], &early_node_map[j+1],
3936 sizeof(early_node_map[j]));
3937 j = nr_nodemap_entries - 1;
3938 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3939 nr_nodemap_entries--;
3940 }
c713216d
MG
3941}
3942
3943/**
3944 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3945 *
c713216d
MG
3946 * During discovery, it may be found that a table like SRAT is invalid
3947 * and an alternative discovery method must be used. This function removes
3948 * all currently registered regions.
3949 */
88ca3b94 3950void __init remove_all_active_ranges(void)
c713216d
MG
3951{
3952 memset(early_node_map, 0, sizeof(early_node_map));
3953 nr_nodemap_entries = 0;
3954}
3955
3956/* Compare two active node_active_regions */
3957static int __init cmp_node_active_region(const void *a, const void *b)
3958{
3959 struct node_active_region *arange = (struct node_active_region *)a;
3960 struct node_active_region *brange = (struct node_active_region *)b;
3961
3962 /* Done this way to avoid overflows */
3963 if (arange->start_pfn > brange->start_pfn)
3964 return 1;
3965 if (arange->start_pfn < brange->start_pfn)
3966 return -1;
3967
3968 return 0;
3969}
3970
3971/* sort the node_map by start_pfn */
3972static void __init sort_node_map(void)
3973{
3974 sort(early_node_map, (size_t)nr_nodemap_entries,
3975 sizeof(struct node_active_region),
3976 cmp_node_active_region, NULL);
3977}
3978
a6af2bc3 3979/* Find the lowest pfn for a node */
b69a7288 3980static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3981{
3982 int i;
a6af2bc3 3983 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3984
c713216d
MG
3985 /* Assuming a sorted map, the first range found has the starting pfn */
3986 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3987 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3988
a6af2bc3
MG
3989 if (min_pfn == ULONG_MAX) {
3990 printk(KERN_WARNING
2bc0d261 3991 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3992 return 0;
3993 }
3994
3995 return min_pfn;
c713216d
MG
3996}
3997
3998/**
3999 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4000 *
4001 * It returns the minimum PFN based on information provided via
88ca3b94 4002 * add_active_range().
c713216d
MG
4003 */
4004unsigned long __init find_min_pfn_with_active_regions(void)
4005{
4006 return find_min_pfn_for_node(MAX_NUMNODES);
4007}
4008
37b07e41
LS
4009/*
4010 * early_calculate_totalpages()
4011 * Sum pages in active regions for movable zone.
4012 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4013 */
484f51f8 4014static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4015{
4016 int i;
4017 unsigned long totalpages = 0;
4018
37b07e41
LS
4019 for (i = 0; i < nr_nodemap_entries; i++) {
4020 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4021 early_node_map[i].start_pfn;
37b07e41
LS
4022 totalpages += pages;
4023 if (pages)
4024 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4025 }
4026 return totalpages;
7e63efef
MG
4027}
4028
2a1e274a
MG
4029/*
4030 * Find the PFN the Movable zone begins in each node. Kernel memory
4031 * is spread evenly between nodes as long as the nodes have enough
4032 * memory. When they don't, some nodes will have more kernelcore than
4033 * others
4034 */
b69a7288 4035static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4036{
4037 int i, nid;
4038 unsigned long usable_startpfn;
4039 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4040 /* save the state before borrow the nodemask */
4041 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4042 unsigned long totalpages = early_calculate_totalpages();
4043 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4044
7e63efef
MG
4045 /*
4046 * If movablecore was specified, calculate what size of
4047 * kernelcore that corresponds so that memory usable for
4048 * any allocation type is evenly spread. If both kernelcore
4049 * and movablecore are specified, then the value of kernelcore
4050 * will be used for required_kernelcore if it's greater than
4051 * what movablecore would have allowed.
4052 */
4053 if (required_movablecore) {
7e63efef
MG
4054 unsigned long corepages;
4055
4056 /*
4057 * Round-up so that ZONE_MOVABLE is at least as large as what
4058 * was requested by the user
4059 */
4060 required_movablecore =
4061 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4062 corepages = totalpages - required_movablecore;
4063
4064 required_kernelcore = max(required_kernelcore, corepages);
4065 }
4066
2a1e274a
MG
4067 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4068 if (!required_kernelcore)
66918dcd 4069 goto out;
2a1e274a
MG
4070
4071 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4072 find_usable_zone_for_movable();
4073 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4074
4075restart:
4076 /* Spread kernelcore memory as evenly as possible throughout nodes */
4077 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4078 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4079 /*
4080 * Recalculate kernelcore_node if the division per node
4081 * now exceeds what is necessary to satisfy the requested
4082 * amount of memory for the kernel
4083 */
4084 if (required_kernelcore < kernelcore_node)
4085 kernelcore_node = required_kernelcore / usable_nodes;
4086
4087 /*
4088 * As the map is walked, we track how much memory is usable
4089 * by the kernel using kernelcore_remaining. When it is
4090 * 0, the rest of the node is usable by ZONE_MOVABLE
4091 */
4092 kernelcore_remaining = kernelcore_node;
4093
4094 /* Go through each range of PFNs within this node */
4095 for_each_active_range_index_in_nid(i, nid) {
4096 unsigned long start_pfn, end_pfn;
4097 unsigned long size_pages;
4098
4099 start_pfn = max(early_node_map[i].start_pfn,
4100 zone_movable_pfn[nid]);
4101 end_pfn = early_node_map[i].end_pfn;
4102 if (start_pfn >= end_pfn)
4103 continue;
4104
4105 /* Account for what is only usable for kernelcore */
4106 if (start_pfn < usable_startpfn) {
4107 unsigned long kernel_pages;
4108 kernel_pages = min(end_pfn, usable_startpfn)
4109 - start_pfn;
4110
4111 kernelcore_remaining -= min(kernel_pages,
4112 kernelcore_remaining);
4113 required_kernelcore -= min(kernel_pages,
4114 required_kernelcore);
4115
4116 /* Continue if range is now fully accounted */
4117 if (end_pfn <= usable_startpfn) {
4118
4119 /*
4120 * Push zone_movable_pfn to the end so
4121 * that if we have to rebalance
4122 * kernelcore across nodes, we will
4123 * not double account here
4124 */
4125 zone_movable_pfn[nid] = end_pfn;
4126 continue;
4127 }
4128 start_pfn = usable_startpfn;
4129 }
4130
4131 /*
4132 * The usable PFN range for ZONE_MOVABLE is from
4133 * start_pfn->end_pfn. Calculate size_pages as the
4134 * number of pages used as kernelcore
4135 */
4136 size_pages = end_pfn - start_pfn;
4137 if (size_pages > kernelcore_remaining)
4138 size_pages = kernelcore_remaining;
4139 zone_movable_pfn[nid] = start_pfn + size_pages;
4140
4141 /*
4142 * Some kernelcore has been met, update counts and
4143 * break if the kernelcore for this node has been
4144 * satisified
4145 */
4146 required_kernelcore -= min(required_kernelcore,
4147 size_pages);
4148 kernelcore_remaining -= size_pages;
4149 if (!kernelcore_remaining)
4150 break;
4151 }
4152 }
4153
4154 /*
4155 * If there is still required_kernelcore, we do another pass with one
4156 * less node in the count. This will push zone_movable_pfn[nid] further
4157 * along on the nodes that still have memory until kernelcore is
4158 * satisified
4159 */
4160 usable_nodes--;
4161 if (usable_nodes && required_kernelcore > usable_nodes)
4162 goto restart;
4163
4164 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4165 for (nid = 0; nid < MAX_NUMNODES; nid++)
4166 zone_movable_pfn[nid] =
4167 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4168
4169out:
4170 /* restore the node_state */
4171 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4172}
4173
37b07e41
LS
4174/* Any regular memory on that node ? */
4175static void check_for_regular_memory(pg_data_t *pgdat)
4176{
4177#ifdef CONFIG_HIGHMEM
4178 enum zone_type zone_type;
4179
4180 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4181 struct zone *zone = &pgdat->node_zones[zone_type];
4182 if (zone->present_pages)
4183 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4184 }
4185#endif
4186}
4187
c713216d
MG
4188/**
4189 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4190 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4191 *
4192 * This will call free_area_init_node() for each active node in the system.
4193 * Using the page ranges provided by add_active_range(), the size of each
4194 * zone in each node and their holes is calculated. If the maximum PFN
4195 * between two adjacent zones match, it is assumed that the zone is empty.
4196 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4197 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4198 * starts where the previous one ended. For example, ZONE_DMA32 starts
4199 * at arch_max_dma_pfn.
4200 */
4201void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4202{
4203 unsigned long nid;
db99100d 4204 int i;
c713216d 4205
a6af2bc3
MG
4206 /* Sort early_node_map as initialisation assumes it is sorted */
4207 sort_node_map();
4208
c713216d
MG
4209 /* Record where the zone boundaries are */
4210 memset(arch_zone_lowest_possible_pfn, 0,
4211 sizeof(arch_zone_lowest_possible_pfn));
4212 memset(arch_zone_highest_possible_pfn, 0,
4213 sizeof(arch_zone_highest_possible_pfn));
4214 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4215 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4216 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4217 if (i == ZONE_MOVABLE)
4218 continue;
c713216d
MG
4219 arch_zone_lowest_possible_pfn[i] =
4220 arch_zone_highest_possible_pfn[i-1];
4221 arch_zone_highest_possible_pfn[i] =
4222 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4223 }
2a1e274a
MG
4224 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4225 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4226
4227 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4228 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4229 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4230
c713216d
MG
4231 /* Print out the zone ranges */
4232 printk("Zone PFN ranges:\n");
2a1e274a
MG
4233 for (i = 0; i < MAX_NR_ZONES; i++) {
4234 if (i == ZONE_MOVABLE)
4235 continue;
5dab8ec1 4236 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4237 zone_names[i],
4238 arch_zone_lowest_possible_pfn[i],
4239 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4240 }
4241
4242 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4243 printk("Movable zone start PFN for each node\n");
4244 for (i = 0; i < MAX_NUMNODES; i++) {
4245 if (zone_movable_pfn[i])
4246 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4247 }
c713216d
MG
4248
4249 /* Print out the early_node_map[] */
4250 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4251 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4252 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4253 early_node_map[i].start_pfn,
4254 early_node_map[i].end_pfn);
4255
4256 /* Initialise every node */
708614e6 4257 mminit_verify_pageflags_layout();
8ef82866 4258 setup_nr_node_ids();
c713216d
MG
4259 for_each_online_node(nid) {
4260 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4261 free_area_init_node(nid, NULL,
c713216d 4262 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4263
4264 /* Any memory on that node */
4265 if (pgdat->node_present_pages)
4266 node_set_state(nid, N_HIGH_MEMORY);
4267 check_for_regular_memory(pgdat);
c713216d
MG
4268 }
4269}
2a1e274a 4270
7e63efef 4271static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4272{
4273 unsigned long long coremem;
4274 if (!p)
4275 return -EINVAL;
4276
4277 coremem = memparse(p, &p);
7e63efef 4278 *core = coremem >> PAGE_SHIFT;
2a1e274a 4279
7e63efef 4280 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4281 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4282
4283 return 0;
4284}
ed7ed365 4285
7e63efef
MG
4286/*
4287 * kernelcore=size sets the amount of memory for use for allocations that
4288 * cannot be reclaimed or migrated.
4289 */
4290static int __init cmdline_parse_kernelcore(char *p)
4291{
4292 return cmdline_parse_core(p, &required_kernelcore);
4293}
4294
4295/*
4296 * movablecore=size sets the amount of memory for use for allocations that
4297 * can be reclaimed or migrated.
4298 */
4299static int __init cmdline_parse_movablecore(char *p)
4300{
4301 return cmdline_parse_core(p, &required_movablecore);
4302}
4303
ed7ed365 4304early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4305early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4306
c713216d
MG
4307#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4308
0e0b864e 4309/**
88ca3b94
RD
4310 * set_dma_reserve - set the specified number of pages reserved in the first zone
4311 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4312 *
4313 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4314 * In the DMA zone, a significant percentage may be consumed by kernel image
4315 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4316 * function may optionally be used to account for unfreeable pages in the
4317 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4318 * smaller per-cpu batchsize.
0e0b864e
MG
4319 */
4320void __init set_dma_reserve(unsigned long new_dma_reserve)
4321{
4322 dma_reserve = new_dma_reserve;
4323}
4324
93b7504e 4325#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4326struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4327EXPORT_SYMBOL(contig_page_data);
93b7504e 4328#endif
1da177e4
LT
4329
4330void __init free_area_init(unsigned long *zones_size)
4331{
9109fb7b 4332 free_area_init_node(0, zones_size,
1da177e4
LT
4333 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4334}
1da177e4 4335
1da177e4
LT
4336static int page_alloc_cpu_notify(struct notifier_block *self,
4337 unsigned long action, void *hcpu)
4338{
4339 int cpu = (unsigned long)hcpu;
1da177e4 4340
8bb78442 4341 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4342 drain_pages(cpu);
4343
4344 /*
4345 * Spill the event counters of the dead processor
4346 * into the current processors event counters.
4347 * This artificially elevates the count of the current
4348 * processor.
4349 */
f8891e5e 4350 vm_events_fold_cpu(cpu);
9f8f2172
CL
4351
4352 /*
4353 * Zero the differential counters of the dead processor
4354 * so that the vm statistics are consistent.
4355 *
4356 * This is only okay since the processor is dead and cannot
4357 * race with what we are doing.
4358 */
2244b95a 4359 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4360 }
4361 return NOTIFY_OK;
4362}
1da177e4
LT
4363
4364void __init page_alloc_init(void)
4365{
4366 hotcpu_notifier(page_alloc_cpu_notify, 0);
4367}
4368
cb45b0e9
HA
4369/*
4370 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4371 * or min_free_kbytes changes.
4372 */
4373static void calculate_totalreserve_pages(void)
4374{
4375 struct pglist_data *pgdat;
4376 unsigned long reserve_pages = 0;
2f6726e5 4377 enum zone_type i, j;
cb45b0e9
HA
4378
4379 for_each_online_pgdat(pgdat) {
4380 for (i = 0; i < MAX_NR_ZONES; i++) {
4381 struct zone *zone = pgdat->node_zones + i;
4382 unsigned long max = 0;
4383
4384 /* Find valid and maximum lowmem_reserve in the zone */
4385 for (j = i; j < MAX_NR_ZONES; j++) {
4386 if (zone->lowmem_reserve[j] > max)
4387 max = zone->lowmem_reserve[j];
4388 }
4389
41858966
MG
4390 /* we treat the high watermark as reserved pages. */
4391 max += high_wmark_pages(zone);
cb45b0e9
HA
4392
4393 if (max > zone->present_pages)
4394 max = zone->present_pages;
4395 reserve_pages += max;
4396 }
4397 }
4398 totalreserve_pages = reserve_pages;
4399}
4400
1da177e4
LT
4401/*
4402 * setup_per_zone_lowmem_reserve - called whenever
4403 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4404 * has a correct pages reserved value, so an adequate number of
4405 * pages are left in the zone after a successful __alloc_pages().
4406 */
4407static void setup_per_zone_lowmem_reserve(void)
4408{
4409 struct pglist_data *pgdat;
2f6726e5 4410 enum zone_type j, idx;
1da177e4 4411
ec936fc5 4412 for_each_online_pgdat(pgdat) {
1da177e4
LT
4413 for (j = 0; j < MAX_NR_ZONES; j++) {
4414 struct zone *zone = pgdat->node_zones + j;
4415 unsigned long present_pages = zone->present_pages;
4416
4417 zone->lowmem_reserve[j] = 0;
4418
2f6726e5
CL
4419 idx = j;
4420 while (idx) {
1da177e4
LT
4421 struct zone *lower_zone;
4422
2f6726e5
CL
4423 idx--;
4424
1da177e4
LT
4425 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4426 sysctl_lowmem_reserve_ratio[idx] = 1;
4427
4428 lower_zone = pgdat->node_zones + idx;
4429 lower_zone->lowmem_reserve[j] = present_pages /
4430 sysctl_lowmem_reserve_ratio[idx];
4431 present_pages += lower_zone->present_pages;
4432 }
4433 }
4434 }
cb45b0e9
HA
4435
4436 /* update totalreserve_pages */
4437 calculate_totalreserve_pages();
1da177e4
LT
4438}
4439
88ca3b94 4440/**
bc75d33f 4441 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4442 * or when memory is hot-{added|removed}
88ca3b94 4443 *
bc75d33f
MK
4444 * Ensures that the watermark[min,low,high] values for each zone are set
4445 * correctly with respect to min_free_kbytes.
1da177e4 4446 */
bc75d33f 4447void setup_per_zone_wmarks(void)
1da177e4
LT
4448{
4449 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4450 unsigned long lowmem_pages = 0;
4451 struct zone *zone;
4452 unsigned long flags;
4453
4454 /* Calculate total number of !ZONE_HIGHMEM pages */
4455 for_each_zone(zone) {
4456 if (!is_highmem(zone))
4457 lowmem_pages += zone->present_pages;
4458 }
4459
4460 for_each_zone(zone) {
ac924c60
AM
4461 u64 tmp;
4462
1125b4e3 4463 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4464 tmp = (u64)pages_min * zone->present_pages;
4465 do_div(tmp, lowmem_pages);
1da177e4
LT
4466 if (is_highmem(zone)) {
4467 /*
669ed175
NP
4468 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4469 * need highmem pages, so cap pages_min to a small
4470 * value here.
4471 *
41858966 4472 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4473 * deltas controls asynch page reclaim, and so should
4474 * not be capped for highmem.
1da177e4
LT
4475 */
4476 int min_pages;
4477
4478 min_pages = zone->present_pages / 1024;
4479 if (min_pages < SWAP_CLUSTER_MAX)
4480 min_pages = SWAP_CLUSTER_MAX;
4481 if (min_pages > 128)
4482 min_pages = 128;
41858966 4483 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4484 } else {
669ed175
NP
4485 /*
4486 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4487 * proportionate to the zone's size.
4488 */
41858966 4489 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4490 }
4491
41858966
MG
4492 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4493 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4494 setup_zone_migrate_reserve(zone);
1125b4e3 4495 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4496 }
cb45b0e9
HA
4497
4498 /* update totalreserve_pages */
4499 calculate_totalreserve_pages();
1da177e4
LT
4500}
4501
556adecb 4502/**
556adecb
RR
4503 * The inactive anon list should be small enough that the VM never has to
4504 * do too much work, but large enough that each inactive page has a chance
4505 * to be referenced again before it is swapped out.
4506 *
4507 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4508 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4509 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4510 * the anonymous pages are kept on the inactive list.
4511 *
4512 * total target max
4513 * memory ratio inactive anon
4514 * -------------------------------------
4515 * 10MB 1 5MB
4516 * 100MB 1 50MB
4517 * 1GB 3 250MB
4518 * 10GB 10 0.9GB
4519 * 100GB 31 3GB
4520 * 1TB 101 10GB
4521 * 10TB 320 32GB
4522 */
96cb4df5 4523void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4524{
96cb4df5 4525 unsigned int gb, ratio;
556adecb 4526
96cb4df5
MK
4527 /* Zone size in gigabytes */
4528 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4529 if (gb)
556adecb 4530 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4531 else
4532 ratio = 1;
556adecb 4533
96cb4df5
MK
4534 zone->inactive_ratio = ratio;
4535}
556adecb 4536
96cb4df5
MK
4537static void __init setup_per_zone_inactive_ratio(void)
4538{
4539 struct zone *zone;
4540
4541 for_each_zone(zone)
4542 calculate_zone_inactive_ratio(zone);
556adecb
RR
4543}
4544
1da177e4
LT
4545/*
4546 * Initialise min_free_kbytes.
4547 *
4548 * For small machines we want it small (128k min). For large machines
4549 * we want it large (64MB max). But it is not linear, because network
4550 * bandwidth does not increase linearly with machine size. We use
4551 *
4552 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4553 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4554 *
4555 * which yields
4556 *
4557 * 16MB: 512k
4558 * 32MB: 724k
4559 * 64MB: 1024k
4560 * 128MB: 1448k
4561 * 256MB: 2048k
4562 * 512MB: 2896k
4563 * 1024MB: 4096k
4564 * 2048MB: 5792k
4565 * 4096MB: 8192k
4566 * 8192MB: 11584k
4567 * 16384MB: 16384k
4568 */
bc75d33f 4569static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4570{
4571 unsigned long lowmem_kbytes;
4572
4573 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4574
4575 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4576 if (min_free_kbytes < 128)
4577 min_free_kbytes = 128;
4578 if (min_free_kbytes > 65536)
4579 min_free_kbytes = 65536;
bc75d33f 4580 setup_per_zone_wmarks();
1da177e4 4581 setup_per_zone_lowmem_reserve();
556adecb 4582 setup_per_zone_inactive_ratio();
1da177e4
LT
4583 return 0;
4584}
bc75d33f 4585module_init(init_per_zone_wmark_min)
1da177e4
LT
4586
4587/*
4588 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4589 * that we can call two helper functions whenever min_free_kbytes
4590 * changes.
4591 */
4592int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4593 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4594{
4595 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5 4596 if (write)
bc75d33f 4597 setup_per_zone_wmarks();
1da177e4
LT
4598 return 0;
4599}
4600
9614634f
CL
4601#ifdef CONFIG_NUMA
4602int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4603 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4604{
4605 struct zone *zone;
4606 int rc;
4607
4608 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4609 if (rc)
4610 return rc;
4611
4612 for_each_zone(zone)
8417bba4 4613 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4614 sysctl_min_unmapped_ratio) / 100;
4615 return 0;
4616}
0ff38490
CL
4617
4618int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4619 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4620{
4621 struct zone *zone;
4622 int rc;
4623
4624 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4625 if (rc)
4626 return rc;
4627
4628 for_each_zone(zone)
4629 zone->min_slab_pages = (zone->present_pages *
4630 sysctl_min_slab_ratio) / 100;
4631 return 0;
4632}
9614634f
CL
4633#endif
4634
1da177e4
LT
4635/*
4636 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4637 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4638 * whenever sysctl_lowmem_reserve_ratio changes.
4639 *
4640 * The reserve ratio obviously has absolutely no relation with the
41858966 4641 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4642 * if in function of the boot time zone sizes.
4643 */
4644int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4645 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4646{
4647 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4648 setup_per_zone_lowmem_reserve();
4649 return 0;
4650}
4651
8ad4b1fb
RS
4652/*
4653 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4654 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4655 * can have before it gets flushed back to buddy allocator.
4656 */
4657
4658int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4659 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4660{
4661 struct zone *zone;
4662 unsigned int cpu;
4663 int ret;
4664
4665 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4666 if (!write || (ret == -EINVAL))
4667 return ret;
364df0eb 4668 for_each_populated_zone(zone) {
8ad4b1fb
RS
4669 for_each_online_cpu(cpu) {
4670 unsigned long high;
4671 high = zone->present_pages / percpu_pagelist_fraction;
4672 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4673 }
4674 }
4675 return 0;
4676}
4677
f034b5d4 4678int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4679
4680#ifdef CONFIG_NUMA
4681static int __init set_hashdist(char *str)
4682{
4683 if (!str)
4684 return 0;
4685 hashdist = simple_strtoul(str, &str, 0);
4686 return 1;
4687}
4688__setup("hashdist=", set_hashdist);
4689#endif
4690
4691/*
4692 * allocate a large system hash table from bootmem
4693 * - it is assumed that the hash table must contain an exact power-of-2
4694 * quantity of entries
4695 * - limit is the number of hash buckets, not the total allocation size
4696 */
4697void *__init alloc_large_system_hash(const char *tablename,
4698 unsigned long bucketsize,
4699 unsigned long numentries,
4700 int scale,
4701 int flags,
4702 unsigned int *_hash_shift,
4703 unsigned int *_hash_mask,
4704 unsigned long limit)
4705{
4706 unsigned long long max = limit;
4707 unsigned long log2qty, size;
4708 void *table = NULL;
4709
4710 /* allow the kernel cmdline to have a say */
4711 if (!numentries) {
4712 /* round applicable memory size up to nearest megabyte */
04903664 4713 numentries = nr_kernel_pages;
1da177e4
LT
4714 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4715 numentries >>= 20 - PAGE_SHIFT;
4716 numentries <<= 20 - PAGE_SHIFT;
4717
4718 /* limit to 1 bucket per 2^scale bytes of low memory */
4719 if (scale > PAGE_SHIFT)
4720 numentries >>= (scale - PAGE_SHIFT);
4721 else
4722 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4723
4724 /* Make sure we've got at least a 0-order allocation.. */
4725 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4726 numentries = PAGE_SIZE / bucketsize;
1da177e4 4727 }
6e692ed3 4728 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4729
4730 /* limit allocation size to 1/16 total memory by default */
4731 if (max == 0) {
4732 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4733 do_div(max, bucketsize);
4734 }
4735
4736 if (numentries > max)
4737 numentries = max;
4738
f0d1b0b3 4739 log2qty = ilog2(numentries);
1da177e4
LT
4740
4741 do {
4742 size = bucketsize << log2qty;
4743 if (flags & HASH_EARLY)
74768ed8 4744 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4745 else if (hashdist)
4746 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4747 else {
1037b83b
ED
4748 /*
4749 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4750 * some pages at the end of hash table which
4751 * alloc_pages_exact() automatically does
1037b83b 4752 */
264ef8a9 4753 if (get_order(size) < MAX_ORDER) {
a1dd268c 4754 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4755 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4756 }
1da177e4
LT
4757 }
4758 } while (!table && size > PAGE_SIZE && --log2qty);
4759
4760 if (!table)
4761 panic("Failed to allocate %s hash table\n", tablename);
4762
b49ad484 4763 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4764 tablename,
4765 (1U << log2qty),
f0d1b0b3 4766 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4767 size);
4768
4769 if (_hash_shift)
4770 *_hash_shift = log2qty;
4771 if (_hash_mask)
4772 *_hash_mask = (1 << log2qty) - 1;
4773
4774 return table;
4775}
a117e66e 4776
835c134e
MG
4777/* Return a pointer to the bitmap storing bits affecting a block of pages */
4778static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4779 unsigned long pfn)
4780{
4781#ifdef CONFIG_SPARSEMEM
4782 return __pfn_to_section(pfn)->pageblock_flags;
4783#else
4784 return zone->pageblock_flags;
4785#endif /* CONFIG_SPARSEMEM */
4786}
4787
4788static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4789{
4790#ifdef CONFIG_SPARSEMEM
4791 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4792 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4793#else
4794 pfn = pfn - zone->zone_start_pfn;
d9c23400 4795 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4796#endif /* CONFIG_SPARSEMEM */
4797}
4798
4799/**
d9c23400 4800 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4801 * @page: The page within the block of interest
4802 * @start_bitidx: The first bit of interest to retrieve
4803 * @end_bitidx: The last bit of interest
4804 * returns pageblock_bits flags
4805 */
4806unsigned long get_pageblock_flags_group(struct page *page,
4807 int start_bitidx, int end_bitidx)
4808{
4809 struct zone *zone;
4810 unsigned long *bitmap;
4811 unsigned long pfn, bitidx;
4812 unsigned long flags = 0;
4813 unsigned long value = 1;
4814
4815 zone = page_zone(page);
4816 pfn = page_to_pfn(page);
4817 bitmap = get_pageblock_bitmap(zone, pfn);
4818 bitidx = pfn_to_bitidx(zone, pfn);
4819
4820 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4821 if (test_bit(bitidx + start_bitidx, bitmap))
4822 flags |= value;
6220ec78 4823
835c134e
MG
4824 return flags;
4825}
4826
4827/**
d9c23400 4828 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4829 * @page: The page within the block of interest
4830 * @start_bitidx: The first bit of interest
4831 * @end_bitidx: The last bit of interest
4832 * @flags: The flags to set
4833 */
4834void set_pageblock_flags_group(struct page *page, unsigned long flags,
4835 int start_bitidx, int end_bitidx)
4836{
4837 struct zone *zone;
4838 unsigned long *bitmap;
4839 unsigned long pfn, bitidx;
4840 unsigned long value = 1;
4841
4842 zone = page_zone(page);
4843 pfn = page_to_pfn(page);
4844 bitmap = get_pageblock_bitmap(zone, pfn);
4845 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4846 VM_BUG_ON(pfn < zone->zone_start_pfn);
4847 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4848
4849 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4850 if (flags & value)
4851 __set_bit(bitidx + start_bitidx, bitmap);
4852 else
4853 __clear_bit(bitidx + start_bitidx, bitmap);
4854}
a5d76b54
KH
4855
4856/*
4857 * This is designed as sub function...plz see page_isolation.c also.
4858 * set/clear page block's type to be ISOLATE.
4859 * page allocater never alloc memory from ISOLATE block.
4860 */
4861
4862int set_migratetype_isolate(struct page *page)
4863{
4864 struct zone *zone;
4865 unsigned long flags;
4866 int ret = -EBUSY;
4867
4868 zone = page_zone(page);
4869 spin_lock_irqsave(&zone->lock, flags);
4870 /*
4871 * In future, more migrate types will be able to be isolation target.
4872 */
4873 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4874 goto out;
4875 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4876 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4877 ret = 0;
4878out:
4879 spin_unlock_irqrestore(&zone->lock, flags);
4880 if (!ret)
9f8f2172 4881 drain_all_pages();
a5d76b54
KH
4882 return ret;
4883}
4884
4885void unset_migratetype_isolate(struct page *page)
4886{
4887 struct zone *zone;
4888 unsigned long flags;
4889 zone = page_zone(page);
4890 spin_lock_irqsave(&zone->lock, flags);
4891 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4892 goto out;
4893 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4894 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4895out:
4896 spin_unlock_irqrestore(&zone->lock, flags);
4897}
0c0e6195
KH
4898
4899#ifdef CONFIG_MEMORY_HOTREMOVE
4900/*
4901 * All pages in the range must be isolated before calling this.
4902 */
4903void
4904__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4905{
4906 struct page *page;
4907 struct zone *zone;
4908 int order, i;
4909 unsigned long pfn;
4910 unsigned long flags;
4911 /* find the first valid pfn */
4912 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4913 if (pfn_valid(pfn))
4914 break;
4915 if (pfn == end_pfn)
4916 return;
4917 zone = page_zone(pfn_to_page(pfn));
4918 spin_lock_irqsave(&zone->lock, flags);
4919 pfn = start_pfn;
4920 while (pfn < end_pfn) {
4921 if (!pfn_valid(pfn)) {
4922 pfn++;
4923 continue;
4924 }
4925 page = pfn_to_page(pfn);
4926 BUG_ON(page_count(page));
4927 BUG_ON(!PageBuddy(page));
4928 order = page_order(page);
4929#ifdef CONFIG_DEBUG_VM
4930 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4931 pfn, 1 << order, end_pfn);
4932#endif
4933 list_del(&page->lru);
4934 rmv_page_order(page);
4935 zone->free_area[order].nr_free--;
4936 __mod_zone_page_state(zone, NR_FREE_PAGES,
4937 - (1UL << order));
4938 for (i = 0; i < (1 << order); i++)
4939 SetPageReserved((page+i));
4940 pfn += (1 << order);
4941 }
4942 spin_unlock_irqrestore(&zone->lock, flags);
4943}
4944#endif
This page took 0.825561 seconds and 5 git commands to generate.