x86: Remove an incorrect AVX2 entry
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
4b27d27c 190@code{serialize},
bb651e8b 191@code{tsxldtrk},
43234a1e
L
192@code{avx512f},
193@code{avx512cd},
194@code{avx512er},
195@code{avx512pf},
1dfc6506
L
196@code{avx512vl},
197@code{avx512bw},
198@code{avx512dq},
2cc1b5aa 199@code{avx512ifma},
14f195c9 200@code{avx512vbmi},
920d2ddc 201@code{avx512_4fmaps},
47acf0bd 202@code{avx512_4vnniw},
620214f7 203@code{avx512_vpopcntdq},
53467f57 204@code{avx512_vbmi2},
8cfcb765 205@code{avx512_vnni},
ee6872be 206@code{avx512_bitalg},
708a2fff 207@code{avx512_vp2intersect},
d6aab7a1 208@code{avx512_bf16},
144b71e2
L
209@code{noavx512f},
210@code{noavx512cd},
211@code{noavx512er},
212@code{noavx512pf},
213@code{noavx512vl},
214@code{noavx512bw},
215@code{noavx512dq},
216@code{noavx512ifma},
217@code{noavx512vbmi},
920d2ddc 218@code{noavx512_4fmaps},
47acf0bd 219@code{noavx512_4vnniw},
620214f7 220@code{noavx512_vpopcntdq},
53467f57 221@code{noavx512_vbmi2},
8cfcb765 222@code{noavx512_vnni},
ee6872be 223@code{noavx512_bitalg},
9186c494 224@code{noavx512_vp2intersect},
d6aab7a1 225@code{noavx512_bf16},
dd455cf5 226@code{noenqcmd},
4b27d27c 227@code{noserialize},
bb651e8b 228@code{notsxldtrk},
6305a203 229@code{vmx},
8729a6f6 230@code{vmfunc},
6305a203 231@code{smx},
f03fe4c1 232@code{xsave},
c7b8aa3a 233@code{xsaveopt},
1dfc6506
L
234@code{xsavec},
235@code{xsaves},
c0f3af97 236@code{aes},
594ab6a3 237@code{pclmul},
c7b8aa3a
L
238@code{fsgsbase},
239@code{rdrnd},
240@code{f16c},
6c30d220 241@code{bmi2},
c0f3af97 242@code{fma},
f1f8f695
L
243@code{movbe},
244@code{ept},
6c30d220 245@code{lzcnt},
272a84b1 246@code{popcnt},
42164a71
L
247@code{hle},
248@code{rtm},
6c30d220 249@code{invpcid},
bd5295b2 250@code{clflush},
9916071f 251@code{mwaitx},
029f3522 252@code{clzero},
3233d7d0 253@code{wbnoinvd},
be3a8dca 254@code{pconfig},
de89d0a3 255@code{waitpkg},
c48935d7 256@code{cldemote},
142861df
JB
257@code{rdpru},
258@code{mcommit},
a847e322 259@code{sev_es},
f88c9eb0 260@code{lwp},
5dd85c99
SP
261@code{fma4},
262@code{xop},
60aa667e 263@code{cx16},
bd5295b2 264@code{syscall},
1b7f3fb0 265@code{rdtscp},
6305a203
L
266@code{3dnow},
267@code{3dnowa},
268@code{sse4a},
269@code{sse5},
272a84b1 270@code{svme} and
6305a203 271@code{padlock}.
309d3373
JB
272Note that rather than extending a basic instruction set, the extension
273mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
274
275When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
276@code{.arch} directive will take precedent.
277
278@cindex @samp{-mtune=} option, i386
279@cindex @samp{-mtune=} option, x86-64
280@item -mtune=@var{CPU}
281This option specifies a processor to optimize for. When used in
282conjunction with the @option{-march} option, only instructions
283of the processor specified by the @option{-march} option will be
284generated.
285
6305a203
L
286Valid @var{CPU} values are identical to the processor list of
287@option{-march=@var{CPU}}.
9103f4f4 288
c0f3af97
L
289@cindex @samp{-msse2avx} option, i386
290@cindex @samp{-msse2avx} option, x86-64
291@item -msse2avx
292This option specifies that the assembler should encode SSE instructions
293with VEX prefix.
294
daf50ae7
L
295@cindex @samp{-msse-check=} option, i386
296@cindex @samp{-msse-check=} option, x86-64
297@item -msse-check=@var{none}
1f9bb1ca
AS
298@itemx -msse-check=@var{warning}
299@itemx -msse-check=@var{error}
9aff4b7a 300These options control if the assembler should check SSE instructions.
daf50ae7
L
301@option{-msse-check=@var{none}} will make the assembler not to check SSE
302instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 303will make the assembler issue a warning for any SSE instruction.
daf50ae7 304@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 305for any SSE instruction.
daf50ae7 306
539f890d
L
307@cindex @samp{-mavxscalar=} option, i386
308@cindex @samp{-mavxscalar=} option, x86-64
309@item -mavxscalar=@var{128}
1f9bb1ca 310@itemx -mavxscalar=@var{256}
2aab8acd 311These options control how the assembler should encode scalar AVX
539f890d
L
312instructions. @option{-mavxscalar=@var{128}} will encode scalar
313AVX instructions with 128bit vector length, which is the default.
314@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
315with 256bit vector length.
316
4970191f
JB
317WARNING: Don't use this for production code - due to CPU errata the
318resulting code may not work on certain models.
319
03751133
L
320@cindex @samp{-mvexwig=} option, i386
321@cindex @samp{-mvexwig=} option, x86-64
322@item -mvexwig=@var{0}
323@itemx -mvexwig=@var{1}
324These options control how the assembler should encode VEX.W-ignored (WIG)
325VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
326instructions with vex.w = 0, which is the default.
327@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
328vex.w = 1.
329
4970191f
JB
330WARNING: Don't use this for production code - due to CPU errata the
331resulting code may not work on certain models.
332
43234a1e
L
333@cindex @samp{-mevexlig=} option, i386
334@cindex @samp{-mevexlig=} option, x86-64
335@item -mevexlig=@var{128}
336@itemx -mevexlig=@var{256}
337@itemx -mevexlig=@var{512}
338These options control how the assembler should encode length-ignored
339(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
340EVEX instructions with 128bit vector length, which is the default.
341@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
342encode LIG EVEX instructions with 256bit and 512bit vector length,
343respectively.
344
345@cindex @samp{-mevexwig=} option, i386
346@cindex @samp{-mevexwig=} option, x86-64
347@item -mevexwig=@var{0}
348@itemx -mevexwig=@var{1}
349These options control how the assembler should encode w-ignored (WIG)
350EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
351EVEX instructions with evex.w = 0, which is the default.
352@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
353evex.w = 1.
354
1efbbeb4
L
355@cindex @samp{-mmnemonic=} option, i386
356@cindex @samp{-mmnemonic=} option, x86-64
357@item -mmnemonic=@var{att}
1f9bb1ca 358@itemx -mmnemonic=@var{intel}
34bca508 359This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
360The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
361take precedent.
362
363@cindex @samp{-msyntax=} option, i386
364@cindex @samp{-msyntax=} option, x86-64
365@item -msyntax=@var{att}
1f9bb1ca 366@itemx -msyntax=@var{intel}
34bca508 367This option specifies instruction syntax when processing instructions.
1efbbeb4
L
368The @code{.att_syntax} and @code{.intel_syntax} directives will
369take precedent.
370
371@cindex @samp{-mnaked-reg} option, i386
372@cindex @samp{-mnaked-reg} option, x86-64
373@item -mnaked-reg
33eaf5de 374This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 375The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 376
7e8b059b
L
377@cindex @samp{-madd-bnd-prefix} option, i386
378@cindex @samp{-madd-bnd-prefix} option, x86-64
379@item -madd-bnd-prefix
380This option forces the assembler to add BND prefix to all branches, even
381if such prefix was not explicitly specified in the source code.
382
8dcea932
L
383@cindex @samp{-mshared} option, i386
384@cindex @samp{-mshared} option, x86-64
385@item -mno-shared
386On ELF target, the assembler normally optimizes out non-PLT relocations
387against defined non-weak global branch targets with default visibility.
388The @samp{-mshared} option tells the assembler to generate code which
389may go into a shared library where all non-weak global branch targets
390with default visibility can be preempted. The resulting code is
391slightly bigger. This option only affects the handling of branch
392instructions.
393
251dae91 394@cindex @samp{-mbig-obj} option, i386
167ad85b
TG
395@cindex @samp{-mbig-obj} option, x86-64
396@item -mbig-obj
251dae91 397On PE/COFF target this option forces the use of big object file
167ad85b
TG
398format, which allows more than 32768 sections.
399
d022bddd
IT
400@cindex @samp{-momit-lock-prefix=} option, i386
401@cindex @samp{-momit-lock-prefix=} option, x86-64
402@item -momit-lock-prefix=@var{no}
403@itemx -momit-lock-prefix=@var{yes}
404These options control how the assembler should encode lock prefix.
405This option is intended as a workaround for processors, that fail on
406lock prefix. This option can only be safely used with single-core,
407single-thread computers
408@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
409@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
410which is the default.
411
e4e00185
AS
412@cindex @samp{-mfence-as-lock-add=} option, i386
413@cindex @samp{-mfence-as-lock-add=} option, x86-64
414@item -mfence-as-lock-add=@var{no}
415@itemx -mfence-as-lock-add=@var{yes}
416These options control how the assembler should encode lfence, mfence and
417sfence.
418@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
419sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
420@samp{lock addl $0x0, (%esp)} in 32-bit mode.
421@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
422sfence as usual, which is the default.
423
0cb4071e
L
424@cindex @samp{-mrelax-relocations=} option, i386
425@cindex @samp{-mrelax-relocations=} option, x86-64
426@item -mrelax-relocations=@var{no}
427@itemx -mrelax-relocations=@var{yes}
428These options control whether the assembler should generate relax
429relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
430R_X86_64_REX_GOTPCRELX, in 64-bit mode.
431@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
432@option{-mrelax-relocations=@var{no}} will not generate relax
433relocations. The default can be controlled by a configure option
434@option{--enable-x86-relax-relocations}.
435
e379e5f3
L
436@cindex @samp{-malign-branch-boundary=} option, i386
437@cindex @samp{-malign-branch-boundary=} option, x86-64
438@item -malign-branch-boundary=@var{NUM}
439This option controls how the assembler should align branches with segment
440prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
441no less than 16. Branches will be aligned within @var{NUM} byte
442boundary. @option{-malign-branch-boundary=0}, which is the default,
443doesn't align branches.
444
445@cindex @samp{-malign-branch=} option, i386
446@cindex @samp{-malign-branch=} option, x86-64
447@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
448This option specifies types of branches to align. @var{TYPE} is
449combination of @samp{jcc}, which aligns conditional jumps,
450@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
451which aligns unconditional jumps, @samp{call} which aligns calls,
452@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
453jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
454
455@cindex @samp{-malign-branch-prefix-size=} option, i386
456@cindex @samp{-malign-branch-prefix-size=} option, x86-64
457@item -malign-branch-prefix-size=@var{NUM}
458This option specifies the maximum number of prefixes on an instruction
459to align branches. @var{NUM} should be between 0 and 5. The default
460@var{NUM} is 5.
461
76cf450b
L
462@cindex @samp{-mbranches-within-32B-boundaries} option, i386
463@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
464@item -mbranches-within-32B-boundaries
465This option aligns conditional jumps, fused conditional jumps and
466unconditional jumps within 32 byte boundary with up to 5 segment prefixes
467on an instruction. It is equivalent to
468@option{-malign-branch-boundary=32}
469@option{-malign-branch=jcc+fused+jmp}
470@option{-malign-branch-prefix-size=5}.
471The default doesn't align branches.
472
ae531041
L
473@cindex @samp{-mlfence-after-load=} option, i386
474@cindex @samp{-mlfence-after-load=} option, x86-64
475@item -mlfence-after-load=@var{no}
476@itemx -mlfence-after-load=@var{yes}
477These options control whether the assembler should generate lfence
478after load instructions. @option{-mlfence-after-load=@var{yes}} will
479generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
480lfence, which is the default.
481
482@cindex @samp{-mlfence-before-indirect-branch=} option, i386
483@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
484@item -mlfence-before-indirect-branch=@var{none}
485@item -mlfence-before-indirect-branch=@var{all}
486@item -mlfence-before-indirect-branch=@var{register}
487@itemx -mlfence-before-indirect-branch=@var{memory}
488These options control whether the assembler should generate lfence
3071b197 489before indirect near branch instructions.
ae531041 490@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 491before indirect near branch via register and issue a warning before
ae531041 492indirect near branch via memory.
a09f656b 493It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
494there's no explict @option{-mlfence-before-ret=}.
ae531041 495@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 496lfence before indirect near branch via register.
ae531041
L
497@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
498warning before indirect near branch via memory.
499@option{-mlfence-before-indirect-branch=@var{none}} will not generate
500lfence nor issue warning, which is the default. Note that lfence won't
501be generated before indirect near branch via register with
502@option{-mlfence-after-load=@var{yes}} since lfence will be generated
503after loading branch target register.
504
505@cindex @samp{-mlfence-before-ret=} option, i386
506@cindex @samp{-mlfence-before-ret=} option, x86-64
507@item -mlfence-before-ret=@var{none}
a09f656b 508@item -mlfence-before-ret=@var{shl}
ae531041 509@item -mlfence-before-ret=@var{or}
a09f656b 510@item -mlfence-before-ret=@var{yes}
ae531041
L
511@itemx -mlfence-before-ret=@var{not}
512These options control whether the assembler should generate lfence
513before ret. @option{-mlfence-before-ret=@var{or}} will generate
514generate or instruction with lfence.
a09f656b 515@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
516with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
517instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
518generate lfence, which is the default.
ae531041 519
b4a3a7b4
L
520@cindex @samp{-mx86-used-note=} option, i386
521@cindex @samp{-mx86-used-note=} option, x86-64
522@item -mx86-used-note=@var{no}
523@itemx -mx86-used-note=@var{yes}
524These options control whether the assembler should generate
525GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
526GNU property notes. The default can be controlled by the
527@option{--enable-x86-used-note} configure option.
528
d3d3c6db
IT
529@cindex @samp{-mevexrcig=} option, i386
530@cindex @samp{-mevexrcig=} option, x86-64
531@item -mevexrcig=@var{rne}
532@itemx -mevexrcig=@var{rd}
533@itemx -mevexrcig=@var{ru}
534@itemx -mevexrcig=@var{rz}
535These options control how the assembler should encode SAE-only
536EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
537of EVEX instruction with 00, which is the default.
538@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
539and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
540with 01, 10 and 11 RC bits, respectively.
541
5db04b09
L
542@cindex @samp{-mamd64} option, x86-64
543@cindex @samp{-mintel64} option, x86-64
544@item -mamd64
545@itemx -mintel64
546This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
547Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
548only and AMD64 ISAs.
5db04b09 549
b6f8c7c4
L
550@cindex @samp{-O0} option, i386
551@cindex @samp{-O0} option, x86-64
552@cindex @samp{-O} option, i386
553@cindex @samp{-O} option, x86-64
554@cindex @samp{-O1} option, i386
555@cindex @samp{-O1} option, x86-64
556@cindex @samp{-O2} option, i386
557@cindex @samp{-O2} option, x86-64
558@cindex @samp{-Os} option, i386
559@cindex @samp{-Os} option, x86-64
560@item -O0 | -O | -O1 | -O2 | -Os
561Optimize instruction encoding with smaller instruction size. @samp{-O}
562and @samp{-O1} encode 64-bit register load instructions with 64-bit
563immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 564immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
565register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
566register clearing instructions with 128-bit VEX vector register
567clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 568register load/store instructions with VEX vector register load/store
a0a1771e
JB
569instructions, and encode 128-bit/256-bit EVEX packed integer logical
570instructions with 128-bit/256-bit VEX packed integer logical.
571
572@samp{-O2} includes @samp{-O1} optimization plus encodes
573256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
574EVEX vector register clearing instructions. In 64-bit mode VEX encoded
575instructions with commutative source operands will also have their
576source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
577instead of the 3-byte one. Certain forms of AND as well as OR with the
578same (register) operand specified twice will also be changed to TEST.
a0a1771e 579
b6f8c7c4
L
580@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
581and 64-bit register tests with immediate as 8-bit register test with
582immediate. @samp{-O0} turns off this optimization.
583
55b62671 584@end table
731caf76 585@c man end
e413e4e9 586
a6c24e68
NC
587@node i386-Directives
588@section x86 specific Directives
589
590@cindex machine directives, x86
591@cindex x86 machine directives
592@table @code
593
594@cindex @code{lcomm} directive, COFF
595@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
596Reserve @var{length} (an absolute expression) bytes for a local common
597denoted by @var{symbol}. The section and value of @var{symbol} are
598those of the new local common. The addresses are allocated in the bss
704209c0
NC
599section, so that at run-time the bytes start off zeroed. Since
600@var{symbol} is not declared global, it is normally not visible to
601@code{@value{LD}}. The optional third parameter, @var{alignment},
602specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
603
604This directive is only available for COFF based x86 targets.
605
102e9361
NC
606@cindex @code{largecomm} directive, ELF
607@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
608This directive behaves in the same way as the @code{comm} directive
609except that the data is placed into the @var{.lbss} section instead of
610the @var{.bss} section @ref{Comm}.
611
612The directive is intended to be used for data which requires a large
613amount of space, and it is only available for ELF based x86_64
614targets.
615
f2f51cd5
NC
616@cindex @code{value} directive
617@item .value @var{expression} [, @var{expression}]
618This directive behaves in the same way as the @code{.short} directive,
619taking a series of comma separated expressions and storing them as
620two-byte wide values into the current section.
621
a6c24e68 622@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
623
624@end table
625
252b5132 626@node i386-Syntax
7c31ae13
NC
627@section i386 Syntactical Considerations
628@menu
629* i386-Variations:: AT&T Syntax versus Intel Syntax
630* i386-Chars:: Special Characters
631@end menu
632
633@node i386-Variations
634@subsection AT&T Syntax versus Intel Syntax
252b5132 635
e413e4e9
AM
636@cindex i386 intel_syntax pseudo op
637@cindex intel_syntax pseudo op, i386
638@cindex i386 att_syntax pseudo op
639@cindex att_syntax pseudo op, i386
252b5132
RH
640@cindex i386 syntax compatibility
641@cindex syntax compatibility, i386
55b62671
AJ
642@cindex x86-64 intel_syntax pseudo op
643@cindex intel_syntax pseudo op, x86-64
644@cindex x86-64 att_syntax pseudo op
645@cindex att_syntax pseudo op, x86-64
646@cindex x86-64 syntax compatibility
647@cindex syntax compatibility, x86-64
e413e4e9
AM
648
649@code{@value{AS}} now supports assembly using Intel assembler syntax.
650@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
651back to the usual AT&T mode for compatibility with the output of
652@code{@value{GCC}}. Either of these directives may have an optional
653argument, @code{prefix}, or @code{noprefix} specifying whether registers
654require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
655different from Intel syntax. We mention these differences because
656almost all 80386 documents use Intel syntax. Notable differences
657between the two syntaxes are:
658
659@cindex immediate operands, i386
660@cindex i386 immediate operands
661@cindex register operands, i386
662@cindex i386 register operands
663@cindex jump/call operands, i386
664@cindex i386 jump/call operands
665@cindex operand delimiters, i386
55b62671
AJ
666
667@cindex immediate operands, x86-64
668@cindex x86-64 immediate operands
669@cindex register operands, x86-64
670@cindex x86-64 register operands
671@cindex jump/call operands, x86-64
672@cindex x86-64 jump/call operands
673@cindex operand delimiters, x86-64
252b5132
RH
674@itemize @bullet
675@item
676AT&T immediate operands are preceded by @samp{$}; Intel immediate
677operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
678AT&T register operands are preceded by @samp{%}; Intel register operands
679are undelimited. AT&T absolute (as opposed to PC relative) jump/call
680operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
681
682@cindex i386 source, destination operands
683@cindex source, destination operands; i386
55b62671
AJ
684@cindex x86-64 source, destination operands
685@cindex source, destination operands; x86-64
252b5132
RH
686@item
687AT&T and Intel syntax use the opposite order for source and destination
688operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
689@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
690previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
691instructions with 2 immediate operands, such as the @samp{enter}
692instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
693
694@cindex mnemonic suffixes, i386
695@cindex sizes operands, i386
696@cindex i386 size suffixes
55b62671
AJ
697@cindex mnemonic suffixes, x86-64
698@cindex sizes operands, x86-64
699@cindex x86-64 size suffixes
252b5132
RH
700@item
701In AT&T syntax the size of memory operands is determined from the last
702character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 703@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
704(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
705of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
706(256-bit vector) and zmm (512-bit vector) memory references, only when there's
707no other way to disambiguate an instruction. Intel syntax accomplishes this by
708prefixing memory operands (@emph{not} the instruction mnemonics) with
709@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
710@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
711syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
712syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
713@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 714
4b06377f
L
715In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
716instruction with the 64-bit displacement or immediate operand.
717
252b5132
RH
718@cindex return instructions, i386
719@cindex i386 jump, call, return
55b62671
AJ
720@cindex return instructions, x86-64
721@cindex x86-64 jump, call, return
252b5132
RH
722@item
723Immediate form long jumps and calls are
724@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
725Intel syntax is
726@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
727instruction
728is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
729@samp{ret far @var{stack-adjust}}.
730
731@cindex sections, i386
732@cindex i386 sections
55b62671
AJ
733@cindex sections, x86-64
734@cindex x86-64 sections
252b5132
RH
735@item
736The AT&T assembler does not provide support for multiple section
737programs. Unix style systems expect all programs to be single sections.
738@end itemize
739
7c31ae13
NC
740@node i386-Chars
741@subsection Special Characters
742
743@cindex line comment character, i386
744@cindex i386 line comment character
745The presence of a @samp{#} appearing anywhere on a line indicates the
746start of a comment that extends to the end of that line.
747
748If a @samp{#} appears as the first character of a line then the whole
749line is treated as a comment, but in this case the line can also be a
750logical line number directive (@pxref{Comments}) or a preprocessor
751control command (@pxref{Preprocessing}).
752
a05a5b64 753If the @option{--divide} command-line option has not been specified
7c31ae13
NC
754then the @samp{/} character appearing anywhere on a line also
755introduces a line comment.
756
757@cindex line separator, i386
758@cindex statement separator, i386
759@cindex i386 line separator
760The @samp{;} character can be used to separate statements on the same
761line.
762
252b5132 763@node i386-Mnemonics
d3b47e2b
L
764@section i386-Mnemonics
765@subsection Instruction Naming
252b5132
RH
766
767@cindex i386 instruction naming
768@cindex instruction naming, i386
55b62671
AJ
769@cindex x86-64 instruction naming
770@cindex instruction naming, x86-64
771
252b5132 772Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
773specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
774and @samp{q} specify byte, word, long and quadruple word operands. If
775no suffix is specified by an instruction then @code{@value{AS}} tries to
776fill in the missing suffix based on the destination register operand
777(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
778to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
779@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
780assembler which assumes that a missing mnemonic suffix implies long
781operand size. (This incompatibility does not affect compiler output
782since compilers always explicitly specify the mnemonic suffix.)
252b5132 783
c006a730
JB
784When there is no sizing suffix and no (suitable) register operands to
785deduce the size of memory operands, with a few exceptions and where long
786operand size is possible in the first place, operand size will default
787to long in 32- and 64-bit modes. Similarly it will default to short in
78816-bit mode. Noteworthy exceptions are
789
790@itemize @bullet
791@item
792Instructions with an implicit on-stack operand as well as branches,
793which default to quad in 64-bit mode.
794
795@item
796Sign- and zero-extending moves, which default to byte size source
797operands.
798
799@item
800Floating point insns with integer operands, which default to short (for
801perhaps historical reasons).
802
803@item
804CRC32 with a 64-bit destination, which defaults to a quad source
805operand.
806
807@end itemize
808
b6169b20
L
809@cindex encoding options, i386
810@cindex encoding options, x86-64
811
86fa6981
L
812Different encoding options can be specified via pseudo prefixes:
813
814@itemize @bullet
815@item
816@samp{@{disp8@}} -- prefer 8-bit displacement.
817
818@item
819@samp{@{disp32@}} -- prefer 32-bit displacement.
820
821@item
822@samp{@{load@}} -- prefer load-form instruction.
823
824@item
825@samp{@{store@}} -- prefer store-form instruction.
826
827@item
42e04b36 828@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
829
830@item
42e04b36 831@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
832
833@item
834@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
835
836@item
837@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
838instructions (x86-64 only). Note that this differs from the @samp{rex}
839prefix which generates REX prefix unconditionally.
b6f8c7c4
L
840
841@item
842@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 843@end itemize
b6169b20 844
252b5132
RH
845@cindex conversion instructions, i386
846@cindex i386 conversion instructions
55b62671
AJ
847@cindex conversion instructions, x86-64
848@cindex x86-64 conversion instructions
252b5132
RH
849The Intel-syntax conversion instructions
850
851@itemize @bullet
852@item
853@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
854
855@item
856@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
857
858@item
859@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
860
861@item
862@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
863
864@item
865@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
866(x86-64 only),
867
868@item
d5f0cf92 869@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 870@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
871@end itemize
872
873@noindent
55b62671
AJ
874are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
875@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
876instructions.
252b5132 877
0e6724de
L
878@cindex extension instructions, i386
879@cindex i386 extension instructions
880@cindex extension instructions, x86-64
881@cindex x86-64 extension instructions
882The Intel-syntax extension instructions
883
884@itemize @bullet
885@item
886@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
887
888@item
889@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
890
891@item
892@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
893(x86-64 only).
894
895@item
896@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
897
898@item
899@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
900(x86-64 only).
901
902@item
903@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
904(x86-64 only).
905
906@item
907@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
908
909@item
910@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
911
912@item
913@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
914(x86-64 only).
915
916@item
917@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
918
919@item
920@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
921(x86-64 only).
922@end itemize
923
924@noindent
925are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
926@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
927@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
928@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
929@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
930
252b5132
RH
931@cindex jump instructions, i386
932@cindex call instructions, i386
55b62671
AJ
933@cindex jump instructions, x86-64
934@cindex call instructions, x86-64
252b5132
RH
935Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
936AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
937convention.
938
d3b47e2b 939@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
940
941@cindex i386 mnemonic compatibility
942@cindex mnemonic compatibility, i386
943
944@code{@value{AS}} supports assembly using Intel mnemonic.
945@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
946@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
947syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
948Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
949@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
950@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
951assembler with different mnemonics from those in Intel IA32 specification.
952@code{@value{GCC}} generates those instructions with AT&T mnemonic.
953
bc31405e
L
954@itemize @bullet
955@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
956register. @samp{movsxd} should be used to encode 16-bit or 32-bit
957destination register with both AT&T and Intel mnemonics.
958@end itemize
959
252b5132
RH
960@node i386-Regs
961@section Register Naming
962
963@cindex i386 registers
964@cindex registers, i386
55b62671
AJ
965@cindex x86-64 registers
966@cindex registers, x86-64
252b5132
RH
967Register operands are always prefixed with @samp{%}. The 80386 registers
968consist of
969
970@itemize @bullet
971@item
972the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
973@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
974frame pointer), and @samp{%esp} (the stack pointer).
975
976@item
977the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
978@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
979
980@item
981the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
982@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
983are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
984@samp{%cx}, and @samp{%dx})
985
986@item
987the 6 section registers @samp{%cs} (code section), @samp{%ds}
988(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
989and @samp{%gs}.
990
991@item
4bde3cdd
UD
992the 5 processor control registers @samp{%cr0}, @samp{%cr2},
993@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
994
995@item
996the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
997@samp{%db3}, @samp{%db6}, and @samp{%db7}.
998
999@item
1000the 2 test registers @samp{%tr6} and @samp{%tr7}.
1001
1002@item
1003the 8 floating point register stack @samp{%st} or equivalently
1004@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1005@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1006These registers are overloaded by 8 MMX registers @samp{%mm0},
1007@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1008@samp{%mm6} and @samp{%mm7}.
1009
1010@item
4bde3cdd 1011the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1012@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1013@end itemize
1014
1015The AMD x86-64 architecture extends the register set by:
1016
1017@itemize @bullet
1018@item
1019enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1020accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1021@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1022pointer)
1023
1024@item
1025the 8 extended registers @samp{%r8}--@samp{%r15}.
1026
1027@item
4bde3cdd 1028the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1029
1030@item
4bde3cdd 1031the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1032
1033@item
4bde3cdd 1034the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1035
1036@item
1037the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1038
1039@item
1040the 8 debug registers: @samp{%db8}--@samp{%db15}.
1041
1042@item
4bde3cdd
UD
1043the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1044@end itemize
1045
1046With the AVX extensions more registers were made available:
1047
1048@itemize @bullet
1049
1050@item
1051the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1052available in 32-bit mode). The bottom 128 bits are overlaid with the
1053@samp{xmm0}--@samp{xmm15} registers.
1054
1055@end itemize
1056
4bde3cdd
UD
1057The AVX512 extensions added the following registers:
1058
1059@itemize @bullet
1060
1061@item
1062the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1063available in 32-bit mode). The bottom 128 bits are overlaid with the
1064@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1065overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1066
1067@item
1068the 8 mask registers @samp{%k0}--@samp{%k7}.
1069
252b5132
RH
1070@end itemize
1071
1072@node i386-Prefixes
1073@section Instruction Prefixes
1074
1075@cindex i386 instruction prefixes
1076@cindex instruction prefixes, i386
1077@cindex prefixes, i386
1078Instruction prefixes are used to modify the following instruction. They
1079are used to repeat string instructions, to provide section overrides, to
1080perform bus lock operations, and to change operand and address sizes.
1081(Most instructions that normally operate on 32-bit operands will use
108216-bit operands if the instruction has an ``operand size'' prefix.)
1083Instruction prefixes are best written on the same line as the instruction
1084they act upon. For example, the @samp{scas} (scan string) instruction is
1085repeated with:
1086
1087@smallexample
1088 repne scas %es:(%edi),%al
1089@end smallexample
1090
1091You may also place prefixes on the lines immediately preceding the
1092instruction, but this circumvents checks that @code{@value{AS}} does
1093with prefixes, and will not work with all prefixes.
1094
1095Here is a list of instruction prefixes:
1096
1097@cindex section override prefixes, i386
1098@itemize @bullet
1099@item
1100Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1101@samp{fs}, @samp{gs}. These are automatically added by specifying
1102using the @var{section}:@var{memory-operand} form for memory references.
1103
1104@cindex size prefixes, i386
1105@item
1106Operand/Address size prefixes @samp{data16} and @samp{addr16}
1107change 32-bit operands/addresses into 16-bit operands/addresses,
1108while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1109@code{.code16} section) into 32-bit operands/addresses. These prefixes
1110@emph{must} appear on the same line of code as the instruction they
1111modify. For example, in a 16-bit @code{.code16} section, you might
1112write:
1113
1114@smallexample
1115 addr32 jmpl *(%ebx)
1116@end smallexample
1117
1118@cindex bus lock prefixes, i386
1119@cindex inhibiting interrupts, i386
1120@item
1121The bus lock prefix @samp{lock} inhibits interrupts during execution of
1122the instruction it precedes. (This is only valid with certain
1123instructions; see a 80386 manual for details).
1124
1125@cindex coprocessor wait, i386
1126@item
1127The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1128complete the current instruction. This should never be needed for the
112980386/80387 combination.
1130
1131@cindex repeat prefixes, i386
1132@item
1133The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1134to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1135times if the current address size is 16-bits).
55b62671
AJ
1136@cindex REX prefixes, i386
1137@item
1138The @samp{rex} family of prefixes is used by x86-64 to encode
1139extensions to i386 instruction set. The @samp{rex} prefix has four
1140bits --- an operand size overwrite (@code{64}) used to change operand size
1141from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1142register set.
1143
1144You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1145instruction emits @samp{rex} prefix with all the bits set. By omitting
1146the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1147prefixes as well. Normally, there is no need to write the prefixes
1148explicitly, since gas will automatically generate them based on the
1149instruction operands.
252b5132
RH
1150@end itemize
1151
1152@node i386-Memory
1153@section Memory References
1154
1155@cindex i386 memory references
1156@cindex memory references, i386
55b62671
AJ
1157@cindex x86-64 memory references
1158@cindex memory references, x86-64
252b5132
RH
1159An Intel syntax indirect memory reference of the form
1160
1161@smallexample
1162@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1163@end smallexample
1164
1165@noindent
1166is translated into the AT&T syntax
1167
1168@smallexample
1169@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1170@end smallexample
1171
1172@noindent
1173where @var{base} and @var{index} are the optional 32-bit base and
1174index registers, @var{disp} is the optional displacement, and
1175@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1176to calculate the address of the operand. If no @var{scale} is
1177specified, @var{scale} is taken to be 1. @var{section} specifies the
1178optional section register for the memory operand, and may override the
1179default section register (see a 80386 manual for section register
1180defaults). Note that section overrides in AT&T syntax @emph{must}
1181be preceded by a @samp{%}. If you specify a section override which
1182coincides with the default section register, @code{@value{AS}} does @emph{not}
1183output any section register override prefixes to assemble the given
1184instruction. Thus, section overrides can be specified to emphasize which
1185section register is used for a given memory operand.
1186
1187Here are some examples of Intel and AT&T style memory references:
1188
1189@table @asis
1190@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1191@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1192missing, and the default section is used (@samp{%ss} for addressing with
1193@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1194
1195@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1196@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1197@samp{foo}. All other fields are missing. The section register here
1198defaults to @samp{%ds}.
1199
1200@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1201This uses the value pointed to by @samp{foo} as a memory operand.
1202Note that @var{base} and @var{index} are both missing, but there is only
1203@emph{one} @samp{,}. This is a syntactic exception.
1204
1205@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1206This selects the contents of the variable @samp{foo} with section
1207register @var{section} being @samp{%gs}.
1208@end table
1209
1210Absolute (as opposed to PC relative) call and jump operands must be
1211prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1212always chooses PC relative addressing for jump/call labels.
1213
1214Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1215@emph{must} specify its size (byte, word, long, or quadruple) with an
1216instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1217respectively).
1218
1219The x86-64 architecture adds an RIP (instruction pointer relative)
1220addressing. This addressing mode is specified by using @samp{rip} as a
1221base register. Only constant offsets are valid. For example:
1222
1223@table @asis
1224@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1225Points to the address 1234 bytes past the end of the current
1226instruction.
1227
1228@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1229Points to the @code{symbol} in RIP relative way, this is shorter than
1230the default absolute addressing.
1231@end table
1232
1233Other addressing modes remain unchanged in x86-64 architecture, except
1234registers used are 64-bit instead of 32-bit.
252b5132 1235
fddf5b5b 1236@node i386-Jumps
252b5132
RH
1237@section Handling of Jump Instructions
1238
1239@cindex jump optimization, i386
1240@cindex i386 jump optimization
55b62671
AJ
1241@cindex jump optimization, x86-64
1242@cindex x86-64 jump optimization
252b5132
RH
1243Jump instructions are always optimized to use the smallest possible
1244displacements. This is accomplished by using byte (8-bit) displacement
1245jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1246is insufficient a long displacement is used. We do not support
252b5132
RH
1247word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1248instruction with the @samp{data16} instruction prefix), since the 80386
1249insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1250is added. (See also @pxref{i386-Arch})
252b5132
RH
1251
1252Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1253@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1254displacements, so that if you use these instructions (@code{@value{GCC}} does
1255not use them) you may get an error message (and incorrect code). The AT&T
125680386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1257to
1258
1259@smallexample
1260 jcxz cx_zero
1261 jmp cx_nonzero
1262cx_zero: jmp foo
1263cx_nonzero:
1264@end smallexample
1265
1266@node i386-Float
1267@section Floating Point
1268
1269@cindex i386 floating point
1270@cindex floating point, i386
55b62671
AJ
1271@cindex x86-64 floating point
1272@cindex floating point, x86-64
252b5132
RH
1273All 80387 floating point types except packed BCD are supported.
1274(BCD support may be added without much difficulty). These data
1275types are 16-, 32-, and 64- bit integers, and single (32-bit),
1276double (64-bit), and extended (80-bit) precision floating point.
1277Each supported type has an instruction mnemonic suffix and a constructor
1278associated with it. Instruction mnemonic suffixes specify the operand's
1279data type. Constructors build these data types into memory.
1280
1281@cindex @code{float} directive, i386
1282@cindex @code{single} directive, i386
1283@cindex @code{double} directive, i386
1284@cindex @code{tfloat} directive, i386
55b62671
AJ
1285@cindex @code{float} directive, x86-64
1286@cindex @code{single} directive, x86-64
1287@cindex @code{double} directive, x86-64
1288@cindex @code{tfloat} directive, x86-64
252b5132
RH
1289@itemize @bullet
1290@item
1291Floating point constructors are @samp{.float} or @samp{.single},
1292@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1293These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1294and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1295only supports this format via the @samp{fldt} (load 80-bit real to stack
1296top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1297
1298@cindex @code{word} directive, i386
1299@cindex @code{long} directive, i386
1300@cindex @code{int} directive, i386
1301@cindex @code{quad} directive, i386
55b62671
AJ
1302@cindex @code{word} directive, x86-64
1303@cindex @code{long} directive, x86-64
1304@cindex @code{int} directive, x86-64
1305@cindex @code{quad} directive, x86-64
252b5132
RH
1306@item
1307Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1308@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1309corresponding instruction mnemonic suffixes are @samp{s} (single),
1310@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1311the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1312quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1313stack) instructions.
1314@end itemize
1315
1316Register to register operations should not use instruction mnemonic suffixes.
1317@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1318wrote @samp{fst %st, %st(1)}, since all register to register operations
1319use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1320which converts @samp{%st} from 80-bit to 64-bit floating point format,
1321then stores the result in the 4 byte location @samp{mem})
1322
1323@node i386-SIMD
1324@section Intel's MMX and AMD's 3DNow! SIMD Operations
1325
1326@cindex MMX, i386
1327@cindex 3DNow!, i386
1328@cindex SIMD, i386
55b62671
AJ
1329@cindex MMX, x86-64
1330@cindex 3DNow!, x86-64
1331@cindex SIMD, x86-64
252b5132
RH
1332
1333@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1334instructions for integer data), available on Intel's Pentium MMX
1335processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1336Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1337instruction set (SIMD instructions for 32-bit floating point data)
1338available on AMD's K6-2 processor and possibly others in the future.
1339
1340Currently, @code{@value{AS}} does not support Intel's floating point
1341SIMD, Katmai (KNI).
1342
1343The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1344@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
134516-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1346floating point values. The MMX registers cannot be used at the same time
1347as the floating point stack.
1348
1349See Intel and AMD documentation, keeping in mind that the operand order in
1350instructions is reversed from the Intel syntax.
1351
f88c9eb0
SP
1352@node i386-LWP
1353@section AMD's Lightweight Profiling Instructions
1354
1355@cindex LWP, i386
1356@cindex LWP, x86-64
1357
1358@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1359instruction set, available on AMD's Family 15h (Orochi) processors.
1360
1361LWP enables applications to collect and manage performance data, and
1362react to performance events. The collection of performance data
1363requires no context switches. LWP runs in the context of a thread and
1364so several counters can be used independently across multiple threads.
1365LWP can be used in both 64-bit and legacy 32-bit modes.
1366
1367For detailed information on the LWP instruction set, see the
1368@cite{AMD Lightweight Profiling Specification} available at
1369@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1370
87973e9f
QN
1371@node i386-BMI
1372@section Bit Manipulation Instructions
1373
1374@cindex BMI, i386
1375@cindex BMI, x86-64
1376
1377@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1378
1379BMI instructions provide several instructions implementing individual
1380bit manipulation operations such as isolation, masking, setting, or
34bca508 1381resetting.
87973e9f
QN
1382
1383@c Need to add a specification citation here when available.
1384
2a2a0f38
QN
1385@node i386-TBM
1386@section AMD's Trailing Bit Manipulation Instructions
1387
1388@cindex TBM, i386
1389@cindex TBM, x86-64
1390
1391@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1392instruction set, available on AMD's BDVER2 processors (Trinity and
1393Viperfish).
1394
1395TBM instructions provide instructions implementing individual bit
1396manipulation operations such as isolating, masking, setting, resetting,
1397complementing, and operations on trailing zeros and ones.
1398
1399@c Need to add a specification citation here when available.
87973e9f 1400
252b5132
RH
1401@node i386-16bit
1402@section Writing 16-bit Code
1403
1404@cindex i386 16-bit code
1405@cindex 16-bit code, i386
1406@cindex real-mode code, i386
eecb386c 1407@cindex @code{code16gcc} directive, i386
252b5132
RH
1408@cindex @code{code16} directive, i386
1409@cindex @code{code32} directive, i386
55b62671
AJ
1410@cindex @code{code64} directive, i386
1411@cindex @code{code64} directive, x86-64
1412While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1413or 64-bit x86-64 code depending on the default configuration,
252b5132 1414it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1415mode code segments. To do this, put a @samp{.code16} or
1416@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1417be run in 16-bit mode. You can switch @code{@value{AS}} to writing
141832-bit code with the @samp{.code32} directive or 64-bit code with the
1419@samp{.code64} directive.
eecb386c
AM
1420
1421@samp{.code16gcc} provides experimental support for generating 16-bit
1422code from gcc, and differs from @samp{.code16} in that @samp{call},
1423@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1424@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1425default to 32-bit size. This is so that the stack pointer is
1426manipulated in the same way over function calls, allowing access to
1427function parameters at the same stack offsets as in 32-bit mode.
1428@samp{.code16gcc} also automatically adds address size prefixes where
1429necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1430
1431The code which @code{@value{AS}} generates in 16-bit mode will not
1432necessarily run on a 16-bit pre-80386 processor. To write code that
1433runs on such a processor, you must refrain from using @emph{any} 32-bit
1434constructs which require @code{@value{AS}} to output address or operand
1435size prefixes.
1436
1437Note that writing 16-bit code instructions by explicitly specifying a
1438prefix or an instruction mnemonic suffix within a 32-bit code section
1439generates different machine instructions than those generated for a
144016-bit code segment. In a 32-bit code section, the following code
1441generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1442value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1443
1444@smallexample
1445 pushw $4
1446@end smallexample
1447
1448The same code in a 16-bit code section would generate the machine
b45619c0 1449opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1450is correct since the processor default operand size is assumed to be 16
1451bits in a 16-bit code section.
1452
e413e4e9
AM
1453@node i386-Arch
1454@section Specifying CPU Architecture
1455
1456@cindex arch directive, i386
1457@cindex i386 arch directive
55b62671
AJ
1458@cindex arch directive, x86-64
1459@cindex x86-64 arch directive
e413e4e9
AM
1460
1461@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1462(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1463directive enables a warning when gas detects an instruction that is not
1464supported on the CPU specified. The choices for @var{cpu_type} are:
1465
1466@multitable @columnfractions .20 .20 .20 .20
1467@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1468@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1469@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1470@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1471@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1472@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1473@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1474@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1475@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1476@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1477@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1478@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1479@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1480@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1481@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1482@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1483@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1484@item @samp{.hle}
e2e1fcde 1485@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1486@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1487@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1488@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1489@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1490@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1491@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1492@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1493@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1494@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1495@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1496@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1ceab344 1497@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1498@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1499@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1500@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
a847e322 1501@item @samp{.mcommit} @tab @samp{.sev_es}
e413e4e9
AM
1502@end multitable
1503
fddf5b5b
AM
1504Apart from the warning, there are only two other effects on
1505@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1506@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1507will automatically use a two byte opcode sequence. The larger three
1508byte opcode sequence is used on the 486 (and when no architecture is
1509specified) because it executes faster on the 486. Note that you can
1510explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1511Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1512@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1513conditional jumps will be promoted when necessary to a two instruction
1514sequence consisting of a conditional jump of the opposite sense around
1515an unconditional jump to the target.
1516
5c6af06e
JB
1517Following the CPU architecture (but not a sub-architecture, which are those
1518starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1519control automatic promotion of conditional jumps. @samp{jumps} is the
1520default, and enables jump promotion; All external jumps will be of the long
1521variety, and file-local jumps will be promoted as necessary.
1522(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1523byte offset jumps, and warns about file-local conditional jumps that
1524@code{@value{AS}} promotes.
fddf5b5b
AM
1525Unconditional jumps are treated as for @samp{jumps}.
1526
1527For example
1528
1529@smallexample
1530 .arch i8086,nojumps
1531@end smallexample
e413e4e9 1532
bc31405e
L
1533@node i386-ISA
1534@section AMD64 ISA vs. Intel64 ISA
1535
1536There are some discrepancies between AMD64 and Intel64 ISAs.
1537
1538@itemize @bullet
1539@item For @samp{movsxd} with 16-bit destination register, AMD64
1540supports 32-bit source operand and Intel64 supports 16-bit source
1541operand.
5990e377
JB
1542
1543@item For far branches (with explicit memory operand), both ISAs support
154432- and 16-bit operand size. Intel64 additionally supports 64-bit
1545operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1546and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1547syntax.
1548
1549@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1550and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1551while Intel64 additionally supports 64-bit operand sise (80-bit memory
1552operands).
1553
bc31405e
L
1554@end itemize
1555
5c9352f3
AM
1556@node i386-Bugs
1557@section AT&T Syntax bugs
1558
1559The UnixWare assembler, and probably other AT&T derived ix86 Unix
1560assemblers, generate floating point instructions with reversed source
1561and destination registers in certain cases. Unfortunately, gcc and
1562possibly many other programs use this reversed syntax, so we're stuck
1563with it.
1564
1565For example
1566
1567@smallexample
1568 fsub %st,%st(3)
1569@end smallexample
1570@noindent
1571results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1572than the expected @samp{%st(3) - %st}. This happens with all the
1573non-commutative arithmetic floating point operations with two register
1574operands where the source register is @samp{%st} and the destination
1575register is @samp{%st(i)}.
1576
252b5132
RH
1577@node i386-Notes
1578@section Notes
1579
1580@cindex i386 @code{mul}, @code{imul} instructions
1581@cindex @code{mul} instruction, i386
1582@cindex @code{imul} instruction, i386
55b62671
AJ
1583@cindex @code{mul} instruction, x86-64
1584@cindex @code{imul} instruction, x86-64
252b5132 1585There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1586instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1587multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1588for @samp{imul}) can be output only in the one operand form. Thus,
1589@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1590the expanding multiply would clobber the @samp{%edx} register, and this
1591would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
159264-bit product in @samp{%edx:%eax}.
1593
1594We have added a two operand form of @samp{imul} when the first operand
1595is an immediate mode expression and the second operand is a register.
1596This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1597example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1598$69, %eax, %eax}.
1599
This page took 1.010816 seconds and 4 git commands to generate.