gdb/python: New method to access list of register groups
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
b811d2c2 1@c Copyright (C) 2008--2020 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
329baa95
DE
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
116@end table
117
118@node Python API
119@subsection Python API
120@cindex python api
121@cindex programming in python
122
123You can get quick online help for @value{GDBN}'s Python API by issuing
124the command @w{@kbd{python help (gdb)}}.
125
126Functions and methods which have two or more optional arguments allow
127them to be specified using keyword syntax. This allows passing some
128optional arguments while skipping others. Example:
129@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
130
131@menu
132* Basic Python:: Basic Python Functions.
133* Exception Handling:: How Python exceptions are translated.
134* Values From Inferior:: Python representation of values.
135* Types In Python:: Python representation of types.
136* Pretty Printing API:: Pretty-printing values.
137* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
138* Writing a Pretty-Printer:: Writing a Pretty-Printer.
139* Type Printing API:: Pretty-printing types.
140* Frame Filter API:: Filtering Frames.
141* Frame Decorator API:: Decorating Frames.
142* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 143* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
144* Xmethods In Python:: Adding and replacing methods of C++ classes.
145* Xmethod API:: Xmethod types.
146* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
147* Inferiors In Python:: Python representation of inferiors (processes)
148* Events In Python:: Listening for events from @value{GDBN}.
149* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 150* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
151* Commands In Python:: Implementing new commands in Python.
152* Parameters In Python:: Adding new @value{GDBN} parameters.
153* Functions In Python:: Writing new convenience functions.
154* Progspaces In Python:: Program spaces.
155* Objfiles In Python:: Object files.
156* Frames In Python:: Accessing inferior stack frames from Python.
157* Blocks In Python:: Accessing blocks from Python.
158* Symbols In Python:: Python representation of symbols.
159* Symbol Tables In Python:: Python representation of symbol tables.
160* Line Tables In Python:: Python representation of line tables.
161* Breakpoints In Python:: Manipulating breakpoints using Python.
162* Finish Breakpoints in Python:: Setting Breakpoints on function return
163 using Python.
164* Lazy Strings In Python:: Python representation of lazy strings.
165* Architectures In Python:: Python representation of architectures.
0f767f94 166* Registers In Python:: Python representation of registers.
01b1af32 167* TUI Windows In Python:: Implementing new TUI windows.
329baa95
DE
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
562> print "Hello, World!"
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
ff6c8b35 738@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
739This second form of the @code{gdb.Value} constructor returns a
740@code{gdb.Value} of type @var{type} where the value contents are taken
741from the Python buffer object specified by @var{val}. The number of
742bytes in the Python buffer object must be greater than or equal to the
743size of @var{type}.
744@end defun
745
329baa95
DE
746@defun Value.cast (type)
747Return a new instance of @code{gdb.Value} that is the result of
748casting this instance to the type described by @var{type}, which must
749be a @code{gdb.Type} object. If the cast cannot be performed for some
750reason, this method throws an exception.
751@end defun
752
753@defun Value.dereference ()
754For pointer data types, this method returns a new @code{gdb.Value} object
755whose contents is the object pointed to by the pointer. For example, if
756@code{foo} is a C pointer to an @code{int}, declared in your C program as
757
758@smallexample
759int *foo;
760@end smallexample
761
762@noindent
763then you can use the corresponding @code{gdb.Value} to access what
764@code{foo} points to like this:
765
766@smallexample
767bar = foo.dereference ()
768@end smallexample
769
770The result @code{bar} will be a @code{gdb.Value} object holding the
771value pointed to by @code{foo}.
772
773A similar function @code{Value.referenced_value} exists which also
760f7560 774returns @code{gdb.Value} objects corresponding to the values pointed to
329baa95
DE
775by pointer values (and additionally, values referenced by reference
776values). However, the behavior of @code{Value.dereference}
777differs from @code{Value.referenced_value} by the fact that the
778behavior of @code{Value.dereference} is identical to applying the C
779unary operator @code{*} on a given value. For example, consider a
780reference to a pointer @code{ptrref}, declared in your C@t{++} program
781as
782
783@smallexample
784typedef int *intptr;
785...
786int val = 10;
787intptr ptr = &val;
788intptr &ptrref = ptr;
789@end smallexample
790
791Though @code{ptrref} is a reference value, one can apply the method
792@code{Value.dereference} to the @code{gdb.Value} object corresponding
793to it and obtain a @code{gdb.Value} which is identical to that
794corresponding to @code{val}. However, if you apply the method
795@code{Value.referenced_value}, the result would be a @code{gdb.Value}
796object identical to that corresponding to @code{ptr}.
797
798@smallexample
799py_ptrref = gdb.parse_and_eval ("ptrref")
800py_val = py_ptrref.dereference ()
801py_ptr = py_ptrref.referenced_value ()
802@end smallexample
803
804The @code{gdb.Value} object @code{py_val} is identical to that
805corresponding to @code{val}, and @code{py_ptr} is identical to that
806corresponding to @code{ptr}. In general, @code{Value.dereference} can
807be applied whenever the C unary operator @code{*} can be applied
808to the corresponding C value. For those cases where applying both
809@code{Value.dereference} and @code{Value.referenced_value} is allowed,
810the results obtained need not be identical (as we have seen in the above
811example). The results are however identical when applied on
812@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
813objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
814@end defun
815
816@defun Value.referenced_value ()
817For pointer or reference data types, this method returns a new
818@code{gdb.Value} object corresponding to the value referenced by the
819pointer/reference value. For pointer data types,
820@code{Value.dereference} and @code{Value.referenced_value} produce
821identical results. The difference between these methods is that
822@code{Value.dereference} cannot get the values referenced by reference
823values. For example, consider a reference to an @code{int}, declared
824in your C@t{++} program as
825
826@smallexample
827int val = 10;
828int &ref = val;
829@end smallexample
830
831@noindent
832then applying @code{Value.dereference} to the @code{gdb.Value} object
833corresponding to @code{ref} will result in an error, while applying
834@code{Value.referenced_value} will result in a @code{gdb.Value} object
835identical to that corresponding to @code{val}.
836
837@smallexample
838py_ref = gdb.parse_and_eval ("ref")
839er_ref = py_ref.dereference () # Results in error
840py_val = py_ref.referenced_value () # Returns the referenced value
841@end smallexample
842
843The @code{gdb.Value} object @code{py_val} is identical to that
844corresponding to @code{val}.
845@end defun
846
4c082a81
SC
847@defun Value.reference_value ()
848Return a @code{gdb.Value} object which is a reference to the value
849encapsulated by this instance.
850@end defun
851
852@defun Value.const_value ()
853Return a @code{gdb.Value} object which is a @code{const} version of the
854value encapsulated by this instance.
855@end defun
856
329baa95
DE
857@defun Value.dynamic_cast (type)
858Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
859operator were used. Consult a C@t{++} reference for details.
860@end defun
861
862@defun Value.reinterpret_cast (type)
863Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
864operator were used. Consult a C@t{++} reference for details.
865@end defun
866
52093e1b
MB
867@defun Value.format_string (...)
868Convert a @code{gdb.Value} to a string, similarly to what the @code{print}
869command does. Invoked with no arguments, this is equivalent to calling
870the @code{str} function on the @code{gdb.Value}. The representation of
871the same value may change across different versions of @value{GDBN}, so
872you shouldn't, for instance, parse the strings returned by this method.
873
874All the arguments are keyword only. If an argument is not specified, the
875current global default setting is used.
876
877@table @code
878@item raw
879@code{True} if pretty-printers (@pxref{Pretty Printing}) should not be
880used to format the value. @code{False} if enabled pretty-printers
881matching the type represented by the @code{gdb.Value} should be used to
882format it.
883
884@item pretty_arrays
885@code{True} if arrays should be pretty printed to be more convenient to
886read, @code{False} if they shouldn't (see @code{set print array} in
887@ref{Print Settings}).
888
889@item pretty_structs
890@code{True} if structs should be pretty printed to be more convenient to
891read, @code{False} if they shouldn't (see @code{set print pretty} in
892@ref{Print Settings}).
893
894@item array_indexes
895@code{True} if array indexes should be included in the string
896representation of arrays, @code{False} if they shouldn't (see @code{set
897print array-indexes} in @ref{Print Settings}).
898
899@item symbols
900@code{True} if the string representation of a pointer should include the
901corresponding symbol name (if one exists), @code{False} if it shouldn't
902(see @code{set print symbol} in @ref{Print Settings}).
903
904@item unions
905@code{True} if unions which are contained in other structures or unions
906should be expanded, @code{False} if they shouldn't (see @code{set print
907union} in @ref{Print Settings}).
908
909@item deref_refs
910@code{True} if C@t{++} references should be resolved to the value they
911refer to, @code{False} (the default) if they shouldn't. Note that, unlike
912for the @code{print} command, references are not automatically expanded
913when using the @code{format_string} method or the @code{str}
914function. There is no global @code{print} setting to change the default
915behaviour.
916
917@item actual_objects
918@code{True} if the representation of a pointer to an object should
919identify the @emph{actual} (derived) type of the object rather than the
920@emph{declared} type, using the virtual function table. @code{False} if
921the @emph{declared} type should be used. (See @code{set print object} in
922@ref{Print Settings}).
923
924@item static_fields
925@code{True} if static members should be included in the string
926representation of a C@t{++} object, @code{False} if they shouldn't (see
927@code{set print static-members} in @ref{Print Settings}).
928
929@item max_elements
930Number of array elements to print, or @code{0} to print an unlimited
931number of elements (see @code{set print elements} in @ref{Print
932Settings}).
933
2e62ab40
AB
934@item max_depth
935The maximum depth to print for nested structs and unions, or @code{-1}
936to print an unlimited number of elements (see @code{set print
937max-depth} in @ref{Print Settings}).
938
52093e1b
MB
939@item repeat_threshold
940Set the threshold for suppressing display of repeated array elements, or
941@code{0} to represent all elements, even if repeated. (See @code{set
942print repeats} in @ref{Print Settings}).
943
944@item format
945A string containing a single character representing the format to use for
946the returned string. For instance, @code{'x'} is equivalent to using the
947@value{GDBN} command @code{print} with the @code{/x} option and formats
948the value as a hexadecimal number.
949@end table
950@end defun
951
329baa95
DE
952@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
953If this @code{gdb.Value} represents a string, then this method
954converts the contents to a Python string. Otherwise, this method will
955throw an exception.
956
b3ce5e5f
DE
957Values are interpreted as strings according to the rules of the
958current language. If the optional length argument is given, the
959string will be converted to that length, and will include any embedded
960zeroes that the string may contain. Otherwise, for languages
961where the string is zero-terminated, the entire string will be
962converted.
329baa95 963
b3ce5e5f
DE
964For example, in C-like languages, a value is a string if it is a pointer
965to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
966or @code{char32_t}.
329baa95
DE
967
968If the optional @var{encoding} argument is given, it must be a string
969naming the encoding of the string in the @code{gdb.Value}, such as
970@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
971the same encodings as the corresponding argument to Python's
972@code{string.decode} method, and the Python codec machinery will be used
973to convert the string. If @var{encoding} is not given, or if
974@var{encoding} is the empty string, then either the @code{target-charset}
975(@pxref{Character Sets}) will be used, or a language-specific encoding
976will be used, if the current language is able to supply one.
977
978The optional @var{errors} argument is the same as the corresponding
979argument to Python's @code{string.decode} method.
980
981If the optional @var{length} argument is given, the string will be
982fetched and converted to the given length.
983@end defun
984
985@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
986If this @code{gdb.Value} represents a string, then this method
987converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
988In Python}). Otherwise, this method will throw an exception.
989
990If the optional @var{encoding} argument is given, it must be a string
991naming the encoding of the @code{gdb.LazyString}. Some examples are:
992@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
993@var{encoding} argument is an encoding that @value{GDBN} does
994recognize, @value{GDBN} will raise an error.
995
996When a lazy string is printed, the @value{GDBN} encoding machinery is
997used to convert the string during printing. If the optional
998@var{encoding} argument is not provided, or is an empty string,
999@value{GDBN} will automatically select the encoding most suitable for
1000the string type. For further information on encoding in @value{GDBN}
1001please see @ref{Character Sets}.
1002
1003If the optional @var{length} argument is given, the string will be
1004fetched and encoded to the length of characters specified. If
1005the @var{length} argument is not provided, the string will be fetched
1006and encoded until a null of appropriate width is found.
1007@end defun
1008
1009@defun Value.fetch_lazy ()
1010If the @code{gdb.Value} object is currently a lazy value
1011(@code{gdb.Value.is_lazy} is @code{True}), then the value is
1012fetched from the inferior. Any errors that occur in the process
1013will produce a Python exception.
1014
1015If the @code{gdb.Value} object is not a lazy value, this method
1016has no effect.
1017
1018This method does not return a value.
1019@end defun
1020
1021
1022@node Types In Python
1023@subsubsection Types In Python
1024@cindex types in Python
1025@cindex Python, working with types
1026
1027@tindex gdb.Type
1028@value{GDBN} represents types from the inferior using the class
1029@code{gdb.Type}.
1030
1031The following type-related functions are available in the @code{gdb}
1032module:
1033
1034@findex gdb.lookup_type
1035@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 1036This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
1037
1038If @var{block} is given, then @var{name} is looked up in that scope.
1039Otherwise, it is searched for globally.
1040
1041Ordinarily, this function will return an instance of @code{gdb.Type}.
1042If the named type cannot be found, it will throw an exception.
1043@end defun
1044
1045If the type is a structure or class type, or an enum type, the fields
1046of that type can be accessed using the Python @dfn{dictionary syntax}.
1047For example, if @code{some_type} is a @code{gdb.Type} instance holding
1048a structure type, you can access its @code{foo} field with:
1049
1050@smallexample
1051bar = some_type['foo']
1052@end smallexample
1053
1054@code{bar} will be a @code{gdb.Field} object; see below under the
1055description of the @code{Type.fields} method for a description of the
1056@code{gdb.Field} class.
1057
1058An instance of @code{Type} has the following attributes:
1059
6d7bb824
TT
1060@defvar Type.alignof
1061The alignment of this type, in bytes. Type alignment comes from the
1062debugging information; if it was not specified, then @value{GDBN} will
1063use the relevant ABI to try to determine the alignment. In some
1064cases, even this is not possible, and zero will be returned.
1065@end defvar
1066
329baa95
DE
1067@defvar Type.code
1068The type code for this type. The type code will be one of the
1069@code{TYPE_CODE_} constants defined below.
1070@end defvar
1071
1acda803
TT
1072@defvar Type.dynamic
1073A boolean indicating whether this type is dynamic. In some
1074situations, such as Rust @code{enum} types or Ada variant records, the
45fc7c99
TT
1075concrete type of a value may vary depending on its contents. That is,
1076the declared type of a variable, or the type returned by
1077@code{gdb.lookup_type} may be dynamic; while the type of the
1078variable's value will be a concrete instance of that dynamic type.
1079
1080For example, consider this code:
1081@smallexample
1082int n;
1083int array[n];
1084@end smallexample
1085
1086Here, at least conceptually (whether your compiler actually does this
1087is a separate issue), examining @w{@code{gdb.lookup_symbol("array", ...).type}}
1088could yield a @code{gdb.Type} which reports a size of @code{None}.
1089This is the dynamic type.
1090
1091However, examining @code{gdb.parse_and_eval("array").type} would yield
1092a concrete type, whose length would be known.
1acda803
TT
1093@end defvar
1094
329baa95
DE
1095@defvar Type.name
1096The name of this type. If this type has no name, then @code{None}
1097is returned.
1098@end defvar
1099
1100@defvar Type.sizeof
1101The size of this type, in target @code{char} units. Usually, a
1102target's @code{char} type will be an 8-bit byte. However, on some
1acda803
TT
1103unusual platforms, this type may have a different size. A dynamic
1104type may not have a fixed size; in this case, this attribute's value
1105will be @code{None}.
329baa95
DE
1106@end defvar
1107
1108@defvar Type.tag
1109The tag name for this type. The tag name is the name after
1110@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1111languages have this concept. If this type has no tag name, then
1112@code{None} is returned.
1113@end defvar
1114
e1f2e1a2
CB
1115@defvar Type.objfile
1116The @code{gdb.Objfile} that this type was defined in, or @code{None} if
1117there is no associated objfile.
1118@end defvar
1119
329baa95
DE
1120The following methods are provided:
1121
1122@defun Type.fields ()
1123For structure and union types, this method returns the fields. Range
1124types have two fields, the minimum and maximum values. Enum types
1125have one field per enum constant. Function and method types have one
1126field per parameter. The base types of C@t{++} classes are also
1127represented as fields. If the type has no fields, or does not fit
1128into one of these categories, an empty sequence will be returned.
1129
1130Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1131@table @code
1132@item bitpos
1133This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1134(as in C@t{++}) fields. The value is the position, counting
1acda803
TT
1135in bits, from the start of the containing type. Note that, in a
1136dynamic type, the position of a field may not be constant. In this
45fc7c99
TT
1137case, the value will be @code{None}. Also, a dynamic type may have
1138fields that do not appear in a corresponding concrete type.
329baa95
DE
1139
1140@item enumval
1141This attribute is only available for @code{enum} fields, and its value
1142is the enumeration member's integer representation.
1143
1144@item name
1145The name of the field, or @code{None} for anonymous fields.
1146
1147@item artificial
1148This is @code{True} if the field is artificial, usually meaning that
1149it was provided by the compiler and not the user. This attribute is
1150always provided, and is @code{False} if the field is not artificial.
1151
1152@item is_base_class
1153This is @code{True} if the field represents a base class of a C@t{++}
1154structure. This attribute is always provided, and is @code{False}
1155if the field is not a base class of the type that is the argument of
1156@code{fields}, or if that type was not a C@t{++} class.
1157
1158@item bitsize
1159If the field is packed, or is a bitfield, then this will have a
1160non-zero value, which is the size of the field in bits. Otherwise,
1161this will be zero; in this case the field's size is given by its type.
1162
1163@item type
1164The type of the field. This is usually an instance of @code{Type},
1165but it can be @code{None} in some situations.
1166
1167@item parent_type
1168The type which contains this field. This is an instance of
1169@code{gdb.Type}.
1170@end table
1171@end defun
1172
1173@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1174Return a new @code{gdb.Type} object which represents an array of this
1175type. If one argument is given, it is the inclusive upper bound of
1176the array; in this case the lower bound is zero. If two arguments are
1177given, the first argument is the lower bound of the array, and the
1178second argument is the upper bound of the array. An array's length
1179must not be negative, but the bounds can be.
1180@end defun
1181
1182@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1183Return a new @code{gdb.Type} object which represents a vector of this
1184type. If one argument is given, it is the inclusive upper bound of
1185the vector; in this case the lower bound is zero. If two arguments are
1186given, the first argument is the lower bound of the vector, and the
1187second argument is the upper bound of the vector. A vector's length
1188must not be negative, but the bounds can be.
1189
1190The difference between an @code{array} and a @code{vector} is that
1191arrays behave like in C: when used in expressions they decay to a pointer
1192to the first element whereas vectors are treated as first class values.
1193@end defun
1194
1195@defun Type.const ()
1196Return a new @code{gdb.Type} object which represents a
1197@code{const}-qualified variant of this type.
1198@end defun
1199
1200@defun Type.volatile ()
1201Return a new @code{gdb.Type} object which represents a
1202@code{volatile}-qualified variant of this type.
1203@end defun
1204
1205@defun Type.unqualified ()
1206Return a new @code{gdb.Type} object which represents an unqualified
1207variant of this type. That is, the result is neither @code{const} nor
1208@code{volatile}.
1209@end defun
1210
1211@defun Type.range ()
1212Return a Python @code{Tuple} object that contains two elements: the
1213low bound of the argument type and the high bound of that type. If
1214the type does not have a range, @value{GDBN} will raise a
1215@code{gdb.error} exception (@pxref{Exception Handling}).
1216@end defun
1217
1218@defun Type.reference ()
1219Return a new @code{gdb.Type} object which represents a reference to this
1220type.
1221@end defun
1222
1223@defun Type.pointer ()
1224Return a new @code{gdb.Type} object which represents a pointer to this
1225type.
1226@end defun
1227
1228@defun Type.strip_typedefs ()
1229Return a new @code{gdb.Type} that represents the real type,
1230after removing all layers of typedefs.
1231@end defun
1232
1233@defun Type.target ()
1234Return a new @code{gdb.Type} object which represents the target type
1235of this type.
1236
1237For a pointer type, the target type is the type of the pointed-to
1238object. For an array type (meaning C-like arrays), the target type is
1239the type of the elements of the array. For a function or method type,
1240the target type is the type of the return value. For a complex type,
1241the target type is the type of the elements. For a typedef, the
1242target type is the aliased type.
1243
1244If the type does not have a target, this method will throw an
1245exception.
1246@end defun
1247
1248@defun Type.template_argument (n @r{[}, block@r{]})
1249If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1250return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1251value of the @var{n}th template argument (indexed starting at 0).
329baa95 1252
1a6a384b
JL
1253If this @code{gdb.Type} is not a template type, or if the type has fewer
1254than @var{n} template arguments, this will throw an exception.
1255Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1256
1257If @var{block} is given, then @var{name} is looked up in that scope.
1258Otherwise, it is searched for globally.
1259@end defun
1260
59fb7612
SS
1261@defun Type.optimized_out ()
1262Return @code{gdb.Value} instance of this type whose value is optimized
1263out. This allows a frame decorator to indicate that the value of an
1264argument or a local variable is not known.
1265@end defun
329baa95
DE
1266
1267Each type has a code, which indicates what category this type falls
1268into. The available type categories are represented by constants
1269defined in the @code{gdb} module:
1270
b3ce5e5f
DE
1271@vtable @code
1272@vindex TYPE_CODE_PTR
329baa95
DE
1273@item gdb.TYPE_CODE_PTR
1274The type is a pointer.
1275
b3ce5e5f 1276@vindex TYPE_CODE_ARRAY
329baa95
DE
1277@item gdb.TYPE_CODE_ARRAY
1278The type is an array.
1279
b3ce5e5f 1280@vindex TYPE_CODE_STRUCT
329baa95
DE
1281@item gdb.TYPE_CODE_STRUCT
1282The type is a structure.
1283
b3ce5e5f 1284@vindex TYPE_CODE_UNION
329baa95
DE
1285@item gdb.TYPE_CODE_UNION
1286The type is a union.
1287
b3ce5e5f 1288@vindex TYPE_CODE_ENUM
329baa95
DE
1289@item gdb.TYPE_CODE_ENUM
1290The type is an enum.
1291
b3ce5e5f 1292@vindex TYPE_CODE_FLAGS
329baa95
DE
1293@item gdb.TYPE_CODE_FLAGS
1294A bit flags type, used for things such as status registers.
1295
b3ce5e5f 1296@vindex TYPE_CODE_FUNC
329baa95
DE
1297@item gdb.TYPE_CODE_FUNC
1298The type is a function.
1299
b3ce5e5f 1300@vindex TYPE_CODE_INT
329baa95
DE
1301@item gdb.TYPE_CODE_INT
1302The type is an integer type.
1303
b3ce5e5f 1304@vindex TYPE_CODE_FLT
329baa95
DE
1305@item gdb.TYPE_CODE_FLT
1306A floating point type.
1307
b3ce5e5f 1308@vindex TYPE_CODE_VOID
329baa95
DE
1309@item gdb.TYPE_CODE_VOID
1310The special type @code{void}.
1311
b3ce5e5f 1312@vindex TYPE_CODE_SET
329baa95
DE
1313@item gdb.TYPE_CODE_SET
1314A Pascal set type.
1315
b3ce5e5f 1316@vindex TYPE_CODE_RANGE
329baa95
DE
1317@item gdb.TYPE_CODE_RANGE
1318A range type, that is, an integer type with bounds.
1319
b3ce5e5f 1320@vindex TYPE_CODE_STRING
329baa95
DE
1321@item gdb.TYPE_CODE_STRING
1322A string type. Note that this is only used for certain languages with
1323language-defined string types; C strings are not represented this way.
1324
b3ce5e5f 1325@vindex TYPE_CODE_BITSTRING
329baa95
DE
1326@item gdb.TYPE_CODE_BITSTRING
1327A string of bits. It is deprecated.
1328
b3ce5e5f 1329@vindex TYPE_CODE_ERROR
329baa95
DE
1330@item gdb.TYPE_CODE_ERROR
1331An unknown or erroneous type.
1332
b3ce5e5f 1333@vindex TYPE_CODE_METHOD
329baa95 1334@item gdb.TYPE_CODE_METHOD
9c37b5ae 1335A method type, as found in C@t{++}.
329baa95 1336
b3ce5e5f 1337@vindex TYPE_CODE_METHODPTR
329baa95
DE
1338@item gdb.TYPE_CODE_METHODPTR
1339A pointer-to-member-function.
1340
b3ce5e5f 1341@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1342@item gdb.TYPE_CODE_MEMBERPTR
1343A pointer-to-member.
1344
b3ce5e5f 1345@vindex TYPE_CODE_REF
329baa95
DE
1346@item gdb.TYPE_CODE_REF
1347A reference type.
1348
3fcf899d
AV
1349@vindex TYPE_CODE_RVALUE_REF
1350@item gdb.TYPE_CODE_RVALUE_REF
1351A C@t{++}11 rvalue reference type.
1352
b3ce5e5f 1353@vindex TYPE_CODE_CHAR
329baa95
DE
1354@item gdb.TYPE_CODE_CHAR
1355A character type.
1356
b3ce5e5f 1357@vindex TYPE_CODE_BOOL
329baa95
DE
1358@item gdb.TYPE_CODE_BOOL
1359A boolean type.
1360
b3ce5e5f 1361@vindex TYPE_CODE_COMPLEX
329baa95
DE
1362@item gdb.TYPE_CODE_COMPLEX
1363A complex float type.
1364
b3ce5e5f 1365@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1366@item gdb.TYPE_CODE_TYPEDEF
1367A typedef to some other type.
1368
b3ce5e5f 1369@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1370@item gdb.TYPE_CODE_NAMESPACE
1371A C@t{++} namespace.
1372
b3ce5e5f 1373@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1374@item gdb.TYPE_CODE_DECFLOAT
1375A decimal floating point type.
1376
b3ce5e5f 1377@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1378@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1379A function internal to @value{GDBN}. This is the type used to represent
1380convenience functions.
b3ce5e5f 1381@end vtable
329baa95
DE
1382
1383Further support for types is provided in the @code{gdb.types}
1384Python module (@pxref{gdb.types}).
1385
1386@node Pretty Printing API
1387@subsubsection Pretty Printing API
b3ce5e5f 1388@cindex python pretty printing api
329baa95 1389
329baa95 1390A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1391specific interface, defined here. An example output is provided
1392(@pxref{Pretty Printing}).
329baa95
DE
1393
1394@defun pretty_printer.children (self)
1395@value{GDBN} will call this method on a pretty-printer to compute the
1396children of the pretty-printer's value.
1397
1398This method must return an object conforming to the Python iterator
1399protocol. Each item returned by the iterator must be a tuple holding
1400two elements. The first element is the ``name'' of the child; the
1401second element is the child's value. The value can be any Python
1402object which is convertible to a @value{GDBN} value.
1403
1404This method is optional. If it does not exist, @value{GDBN} will act
1405as though the value has no children.
2e62ab40 1406
a97c8e56
TT
1407For efficiency, the @code{children} method should lazily compute its
1408results. This will let @value{GDBN} read as few elements as
1409necessary, for example when various print settings (@pxref{Print
1410Settings}) or @code{-var-list-children} (@pxref{GDB/MI Variable
1411Objects}) limit the number of elements to be displayed.
1412
2e62ab40
AB
1413Children may be hidden from display based on the value of @samp{set
1414print max-depth} (@pxref{Print Settings}).
329baa95
DE
1415@end defun
1416
1417@defun pretty_printer.display_hint (self)
1418The CLI may call this method and use its result to change the
1419formatting of a value. The result will also be supplied to an MI
1420consumer as a @samp{displayhint} attribute of the variable being
1421printed.
1422
1423This method is optional. If it does exist, this method must return a
9f9aa852 1424string or the special value @code{None}.
329baa95
DE
1425
1426Some display hints are predefined by @value{GDBN}:
1427
1428@table @samp
1429@item array
1430Indicate that the object being printed is ``array-like''. The CLI
1431uses this to respect parameters such as @code{set print elements} and
1432@code{set print array}.
1433
1434@item map
1435Indicate that the object being printed is ``map-like'', and that the
1436children of this value can be assumed to alternate between keys and
1437values.
1438
1439@item string
1440Indicate that the object being printed is ``string-like''. If the
1441printer's @code{to_string} method returns a Python string of some
1442kind, then @value{GDBN} will call its internal language-specific
1443string-printing function to format the string. For the CLI this means
1444adding quotation marks, possibly escaping some characters, respecting
1445@code{set print elements}, and the like.
1446@end table
9f9aa852
AB
1447
1448The special value @code{None} causes @value{GDBN} to apply the default
1449display rules.
329baa95
DE
1450@end defun
1451
1452@defun pretty_printer.to_string (self)
1453@value{GDBN} will call this method to display the string
1454representation of the value passed to the object's constructor.
1455
1456When printing from the CLI, if the @code{to_string} method exists,
1457then @value{GDBN} will prepend its result to the values returned by
1458@code{children}. Exactly how this formatting is done is dependent on
1459the display hint, and may change as more hints are added. Also,
1460depending on the print settings (@pxref{Print Settings}), the CLI may
1461print just the result of @code{to_string} in a stack trace, omitting
1462the result of @code{children}.
1463
1464If this method returns a string, it is printed verbatim.
1465
1466Otherwise, if this method returns an instance of @code{gdb.Value},
1467then @value{GDBN} prints this value. This may result in a call to
1468another pretty-printer.
1469
1470If instead the method returns a Python value which is convertible to a
1471@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1472the resulting value. Again, this may result in a call to another
1473pretty-printer. Python scalars (integers, floats, and booleans) and
1474strings are convertible to @code{gdb.Value}; other types are not.
1475
1476Finally, if this method returns @code{None} then no further operations
1477are peformed in this method and nothing is printed.
1478
1479If the result is not one of these types, an exception is raised.
1480@end defun
1481
1482@value{GDBN} provides a function which can be used to look up the
1483default pretty-printer for a @code{gdb.Value}:
1484
1485@findex gdb.default_visualizer
1486@defun gdb.default_visualizer (value)
1487This function takes a @code{gdb.Value} object as an argument. If a
1488pretty-printer for this value exists, then it is returned. If no such
1489printer exists, then this returns @code{None}.
1490@end defun
1491
1492@node Selecting Pretty-Printers
1493@subsubsection Selecting Pretty-Printers
b3ce5e5f 1494@cindex selecting python pretty-printers
329baa95 1495
48869a5f
TT
1496@value{GDBN} provides several ways to register a pretty-printer:
1497globally, per program space, and per objfile. When choosing how to
1498register your pretty-printer, a good rule is to register it with the
1499smallest scope possible: that is prefer a specific objfile first, then
1500a program space, and only register a printer globally as a last
1501resort.
1502
1503@findex gdb.pretty_printers
1504@defvar gdb.pretty_printers
329baa95
DE
1505The Python list @code{gdb.pretty_printers} contains an array of
1506functions or callable objects that have been registered via addition
1507as a pretty-printer. Printers in this list are called @code{global}
1508printers, they're available when debugging all inferiors.
48869a5f
TT
1509@end defvar
1510
329baa95
DE
1511Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1512Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1513attribute.
1514
1515Each function on these lists is passed a single @code{gdb.Value}
1516argument and should return a pretty-printer object conforming to the
1517interface definition above (@pxref{Pretty Printing API}). If a function
1518cannot create a pretty-printer for the value, it should return
1519@code{None}.
1520
1521@value{GDBN} first checks the @code{pretty_printers} attribute of each
1522@code{gdb.Objfile} in the current program space and iteratively calls
1523each enabled lookup routine in the list for that @code{gdb.Objfile}
1524until it receives a pretty-printer object.
1525If no pretty-printer is found in the objfile lists, @value{GDBN} then
1526searches the pretty-printer list of the current program space,
1527calling each enabled function until an object is returned.
1528After these lists have been exhausted, it tries the global
1529@code{gdb.pretty_printers} list, again calling each enabled function until an
1530object is returned.
1531
1532The order in which the objfiles are searched is not specified. For a
1533given list, functions are always invoked from the head of the list,
1534and iterated over sequentially until the end of the list, or a printer
1535object is returned.
1536
1537For various reasons a pretty-printer may not work.
1538For example, the underlying data structure may have changed and
1539the pretty-printer is out of date.
1540
1541The consequences of a broken pretty-printer are severe enough that
1542@value{GDBN} provides support for enabling and disabling individual
1543printers. For example, if @code{print frame-arguments} is on,
1544a backtrace can become highly illegible if any argument is printed
1545with a broken printer.
1546
1547Pretty-printers are enabled and disabled by attaching an @code{enabled}
1548attribute to the registered function or callable object. If this attribute
1549is present and its value is @code{False}, the printer is disabled, otherwise
1550the printer is enabled.
1551
1552@node Writing a Pretty-Printer
1553@subsubsection Writing a Pretty-Printer
1554@cindex writing a pretty-printer
1555
1556A pretty-printer consists of two parts: a lookup function to detect
1557if the type is supported, and the printer itself.
1558
1559Here is an example showing how a @code{std::string} printer might be
1560written. @xref{Pretty Printing API}, for details on the API this class
1561must provide.
1562
1563@smallexample
1564class StdStringPrinter(object):
1565 "Print a std::string"
1566
1567 def __init__(self, val):
1568 self.val = val
1569
1570 def to_string(self):
1571 return self.val['_M_dataplus']['_M_p']
1572
1573 def display_hint(self):
1574 return 'string'
1575@end smallexample
1576
1577And here is an example showing how a lookup function for the printer
1578example above might be written.
1579
1580@smallexample
1581def str_lookup_function(val):
1582 lookup_tag = val.type.tag
1583 if lookup_tag == None:
1584 return None
1585 regex = re.compile("^std::basic_string<char,.*>$")
1586 if regex.match(lookup_tag):
1587 return StdStringPrinter(val)
1588 return None
1589@end smallexample
1590
1591The example lookup function extracts the value's type, and attempts to
1592match it to a type that it can pretty-print. If it is a type the
1593printer can pretty-print, it will return a printer object. If not, it
1594returns @code{None}.
1595
1596We recommend that you put your core pretty-printers into a Python
1597package. If your pretty-printers are for use with a library, we
1598further recommend embedding a version number into the package name.
1599This practice will enable @value{GDBN} to load multiple versions of
1600your pretty-printers at the same time, because they will have
1601different names.
1602
1603You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1604can be evaluated multiple times without changing its meaning. An
1605ideal auto-load file will consist solely of @code{import}s of your
1606printer modules, followed by a call to a register pretty-printers with
1607the current objfile.
1608
1609Taken as a whole, this approach will scale nicely to multiple
1610inferiors, each potentially using a different library version.
1611Embedding a version number in the Python package name will ensure that
1612@value{GDBN} is able to load both sets of printers simultaneously.
1613Then, because the search for pretty-printers is done by objfile, and
1614because your auto-loaded code took care to register your library's
1615printers with a specific objfile, @value{GDBN} will find the correct
1616printers for the specific version of the library used by each
1617inferior.
1618
1619To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1620this code might appear in @code{gdb.libstdcxx.v6}:
1621
1622@smallexample
1623def register_printers(objfile):
1624 objfile.pretty_printers.append(str_lookup_function)
1625@end smallexample
1626
1627@noindent
1628And then the corresponding contents of the auto-load file would be:
1629
1630@smallexample
1631import gdb.libstdcxx.v6
1632gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1633@end smallexample
1634
1635The previous example illustrates a basic pretty-printer.
1636There are a few things that can be improved on.
1637The printer doesn't have a name, making it hard to identify in a
1638list of installed printers. The lookup function has a name, but
1639lookup functions can have arbitrary, even identical, names.
1640
1641Second, the printer only handles one type, whereas a library typically has
1642several types. One could install a lookup function for each desired type
1643in the library, but one could also have a single lookup function recognize
1644several types. The latter is the conventional way this is handled.
1645If a pretty-printer can handle multiple data types, then its
1646@dfn{subprinters} are the printers for the individual data types.
1647
1648The @code{gdb.printing} module provides a formal way of solving these
1649problems (@pxref{gdb.printing}).
1650Here is another example that handles multiple types.
1651
1652These are the types we are going to pretty-print:
1653
1654@smallexample
1655struct foo @{ int a, b; @};
1656struct bar @{ struct foo x, y; @};
1657@end smallexample
1658
1659Here are the printers:
1660
1661@smallexample
1662class fooPrinter:
1663 """Print a foo object."""
1664
1665 def __init__(self, val):
1666 self.val = val
1667
1668 def to_string(self):
1669 return ("a=<" + str(self.val["a"]) +
1670 "> b=<" + str(self.val["b"]) + ">")
1671
1672class barPrinter:
1673 """Print a bar object."""
1674
1675 def __init__(self, val):
1676 self.val = val
1677
1678 def to_string(self):
1679 return ("x=<" + str(self.val["x"]) +
1680 "> y=<" + str(self.val["y"]) + ">")
1681@end smallexample
1682
1683This example doesn't need a lookup function, that is handled by the
1684@code{gdb.printing} module. Instead a function is provided to build up
1685the object that handles the lookup.
1686
1687@smallexample
1688import gdb.printing
1689
1690def build_pretty_printer():
1691 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1692 "my_library")
1693 pp.add_printer('foo', '^foo$', fooPrinter)
1694 pp.add_printer('bar', '^bar$', barPrinter)
1695 return pp
1696@end smallexample
1697
1698And here is the autoload support:
1699
1700@smallexample
1701import gdb.printing
1702import my_library
1703gdb.printing.register_pretty_printer(
1704 gdb.current_objfile(),
1705 my_library.build_pretty_printer())
1706@end smallexample
1707
1708Finally, when this printer is loaded into @value{GDBN}, here is the
1709corresponding output of @samp{info pretty-printer}:
1710
1711@smallexample
1712(gdb) info pretty-printer
1713my_library.so:
1714 my_library
1715 foo
1716 bar
1717@end smallexample
1718
1719@node Type Printing API
1720@subsubsection Type Printing API
1721@cindex type printing API for Python
1722
1723@value{GDBN} provides a way for Python code to customize type display.
1724This is mainly useful for substituting canonical typedef names for
1725types.
1726
1727@cindex type printer
1728A @dfn{type printer} is just a Python object conforming to a certain
1729protocol. A simple base class implementing the protocol is provided;
1730see @ref{gdb.types}. A type printer must supply at least:
1731
1732@defivar type_printer enabled
1733A boolean which is True if the printer is enabled, and False
1734otherwise. This is manipulated by the @code{enable type-printer}
1735and @code{disable type-printer} commands.
1736@end defivar
1737
1738@defivar type_printer name
1739The name of the type printer. This must be a string. This is used by
1740the @code{enable type-printer} and @code{disable type-printer}
1741commands.
1742@end defivar
1743
1744@defmethod type_printer instantiate (self)
1745This is called by @value{GDBN} at the start of type-printing. It is
1746only called if the type printer is enabled. This method must return a
1747new object that supplies a @code{recognize} method, as described below.
1748@end defmethod
1749
1750
1751When displaying a type, say via the @code{ptype} command, @value{GDBN}
1752will compute a list of type recognizers. This is done by iterating
1753first over the per-objfile type printers (@pxref{Objfiles In Python}),
1754followed by the per-progspace type printers (@pxref{Progspaces In
1755Python}), and finally the global type printers.
1756
1757@value{GDBN} will call the @code{instantiate} method of each enabled
1758type printer. If this method returns @code{None}, then the result is
1759ignored; otherwise, it is appended to the list of recognizers.
1760
1761Then, when @value{GDBN} is going to display a type name, it iterates
1762over the list of recognizers. For each one, it calls the recognition
1763function, stopping if the function returns a non-@code{None} value.
1764The recognition function is defined as:
1765
1766@defmethod type_recognizer recognize (self, type)
1767If @var{type} is not recognized, return @code{None}. Otherwise,
1768return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1769The @var{type} argument will be an instance of @code{gdb.Type}
1770(@pxref{Types In Python}).
329baa95
DE
1771@end defmethod
1772
1773@value{GDBN} uses this two-pass approach so that type printers can
1774efficiently cache information without holding on to it too long. For
1775example, it can be convenient to look up type information in a type
1776printer and hold it for a recognizer's lifetime; if a single pass were
1777done then type printers would have to make use of the event system in
1778order to avoid holding information that could become stale as the
1779inferior changed.
1780
1781@node Frame Filter API
521b499b 1782@subsubsection Filtering Frames
329baa95
DE
1783@cindex frame filters api
1784
1785Frame filters are Python objects that manipulate the visibility of a
1786frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1787@value{GDBN}.
1788
1789Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1790commands (@pxref{GDB/MI}), those that return a collection of frames
1791are affected. The commands that work with frame filters are:
1792
1793@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1794@code{-stack-list-frames}
1795(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1796@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1797-stack-list-variables command}), @code{-stack-list-arguments}
1798@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1799@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1800-stack-list-locals command}).
1801
1802A frame filter works by taking an iterator as an argument, applying
1803actions to the contents of that iterator, and returning another
1804iterator (or, possibly, the same iterator it was provided in the case
1805where the filter does not perform any operations). Typically, frame
1806filters utilize tools such as the Python's @code{itertools} module to
1807work with and create new iterators from the source iterator.
1808Regardless of how a filter chooses to apply actions, it must not alter
1809the underlying @value{GDBN} frame or frames, or attempt to alter the
1810call-stack within @value{GDBN}. This preserves data integrity within
1811@value{GDBN}. Frame filters are executed on a priority basis and care
1812should be taken that some frame filters may have been executed before,
1813and that some frame filters will be executed after.
1814
1815An important consideration when designing frame filters, and well
1816worth reflecting upon, is that frame filters should avoid unwinding
1817the call stack if possible. Some stacks can run very deep, into the
1818tens of thousands in some cases. To search every frame when a frame
1819filter executes may be too expensive at that step. The frame filter
1820cannot know how many frames it has to iterate over, and it may have to
1821iterate through them all. This ends up duplicating effort as
1822@value{GDBN} performs this iteration when it prints the frames. If
1823the filter can defer unwinding frames until frame decorators are
1824executed, after the last filter has executed, it should. @xref{Frame
1825Decorator API}, for more information on decorators. Also, there are
1826examples for both frame decorators and filters in later chapters.
1827@xref{Writing a Frame Filter}, for more information.
1828
1829The Python dictionary @code{gdb.frame_filters} contains key/object
1830pairings that comprise a frame filter. Frame filters in this
1831dictionary are called @code{global} frame filters, and they are
1832available when debugging all inferiors. These frame filters must
1833register with the dictionary directly. In addition to the
1834@code{global} dictionary, there are other dictionaries that are loaded
1835with different inferiors via auto-loading (@pxref{Python
1836Auto-loading}). The two other areas where frame filter dictionaries
1837can be found are: @code{gdb.Progspace} which contains a
1838@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1839object which also contains a @code{frame_filters} dictionary
1840attribute.
1841
1842When a command is executed from @value{GDBN} that is compatible with
1843frame filters, @value{GDBN} combines the @code{global},
1844@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1845loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1846several frames, and thus several object files, might be in use.
1847@value{GDBN} then prunes any frame filter whose @code{enabled}
1848attribute is @code{False}. This pruned list is then sorted according
1849to the @code{priority} attribute in each filter.
1850
1851Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1852creates an iterator which wraps each frame in the call stack in a
1853@code{FrameDecorator} object, and calls each filter in order. The
1854output from the previous filter will always be the input to the next
1855filter, and so on.
1856
1857Frame filters have a mandatory interface which each frame filter must
1858implement, defined here:
1859
1860@defun FrameFilter.filter (iterator)
1861@value{GDBN} will call this method on a frame filter when it has
1862reached the order in the priority list for that filter.
1863
1864For example, if there are four frame filters:
1865
1866@smallexample
1867Name Priority
1868
1869Filter1 5
1870Filter2 10
1871Filter3 100
1872Filter4 1
1873@end smallexample
1874
1875The order that the frame filters will be called is:
1876
1877@smallexample
1878Filter3 -> Filter2 -> Filter1 -> Filter4
1879@end smallexample
1880
1881Note that the output from @code{Filter3} is passed to the input of
1882@code{Filter2}, and so on.
1883
1884This @code{filter} method is passed a Python iterator. This iterator
1885contains a sequence of frame decorators that wrap each
1886@code{gdb.Frame}, or a frame decorator that wraps another frame
1887decorator. The first filter that is executed in the sequence of frame
1888filters will receive an iterator entirely comprised of default
1889@code{FrameDecorator} objects. However, after each frame filter is
1890executed, the previous frame filter may have wrapped some or all of
1891the frame decorators with their own frame decorator. As frame
1892decorators must also conform to a mandatory interface, these
1893decorators can be assumed to act in a uniform manner (@pxref{Frame
1894Decorator API}).
1895
1896This method must return an object conforming to the Python iterator
1897protocol. Each item in the iterator must be an object conforming to
1898the frame decorator interface. If a frame filter does not wish to
1899perform any operations on this iterator, it should return that
1900iterator untouched.
1901
1902This method is not optional. If it does not exist, @value{GDBN} will
1903raise and print an error.
1904@end defun
1905
1906@defvar FrameFilter.name
1907The @code{name} attribute must be Python string which contains the
1908name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1909Management}). This attribute may contain any combination of letters
1910or numbers. Care should be taken to ensure that it is unique. This
1911attribute is mandatory.
1912@end defvar
1913
1914@defvar FrameFilter.enabled
1915The @code{enabled} attribute must be Python boolean. This attribute
1916indicates to @value{GDBN} whether the frame filter is enabled, and
1917should be considered when frame filters are executed. If
1918@code{enabled} is @code{True}, then the frame filter will be executed
1919when any of the backtrace commands detailed earlier in this chapter
1920are executed. If @code{enabled} is @code{False}, then the frame
1921filter will not be executed. This attribute is mandatory.
1922@end defvar
1923
1924@defvar FrameFilter.priority
1925The @code{priority} attribute must be Python integer. This attribute
1926controls the order of execution in relation to other frame filters.
1927There are no imposed limits on the range of @code{priority} other than
1928it must be a valid integer. The higher the @code{priority} attribute,
1929the sooner the frame filter will be executed in relation to other
1930frame filters. Although @code{priority} can be negative, it is
1931recommended practice to assume zero is the lowest priority that a
1932frame filter can be assigned. Frame filters that have the same
1933priority are executed in unsorted order in that priority slot. This
521b499b 1934attribute is mandatory. 100 is a good default priority.
329baa95
DE
1935@end defvar
1936
1937@node Frame Decorator API
521b499b 1938@subsubsection Decorating Frames
329baa95
DE
1939@cindex frame decorator api
1940
1941Frame decorators are sister objects to frame filters (@pxref{Frame
1942Filter API}). Frame decorators are applied by a frame filter and can
1943only be used in conjunction with frame filters.
1944
1945The purpose of a frame decorator is to customize the printed content
1946of each @code{gdb.Frame} in commands where frame filters are executed.
1947This concept is called decorating a frame. Frame decorators decorate
1948a @code{gdb.Frame} with Python code contained within each API call.
1949This separates the actual data contained in a @code{gdb.Frame} from
1950the decorated data produced by a frame decorator. This abstraction is
1951necessary to maintain integrity of the data contained in each
1952@code{gdb.Frame}.
1953
1954Frame decorators have a mandatory interface, defined below.
1955
1956@value{GDBN} already contains a frame decorator called
1957@code{FrameDecorator}. This contains substantial amounts of
1958boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1959recommended that other frame decorators inherit and extend this
1960object, and only to override the methods needed.
1961
521b499b
TT
1962@tindex gdb.FrameDecorator
1963@code{FrameDecorator} is defined in the Python module
1964@code{gdb.FrameDecorator}, so your code can import it like:
1965@smallexample
1966from gdb.FrameDecorator import FrameDecorator
1967@end smallexample
1968
329baa95
DE
1969@defun FrameDecorator.elided (self)
1970
1971The @code{elided} method groups frames together in a hierarchical
1972system. An example would be an interpreter, where multiple low-level
1973frames make up a single call in the interpreted language. In this
1974example, the frame filter would elide the low-level frames and present
1975a single high-level frame, representing the call in the interpreted
1976language, to the user.
1977
1978The @code{elided} function must return an iterable and this iterable
1979must contain the frames that are being elided wrapped in a suitable
1980frame decorator. If no frames are being elided this function may
1981return an empty iterable, or @code{None}. Elided frames are indented
1982from normal frames in a @code{CLI} backtrace, or in the case of
1983@code{GDB/MI}, are placed in the @code{children} field of the eliding
1984frame.
1985
1986It is the frame filter's task to also filter out the elided frames from
1987the source iterator. This will avoid printing the frame twice.
1988@end defun
1989
1990@defun FrameDecorator.function (self)
1991
1992This method returns the name of the function in the frame that is to
1993be printed.
1994
1995This method must return a Python string describing the function, or
1996@code{None}.
1997
1998If this function returns @code{None}, @value{GDBN} will not print any
1999data for this field.
2000@end defun
2001
2002@defun FrameDecorator.address (self)
2003
2004This method returns the address of the frame that is to be printed.
2005
2006This method must return a Python numeric integer type of sufficient
2007size to describe the address of the frame, or @code{None}.
2008
2009If this function returns a @code{None}, @value{GDBN} will not print
2010any data for this field.
2011@end defun
2012
2013@defun FrameDecorator.filename (self)
2014
2015This method returns the filename and path associated with this frame.
2016
2017This method must return a Python string containing the filename and
2018the path to the object file backing the frame, or @code{None}.
2019
2020If this function returns a @code{None}, @value{GDBN} will not print
2021any data for this field.
2022@end defun
2023
2024@defun FrameDecorator.line (self):
2025
2026This method returns the line number associated with the current
2027position within the function addressed by this frame.
2028
2029This method must return a Python integer type, or @code{None}.
2030
2031If this function returns a @code{None}, @value{GDBN} will not print
2032any data for this field.
2033@end defun
2034
2035@defun FrameDecorator.frame_args (self)
2036@anchor{frame_args}
2037
2038This method must return an iterable, or @code{None}. Returning an
2039empty iterable, or @code{None} means frame arguments will not be
2040printed for this frame. This iterable must contain objects that
2041implement two methods, described here.
2042
2043This object must implement a @code{argument} method which takes a
2044single @code{self} parameter and must return a @code{gdb.Symbol}
2045(@pxref{Symbols In Python}), or a Python string. The object must also
2046implement a @code{value} method which takes a single @code{self}
2047parameter and must return a @code{gdb.Value} (@pxref{Values From
2048Inferior}), a Python value, or @code{None}. If the @code{value}
2049method returns @code{None}, and the @code{argument} method returns a
2050@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
2051the @code{gdb.Symbol} automatically.
2052
2053A brief example:
2054
2055@smallexample
2056class SymValueWrapper():
2057
2058 def __init__(self, symbol, value):
2059 self.sym = symbol
2060 self.val = value
2061
2062 def value(self):
2063 return self.val
2064
2065 def symbol(self):
2066 return self.sym
2067
2068class SomeFrameDecorator()
2069...
2070...
2071 def frame_args(self):
2072 args = []
2073 try:
2074 block = self.inferior_frame.block()
2075 except:
2076 return None
2077
2078 # Iterate over all symbols in a block. Only add
2079 # symbols that are arguments.
2080 for sym in block:
2081 if not sym.is_argument:
2082 continue
2083 args.append(SymValueWrapper(sym,None))
2084
2085 # Add example synthetic argument.
2086 args.append(SymValueWrapper(``foo'', 42))
2087
2088 return args
2089@end smallexample
2090@end defun
2091
2092@defun FrameDecorator.frame_locals (self)
2093
2094This method must return an iterable or @code{None}. Returning an
2095empty iterable, or @code{None} means frame local arguments will not be
2096printed for this frame.
2097
2098The object interface, the description of the various strategies for
2099reading frame locals, and the example are largely similar to those
2100described in the @code{frame_args} function, (@pxref{frame_args,,The
2101frame filter frame_args function}). Below is a modified example:
2102
2103@smallexample
2104class SomeFrameDecorator()
2105...
2106...
2107 def frame_locals(self):
2108 vars = []
2109 try:
2110 block = self.inferior_frame.block()
2111 except:
2112 return None
2113
2114 # Iterate over all symbols in a block. Add all
2115 # symbols, except arguments.
2116 for sym in block:
2117 if sym.is_argument:
2118 continue
2119 vars.append(SymValueWrapper(sym,None))
2120
2121 # Add an example of a synthetic local variable.
2122 vars.append(SymValueWrapper(``bar'', 99))
2123
2124 return vars
2125@end smallexample
2126@end defun
2127
2128@defun FrameDecorator.inferior_frame (self):
2129
2130This method must return the underlying @code{gdb.Frame} that this
2131frame decorator is decorating. @value{GDBN} requires the underlying
2132frame for internal frame information to determine how to print certain
2133values when printing a frame.
2134@end defun
2135
2136@node Writing a Frame Filter
2137@subsubsection Writing a Frame Filter
2138@cindex writing a frame filter
2139
2140There are three basic elements that a frame filter must implement: it
2141must correctly implement the documented interface (@pxref{Frame Filter
2142API}), it must register itself with @value{GDBN}, and finally, it must
2143decide if it is to work on the data provided by @value{GDBN}. In all
2144cases, whether it works on the iterator or not, each frame filter must
2145return an iterator. A bare-bones frame filter follows the pattern in
2146the following example.
2147
2148@smallexample
2149import gdb
2150
2151class FrameFilter():
2152
2153 def __init__(self):
2154 # Frame filter attribute creation.
2155 #
2156 # 'name' is the name of the filter that GDB will display.
2157 #
2158 # 'priority' is the priority of the filter relative to other
2159 # filters.
2160 #
2161 # 'enabled' is a boolean that indicates whether this filter is
2162 # enabled and should be executed.
2163
2164 self.name = "Foo"
2165 self.priority = 100
2166 self.enabled = True
2167
2168 # Register this frame filter with the global frame_filters
2169 # dictionary.
2170 gdb.frame_filters[self.name] = self
2171
2172 def filter(self, frame_iter):
2173 # Just return the iterator.
2174 return frame_iter
2175@end smallexample
2176
2177The frame filter in the example above implements the three
2178requirements for all frame filters. It implements the API, self
2179registers, and makes a decision on the iterator (in this case, it just
2180returns the iterator untouched).
2181
2182The first step is attribute creation and assignment, and as shown in
2183the comments the filter assigns the following attributes: @code{name},
2184@code{priority} and whether the filter should be enabled with the
2185@code{enabled} attribute.
2186
2187The second step is registering the frame filter with the dictionary or
2188dictionaries that the frame filter has interest in. As shown in the
2189comments, this filter just registers itself with the global dictionary
2190@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2191is a dictionary that is initialized in the @code{gdb} module when
2192@value{GDBN} starts. What dictionary a filter registers with is an
2193important consideration. Generally, if a filter is specific to a set
2194of code, it should be registered either in the @code{objfile} or
2195@code{progspace} dictionaries as they are specific to the program
2196currently loaded in @value{GDBN}. The global dictionary is always
2197present in @value{GDBN} and is never unloaded. Any filters registered
2198with the global dictionary will exist until @value{GDBN} exits. To
2199avoid filters that may conflict, it is generally better to register
2200frame filters against the dictionaries that more closely align with
2201the usage of the filter currently in question. @xref{Python
2202Auto-loading}, for further information on auto-loading Python scripts.
2203
2204@value{GDBN} takes a hands-off approach to frame filter registration,
2205therefore it is the frame filter's responsibility to ensure
2206registration has occurred, and that any exceptions are handled
2207appropriately. In particular, you may wish to handle exceptions
2208relating to Python dictionary key uniqueness. It is mandatory that
2209the dictionary key is the same as frame filter's @code{name}
2210attribute. When a user manages frame filters (@pxref{Frame Filter
2211Management}), the names @value{GDBN} will display are those contained
2212in the @code{name} attribute.
2213
2214The final step of this example is the implementation of the
2215@code{filter} method. As shown in the example comments, we define the
2216@code{filter} method and note that the method must take an iterator,
2217and also must return an iterator. In this bare-bones example, the
2218frame filter is not very useful as it just returns the iterator
2219untouched. However this is a valid operation for frame filters that
2220have the @code{enabled} attribute set, but decide not to operate on
2221any frames.
2222
2223In the next example, the frame filter operates on all frames and
2224utilizes a frame decorator to perform some work on the frames.
2225@xref{Frame Decorator API}, for further information on the frame
2226decorator interface.
2227
2228This example works on inlined frames. It highlights frames which are
2229inlined by tagging them with an ``[inlined]'' tag. By applying a
2230frame decorator to all frames with the Python @code{itertools imap}
2231method, the example defers actions to the frame decorator. Frame
2232decorators are only processed when @value{GDBN} prints the backtrace.
2233
2234This introduces a new decision making topic: whether to perform
2235decision making operations at the filtering step, or at the printing
2236step. In this example's approach, it does not perform any filtering
2237decisions at the filtering step beyond mapping a frame decorator to
2238each frame. This allows the actual decision making to be performed
2239when each frame is printed. This is an important consideration, and
2240well worth reflecting upon when designing a frame filter. An issue
2241that frame filters should avoid is unwinding the stack if possible.
2242Some stacks can run very deep, into the tens of thousands in some
2243cases. To search every frame to determine if it is inlined ahead of
2244time may be too expensive at the filtering step. The frame filter
2245cannot know how many frames it has to iterate over, and it would have
2246to iterate through them all. This ends up duplicating effort as
2247@value{GDBN} performs this iteration when it prints the frames.
2248
2249In this example decision making can be deferred to the printing step.
2250As each frame is printed, the frame decorator can examine each frame
2251in turn when @value{GDBN} iterates. From a performance viewpoint,
2252this is the most appropriate decision to make as it avoids duplicating
2253the effort that the printing step would undertake anyway. Also, if
2254there are many frame filters unwinding the stack during filtering, it
2255can substantially delay the printing of the backtrace which will
2256result in large memory usage, and a poor user experience.
2257
2258@smallexample
2259class InlineFilter():
2260
2261 def __init__(self):
2262 self.name = "InlinedFrameFilter"
2263 self.priority = 100
2264 self.enabled = True
2265 gdb.frame_filters[self.name] = self
2266
2267 def filter(self, frame_iter):
2268 frame_iter = itertools.imap(InlinedFrameDecorator,
2269 frame_iter)
2270 return frame_iter
2271@end smallexample
2272
2273This frame filter is somewhat similar to the earlier example, except
2274that the @code{filter} method applies a frame decorator object called
2275@code{InlinedFrameDecorator} to each element in the iterator. The
2276@code{imap} Python method is light-weight. It does not proactively
2277iterate over the iterator, but rather creates a new iterator which
2278wraps the existing one.
2279
2280Below is the frame decorator for this example.
2281
2282@smallexample
2283class InlinedFrameDecorator(FrameDecorator):
2284
2285 def __init__(self, fobj):
2286 super(InlinedFrameDecorator, self).__init__(fobj)
2287
2288 def function(self):
2289 frame = fobj.inferior_frame()
2290 name = str(frame.name())
2291
2292 if frame.type() == gdb.INLINE_FRAME:
2293 name = name + " [inlined]"
2294
2295 return name
2296@end smallexample
2297
2298This frame decorator only defines and overrides the @code{function}
2299method. It lets the supplied @code{FrameDecorator}, which is shipped
2300with @value{GDBN}, perform the other work associated with printing
2301this frame.
2302
2303The combination of these two objects create this output from a
2304backtrace:
2305
2306@smallexample
2307#0 0x004004e0 in bar () at inline.c:11
2308#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2309#2 0x00400566 in main () at inline.c:31
2310@end smallexample
2311
2312So in the case of this example, a frame decorator is applied to all
2313frames, regardless of whether they may be inlined or not. As
2314@value{GDBN} iterates over the iterator produced by the frame filters,
2315@value{GDBN} executes each frame decorator which then makes a decision
2316on what to print in the @code{function} callback. Using a strategy
2317like this is a way to defer decisions on the frame content to printing
2318time.
2319
2320@subheading Eliding Frames
2321
2322It might be that the above example is not desirable for representing
2323inlined frames, and a hierarchical approach may be preferred. If we
2324want to hierarchically represent frames, the @code{elided} frame
2325decorator interface might be preferable.
2326
2327This example approaches the issue with the @code{elided} method. This
2328example is quite long, but very simplistic. It is out-of-scope for
2329this section to write a complete example that comprehensively covers
2330all approaches of finding and printing inlined frames. However, this
2331example illustrates the approach an author might use.
2332
2333This example comprises of three sections.
2334
2335@smallexample
2336class InlineFrameFilter():
2337
2338 def __init__(self):
2339 self.name = "InlinedFrameFilter"
2340 self.priority = 100
2341 self.enabled = True
2342 gdb.frame_filters[self.name] = self
2343
2344 def filter(self, frame_iter):
2345 return ElidingInlineIterator(frame_iter)
2346@end smallexample
2347
2348This frame filter is very similar to the other examples. The only
2349difference is this frame filter is wrapping the iterator provided to
2350it (@code{frame_iter}) with a custom iterator called
2351@code{ElidingInlineIterator}. This again defers actions to when
2352@value{GDBN} prints the backtrace, as the iterator is not traversed
2353until printing.
2354
2355The iterator for this example is as follows. It is in this section of
2356the example where decisions are made on the content of the backtrace.
2357
2358@smallexample
2359class ElidingInlineIterator:
2360 def __init__(self, ii):
2361 self.input_iterator = ii
2362
2363 def __iter__(self):
2364 return self
2365
2366 def next(self):
2367 frame = next(self.input_iterator)
2368
2369 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2370 return frame
2371
2372 try:
2373 eliding_frame = next(self.input_iterator)
2374 except StopIteration:
2375 return frame
2376 return ElidingFrameDecorator(eliding_frame, [frame])
2377@end smallexample
2378
2379This iterator implements the Python iterator protocol. When the
2380@code{next} function is called (when @value{GDBN} prints each frame),
2381the iterator checks if this frame decorator, @code{frame}, is wrapping
2382an inlined frame. If it is not, it returns the existing frame decorator
2383untouched. If it is wrapping an inlined frame, it assumes that the
2384inlined frame was contained within the next oldest frame,
2385@code{eliding_frame}, which it fetches. It then creates and returns a
2386frame decorator, @code{ElidingFrameDecorator}, which contains both the
2387elided frame, and the eliding frame.
2388
2389@smallexample
2390class ElidingInlineDecorator(FrameDecorator):
2391
2392 def __init__(self, frame, elided_frames):
2393 super(ElidingInlineDecorator, self).__init__(frame)
2394 self.frame = frame
2395 self.elided_frames = elided_frames
2396
2397 def elided(self):
2398 return iter(self.elided_frames)
2399@end smallexample
2400
2401This frame decorator overrides one function and returns the inlined
2402frame in the @code{elided} method. As before it lets
2403@code{FrameDecorator} do the rest of the work involved in printing
2404this frame. This produces the following output.
2405
2406@smallexample
2407#0 0x004004e0 in bar () at inline.c:11
2408#2 0x00400529 in main () at inline.c:25
2409 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2410@end smallexample
2411
2412In that output, @code{max} which has been inlined into @code{main} is
2413printed hierarchically. Another approach would be to combine the
2414@code{function} method, and the @code{elided} method to both print a
2415marker in the inlined frame, and also show the hierarchical
2416relationship.
2417
d11916aa
SS
2418@node Unwinding Frames in Python
2419@subsubsection Unwinding Frames in Python
2420@cindex unwinding frames in Python
2421
2422In @value{GDBN} terminology ``unwinding'' is the process of finding
2423the previous frame (that is, caller's) from the current one. An
2424unwinder has three methods. The first one checks if it can handle
2425given frame (``sniff'' it). For the frames it can sniff an unwinder
2426provides two additional methods: it can return frame's ID, and it can
2427fetch registers from the previous frame. A running @value{GDBN}
2428mantains a list of the unwinders and calls each unwinder's sniffer in
2429turn until it finds the one that recognizes the current frame. There
2430is an API to register an unwinder.
2431
2432The unwinders that come with @value{GDBN} handle standard frames.
2433However, mixed language applications (for example, an application
2434running Java Virtual Machine) sometimes use frame layouts that cannot
2435be handled by the @value{GDBN} unwinders. You can write Python code
2436that can handle such custom frames.
2437
2438You implement a frame unwinder in Python as a class with which has two
2439attributes, @code{name} and @code{enabled}, with obvious meanings, and
2440a single method @code{__call__}, which examines a given frame and
2441returns an object (an instance of @code{gdb.UnwindInfo class)}
2442describing it. If an unwinder does not recognize a frame, it should
2443return @code{None}. The code in @value{GDBN} that enables writing
2444unwinders in Python uses this object to return frame's ID and previous
2445frame registers when @value{GDBN} core asks for them.
2446
e7b5068c
TT
2447An unwinder should do as little work as possible. Some otherwise
2448innocuous operations can cause problems (even crashes, as this code is
2449not not well-hardened yet). For example, making an inferior call from
2450an unwinder is unadvisable, as an inferior call will reset
2451@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2452unwinding.
2453
d11916aa
SS
2454@subheading Unwinder Input
2455
2456An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2457provides a method to read frame's registers:
2458
2459@defun PendingFrame.read_register (reg)
e7b5068c 2460This method returns the contents of the register @var{reg} in the
d11916aa
SS
2461frame as a @code{gdb.Value} object. @var{reg} can be either a
2462register number or a register name; the values are platform-specific.
2463They are usually found in the corresponding
e7b5068c
TT
2464@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2465@var{reg} does not name a register for the current architecture, this
2466method will throw an exception.
2467
2468Note that this method will always return a @code{gdb.Value} for a
2469valid register name. This does not mean that the value will be valid.
2470For example, you may request a register that an earlier unwinder could
2471not unwind---the value will be unavailable. Instead, the
2472@code{gdb.Value} returned from this method will be lazy; that is, its
2473underlying bits will not be fetched until it is first used. So,
2474attempting to use such a value will cause an exception at the point of
2475use.
2476
2477The type of the returned @code{gdb.Value} depends on the register and
2478the architecture. It is common for registers to have a scalar type,
2479like @code{long long}; but many other types are possible, such as
2480pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2481@end defun
2482
2483It also provides a factory method to create a @code{gdb.UnwindInfo}
2484instance to be returned to @value{GDBN}:
2485
2486@defun PendingFrame.create_unwind_info (frame_id)
2487Returns a new @code{gdb.UnwindInfo} instance identified by given
2488@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2489using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2490determine which function will be used, as follows:
2491
2492@table @code
d11916aa 2493@item sp, pc
e7b5068c
TT
2494The frame is identified by the given stack address and PC. The stack
2495address must be chosen so that it is constant throughout the lifetime
2496of the frame, so a typical choice is the value of the stack pointer at
2497the start of the function---in the DWARF standard, this would be the
2498``Call Frame Address''.
d11916aa 2499
e7b5068c
TT
2500This is the most common case by far. The other cases are documented
2501for completeness but are only useful in specialized situations.
2502
2503@item sp, pc, special
2504The frame is identified by the stack address, the PC, and a
2505``special'' address. The special address is used on architectures
2506that can have frames that do not change the stack, but which are still
2507distinct, for example the IA-64, which has a second stack for
2508registers. Both @var{sp} and @var{special} must be constant
2509throughout the lifetime of the frame.
d11916aa
SS
2510
2511@item sp
e7b5068c
TT
2512The frame is identified by the stack address only. Any other stack
2513frame with a matching @var{sp} will be considered to match this frame.
2514Inside gdb, this is called a ``wild frame''. You will never need
2515this.
d11916aa 2516@end table
e7b5068c
TT
2517
2518Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2519
2520@end defun
2521
87dbc774
AB
2522@defun PendingFrame.architecture ()
2523Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2524for this @code{gdb.PendingFrame}. This represents the architecture of
2525the particular frame being unwound.
2526@end defun
2527
d11916aa
SS
2528@subheading Unwinder Output: UnwindInfo
2529
2530Use @code{PendingFrame.create_unwind_info} method described above to
2531create a @code{gdb.UnwindInfo} instance. Use the following method to
2532specify caller registers that have been saved in this frame:
2533
2534@defun gdb.UnwindInfo.add_saved_register (reg, value)
2535@var{reg} identifies the register. It can be a number or a name, just
2536as for the @code{PendingFrame.read_register} method above.
2537@var{value} is a register value (a @code{gdb.Value} object).
2538@end defun
2539
2540@subheading Unwinder Skeleton Code
2541
2542@value{GDBN} comes with the module containing the base @code{Unwinder}
2543class. Derive your unwinder class from it and structure the code as
2544follows:
2545
2546@smallexample
2547from gdb.unwinders import Unwinder
2548
2549class FrameId(object):
2550 def __init__(self, sp, pc):
2551 self.sp = sp
2552 self.pc = pc
2553
2554
2555class MyUnwinder(Unwinder):
2556 def __init__(....):
6b92c0d3 2557 super(MyUnwinder, self).__init___(<expects unwinder name argument>)
d11916aa
SS
2558
2559 def __call__(pending_frame):
2560 if not <we recognize frame>:
2561 return None
2562 # Create UnwindInfo. Usually the frame is identified by the stack
2563 # pointer and the program counter.
2564 sp = pending_frame.read_register(<SP number>)
2565 pc = pending_frame.read_register(<PC number>)
2566 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2567
2568 # Find the values of the registers in the caller's frame and
2569 # save them in the result:
2570 unwind_info.add_saved_register(<register>, <value>)
2571 ....
2572
2573 # Return the result:
2574 return unwind_info
2575
2576@end smallexample
2577
2578@subheading Registering a Unwinder
2579
2580An object file, a program space, and the @value{GDBN} proper can have
2581unwinders registered with it.
2582
2583The @code{gdb.unwinders} module provides the function to register a
2584unwinder:
2585
2586@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2587@var{locus} is specifies an object file or a program space to which
2588@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2589@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2590added @var{unwinder} will be called before any other unwinder from the
2591same locus. Two unwinders in the same locus cannot have the same
2592name. An attempt to add a unwinder with already existing name raises
2593an exception unless @var{replace} is @code{True}, in which case the
2594old unwinder is deleted.
2595@end defun
2596
2597@subheading Unwinder Precedence
2598
2599@value{GDBN} first calls the unwinders from all the object files in no
2600particular order, then the unwinders from the current program space,
2601and finally the unwinders from @value{GDBN}.
2602
0c6e92a5
SC
2603@node Xmethods In Python
2604@subsubsection Xmethods In Python
2605@cindex xmethods in Python
2606
2607@dfn{Xmethods} are additional methods or replacements for existing
2608methods of a C@t{++} class. This feature is useful for those cases
2609where a method defined in C@t{++} source code could be inlined or
2610optimized out by the compiler, making it unavailable to @value{GDBN}.
2611For such cases, one can define an xmethod to serve as a replacement
2612for the method defined in the C@t{++} source code. @value{GDBN} will
2613then invoke the xmethod, instead of the C@t{++} method, to
2614evaluate expressions. One can also use xmethods when debugging
2615with core files. Moreover, when debugging live programs, invoking an
2616xmethod need not involve running the inferior (which can potentially
2617perturb its state). Hence, even if the C@t{++} method is available, it
2618is better to use its replacement xmethod if one is defined.
2619
2620The xmethods feature in Python is available via the concepts of an
2621@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2622implement an xmethod, one has to implement a matcher and a
2623corresponding worker for it (more than one worker can be
2624implemented, each catering to a different overloaded instance of the
2625method). Internally, @value{GDBN} invokes the @code{match} method of a
2626matcher to match the class type and method name. On a match, the
2627@code{match} method returns a list of matching @emph{worker} objects.
2628Each worker object typically corresponds to an overloaded instance of
2629the xmethod. They implement a @code{get_arg_types} method which
2630returns a sequence of types corresponding to the arguments the xmethod
2631requires. @value{GDBN} uses this sequence of types to perform
2632overload resolution and picks a winning xmethod worker. A winner
2633is also selected from among the methods @value{GDBN} finds in the
2634C@t{++} source code. Next, the winning xmethod worker and the
2635winning C@t{++} method are compared to select an overall winner. In
2636case of a tie between a xmethod worker and a C@t{++} method, the
2637xmethod worker is selected as the winner. That is, if a winning
2638xmethod worker is found to be equivalent to the winning C@t{++}
2639method, then the xmethod worker is treated as a replacement for
2640the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2641method. If the winning xmethod worker is the overall winner, then
897c3d32 2642the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2643of the worker object.
2644
2645If one wants to implement an xmethod as a replacement for an
2646existing C@t{++} method, then they have to implement an equivalent
2647xmethod which has exactly the same name and takes arguments of
2648exactly the same type as the C@t{++} method. If the user wants to
2649invoke the C@t{++} method even though a replacement xmethod is
2650available for that method, then they can disable the xmethod.
2651
2652@xref{Xmethod API}, for API to implement xmethods in Python.
2653@xref{Writing an Xmethod}, for implementing xmethods in Python.
2654
2655@node Xmethod API
2656@subsubsection Xmethod API
2657@cindex xmethod API
2658
2659The @value{GDBN} Python API provides classes, interfaces and functions
2660to implement, register and manipulate xmethods.
2661@xref{Xmethods In Python}.
2662
2663An xmethod matcher should be an instance of a class derived from
2664@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2665object with similar interface and attributes. An instance of
2666@code{XMethodMatcher} has the following attributes:
2667
2668@defvar name
2669The name of the matcher.
2670@end defvar
2671
2672@defvar enabled
2673A boolean value indicating whether the matcher is enabled or disabled.
2674@end defvar
2675
2676@defvar methods
2677A list of named methods managed by the matcher. Each object in the list
2678is an instance of the class @code{XMethod} defined in the module
2679@code{gdb.xmethod}, or any object with the following attributes:
2680
2681@table @code
2682
2683@item name
2684Name of the xmethod which should be unique for each xmethod
2685managed by the matcher.
2686
2687@item enabled
2688A boolean value indicating whether the xmethod is enabled or
2689disabled.
2690
2691@end table
2692
2693The class @code{XMethod} is a convenience class with same
2694attributes as above along with the following constructor:
2695
dd5d5494 2696@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2697Constructs an enabled xmethod with name @var{name}.
2698@end defun
2699@end defvar
2700
2701@noindent
2702The @code{XMethodMatcher} class has the following methods:
2703
dd5d5494 2704@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2705Constructs an enabled xmethod matcher with name @var{name}. The
2706@code{methods} attribute is initialized to @code{None}.
2707@end defun
2708
dd5d5494 2709@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2710Derived classes should override this method. It should return a
2711xmethod worker object (or a sequence of xmethod worker
2712objects) matching the @var{class_type} and @var{method_name}.
2713@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2714is a string value. If the matcher manages named methods as listed in
2715its @code{methods} attribute, then only those worker objects whose
2716corresponding entries in the @code{methods} list are enabled should be
2717returned.
2718@end defun
2719
2720An xmethod worker should be an instance of a class derived from
2721@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2722or support the following interface:
2723
dd5d5494 2724@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2725This method returns a sequence of @code{gdb.Type} objects corresponding
2726to the arguments that the xmethod takes. It can return an empty
2727sequence or @code{None} if the xmethod does not take any arguments.
2728If the xmethod takes a single argument, then a single
2729@code{gdb.Type} object corresponding to it can be returned.
2730@end defun
2731
2ce1cdbf
DE
2732@defun XMethodWorker.get_result_type (self, *args)
2733This method returns a @code{gdb.Type} object representing the type
2734of the result of invoking this xmethod.
2735The @var{args} argument is the same tuple of arguments that would be
2736passed to the @code{__call__} method of this worker.
2737@end defun
2738
dd5d5494 2739@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2740This is the method which does the @emph{work} of the xmethod. The
2741@var{args} arguments is the tuple of arguments to the xmethod. Each
2742element in this tuple is a gdb.Value object. The first element is
2743always the @code{this} pointer value.
2744@end defun
2745
2746For @value{GDBN} to lookup xmethods, the xmethod matchers
2747should be registered using the following function defined in the module
2748@code{gdb.xmethod}:
2749
dd5d5494 2750@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2751The @code{matcher} is registered with @code{locus}, replacing an
2752existing matcher with the same name as @code{matcher} if
2753@code{replace} is @code{True}. @code{locus} can be a
2754@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2755@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2756@code{None}. If it is @code{None}, then @code{matcher} is registered
2757globally.
2758@end defun
2759
2760@node Writing an Xmethod
2761@subsubsection Writing an Xmethod
2762@cindex writing xmethods in Python
2763
2764Implementing xmethods in Python will require implementing xmethod
2765matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2766the following C@t{++} class:
2767
2768@smallexample
2769class MyClass
2770@{
2771public:
2772 MyClass (int a) : a_(a) @{ @}
2773
2774 int geta (void) @{ return a_; @}
2775 int operator+ (int b);
2776
2777private:
2778 int a_;
2779@};
2780
2781int
2782MyClass::operator+ (int b)
2783@{
2784 return a_ + b;
2785@}
2786@end smallexample
2787
2788@noindent
2789Let us define two xmethods for the class @code{MyClass}, one
2790replacing the method @code{geta}, and another adding an overloaded
2791flavor of @code{operator+} which takes a @code{MyClass} argument (the
2792C@t{++} code above already has an overloaded @code{operator+}
2793which takes an @code{int} argument). The xmethod matcher can be
2794defined as follows:
2795
2796@smallexample
2797class MyClass_geta(gdb.xmethod.XMethod):
2798 def __init__(self):
2799 gdb.xmethod.XMethod.__init__(self, 'geta')
2800
2801 def get_worker(self, method_name):
2802 if method_name == 'geta':
2803 return MyClassWorker_geta()
2804
2805
2806class MyClass_sum(gdb.xmethod.XMethod):
2807 def __init__(self):
2808 gdb.xmethod.XMethod.__init__(self, 'sum')
2809
2810 def get_worker(self, method_name):
2811 if method_name == 'operator+':
2812 return MyClassWorker_plus()
2813
2814
2815class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2816 def __init__(self):
2817 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2818 # List of methods 'managed' by this matcher
2819 self.methods = [MyClass_geta(), MyClass_sum()]
2820
2821 def match(self, class_type, method_name):
2822 if class_type.tag != 'MyClass':
2823 return None
2824 workers = []
2825 for method in self.methods:
2826 if method.enabled:
2827 worker = method.get_worker(method_name)
2828 if worker:
2829 workers.append(worker)
2830
2831 return workers
2832@end smallexample
2833
2834@noindent
2835Notice that the @code{match} method of @code{MyClassMatcher} returns
2836a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2837method, and a worker object of type @code{MyClassWorker_plus} for the
2838@code{operator+} method. This is done indirectly via helper classes
2839derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2840@code{methods} attribute in a matcher as it is optional. However, if a
2841matcher manages more than one xmethod, it is a good practice to list the
2842xmethods in the @code{methods} attribute of the matcher. This will then
2843facilitate enabling and disabling individual xmethods via the
2844@code{enable/disable} commands. Notice also that a worker object is
2845returned only if the corresponding entry in the @code{methods} attribute
2846of the matcher is enabled.
2847
2848The implementation of the worker classes returned by the matcher setup
2849above is as follows:
2850
2851@smallexample
2852class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2853 def get_arg_types(self):
2854 return None
2ce1cdbf
DE
2855
2856 def get_result_type(self, obj):
2857 return gdb.lookup_type('int')
0c6e92a5
SC
2858
2859 def __call__(self, obj):
2860 return obj['a_']
2861
2862
2863class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2864 def get_arg_types(self):
2865 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2866
2867 def get_result_type(self, obj):
2868 return gdb.lookup_type('int')
0c6e92a5
SC
2869
2870 def __call__(self, obj, other):
2871 return obj['a_'] + other['a_']
2872@end smallexample
2873
2874For @value{GDBN} to actually lookup a xmethod, it has to be
2875registered with it. The matcher defined above is registered with
2876@value{GDBN} globally as follows:
2877
2878@smallexample
2879gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2880@end smallexample
2881
2882If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2883code as follows:
2884
2885@smallexample
2886MyClass obj(5);
2887@end smallexample
2888
2889@noindent
2890then, after loading the Python script defining the xmethod matchers
2891and workers into @code{GDBN}, invoking the method @code{geta} or using
2892the operator @code{+} on @code{obj} will invoke the xmethods
2893defined above:
2894
2895@smallexample
2896(gdb) p obj.geta()
2897$1 = 5
2898
2899(gdb) p obj + obj
2900$2 = 10
2901@end smallexample
2902
2903Consider another example with a C++ template class:
2904
2905@smallexample
2906template <class T>
2907class MyTemplate
2908@{
2909public:
2910 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2911 ~MyTemplate () @{ delete [] data_; @}
2912
2913 int footprint (void)
2914 @{
2915 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2916 @}
2917
2918private:
2919 int dsize_;
2920 T *data_;
2921@};
2922@end smallexample
2923
2924Let us implement an xmethod for the above class which serves as a
2925replacement for the @code{footprint} method. The full code listing
2926of the xmethod workers and xmethod matchers is as follows:
2927
2928@smallexample
2929class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2930 def __init__(self, class_type):
2931 self.class_type = class_type
2ce1cdbf 2932
0c6e92a5
SC
2933 def get_arg_types(self):
2934 return None
2ce1cdbf
DE
2935
2936 def get_result_type(self):
2937 return gdb.lookup_type('int')
2938
0c6e92a5
SC
2939 def __call__(self, obj):
2940 return (self.class_type.sizeof +
2941 obj['dsize_'] *
2942 self.class_type.template_argument(0).sizeof)
2943
2944
2945class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2946 def __init__(self):
2947 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2948
2949 def match(self, class_type, method_name):
2950 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2951 class_type.tag) and
2952 method_name == 'footprint'):
2953 return MyTemplateWorker_footprint(class_type)
2954@end smallexample
2955
2956Notice that, in this example, we have not used the @code{methods}
2957attribute of the matcher as the matcher manages only one xmethod. The
2958user can enable/disable this xmethod by enabling/disabling the matcher
2959itself.
2960
329baa95
DE
2961@node Inferiors In Python
2962@subsubsection Inferiors In Python
2963@cindex inferiors in Python
2964
2965@findex gdb.Inferior
2966Programs which are being run under @value{GDBN} are called inferiors
65c574f6 2967(@pxref{Inferiors Connections and Programs}). Python scripts can access
329baa95
DE
2968information about and manipulate inferiors controlled by @value{GDBN}
2969via objects of the @code{gdb.Inferior} class.
2970
2971The following inferior-related functions are available in the @code{gdb}
2972module:
2973
2974@defun gdb.inferiors ()
2975Return a tuple containing all inferior objects.
2976@end defun
2977
2978@defun gdb.selected_inferior ()
2979Return an object representing the current inferior.
2980@end defun
2981
2982A @code{gdb.Inferior} object has the following attributes:
2983
2984@defvar Inferior.num
2985ID of inferior, as assigned by GDB.
2986@end defvar
2987
2988@defvar Inferior.pid
2989Process ID of the inferior, as assigned by the underlying operating
2990system.
2991@end defvar
2992
2993@defvar Inferior.was_attached
2994Boolean signaling whether the inferior was created using `attach', or
2995started by @value{GDBN} itself.
2996@end defvar
2997
a40bf0c2
SM
2998@defvar Inferior.progspace
2999The inferior's program space. @xref{Progspaces In Python}.
3000@end defvar
3001
329baa95
DE
3002A @code{gdb.Inferior} object has the following methods:
3003
3004@defun Inferior.is_valid ()
3005Returns @code{True} if the @code{gdb.Inferior} object is valid,
3006@code{False} if not. A @code{gdb.Inferior} object will become invalid
3007if the inferior no longer exists within @value{GDBN}. All other
3008@code{gdb.Inferior} methods will throw an exception if it is invalid
3009at the time the method is called.
3010@end defun
3011
3012@defun Inferior.threads ()
3013This method returns a tuple holding all the threads which are valid
3014when it is called. If there are no valid threads, the method will
3015return an empty tuple.
3016@end defun
3017
add5ded5
TT
3018@defun Inferior.architecture ()
3019Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
3020for this inferior. This represents the architecture of the inferior
3021as a whole. Some platforms can have multiple architectures in a
3022single address space, so this may not match the architecture of a
163cffef 3023particular frame (@pxref{Frames In Python}).
9e1698c6 3024@end defun
add5ded5 3025
329baa95
DE
3026@findex Inferior.read_memory
3027@defun Inferior.read_memory (address, length)
a86c90e6 3028Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
3029@var{address}. Returns a buffer object, which behaves much like an array
3030or a string. It can be modified and given to the
79778b30 3031@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
3032value is a @code{memoryview} object.
3033@end defun
3034
3035@findex Inferior.write_memory
3036@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
3037Write the contents of @var{buffer} to the inferior, starting at
3038@var{address}. The @var{buffer} parameter must be a Python object
3039which supports the buffer protocol, i.e., a string, an array or the
3040object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
3041determines the number of addressable memory units from @var{buffer} to be
3042written.
329baa95
DE
3043@end defun
3044
3045@findex gdb.search_memory
3046@defun Inferior.search_memory (address, length, pattern)
3047Search a region of the inferior memory starting at @var{address} with
3048the given @var{length} using the search pattern supplied in
3049@var{pattern}. The @var{pattern} parameter must be a Python object
3050which supports the buffer protocol, i.e., a string, an array or the
3051object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
3052containing the address where the pattern was found, or @code{None} if
3053the pattern could not be found.
3054@end defun
3055
2b0c8b01 3056@findex Inferior.thread_from_handle
da2c323b 3057@findex Inferior.thread_from_thread_handle
2b0c8b01
KB
3058@defun Inferior.thread_from_handle (handle)
3059Return the thread object corresponding to @var{handle}, a thread
da2c323b
KB
3060library specific data structure such as @code{pthread_t} for pthreads
3061library implementations.
2b0c8b01
KB
3062
3063The function @code{Inferior.thread_from_thread_handle} provides
3064the same functionality, but use of @code{Inferior.thread_from_thread_handle}
3065is deprecated.
da2c323b
KB
3066@end defun
3067
329baa95
DE
3068@node Events In Python
3069@subsubsection Events In Python
3070@cindex inferior events in Python
3071
3072@value{GDBN} provides a general event facility so that Python code can be
3073notified of various state changes, particularly changes that occur in
3074the inferior.
3075
3076An @dfn{event} is just an object that describes some state change. The
3077type of the object and its attributes will vary depending on the details
3078of the change. All the existing events are described below.
3079
3080In order to be notified of an event, you must register an event handler
3081with an @dfn{event registry}. An event registry is an object in the
3082@code{gdb.events} module which dispatches particular events. A registry
3083provides methods to register and unregister event handlers:
3084
3085@defun EventRegistry.connect (object)
3086Add the given callable @var{object} to the registry. This object will be
3087called when an event corresponding to this registry occurs.
3088@end defun
3089
3090@defun EventRegistry.disconnect (object)
3091Remove the given @var{object} from the registry. Once removed, the object
3092will no longer receive notifications of events.
3093@end defun
3094
3095Here is an example:
3096
3097@smallexample
3098def exit_handler (event):
3099 print "event type: exit"
3100 print "exit code: %d" % (event.exit_code)
3101
3102gdb.events.exited.connect (exit_handler)
3103@end smallexample
3104
3105In the above example we connect our handler @code{exit_handler} to the
3106registry @code{events.exited}. Once connected, @code{exit_handler} gets
3107called when the inferior exits. The argument @dfn{event} in this example is
3108of type @code{gdb.ExitedEvent}. As you can see in the example the
3109@code{ExitedEvent} object has an attribute which indicates the exit code of
3110the inferior.
3111
3112The following is a listing of the event registries that are available and
3113details of the events they emit:
3114
3115@table @code
3116
3117@item events.cont
3118Emits @code{gdb.ThreadEvent}.
3119
3120Some events can be thread specific when @value{GDBN} is running in non-stop
3121mode. When represented in Python, these events all extend
3122@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
3123events which are emitted by this or other modules might extend this event.
3124Examples of these events are @code{gdb.BreakpointEvent} and
3125@code{gdb.ContinueEvent}.
3126
3127@defvar ThreadEvent.inferior_thread
3128In non-stop mode this attribute will be set to the specific thread which was
3129involved in the emitted event. Otherwise, it will be set to @code{None}.
3130@end defvar
3131
3132Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
3133
3134This event indicates that the inferior has been continued after a stop. For
3135inherited attribute refer to @code{gdb.ThreadEvent} above.
3136
3137@item events.exited
3138Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3139@code{events.ExitedEvent} has two attributes:
3140@defvar ExitedEvent.exit_code
3141An integer representing the exit code, if available, which the inferior
3142has returned. (The exit code could be unavailable if, for example,
3143@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3144the attribute does not exist.
3145@end defvar
373832b6 3146@defvar ExitedEvent.inferior
329baa95
DE
3147A reference to the inferior which triggered the @code{exited} event.
3148@end defvar
3149
3150@item events.stop
3151Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3152
3153Indicates that the inferior has stopped. All events emitted by this registry
3154extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3155will indicate the stopped thread when @value{GDBN} is running in non-stop
3156mode. Refer to @code{gdb.ThreadEvent} above for more details.
3157
3158Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3159
3160This event indicates that the inferior or one of its threads has received as
3161signal. @code{gdb.SignalEvent} has the following attributes:
3162
3163@defvar SignalEvent.stop_signal
3164A string representing the signal received by the inferior. A list of possible
3165signal values can be obtained by running the command @code{info signals} in
3166the @value{GDBN} command prompt.
3167@end defvar
3168
3169Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3170
3171@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3172been hit, and has the following attributes:
3173
3174@defvar BreakpointEvent.breakpoints
3175A sequence containing references to all the breakpoints (type
3176@code{gdb.Breakpoint}) that were hit.
3177@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3178@end defvar
3179@defvar BreakpointEvent.breakpoint
3180A reference to the first breakpoint that was hit.
3181This function is maintained for backward compatibility and is now deprecated
3182in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3183@end defvar
3184
3185@item events.new_objfile
3186Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3187been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3188
3189@defvar NewObjFileEvent.new_objfile
3190A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3191@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3192@end defvar
3193
4ffbba72
DE
3194@item events.clear_objfiles
3195Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3196files for a program space has been reset.
3197@code{gdb.ClearObjFilesEvent} has one attribute:
3198
3199@defvar ClearObjFilesEvent.progspace
3200A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3201been cleared. @xref{Progspaces In Python}.
3202@end defvar
3203
fb5af5e3
TT
3204@item events.inferior_call
3205Emits events just before and after a function in the inferior is
3206called by @value{GDBN}. Before an inferior call, this emits an event
3207of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3208this emits an event of type @code{gdb.InferiorCallPostEvent}.
3209
3210@table @code
3211@tindex gdb.InferiorCallPreEvent
3212@item @code{gdb.InferiorCallPreEvent}
3213Indicates that a function in the inferior is about to be called.
162078c8
NB
3214
3215@defvar InferiorCallPreEvent.ptid
3216The thread in which the call will be run.
3217@end defvar
3218
3219@defvar InferiorCallPreEvent.address
3220The location of the function to be called.
3221@end defvar
3222
fb5af5e3
TT
3223@tindex gdb.InferiorCallPostEvent
3224@item @code{gdb.InferiorCallPostEvent}
3225Indicates that a function in the inferior has just been called.
162078c8
NB
3226
3227@defvar InferiorCallPostEvent.ptid
3228The thread in which the call was run.
3229@end defvar
3230
3231@defvar InferiorCallPostEvent.address
3232The location of the function that was called.
3233@end defvar
fb5af5e3 3234@end table
162078c8
NB
3235
3236@item events.memory_changed
3237Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3238inferior has been modified by the @value{GDBN} user, for instance via a
3239command like @w{@code{set *addr = value}}. The event has the following
3240attributes:
3241
3242@defvar MemoryChangedEvent.address
3243The start address of the changed region.
3244@end defvar
3245
3246@defvar MemoryChangedEvent.length
3247Length in bytes of the changed region.
3248@end defvar
3249
3250@item events.register_changed
3251Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3252inferior has been modified by the @value{GDBN} user.
3253
3254@defvar RegisterChangedEvent.frame
3255A gdb.Frame object representing the frame in which the register was modified.
3256@end defvar
3257@defvar RegisterChangedEvent.regnum
3258Denotes which register was modified.
3259@end defvar
3260
dac790e1
TT
3261@item events.breakpoint_created
3262This is emitted when a new breakpoint has been created. The argument
3263that is passed is the new @code{gdb.Breakpoint} object.
3264
3265@item events.breakpoint_modified
3266This is emitted when a breakpoint has been modified in some way. The
3267argument that is passed is the new @code{gdb.Breakpoint} object.
3268
3269@item events.breakpoint_deleted
3270This is emitted when a breakpoint has been deleted. The argument that
3271is passed is the @code{gdb.Breakpoint} object. When this event is
3272emitted, the @code{gdb.Breakpoint} object will already be in its
3273invalid state; that is, the @code{is_valid} method will return
3274@code{False}.
3275
3f77c769
TT
3276@item events.before_prompt
3277This event carries no payload. It is emitted each time @value{GDBN}
3278presents a prompt to the user.
3279
7c96f8c1
TT
3280@item events.new_inferior
3281This is emitted when a new inferior is created. Note that the
3282inferior is not necessarily running; in fact, it may not even have an
3283associated executable.
3284
3285The event is of type @code{gdb.NewInferiorEvent}. This has a single
3286attribute:
3287
3288@defvar NewInferiorEvent.inferior
3289The new inferior, a @code{gdb.Inferior} object.
3290@end defvar
3291
3292@item events.inferior_deleted
3293This is emitted when an inferior has been deleted. Note that this is
3294not the same as process exit; it is notified when the inferior itself
3295is removed, say via @code{remove-inferiors}.
3296
3297The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3298attribute:
3299
3300@defvar NewInferiorEvent.inferior
3301The inferior that is being removed, a @code{gdb.Inferior} object.
3302@end defvar
3303
3304@item events.new_thread
3305This is emitted when @value{GDBN} notices a new thread. The event is of
3306type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3307This has a single attribute:
3308
3309@defvar NewThreadEvent.inferior_thread
3310The new thread.
3311@end defvar
3312
329baa95
DE
3313@end table
3314
3315@node Threads In Python
3316@subsubsection Threads In Python
3317@cindex threads in python
3318
3319@findex gdb.InferiorThread
3320Python scripts can access information about, and manipulate inferior threads
3321controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3322
3323The following thread-related functions are available in the @code{gdb}
3324module:
3325
3326@findex gdb.selected_thread
3327@defun gdb.selected_thread ()
3328This function returns the thread object for the selected thread. If there
3329is no selected thread, this will return @code{None}.
3330@end defun
3331
14796d29 3332To get the list of threads for an inferior, use the @code{Inferior.threads()}
0ca4866a 3333method. @xref{Inferiors In Python}.
14796d29 3334
329baa95
DE
3335A @code{gdb.InferiorThread} object has the following attributes:
3336
3337@defvar InferiorThread.name
3338The name of the thread. If the user specified a name using
3339@code{thread name}, then this returns that name. Otherwise, if an
3340OS-supplied name is available, then it is returned. Otherwise, this
3341returns @code{None}.
3342
3343This attribute can be assigned to. The new value must be a string
3344object, which sets the new name, or @code{None}, which removes any
3345user-specified thread name.
3346@end defvar
3347
3348@defvar InferiorThread.num
5d5658a1 3349The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3350@end defvar
3351
22a02324
PA
3352@defvar InferiorThread.global_num
3353The global ID of the thread, as assigned by GDB. You can use this to
3354make Python breakpoints thread-specific, for example
3355(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3356@end defvar
3357
329baa95
DE
3358@defvar InferiorThread.ptid
3359ID of the thread, as assigned by the operating system. This attribute is a
3360tuple containing three integers. The first is the Process ID (PID); the second
3361is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3362Either the LWPID or TID may be 0, which indicates that the operating system
3363does not use that identifier.
3364@end defvar
3365
84654457
PA
3366@defvar InferiorThread.inferior
3367The inferior this thread belongs to. This attribute is represented as
3368a @code{gdb.Inferior} object. This attribute is not writable.
3369@end defvar
3370
329baa95
DE
3371A @code{gdb.InferiorThread} object has the following methods:
3372
3373@defun InferiorThread.is_valid ()
3374Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3375@code{False} if not. A @code{gdb.InferiorThread} object will become
3376invalid if the thread exits, or the inferior that the thread belongs
3377is deleted. All other @code{gdb.InferiorThread} methods will throw an
3378exception if it is invalid at the time the method is called.
3379@end defun
3380
3381@defun InferiorThread.switch ()
3382This changes @value{GDBN}'s currently selected thread to the one represented
3383by this object.
3384@end defun
3385
3386@defun InferiorThread.is_stopped ()
3387Return a Boolean indicating whether the thread is stopped.
3388@end defun
3389
3390@defun InferiorThread.is_running ()
3391Return a Boolean indicating whether the thread is running.
3392@end defun
3393
3394@defun InferiorThread.is_exited ()
3395Return a Boolean indicating whether the thread is exited.
3396@end defun
3397
c369f8f0
KB
3398@defun InferiorThread.handle ()
3399Return the thread object's handle, represented as a Python @code{bytes}
3400object. A @code{gdb.Value} representation of the handle may be
3401constructed via @code{gdb.Value(bufobj, type)} where @var{bufobj} is
3402the Python @code{bytes} representation of the handle and @var{type} is
3403a @code{gdb.Type} for the handle type.
3404@end defun
3405
0a0faf9f
TW
3406@node Recordings In Python
3407@subsubsection Recordings In Python
3408@cindex recordings in python
3409
3410The following recordings-related functions
3411(@pxref{Process Record and Replay}) are available in the @code{gdb}
3412module:
3413
3414@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3415Start a recording using the given @var{method} and @var{format}. If
3416no @var{format} is given, the default format for the recording method
3417is used. If no @var{method} is given, the default method will be used.
3418Returns a @code{gdb.Record} object on success. Throw an exception on
3419failure.
3420
3421The following strings can be passed as @var{method}:
3422
3423@itemize @bullet
3424@item
3425@code{"full"}
3426@item
3427@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3428@code{"bts"} or leave out for default format.
3429@end itemize
3430@end defun
3431
3432@defun gdb.current_recording ()
3433Access a currently running recording. Return a @code{gdb.Record}
3434object on success. Return @code{None} if no recording is currently
3435active.
3436@end defun
3437
3438@defun gdb.stop_recording ()
3439Stop the current recording. Throw an exception if no recording is
3440currently active. All record objects become invalid after this call.
3441@end defun
3442
3443A @code{gdb.Record} object has the following attributes:
3444
0a0faf9f
TW
3445@defvar Record.method
3446A string with the current recording method, e.g.@: @code{full} or
3447@code{btrace}.
3448@end defvar
3449
3450@defvar Record.format
3451A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3452@code{None}.
3453@end defvar
3454
3455@defvar Record.begin
3456A method specific instruction object representing the first instruction
3457in this recording.
3458@end defvar
3459
3460@defvar Record.end
3461A method specific instruction object representing the current
3462instruction, that is not actually part of the recording.
3463@end defvar
3464
3465@defvar Record.replay_position
3466The instruction representing the current replay position. If there is
3467no replay active, this will be @code{None}.
3468@end defvar
3469
3470@defvar Record.instruction_history
3471A list with all recorded instructions.
3472@end defvar
3473
3474@defvar Record.function_call_history
3475A list with all recorded function call segments.
3476@end defvar
3477
3478A @code{gdb.Record} object has the following methods:
3479
3480@defun Record.goto (instruction)
3481Move the replay position to the given @var{instruction}.
3482@end defun
3483
d050f7d7
TW
3484The common @code{gdb.Instruction} class that recording method specific
3485instruction objects inherit from, has the following attributes:
0a0faf9f 3486
d050f7d7 3487@defvar Instruction.pc
913aeadd 3488An integer representing this instruction's address.
0a0faf9f
TW
3489@end defvar
3490
d050f7d7 3491@defvar Instruction.data
913aeadd
TW
3492A buffer with the raw instruction data. In Python 3, the return value is a
3493@code{memoryview} object.
0a0faf9f
TW
3494@end defvar
3495
d050f7d7 3496@defvar Instruction.decoded
913aeadd 3497A human readable string with the disassembled instruction.
0a0faf9f
TW
3498@end defvar
3499
d050f7d7 3500@defvar Instruction.size
913aeadd 3501The size of the instruction in bytes.
0a0faf9f
TW
3502@end defvar
3503
d050f7d7
TW
3504Additionally @code{gdb.RecordInstruction} has the following attributes:
3505
3506@defvar RecordInstruction.number
3507An integer identifying this instruction. @code{number} corresponds to
3508the numbers seen in @code{record instruction-history}
3509(@pxref{Process Record and Replay}).
3510@end defvar
3511
3512@defvar RecordInstruction.sal
3513A @code{gdb.Symtab_and_line} object representing the associated symtab
3514and line of this instruction. May be @code{None} if no debug information is
3515available.
3516@end defvar
3517
0ed5da75 3518@defvar RecordInstruction.is_speculative
d050f7d7 3519A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3520@end defvar
3521
3522If an error occured during recording or decoding a recording, this error is
3523represented by a @code{gdb.RecordGap} object in the instruction list. It has
3524the following attributes:
3525
3526@defvar RecordGap.number
3527An integer identifying this gap. @code{number} corresponds to the numbers seen
3528in @code{record instruction-history} (@pxref{Process Record and Replay}).
3529@end defvar
3530
3531@defvar RecordGap.error_code
3532A numerical representation of the reason for the gap. The value is specific to
3533the current recording method.
3534@end defvar
3535
3536@defvar RecordGap.error_string
3537A human readable string with the reason for the gap.
0a0faf9f
TW
3538@end defvar
3539
14f819c8 3540A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3541
14f819c8
TW
3542@defvar RecordFunctionSegment.number
3543An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3544the numbers seen in @code{record function-call-history}
3545(@pxref{Process Record and Replay}).
3546@end defvar
3547
14f819c8 3548@defvar RecordFunctionSegment.symbol
0a0faf9f 3549A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3550@code{None} if no debug information is available.
0a0faf9f
TW
3551@end defvar
3552
14f819c8 3553@defvar RecordFunctionSegment.level
0a0faf9f
TW
3554An integer representing the function call's stack level. May be
3555@code{None} if the function call is a gap.
3556@end defvar
3557
14f819c8 3558@defvar RecordFunctionSegment.instructions
0ed5da75 3559A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3560associated with this function call.
0a0faf9f
TW
3561@end defvar
3562
14f819c8
TW
3563@defvar RecordFunctionSegment.up
3564A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3565function segment. If the call has not been recorded, this will be the
3566function segment to which control returns. If neither the call nor the
3567return have been recorded, this will be @code{None}.
3568@end defvar
3569
14f819c8
TW
3570@defvar RecordFunctionSegment.prev
3571A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3572segment of this function call. May be @code{None}.
3573@end defvar
3574
14f819c8
TW
3575@defvar RecordFunctionSegment.next
3576A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3577this function call. May be @code{None}.
3578@end defvar
3579
3580The following example demonstrates the usage of these objects and
3581functions to create a function that will rewind a record to the last
3582time a function in a different file was executed. This would typically
3583be used to track the execution of user provided callback functions in a
3584library which typically are not visible in a back trace.
3585
3586@smallexample
3587def bringback ():
3588 rec = gdb.current_recording ()
3589 if not rec:
3590 return
3591
3592 insn = rec.instruction_history
3593 if len (insn) == 0:
3594 return
3595
3596 try:
3597 position = insn.index (rec.replay_position)
3598 except:
3599 position = -1
3600 try:
3601 filename = insn[position].sal.symtab.fullname ()
3602 except:
3603 filename = None
3604
3605 for i in reversed (insn[:position]):
3606 try:
3607 current = i.sal.symtab.fullname ()
3608 except:
3609 current = None
3610
3611 if filename == current:
3612 continue
3613
3614 rec.goto (i)
3615 return
3616@end smallexample
3617
3618Another possible application is to write a function that counts the
3619number of code executions in a given line range. This line range can
3620contain parts of functions or span across several functions and is not
3621limited to be contiguous.
3622
3623@smallexample
3624def countrange (filename, linerange):
3625 count = 0
3626
3627 def filter_only (file_name):
3628 for call in gdb.current_recording ().function_call_history:
3629 try:
3630 if file_name in call.symbol.symtab.fullname ():
3631 yield call
3632 except:
3633 pass
3634
3635 for c in filter_only (filename):
3636 for i in c.instructions:
3637 try:
3638 if i.sal.line in linerange:
3639 count += 1
3640 break;
3641 except:
3642 pass
3643
3644 return count
3645@end smallexample
3646
329baa95
DE
3647@node Commands In Python
3648@subsubsection Commands In Python
3649
3650@cindex commands in python
3651@cindex python commands
3652You can implement new @value{GDBN} CLI commands in Python. A CLI
3653command is implemented using an instance of the @code{gdb.Command}
3654class, most commonly using a subclass.
3655
3656@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3657The object initializer for @code{Command} registers the new command
3658with @value{GDBN}. This initializer is normally invoked from the
3659subclass' own @code{__init__} method.
3660
3661@var{name} is the name of the command. If @var{name} consists of
3662multiple words, then the initial words are looked for as prefix
3663commands. In this case, if one of the prefix commands does not exist,
3664an exception is raised.
3665
3666There is no support for multi-line commands.
3667
3668@var{command_class} should be one of the @samp{COMMAND_} constants
3669defined below. This argument tells @value{GDBN} how to categorize the
3670new command in the help system.
3671
3672@var{completer_class} is an optional argument. If given, it should be
3673one of the @samp{COMPLETE_} constants defined below. This argument
3674tells @value{GDBN} how to perform completion for this command. If not
3675given, @value{GDBN} will attempt to complete using the object's
3676@code{complete} method (see below); if no such method is found, an
3677error will occur when completion is attempted.
3678
3679@var{prefix} is an optional argument. If @code{True}, then the new
3680command is a prefix command; sub-commands of this command may be
3681registered.
3682
3683The help text for the new command is taken from the Python
3684documentation string for the command's class, if there is one. If no
3685documentation string is provided, the default value ``This command is
3686not documented.'' is used.
3687@end defun
3688
3689@cindex don't repeat Python command
3690@defun Command.dont_repeat ()
3691By default, a @value{GDBN} command is repeated when the user enters a
3692blank line at the command prompt. A command can suppress this
3693behavior by invoking the @code{dont_repeat} method. This is similar
3694to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3695@end defun
3696
3697@defun Command.invoke (argument, from_tty)
3698This method is called by @value{GDBN} when this command is invoked.
3699
3700@var{argument} is a string. It is the argument to the command, after
3701leading and trailing whitespace has been stripped.
3702
3703@var{from_tty} is a boolean argument. When true, this means that the
3704command was entered by the user at the terminal; when false it means
3705that the command came from elsewhere.
3706
3707If this method throws an exception, it is turned into a @value{GDBN}
3708@code{error} call. Otherwise, the return value is ignored.
3709
3710@findex gdb.string_to_argv
3711To break @var{argument} up into an argv-like string use
3712@code{gdb.string_to_argv}. This function behaves identically to
3713@value{GDBN}'s internal argument lexer @code{buildargv}.
3714It is recommended to use this for consistency.
3715Arguments are separated by spaces and may be quoted.
3716Example:
3717
3718@smallexample
3719print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3720['1', '2 "3', '4 "5', "6 '7"]
3721@end smallexample
3722
3723@end defun
3724
3725@cindex completion of Python commands
3726@defun Command.complete (text, word)
3727This method is called by @value{GDBN} when the user attempts
3728completion on this command. All forms of completion are handled by
3729this method, that is, the @key{TAB} and @key{M-?} key bindings
3730(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3731complete}).
3732
697aa1b7
EZ
3733The arguments @var{text} and @var{word} are both strings; @var{text}
3734holds the complete command line up to the cursor's location, while
329baa95
DE
3735@var{word} holds the last word of the command line; this is computed
3736using a word-breaking heuristic.
3737
3738The @code{complete} method can return several values:
3739@itemize @bullet
3740@item
3741If the return value is a sequence, the contents of the sequence are
3742used as the completions. It is up to @code{complete} to ensure that the
3743contents actually do complete the word. A zero-length sequence is
3744allowed, it means that there were no completions available. Only
3745string elements of the sequence are used; other elements in the
3746sequence are ignored.
3747
3748@item
3749If the return value is one of the @samp{COMPLETE_} constants defined
3750below, then the corresponding @value{GDBN}-internal completion
3751function is invoked, and its result is used.
3752
3753@item
3754All other results are treated as though there were no available
3755completions.
3756@end itemize
3757@end defun
3758
3759When a new command is registered, it must be declared as a member of
3760some general class of commands. This is used to classify top-level
3761commands in the on-line help system; note that prefix commands are not
3762listed under their own category but rather that of their top-level
3763command. The available classifications are represented by constants
3764defined in the @code{gdb} module:
3765
3766@table @code
3767@findex COMMAND_NONE
3768@findex gdb.COMMAND_NONE
3769@item gdb.COMMAND_NONE
3770The command does not belong to any particular class. A command in
3771this category will not be displayed in any of the help categories.
3772
3773@findex COMMAND_RUNNING
3774@findex gdb.COMMAND_RUNNING
3775@item gdb.COMMAND_RUNNING
3776The command is related to running the inferior. For example,
3777@code{start}, @code{step}, and @code{continue} are in this category.
3778Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3779commands in this category.
3780
3781@findex COMMAND_DATA
3782@findex gdb.COMMAND_DATA
3783@item gdb.COMMAND_DATA
3784The command is related to data or variables. For example,
3785@code{call}, @code{find}, and @code{print} are in this category. Type
3786@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3787in this category.
3788
3789@findex COMMAND_STACK
3790@findex gdb.COMMAND_STACK
3791@item gdb.COMMAND_STACK
3792The command has to do with manipulation of the stack. For example,
3793@code{backtrace}, @code{frame}, and @code{return} are in this
3794category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3795list of commands in this category.
3796
3797@findex COMMAND_FILES
3798@findex gdb.COMMAND_FILES
3799@item gdb.COMMAND_FILES
3800This class is used for file-related commands. For example,
3801@code{file}, @code{list} and @code{section} are in this category.
3802Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3803commands in this category.
3804
3805@findex COMMAND_SUPPORT
3806@findex gdb.COMMAND_SUPPORT
3807@item gdb.COMMAND_SUPPORT
3808This should be used for ``support facilities'', generally meaning
3809things that are useful to the user when interacting with @value{GDBN},
3810but not related to the state of the inferior. For example,
3811@code{help}, @code{make}, and @code{shell} are in this category. Type
3812@kbd{help support} at the @value{GDBN} prompt to see a list of
3813commands in this category.
3814
3815@findex COMMAND_STATUS
3816@findex gdb.COMMAND_STATUS
3817@item gdb.COMMAND_STATUS
3818The command is an @samp{info}-related command, that is, related to the
3819state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3820and @code{show} are in this category. Type @kbd{help status} at the
3821@value{GDBN} prompt to see a list of commands in this category.
3822
3823@findex COMMAND_BREAKPOINTS
3824@findex gdb.COMMAND_BREAKPOINTS
3825@item gdb.COMMAND_BREAKPOINTS
3826The command has to do with breakpoints. For example, @code{break},
3827@code{clear}, and @code{delete} are in this category. Type @kbd{help
3828breakpoints} at the @value{GDBN} prompt to see a list of commands in
3829this category.
3830
3831@findex COMMAND_TRACEPOINTS
3832@findex gdb.COMMAND_TRACEPOINTS
3833@item gdb.COMMAND_TRACEPOINTS
3834The command has to do with tracepoints. For example, @code{trace},
3835@code{actions}, and @code{tfind} are in this category. Type
3836@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3837commands in this category.
3838
2b2fbab8
TT
3839@findex COMMAND_TUI
3840@findex gdb.COMMAND_TUI
3841@item gdb.COMMAND_TUI
3842The command has to do with the text user interface (@pxref{TUI}).
3843Type @kbd{help tui} at the @value{GDBN} prompt to see a list of
3844commands in this category.
3845
329baa95
DE
3846@findex COMMAND_USER
3847@findex gdb.COMMAND_USER
3848@item gdb.COMMAND_USER
3849The command is a general purpose command for the user, and typically
3850does not fit in one of the other categories.
3851Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3852a list of commands in this category, as well as the list of gdb macros
3853(@pxref{Sequences}).
3854
3855@findex COMMAND_OBSCURE
3856@findex gdb.COMMAND_OBSCURE
3857@item gdb.COMMAND_OBSCURE
3858The command is only used in unusual circumstances, or is not of
3859general interest to users. For example, @code{checkpoint},
3860@code{fork}, and @code{stop} are in this category. Type @kbd{help
3861obscure} at the @value{GDBN} prompt to see a list of commands in this
3862category.
3863
3864@findex COMMAND_MAINTENANCE
3865@findex gdb.COMMAND_MAINTENANCE
3866@item gdb.COMMAND_MAINTENANCE
3867The command is only useful to @value{GDBN} maintainers. The
3868@code{maintenance} and @code{flushregs} commands are in this category.
3869Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3870commands in this category.
3871@end table
3872
3873A new command can use a predefined completion function, either by
3874specifying it via an argument at initialization, or by returning it
3875from the @code{complete} method. These predefined completion
3876constants are all defined in the @code{gdb} module:
3877
b3ce5e5f
DE
3878@vtable @code
3879@vindex COMPLETE_NONE
329baa95
DE
3880@item gdb.COMPLETE_NONE
3881This constant means that no completion should be done.
3882
b3ce5e5f 3883@vindex COMPLETE_FILENAME
329baa95
DE
3884@item gdb.COMPLETE_FILENAME
3885This constant means that filename completion should be performed.
3886
b3ce5e5f 3887@vindex COMPLETE_LOCATION
329baa95
DE
3888@item gdb.COMPLETE_LOCATION
3889This constant means that location completion should be done.
3890@xref{Specify Location}.
3891
b3ce5e5f 3892@vindex COMPLETE_COMMAND
329baa95
DE
3893@item gdb.COMPLETE_COMMAND
3894This constant means that completion should examine @value{GDBN}
3895command names.
3896
b3ce5e5f 3897@vindex COMPLETE_SYMBOL
329baa95
DE
3898@item gdb.COMPLETE_SYMBOL
3899This constant means that completion should be done using symbol names
3900as the source.
3901
b3ce5e5f 3902@vindex COMPLETE_EXPRESSION
329baa95
DE
3903@item gdb.COMPLETE_EXPRESSION
3904This constant means that completion should be done on expressions.
3905Often this means completing on symbol names, but some language
3906parsers also have support for completing on field names.
b3ce5e5f 3907@end vtable
329baa95
DE
3908
3909The following code snippet shows how a trivial CLI command can be
3910implemented in Python:
3911
3912@smallexample
3913class HelloWorld (gdb.Command):
3914 """Greet the whole world."""
3915
3916 def __init__ (self):
3917 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3918
3919 def invoke (self, arg, from_tty):
3920 print "Hello, World!"
3921
3922HelloWorld ()
3923@end smallexample
3924
3925The last line instantiates the class, and is necessary to trigger the
3926registration of the command with @value{GDBN}. Depending on how the
3927Python code is read into @value{GDBN}, you may need to import the
3928@code{gdb} module explicitly.
3929
3930@node Parameters In Python
3931@subsubsection Parameters In Python
3932
3933@cindex parameters in python
3934@cindex python parameters
3935@tindex gdb.Parameter
3936@tindex Parameter
3937You can implement new @value{GDBN} parameters using Python. A new
3938parameter is implemented as an instance of the @code{gdb.Parameter}
3939class.
3940
3941Parameters are exposed to the user via the @code{set} and
3942@code{show} commands. @xref{Help}.
3943
3944There are many parameters that already exist and can be set in
3945@value{GDBN}. Two examples are: @code{set follow fork} and
3946@code{set charset}. Setting these parameters influences certain
3947behavior in @value{GDBN}. Similarly, you can define parameters that
3948can be used to influence behavior in custom Python scripts and commands.
3949
3950@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3951The object initializer for @code{Parameter} registers the new
3952parameter with @value{GDBN}. This initializer is normally invoked
3953from the subclass' own @code{__init__} method.
3954
3955@var{name} is the name of the new parameter. If @var{name} consists
3956of multiple words, then the initial words are looked for as prefix
3957parameters. An example of this can be illustrated with the
3958@code{set print} set of parameters. If @var{name} is
3959@code{print foo}, then @code{print} will be searched as the prefix
3960parameter. In this case the parameter can subsequently be accessed in
3961@value{GDBN} as @code{set print foo}.
3962
3963If @var{name} consists of multiple words, and no prefix parameter group
3964can be found, an exception is raised.
3965
3966@var{command-class} should be one of the @samp{COMMAND_} constants
3967(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3968categorize the new parameter in the help system.
3969
3970@var{parameter-class} should be one of the @samp{PARAM_} constants
3971defined below. This argument tells @value{GDBN} the type of the new
3972parameter; this information is used for input validation and
3973completion.
3974
3975If @var{parameter-class} is @code{PARAM_ENUM}, then
3976@var{enum-sequence} must be a sequence of strings. These strings
3977represent the possible values for the parameter.
3978
3979If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3980of a fourth argument will cause an exception to be thrown.
3981
3982The help text for the new parameter is taken from the Python
3983documentation string for the parameter's class, if there is one. If
3984there is no documentation string, a default value is used.
3985@end defun
3986
3987@defvar Parameter.set_doc
3988If this attribute exists, and is a string, then its value is used as
3989the help text for this parameter's @code{set} command. The value is
3990examined when @code{Parameter.__init__} is invoked; subsequent changes
3991have no effect.
3992@end defvar
3993
3994@defvar Parameter.show_doc
3995If this attribute exists, and is a string, then its value is used as
3996the help text for this parameter's @code{show} command. The value is
3997examined when @code{Parameter.__init__} is invoked; subsequent changes
3998have no effect.
3999@end defvar
4000
4001@defvar Parameter.value
4002The @code{value} attribute holds the underlying value of the
4003parameter. It can be read and assigned to just as any other
4004attribute. @value{GDBN} does validation when assignments are made.
4005@end defvar
4006
984ee559
TT
4007There are two methods that may be implemented in any @code{Parameter}
4008class. These are:
329baa95
DE
4009
4010@defun Parameter.get_set_string (self)
984ee559
TT
4011If this method exists, @value{GDBN} will call it when a
4012@var{parameter}'s value has been changed via the @code{set} API (for
4013example, @kbd{set foo off}). The @code{value} attribute has already
4014been populated with the new value and may be used in output. This
4015method must return a string. If the returned string is not empty,
4016@value{GDBN} will present it to the user.
ae778caf
TT
4017
4018If this method raises the @code{gdb.GdbError} exception
4019(@pxref{Exception Handling}), then @value{GDBN} will print the
4020exception's string and the @code{set} command will fail. Note,
4021however, that the @code{value} attribute will not be reset in this
4022case. So, if your parameter must validate values, it should store the
4023old value internally and reset the exposed value, like so:
4024
4025@smallexample
4026class ExampleParam (gdb.Parameter):
4027 def __init__ (self, name):
4028 super (ExampleParam, self).__init__ (name,
4029 gdb.COMMAND_DATA,
4030 gdb.PARAM_BOOLEAN)
4031 self.value = True
4032 self.saved_value = True
4033 def validate(self):
4034 return False
4035 def get_set_string (self):
4036 if not self.validate():
4037 self.value = self.saved_value
4038 raise gdb.GdbError('Failed to validate')
4039 self.saved_value = self.value
4040@end smallexample
329baa95
DE
4041@end defun
4042
4043@defun Parameter.get_show_string (self, svalue)
4044@value{GDBN} will call this method when a @var{parameter}'s
4045@code{show} API has been invoked (for example, @kbd{show foo}). The
4046argument @code{svalue} receives the string representation of the
4047current value. This method must return a string.
4048@end defun
4049
4050When a new parameter is defined, its type must be specified. The
4051available types are represented by constants defined in the @code{gdb}
4052module:
4053
4054@table @code
4055@findex PARAM_BOOLEAN
4056@findex gdb.PARAM_BOOLEAN
4057@item gdb.PARAM_BOOLEAN
4058The value is a plain boolean. The Python boolean values, @code{True}
4059and @code{False} are the only valid values.
4060
4061@findex PARAM_AUTO_BOOLEAN
4062@findex gdb.PARAM_AUTO_BOOLEAN
4063@item gdb.PARAM_AUTO_BOOLEAN
4064The value has three possible states: true, false, and @samp{auto}. In
4065Python, true and false are represented using boolean constants, and
4066@samp{auto} is represented using @code{None}.
4067
4068@findex PARAM_UINTEGER
4069@findex gdb.PARAM_UINTEGER
4070@item gdb.PARAM_UINTEGER
4071The value is an unsigned integer. The value of 0 should be
4072interpreted to mean ``unlimited''.
4073
4074@findex PARAM_INTEGER
4075@findex gdb.PARAM_INTEGER
4076@item gdb.PARAM_INTEGER
4077The value is a signed integer. The value of 0 should be interpreted
4078to mean ``unlimited''.
4079
4080@findex PARAM_STRING
4081@findex gdb.PARAM_STRING
4082@item gdb.PARAM_STRING
4083The value is a string. When the user modifies the string, any escape
4084sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
4085translated into corresponding characters and encoded into the current
4086host charset.
4087
4088@findex PARAM_STRING_NOESCAPE
4089@findex gdb.PARAM_STRING_NOESCAPE
4090@item gdb.PARAM_STRING_NOESCAPE
4091The value is a string. When the user modifies the string, escapes are
4092passed through untranslated.
4093
4094@findex PARAM_OPTIONAL_FILENAME
4095@findex gdb.PARAM_OPTIONAL_FILENAME
4096@item gdb.PARAM_OPTIONAL_FILENAME
4097The value is a either a filename (a string), or @code{None}.
4098
4099@findex PARAM_FILENAME
4100@findex gdb.PARAM_FILENAME
4101@item gdb.PARAM_FILENAME
4102The value is a filename. This is just like
4103@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
4104
4105@findex PARAM_ZINTEGER
4106@findex gdb.PARAM_ZINTEGER
4107@item gdb.PARAM_ZINTEGER
4108The value is an integer. This is like @code{PARAM_INTEGER}, except 0
4109is interpreted as itself.
4110
0489430a
TT
4111@findex PARAM_ZUINTEGER
4112@findex gdb.PARAM_ZUINTEGER
4113@item gdb.PARAM_ZUINTEGER
4114The value is an unsigned integer. This is like @code{PARAM_INTEGER},
4115except 0 is interpreted as itself, and the value cannot be negative.
4116
4117@findex PARAM_ZUINTEGER_UNLIMITED
4118@findex gdb.PARAM_ZUINTEGER_UNLIMITED
4119@item gdb.PARAM_ZUINTEGER_UNLIMITED
4120The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
4121except the special value -1 should be interpreted to mean
4122``unlimited''. Other negative values are not allowed.
4123
329baa95
DE
4124@findex PARAM_ENUM
4125@findex gdb.PARAM_ENUM
4126@item gdb.PARAM_ENUM
4127The value is a string, which must be one of a collection string
4128constants provided when the parameter is created.
4129@end table
4130
4131@node Functions In Python
4132@subsubsection Writing new convenience functions
4133
4134@cindex writing convenience functions
4135@cindex convenience functions in python
4136@cindex python convenience functions
4137@tindex gdb.Function
4138@tindex Function
4139You can implement new convenience functions (@pxref{Convenience Vars})
4140in Python. A convenience function is an instance of a subclass of the
4141class @code{gdb.Function}.
4142
4143@defun Function.__init__ (name)
4144The initializer for @code{Function} registers the new function with
4145@value{GDBN}. The argument @var{name} is the name of the function,
4146a string. The function will be visible to the user as a convenience
4147variable of type @code{internal function}, whose name is the same as
4148the given @var{name}.
4149
4150The documentation for the new function is taken from the documentation
4151string for the new class.
4152@end defun
4153
4154@defun Function.invoke (@var{*args})
4155When a convenience function is evaluated, its arguments are converted
4156to instances of @code{gdb.Value}, and then the function's
4157@code{invoke} method is called. Note that @value{GDBN} does not
4158predetermine the arity of convenience functions. Instead, all
4159available arguments are passed to @code{invoke}, following the
4160standard Python calling convention. In particular, a convenience
4161function can have default values for parameters without ill effect.
4162
4163The return value of this method is used as its value in the enclosing
4164expression. If an ordinary Python value is returned, it is converted
4165to a @code{gdb.Value} following the usual rules.
4166@end defun
4167
4168The following code snippet shows how a trivial convenience function can
4169be implemented in Python:
4170
4171@smallexample
4172class Greet (gdb.Function):
4173 """Return string to greet someone.
4174Takes a name as argument."""
4175
4176 def __init__ (self):
4177 super (Greet, self).__init__ ("greet")
4178
4179 def invoke (self, name):
4180 return "Hello, %s!" % name.string ()
4181
4182Greet ()
4183@end smallexample
4184
4185The last line instantiates the class, and is necessary to trigger the
4186registration of the function with @value{GDBN}. Depending on how the
4187Python code is read into @value{GDBN}, you may need to import the
4188@code{gdb} module explicitly.
4189
4190Now you can use the function in an expression:
4191
4192@smallexample
4193(gdb) print $greet("Bob")
4194$1 = "Hello, Bob!"
4195@end smallexample
4196
4197@node Progspaces In Python
4198@subsubsection Program Spaces In Python
4199
4200@cindex progspaces in python
4201@tindex gdb.Progspace
4202@tindex Progspace
4203A program space, or @dfn{progspace}, represents a symbolic view
4204of an address space.
4205It consists of all of the objfiles of the program.
4206@xref{Objfiles In Python}.
65c574f6 4207@xref{Inferiors Connections and Programs, program spaces}, for more details
329baa95
DE
4208about program spaces.
4209
4210The following progspace-related functions are available in the
4211@code{gdb} module:
4212
4213@findex gdb.current_progspace
4214@defun gdb.current_progspace ()
4215This function returns the program space of the currently selected inferior.
65c574f6 4216@xref{Inferiors Connections and Programs}. This is identical to
a40bf0c2
SM
4217@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4218included for historical compatibility.
329baa95
DE
4219@end defun
4220
4221@findex gdb.progspaces
4222@defun gdb.progspaces ()
4223Return a sequence of all the progspaces currently known to @value{GDBN}.
4224@end defun
4225
4226Each progspace is represented by an instance of the @code{gdb.Progspace}
4227class.
4228
4229@defvar Progspace.filename
4230The file name of the progspace as a string.
4231@end defvar
4232
4233@defvar Progspace.pretty_printers
4234The @code{pretty_printers} attribute is a list of functions. It is
4235used to look up pretty-printers. A @code{Value} is passed to each
4236function in order; if the function returns @code{None}, then the
4237search continues. Otherwise, the return value should be an object
4238which is used to format the value. @xref{Pretty Printing API}, for more
4239information.
4240@end defvar
4241
4242@defvar Progspace.type_printers
4243The @code{type_printers} attribute is a list of type printer objects.
4244@xref{Type Printing API}, for more information.
4245@end defvar
4246
4247@defvar Progspace.frame_filters
4248The @code{frame_filters} attribute is a dictionary of frame filter
4249objects. @xref{Frame Filter API}, for more information.
4250@end defvar
4251
8743a9cd
TT
4252A program space has the following methods:
4253
4254@findex Progspace.block_for_pc
4255@defun Progspace.block_for_pc (pc)
4256Return the innermost @code{gdb.Block} containing the given @var{pc}
4257value. If the block cannot be found for the @var{pc} value specified,
4258the function will return @code{None}.
4259@end defun
4260
4261@findex Progspace.find_pc_line
4262@defun Progspace.find_pc_line (pc)
4263Return the @code{gdb.Symtab_and_line} object corresponding to the
4264@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4265of @var{pc} is passed as an argument, then the @code{symtab} and
4266@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4267object will be @code{None} and 0 respectively.
4268@end defun
4269
4270@findex Progspace.is_valid
4271@defun Progspace.is_valid ()
4272Returns @code{True} if the @code{gdb.Progspace} object is valid,
4273@code{False} if not. A @code{gdb.Progspace} object can become invalid
4274if the program space file it refers to is not referenced by any
4275inferior. All other @code{gdb.Progspace} methods will throw an
4276exception if it is invalid at the time the method is called.
4277@end defun
4278
4279@findex Progspace.objfiles
4280@defun Progspace.objfiles ()
4281Return a sequence of all the objfiles referenced by this program
4282space. @xref{Objfiles In Python}.
4283@end defun
4284
4285@findex Progspace.solib_name
4286@defun Progspace.solib_name (address)
4287Return the name of the shared library holding the given @var{address}
4288as a string, or @code{None}.
4289@end defun
4290
02be9a71
DE
4291One may add arbitrary attributes to @code{gdb.Progspace} objects
4292in the usual Python way.
4293This is useful if, for example, one needs to do some extra record keeping
4294associated with the program space.
4295
4296In this contrived example, we want to perform some processing when
4297an objfile with a certain symbol is loaded, but we only want to do
4298this once because it is expensive. To achieve this we record the results
4299with the program space because we can't predict when the desired objfile
4300will be loaded.
4301
4302@smallexample
4303(gdb) python
4304def clear_objfiles_handler(event):
4305 event.progspace.expensive_computation = None
4306def expensive(symbol):
4307 """A mock routine to perform an "expensive" computation on symbol."""
4308 print "Computing the answer to the ultimate question ..."
4309 return 42
4310def new_objfile_handler(event):
4311 objfile = event.new_objfile
4312 progspace = objfile.progspace
4313 if not hasattr(progspace, 'expensive_computation') or \
4314 progspace.expensive_computation is None:
4315 # We use 'main' for the symbol to keep the example simple.
4316 # Note: There's no current way to constrain the lookup
4317 # to one objfile.
4318 symbol = gdb.lookup_global_symbol('main')
4319 if symbol is not None:
4320 progspace.expensive_computation = expensive(symbol)
4321gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4322gdb.events.new_objfile.connect(new_objfile_handler)
4323end
4324(gdb) file /tmp/hello
0bab6cf1 4325Reading symbols from /tmp/hello...
02be9a71
DE
4326Computing the answer to the ultimate question ...
4327(gdb) python print gdb.current_progspace().expensive_computation
432842
4329(gdb) run
4330Starting program: /tmp/hello
4331Hello.
4332[Inferior 1 (process 4242) exited normally]
4333@end smallexample
4334
329baa95
DE
4335@node Objfiles In Python
4336@subsubsection Objfiles In Python
4337
4338@cindex objfiles in python
4339@tindex gdb.Objfile
4340@tindex Objfile
4341@value{GDBN} loads symbols for an inferior from various
4342symbol-containing files (@pxref{Files}). These include the primary
4343executable file, any shared libraries used by the inferior, and any
4344separate debug info files (@pxref{Separate Debug Files}).
4345@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4346
4347The following objfile-related functions are available in the
4348@code{gdb} module:
4349
4350@findex gdb.current_objfile
4351@defun gdb.current_objfile ()
4352When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4353sets the ``current objfile'' to the corresponding objfile. This
4354function returns the current objfile. If there is no current objfile,
4355this function returns @code{None}.
4356@end defun
4357
4358@findex gdb.objfiles
4359@defun gdb.objfiles ()
74d3fbbb
SM
4360Return a sequence of objfiles referenced by the current program space.
4361@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4362to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4363historical compatibility.
329baa95
DE
4364@end defun
4365
6dddd6a5
DE
4366@findex gdb.lookup_objfile
4367@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4368Look up @var{name}, a file name or build ID, in the list of objfiles
4369for the current program space (@pxref{Progspaces In Python}).
4370If the objfile is not found throw the Python @code{ValueError} exception.
4371
4372If @var{name} is a relative file name, then it will match any
4373source file name with the same trailing components. For example, if
4374@var{name} is @samp{gcc/expr.c}, then it will match source file
4375name of @file{/build/trunk/gcc/expr.c}, but not
4376@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4377
4378If @var{by_build_id} is provided and is @code{True} then @var{name}
4379is the build ID of the objfile. Otherwise, @var{name} is a file name.
4380This is supported only on some operating systems, notably those which use
4381the ELF format for binary files and the @sc{gnu} Binutils. For more details
4382about this feature, see the description of the @option{--build-id}
f5a476a7 4383command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4384The GNU Linker}.
4385@end defun
4386
329baa95
DE
4387Each objfile is represented by an instance of the @code{gdb.Objfile}
4388class.
4389
4390@defvar Objfile.filename
1b549396
DE
4391The file name of the objfile as a string, with symbolic links resolved.
4392
4393The value is @code{None} if the objfile is no longer valid.
4394See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4395@end defvar
4396
3a8b707a
DE
4397@defvar Objfile.username
4398The file name of the objfile as specified by the user as a string.
4399
4400The value is @code{None} if the objfile is no longer valid.
4401See the @code{gdb.Objfile.is_valid} method, described below.
4402@end defvar
4403
a0be3e44
DE
4404@defvar Objfile.owner
4405For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4406object that debug info is being provided for.
4407Otherwise this is @code{None}.
4408Separate debug info objfiles are added with the
4409@code{gdb.Objfile.add_separate_debug_file} method, described below.
4410@end defvar
4411
7c50a931
DE
4412@defvar Objfile.build_id
4413The build ID of the objfile as a string.
4414If the objfile does not have a build ID then the value is @code{None}.
4415
4416This is supported only on some operating systems, notably those which use
4417the ELF format for binary files and the @sc{gnu} Binutils. For more details
4418about this feature, see the description of the @option{--build-id}
f5a476a7 4419command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4420The GNU Linker}.
4421@end defvar
4422
d096d8c1
DE
4423@defvar Objfile.progspace
4424The containing program space of the objfile as a @code{gdb.Progspace}
4425object. @xref{Progspaces In Python}.
4426@end defvar
4427
329baa95
DE
4428@defvar Objfile.pretty_printers
4429The @code{pretty_printers} attribute is a list of functions. It is
4430used to look up pretty-printers. A @code{Value} is passed to each
4431function in order; if the function returns @code{None}, then the
4432search continues. Otherwise, the return value should be an object
4433which is used to format the value. @xref{Pretty Printing API}, for more
4434information.
4435@end defvar
4436
4437@defvar Objfile.type_printers
4438The @code{type_printers} attribute is a list of type printer objects.
4439@xref{Type Printing API}, for more information.
4440@end defvar
4441
4442@defvar Objfile.frame_filters
4443The @code{frame_filters} attribute is a dictionary of frame filter
4444objects. @xref{Frame Filter API}, for more information.
4445@end defvar
4446
02be9a71
DE
4447One may add arbitrary attributes to @code{gdb.Objfile} objects
4448in the usual Python way.
4449This is useful if, for example, one needs to do some extra record keeping
4450associated with the objfile.
4451
4452In this contrived example we record the time when @value{GDBN}
4453loaded the objfile.
4454
4455@smallexample
4456(gdb) python
4457import datetime
4458def new_objfile_handler(event):
4459 # Set the time_loaded attribute of the new objfile.
4460 event.new_objfile.time_loaded = datetime.datetime.today()
4461gdb.events.new_objfile.connect(new_objfile_handler)
4462end
4463(gdb) file ./hello
0bab6cf1 4464Reading symbols from ./hello...
02be9a71
DE
4465(gdb) python print gdb.objfiles()[0].time_loaded
44662014-10-09 11:41:36.770345
4467@end smallexample
4468
329baa95
DE
4469A @code{gdb.Objfile} object has the following methods:
4470
4471@defun Objfile.is_valid ()
4472Returns @code{True} if the @code{gdb.Objfile} object is valid,
4473@code{False} if not. A @code{gdb.Objfile} object can become invalid
4474if the object file it refers to is not loaded in @value{GDBN} any
4475longer. All other @code{gdb.Objfile} methods will throw an exception
4476if it is invalid at the time the method is called.
4477@end defun
4478
86e4ed39
DE
4479@defun Objfile.add_separate_debug_file (file)
4480Add @var{file} to the list of files that @value{GDBN} will search for
4481debug information for the objfile.
4482This is useful when the debug info has been removed from the program
4483and stored in a separate file. @value{GDBN} has built-in support for
4484finding separate debug info files (@pxref{Separate Debug Files}), but if
4485the file doesn't live in one of the standard places that @value{GDBN}
4486searches then this function can be used to add a debug info file
4487from a different place.
4488@end defun
4489
c620ed88
CB
4490@defun Objfile.lookup_global_symbol (name @r{[}, domain@r{]})
4491Search for a global symbol named @var{name} in this objfile. Optionally, the
4492search scope can be restricted with the @var{domain} argument.
4493The @var{domain} argument must be a domain constant defined in the @code{gdb}
4494module and described in @ref{Symbols In Python}. This function is similar to
4495@code{gdb.lookup_global_symbol}, except that the search is limited to this
4496objfile.
4497
4498The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4499is not found.
4500@end defun
4501
4502@defun Objfile.lookup_static_symbol (name @r{[}, domain@r{]})
4503Like @code{Objfile.lookup_global_symbol}, but searches for a global
4504symbol with static linkage named @var{name} in this objfile.
4505@end defun
4506
329baa95 4507@node Frames In Python
849cba3b 4508@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4509
4510@cindex frames in python
4511When the debugged program stops, @value{GDBN} is able to analyze its call
4512stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4513represents a frame in the stack. A @code{gdb.Frame} object is only valid
4514while its corresponding frame exists in the inferior's stack. If you try
4515to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4516exception (@pxref{Exception Handling}).
4517
4518Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4519operator, like:
4520
4521@smallexample
4522(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4523True
4524@end smallexample
4525
4526The following frame-related functions are available in the @code{gdb} module:
4527
4528@findex gdb.selected_frame
4529@defun gdb.selected_frame ()
4530Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4531@end defun
4532
4533@findex gdb.newest_frame
4534@defun gdb.newest_frame ()
4535Return the newest frame object for the selected thread.
4536@end defun
4537
4538@defun gdb.frame_stop_reason_string (reason)
4539Return a string explaining the reason why @value{GDBN} stopped unwinding
4540frames, as expressed by the given @var{reason} code (an integer, see the
4541@code{unwind_stop_reason} method further down in this section).
4542@end defun
4543
e0f3fd7c
TT
4544@findex gdb.invalidate_cached_frames
4545@defun gdb.invalidate_cached_frames
4546@value{GDBN} internally keeps a cache of the frames that have been
4547unwound. This function invalidates this cache.
4548
4549This function should not generally be called by ordinary Python code.
4550It is documented for the sake of completeness.
4551@end defun
4552
329baa95
DE
4553A @code{gdb.Frame} object has the following methods:
4554
4555@defun Frame.is_valid ()
4556Returns true if the @code{gdb.Frame} object is valid, false if not.
4557A frame object can become invalid if the frame it refers to doesn't
4558exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4559an exception if it is invalid at the time the method is called.
4560@end defun
4561
4562@defun Frame.name ()
4563Returns the function name of the frame, or @code{None} if it can't be
4564obtained.
4565@end defun
4566
4567@defun Frame.architecture ()
4568Returns the @code{gdb.Architecture} object corresponding to the frame's
4569architecture. @xref{Architectures In Python}.
4570@end defun
4571
4572@defun Frame.type ()
4573Returns the type of the frame. The value can be one of:
4574@table @code
4575@item gdb.NORMAL_FRAME
4576An ordinary stack frame.
4577
4578@item gdb.DUMMY_FRAME
4579A fake stack frame that was created by @value{GDBN} when performing an
4580inferior function call.
4581
4582@item gdb.INLINE_FRAME
4583A frame representing an inlined function. The function was inlined
4584into a @code{gdb.NORMAL_FRAME} that is older than this one.
4585
4586@item gdb.TAILCALL_FRAME
4587A frame representing a tail call. @xref{Tail Call Frames}.
4588
4589@item gdb.SIGTRAMP_FRAME
4590A signal trampoline frame. This is the frame created by the OS when
4591it calls into a signal handler.
4592
4593@item gdb.ARCH_FRAME
4594A fake stack frame representing a cross-architecture call.
4595
4596@item gdb.SENTINEL_FRAME
4597This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4598newest frame.
4599@end table
4600@end defun
4601
4602@defun Frame.unwind_stop_reason ()
4603Return an integer representing the reason why it's not possible to find
4604more frames toward the outermost frame. Use
4605@code{gdb.frame_stop_reason_string} to convert the value returned by this
4606function to a string. The value can be one of:
4607
4608@table @code
4609@item gdb.FRAME_UNWIND_NO_REASON
4610No particular reason (older frames should be available).
4611
4612@item gdb.FRAME_UNWIND_NULL_ID
4613The previous frame's analyzer returns an invalid result. This is no
4614longer used by @value{GDBN}, and is kept only for backward
4615compatibility.
4616
4617@item gdb.FRAME_UNWIND_OUTERMOST
4618This frame is the outermost.
4619
4620@item gdb.FRAME_UNWIND_UNAVAILABLE
4621Cannot unwind further, because that would require knowing the
4622values of registers or memory that have not been collected.
4623
4624@item gdb.FRAME_UNWIND_INNER_ID
4625This frame ID looks like it ought to belong to a NEXT frame,
4626but we got it for a PREV frame. Normally, this is a sign of
4627unwinder failure. It could also indicate stack corruption.
4628
4629@item gdb.FRAME_UNWIND_SAME_ID
4630This frame has the same ID as the previous one. That means
4631that unwinding further would almost certainly give us another
4632frame with exactly the same ID, so break the chain. Normally,
4633this is a sign of unwinder failure. It could also indicate
4634stack corruption.
4635
4636@item gdb.FRAME_UNWIND_NO_SAVED_PC
4637The frame unwinder did not find any saved PC, but we needed
4638one to unwind further.
4639
53e8a631
AB
4640@item gdb.FRAME_UNWIND_MEMORY_ERROR
4641The frame unwinder caused an error while trying to access memory.
4642
329baa95
DE
4643@item gdb.FRAME_UNWIND_FIRST_ERROR
4644Any stop reason greater or equal to this value indicates some kind
4645of error. This special value facilitates writing code that tests
4646for errors in unwinding in a way that will work correctly even if
4647the list of the other values is modified in future @value{GDBN}
4648versions. Using it, you could write:
4649@smallexample
4650reason = gdb.selected_frame().unwind_stop_reason ()
4651reason_str = gdb.frame_stop_reason_string (reason)
4652if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4653 print "An error occured: %s" % reason_str
4654@end smallexample
4655@end table
4656
4657@end defun
4658
4659@defun Frame.pc ()
4660Returns the frame's resume address.
4661@end defun
4662
4663@defun Frame.block ()
60c0454d
TT
4664Return the frame's code block. @xref{Blocks In Python}. If the frame
4665does not have a block -- for example, if there is no debugging
4666information for the code in question -- then this will throw an
4667exception.
329baa95
DE
4668@end defun
4669
4670@defun Frame.function ()
4671Return the symbol for the function corresponding to this frame.
4672@xref{Symbols In Python}.
4673@end defun
4674
4675@defun Frame.older ()
4676Return the frame that called this frame.
4677@end defun
4678
4679@defun Frame.newer ()
4680Return the frame called by this frame.
4681@end defun
4682
4683@defun Frame.find_sal ()
4684Return the frame's symtab and line object.
4685@xref{Symbol Tables In Python}.
4686@end defun
4687
0f767f94 4688@anchor{gdbpy_frame_read_register}
5f3b99cf
SS
4689@defun Frame.read_register (register)
4690Return the value of @var{register} in this frame. The @var{register}
4691argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4692Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4693does not exist.
4694@end defun
4695
329baa95
DE
4696@defun Frame.read_var (variable @r{[}, block@r{]})
4697Return the value of @var{variable} in this frame. If the optional
4698argument @var{block} is provided, search for the variable from that
4699block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4700determined by the frame's current program counter). The @var{variable}
4701argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4702@code{gdb.Block} object.
4703@end defun
4704
4705@defun Frame.select ()
4706Set this frame to be the selected frame. @xref{Stack, ,Examining the
4707Stack}.
4708@end defun
4709
4710@node Blocks In Python
849cba3b 4711@subsubsection Accessing blocks from Python
329baa95
DE
4712
4713@cindex blocks in python
4714@tindex gdb.Block
4715
4716In @value{GDBN}, symbols are stored in blocks. A block corresponds
4717roughly to a scope in the source code. Blocks are organized
4718hierarchically, and are represented individually in Python as a
4719@code{gdb.Block}. Blocks rely on debugging information being
4720available.
4721
4722A frame has a block. Please see @ref{Frames In Python}, for a more
4723in-depth discussion of frames.
4724
4725The outermost block is known as the @dfn{global block}. The global
4726block typically holds public global variables and functions.
4727
4728The block nested just inside the global block is the @dfn{static
4729block}. The static block typically holds file-scoped variables and
4730functions.
4731
4732@value{GDBN} provides a method to get a block's superblock, but there
4733is currently no way to examine the sub-blocks of a block, or to
4734iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4735Python}).
4736
4737Here is a short example that should help explain blocks:
4738
4739@smallexample
4740/* This is in the global block. */
4741int global;
4742
4743/* This is in the static block. */
4744static int file_scope;
4745
4746/* 'function' is in the global block, and 'argument' is
4747 in a block nested inside of 'function'. */
4748int function (int argument)
4749@{
4750 /* 'local' is in a block inside 'function'. It may or may
4751 not be in the same block as 'argument'. */
4752 int local;
4753
4754 @{
4755 /* 'inner' is in a block whose superblock is the one holding
4756 'local'. */
4757 int inner;
4758
4759 /* If this call is expanded by the compiler, you may see
4760 a nested block here whose function is 'inline_function'
4761 and whose superblock is the one holding 'inner'. */
4762 inline_function ();
4763 @}
4764@}
4765@end smallexample
4766
4767A @code{gdb.Block} is iterable. The iterator returns the symbols
4768(@pxref{Symbols In Python}) local to the block. Python programs
4769should not assume that a specific block object will always contain a
4770given symbol, since changes in @value{GDBN} features and
4771infrastructure may cause symbols move across blocks in a symbol
0b27c27d
CB
4772table. You can also use Python's @dfn{dictionary syntax} to access
4773variables in this block, e.g.:
4774
4775@smallexample
4776symbol = some_block['variable'] # symbol is of type gdb.Symbol
4777@end smallexample
329baa95
DE
4778
4779The following block-related functions are available in the @code{gdb}
4780module:
4781
4782@findex gdb.block_for_pc
4783@defun gdb.block_for_pc (pc)
4784Return the innermost @code{gdb.Block} containing the given @var{pc}
4785value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4786the function will return @code{None}. This is identical to
4787@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4788historical compatibility.
329baa95
DE
4789@end defun
4790
4791A @code{gdb.Block} object has the following methods:
4792
4793@defun Block.is_valid ()
4794Returns @code{True} if the @code{gdb.Block} object is valid,
4795@code{False} if not. A block object can become invalid if the block it
4796refers to doesn't exist anymore in the inferior. All other
4797@code{gdb.Block} methods will throw an exception if it is invalid at
4798the time the method is called. The block's validity is also checked
4799during iteration over symbols of the block.
4800@end defun
4801
4802A @code{gdb.Block} object has the following attributes:
4803
4804@defvar Block.start
4805The start address of the block. This attribute is not writable.
4806@end defvar
4807
4808@defvar Block.end
22eb9e92
TT
4809One past the last address that appears in the block. This attribute
4810is not writable.
329baa95
DE
4811@end defvar
4812
4813@defvar Block.function
4814The name of the block represented as a @code{gdb.Symbol}. If the
4815block is not named, then this attribute holds @code{None}. This
4816attribute is not writable.
4817
4818For ordinary function blocks, the superblock is the static block.
4819However, you should note that it is possible for a function block to
4820have a superblock that is not the static block -- for instance this
4821happens for an inlined function.
4822@end defvar
4823
4824@defvar Block.superblock
4825The block containing this block. If this parent block does not exist,
4826this attribute holds @code{None}. This attribute is not writable.
4827@end defvar
4828
4829@defvar Block.global_block
4830The global block associated with this block. This attribute is not
4831writable.
4832@end defvar
4833
4834@defvar Block.static_block
4835The static block associated with this block. This attribute is not
4836writable.
4837@end defvar
4838
4839@defvar Block.is_global
4840@code{True} if the @code{gdb.Block} object is a global block,
4841@code{False} if not. This attribute is not
4842writable.
4843@end defvar
4844
4845@defvar Block.is_static
4846@code{True} if the @code{gdb.Block} object is a static block,
4847@code{False} if not. This attribute is not writable.
4848@end defvar
4849
4850@node Symbols In Python
849cba3b 4851@subsubsection Python representation of Symbols
329baa95
DE
4852
4853@cindex symbols in python
4854@tindex gdb.Symbol
4855
4856@value{GDBN} represents every variable, function and type as an
4857entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4858Similarly, Python represents these symbols in @value{GDBN} with the
4859@code{gdb.Symbol} object.
4860
4861The following symbol-related functions are available in the @code{gdb}
4862module:
4863
4864@findex gdb.lookup_symbol
4865@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4866This function searches for a symbol by name. The search scope can be
4867restricted to the parameters defined in the optional domain and block
4868arguments.
4869
4870@var{name} is the name of the symbol. It must be a string. The
4871optional @var{block} argument restricts the search to symbols visible
4872in that @var{block}. The @var{block} argument must be a
4873@code{gdb.Block} object. If omitted, the block for the current frame
4874is used. The optional @var{domain} argument restricts
4875the search to the domain type. The @var{domain} argument must be a
4876domain constant defined in the @code{gdb} module and described later
4877in this chapter.
4878
4879The result is a tuple of two elements.
4880The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4881is not found.
4882If the symbol is found, the second element is @code{True} if the symbol
4883is a field of a method's object (e.g., @code{this} in C@t{++}),
4884otherwise it is @code{False}.
4885If the symbol is not found, the second element is @code{False}.
4886@end defun
4887
4888@findex gdb.lookup_global_symbol
4889@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4890This function searches for a global symbol by name.
4891The search scope can be restricted to by the domain argument.
4892
4893@var{name} is the name of the symbol. It must be a string.
4894The optional @var{domain} argument restricts the search to the domain type.
4895The @var{domain} argument must be a domain constant defined in the @code{gdb}
4896module and described later in this chapter.
4897
4898The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4899is not found.
4900@end defun
4901
2906593f
CB
4902@findex gdb.lookup_static_symbol
4903@defun gdb.lookup_static_symbol (name @r{[}, domain@r{]})
4904This function searches for a global symbol with static linkage by name.
4905The search scope can be restricted to by the domain argument.
4906
4907@var{name} is the name of the symbol. It must be a string.
4908The optional @var{domain} argument restricts the search to the domain type.
4909The @var{domain} argument must be a domain constant defined in the @code{gdb}
4910module and described later in this chapter.
4911
4912The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4913is not found.
4914
4915Note that this function will not find function-scoped static variables. To look
4916up such variables, iterate over the variables of the function's
4917@code{gdb.Block} and check that @code{block.addr_class} is
4918@code{gdb.SYMBOL_LOC_STATIC}.
09ff83af
AB
4919
4920There can be multiple global symbols with static linkage with the same
4921name. This function will only return the first matching symbol that
4922it finds. Which symbol is found depends on where @value{GDBN} is
4923currently stopped, as @value{GDBN} will first search for matching
4924symbols in the current object file, and then search all other object
4925files. If the application is not yet running then @value{GDBN} will
4926search all object files in the order they appear in the debug
4927information.
2906593f
CB
4928@end defun
4929
086baaf1
AB
4930@findex gdb.lookup_static_symbols
4931@defun gdb.lookup_static_symbols (name @r{[}, domain@r{]})
4932Similar to @code{gdb.lookup_static_symbol}, this function searches for
4933global symbols with static linkage by name, and optionally restricted
4934by the domain argument. However, this function returns a list of all
4935matching symbols found, not just the first one.
4936
4937@var{name} is the name of the symbol. It must be a string.
4938The optional @var{domain} argument restricts the search to the domain type.
4939The @var{domain} argument must be a domain constant defined in the @code{gdb}
4940module and described later in this chapter.
4941
4942The result is a list of @code{gdb.Symbol} objects which could be empty
4943if no matching symbols were found.
4944
4945Note that this function will not find function-scoped static variables. To look
4946up such variables, iterate over the variables of the function's
4947@code{gdb.Block} and check that @code{block.addr_class} is
4948@code{gdb.SYMBOL_LOC_STATIC}.
4949@end defun
4950
329baa95
DE
4951A @code{gdb.Symbol} object has the following attributes:
4952
4953@defvar Symbol.type
4954The type of the symbol or @code{None} if no type is recorded.
4955This attribute is represented as a @code{gdb.Type} object.
4956@xref{Types In Python}. This attribute is not writable.
4957@end defvar
4958
4959@defvar Symbol.symtab
4960The symbol table in which the symbol appears. This attribute is
4961represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4962Python}. This attribute is not writable.
4963@end defvar
4964
4965@defvar Symbol.line
4966The line number in the source code at which the symbol was defined.
4967This is an integer.
4968@end defvar
4969
4970@defvar Symbol.name
4971The name of the symbol as a string. This attribute is not writable.
4972@end defvar
4973
4974@defvar Symbol.linkage_name
4975The name of the symbol, as used by the linker (i.e., may be mangled).
4976This attribute is not writable.
4977@end defvar
4978
4979@defvar Symbol.print_name
4980The name of the symbol in a form suitable for output. This is either
4981@code{name} or @code{linkage_name}, depending on whether the user
4982asked @value{GDBN} to display demangled or mangled names.
4983@end defvar
4984
4985@defvar Symbol.addr_class
4986The address class of the symbol. This classifies how to find the value
4987of a symbol. Each address class is a constant defined in the
4988@code{gdb} module and described later in this chapter.
4989@end defvar
4990
4991@defvar Symbol.needs_frame
4992This is @code{True} if evaluating this symbol's value requires a frame
4993(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4994local variables will require a frame, but other symbols will not.
4995@end defvar
4996
4997@defvar Symbol.is_argument
4998@code{True} if the symbol is an argument of a function.
4999@end defvar
5000
5001@defvar Symbol.is_constant
5002@code{True} if the symbol is a constant.
5003@end defvar
5004
5005@defvar Symbol.is_function
5006@code{True} if the symbol is a function or a method.
5007@end defvar
5008
5009@defvar Symbol.is_variable
5010@code{True} if the symbol is a variable.
5011@end defvar
5012
5013A @code{gdb.Symbol} object has the following methods:
5014
5015@defun Symbol.is_valid ()
5016Returns @code{True} if the @code{gdb.Symbol} object is valid,
5017@code{False} if not. A @code{gdb.Symbol} object can become invalid if
5018the symbol it refers to does not exist in @value{GDBN} any longer.
5019All other @code{gdb.Symbol} methods will throw an exception if it is
5020invalid at the time the method is called.
5021@end defun
5022
5023@defun Symbol.value (@r{[}frame@r{]})
5024Compute the value of the symbol, as a @code{gdb.Value}. For
5025functions, this computes the address of the function, cast to the
5026appropriate type. If the symbol requires a frame in order to compute
5027its value, then @var{frame} must be given. If @var{frame} is not
5028given, or if @var{frame} is invalid, then this method will throw an
5029exception.
5030@end defun
5031
5032The available domain categories in @code{gdb.Symbol} are represented
5033as constants in the @code{gdb} module:
5034
b3ce5e5f
DE
5035@vtable @code
5036@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
5037@item gdb.SYMBOL_UNDEF_DOMAIN
5038This is used when a domain has not been discovered or none of the
5039following domains apply. This usually indicates an error either
5040in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5041
5042@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
5043@item gdb.SYMBOL_VAR_DOMAIN
5044This domain contains variables, function names, typedef names and enum
5045type values.
b3ce5e5f
DE
5046
5047@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
5048@item gdb.SYMBOL_STRUCT_DOMAIN
5049This domain holds struct, union and enum type names.
b3ce5e5f
DE
5050
5051@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
5052@item gdb.SYMBOL_LABEL_DOMAIN
5053This domain contains names of labels (for gotos).
b3ce5e5f 5054
51e78fc5
TT
5055@vindex SYMBOL_MODULE_DOMAIN
5056@item gdb.SYMBOL_MODULE_DOMAIN
5057This domain contains names of Fortran module types.
5058
5059@vindex SYMBOL_COMMON_BLOCK_DOMAIN
5060@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
5061This domain contains names of Fortran common blocks.
b3ce5e5f 5062@end vtable
329baa95
DE
5063
5064The available address class categories in @code{gdb.Symbol} are represented
5065as constants in the @code{gdb} module:
5066
b3ce5e5f
DE
5067@vtable @code
5068@vindex SYMBOL_LOC_UNDEF
329baa95
DE
5069@item gdb.SYMBOL_LOC_UNDEF
5070If this is returned by address class, it indicates an error either in
5071the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5072
5073@vindex SYMBOL_LOC_CONST
329baa95
DE
5074@item gdb.SYMBOL_LOC_CONST
5075Value is constant int.
b3ce5e5f
DE
5076
5077@vindex SYMBOL_LOC_STATIC
329baa95
DE
5078@item gdb.SYMBOL_LOC_STATIC
5079Value is at a fixed address.
b3ce5e5f
DE
5080
5081@vindex SYMBOL_LOC_REGISTER
329baa95
DE
5082@item gdb.SYMBOL_LOC_REGISTER
5083Value is in a register.
b3ce5e5f
DE
5084
5085@vindex SYMBOL_LOC_ARG
329baa95
DE
5086@item gdb.SYMBOL_LOC_ARG
5087Value is an argument. This value is at the offset stored within the
5088symbol inside the frame's argument list.
b3ce5e5f
DE
5089
5090@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
5091@item gdb.SYMBOL_LOC_REF_ARG
5092Value address is stored in the frame's argument list. Just like
5093@code{LOC_ARG} except that the value's address is stored at the
5094offset, not the value itself.
b3ce5e5f
DE
5095
5096@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
5097@item gdb.SYMBOL_LOC_REGPARM_ADDR
5098Value is a specified register. Just like @code{LOC_REGISTER} except
5099the register holds the address of the argument instead of the argument
5100itself.
b3ce5e5f
DE
5101
5102@vindex SYMBOL_LOC_LOCAL
329baa95
DE
5103@item gdb.SYMBOL_LOC_LOCAL
5104Value is a local variable.
b3ce5e5f
DE
5105
5106@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
5107@item gdb.SYMBOL_LOC_TYPEDEF
5108Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
5109have this class.
b3ce5e5f
DE
5110
5111@vindex SYMBOL_LOC_BLOCK
329baa95
DE
5112@item gdb.SYMBOL_LOC_BLOCK
5113Value is a block.
b3ce5e5f
DE
5114
5115@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
5116@item gdb.SYMBOL_LOC_CONST_BYTES
5117Value is a byte-sequence.
b3ce5e5f
DE
5118
5119@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
5120@item gdb.SYMBOL_LOC_UNRESOLVED
5121Value is at a fixed address, but the address of the variable has to be
5122determined from the minimal symbol table whenever the variable is
5123referenced.
b3ce5e5f
DE
5124
5125@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
5126@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
5127The value does not actually exist in the program.
b3ce5e5f
DE
5128
5129@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
5130@item gdb.SYMBOL_LOC_COMPUTED
5131The value's address is a computed location.
51e78fc5
TT
5132
5133@vindex SYMBOL_LOC_COMPUTED
5134@item gdb.SYMBOL_LOC_COMPUTED
5135The value's address is a symbol. This is only used for Fortran common
5136blocks.
b3ce5e5f 5137@end vtable
329baa95
DE
5138
5139@node Symbol Tables In Python
849cba3b 5140@subsubsection Symbol table representation in Python
329baa95
DE
5141
5142@cindex symbol tables in python
5143@tindex gdb.Symtab
5144@tindex gdb.Symtab_and_line
5145
5146Access to symbol table data maintained by @value{GDBN} on the inferior
5147is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
5148@code{gdb.Symtab}. Symbol table and line data for a frame is returned
5149from the @code{find_sal} method in @code{gdb.Frame} object.
5150@xref{Frames In Python}.
5151
5152For more information on @value{GDBN}'s symbol table management, see
5153@ref{Symbols, ,Examining the Symbol Table}, for more information.
5154
5155A @code{gdb.Symtab_and_line} object has the following attributes:
5156
5157@defvar Symtab_and_line.symtab
5158The symbol table object (@code{gdb.Symtab}) for this frame.
5159This attribute is not writable.
5160@end defvar
5161
5162@defvar Symtab_and_line.pc
5163Indicates the start of the address range occupied by code for the
5164current source line. This attribute is not writable.
5165@end defvar
5166
5167@defvar Symtab_and_line.last
5168Indicates the end of the address range occupied by code for the current
5169source line. This attribute is not writable.
5170@end defvar
5171
5172@defvar Symtab_and_line.line
5173Indicates the current line number for this object. This
5174attribute is not writable.
5175@end defvar
5176
5177A @code{gdb.Symtab_and_line} object has the following methods:
5178
5179@defun Symtab_and_line.is_valid ()
5180Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
5181@code{False} if not. A @code{gdb.Symtab_and_line} object can become
5182invalid if the Symbol table and line object it refers to does not
5183exist in @value{GDBN} any longer. All other
5184@code{gdb.Symtab_and_line} methods will throw an exception if it is
5185invalid at the time the method is called.
5186@end defun
5187
5188A @code{gdb.Symtab} object has the following attributes:
5189
5190@defvar Symtab.filename
5191The symbol table's source filename. This attribute is not writable.
5192@end defvar
5193
5194@defvar Symtab.objfile
5195The symbol table's backing object file. @xref{Objfiles In Python}.
5196This attribute is not writable.
5197@end defvar
5198
2b4fd423
DE
5199@defvar Symtab.producer
5200The name and possibly version number of the program that
5201compiled the code in the symbol table.
5202The contents of this string is up to the compiler.
5203If no producer information is available then @code{None} is returned.
5204This attribute is not writable.
5205@end defvar
5206
329baa95
DE
5207A @code{gdb.Symtab} object has the following methods:
5208
5209@defun Symtab.is_valid ()
5210Returns @code{True} if the @code{gdb.Symtab} object is valid,
5211@code{False} if not. A @code{gdb.Symtab} object can become invalid if
5212the symbol table it refers to does not exist in @value{GDBN} any
5213longer. All other @code{gdb.Symtab} methods will throw an exception
5214if it is invalid at the time the method is called.
5215@end defun
5216
5217@defun Symtab.fullname ()
5218Return the symbol table's source absolute file name.
5219@end defun
5220
5221@defun Symtab.global_block ()
5222Return the global block of the underlying symbol table.
5223@xref{Blocks In Python}.
5224@end defun
5225
5226@defun Symtab.static_block ()
5227Return the static block of the underlying symbol table.
5228@xref{Blocks In Python}.
5229@end defun
5230
5231@defun Symtab.linetable ()
5232Return the line table associated with the symbol table.
5233@xref{Line Tables In Python}.
5234@end defun
5235
5236@node Line Tables In Python
5237@subsubsection Manipulating line tables using Python
5238
5239@cindex line tables in python
5240@tindex gdb.LineTable
5241
5242Python code can request and inspect line table information from a
5243symbol table that is loaded in @value{GDBN}. A line table is a
5244mapping of source lines to their executable locations in memory. To
5245acquire the line table information for a particular symbol table, use
5246the @code{linetable} function (@pxref{Symbol Tables In Python}).
5247
5248A @code{gdb.LineTable} is iterable. The iterator returns
5249@code{LineTableEntry} objects that correspond to the source line and
5250address for each line table entry. @code{LineTableEntry} objects have
5251the following attributes:
5252
5253@defvar LineTableEntry.line
5254The source line number for this line table entry. This number
5255corresponds to the actual line of source. This attribute is not
5256writable.
5257@end defvar
5258
5259@defvar LineTableEntry.pc
5260The address that is associated with the line table entry where the
5261executable code for that source line resides in memory. This
5262attribute is not writable.
5263@end defvar
5264
5265As there can be multiple addresses for a single source line, you may
5266receive multiple @code{LineTableEntry} objects with matching
5267@code{line} attributes, but with different @code{pc} attributes. The
5268iterator is sorted in ascending @code{pc} order. Here is a small
5269example illustrating iterating over a line table.
5270
5271@smallexample
5272symtab = gdb.selected_frame().find_sal().symtab
5273linetable = symtab.linetable()
5274for line in linetable:
5275 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5276@end smallexample
5277
5278This will have the following output:
5279
5280@smallexample
5281Line: 33 Address: 0x4005c8L
5282Line: 37 Address: 0x4005caL
5283Line: 39 Address: 0x4005d2L
5284Line: 40 Address: 0x4005f8L
5285Line: 42 Address: 0x4005ffL
5286Line: 44 Address: 0x400608L
5287Line: 42 Address: 0x40060cL
5288Line: 45 Address: 0x400615L
5289@end smallexample
5290
5291In addition to being able to iterate over a @code{LineTable}, it also
5292has the following direct access methods:
5293
5294@defun LineTable.line (line)
5295Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5296entries in the line table for the given @var{line}, which specifies
5297the source code line. If there are no entries for that source code
329baa95
DE
5298@var{line}, the Python @code{None} is returned.
5299@end defun
5300
5301@defun LineTable.has_line (line)
5302Return a Python @code{Boolean} indicating whether there is an entry in
5303the line table for this source line. Return @code{True} if an entry
5304is found, or @code{False} if not.
5305@end defun
5306
5307@defun LineTable.source_lines ()
5308Return a Python @code{List} of the source line numbers in the symbol
5309table. Only lines with executable code locations are returned. The
5310contents of the @code{List} will just be the source line entries
5311represented as Python @code{Long} values.
5312@end defun
5313
5314@node Breakpoints In Python
5315@subsubsection Manipulating breakpoints using Python
5316
5317@cindex breakpoints in python
5318@tindex gdb.Breakpoint
5319
5320Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5321class.
5322
0b982d68
SM
5323A breakpoint can be created using one of the two forms of the
5324@code{gdb.Breakpoint} constructor. The first one accepts a string
5325like one would pass to the @code{break}
5326(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5327(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5328create both breakpoints and watchpoints. The second accepts separate Python
5329arguments similar to @ref{Explicit Locations}, and can only be used to create
5330breakpoints.
5331
b89641ba 5332@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5333Create a new breakpoint according to @var{spec}, which is a string naming the
5334location of a breakpoint, or an expression that defines a watchpoint. The
5335string should describe a location in a format recognized by the @code{break}
5336command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5337watchpoint, by the @code{watch} command
5338(@pxref{Set Watchpoints, , Setting Watchpoints}).
5339
5340The optional @var{type} argument specifies the type of the breakpoint to create,
5341as defined below.
5342
5343The optional @var{wp_class} argument defines the class of watchpoint to create,
5344if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5345defaults to @code{gdb.WP_WRITE}.
5346
5347The optional @var{internal} argument allows the breakpoint to become invisible
5348to the user. The breakpoint will neither be reported when created, nor will it
5349be listed in the output from @code{info breakpoints} (but will be listed with
5350the @code{maint info breakpoints} command).
5351
5352The optional @var{temporary} argument makes the breakpoint a temporary
5353breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5354further access to the Python breakpoint after it has been hit will result in a
5355runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5356
5357The optional @var{qualified} argument is a boolean that allows interpreting
5358the function passed in @code{spec} as a fully-qualified name. It is equivalent
5359to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5360@ref{Explicit Locations}).
5361
0b982d68
SM
5362@end defun
5363
b89641ba 5364@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5365This second form of creating a new breakpoint specifies the explicit
5366location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5367be created in the specified source file @var{source}, at the specified
5368@var{function}, @var{label} and @var{line}.
5369
b89641ba
SM
5370@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5371explained previously.
329baa95
DE
5372@end defun
5373
cda75e70
TT
5374The available types are represented by constants defined in the @code{gdb}
5375module:
5376
5377@vtable @code
5378@vindex BP_BREAKPOINT
5379@item gdb.BP_BREAKPOINT
5380Normal code breakpoint.
5381
5382@vindex BP_WATCHPOINT
5383@item gdb.BP_WATCHPOINT
5384Watchpoint breakpoint.
5385
5386@vindex BP_HARDWARE_WATCHPOINT
5387@item gdb.BP_HARDWARE_WATCHPOINT
5388Hardware assisted watchpoint.
5389
5390@vindex BP_READ_WATCHPOINT
5391@item gdb.BP_READ_WATCHPOINT
5392Hardware assisted read watchpoint.
5393
5394@vindex BP_ACCESS_WATCHPOINT
5395@item gdb.BP_ACCESS_WATCHPOINT
5396Hardware assisted access watchpoint.
5397@end vtable
5398
5399The available watchpoint types represented by constants are defined in the
5400@code{gdb} module:
5401
5402@vtable @code
5403@vindex WP_READ
5404@item gdb.WP_READ
5405Read only watchpoint.
5406
5407@vindex WP_WRITE
5408@item gdb.WP_WRITE
5409Write only watchpoint.
5410
5411@vindex WP_ACCESS
5412@item gdb.WP_ACCESS
5413Read/Write watchpoint.
5414@end vtable
5415
329baa95
DE
5416@defun Breakpoint.stop (self)
5417The @code{gdb.Breakpoint} class can be sub-classed and, in
5418particular, you may choose to implement the @code{stop} method.
5419If this method is defined in a sub-class of @code{gdb.Breakpoint},
5420it will be called when the inferior reaches any location of a
5421breakpoint which instantiates that sub-class. If the method returns
5422@code{True}, the inferior will be stopped at the location of the
5423breakpoint, otherwise the inferior will continue.
5424
5425If there are multiple breakpoints at the same location with a
5426@code{stop} method, each one will be called regardless of the
5427return status of the previous. This ensures that all @code{stop}
5428methods have a chance to execute at that location. In this scenario
5429if one of the methods returns @code{True} but the others return
5430@code{False}, the inferior will still be stopped.
5431
5432You should not alter the execution state of the inferior (i.e.@:, step,
5433next, etc.), alter the current frame context (i.e.@:, change the current
5434active frame), or alter, add or delete any breakpoint. As a general
5435rule, you should not alter any data within @value{GDBN} or the inferior
5436at this time.
5437
5438Example @code{stop} implementation:
5439
5440@smallexample
5441class MyBreakpoint (gdb.Breakpoint):
5442 def stop (self):
5443 inf_val = gdb.parse_and_eval("foo")
5444 if inf_val == 3:
5445 return True
5446 return False
5447@end smallexample
5448@end defun
5449
329baa95
DE
5450@defun Breakpoint.is_valid ()
5451Return @code{True} if this @code{Breakpoint} object is valid,
5452@code{False} otherwise. A @code{Breakpoint} object can become invalid
5453if the user deletes the breakpoint. In this case, the object still
5454exists, but the underlying breakpoint does not. In the cases of
5455watchpoint scope, the watchpoint remains valid even if execution of the
5456inferior leaves the scope of that watchpoint.
5457@end defun
5458
fab3a15d 5459@defun Breakpoint.delete ()
329baa95
DE
5460Permanently deletes the @value{GDBN} breakpoint. This also
5461invalidates the Python @code{Breakpoint} object. Any further access
5462to this object's attributes or methods will raise an error.
5463@end defun
5464
5465@defvar Breakpoint.enabled
5466This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5467@code{False} otherwise. This attribute is writable. You can use it to enable
5468or disable the breakpoint.
329baa95
DE
5469@end defvar
5470
5471@defvar Breakpoint.silent
5472This attribute is @code{True} if the breakpoint is silent, and
5473@code{False} otherwise. This attribute is writable.
5474
5475Note that a breakpoint can also be silent if it has commands and the
5476first command is @code{silent}. This is not reported by the
5477@code{silent} attribute.
5478@end defvar
5479
93daf339
TT
5480@defvar Breakpoint.pending
5481This attribute is @code{True} if the breakpoint is pending, and
5482@code{False} otherwise. @xref{Set Breaks}. This attribute is
5483read-only.
5484@end defvar
5485
22a02324 5486@anchor{python_breakpoint_thread}
329baa95 5487@defvar Breakpoint.thread
5d5658a1
PA
5488If the breakpoint is thread-specific, this attribute holds the
5489thread's global id. If the breakpoint is not thread-specific, this
5490attribute is @code{None}. This attribute is writable.
329baa95
DE
5491@end defvar
5492
5493@defvar Breakpoint.task
5494If the breakpoint is Ada task-specific, this attribute holds the Ada task
5495id. If the breakpoint is not task-specific (or the underlying
5496language is not Ada), this attribute is @code{None}. This attribute
5497is writable.
5498@end defvar
5499
5500@defvar Breakpoint.ignore_count
5501This attribute holds the ignore count for the breakpoint, an integer.
5502This attribute is writable.
5503@end defvar
5504
5505@defvar Breakpoint.number
5506This attribute holds the breakpoint's number --- the identifier used by
5507the user to manipulate the breakpoint. This attribute is not writable.
5508@end defvar
5509
5510@defvar Breakpoint.type
5511This attribute holds the breakpoint's type --- the identifier used to
5512determine the actual breakpoint type or use-case. This attribute is not
5513writable.
5514@end defvar
5515
5516@defvar Breakpoint.visible
5517This attribute tells whether the breakpoint is visible to the user
5518when set, or when the @samp{info breakpoints} command is run. This
5519attribute is not writable.
5520@end defvar
5521
5522@defvar Breakpoint.temporary
5523This attribute indicates whether the breakpoint was created as a
5524temporary breakpoint. Temporary breakpoints are automatically deleted
5525after that breakpoint has been hit. Access to this attribute, and all
5526other attributes and functions other than the @code{is_valid}
5527function, will result in an error after the breakpoint has been hit
5528(as it has been automatically deleted). This attribute is not
5529writable.
5530@end defvar
5531
329baa95
DE
5532@defvar Breakpoint.hit_count
5533This attribute holds the hit count for the breakpoint, an integer.
5534This attribute is writable, but currently it can only be set to zero.
5535@end defvar
5536
5537@defvar Breakpoint.location
5538This attribute holds the location of the breakpoint, as specified by
5539the user. It is a string. If the breakpoint does not have a location
5540(that is, it is a watchpoint) the attribute's value is @code{None}. This
5541attribute is not writable.
5542@end defvar
5543
5544@defvar Breakpoint.expression
5545This attribute holds a breakpoint expression, as specified by
5546the user. It is a string. If the breakpoint does not have an
5547expression (the breakpoint is not a watchpoint) the attribute's value
5548is @code{None}. This attribute is not writable.
5549@end defvar
5550
5551@defvar Breakpoint.condition
5552This attribute holds the condition of the breakpoint, as specified by
5553the user. It is a string. If there is no condition, this attribute's
5554value is @code{None}. This attribute is writable.
5555@end defvar
5556
5557@defvar Breakpoint.commands
5558This attribute holds the commands attached to the breakpoint. If
5559there are commands, this attribute's value is a string holding all the
5560commands, separated by newlines. If there are no commands, this
a913fffb 5561attribute is @code{None}. This attribute is writable.
329baa95
DE
5562@end defvar
5563
5564@node Finish Breakpoints in Python
5565@subsubsection Finish Breakpoints
5566
5567@cindex python finish breakpoints
5568@tindex gdb.FinishBreakpoint
5569
5570A finish breakpoint is a temporary breakpoint set at the return address of
5571a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5572extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5573and deleted when the execution will run out of the breakpoint scope (i.e.@:
5574@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5575Finish breakpoints are thread specific and must be create with the right
5576thread selected.
5577
5578@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5579Create a finish breakpoint at the return address of the @code{gdb.Frame}
5580object @var{frame}. If @var{frame} is not provided, this defaults to the
5581newest frame. The optional @var{internal} argument allows the breakpoint to
5582become invisible to the user. @xref{Breakpoints In Python}, for further
5583details about this argument.
5584@end defun
5585
5586@defun FinishBreakpoint.out_of_scope (self)
5587In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5588@code{return} command, @dots{}), a function may not properly terminate, and
5589thus never hit the finish breakpoint. When @value{GDBN} notices such a
5590situation, the @code{out_of_scope} callback will be triggered.
5591
5592You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5593method:
5594
5595@smallexample
5596class MyFinishBreakpoint (gdb.FinishBreakpoint)
5597 def stop (self):
5598 print "normal finish"
5599 return True
5600
5601 def out_of_scope ():
5602 print "abnormal finish"
5603@end smallexample
5604@end defun
5605
5606@defvar FinishBreakpoint.return_value
5607When @value{GDBN} is stopped at a finish breakpoint and the frame
5608used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5609attribute will contain a @code{gdb.Value} object corresponding to the return
5610value of the function. The value will be @code{None} if the function return
5611type is @code{void} or if the return value was not computable. This attribute
5612is not writable.
5613@end defvar
5614
5615@node Lazy Strings In Python
849cba3b 5616@subsubsection Python representation of lazy strings
329baa95
DE
5617
5618@cindex lazy strings in python
5619@tindex gdb.LazyString
5620
5621A @dfn{lazy string} is a string whose contents is not retrieved or
5622encoded until it is needed.
5623
5624A @code{gdb.LazyString} is represented in @value{GDBN} as an
5625@code{address} that points to a region of memory, an @code{encoding}
5626that will be used to encode that region of memory, and a @code{length}
5627to delimit the region of memory that represents the string. The
5628difference between a @code{gdb.LazyString} and a string wrapped within
5629a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5630differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5631retrieved and encoded during printing, while a @code{gdb.Value}
5632wrapping a string is immediately retrieved and encoded on creation.
5633
5634A @code{gdb.LazyString} object has the following functions:
5635
5636@defun LazyString.value ()
5637Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5638will point to the string in memory, but will lose all the delayed
5639retrieval, encoding and handling that @value{GDBN} applies to a
5640@code{gdb.LazyString}.
5641@end defun
5642
5643@defvar LazyString.address
5644This attribute holds the address of the string. This attribute is not
5645writable.
5646@end defvar
5647
5648@defvar LazyString.length
5649This attribute holds the length of the string in characters. If the
5650length is -1, then the string will be fetched and encoded up to the
5651first null of appropriate width. This attribute is not writable.
5652@end defvar
5653
5654@defvar LazyString.encoding
5655This attribute holds the encoding that will be applied to the string
5656when the string is printed by @value{GDBN}. If the encoding is not
5657set, or contains an empty string, then @value{GDBN} will select the
5658most appropriate encoding when the string is printed. This attribute
5659is not writable.
5660@end defvar
5661
5662@defvar LazyString.type
5663This attribute holds the type that is represented by the lazy string's
f8d99587 5664type. For a lazy string this is a pointer or array type. To
329baa95
DE
5665resolve this to the lazy string's character type, use the type's
5666@code{target} method. @xref{Types In Python}. This attribute is not
5667writable.
5668@end defvar
5669
5670@node Architectures In Python
5671@subsubsection Python representation of architectures
5672@cindex Python architectures
5673
5674@value{GDBN} uses architecture specific parameters and artifacts in a
5675number of its various computations. An architecture is represented
5676by an instance of the @code{gdb.Architecture} class.
5677
5678A @code{gdb.Architecture} class has the following methods:
5679
5680@defun Architecture.name ()
5681Return the name (string value) of the architecture.
5682@end defun
5683
5684@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5685Return a list of disassembled instructions starting from the memory
5686address @var{start_pc}. The optional arguments @var{end_pc} and
5687@var{count} determine the number of instructions in the returned list.
5688If both the optional arguments @var{end_pc} and @var{count} are
5689specified, then a list of at most @var{count} disassembled instructions
5690whose start address falls in the closed memory address interval from
5691@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5692specified, but @var{count} is specified, then @var{count} number of
5693instructions starting from the address @var{start_pc} are returned. If
5694@var{count} is not specified but @var{end_pc} is specified, then all
5695instructions whose start address falls in the closed memory address
5696interval from @var{start_pc} to @var{end_pc} are returned. If neither
5697@var{end_pc} nor @var{count} are specified, then a single instruction at
5698@var{start_pc} is returned. For all of these cases, each element of the
5699returned list is a Python @code{dict} with the following string keys:
5700
5701@table @code
5702
5703@item addr
5704The value corresponding to this key is a Python long integer capturing
5705the memory address of the instruction.
5706
5707@item asm
5708The value corresponding to this key is a string value which represents
5709the instruction with assembly language mnemonics. The assembly
5710language flavor used is the same as that specified by the current CLI
5711variable @code{disassembly-flavor}. @xref{Machine Code}.
5712
5713@item length
5714The value corresponding to this key is the length (integer value) of the
5715instruction in bytes.
5716
5717@end table
5718@end defun
5719
0f767f94
AB
5720@anchor{gdbpy_architecture_registers}
5721@defun Architecture.registers (@r{[} @var{reggroup} @r{]})
5722Return a @code{gdb.RegisterDescriptorIterator} (@pxref{Registers In
5723Python}) for all of the registers in @var{reggroup}, a string that is
5724the name of a register group. If @var{reggroup} is omitted, or is the
5725empty string, then the register group @samp{all} is assumed.
5726@end defun
5727
64cb3757
AB
5728@anchor{gdbpy_architecture_reggroups}
5729@defun Architecture.register_groups ()
5730Return a @code{gdb.RegisterGroupsIterator} (@pxref{Registers In
5731Python}) for all of the register groups available for the
5732@code{gdb.Architecture}.
5733@end defun
5734
0f767f94
AB
5735@node Registers In Python
5736@subsubsection Registers In Python
5737@cindex Registers In Python
5738
5739Python code can request from a @code{gdb.Architecture} information
5740about the set of registers available
5741(@pxref{gdbpy_architecture_registers,,@code{Architecture.registers}}).
5742The register information is returned as a
5743@code{gdb.RegisterDescriptorIterator}, which is an iterator that in
5744turn returns @code{gdb.RegisterDescriptor} objects.
5745
5746A @code{gdb.RegisterDescriptor} does not provide the value of a
5747register (@pxref{gdbpy_frame_read_register,,@code{Frame.read_register}}
5748for reading a register's value), instead the @code{RegisterDescriptor}
5749is a way to discover which registers are available for a particular
5750architecture.
5751
5752A @code{gdb.RegisterDescriptor} has the following read-only properties:
5753
5754@defvar RegisterDescriptor.name
5755The name of this register.
5756@end defvar
5757
64cb3757
AB
5758Python code can also request from a @code{gdb.Architecture}
5759information about the set of register groups available on a given
5760architecture
5761(@pxref{gdbpy_architecture_reggroups,,@code{Architecture.register_groups}}).
5762
5763Every register can be a member of zero or more register groups. Some
5764register groups are used internally within @value{GDBN} to control
5765things like which registers must be saved when calling into the
5766program being debugged (@pxref{Calling,,Calling Program Functions}).
5767Other register groups exist to allow users to easily see related sets
5768of registers in commands like @code{info registers}
5769(@pxref{info_registers_reggroup,,@code{info registers
5770@var{reggroup}}}).
5771
5772The register groups information is returned as a
5773@code{gdb.RegisterGroupsIterator}, which is an iterator that in turn
5774returns @code{gdb.RegisterGroup} objects.
5775
5776A @code{gdb.RegisterGroup} object has the following read-only
5777properties:
5778
5779@defvar RegisterGroup.name
5780A string that is the name of this register group.
5781@end defvar
5782
01b1af32
TT
5783@node TUI Windows In Python
5784@subsubsection Implementing new TUI windows
5785@cindex Python TUI Windows
5786
5787New TUI (@pxref{TUI}) windows can be implemented in Python.
5788
5789@findex gdb.register_window_type
5790@defun gdb.register_window_type (@var{name}, @var{factory})
5791Because TUI windows are created and destroyed depending on the layout
5792the user chooses, new window types are implemented by registering a
5793factory function with @value{GDBN}.
5794
5795@var{name} is the name of the new window. It's an error to try to
5796replace one of the built-in windows, but other window types can be
5797replaced.
5798
5799@var{function} is a factory function that is called to create the TUI
5800window. This is called with a single argument of type
5801@code{gdb.TuiWindow}, described below. It should return an object
5802that implements the TUI window protocol, also described below.
5803@end defun
5804
5805As mentioned above, when a factory function is called, it is passed a
5806an object of type @code{gdb.TuiWindow}. This object has these
5807methods and attributes:
5808
5809@defun TuiWindow.is_valid ()
5810This method returns @code{True} when this window is valid. When the
5811user changes the TUI layout, windows no longer visible in the new
5812layout will be destroyed. At this point, the @code{gdb.TuiWindow}
5813will no longer be valid, and methods (and attributes) other than
5814@code{is_valid} will throw an exception.
5815@end defun
5816
5817@defvar TuiWindow.width
5818This attribute holds the width of the window. It is not writable.
5819@end defvar
5820
5821@defvar TuiWindow.height
5822This attribute holds the height of the window. It is not writable.
5823@end defvar
5824
5825@defvar TuiWindow.title
5826This attribute holds the window's title, a string. This is normally
5827displayed above the window. This attribute can be modified.
5828@end defvar
5829
5830@defun TuiWindow.erase ()
5831Remove all the contents of the window.
5832@end defun
5833
5834@defun TuiWindow.write (@var{string})
5835Write @var{string} to the window. @var{string} can contain ANSI
5836terminal escape styling sequences; @value{GDBN} will translate these
5837as appropriate for the terminal.
5838@end defun
5839
5840The factory function that you supply should return an object
5841conforming to the TUI window protocol. These are the method that can
5842be called on this object, which is referred to below as the ``window
5843object''. The methods documented below are optional; if the object
5844does not implement one of these methods, @value{GDBN} will not attempt
5845to call it. Additional new methods may be added to the window
5846protocol in the future. @value{GDBN} guarantees that they will begin
5847with a lower-case letter, so you can start implementation methods with
5848upper-case letters or underscore to avoid any future conflicts.
5849
5850@defun Window.close ()
5851When the TUI window is closed, the @code{gdb.TuiWindow} object will be
5852put into an invalid state. At this time, @value{GDBN} will call
5853@code{close} method on the window object.
5854
5855After this method is called, @value{GDBN} will discard any references
5856it holds on this window object, and will no longer call methods on
5857this object.
5858@end defun
5859
5860@defun Window.render ()
5861In some situations, a TUI window can change size. For example, this
5862can happen if the user resizes the terminal, or changes the layout.
5863When this happens, @value{GDBN} will call the @code{render} method on
5864the window object.
5865
5866If your window is intended to update in response to changes in the
5867inferior, you will probably also want to register event listeners and
5868send output to the @code{gdb.TuiWindow}.
5869@end defun
5870
5871@defun Window.hscroll (@var{num})
5872This is a request to scroll the window horizontally. @var{num} is the
5873amount by which to scroll, with negative numbers meaning to scroll
5874right. In the TUI model, it is the viewport that moves, not the
5875contents. A positive argument should cause the viewport to move
5876right, and so the content should appear to move to the left.
5877@end defun
5878
5879@defun Window.vscroll (@var{num})
5880This is a request to scroll the window vertically. @var{num} is the
5881amount by which to scroll, with negative numbers meaning to scroll
5882backward. In the TUI model, it is the viewport that moves, not the
5883contents. A positive argument should cause the viewport to move down,
5884and so the content should appear to move up.
5885@end defun
5886
329baa95
DE
5887@node Python Auto-loading
5888@subsection Python Auto-loading
5889@cindex Python auto-loading
5890
5891When a new object file is read (for example, due to the @code{file}
5892command, or because the inferior has loaded a shared library),
5893@value{GDBN} will look for Python support scripts in several ways:
5894@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5895@xref{Auto-loading extensions}.
5896
5897The auto-loading feature is useful for supplying application-specific
5898debugging commands and scripts.
5899
5900Auto-loading can be enabled or disabled,
5901and the list of auto-loaded scripts can be printed.
5902
5903@table @code
5904@anchor{set auto-load python-scripts}
5905@kindex set auto-load python-scripts
5906@item set auto-load python-scripts [on|off]
5907Enable or disable the auto-loading of Python scripts.
5908
5909@anchor{show auto-load python-scripts}
5910@kindex show auto-load python-scripts
5911@item show auto-load python-scripts
5912Show whether auto-loading of Python scripts is enabled or disabled.
5913
5914@anchor{info auto-load python-scripts}
5915@kindex info auto-load python-scripts
5916@cindex print list of auto-loaded Python scripts
5917@item info auto-load python-scripts [@var{regexp}]
5918Print the list of all Python scripts that @value{GDBN} auto-loaded.
5919
5920Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5921the @code{.debug_gdb_scripts} section and were either not found
5922(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5923@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5924This is useful because their names are not printed when @value{GDBN}
5925tries to load them and fails. There may be many of them, and printing
5926an error message for each one is problematic.
5927
5928If @var{regexp} is supplied only Python scripts with matching names are printed.
5929
5930Example:
5931
5932@smallexample
5933(gdb) info auto-load python-scripts
5934Loaded Script
5935Yes py-section-script.py
5936 full name: /tmp/py-section-script.py
5937No my-foo-pretty-printers.py
5938@end smallexample
5939@end table
5940
9f050062 5941When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5942@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5943function (@pxref{Objfiles In Python}). This can be useful for
5944registering objfile-specific pretty-printers and frame-filters.
5945
5946@node Python modules
5947@subsection Python modules
5948@cindex python modules
5949
5950@value{GDBN} comes with several modules to assist writing Python code.
5951
5952@menu
5953* gdb.printing:: Building and registering pretty-printers.
5954* gdb.types:: Utilities for working with types.
5955* gdb.prompt:: Utilities for prompt value substitution.
5956@end menu
5957
5958@node gdb.printing
5959@subsubsection gdb.printing
5960@cindex gdb.printing
5961
5962This module provides a collection of utilities for working with
5963pretty-printers.
5964
5965@table @code
5966@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5967This class specifies the API that makes @samp{info pretty-printer},
5968@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5969Pretty-printers should generally inherit from this class.
5970
5971@item SubPrettyPrinter (@var{name})
5972For printers that handle multiple types, this class specifies the
5973corresponding API for the subprinters.
5974
5975@item RegexpCollectionPrettyPrinter (@var{name})
5976Utility class for handling multiple printers, all recognized via
5977regular expressions.
5978@xref{Writing a Pretty-Printer}, for an example.
5979
5980@item FlagEnumerationPrinter (@var{name})
5981A pretty-printer which handles printing of @code{enum} values. Unlike
5982@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5983work properly when there is some overlap between the enumeration
697aa1b7
EZ
5984constants. The argument @var{name} is the name of the printer and
5985also the name of the @code{enum} type to look up.
329baa95
DE
5986
5987@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5988Register @var{printer} with the pretty-printer list of @var{obj}.
5989If @var{replace} is @code{True} then any existing copy of the printer
5990is replaced. Otherwise a @code{RuntimeError} exception is raised
5991if a printer with the same name already exists.
5992@end table
5993
5994@node gdb.types
5995@subsubsection gdb.types
5996@cindex gdb.types
5997
5998This module provides a collection of utilities for working with
5999@code{gdb.Type} objects.
6000
6001@table @code
6002@item get_basic_type (@var{type})
6003Return @var{type} with const and volatile qualifiers stripped,
6004and with typedefs and C@t{++} references converted to the underlying type.
6005
6006C@t{++} example:
6007
6008@smallexample
6009typedef const int const_int;
6010const_int foo (3);
6011const_int& foo_ref (foo);
6012int main () @{ return 0; @}
6013@end smallexample
6014
6015Then in gdb:
6016
6017@smallexample
6018(gdb) start
6019(gdb) python import gdb.types
6020(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
6021(gdb) python print gdb.types.get_basic_type(foo_ref.type)
6022int
6023@end smallexample
6024
6025@item has_field (@var{type}, @var{field})
6026Return @code{True} if @var{type}, assumed to be a type with fields
6027(e.g., a structure or union), has field @var{field}.
6028
6029@item make_enum_dict (@var{enum_type})
6030Return a Python @code{dictionary} type produced from @var{enum_type}.
6031
6032@item deep_items (@var{type})
6033Returns a Python iterator similar to the standard
6034@code{gdb.Type.iteritems} method, except that the iterator returned
6035by @code{deep_items} will recursively traverse anonymous struct or
6036union fields. For example:
6037
6038@smallexample
6039struct A
6040@{
6041 int a;
6042 union @{
6043 int b0;
6044 int b1;
6045 @};
6046@};
6047@end smallexample
6048
6049@noindent
6050Then in @value{GDBN}:
6051@smallexample
6052(@value{GDBP}) python import gdb.types
6053(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
6054(@value{GDBP}) python print struct_a.keys ()
6055@{['a', '']@}
6056(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
6057@{['a', 'b0', 'b1']@}
6058@end smallexample
6059
6060@item get_type_recognizers ()
6061Return a list of the enabled type recognizers for the current context.
6062This is called by @value{GDBN} during the type-printing process
6063(@pxref{Type Printing API}).
6064
6065@item apply_type_recognizers (recognizers, type_obj)
6066Apply the type recognizers, @var{recognizers}, to the type object
6067@var{type_obj}. If any recognizer returns a string, return that
6068string. Otherwise, return @code{None}. This is called by
6069@value{GDBN} during the type-printing process (@pxref{Type Printing
6070API}).
6071
6072@item register_type_printer (locus, printer)
697aa1b7
EZ
6073This is a convenience function to register a type printer
6074@var{printer}. The printer must implement the type printer protocol.
6075The @var{locus} argument is either a @code{gdb.Objfile}, in which case
6076the printer is registered with that objfile; a @code{gdb.Progspace},
6077in which case the printer is registered with that progspace; or
6078@code{None}, in which case the printer is registered globally.
329baa95
DE
6079
6080@item TypePrinter
6081This is a base class that implements the type printer protocol. Type
6082printers are encouraged, but not required, to derive from this class.
6083It defines a constructor:
6084
6085@defmethod TypePrinter __init__ (self, name)
6086Initialize the type printer with the given name. The new printer
6087starts in the enabled state.
6088@end defmethod
6089
6090@end table
6091
6092@node gdb.prompt
6093@subsubsection gdb.prompt
6094@cindex gdb.prompt
6095
6096This module provides a method for prompt value-substitution.
6097
6098@table @code
6099@item substitute_prompt (@var{string})
6100Return @var{string} with escape sequences substituted by values. Some
6101escape sequences take arguments. You can specify arguments inside
6102``@{@}'' immediately following the escape sequence.
6103
6104The escape sequences you can pass to this function are:
6105
6106@table @code
6107@item \\
6108Substitute a backslash.
6109@item \e
6110Substitute an ESC character.
6111@item \f
6112Substitute the selected frame; an argument names a frame parameter.
6113@item \n
6114Substitute a newline.
6115@item \p
6116Substitute a parameter's value; the argument names the parameter.
6117@item \r
6118Substitute a carriage return.
6119@item \t
6120Substitute the selected thread; an argument names a thread parameter.
6121@item \v
6122Substitute the version of GDB.
6123@item \w
6124Substitute the current working directory.
6125@item \[
6126Begin a sequence of non-printing characters. These sequences are
6127typically used with the ESC character, and are not counted in the string
6128length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
6129blue-colored ``(gdb)'' prompt where the length is five.
6130@item \]
6131End a sequence of non-printing characters.
6132@end table
6133
6134For example:
6135
6136@smallexample
77bb17b6 6137substitute_prompt ("frame: \f, args: \p@{print frame-arguments@}")
329baa95
DE
6138@end smallexample
6139
6140@exdent will return the string:
6141
6142@smallexample
77bb17b6 6143"frame: main, args: scalars"
329baa95
DE
6144@end smallexample
6145@end table
This page took 0.91863 seconds and 4 git commands to generate.