gdb/infrun: add logging statement to do_target_resume
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
88b9d363 4 Copyright (C) 1986-2022 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
bab37966 22#include "displaced-stepping.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
2f4fcf00 32#include "target-connection.h"
c906108c
SS
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
2acceee2 37#include "inf-loop.h"
4e052eda 38#include "regcache.h"
fd0407d6 39#include "value.h"
76727919 40#include "observable.h"
f636b87d 41#include "language.h"
a77053c2 42#include "solib.h"
f17517ea 43#include "main.h"
186c406b 44#include "block.h"
034dad6f 45#include "mi/mi-common.h"
4f8d22e3 46#include "event-top.h"
96429cc8 47#include "record.h"
d02ed0bb 48#include "record-full.h"
edb3359d 49#include "inline-frame.h"
4efc6507 50#include "jit.h"
06cd862c 51#include "tracepoint.h"
1bfeeb0f 52#include "skip.h"
28106bc2
SDJ
53#include "probe.h"
54#include "objfiles.h"
de0bea00 55#include "completer.h"
9107fc8d 56#include "target-descriptions.h"
f15cb84a 57#include "target-dcache.h"
d83ad864 58#include "terminal.h"
ff862be4 59#include "solist.h"
400b5eca 60#include "gdbsupport/event-loop.h"
243a9253 61#include "thread-fsm.h"
268a13a5 62#include "gdbsupport/enum-flags.h"
5ed8105e 63#include "progspace-and-thread.h"
268a13a5 64#include "gdbsupport/gdb_optional.h"
46a62268 65#include "arch-utils.h"
268a13a5
TT
66#include "gdbsupport/scope-exit.h"
67#include "gdbsupport/forward-scope-exit.h"
06cc9596 68#include "gdbsupport/gdb_select.h"
5b6d1e4f 69#include <unordered_map>
93b54c8e 70#include "async-event.h"
b161a60d
SM
71#include "gdbsupport/selftest.h"
72#include "scoped-mock-context.h"
73#include "test-target.h"
ba988419 74#include "gdbsupport/common-debug.h"
c906108c
SS
75
76/* Prototypes for local functions */
77
2ea28649 78static void sig_print_info (enum gdb_signal);
c906108c 79
96baa820 80static void sig_print_header (void);
c906108c 81
d83ad864
DB
82static void follow_inferior_reset_breakpoints (void);
83
c4464ade 84static bool currently_stepping (struct thread_info *tp);
a289b8f6 85
2c03e5be 86static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
87
88static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
2484c66b
UW
90static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
c4464ade 92static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
8550d3b3 93
aff4e175
AB
94static void resume (gdb_signal sig);
95
5b6d1e4f
PA
96static void wait_for_inferior (inferior *inf);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
1eb8556f 115 infrun_debug_printf ("enable=%d", enable);
372316f1
PA
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
491144b5 135bool step_stop_if_no_debug = false;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
491144b5 154static bool detach_fork = true;
6c95b8df 155
94ba44a6 156bool debug_infrun = false;
920d2a44
AC
157static void
158show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162}
527159b7 163
03583c20
UW
164/* Support for disabling address space randomization. */
165
491144b5 166bool disable_randomization = true;
03583c20
UW
167
168static void
169show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181}
182
183static void
eb4c3f4a 184set_disable_randomization (const char *args, int from_tty,
03583c20
UW
185 struct cmd_list_element *c)
186{
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191}
192
d32dc48e
PA
193/* User interface for non-stop mode. */
194
491144b5
CB
195bool non_stop = false;
196static bool non_stop_1 = false;
d32dc48e
PA
197
198static void
eb4c3f4a 199set_non_stop (const char *args, int from_tty,
d32dc48e
PA
200 struct cmd_list_element *c)
201{
55f6301a 202 if (target_has_execution ())
d32dc48e
PA
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209}
210
211static void
212show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214{
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218}
219
d914c394
SS
220/* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
6bd434d6 224static bool observer_mode = false;
491144b5 225static bool observer_mode_1 = false;
d914c394
SS
226
227static void
eb4c3f4a 228set_observer_mode (const char *args, int from_tty,
d914c394
SS
229 struct cmd_list_element *c)
230{
55f6301a 231 if (target_has_execution ())
d914c394
SS
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
491144b5 246 may_insert_fast_tracepoints = true;
d914c394
SS
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
d914c394 254 pagination_enabled = 0;
491144b5 255 non_stop = non_stop_1 = true;
d914c394
SS
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261}
262
263static void
264show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266{
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268}
269
270/* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276void
277update_observer_mode (void)
278{
491144b5
CB
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
d914c394
SS
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291}
c2c6d25f 292
c906108c
SS
293/* Tables of how to react to signals; the user sets them. */
294
adc6a863
PA
295static unsigned char signal_stop[GDB_SIGNAL_LAST];
296static unsigned char signal_print[GDB_SIGNAL_LAST];
297static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 298
ab04a2af
TT
299/* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
301 signal" command. */
302static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 303
2455069d
UW
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
adc6a863 307static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 308
c906108c
SS
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
9b224c5e
PA
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
adc6a863 331 target_program_signals (signal_program);
9b224c5e
PA
332}
333
1777feb0 334/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 335
edb3359d 336#define RESUME_ALL minus_one_ptid
c906108c
SS
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
c906108c
SS
342/* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
628fe4e4 344int stop_on_solib_events;
f9e14852
GB
345
346/* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349static void
eb4c3f4a
TT
350set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
f9e14852
GB
352{
353 update_solib_breakpoints ();
354}
355
920d2a44
AC
356static void
357show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362}
c906108c 363
c4464ade 364/* True after stop if current stack frame should be printed. */
c906108c 365
c4464ade 366static bool stop_print_frame;
c906108c 367
5b6d1e4f
PA
368/* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371static process_stratum_target *target_last_proc_target;
39f77062 372static ptid_t target_last_wait_ptid;
e02bc4cc
DS
373static struct target_waitstatus target_last_waitstatus;
374
4e1c45ea 375void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 376
53904c9e
AC
377static const char follow_fork_mode_child[] = "child";
378static const char follow_fork_mode_parent[] = "parent";
379
40478521 380static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
ef346e04 384};
c906108c 385
53904c9e 386static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
387static void
388show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390{
3e43a32a
MS
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
394 value);
395}
c906108c
SS
396\f
397
d83ad864
DB
398/* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
5ab2fbf1
SM
404static bool
405follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
406{
407 int has_vforked;
79639e11 408 ptid_t parent_ptid, child_ptid;
d83ad864
DB
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
79639e11
PA
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 417 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426Can not resume the parent process over vfork in the foreground while\n\
427holding the child stopped. Try \"set detach-on-fork\" or \
428\"set schedule-multiple\".\n"));
e97007b6 429 return true;
d83ad864
DB
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
d83ad864
DB
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
00431a78 447 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
448 }
449
f67c0c91 450 if (print_inferior_events)
d83ad864 451 {
8dd06f7a 452 /* Ensure that we have a process ptid. */
e99b03dc 453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 454
223ffa71 455 target_terminal::ours_for_output ();
d83ad864 456 fprintf_filtered (gdb_stdlog,
f67c0c91 457 _("[Detaching after %s from child %s]\n"),
6f259a23 458 has_vforked ? "vfork" : "fork",
a068643d 459 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
d83ad864
DB
465
466 /* Add process to GDB's tables. */
e99b03dc 467 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
5ed8105e 475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 476
2a00d7ce 477 set_current_inferior (child_inf);
5b6d1e4f 478 switch_to_no_thread ();
d83ad864 479 child_inf->symfile_flags = SYMFILE_NO_READ;
02980c56 480 child_inf->push_target (parent_inf->process_target ());
18493a00
PA
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
5b6d1e4f
PA
491 exec_on_vfork ();
492
d83ad864
DB
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
18493a00
PA
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
d83ad864
DB
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
564b1e3f 509 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
18493a00
PA
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
d83ad864
DB
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
122373f7
SM
524 scoped_restore restore_in_initial_library_scan
525 = make_scoped_restore (&child_inf->in_initial_library_scan,
526 true);
d83ad864
DB
527 solib_create_inferior_hook (0);
528 }
d83ad864
DB
529 }
530
531 if (has_vforked)
532 {
533 struct inferior *parent_inf;
534
535 parent_inf = current_inferior ();
536
537 /* If we detached from the child, then we have to be careful
538 to not insert breakpoints in the parent until the child
539 is done with the shared memory region. However, if we're
540 staying attached to the child, then we can and should
541 insert breakpoints, so that we can debug it. A
542 subsequent child exec or exit is enough to know when does
543 the child stops using the parent's address space. */
060f2ef8
SM
544 parent_inf->thread_waiting_for_vfork_done
545 = detach_fork ? inferior_thread () : nullptr;
d83ad864
DB
546 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
547 }
548 }
549 else
550 {
551 /* Follow the child. */
552 struct inferior *parent_inf, *child_inf;
553 struct program_space *parent_pspace;
554
f67c0c91 555 if (print_inferior_events)
d83ad864 556 {
f67c0c91
SDJ
557 std::string parent_pid = target_pid_to_str (parent_ptid);
558 std::string child_pid = target_pid_to_str (child_ptid);
559
223ffa71 560 target_terminal::ours_for_output ();
6f259a23 561 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
562 _("[Attaching after %s %s to child %s]\n"),
563 parent_pid.c_str (),
6f259a23 564 has_vforked ? "vfork" : "fork",
f67c0c91 565 child_pid.c_str ());
d83ad864
DB
566 }
567
568 /* Add the new inferior first, so that the target_detach below
569 doesn't unpush the target. */
570
e99b03dc 571 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
572
573 parent_inf = current_inferior ();
574 child_inf->attach_flag = parent_inf->attach_flag;
575 copy_terminal_info (child_inf, parent_inf);
576 child_inf->gdbarch = parent_inf->gdbarch;
577 copy_inferior_target_desc_info (child_inf, parent_inf);
578
579 parent_pspace = parent_inf->pspace;
580
5b6d1e4f 581 process_stratum_target *target = parent_inf->process_target ();
d83ad864 582
5b6d1e4f
PA
583 {
584 /* Hold a strong reference to the target while (maybe)
585 detaching the parent. Otherwise detaching could close the
586 target. */
587 auto target_ref = target_ops_ref::new_reference (target);
588
589 /* If we're vforking, we want to hold on to the parent until
590 the child exits or execs. At child exec or exit time we
591 can remove the old breakpoints from the parent and detach
592 or resume debugging it. Otherwise, detach the parent now;
593 we'll want to reuse it's program/address spaces, but we
594 can't set them to the child before removing breakpoints
595 from the parent, otherwise, the breakpoints module could
596 decide to remove breakpoints from the wrong process (since
597 they'd be assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
060f2ef8 607 parent_inf->thread_waiting_for_vfork_done = nullptr;
5b6d1e4f
PA
608 }
609 else if (detach_fork)
610 {
611 if (print_inferior_events)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
615
616 target_terminal::ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("[Detaching after fork from "
619 "parent %s]\n"),
620 target_pid_to_str (process_ptid).c_str ());
621 }
8dd06f7a 622
5b6d1e4f
PA
623 target_detach (parent_inf, 0);
624 parent_inf = NULL;
625 }
6f259a23 626
5b6d1e4f 627 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 628
5b6d1e4f
PA
629 /* Add the child thread to the appropriate lists, and switch
630 to this new thread, before cloning the program space, and
631 informing the solib layer about this new process. */
d83ad864 632
5b6d1e4f 633 set_current_inferior (child_inf);
02980c56 634 child_inf->push_target (target);
5b6d1e4f 635 }
d83ad864 636
18493a00 637 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
638
639 /* If this is a vfork child, then the address-space is shared
640 with the parent. If we detached from the parent, then we can
641 reuse the parent's program/address spaces. */
642 if (has_vforked || detach_fork)
643 {
644 child_inf->pspace = parent_pspace;
645 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
646
647 exec_on_vfork ();
d83ad864
DB
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
564b1e3f 652 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
122373f7
SM
663 scoped_restore restore_in_initial_library_scan
664 = make_scoped_restore (&child_inf->in_initial_library_scan, true);
d83ad864
DB
665 solib_create_inferior_hook (0);
666 }
18493a00
PA
667
668 switch_to_thread (child_thr);
d83ad864
DB
669 }
670
e97007b6
SM
671 target_follow_fork (follow_child, detach_fork);
672
673 return false;
d83ad864
DB
674}
675
e58b0e63
PA
676/* Tell the target to follow the fork we're stopped at. Returns true
677 if the inferior should be resumed; false, if the target for some
678 reason decided it's best not to resume. */
679
5ab2fbf1
SM
680static bool
681follow_fork ()
c906108c 682{
5ab2fbf1
SM
683 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
684 bool should_resume = true;
e58b0e63
PA
685 struct thread_info *tp;
686
687 /* Copy user stepping state to the new inferior thread. FIXME: the
688 followed fork child thread should have a copy of most of the
4e3990f4
DE
689 parent thread structure's run control related fields, not just these.
690 Initialized to avoid "may be used uninitialized" warnings from gcc. */
691 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 692 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
693 CORE_ADDR step_range_start = 0;
694 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
695 int current_line = 0;
696 symtab *current_symtab = NULL;
4e3990f4 697 struct frame_id step_frame_id = { 0 };
8980e177 698 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
699
700 if (!non_stop)
701 {
5b6d1e4f 702 process_stratum_target *wait_target;
e58b0e63
PA
703 ptid_t wait_ptid;
704 struct target_waitstatus wait_status;
705
706 /* Get the last target status returned by target_wait(). */
5b6d1e4f 707 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
708
709 /* If not stopped at a fork event, then there's nothing else to
710 do. */
711 if (wait_status.kind != TARGET_WAITKIND_FORKED
712 && wait_status.kind != TARGET_WAITKIND_VFORKED)
713 return 1;
714
715 /* Check if we switched over from WAIT_PTID, since the event was
716 reported. */
00431a78 717 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
718 && (current_inferior ()->process_target () != wait_target
719 || inferior_ptid != wait_ptid))
e58b0e63
PA
720 {
721 /* We did. Switch back to WAIT_PTID thread, to tell the
722 target to follow it (in either direction). We'll
723 afterwards refuse to resume, and inform the user what
724 happened. */
5b6d1e4f 725 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 726 switch_to_thread (wait_thread);
5ab2fbf1 727 should_resume = false;
e58b0e63
PA
728 }
729 }
730
731 tp = inferior_thread ();
732
733 /* If there were any forks/vforks that were caught and are now to be
734 followed, then do so now. */
735 switch (tp->pending_follow.kind)
736 {
737 case TARGET_WAITKIND_FORKED:
738 case TARGET_WAITKIND_VFORKED:
739 {
740 ptid_t parent, child;
741
742 /* If the user did a next/step, etc, over a fork call,
743 preserve the stepping state in the fork child. */
744 if (follow_child && should_resume)
745 {
8358c15c
JK
746 step_resume_breakpoint = clone_momentary_breakpoint
747 (tp->control.step_resume_breakpoint);
16c381f0
JK
748 step_range_start = tp->control.step_range_start;
749 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
750 current_line = tp->current_line;
751 current_symtab = tp->current_symtab;
16c381f0 752 step_frame_id = tp->control.step_frame_id;
186c406b
TT
753 exception_resume_breakpoint
754 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 755 thread_fsm = tp->thread_fsm;
e58b0e63
PA
756
757 /* For now, delete the parent's sr breakpoint, otherwise,
758 parent/child sr breakpoints are considered duplicates,
759 and the child version will not be installed. Remove
760 this when the breakpoints module becomes aware of
761 inferiors and address spaces. */
762 delete_step_resume_breakpoint (tp);
16c381f0
JK
763 tp->control.step_range_start = 0;
764 tp->control.step_range_end = 0;
765 tp->control.step_frame_id = null_frame_id;
186c406b 766 delete_exception_resume_breakpoint (tp);
8980e177 767 tp->thread_fsm = NULL;
e58b0e63
PA
768 }
769
770 parent = inferior_ptid;
771 child = tp->pending_follow.value.related_pid;
772
5b6d1e4f 773 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
774 /* Set up inferior(s) as specified by the caller, and tell the
775 target to do whatever is necessary to follow either parent
776 or child. */
777 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
778 {
779 /* Target refused to follow, or there's some other reason
780 we shouldn't resume. */
781 should_resume = 0;
782 }
783 else
784 {
785 /* This pending follow fork event is now handled, one way
786 or another. The previous selected thread may be gone
787 from the lists by now, but if it is still around, need
788 to clear the pending follow request. */
5b6d1e4f 789 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
790 if (tp)
791 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
792
793 /* This makes sure we don't try to apply the "Switched
794 over from WAIT_PID" logic above. */
795 nullify_last_target_wait_ptid ();
796
1777feb0 797 /* If we followed the child, switch to it... */
e58b0e63
PA
798 if (follow_child)
799 {
5b6d1e4f 800 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 801 switch_to_thread (child_thr);
e58b0e63
PA
802
803 /* ... and preserve the stepping state, in case the
804 user was stepping over the fork call. */
805 if (should_resume)
806 {
807 tp = inferior_thread ();
8358c15c
JK
808 tp->control.step_resume_breakpoint
809 = step_resume_breakpoint;
16c381f0
JK
810 tp->control.step_range_start = step_range_start;
811 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
812 tp->current_line = current_line;
813 tp->current_symtab = current_symtab;
16c381f0 814 tp->control.step_frame_id = step_frame_id;
186c406b
TT
815 tp->control.exception_resume_breakpoint
816 = exception_resume_breakpoint;
8980e177 817 tp->thread_fsm = thread_fsm;
e58b0e63
PA
818 }
819 else
820 {
821 /* If we get here, it was because we're trying to
822 resume from a fork catchpoint, but, the user
823 has switched threads away from the thread that
824 forked. In that case, the resume command
825 issued is most likely not applicable to the
826 child, so just warn, and refuse to resume. */
3e43a32a 827 warning (_("Not resuming: switched threads "
fd7dcb94 828 "before following fork child."));
e58b0e63
PA
829 }
830
831 /* Reset breakpoints in the child as appropriate. */
832 follow_inferior_reset_breakpoints ();
833 }
e58b0e63
PA
834 }
835 }
836 break;
837 case TARGET_WAITKIND_SPURIOUS:
838 /* Nothing to follow. */
839 break;
840 default:
841 internal_error (__FILE__, __LINE__,
842 "Unexpected pending_follow.kind %d\n",
843 tp->pending_follow.kind);
844 break;
845 }
c906108c 846
e58b0e63 847 return should_resume;
c906108c
SS
848}
849
d83ad864 850static void
6604731b 851follow_inferior_reset_breakpoints (void)
c906108c 852{
4e1c45ea
PA
853 struct thread_info *tp = inferior_thread ();
854
6604731b
DJ
855 /* Was there a step_resume breakpoint? (There was if the user
856 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
857 thread number. Cloned step_resume breakpoints are disabled on
858 creation, so enable it here now that it is associated with the
859 correct thread.
6604731b
DJ
860
861 step_resumes are a form of bp that are made to be per-thread.
862 Since we created the step_resume bp when the parent process
863 was being debugged, and now are switching to the child process,
864 from the breakpoint package's viewpoint, that's a switch of
865 "threads". We must update the bp's notion of which thread
866 it is for, or it'll be ignored when it triggers. */
867
8358c15c 868 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
869 {
870 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
871 tp->control.step_resume_breakpoint->loc->enabled = 1;
872 }
6604731b 873
a1aa2221 874 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 875 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
876 {
877 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
878 tp->control.exception_resume_breakpoint->loc->enabled = 1;
879 }
186c406b 880
6604731b
DJ
881 /* Reinsert all breakpoints in the child. The user may have set
882 breakpoints after catching the fork, in which case those
883 were never set in the child, but only in the parent. This makes
884 sure the inserted breakpoints match the breakpoint list. */
885
886 breakpoint_re_set ();
887 insert_breakpoints ();
c906108c 888}
c906108c 889
6c95b8df
PA
890/* The child has exited or execed: resume threads of the parent the
891 user wanted to be executing. */
892
893static int
894proceed_after_vfork_done (struct thread_info *thread,
895 void *arg)
896{
897 int pid = * (int *) arg;
898
00431a78
PA
899 if (thread->ptid.pid () == pid
900 && thread->state == THREAD_RUNNING
901 && !thread->executing
6c95b8df 902 && !thread->stop_requested
a493e3e2 903 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 904 {
1eb8556f
SM
905 infrun_debug_printf ("resuming vfork parent thread %s",
906 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 907
00431a78 908 switch_to_thread (thread);
70509625 909 clear_proceed_status (0);
64ce06e4 910 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
911 }
912
913 return 0;
914}
915
916/* Called whenever we notice an exec or exit event, to handle
917 detaching or resuming a vfork parent. */
918
919static void
920handle_vfork_child_exec_or_exit (int exec)
921{
922 struct inferior *inf = current_inferior ();
923
924 if (inf->vfork_parent)
925 {
926 int resume_parent = -1;
927
928 /* This exec or exit marks the end of the shared memory region
b73715df
TV
929 between the parent and the child. Break the bonds. */
930 inferior *vfork_parent = inf->vfork_parent;
931 inf->vfork_parent->vfork_child = NULL;
932 inf->vfork_parent = NULL;
6c95b8df 933
b73715df
TV
934 /* If the user wanted to detach from the parent, now is the
935 time. */
936 if (vfork_parent->pending_detach)
6c95b8df 937 {
6c95b8df
PA
938 struct program_space *pspace;
939 struct address_space *aspace;
940
1777feb0 941 /* follow-fork child, detach-on-fork on. */
6c95b8df 942
b73715df 943 vfork_parent->pending_detach = 0;
68c9da30 944
18493a00 945 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
946
947 /* We're letting loose of the parent. */
18493a00 948 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 949 switch_to_thread (tp);
6c95b8df
PA
950
951 /* We're about to detach from the parent, which implicitly
952 removes breakpoints from its address space. There's a
953 catch here: we want to reuse the spaces for the child,
954 but, parent/child are still sharing the pspace at this
955 point, although the exec in reality makes the kernel give
956 the child a fresh set of new pages. The problem here is
957 that the breakpoints module being unaware of this, would
958 likely chose the child process to write to the parent
959 address space. Swapping the child temporarily away from
960 the spaces has the desired effect. Yes, this is "sort
961 of" a hack. */
962
963 pspace = inf->pspace;
964 aspace = inf->aspace;
965 inf->aspace = NULL;
966 inf->pspace = NULL;
967
f67c0c91 968 if (print_inferior_events)
6c95b8df 969 {
a068643d 970 std::string pidstr
b73715df 971 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 972
223ffa71 973 target_terminal::ours_for_output ();
6c95b8df
PA
974
975 if (exec)
6f259a23
DB
976 {
977 fprintf_filtered (gdb_stdlog,
f67c0c91 978 _("[Detaching vfork parent %s "
a068643d 979 "after child exec]\n"), pidstr.c_str ());
6f259a23 980 }
6c95b8df 981 else
6f259a23
DB
982 {
983 fprintf_filtered (gdb_stdlog,
f67c0c91 984 _("[Detaching vfork parent %s "
a068643d 985 "after child exit]\n"), pidstr.c_str ());
6f259a23 986 }
6c95b8df
PA
987 }
988
b73715df 989 target_detach (vfork_parent, 0);
6c95b8df
PA
990
991 /* Put it back. */
992 inf->pspace = pspace;
993 inf->aspace = aspace;
6c95b8df
PA
994 }
995 else if (exec)
996 {
997 /* We're staying attached to the parent, so, really give the
998 child a new address space. */
564b1e3f 999 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1000 inf->aspace = inf->pspace->aspace;
1001 inf->removable = 1;
1002 set_current_program_space (inf->pspace);
1003
b73715df 1004 resume_parent = vfork_parent->pid;
6c95b8df
PA
1005 }
1006 else
1007 {
6c95b8df
PA
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
18493a00 1017 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
18493a00
PA
1020 scoped_restore_current_thread restore_thread;
1021 switch_to_no_thread ();
6c95b8df 1022
53af73bf
PA
1023 inf->pspace = new program_space (maybe_new_address_space ());
1024 inf->aspace = inf->pspace->aspace;
1025 set_current_program_space (inf->pspace);
6c95b8df 1026 inf->removable = 1;
7dcd53a0 1027 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1028 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1029
b73715df 1030 resume_parent = vfork_parent->pid;
6c95b8df
PA
1031 }
1032
6c95b8df
PA
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
5ed8105e 1039 scoped_restore_current_thread restore_thread;
6c95b8df 1040
1eb8556f
SM
1041 infrun_debug_printf ("resuming vfork parent process %d",
1042 resume_parent);
6c95b8df
PA
1043
1044 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1045 }
1046 }
1047}
1048
eb6c553b 1049/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1050
1051static const char follow_exec_mode_new[] = "new";
1052static const char follow_exec_mode_same[] = "same";
40478521 1053static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1054{
1055 follow_exec_mode_new,
1056 follow_exec_mode_same,
1057 NULL,
1058};
1059
1060static const char *follow_exec_mode_string = follow_exec_mode_same;
1061static void
1062show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1063 struct cmd_list_element *c, const char *value)
1064{
1065 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1066}
1067
ecf45d2c 1068/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1069
c906108c 1070static void
4ca51187 1071follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1072{
e99b03dc 1073 int pid = ptid.pid ();
94585166 1074 ptid_t process_ptid;
7a292a7a 1075
65d2b333
PW
1076 /* Switch terminal for any messages produced e.g. by
1077 breakpoint_re_set. */
1078 target_terminal::ours_for_output ();
1079
c906108c
SS
1080 /* This is an exec event that we actually wish to pay attention to.
1081 Refresh our symbol table to the newly exec'd program, remove any
1082 momentary bp's, etc.
1083
1084 If there are breakpoints, they aren't really inserted now,
1085 since the exec() transformed our inferior into a fresh set
1086 of instructions.
1087
1088 We want to preserve symbolic breakpoints on the list, since
1089 we have hopes that they can be reset after the new a.out's
1090 symbol table is read.
1091
1092 However, any "raw" breakpoints must be removed from the list
1093 (e.g., the solib bp's), since their address is probably invalid
1094 now.
1095
1096 And, we DON'T want to call delete_breakpoints() here, since
1097 that may write the bp's "shadow contents" (the instruction
85102364 1098 value that was overwritten with a TRAP instruction). Since
1777feb0 1099 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1100
1101 mark_breakpoints_out ();
1102
95e50b27
PA
1103 /* The target reports the exec event to the main thread, even if
1104 some other thread does the exec, and even if the main thread was
1105 stopped or already gone. We may still have non-leader threads of
1106 the process on our list. E.g., on targets that don't have thread
1107 exit events (like remote); or on native Linux in non-stop mode if
1108 there were only two threads in the inferior and the non-leader
1109 one is the one that execs (and nothing forces an update of the
1110 thread list up to here). When debugging remotely, it's best to
1111 avoid extra traffic, when possible, so avoid syncing the thread
1112 list with the target, and instead go ahead and delete all threads
1113 of the process but one that reported the event. Note this must
1114 be done before calling update_breakpoints_after_exec, as
1115 otherwise clearing the threads' resources would reference stale
1116 thread breakpoints -- it may have been one of these threads that
1117 stepped across the exec. We could just clear their stepping
1118 states, but as long as we're iterating, might as well delete
1119 them. Deleting them now rather than at the next user-visible
1120 stop provides a nicer sequence of events for user and MI
1121 notifications. */
08036331 1122 for (thread_info *th : all_threads_safe ())
d7e15655 1123 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1124 delete_thread (th);
95e50b27
PA
1125
1126 /* We also need to clear any left over stale state for the
1127 leader/event thread. E.g., if there was any step-resume
1128 breakpoint or similar, it's gone now. We cannot truly
1129 step-to-next statement through an exec(). */
08036331 1130 thread_info *th = inferior_thread ();
8358c15c 1131 th->control.step_resume_breakpoint = NULL;
186c406b 1132 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1133 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1134 th->control.step_range_start = 0;
1135 th->control.step_range_end = 0;
c906108c 1136
95e50b27
PA
1137 /* The user may have had the main thread held stopped in the
1138 previous image (e.g., schedlock on, or non-stop). Release
1139 it now. */
a75724bc
PA
1140 th->stop_requested = 0;
1141
95e50b27
PA
1142 update_breakpoints_after_exec ();
1143
1777feb0 1144 /* What is this a.out's name? */
f2907e49 1145 process_ptid = ptid_t (pid);
6c95b8df 1146 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1147 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1148 exec_file_target);
c906108c
SS
1149
1150 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1151 inferior has essentially been killed & reborn. */
7a292a7a 1152
6ca15a4b 1153 breakpoint_init_inferior (inf_execd);
e85a822c 1154
797bc1cb
TT
1155 gdb::unique_xmalloc_ptr<char> exec_file_host
1156 = exec_file_find (exec_file_target, NULL);
ff862be4 1157
ecf45d2c
SL
1158 /* If we were unable to map the executable target pathname onto a host
1159 pathname, tell the user that. Otherwise GDB's subsequent behavior
1160 is confusing. Maybe it would even be better to stop at this point
1161 so that the user can specify a file manually before continuing. */
1162 if (exec_file_host == NULL)
1163 warning (_("Could not load symbols for executable %s.\n"
1164 "Do you need \"set sysroot\"?"),
1165 exec_file_target);
c906108c 1166
cce9b6bf
PA
1167 /* Reset the shared library package. This ensures that we get a
1168 shlib event when the child reaches "_start", at which point the
1169 dld will have had a chance to initialize the child. */
1170 /* Also, loading a symbol file below may trigger symbol lookups, and
1171 we don't want those to be satisfied by the libraries of the
1172 previous incarnation of this process. */
1173 no_shared_libraries (NULL, 0);
1174
294c36eb
SM
1175 struct inferior *inf = current_inferior ();
1176
6c95b8df
PA
1177 if (follow_exec_mode_string == follow_exec_mode_new)
1178 {
6c95b8df
PA
1179 /* The user wants to keep the old inferior and program spaces
1180 around. Create a new fresh one, and switch to it. */
1181
35ed81d4
SM
1182 /* Do exit processing for the original inferior before setting the new
1183 inferior's pid. Having two inferiors with the same pid would confuse
1184 find_inferior_p(t)id. Transfer the terminal state and info from the
1185 old to the new inferior. */
294c36eb
SM
1186 inferior *new_inferior = add_inferior_with_spaces ();
1187
1188 swap_terminal_info (new_inferior, inf);
1189 exit_inferior_silent (inf);
1190
1191 new_inferior->pid = pid;
1192 target_follow_exec (new_inferior, ptid, exec_file_target);
1193
1194 /* We continue with the new inferior. */
1195 inf = new_inferior;
6c95b8df 1196 }
9107fc8d
PA
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
294c36eb 1206 target_follow_exec (inf, ptid, exec_file_target);
9107fc8d 1207 }
6c95b8df 1208
294c36eb 1209 gdb_assert (current_inferior () == inf);
6c95b8df
PA
1210 gdb_assert (current_program_space == inf->pspace);
1211
ecf45d2c
SL
1212 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1213 because the proper displacement for a PIE (Position Independent
1214 Executable) main symbol file will only be computed by
1215 solib_create_inferior_hook below. breakpoint_re_set would fail
1216 to insert the breakpoints with the zero displacement. */
797bc1cb 1217 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1218
9107fc8d
PA
1219 /* If the target can specify a description, read it. Must do this
1220 after flipping to the new executable (because the target supplied
1221 description must be compatible with the executable's
1222 architecture, and the old executable may e.g., be 32-bit, while
1223 the new one 64-bit), and before anything involving memory or
1224 registers. */
1225 target_find_description ();
1226
42a4fec5 1227 gdb::observers::inferior_execd.notify (inf);
4efc6507 1228
c1e56572
JK
1229 breakpoint_re_set ();
1230
c906108c
SS
1231 /* Reinsert all breakpoints. (Those which were symbolic have
1232 been reset to the proper address in the new a.out, thanks
1777feb0 1233 to symbol_file_command...). */
c906108c
SS
1234 insert_breakpoints ();
1235
1236 /* The next resume of this inferior should bring it to the shlib
1237 startup breakpoints. (If the user had also set bp's on
1238 "main" from the old (parent) process, then they'll auto-
1777feb0 1239 matically get reset there in the new process.). */
c906108c
SS
1240}
1241
28d5518b 1242/* The chain of threads that need to do a step-over operation to get
c2829269
PA
1243 past e.g., a breakpoint. What technique is used to step over the
1244 breakpoint/watchpoint does not matter -- all threads end up in the
1245 same queue, to maintain rough temporal order of execution, in order
1246 to avoid starvation, otherwise, we could e.g., find ourselves
1247 constantly stepping the same couple threads past their breakpoints
1248 over and over, if the single-step finish fast enough. */
28d5518b 1249struct thread_info *global_thread_step_over_chain_head;
c2829269 1250
6c4cfb24
PA
1251/* Bit flags indicating what the thread needs to step over. */
1252
8d297bbf 1253enum step_over_what_flag
6c4cfb24
PA
1254 {
1255 /* Step over a breakpoint. */
1256 STEP_OVER_BREAKPOINT = 1,
1257
1258 /* Step past a non-continuable watchpoint, in order to let the
1259 instruction execute so we can evaluate the watchpoint
1260 expression. */
1261 STEP_OVER_WATCHPOINT = 2
1262 };
8d297bbf 1263DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1264
963f9c80 1265/* Info about an instruction that is being stepped over. */
31e77af2
PA
1266
1267struct step_over_info
1268{
963f9c80
PA
1269 /* If we're stepping past a breakpoint, this is the address space
1270 and address of the instruction the breakpoint is set at. We'll
1271 skip inserting all breakpoints here. Valid iff ASPACE is
1272 non-NULL. */
ac7d717c
PA
1273 const address_space *aspace = nullptr;
1274 CORE_ADDR address = 0;
963f9c80
PA
1275
1276 /* The instruction being stepped over triggers a nonsteppable
1277 watchpoint. If true, we'll skip inserting watchpoints. */
ac7d717c 1278 int nonsteppable_watchpoint_p = 0;
21edc42f
YQ
1279
1280 /* The thread's global number. */
ac7d717c 1281 int thread = -1;
31e77af2
PA
1282};
1283
1284/* The step-over info of the location that is being stepped over.
1285
1286 Note that with async/breakpoint always-inserted mode, a user might
1287 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1288 being stepped over. As setting a new breakpoint inserts all
1289 breakpoints, we need to make sure the breakpoint being stepped over
1290 isn't inserted then. We do that by only clearing the step-over
1291 info when the step-over is actually finished (or aborted).
1292
1293 Presently GDB can only step over one breakpoint at any given time.
1294 Given threads that can't run code in the same address space as the
1295 breakpoint's can't really miss the breakpoint, GDB could be taught
1296 to step-over at most one breakpoint per address space (so this info
1297 could move to the address space object if/when GDB is extended).
1298 The set of breakpoints being stepped over will normally be much
1299 smaller than the set of all breakpoints, so a flag in the
1300 breakpoint location structure would be wasteful. A separate list
1301 also saves complexity and run-time, as otherwise we'd have to go
1302 through all breakpoint locations clearing their flag whenever we
1303 start a new sequence. Similar considerations weigh against storing
1304 this info in the thread object. Plus, not all step overs actually
1305 have breakpoint locations -- e.g., stepping past a single-step
1306 breakpoint, or stepping to complete a non-continuable
1307 watchpoint. */
1308static struct step_over_info step_over_info;
1309
1310/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1311 stepping over.
1312 N.B. We record the aspace and address now, instead of say just the thread,
1313 because when we need the info later the thread may be running. */
31e77af2
PA
1314
1315static void
8b86c959 1316set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1317 int nonsteppable_watchpoint_p,
1318 int thread)
31e77af2
PA
1319{
1320 step_over_info.aspace = aspace;
1321 step_over_info.address = address;
963f9c80 1322 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1323 step_over_info.thread = thread;
31e77af2
PA
1324}
1325
1326/* Called when we're not longer stepping over a breakpoint / an
1327 instruction, so all breakpoints are free to be (re)inserted. */
1328
1329static void
1330clear_step_over_info (void)
1331{
1eb8556f 1332 infrun_debug_printf ("clearing step over info");
31e77af2
PA
1333 step_over_info.aspace = NULL;
1334 step_over_info.address = 0;
963f9c80 1335 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1336 step_over_info.thread = -1;
31e77af2
PA
1337}
1338
7f89fd65 1339/* See infrun.h. */
31e77af2
PA
1340
1341int
1342stepping_past_instruction_at (struct address_space *aspace,
1343 CORE_ADDR address)
1344{
1345 return (step_over_info.aspace != NULL
1346 && breakpoint_address_match (aspace, address,
1347 step_over_info.aspace,
1348 step_over_info.address));
1349}
1350
963f9c80
PA
1351/* See infrun.h. */
1352
21edc42f
YQ
1353int
1354thread_is_stepping_over_breakpoint (int thread)
1355{
1356 return (step_over_info.thread != -1
1357 && thread == step_over_info.thread);
1358}
1359
1360/* See infrun.h. */
1361
963f9c80
PA
1362int
1363stepping_past_nonsteppable_watchpoint (void)
1364{
1365 return step_over_info.nonsteppable_watchpoint_p;
1366}
1367
6cc83d2a
PA
1368/* Returns true if step-over info is valid. */
1369
c4464ade 1370static bool
6cc83d2a
PA
1371step_over_info_valid_p (void)
1372{
963f9c80
PA
1373 return (step_over_info.aspace != NULL
1374 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1375}
1376
c906108c 1377\f
237fc4c9
PA
1378/* Displaced stepping. */
1379
1380/* In non-stop debugging mode, we must take special care to manage
1381 breakpoints properly; in particular, the traditional strategy for
1382 stepping a thread past a breakpoint it has hit is unsuitable.
1383 'Displaced stepping' is a tactic for stepping one thread past a
1384 breakpoint it has hit while ensuring that other threads running
1385 concurrently will hit the breakpoint as they should.
1386
1387 The traditional way to step a thread T off a breakpoint in a
1388 multi-threaded program in all-stop mode is as follows:
1389
1390 a0) Initially, all threads are stopped, and breakpoints are not
1391 inserted.
1392 a1) We single-step T, leaving breakpoints uninserted.
1393 a2) We insert breakpoints, and resume all threads.
1394
1395 In non-stop debugging, however, this strategy is unsuitable: we
1396 don't want to have to stop all threads in the system in order to
1397 continue or step T past a breakpoint. Instead, we use displaced
1398 stepping:
1399
1400 n0) Initially, T is stopped, other threads are running, and
1401 breakpoints are inserted.
1402 n1) We copy the instruction "under" the breakpoint to a separate
1403 location, outside the main code stream, making any adjustments
1404 to the instruction, register, and memory state as directed by
1405 T's architecture.
1406 n2) We single-step T over the instruction at its new location.
1407 n3) We adjust the resulting register and memory state as directed
1408 by T's architecture. This includes resetting T's PC to point
1409 back into the main instruction stream.
1410 n4) We resume T.
1411
1412 This approach depends on the following gdbarch methods:
1413
1414 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1415 indicate where to copy the instruction, and how much space must
1416 be reserved there. We use these in step n1.
1417
1418 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1419 address, and makes any necessary adjustments to the instruction,
1420 register contents, and memory. We use this in step n1.
1421
1422 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1423 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1424 same effect the instruction would have had if we had executed it
1425 at its original address. We use this in step n3.
1426
237fc4c9
PA
1427 The gdbarch_displaced_step_copy_insn and
1428 gdbarch_displaced_step_fixup functions must be written so that
1429 copying an instruction with gdbarch_displaced_step_copy_insn,
1430 single-stepping across the copied instruction, and then applying
1431 gdbarch_displaced_insn_fixup should have the same effects on the
1432 thread's memory and registers as stepping the instruction in place
1433 would have. Exactly which responsibilities fall to the copy and
1434 which fall to the fixup is up to the author of those functions.
1435
1436 See the comments in gdbarch.sh for details.
1437
1438 Note that displaced stepping and software single-step cannot
1439 currently be used in combination, although with some care I think
1440 they could be made to. Software single-step works by placing
1441 breakpoints on all possible subsequent instructions; if the
1442 displaced instruction is a PC-relative jump, those breakpoints
1443 could fall in very strange places --- on pages that aren't
1444 executable, or at addresses that are not proper instruction
1445 boundaries. (We do generally let other threads run while we wait
1446 to hit the software single-step breakpoint, and they might
1447 encounter such a corrupted instruction.) One way to work around
1448 this would be to have gdbarch_displaced_step_copy_insn fully
1449 simulate the effect of PC-relative instructions (and return NULL)
1450 on architectures that use software single-stepping.
1451
1452 In non-stop mode, we can have independent and simultaneous step
1453 requests, so more than one thread may need to simultaneously step
1454 over a breakpoint. The current implementation assumes there is
1455 only one scratch space per process. In this case, we have to
1456 serialize access to the scratch space. If thread A wants to step
1457 over a breakpoint, but we are currently waiting for some other
1458 thread to complete a displaced step, we leave thread A stopped and
1459 place it in the displaced_step_request_queue. Whenever a displaced
1460 step finishes, we pick the next thread in the queue and start a new
1461 displaced step operation on it. See displaced_step_prepare and
7def77a1 1462 displaced_step_finish for details. */
237fc4c9 1463
a46d1843 1464/* Return true if THREAD is doing a displaced step. */
c0987663 1465
c4464ade 1466static bool
00431a78 1467displaced_step_in_progress_thread (thread_info *thread)
c0987663 1468{
00431a78 1469 gdb_assert (thread != NULL);
c0987663 1470
187b041e 1471 return thread->displaced_step_state.in_progress ();
c0987663
YQ
1472}
1473
a46d1843 1474/* Return true if INF has a thread doing a displaced step. */
8f572e5c 1475
c4464ade 1476static bool
00431a78 1477displaced_step_in_progress (inferior *inf)
8f572e5c 1478{
187b041e 1479 return inf->displaced_step_state.in_progress_count > 0;
fc1cf338
PA
1480}
1481
187b041e 1482/* Return true if any thread is doing a displaced step. */
a42244db 1483
187b041e
SM
1484static bool
1485displaced_step_in_progress_any_thread ()
a42244db 1486{
187b041e
SM
1487 for (inferior *inf : all_non_exited_inferiors ())
1488 {
1489 if (displaced_step_in_progress (inf))
1490 return true;
1491 }
a42244db 1492
187b041e 1493 return false;
a42244db
YQ
1494}
1495
fc1cf338
PA
1496static void
1497infrun_inferior_exit (struct inferior *inf)
1498{
d20172fc 1499 inf->displaced_step_state.reset ();
060f2ef8 1500 inf->thread_waiting_for_vfork_done = nullptr;
fc1cf338 1501}
237fc4c9 1502
3b7a962d
SM
1503static void
1504infrun_inferior_execd (inferior *inf)
1505{
187b041e
SM
1506 /* If some threads where was doing a displaced step in this inferior at the
1507 moment of the exec, they no longer exist. Even if the exec'ing thread
3b7a962d
SM
1508 doing a displaced step, we don't want to to any fixup nor restore displaced
1509 stepping buffer bytes. */
1510 inf->displaced_step_state.reset ();
1511
187b041e
SM
1512 for (thread_info *thread : inf->threads ())
1513 thread->displaced_step_state.reset ();
1514
3b7a962d
SM
1515 /* Since an in-line step is done with everything else stopped, if there was
1516 one in progress at the time of the exec, it must have been the exec'ing
1517 thread. */
1518 clear_step_over_info ();
060f2ef8
SM
1519
1520 inf->thread_waiting_for_vfork_done = nullptr;
3b7a962d
SM
1521}
1522
fff08868
HZ
1523/* If ON, and the architecture supports it, GDB will use displaced
1524 stepping to step over breakpoints. If OFF, or if the architecture
1525 doesn't support it, GDB will instead use the traditional
1526 hold-and-step approach. If AUTO (which is the default), GDB will
1527 decide which technique to use to step over breakpoints depending on
9822cb57 1528 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1529
72d0e2c5 1530static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1531
237fc4c9
PA
1532static void
1533show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1534 struct cmd_list_element *c,
1535 const char *value)
1536{
72d0e2c5 1537 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1538 fprintf_filtered (file,
1539 _("Debugger's willingness to use displaced stepping "
1540 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1541 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1542 else
3e43a32a
MS
1543 fprintf_filtered (file,
1544 _("Debugger's willingness to use displaced stepping "
1545 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1546}
1547
9822cb57
SM
1548/* Return true if the gdbarch implements the required methods to use
1549 displaced stepping. */
1550
1551static bool
1552gdbarch_supports_displaced_stepping (gdbarch *arch)
1553{
187b041e
SM
1554 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1555 that if `prepare` is provided, so is `finish`. */
1556 return gdbarch_displaced_step_prepare_p (arch);
9822cb57
SM
1557}
1558
fff08868 1559/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1560 over breakpoints of thread TP. */
fff08868 1561
9822cb57
SM
1562static bool
1563use_displaced_stepping (thread_info *tp)
237fc4c9 1564{
9822cb57
SM
1565 /* If the user disabled it explicitly, don't use displaced stepping. */
1566 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1567 return false;
1568
1569 /* If "auto", only use displaced stepping if the target operates in a non-stop
1570 way. */
1571 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1572 && !target_is_non_stop_p ())
1573 return false;
1574
1575 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1576
1577 /* If the architecture doesn't implement displaced stepping, don't use
1578 it. */
1579 if (!gdbarch_supports_displaced_stepping (gdbarch))
1580 return false;
1581
1582 /* If recording, don't use displaced stepping. */
1583 if (find_record_target () != nullptr)
1584 return false;
1585
9822cb57
SM
1586 /* If displaced stepping failed before for this inferior, don't bother trying
1587 again. */
f5f01699 1588 if (tp->inf->displaced_step_state.failed_before)
9822cb57
SM
1589 return false;
1590
1591 return true;
237fc4c9
PA
1592}
1593
187b041e 1594/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1595
237fc4c9 1596static void
187b041e 1597displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1598{
d8d83535 1599 displaced->reset ();
237fc4c9
PA
1600}
1601
d8d83535
SM
1602/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1603 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1604
1605using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9 1606
136821d9
SM
1607/* See infrun.h. */
1608
1609std::string
1610displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
237fc4c9 1611{
136821d9 1612 std::string ret;
237fc4c9 1613
136821d9
SM
1614 for (size_t i = 0; i < len; i++)
1615 {
1616 if (i == 0)
1617 ret += string_printf ("%02x", buf[i]);
1618 else
1619 ret += string_printf (" %02x", buf[i]);
1620 }
1621
1622 return ret;
237fc4c9
PA
1623}
1624
1625/* Prepare to single-step, using displaced stepping.
1626
1627 Note that we cannot use displaced stepping when we have a signal to
1628 deliver. If we have a signal to deliver and an instruction to step
1629 over, then after the step, there will be no indication from the
1630 target whether the thread entered a signal handler or ignored the
1631 signal and stepped over the instruction successfully --- both cases
1632 result in a simple SIGTRAP. In the first case we mustn't do a
1633 fixup, and in the second case we must --- but we can't tell which.
1634 Comments in the code for 'random signals' in handle_inferior_event
1635 explain how we handle this case instead.
1636
bab37966
SM
1637 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1638 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1639 if displaced stepping this thread got queued; or
1640 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1641 stepped. */
7f03bd92 1642
bab37966 1643static displaced_step_prepare_status
00431a78 1644displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1645{
00431a78 1646 regcache *regcache = get_thread_regcache (tp);
ac7936df 1647 struct gdbarch *gdbarch = regcache->arch ();
187b041e
SM
1648 displaced_step_thread_state &disp_step_thread_state
1649 = tp->displaced_step_state;
237fc4c9
PA
1650
1651 /* We should never reach this function if the architecture does not
1652 support displaced stepping. */
9822cb57 1653 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1654
c2829269
PA
1655 /* Nor if the thread isn't meant to step over a breakpoint. */
1656 gdb_assert (tp->control.trap_expected);
1657
c1e36e3e
PA
1658 /* Disable range stepping while executing in the scratch pad. We
1659 want a single-step even if executing the displaced instruction in
1660 the scratch buffer lands within the stepping range (e.g., a
1661 jump/branch). */
1662 tp->control.may_range_step = 0;
1663
187b041e
SM
1664 /* We are about to start a displaced step for this thread. If one is already
1665 in progress, something's wrong. */
1666 gdb_assert (!disp_step_thread_state.in_progress ());
237fc4c9 1667
187b041e 1668 if (tp->inf->displaced_step_state.unavailable)
237fc4c9 1669 {
187b041e
SM
1670 /* The gdbarch tells us it's not worth asking to try a prepare because
1671 it is likely that it will return unavailable, so don't bother asking. */
237fc4c9 1672
136821d9
SM
1673 displaced_debug_printf ("deferring step of %s",
1674 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1675
28d5518b 1676 global_thread_step_over_chain_enqueue (tp);
bab37966 1677 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
237fc4c9 1678 }
237fc4c9 1679
187b041e
SM
1680 displaced_debug_printf ("displaced-stepping %s now",
1681 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1682
00431a78
PA
1683 scoped_restore_current_thread restore_thread;
1684
1685 switch_to_thread (tp);
ad53cd71 1686
187b041e
SM
1687 CORE_ADDR original_pc = regcache_read_pc (regcache);
1688 CORE_ADDR displaced_pc;
237fc4c9 1689
187b041e
SM
1690 displaced_step_prepare_status status
1691 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
237fc4c9 1692
187b041e 1693 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
d35ae833 1694 {
187b041e
SM
1695 displaced_debug_printf ("failed to prepare (%s)",
1696 target_pid_to_str (tp->ptid).c_str ());
d35ae833 1697
bab37966 1698 return DISPLACED_STEP_PREPARE_STATUS_CANT;
d35ae833 1699 }
187b041e 1700 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
7f03bd92 1701 {
187b041e
SM
1702 /* Not enough displaced stepping resources available, defer this
1703 request by placing it the queue. */
1704
1705 displaced_debug_printf ("not enough resources available, "
1706 "deferring step of %s",
1707 target_pid_to_str (tp->ptid).c_str ());
1708
1709 global_thread_step_over_chain_enqueue (tp);
1710
1711 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
7f03bd92 1712 }
237fc4c9 1713
187b041e
SM
1714 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1715
9f5a595d
UW
1716 /* Save the information we need to fix things up if the step
1717 succeeds. */
187b041e 1718 disp_step_thread_state.set (gdbarch);
9f5a595d 1719
187b041e 1720 tp->inf->displaced_step_state.in_progress_count++;
ad53cd71 1721
187b041e
SM
1722 displaced_debug_printf ("prepared successfully thread=%s, "
1723 "original_pc=%s, displaced_pc=%s",
1724 target_pid_to_str (tp->ptid).c_str (),
1725 paddress (gdbarch, original_pc),
1726 paddress (gdbarch, displaced_pc));
237fc4c9 1727
bab37966 1728 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1729}
1730
3fc8eb30
PA
1731/* Wrapper for displaced_step_prepare_throw that disabled further
1732 attempts at displaced stepping if we get a memory error. */
1733
bab37966 1734static displaced_step_prepare_status
00431a78 1735displaced_step_prepare (thread_info *thread)
3fc8eb30 1736{
bab37966
SM
1737 displaced_step_prepare_status status
1738 = DISPLACED_STEP_PREPARE_STATUS_CANT;
3fc8eb30 1739
a70b8144 1740 try
3fc8eb30 1741 {
bab37966 1742 status = displaced_step_prepare_throw (thread);
3fc8eb30 1743 }
230d2906 1744 catch (const gdb_exception_error &ex)
3fc8eb30 1745 {
16b41842
PA
1746 if (ex.error != MEMORY_ERROR
1747 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1748 throw;
3fc8eb30 1749
1eb8556f
SM
1750 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1751 ex.what ());
3fc8eb30
PA
1752
1753 /* Be verbose if "set displaced-stepping" is "on", silent if
1754 "auto". */
1755 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1756 {
fd7dcb94 1757 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1758 ex.what ());
3fc8eb30
PA
1759 }
1760
1761 /* Disable further displaced stepping attempts. */
f5f01699 1762 thread->inf->displaced_step_state.failed_before = 1;
3fc8eb30 1763 }
3fc8eb30 1764
bab37966 1765 return status;
3fc8eb30
PA
1766}
1767
bab37966
SM
1768/* If we displaced stepped an instruction successfully, adjust registers and
1769 memory to yield the same effect the instruction would have had if we had
1770 executed it at its original address, and return
1771 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1772 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
372316f1 1773
bab37966
SM
1774 If the thread wasn't displaced stepping, return
1775 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1776
1777static displaced_step_finish_status
7def77a1 1778displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1779{
187b041e 1780 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
fc1cf338 1781
187b041e
SM
1782 /* Was this thread performing a displaced step? */
1783 if (!displaced->in_progress ())
bab37966 1784 return DISPLACED_STEP_FINISH_STATUS_OK;
237fc4c9 1785
187b041e
SM
1786 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1787 event_thread->inf->displaced_step_state.in_progress_count--;
1788
cb71640d
PA
1789 /* Fixup may need to read memory/registers. Switch to the thread
1790 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d 1791 the current thread, and displaced_step_restore performs ptid-dependent
328d42d8 1792 memory accesses using current_inferior(). */
00431a78 1793 switch_to_thread (event_thread);
cb71640d 1794
d43b7a2d
TBA
1795 displaced_step_reset_cleanup cleanup (displaced);
1796
187b041e
SM
1797 /* Do the fixup, and release the resources acquired to do the displaced
1798 step. */
1799 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1800 event_thread, signal);
c2829269 1801}
1c5cfe86 1802
4d9d9d04
PA
1803/* Data to be passed around while handling an event. This data is
1804 discarded between events. */
1805struct execution_control_state
1806{
5b6d1e4f 1807 process_stratum_target *target;
4d9d9d04
PA
1808 ptid_t ptid;
1809 /* The thread that got the event, if this was a thread event; NULL
1810 otherwise. */
1811 struct thread_info *event_thread;
1812
1813 struct target_waitstatus ws;
1814 int stop_func_filled_in;
1815 CORE_ADDR stop_func_start;
1816 CORE_ADDR stop_func_end;
1817 const char *stop_func_name;
1818 int wait_some_more;
1819
1820 /* True if the event thread hit the single-step breakpoint of
1821 another thread. Thus the event doesn't cause a stop, the thread
1822 needs to be single-stepped past the single-step breakpoint before
1823 we can switch back to the original stepping thread. */
1824 int hit_singlestep_breakpoint;
1825};
1826
1827/* Clear ECS and set it to point at TP. */
c2829269
PA
1828
1829static void
4d9d9d04
PA
1830reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1831{
1832 memset (ecs, 0, sizeof (*ecs));
1833 ecs->event_thread = tp;
1834 ecs->ptid = tp->ptid;
1835}
1836
1837static void keep_going_pass_signal (struct execution_control_state *ecs);
1838static void prepare_to_wait (struct execution_control_state *ecs);
c4464ade 1839static bool keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1840static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1841
1842/* Are there any pending step-over requests? If so, run all we can
1843 now and return true. Otherwise, return false. */
1844
c4464ade 1845static bool
c2829269
PA
1846start_step_over (void)
1847{
3ec3145c
SM
1848 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1849
187b041e 1850 thread_info *next;
c2829269 1851
372316f1
PA
1852 /* Don't start a new step-over if we already have an in-line
1853 step-over operation ongoing. */
1854 if (step_over_info_valid_p ())
c4464ade 1855 return false;
372316f1 1856
187b041e
SM
1857 /* Steal the global thread step over chain. As we try to initiate displaced
1858 steps, threads will be enqueued in the global chain if no buffers are
1859 available. If we iterated on the global chain directly, we might iterate
1860 indefinitely. */
1861 thread_info *threads_to_step = global_thread_step_over_chain_head;
1862 global_thread_step_over_chain_head = NULL;
1863
1864 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1865 thread_step_over_chain_length (threads_to_step));
1866
1867 bool started = false;
1868
1869 /* On scope exit (whatever the reason, return or exception), if there are
1870 threads left in the THREADS_TO_STEP chain, put back these threads in the
1871 global list. */
1872 SCOPE_EXIT
1873 {
1874 if (threads_to_step == nullptr)
1875 infrun_debug_printf ("step-over queue now empty");
1876 else
1877 {
1878 infrun_debug_printf ("putting back %d threads to step in global queue",
1879 thread_step_over_chain_length (threads_to_step));
1880
1881 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1882 }
1883 };
1884
1885 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
237fc4c9 1886 {
4d9d9d04
PA
1887 struct execution_control_state ecss;
1888 struct execution_control_state *ecs = &ecss;
8d297bbf 1889 step_over_what step_what;
372316f1 1890 int must_be_in_line;
c2829269 1891
c65d6b55
PA
1892 gdb_assert (!tp->stop_requested);
1893
187b041e 1894 next = thread_step_over_chain_next (threads_to_step, tp);
237fc4c9 1895
187b041e
SM
1896 if (tp->inf->displaced_step_state.unavailable)
1897 {
1898 /* The arch told us to not even try preparing another displaced step
1899 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1900 will get moved to the global chain on scope exit. */
1901 continue;
1902 }
1903
1904 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1905 while we try to prepare the displaced step, we don't add it back to
1906 the global step over chain. This is to avoid a thread staying in the
1907 step over chain indefinitely if something goes wrong when resuming it
1908 If the error is intermittent and it still needs a step over, it will
1909 get enqueued again when we try to resume it normally. */
1910 thread_step_over_chain_remove (&threads_to_step, tp);
c2829269 1911
372316f1
PA
1912 step_what = thread_still_needs_step_over (tp);
1913 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1914 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1915 && !use_displaced_stepping (tp)));
372316f1
PA
1916
1917 /* We currently stop all threads of all processes to step-over
1918 in-line. If we need to start a new in-line step-over, let
1919 any pending displaced steps finish first. */
187b041e
SM
1920 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1921 {
1922 global_thread_step_over_chain_enqueue (tp);
1923 continue;
1924 }
c2829269 1925
372316f1
PA
1926 if (tp->control.trap_expected
1927 || tp->resumed
1928 || tp->executing)
ad53cd71 1929 {
4d9d9d04
PA
1930 internal_error (__FILE__, __LINE__,
1931 "[%s] has inconsistent state: "
372316f1 1932 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1933 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1934 tp->control.trap_expected,
372316f1 1935 tp->resumed,
4d9d9d04 1936 tp->executing);
ad53cd71 1937 }
1c5cfe86 1938
1eb8556f
SM
1939 infrun_debug_printf ("resuming [%s] for step-over",
1940 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1941
1942 /* keep_going_pass_signal skips the step-over if the breakpoint
1943 is no longer inserted. In all-stop, we want to keep looking
1944 for a thread that needs a step-over instead of resuming TP,
1945 because we wouldn't be able to resume anything else until the
1946 target stops again. In non-stop, the resume always resumes
1947 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1948 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1949 continue;
8550d3b3 1950
00431a78 1951 switch_to_thread (tp);
4d9d9d04
PA
1952 reset_ecs (ecs, tp);
1953 keep_going_pass_signal (ecs);
1c5cfe86 1954
4d9d9d04
PA
1955 if (!ecs->wait_some_more)
1956 error (_("Command aborted."));
1c5cfe86 1957
187b041e
SM
1958 /* If the thread's step over could not be initiated because no buffers
1959 were available, it was re-added to the global step over chain. */
1960 if (tp->resumed)
1961 {
1962 infrun_debug_printf ("[%s] was resumed.",
1963 target_pid_to_str (tp->ptid).c_str ());
1964 gdb_assert (!thread_is_in_step_over_chain (tp));
1965 }
1966 else
1967 {
1968 infrun_debug_printf ("[%s] was NOT resumed.",
1969 target_pid_to_str (tp->ptid).c_str ());
1970 gdb_assert (thread_is_in_step_over_chain (tp));
1971 }
372316f1
PA
1972
1973 /* If we started a new in-line step-over, we're done. */
1974 if (step_over_info_valid_p ())
1975 {
1976 gdb_assert (tp->control.trap_expected);
187b041e
SM
1977 started = true;
1978 break;
372316f1
PA
1979 }
1980
fbea99ea 1981 if (!target_is_non_stop_p ())
4d9d9d04
PA
1982 {
1983 /* On all-stop, shouldn't have resumed unless we needed a
1984 step over. */
1985 gdb_assert (tp->control.trap_expected
1986 || tp->step_after_step_resume_breakpoint);
1987
1988 /* With remote targets (at least), in all-stop, we can't
1989 issue any further remote commands until the program stops
1990 again. */
187b041e
SM
1991 started = true;
1992 break;
1c5cfe86 1993 }
c2829269 1994
4d9d9d04
PA
1995 /* Either the thread no longer needed a step-over, or a new
1996 displaced stepping sequence started. Even in the latter
1997 case, continue looking. Maybe we can also start another
1998 displaced step on a thread of other process. */
237fc4c9 1999 }
4d9d9d04 2000
187b041e 2001 return started;
237fc4c9
PA
2002}
2003
5231c1fd
PA
2004/* Update global variables holding ptids to hold NEW_PTID if they were
2005 holding OLD_PTID. */
2006static void
b161a60d
SM
2007infrun_thread_ptid_changed (process_stratum_target *target,
2008 ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 2009{
b161a60d
SM
2010 if (inferior_ptid == old_ptid
2011 && current_inferior ()->process_target () == target)
5231c1fd 2012 inferior_ptid = new_ptid;
5231c1fd
PA
2013}
2014
237fc4c9 2015\f
c906108c 2016
53904c9e
AC
2017static const char schedlock_off[] = "off";
2018static const char schedlock_on[] = "on";
2019static const char schedlock_step[] = "step";
f2665db5 2020static const char schedlock_replay[] = "replay";
40478521 2021static const char *const scheduler_enums[] = {
ef346e04
AC
2022 schedlock_off,
2023 schedlock_on,
2024 schedlock_step,
f2665db5 2025 schedlock_replay,
ef346e04
AC
2026 NULL
2027};
f2665db5 2028static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2029static void
2030show_scheduler_mode (struct ui_file *file, int from_tty,
2031 struct cmd_list_element *c, const char *value)
2032{
3e43a32a
MS
2033 fprintf_filtered (file,
2034 _("Mode for locking scheduler "
2035 "during execution is \"%s\".\n"),
920d2a44
AC
2036 value);
2037}
c906108c
SS
2038
2039static void
eb4c3f4a 2040set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2041{
8a3ecb79 2042 if (!target_can_lock_scheduler ())
eefe576e
AC
2043 {
2044 scheduler_mode = schedlock_off;
d777bf0d
SM
2045 error (_("Target '%s' cannot support this command."),
2046 target_shortname ());
eefe576e 2047 }
c906108c
SS
2048}
2049
d4db2f36
PA
2050/* True if execution commands resume all threads of all processes by
2051 default; otherwise, resume only threads of the current inferior
2052 process. */
491144b5 2053bool sched_multi = false;
d4db2f36 2054
2facfe5c 2055/* Try to setup for software single stepping over the specified location.
c4464ade 2056 Return true if target_resume() should use hardware single step.
2facfe5c
DD
2057
2058 GDBARCH the current gdbarch.
2059 PC the location to step over. */
2060
c4464ade 2061static bool
2facfe5c
DD
2062maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2063{
c4464ade 2064 bool hw_step = true;
2facfe5c 2065
f02253f1 2066 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2067 && gdbarch_software_single_step_p (gdbarch))
2068 hw_step = !insert_single_step_breakpoints (gdbarch);
2069
2facfe5c
DD
2070 return hw_step;
2071}
c906108c 2072
f3263aa4
PA
2073/* See infrun.h. */
2074
09cee04b
PA
2075ptid_t
2076user_visible_resume_ptid (int step)
2077{
f3263aa4 2078 ptid_t resume_ptid;
09cee04b 2079
09cee04b
PA
2080 if (non_stop)
2081 {
2082 /* With non-stop mode on, threads are always handled
2083 individually. */
2084 resume_ptid = inferior_ptid;
2085 }
2086 else if ((scheduler_mode == schedlock_on)
03d46957 2087 || (scheduler_mode == schedlock_step && step))
09cee04b 2088 {
f3263aa4
PA
2089 /* User-settable 'scheduler' mode requires solo thread
2090 resume. */
09cee04b
PA
2091 resume_ptid = inferior_ptid;
2092 }
f2665db5
MM
2093 else if ((scheduler_mode == schedlock_replay)
2094 && target_record_will_replay (minus_one_ptid, execution_direction))
2095 {
2096 /* User-settable 'scheduler' mode requires solo thread resume in replay
2097 mode. */
2098 resume_ptid = inferior_ptid;
2099 }
f3263aa4
PA
2100 else if (!sched_multi && target_supports_multi_process ())
2101 {
2102 /* Resume all threads of the current process (and none of other
2103 processes). */
e99b03dc 2104 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2105 }
2106 else
2107 {
2108 /* Resume all threads of all processes. */
2109 resume_ptid = RESUME_ALL;
2110 }
09cee04b
PA
2111
2112 return resume_ptid;
2113}
2114
5b6d1e4f
PA
2115/* See infrun.h. */
2116
2117process_stratum_target *
2118user_visible_resume_target (ptid_t resume_ptid)
2119{
2120 return (resume_ptid == minus_one_ptid && sched_multi
2121 ? NULL
2122 : current_inferior ()->process_target ());
2123}
2124
fbea99ea
PA
2125/* Return a ptid representing the set of threads that we will resume,
2126 in the perspective of the target, assuming run control handling
2127 does not require leaving some threads stopped (e.g., stepping past
2128 breakpoint). USER_STEP indicates whether we're about to start the
2129 target for a stepping command. */
2130
2131static ptid_t
2132internal_resume_ptid (int user_step)
2133{
2134 /* In non-stop, we always control threads individually. Note that
2135 the target may always work in non-stop mode even with "set
2136 non-stop off", in which case user_visible_resume_ptid could
2137 return a wildcard ptid. */
2138 if (target_is_non_stop_p ())
2139 return inferior_ptid;
2140 else
2141 return user_visible_resume_ptid (user_step);
2142}
2143
64ce06e4
PA
2144/* Wrapper for target_resume, that handles infrun-specific
2145 bookkeeping. */
2146
2147static void
c4464ade 2148do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
64ce06e4
PA
2149{
2150 struct thread_info *tp = inferior_thread ();
2151
c65d6b55
PA
2152 gdb_assert (!tp->stop_requested);
2153
64ce06e4 2154 /* Install inferior's terminal modes. */
223ffa71 2155 target_terminal::inferior ();
64ce06e4
PA
2156
2157 /* Avoid confusing the next resume, if the next stop/resume
2158 happens to apply to another thread. */
2159 tp->suspend.stop_signal = GDB_SIGNAL_0;
2160
8f572e5c
PA
2161 /* Advise target which signals may be handled silently.
2162
2163 If we have removed breakpoints because we are stepping over one
2164 in-line (in any thread), we need to receive all signals to avoid
2165 accidentally skipping a breakpoint during execution of a signal
2166 handler.
2167
2168 Likewise if we're displaced stepping, otherwise a trap for a
2169 breakpoint in a signal handler might be confused with the
7def77a1 2170 displaced step finishing. We don't make the displaced_step_finish
8f572e5c
PA
2171 step distinguish the cases instead, because:
2172
2173 - a backtrace while stopped in the signal handler would show the
2174 scratch pad as frame older than the signal handler, instead of
2175 the real mainline code.
2176
2177 - when the thread is later resumed, the signal handler would
2178 return to the scratch pad area, which would no longer be
2179 valid. */
2180 if (step_over_info_valid_p ()
00431a78 2181 || displaced_step_in_progress (tp->inf))
adc6a863 2182 target_pass_signals ({});
64ce06e4 2183 else
adc6a863 2184 target_pass_signals (signal_pass);
64ce06e4 2185
17543e57
SM
2186 infrun_debug_printf ("resume_ptid=%s, step=%d, sig=%s",
2187 resume_ptid.to_string ().c_str (),
2188 step, gdb_signal_to_symbol_string (sig));
2189
64ce06e4 2190 target_resume (resume_ptid, step, sig);
85ad3aaf 2191
5b6d1e4f
PA
2192 if (target_can_async_p ())
2193 target_async (1);
64ce06e4
PA
2194}
2195
d930703d 2196/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2197 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2198 call 'resume', which handles exceptions. */
c906108c 2199
71d378ae
PA
2200static void
2201resume_1 (enum gdb_signal sig)
c906108c 2202{
515630c5 2203 struct regcache *regcache = get_current_regcache ();
ac7936df 2204 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2205 struct thread_info *tp = inferior_thread ();
8b86c959 2206 const address_space *aspace = regcache->aspace ();
b0f16a3e 2207 ptid_t resume_ptid;
856e7dd6
PA
2208 /* This represents the user's step vs continue request. When
2209 deciding whether "set scheduler-locking step" applies, it's the
2210 user's intention that counts. */
2211 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2212 /* This represents what we'll actually request the target to do.
2213 This can decay from a step to a continue, if e.g., we need to
2214 implement single-stepping with breakpoints (software
2215 single-step). */
c4464ade 2216 bool step;
c7e8a53c 2217
c65d6b55 2218 gdb_assert (!tp->stop_requested);
c2829269
PA
2219 gdb_assert (!thread_is_in_step_over_chain (tp));
2220
372316f1
PA
2221 if (tp->suspend.waitstatus_pending_p)
2222 {
1eb8556f
SM
2223 infrun_debug_printf
2224 ("thread %s has pending wait "
2225 "status %s (currently_stepping=%d).",
2226 target_pid_to_str (tp->ptid).c_str (),
2227 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2228 currently_stepping (tp));
372316f1 2229
5b6d1e4f 2230 tp->inf->process_target ()->threads_executing = true;
719546c4 2231 tp->resumed = true;
372316f1
PA
2232
2233 /* FIXME: What should we do if we are supposed to resume this
2234 thread with a signal? Maybe we should maintain a queue of
2235 pending signals to deliver. */
2236 if (sig != GDB_SIGNAL_0)
2237 {
fd7dcb94 2238 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2239 gdb_signal_to_name (sig),
2240 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2241 }
2242
2243 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2244
2245 if (target_can_async_p ())
9516f85a
AB
2246 {
2247 target_async (1);
2248 /* Tell the event loop we have an event to process. */
2249 mark_async_event_handler (infrun_async_inferior_event_token);
2250 }
372316f1
PA
2251 return;
2252 }
2253
2254 tp->stepped_breakpoint = 0;
2255
6b403daa
PA
2256 /* Depends on stepped_breakpoint. */
2257 step = currently_stepping (tp);
2258
060f2ef8 2259 if (current_inferior ()->thread_waiting_for_vfork_done != nullptr)
74609e71 2260 {
48f9886d
PA
2261 /* Don't try to single-step a vfork parent that is waiting for
2262 the child to get out of the shared memory region (by exec'ing
2263 or exiting). This is particularly important on software
2264 single-step archs, as the child process would trip on the
2265 software single step breakpoint inserted for the parent
2266 process. Since the parent will not actually execute any
2267 instruction until the child is out of the shared region (such
2268 are vfork's semantics), it is safe to simply continue it.
2269 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2270 the parent, and tell it to `keep_going', which automatically
2271 re-sets it stepping. */
1eb8556f 2272 infrun_debug_printf ("resume : clear step");
c4464ade 2273 step = false;
74609e71
YQ
2274 }
2275
7ca9b62a
TBA
2276 CORE_ADDR pc = regcache_read_pc (regcache);
2277
1eb8556f
SM
2278 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2279 "current thread [%s] at %s",
2280 step, gdb_signal_to_symbol_string (sig),
2281 tp->control.trap_expected,
2282 target_pid_to_str (inferior_ptid).c_str (),
2283 paddress (gdbarch, pc));
c906108c 2284
c2c6d25f
JM
2285 /* Normally, by the time we reach `resume', the breakpoints are either
2286 removed or inserted, as appropriate. The exception is if we're sitting
2287 at a permanent breakpoint; we need to step over it, but permanent
2288 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2289 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2290 {
af48d08f
PA
2291 if (sig != GDB_SIGNAL_0)
2292 {
2293 /* We have a signal to pass to the inferior. The resume
2294 may, or may not take us to the signal handler. If this
2295 is a step, we'll need to stop in the signal handler, if
2296 there's one, (if the target supports stepping into
2297 handlers), or in the next mainline instruction, if
2298 there's no handler. If this is a continue, we need to be
2299 sure to run the handler with all breakpoints inserted.
2300 In all cases, set a breakpoint at the current address
2301 (where the handler returns to), and once that breakpoint
2302 is hit, resume skipping the permanent breakpoint. If
2303 that breakpoint isn't hit, then we've stepped into the
2304 signal handler (or hit some other event). We'll delete
2305 the step-resume breakpoint then. */
2306
1eb8556f
SM
2307 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2308 "deliver signal first");
af48d08f
PA
2309
2310 clear_step_over_info ();
2311 tp->control.trap_expected = 0;
2312
2313 if (tp->control.step_resume_breakpoint == NULL)
2314 {
2315 /* Set a "high-priority" step-resume, as we don't want
2316 user breakpoints at PC to trigger (again) when this
2317 hits. */
2318 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2319 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2320
2321 tp->step_after_step_resume_breakpoint = step;
2322 }
2323
2324 insert_breakpoints ();
2325 }
2326 else
2327 {
2328 /* There's no signal to pass, we can go ahead and skip the
2329 permanent breakpoint manually. */
1eb8556f 2330 infrun_debug_printf ("skipping permanent breakpoint");
af48d08f
PA
2331 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2332 /* Update pc to reflect the new address from which we will
2333 execute instructions. */
2334 pc = regcache_read_pc (regcache);
2335
2336 if (step)
2337 {
2338 /* We've already advanced the PC, so the stepping part
2339 is done. Now we need to arrange for a trap to be
2340 reported to handle_inferior_event. Set a breakpoint
2341 at the current PC, and run to it. Don't update
2342 prev_pc, because if we end in
44a1ee51
PA
2343 switch_back_to_stepped_thread, we want the "expected
2344 thread advanced also" branch to be taken. IOW, we
2345 don't want this thread to step further from PC
af48d08f 2346 (overstep). */
1ac806b8 2347 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2348 insert_single_step_breakpoint (gdbarch, aspace, pc);
2349 insert_breakpoints ();
2350
fbea99ea 2351 resume_ptid = internal_resume_ptid (user_step);
c4464ade 2352 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
719546c4 2353 tp->resumed = true;
af48d08f
PA
2354 return;
2355 }
2356 }
6d350bb5 2357 }
c2c6d25f 2358
c1e36e3e
PA
2359 /* If we have a breakpoint to step over, make sure to do a single
2360 step only. Same if we have software watchpoints. */
2361 if (tp->control.trap_expected || bpstat_should_step ())
2362 tp->control.may_range_step = 0;
2363
7da6a5b9
LM
2364 /* If displaced stepping is enabled, step over breakpoints by executing a
2365 copy of the instruction at a different address.
237fc4c9
PA
2366
2367 We can't use displaced stepping when we have a signal to deliver;
2368 the comments for displaced_step_prepare explain why. The
2369 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2370 signals' explain what we do instead.
2371
2372 We can't use displaced stepping when we are waiting for vfork_done
2373 event, displaced stepping breaks the vfork child similarly as single
2374 step software breakpoint. */
3fc8eb30
PA
2375 if (tp->control.trap_expected
2376 && use_displaced_stepping (tp)
cb71640d 2377 && !step_over_info_valid_p ()
a493e3e2 2378 && sig == GDB_SIGNAL_0
060f2ef8 2379 && current_inferior ()->thread_waiting_for_vfork_done == nullptr)
237fc4c9 2380 {
bab37966
SM
2381 displaced_step_prepare_status prepare_status
2382 = displaced_step_prepare (tp);
fc1cf338 2383
bab37966 2384 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2385 {
1eb8556f 2386 infrun_debug_printf ("Got placed in step-over queue");
4d9d9d04
PA
2387
2388 tp->control.trap_expected = 0;
d56b7306
VP
2389 return;
2390 }
bab37966 2391 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
3fc8eb30
PA
2392 {
2393 /* Fallback to stepping over the breakpoint in-line. */
2394
2395 if (target_is_non_stop_p ())
3cebef98 2396 stop_all_threads ("displaced stepping falling back on inline stepping");
3fc8eb30 2397
a01bda52 2398 set_step_over_info (regcache->aspace (),
21edc42f 2399 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2400
2401 step = maybe_software_singlestep (gdbarch, pc);
2402
2403 insert_breakpoints ();
2404 }
bab37966 2405 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2406 {
3fc8eb30
PA
2407 /* Update pc to reflect the new address from which we will
2408 execute instructions due to displaced stepping. */
00431a78 2409 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2410
40a53766 2411 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
3fc8eb30 2412 }
bab37966
SM
2413 else
2414 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2415 "value."));
237fc4c9
PA
2416 }
2417
2facfe5c 2418 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2419 else if (step)
2facfe5c 2420 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2421
30852783
UW
2422 /* Currently, our software single-step implementation leads to different
2423 results than hardware single-stepping in one situation: when stepping
2424 into delivering a signal which has an associated signal handler,
2425 hardware single-step will stop at the first instruction of the handler,
2426 while software single-step will simply skip execution of the handler.
2427
2428 For now, this difference in behavior is accepted since there is no
2429 easy way to actually implement single-stepping into a signal handler
2430 without kernel support.
2431
2432 However, there is one scenario where this difference leads to follow-on
2433 problems: if we're stepping off a breakpoint by removing all breakpoints
2434 and then single-stepping. In this case, the software single-step
2435 behavior means that even if there is a *breakpoint* in the signal
2436 handler, GDB still would not stop.
2437
2438 Fortunately, we can at least fix this particular issue. We detect
2439 here the case where we are about to deliver a signal while software
2440 single-stepping with breakpoints removed. In this situation, we
2441 revert the decisions to remove all breakpoints and insert single-
2442 step breakpoints, and instead we install a step-resume breakpoint
2443 at the current address, deliver the signal without stepping, and
2444 once we arrive back at the step-resume breakpoint, actually step
2445 over the breakpoint we originally wanted to step over. */
34b7e8a6 2446 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2447 && sig != GDB_SIGNAL_0
2448 && step_over_info_valid_p ())
30852783
UW
2449 {
2450 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2451 immediately after a handler returns, might already have
30852783
UW
2452 a step-resume breakpoint set on the earlier handler. We cannot
2453 set another step-resume breakpoint; just continue on until the
2454 original breakpoint is hit. */
2455 if (tp->control.step_resume_breakpoint == NULL)
2456 {
2c03e5be 2457 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2458 tp->step_after_step_resume_breakpoint = 1;
2459 }
2460
34b7e8a6 2461 delete_single_step_breakpoints (tp);
30852783 2462
31e77af2 2463 clear_step_over_info ();
30852783 2464 tp->control.trap_expected = 0;
31e77af2
PA
2465
2466 insert_breakpoints ();
30852783
UW
2467 }
2468
b0f16a3e
SM
2469 /* If STEP is set, it's a request to use hardware stepping
2470 facilities. But in that case, we should never
2471 use singlestep breakpoint. */
34b7e8a6 2472 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2473
fbea99ea 2474 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2475 if (tp->control.trap_expected)
b0f16a3e
SM
2476 {
2477 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2478 hit, either by single-stepping the thread with the breakpoint
2479 removed, or by displaced stepping, with the breakpoint inserted.
2480 In the former case, we need to single-step only this thread,
2481 and keep others stopped, as they can miss this breakpoint if
2482 allowed to run. That's not really a problem for displaced
2483 stepping, but, we still keep other threads stopped, in case
2484 another thread is also stopped for a breakpoint waiting for
2485 its turn in the displaced stepping queue. */
b0f16a3e
SM
2486 resume_ptid = inferior_ptid;
2487 }
fbea99ea
PA
2488 else
2489 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2490
7f5ef605
PA
2491 if (execution_direction != EXEC_REVERSE
2492 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2493 {
372316f1
PA
2494 /* There are two cases where we currently need to step a
2495 breakpoint instruction when we have a signal to deliver:
2496
2497 - See handle_signal_stop where we handle random signals that
2498 could take out us out of the stepping range. Normally, in
2499 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2500 signal handler with a breakpoint at PC, but there are cases
2501 where we should _always_ single-step, even if we have a
2502 step-resume breakpoint, like when a software watchpoint is
2503 set. Assuming single-stepping and delivering a signal at the
2504 same time would takes us to the signal handler, then we could
2505 have removed the breakpoint at PC to step over it. However,
2506 some hardware step targets (like e.g., Mac OS) can't step
2507 into signal handlers, and for those, we need to leave the
2508 breakpoint at PC inserted, as otherwise if the handler
2509 recurses and executes PC again, it'll miss the breakpoint.
2510 So we leave the breakpoint inserted anyway, but we need to
2511 record that we tried to step a breakpoint instruction, so
372316f1
PA
2512 that adjust_pc_after_break doesn't end up confused.
2513
dda83cd7 2514 - In non-stop if we insert a breakpoint (e.g., a step-resume)
372316f1
PA
2515 in one thread after another thread that was stepping had been
2516 momentarily paused for a step-over. When we re-resume the
2517 stepping thread, it may be resumed from that address with a
2518 breakpoint that hasn't trapped yet. Seen with
2519 gdb.threads/non-stop-fair-events.exp, on targets that don't
2520 do displaced stepping. */
2521
1eb8556f
SM
2522 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2523 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2524
2525 tp->stepped_breakpoint = 1;
2526
b0f16a3e
SM
2527 /* Most targets can step a breakpoint instruction, thus
2528 executing it normally. But if this one cannot, just
2529 continue and we will hit it anyway. */
7f5ef605 2530 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4464ade 2531 step = false;
b0f16a3e 2532 }
ef5cf84e 2533
b0f16a3e 2534 if (debug_displaced
cb71640d 2535 && tp->control.trap_expected
3fc8eb30 2536 && use_displaced_stepping (tp)
cb71640d 2537 && !step_over_info_valid_p ())
b0f16a3e 2538 {
00431a78 2539 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2540 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2541 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2542 gdb_byte buf[4];
2543
b0f16a3e 2544 read_memory (actual_pc, buf, sizeof (buf));
136821d9
SM
2545 displaced_debug_printf ("run %s: %s",
2546 paddress (resume_gdbarch, actual_pc),
2547 displaced_step_dump_bytes
2548 (buf, sizeof (buf)).c_str ());
b0f16a3e 2549 }
237fc4c9 2550
b0f16a3e
SM
2551 if (tp->control.may_range_step)
2552 {
2553 /* If we're resuming a thread with the PC out of the step
2554 range, then we're doing some nested/finer run control
2555 operation, like stepping the thread out of the dynamic
2556 linker or the displaced stepping scratch pad. We
2557 shouldn't have allowed a range step then. */
2558 gdb_assert (pc_in_thread_step_range (pc, tp));
2559 }
c1e36e3e 2560
64ce06e4 2561 do_target_resume (resume_ptid, step, sig);
719546c4 2562 tp->resumed = true;
c906108c 2563}
71d378ae
PA
2564
2565/* Resume the inferior. SIG is the signal to give the inferior
2566 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2567 rolls back state on error. */
2568
aff4e175 2569static void
71d378ae
PA
2570resume (gdb_signal sig)
2571{
a70b8144 2572 try
71d378ae
PA
2573 {
2574 resume_1 (sig);
2575 }
230d2906 2576 catch (const gdb_exception &ex)
71d378ae
PA
2577 {
2578 /* If resuming is being aborted for any reason, delete any
2579 single-step breakpoint resume_1 may have created, to avoid
2580 confusing the following resumption, and to avoid leaving
2581 single-step breakpoints perturbing other threads, in case
2582 we're running in non-stop mode. */
2583 if (inferior_ptid != null_ptid)
2584 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2585 throw;
71d378ae 2586 }
71d378ae
PA
2587}
2588
c906108c 2589\f
237fc4c9 2590/* Proceeding. */
c906108c 2591
4c2f2a79
PA
2592/* See infrun.h. */
2593
2594/* Counter that tracks number of user visible stops. This can be used
2595 to tell whether a command has proceeded the inferior past the
2596 current location. This allows e.g., inferior function calls in
2597 breakpoint commands to not interrupt the command list. When the
2598 call finishes successfully, the inferior is standing at the same
2599 breakpoint as if nothing happened (and so we don't call
2600 normal_stop). */
2601static ULONGEST current_stop_id;
2602
2603/* See infrun.h. */
2604
2605ULONGEST
2606get_stop_id (void)
2607{
2608 return current_stop_id;
2609}
2610
2611/* Called when we report a user visible stop. */
2612
2613static void
2614new_stop_id (void)
2615{
2616 current_stop_id++;
2617}
2618
c906108c
SS
2619/* Clear out all variables saying what to do when inferior is continued.
2620 First do this, then set the ones you want, then call `proceed'. */
2621
a7212384
UW
2622static void
2623clear_proceed_status_thread (struct thread_info *tp)
c906108c 2624{
1eb8556f 2625 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2626
372316f1
PA
2627 /* If we're starting a new sequence, then the previous finished
2628 single-step is no longer relevant. */
2629 if (tp->suspend.waitstatus_pending_p)
2630 {
2631 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2632 {
1eb8556f
SM
2633 infrun_debug_printf ("pending event of %s was a finished step. "
2634 "Discarding.",
2635 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2636
2637 tp->suspend.waitstatus_pending_p = 0;
2638 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2639 }
1eb8556f 2640 else
372316f1 2641 {
1eb8556f
SM
2642 infrun_debug_printf
2643 ("thread %s has pending wait status %s (currently_stepping=%d).",
2644 target_pid_to_str (tp->ptid).c_str (),
2645 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2646 currently_stepping (tp));
372316f1
PA
2647 }
2648 }
2649
70509625
PA
2650 /* If this signal should not be seen by program, give it zero.
2651 Used for debugging signals. */
2652 if (!signal_pass_state (tp->suspend.stop_signal))
2653 tp->suspend.stop_signal = GDB_SIGNAL_0;
2654
46e3ed7f 2655 delete tp->thread_fsm;
243a9253
PA
2656 tp->thread_fsm = NULL;
2657
16c381f0
JK
2658 tp->control.trap_expected = 0;
2659 tp->control.step_range_start = 0;
2660 tp->control.step_range_end = 0;
c1e36e3e 2661 tp->control.may_range_step = 0;
16c381f0
JK
2662 tp->control.step_frame_id = null_frame_id;
2663 tp->control.step_stack_frame_id = null_frame_id;
2664 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2665 tp->control.step_start_function = NULL;
a7212384 2666 tp->stop_requested = 0;
4e1c45ea 2667
16c381f0 2668 tp->control.stop_step = 0;
32400beb 2669
16c381f0 2670 tp->control.proceed_to_finish = 0;
414c69f7 2671
856e7dd6 2672 tp->control.stepping_command = 0;
17b2616c 2673
a7212384 2674 /* Discard any remaining commands or status from previous stop. */
16c381f0 2675 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2676}
32400beb 2677
a7212384 2678void
70509625 2679clear_proceed_status (int step)
a7212384 2680{
f2665db5
MM
2681 /* With scheduler-locking replay, stop replaying other threads if we're
2682 not replaying the user-visible resume ptid.
2683
2684 This is a convenience feature to not require the user to explicitly
2685 stop replaying the other threads. We're assuming that the user's
2686 intent is to resume tracing the recorded process. */
2687 if (!non_stop && scheduler_mode == schedlock_replay
2688 && target_record_is_replaying (minus_one_ptid)
2689 && !target_record_will_replay (user_visible_resume_ptid (step),
2690 execution_direction))
2691 target_record_stop_replaying ();
2692
08036331 2693 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2694 {
08036331 2695 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2696 process_stratum_target *resume_target
2697 = user_visible_resume_target (resume_ptid);
70509625
PA
2698
2699 /* In all-stop mode, delete the per-thread status of all threads
2700 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2701 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2702 clear_proceed_status_thread (tp);
6c95b8df
PA
2703 }
2704
d7e15655 2705 if (inferior_ptid != null_ptid)
a7212384
UW
2706 {
2707 struct inferior *inferior;
2708
2709 if (non_stop)
2710 {
6c95b8df
PA
2711 /* If in non-stop mode, only delete the per-thread status of
2712 the current thread. */
a7212384
UW
2713 clear_proceed_status_thread (inferior_thread ());
2714 }
6c95b8df 2715
d6b48e9c 2716 inferior = current_inferior ();
16c381f0 2717 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2718 }
2719
76727919 2720 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2721}
2722
99619bea
PA
2723/* Returns true if TP is still stopped at a breakpoint that needs
2724 stepping-over in order to make progress. If the breakpoint is gone
2725 meanwhile, we can skip the whole step-over dance. */
ea67f13b 2726
c4464ade 2727static bool
6c4cfb24 2728thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2729{
2730 if (tp->stepping_over_breakpoint)
2731 {
00431a78 2732 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2733
a01bda52 2734 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2735 regcache_read_pc (regcache))
2736 == ordinary_breakpoint_here)
c4464ade 2737 return true;
99619bea
PA
2738
2739 tp->stepping_over_breakpoint = 0;
2740 }
2741
c4464ade 2742 return false;
99619bea
PA
2743}
2744
6c4cfb24
PA
2745/* Check whether thread TP still needs to start a step-over in order
2746 to make progress when resumed. Returns an bitwise or of enum
2747 step_over_what bits, indicating what needs to be stepped over. */
2748
8d297bbf 2749static step_over_what
6c4cfb24
PA
2750thread_still_needs_step_over (struct thread_info *tp)
2751{
8d297bbf 2752 step_over_what what = 0;
6c4cfb24
PA
2753
2754 if (thread_still_needs_step_over_bp (tp))
2755 what |= STEP_OVER_BREAKPOINT;
2756
2757 if (tp->stepping_over_watchpoint
9aed480c 2758 && !target_have_steppable_watchpoint ())
6c4cfb24
PA
2759 what |= STEP_OVER_WATCHPOINT;
2760
2761 return what;
2762}
2763
483805cf
PA
2764/* Returns true if scheduler locking applies. STEP indicates whether
2765 we're about to do a step/next-like command to a thread. */
2766
c4464ade 2767static bool
856e7dd6 2768schedlock_applies (struct thread_info *tp)
483805cf
PA
2769{
2770 return (scheduler_mode == schedlock_on
2771 || (scheduler_mode == schedlock_step
f2665db5
MM
2772 && tp->control.stepping_command)
2773 || (scheduler_mode == schedlock_replay
2774 && target_record_will_replay (minus_one_ptid,
2775 execution_direction)));
483805cf
PA
2776}
2777
1192f124
SM
2778/* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2779 stacks that have threads executing and don't have threads with
2780 pending events. */
5b6d1e4f
PA
2781
2782static void
1192f124
SM
2783maybe_set_commit_resumed_all_targets ()
2784{
b4b1a226
SM
2785 scoped_restore_current_thread restore_thread;
2786
1192f124
SM
2787 for (inferior *inf : all_non_exited_inferiors ())
2788 {
2789 process_stratum_target *proc_target = inf->process_target ();
2790
2791 if (proc_target->commit_resumed_state)
2792 {
2793 /* We already set this in a previous iteration, via another
2794 inferior sharing the process_stratum target. */
2795 continue;
2796 }
2797
2798 /* If the target has no resumed threads, it would be useless to
2799 ask it to commit the resumed threads. */
2800 if (!proc_target->threads_executing)
2801 {
2802 infrun_debug_printf ("not requesting commit-resumed for target "
2803 "%s, no resumed threads",
2804 proc_target->shortname ());
2805 continue;
2806 }
2807
2808 /* As an optimization, if a thread from this target has some
2809 status to report, handle it before requiring the target to
2810 commit its resumed threads: handling the status might lead to
2811 resuming more threads. */
2812 bool has_thread_with_pending_status = false;
2813 for (thread_info *thread : all_non_exited_threads (proc_target))
2814 if (thread->resumed && thread->suspend.waitstatus_pending_p)
2815 {
2816 has_thread_with_pending_status = true;
2817 break;
2818 }
2819
2820 if (has_thread_with_pending_status)
2821 {
2822 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2823 " thread has a pending waitstatus",
2824 proc_target->shortname ());
2825 continue;
2826 }
2827
b4b1a226
SM
2828 switch_to_inferior_no_thread (inf);
2829
2830 if (target_has_pending_events ())
2831 {
2832 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2833 "target has pending events",
2834 proc_target->shortname ());
2835 continue;
2836 }
2837
1192f124
SM
2838 infrun_debug_printf ("enabling commit-resumed for target %s",
2839 proc_target->shortname ());
2840
2841 proc_target->commit_resumed_state = true;
2842 }
2843}
2844
2845/* See infrun.h. */
2846
2847void
2848maybe_call_commit_resumed_all_targets ()
5b6d1e4f
PA
2849{
2850 scoped_restore_current_thread restore_thread;
2851
1192f124
SM
2852 for (inferior *inf : all_non_exited_inferiors ())
2853 {
2854 process_stratum_target *proc_target = inf->process_target ();
2855
2856 if (!proc_target->commit_resumed_state)
2857 continue;
2858
2859 switch_to_inferior_no_thread (inf);
2860
2861 infrun_debug_printf ("calling commit_resumed for target %s",
2862 proc_target->shortname());
2863
2864 target_commit_resumed ();
2865 }
2866}
2867
2868/* To track nesting of scoped_disable_commit_resumed objects, ensuring
2869 that only the outermost one attempts to re-enable
2870 commit-resumed. */
2871static bool enable_commit_resumed = true;
2872
2873/* See infrun.h. */
2874
2875scoped_disable_commit_resumed::scoped_disable_commit_resumed
2876 (const char *reason)
2877 : m_reason (reason),
2878 m_prev_enable_commit_resumed (enable_commit_resumed)
2879{
2880 infrun_debug_printf ("reason=%s", m_reason);
2881
2882 enable_commit_resumed = false;
5b6d1e4f
PA
2883
2884 for (inferior *inf : all_non_exited_inferiors ())
1192f124
SM
2885 {
2886 process_stratum_target *proc_target = inf->process_target ();
5b6d1e4f 2887
1192f124
SM
2888 if (m_prev_enable_commit_resumed)
2889 {
2890 /* This is the outermost instance: force all
2891 COMMIT_RESUMED_STATE to false. */
2892 proc_target->commit_resumed_state = false;
2893 }
2894 else
2895 {
2896 /* This is not the outermost instance, we expect
2897 COMMIT_RESUMED_STATE to have been cleared by the
2898 outermost instance. */
2899 gdb_assert (!proc_target->commit_resumed_state);
2900 }
2901 }
2902}
2903
2904/* See infrun.h. */
2905
2906void
2907scoped_disable_commit_resumed::reset ()
2908{
2909 if (m_reset)
2910 return;
2911 m_reset = true;
2912
2913 infrun_debug_printf ("reason=%s", m_reason);
2914
2915 gdb_assert (!enable_commit_resumed);
2916
2917 enable_commit_resumed = m_prev_enable_commit_resumed;
2918
2919 if (m_prev_enable_commit_resumed)
5b6d1e4f 2920 {
1192f124
SM
2921 /* This is the outermost instance, re-enable
2922 COMMIT_RESUMED_STATE on the targets where it's possible. */
2923 maybe_set_commit_resumed_all_targets ();
2924 }
2925 else
2926 {
2927 /* This is not the outermost instance, we expect
2928 COMMIT_RESUMED_STATE to still be false. */
2929 for (inferior *inf : all_non_exited_inferiors ())
2930 {
2931 process_stratum_target *proc_target = inf->process_target ();
2932 gdb_assert (!proc_target->commit_resumed_state);
2933 }
2934 }
2935}
2936
2937/* See infrun.h. */
2938
2939scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
2940{
2941 reset ();
2942}
2943
2944/* See infrun.h. */
2945
2946void
2947scoped_disable_commit_resumed::reset_and_commit ()
2948{
2949 reset ();
2950 maybe_call_commit_resumed_all_targets ();
2951}
2952
2953/* See infrun.h. */
2954
2955scoped_enable_commit_resumed::scoped_enable_commit_resumed
2956 (const char *reason)
2957 : m_reason (reason),
2958 m_prev_enable_commit_resumed (enable_commit_resumed)
2959{
2960 infrun_debug_printf ("reason=%s", m_reason);
2961
2962 if (!enable_commit_resumed)
2963 {
2964 enable_commit_resumed = true;
2965
2966 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
2967 possible. */
2968 maybe_set_commit_resumed_all_targets ();
2969
2970 maybe_call_commit_resumed_all_targets ();
2971 }
2972}
2973
2974/* See infrun.h. */
2975
2976scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
2977{
2978 infrun_debug_printf ("reason=%s", m_reason);
2979
2980 gdb_assert (enable_commit_resumed);
2981
2982 enable_commit_resumed = m_prev_enable_commit_resumed;
2983
2984 if (!enable_commit_resumed)
2985 {
2986 /* Force all COMMIT_RESUMED_STATE back to false. */
2987 for (inferior *inf : all_non_exited_inferiors ())
2988 {
2989 process_stratum_target *proc_target = inf->process_target ();
2990 proc_target->commit_resumed_state = false;
2991 }
5b6d1e4f
PA
2992 }
2993}
2994
2f4fcf00
PA
2995/* Check that all the targets we're about to resume are in non-stop
2996 mode. Ideally, we'd only care whether all targets support
2997 target-async, but we're not there yet. E.g., stop_all_threads
2998 doesn't know how to handle all-stop targets. Also, the remote
2999 protocol in all-stop mode is synchronous, irrespective of
3000 target-async, which means that things like a breakpoint re-set
3001 triggered by one target would try to read memory from all targets
3002 and fail. */
3003
3004static void
3005check_multi_target_resumption (process_stratum_target *resume_target)
3006{
3007 if (!non_stop && resume_target == nullptr)
3008 {
3009 scoped_restore_current_thread restore_thread;
3010
3011 /* This is used to track whether we're resuming more than one
3012 target. */
3013 process_stratum_target *first_connection = nullptr;
3014
3015 /* The first inferior we see with a target that does not work in
3016 always-non-stop mode. */
3017 inferior *first_not_non_stop = nullptr;
3018
f058c521 3019 for (inferior *inf : all_non_exited_inferiors ())
2f4fcf00
PA
3020 {
3021 switch_to_inferior_no_thread (inf);
3022
55f6301a 3023 if (!target_has_execution ())
2f4fcf00
PA
3024 continue;
3025
3026 process_stratum_target *proc_target
3027 = current_inferior ()->process_target();
3028
3029 if (!target_is_non_stop_p ())
3030 first_not_non_stop = inf;
3031
3032 if (first_connection == nullptr)
3033 first_connection = proc_target;
3034 else if (first_connection != proc_target
3035 && first_not_non_stop != nullptr)
3036 {
3037 switch_to_inferior_no_thread (first_not_non_stop);
3038
3039 proc_target = current_inferior ()->process_target();
3040
3041 error (_("Connection %d (%s) does not support "
3042 "multi-target resumption."),
3043 proc_target->connection_number,
3044 make_target_connection_string (proc_target).c_str ());
3045 }
3046 }
3047 }
3048}
3049
c906108c
SS
3050/* Basic routine for continuing the program in various fashions.
3051
3052 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
3053 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3054 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
3055
3056 You should call clear_proceed_status before calling proceed. */
3057
3058void
64ce06e4 3059proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 3060{
3ec3145c
SM
3061 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3062
e58b0e63
PA
3063 struct regcache *regcache;
3064 struct gdbarch *gdbarch;
e58b0e63 3065 CORE_ADDR pc;
4d9d9d04
PA
3066 struct execution_control_state ecss;
3067 struct execution_control_state *ecs = &ecss;
c4464ade 3068 bool started;
c906108c 3069
e58b0e63
PA
3070 /* If we're stopped at a fork/vfork, follow the branch set by the
3071 "set follow-fork-mode" command; otherwise, we'll just proceed
3072 resuming the current thread. */
3073 if (!follow_fork ())
3074 {
3075 /* The target for some reason decided not to resume. */
3076 normal_stop ();
f148b27e 3077 if (target_can_async_p ())
b1a35af2 3078 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
3079 return;
3080 }
3081
842951eb
PA
3082 /* We'll update this if & when we switch to a new thread. */
3083 previous_inferior_ptid = inferior_ptid;
3084
e58b0e63 3085 regcache = get_current_regcache ();
ac7936df 3086 gdbarch = regcache->arch ();
8b86c959
YQ
3087 const address_space *aspace = regcache->aspace ();
3088
fc75c28b
TBA
3089 pc = regcache_read_pc_protected (regcache);
3090
08036331 3091 thread_info *cur_thr = inferior_thread ();
e58b0e63 3092
99619bea 3093 /* Fill in with reasonable starting values. */
08036331 3094 init_thread_stepping_state (cur_thr);
99619bea 3095
08036331 3096 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 3097
5b6d1e4f
PA
3098 ptid_t resume_ptid
3099 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3100 process_stratum_target *resume_target
3101 = user_visible_resume_target (resume_ptid);
3102
2f4fcf00
PA
3103 check_multi_target_resumption (resume_target);
3104
2acceee2 3105 if (addr == (CORE_ADDR) -1)
c906108c 3106 {
08036331 3107 if (pc == cur_thr->suspend.stop_pc
af48d08f 3108 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3109 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3110 /* There is a breakpoint at the address we will resume at,
3111 step one instruction before inserting breakpoints so that
3112 we do not stop right away (and report a second hit at this
b2175913
MS
3113 breakpoint).
3114
3115 Note, we don't do this in reverse, because we won't
3116 actually be executing the breakpoint insn anyway.
3117 We'll be (un-)executing the previous instruction. */
08036331 3118 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3119 else if (gdbarch_single_step_through_delay_p (gdbarch)
3120 && gdbarch_single_step_through_delay (gdbarch,
3121 get_current_frame ()))
3352ef37
AC
3122 /* We stepped onto an instruction that needs to be stepped
3123 again before re-inserting the breakpoint, do so. */
08036331 3124 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3125 }
3126 else
3127 {
515630c5 3128 regcache_write_pc (regcache, addr);
c906108c
SS
3129 }
3130
70509625 3131 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3132 cur_thr->suspend.stop_signal = siggnal;
70509625 3133
4d9d9d04
PA
3134 /* If an exception is thrown from this point on, make sure to
3135 propagate GDB's knowledge of the executing state to the
3136 frontend/user running state. */
5b6d1e4f 3137 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3138
3139 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3140 threads (e.g., we might need to set threads stepping over
3141 breakpoints first), from the user/frontend's point of view, all
3142 threads in RESUME_PTID are now running. Unless we're calling an
3143 inferior function, as in that case we pretend the inferior
3144 doesn't run at all. */
08036331 3145 if (!cur_thr->control.in_infcall)
719546c4 3146 set_running (resume_target, resume_ptid, true);
17b2616c 3147
1eb8556f
SM
3148 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3149 gdb_signal_to_symbol_string (siggnal));
527159b7 3150
4d9d9d04
PA
3151 annotate_starting ();
3152
3153 /* Make sure that output from GDB appears before output from the
3154 inferior. */
3155 gdb_flush (gdb_stdout);
3156
d930703d
PA
3157 /* Since we've marked the inferior running, give it the terminal. A
3158 QUIT/Ctrl-C from here on is forwarded to the target (which can
3159 still detect attempts to unblock a stuck connection with repeated
3160 Ctrl-C from within target_pass_ctrlc). */
3161 target_terminal::inferior ();
3162
4d9d9d04
PA
3163 /* In a multi-threaded task we may select another thread and
3164 then continue or step.
3165
3166 But if a thread that we're resuming had stopped at a breakpoint,
3167 it will immediately cause another breakpoint stop without any
3168 execution (i.e. it will report a breakpoint hit incorrectly). So
3169 we must step over it first.
3170
3171 Look for threads other than the current (TP) that reported a
3172 breakpoint hit and haven't been resumed yet since. */
3173
3174 /* If scheduler locking applies, we can avoid iterating over all
3175 threads. */
08036331 3176 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3177 {
5b6d1e4f
PA
3178 for (thread_info *tp : all_non_exited_threads (resume_target,
3179 resume_ptid))
08036331 3180 {
f3f8ece4
PA
3181 switch_to_thread_no_regs (tp);
3182
4d9d9d04
PA
3183 /* Ignore the current thread here. It's handled
3184 afterwards. */
08036331 3185 if (tp == cur_thr)
4d9d9d04 3186 continue;
c906108c 3187
4d9d9d04
PA
3188 if (!thread_still_needs_step_over (tp))
3189 continue;
3190
3191 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3192
1eb8556f
SM
3193 infrun_debug_printf ("need to step-over [%s] first",
3194 target_pid_to_str (tp->ptid).c_str ());
99619bea 3195
28d5518b 3196 global_thread_step_over_chain_enqueue (tp);
2adfaa28 3197 }
f3f8ece4
PA
3198
3199 switch_to_thread (cur_thr);
30852783
UW
3200 }
3201
4d9d9d04
PA
3202 /* Enqueue the current thread last, so that we move all other
3203 threads over their breakpoints first. */
08036331 3204 if (cur_thr->stepping_over_breakpoint)
28d5518b 3205 global_thread_step_over_chain_enqueue (cur_thr);
30852783 3206
4d9d9d04
PA
3207 /* If the thread isn't started, we'll still need to set its prev_pc,
3208 so that switch_back_to_stepped_thread knows the thread hasn't
3209 advanced. Must do this before resuming any thread, as in
3210 all-stop/remote, once we resume we can't send any other packet
3211 until the target stops again. */
fc75c28b 3212 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3213
a9bc57b9 3214 {
1192f124 3215 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
85ad3aaf 3216
a9bc57b9 3217 started = start_step_over ();
c906108c 3218
a9bc57b9
TT
3219 if (step_over_info_valid_p ())
3220 {
3221 /* Either this thread started a new in-line step over, or some
3222 other thread was already doing one. In either case, don't
3223 resume anything else until the step-over is finished. */
3224 }
3225 else if (started && !target_is_non_stop_p ())
3226 {
3227 /* A new displaced stepping sequence was started. In all-stop,
3228 we can't talk to the target anymore until it next stops. */
3229 }
3230 else if (!non_stop && target_is_non_stop_p ())
3231 {
3ec3145c
SM
3232 INFRUN_SCOPED_DEBUG_START_END
3233 ("resuming threads, all-stop-on-top-of-non-stop");
3234
a9bc57b9
TT
3235 /* In all-stop, but the target is always in non-stop mode.
3236 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3237 for (thread_info *tp : all_non_exited_threads (resume_target,
3238 resume_ptid))
3239 {
3240 switch_to_thread_no_regs (tp);
3241
f9fac3c8
SM
3242 if (!tp->inf->has_execution ())
3243 {
1eb8556f
SM
3244 infrun_debug_printf ("[%s] target has no execution",
3245 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3246 continue;
3247 }
f3f8ece4 3248
f9fac3c8
SM
3249 if (tp->resumed)
3250 {
1eb8556f
SM
3251 infrun_debug_printf ("[%s] resumed",
3252 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3253 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3254 continue;
3255 }
fbea99ea 3256
f9fac3c8
SM
3257 if (thread_is_in_step_over_chain (tp))
3258 {
1eb8556f
SM
3259 infrun_debug_printf ("[%s] needs step-over",
3260 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3261 continue;
3262 }
fbea99ea 3263
1eb8556f 3264 infrun_debug_printf ("resuming %s",
dda83cd7 3265 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3266
f9fac3c8
SM
3267 reset_ecs (ecs, tp);
3268 switch_to_thread (tp);
3269 keep_going_pass_signal (ecs);
3270 if (!ecs->wait_some_more)
3271 error (_("Command aborted."));
3272 }
a9bc57b9 3273 }
08036331 3274 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3275 {
3276 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3277 reset_ecs (ecs, cur_thr);
3278 switch_to_thread (cur_thr);
a9bc57b9
TT
3279 keep_going_pass_signal (ecs);
3280 if (!ecs->wait_some_more)
3281 error (_("Command aborted."));
3282 }
c906108c 3283
1192f124
SM
3284 disable_commit_resumed.reset_and_commit ();
3285 }
85ad3aaf 3286
731f534f 3287 finish_state.release ();
c906108c 3288
873657b9
PA
3289 /* If we've switched threads above, switch back to the previously
3290 current thread. We don't want the user to see a different
3291 selected thread. */
3292 switch_to_thread (cur_thr);
3293
0b333c5e
PA
3294 /* Tell the event loop to wait for it to stop. If the target
3295 supports asynchronous execution, it'll do this from within
3296 target_resume. */
362646f5 3297 if (!target_can_async_p ())
0b333c5e 3298 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3299}
c906108c
SS
3300\f
3301
3302/* Start remote-debugging of a machine over a serial link. */
96baa820 3303
c906108c 3304void
8621d6a9 3305start_remote (int from_tty)
c906108c 3306{
5b6d1e4f
PA
3307 inferior *inf = current_inferior ();
3308 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3309
1777feb0 3310 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3311 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3312 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3313 nothing is returned (instead of just blocking). Because of this,
3314 targets expecting an immediate response need to, internally, set
3315 things up so that the target_wait() is forced to eventually
1777feb0 3316 timeout. */
6426a772
JM
3317 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3318 differentiate to its caller what the state of the target is after
3319 the initial open has been performed. Here we're assuming that
3320 the target has stopped. It should be possible to eventually have
3321 target_open() return to the caller an indication that the target
3322 is currently running and GDB state should be set to the same as
1777feb0 3323 for an async run. */
5b6d1e4f 3324 wait_for_inferior (inf);
8621d6a9
DJ
3325
3326 /* Now that the inferior has stopped, do any bookkeeping like
3327 loading shared libraries. We want to do this before normal_stop,
3328 so that the displayed frame is up to date. */
a7aba266 3329 post_create_inferior (from_tty);
8621d6a9 3330
6426a772 3331 normal_stop ();
c906108c
SS
3332}
3333
3334/* Initialize static vars when a new inferior begins. */
3335
3336void
96baa820 3337init_wait_for_inferior (void)
c906108c
SS
3338{
3339 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3340
c906108c
SS
3341 breakpoint_init_inferior (inf_starting);
3342
70509625 3343 clear_proceed_status (0);
9f976b41 3344
ab1ddbcf 3345 nullify_last_target_wait_ptid ();
237fc4c9 3346
842951eb 3347 previous_inferior_ptid = inferior_ptid;
c906108c 3348}
237fc4c9 3349
c906108c 3350\f
488f131b 3351
ec9499be 3352static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3353
568d6575
UW
3354static void handle_step_into_function (struct gdbarch *gdbarch,
3355 struct execution_control_state *ecs);
3356static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3357 struct execution_control_state *ecs);
4f5d7f63 3358static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3359static void check_exception_resume (struct execution_control_state *,
28106bc2 3360 struct frame_info *);
611c83ae 3361
bdc36728 3362static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3363static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3364static void keep_going (struct execution_control_state *ecs);
94c57d6a 3365static void process_event_stop_test (struct execution_control_state *ecs);
c4464ade 3366static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3367
252fbfc8
PA
3368/* This function is attached as a "thread_stop_requested" observer.
3369 Cleanup local state that assumed the PTID was to be resumed, and
3370 report the stop to the frontend. */
3371
2c0b251b 3372static void
252fbfc8
PA
3373infrun_thread_stop_requested (ptid_t ptid)
3374{
5b6d1e4f
PA
3375 process_stratum_target *curr_target = current_inferior ()->process_target ();
3376
c65d6b55
PA
3377 /* PTID was requested to stop. If the thread was already stopped,
3378 but the user/frontend doesn't know about that yet (e.g., the
3379 thread had been temporarily paused for some step-over), set up
3380 for reporting the stop now. */
5b6d1e4f 3381 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3382 {
3383 if (tp->state != THREAD_RUNNING)
3384 continue;
3385 if (tp->executing)
3386 continue;
c65d6b55 3387
08036331
PA
3388 /* Remove matching threads from the step-over queue, so
3389 start_step_over doesn't try to resume them
3390 automatically. */
3391 if (thread_is_in_step_over_chain (tp))
28d5518b 3392 global_thread_step_over_chain_remove (tp);
c65d6b55 3393
08036331
PA
3394 /* If the thread is stopped, but the user/frontend doesn't
3395 know about that yet, queue a pending event, as if the
3396 thread had just stopped now. Unless the thread already had
3397 a pending event. */
3398 if (!tp->suspend.waitstatus_pending_p)
3399 {
3400 tp->suspend.waitstatus_pending_p = 1;
3401 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3402 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3403 }
c65d6b55 3404
08036331
PA
3405 /* Clear the inline-frame state, since we're re-processing the
3406 stop. */
5b6d1e4f 3407 clear_inline_frame_state (tp);
c65d6b55 3408
08036331
PA
3409 /* If this thread was paused because some other thread was
3410 doing an inline-step over, let that finish first. Once
3411 that happens, we'll restart all threads and consume pending
3412 stop events then. */
3413 if (step_over_info_valid_p ())
3414 continue;
3415
3416 /* Otherwise we can process the (new) pending event now. Set
3417 it so this pending event is considered by
3418 do_target_wait. */
719546c4 3419 tp->resumed = true;
08036331 3420 }
252fbfc8
PA
3421}
3422
a07daef3
PA
3423static void
3424infrun_thread_thread_exit (struct thread_info *tp, int silent)
3425{
5b6d1e4f
PA
3426 if (target_last_proc_target == tp->inf->process_target ()
3427 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3428 nullify_last_target_wait_ptid ();
3429}
3430
0cbcdb96
PA
3431/* Delete the step resume, single-step and longjmp/exception resume
3432 breakpoints of TP. */
4e1c45ea 3433
0cbcdb96
PA
3434static void
3435delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3436{
0cbcdb96
PA
3437 delete_step_resume_breakpoint (tp);
3438 delete_exception_resume_breakpoint (tp);
34b7e8a6 3439 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3440}
3441
0cbcdb96
PA
3442/* If the target still has execution, call FUNC for each thread that
3443 just stopped. In all-stop, that's all the non-exited threads; in
3444 non-stop, that's the current thread, only. */
3445
3446typedef void (*for_each_just_stopped_thread_callback_func)
3447 (struct thread_info *tp);
4e1c45ea
PA
3448
3449static void
0cbcdb96 3450for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3451{
55f6301a 3452 if (!target_has_execution () || inferior_ptid == null_ptid)
4e1c45ea
PA
3453 return;
3454
fbea99ea 3455 if (target_is_non_stop_p ())
4e1c45ea 3456 {
0cbcdb96
PA
3457 /* If in non-stop mode, only the current thread stopped. */
3458 func (inferior_thread ());
4e1c45ea
PA
3459 }
3460 else
0cbcdb96 3461 {
0cbcdb96 3462 /* In all-stop mode, all threads have stopped. */
08036331
PA
3463 for (thread_info *tp : all_non_exited_threads ())
3464 func (tp);
0cbcdb96
PA
3465 }
3466}
3467
3468/* Delete the step resume and longjmp/exception resume breakpoints of
3469 the threads that just stopped. */
3470
3471static void
3472delete_just_stopped_threads_infrun_breakpoints (void)
3473{
3474 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3475}
3476
3477/* Delete the single-step breakpoints of the threads that just
3478 stopped. */
7c16b83e 3479
34b7e8a6
PA
3480static void
3481delete_just_stopped_threads_single_step_breakpoints (void)
3482{
3483 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3484}
3485
221e1a37 3486/* See infrun.h. */
223698f8 3487
221e1a37 3488void
223698f8
DE
3489print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3490 const struct target_waitstatus *ws)
3491{
e71daf80
SM
3492 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3493 waiton_ptid.pid (),
3494 waiton_ptid.lwp (),
3495 waiton_ptid.tid (),
3496 target_pid_to_str (waiton_ptid).c_str ());
3497 infrun_debug_printf (" %d.%ld.%ld [%s],",
3498 result_ptid.pid (),
3499 result_ptid.lwp (),
3500 result_ptid.tid (),
3501 target_pid_to_str (result_ptid).c_str ());
3502 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
223698f8
DE
3503}
3504
372316f1
PA
3505/* Select a thread at random, out of those which are resumed and have
3506 had events. */
3507
3508static struct thread_info *
5b6d1e4f 3509random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3510{
372316f1 3511 int num_events = 0;
08036331 3512
5b6d1e4f 3513 auto has_event = [&] (thread_info *tp)
08036331 3514 {
5b6d1e4f
PA
3515 return (tp->ptid.matches (waiton_ptid)
3516 && tp->resumed
08036331
PA
3517 && tp->suspend.waitstatus_pending_p);
3518 };
372316f1
PA
3519
3520 /* First see how many events we have. Count only resumed threads
3521 that have an event pending. */
5b6d1e4f 3522 for (thread_info *tp : inf->non_exited_threads ())
08036331 3523 if (has_event (tp))
372316f1
PA
3524 num_events++;
3525
3526 if (num_events == 0)
3527 return NULL;
3528
3529 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3530 int random_selector = (int) ((num_events * (double) rand ())
3531 / (RAND_MAX + 1.0));
372316f1 3532
1eb8556f
SM
3533 if (num_events > 1)
3534 infrun_debug_printf ("Found %d events, selecting #%d",
3535 num_events, random_selector);
372316f1
PA
3536
3537 /* Select the Nth thread that has had an event. */
5b6d1e4f 3538 for (thread_info *tp : inf->non_exited_threads ())
08036331 3539 if (has_event (tp))
372316f1 3540 if (random_selector-- == 0)
08036331 3541 return tp;
372316f1 3542
08036331 3543 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3544}
3545
3546/* Wrapper for target_wait that first checks whether threads have
3547 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3548 more events. INF is the inferior we're using to call target_wait
3549 on. */
372316f1
PA
3550
3551static ptid_t
5b6d1e4f 3552do_target_wait_1 (inferior *inf, ptid_t ptid,
b60cea74 3553 target_waitstatus *status, target_wait_flags options)
372316f1
PA
3554{
3555 ptid_t event_ptid;
3556 struct thread_info *tp;
3557
24ed6739
AB
3558 /* We know that we are looking for an event in the target of inferior
3559 INF, but we don't know which thread the event might come from. As
3560 such we want to make sure that INFERIOR_PTID is reset so that none of
3561 the wait code relies on it - doing so is always a mistake. */
3562 switch_to_inferior_no_thread (inf);
3563
372316f1
PA
3564 /* First check if there is a resumed thread with a wait status
3565 pending. */
d7e15655 3566 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3567 {
5b6d1e4f 3568 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3569 }
3570 else
3571 {
1eb8556f
SM
3572 infrun_debug_printf ("Waiting for specific thread %s.",
3573 target_pid_to_str (ptid).c_str ());
372316f1
PA
3574
3575 /* We have a specific thread to check. */
5b6d1e4f 3576 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3577 gdb_assert (tp != NULL);
3578 if (!tp->suspend.waitstatus_pending_p)
3579 tp = NULL;
3580 }
3581
3582 if (tp != NULL
3583 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3584 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3585 {
00431a78 3586 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3587 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3588 CORE_ADDR pc;
3589 int discard = 0;
3590
3591 pc = regcache_read_pc (regcache);
3592
3593 if (pc != tp->suspend.stop_pc)
3594 {
1eb8556f
SM
3595 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3596 target_pid_to_str (tp->ptid).c_str (),
3597 paddress (gdbarch, tp->suspend.stop_pc),
3598 paddress (gdbarch, pc));
372316f1
PA
3599 discard = 1;
3600 }
a01bda52 3601 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3602 {
1eb8556f
SM
3603 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3604 target_pid_to_str (tp->ptid).c_str (),
3605 paddress (gdbarch, pc));
372316f1
PA
3606
3607 discard = 1;
3608 }
3609
3610 if (discard)
3611 {
1eb8556f
SM
3612 infrun_debug_printf ("pending event of %s cancelled.",
3613 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3614
3615 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3616 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3617 }
3618 }
3619
3620 if (tp != NULL)
3621 {
1eb8556f
SM
3622 infrun_debug_printf ("Using pending wait status %s for %s.",
3623 target_waitstatus_to_string
3624 (&tp->suspend.waitstatus).c_str (),
3625 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3626
3627 /* Now that we've selected our final event LWP, un-adjust its PC
3628 if it was a software breakpoint (and the target doesn't
3629 always adjust the PC itself). */
3630 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3631 && !target_supports_stopped_by_sw_breakpoint ())
3632 {
3633 struct regcache *regcache;
3634 struct gdbarch *gdbarch;
3635 int decr_pc;
3636
00431a78 3637 regcache = get_thread_regcache (tp);
ac7936df 3638 gdbarch = regcache->arch ();
372316f1
PA
3639
3640 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3641 if (decr_pc != 0)
3642 {
3643 CORE_ADDR pc;
3644
3645 pc = regcache_read_pc (regcache);
3646 regcache_write_pc (regcache, pc + decr_pc);
3647 }
3648 }
3649
3650 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3651 *status = tp->suspend.waitstatus;
3652 tp->suspend.waitstatus_pending_p = 0;
3653
3654 /* Wake up the event loop again, until all pending events are
3655 processed. */
3656 if (target_is_async_p ())
3657 mark_async_event_handler (infrun_async_inferior_event_token);
3658 return tp->ptid;
3659 }
3660
3661 /* But if we don't find one, we'll have to wait. */
3662
d3a07122
SM
3663 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3664 a blocking wait. */
3665 if (!target_can_async_p ())
3666 options &= ~TARGET_WNOHANG;
3667
372316f1
PA
3668 if (deprecated_target_wait_hook)
3669 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3670 else
3671 event_ptid = target_wait (ptid, status, options);
3672
3673 return event_ptid;
3674}
3675
5b6d1e4f
PA
3676/* Wrapper for target_wait that first checks whether threads have
3677 pending statuses to report before actually asking the target for
b3e3a4c1 3678 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3679
3680static bool
ac0d67ed 3681do_target_wait (execution_control_state *ecs, target_wait_flags options)
5b6d1e4f
PA
3682{
3683 int num_inferiors = 0;
3684 int random_selector;
3685
b3e3a4c1
SM
3686 /* For fairness, we pick the first inferior/target to poll at random
3687 out of all inferiors that may report events, and then continue
3688 polling the rest of the inferior list starting from that one in a
3689 circular fashion until the whole list is polled once. */
5b6d1e4f 3690
ac0d67ed 3691 auto inferior_matches = [] (inferior *inf)
5b6d1e4f 3692 {
ac0d67ed 3693 return inf->process_target () != nullptr;
5b6d1e4f
PA
3694 };
3695
b3e3a4c1 3696 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3697 for (inferior *inf : all_inferiors ())
3698 if (inferior_matches (inf))
3699 num_inferiors++;
3700
3701 if (num_inferiors == 0)
3702 {
3703 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3704 return false;
3705 }
3706
b3e3a4c1 3707 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3708 random_selector = (int)
3709 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3710
1eb8556f
SM
3711 if (num_inferiors > 1)
3712 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3713 num_inferiors, random_selector);
5b6d1e4f 3714
b3e3a4c1 3715 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3716
3717 inferior *selected = nullptr;
3718
3719 for (inferior *inf : all_inferiors ())
3720 if (inferior_matches (inf))
3721 if (random_selector-- == 0)
3722 {
3723 selected = inf;
3724 break;
3725 }
3726
b3e3a4c1 3727 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3728 targets, starting from the selected one. */
3729
3730 auto do_wait = [&] (inferior *inf)
3731 {
ac0d67ed 3732 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, options);
5b6d1e4f
PA
3733 ecs->target = inf->process_target ();
3734 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3735 };
3736
b3e3a4c1
SM
3737 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3738 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3739 reported the stop to the user, polling for events. */
3740 scoped_restore_current_thread restore_thread;
3741
3742 int inf_num = selected->num;
3743 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3744 if (inferior_matches (inf))
3745 if (do_wait (inf))
3746 return true;
3747
3748 for (inferior *inf = inferior_list;
3749 inf != NULL && inf->num < inf_num;
3750 inf = inf->next)
3751 if (inferior_matches (inf))
3752 if (do_wait (inf))
3753 return true;
3754
3755 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3756 return false;
3757}
3758
8ff53139
PA
3759/* An event reported by wait_one. */
3760
3761struct wait_one_event
3762{
3763 /* The target the event came out of. */
3764 process_stratum_target *target;
3765
3766 /* The PTID the event was for. */
3767 ptid_t ptid;
3768
3769 /* The waitstatus. */
3770 target_waitstatus ws;
3771};
3772
3773static bool handle_one (const wait_one_event &event);
4ffff7d3
SM
3774static void restart_threads (struct thread_info *event_thread,
3775 inferior *inf = nullptr);
8ff53139 3776
24291992
PA
3777/* Prepare and stabilize the inferior for detaching it. E.g.,
3778 detaching while a thread is displaced stepping is a recipe for
3779 crashing it, as nothing would readjust the PC out of the scratch
3780 pad. */
3781
3782void
3783prepare_for_detach (void)
3784{
3785 struct inferior *inf = current_inferior ();
f2907e49 3786 ptid_t pid_ptid = ptid_t (inf->pid);
8ff53139 3787 scoped_restore_current_thread restore_thread;
24291992 3788
9bcb1f16 3789 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3790
8ff53139
PA
3791 /* Remove all threads of INF from the global step-over chain. We
3792 want to stop any ongoing step-over, not start any new one. */
3793 thread_info *next;
3794 for (thread_info *tp = global_thread_step_over_chain_head;
3795 tp != nullptr;
3796 tp = next)
24291992 3797 {
8ff53139
PA
3798 next = global_thread_step_over_chain_next (tp);
3799 if (tp->inf == inf)
3800 global_thread_step_over_chain_remove (tp);
3801 }
24291992 3802
ac7d717c
PA
3803 /* If we were already in the middle of an inline step-over, and the
3804 thread stepping belongs to the inferior we're detaching, we need
3805 to restart the threads of other inferiors. */
3806 if (step_over_info.thread != -1)
3807 {
3808 infrun_debug_printf ("inline step-over in-process while detaching");
3809
3810 thread_info *thr = find_thread_global_id (step_over_info.thread);
3811 if (thr->inf == inf)
3812 {
3813 /* Since we removed threads of INF from the step-over chain,
3814 we know this won't start a step-over for INF. */
3815 clear_step_over_info ();
3816
3817 if (target_is_non_stop_p ())
3818 {
3819 /* Start a new step-over in another thread if there's
3820 one that needs it. */
3821 start_step_over ();
3822
3823 /* Restart all other threads (except the
3824 previously-stepping thread, since that one is still
3825 running). */
3826 if (!step_over_info_valid_p ())
3827 restart_threads (thr);
3828 }
3829 }
3830 }
3831
8ff53139
PA
3832 if (displaced_step_in_progress (inf))
3833 {
3834 infrun_debug_printf ("displaced-stepping in-process while detaching");
24291992 3835
8ff53139 3836 /* Stop threads currently displaced stepping, aborting it. */
24291992 3837
8ff53139
PA
3838 for (thread_info *thr : inf->non_exited_threads ())
3839 {
3840 if (thr->displaced_step_state.in_progress ())
3841 {
3842 if (thr->executing)
3843 {
3844 if (!thr->stop_requested)
3845 {
3846 target_stop (thr->ptid);
3847 thr->stop_requested = true;
3848 }
3849 }
3850 else
3851 thr->resumed = false;
3852 }
3853 }
24291992 3854
8ff53139
PA
3855 while (displaced_step_in_progress (inf))
3856 {
3857 wait_one_event event;
24291992 3858
8ff53139
PA
3859 event.target = inf->process_target ();
3860 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
24291992 3861
8ff53139
PA
3862 if (debug_infrun)
3863 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
24291992 3864
8ff53139
PA
3865 handle_one (event);
3866 }
24291992 3867
8ff53139
PA
3868 /* It's OK to leave some of the threads of INF stopped, since
3869 they'll be detached shortly. */
24291992 3870 }
24291992
PA
3871}
3872
cd0fc7c3 3873/* Wait for control to return from inferior to debugger.
ae123ec6 3874
cd0fc7c3
SS
3875 If inferior gets a signal, we may decide to start it up again
3876 instead of returning. That is why there is a loop in this function.
3877 When this function actually returns it means the inferior
3878 should be left stopped and GDB should read more commands. */
3879
5b6d1e4f
PA
3880static void
3881wait_for_inferior (inferior *inf)
cd0fc7c3 3882{
1eb8556f 3883 infrun_debug_printf ("wait_for_inferior ()");
527159b7 3884
4c41382a 3885 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3886
e6f5c25b
PA
3887 /* If an error happens while handling the event, propagate GDB's
3888 knowledge of the executing state to the frontend/user running
3889 state. */
5b6d1e4f
PA
3890 scoped_finish_thread_state finish_state
3891 (inf->process_target (), minus_one_ptid);
e6f5c25b 3892
c906108c
SS
3893 while (1)
3894 {
ae25568b
PA
3895 struct execution_control_state ecss;
3896 struct execution_control_state *ecs = &ecss;
29f49a6a 3897
ae25568b
PA
3898 memset (ecs, 0, sizeof (*ecs));
3899
ec9499be 3900 overlay_cache_invalid = 1;
ec9499be 3901
f15cb84a
YQ
3902 /* Flush target cache before starting to handle each event.
3903 Target was running and cache could be stale. This is just a
3904 heuristic. Running threads may modify target memory, but we
3905 don't get any event. */
3906 target_dcache_invalidate ();
3907
5b6d1e4f
PA
3908 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3909 ecs->target = inf->process_target ();
c906108c 3910
f00150c9 3911 if (debug_infrun)
5b6d1e4f 3912 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3913
cd0fc7c3
SS
3914 /* Now figure out what to do with the result of the result. */
3915 handle_inferior_event (ecs);
c906108c 3916
cd0fc7c3
SS
3917 if (!ecs->wait_some_more)
3918 break;
3919 }
4e1c45ea 3920
e6f5c25b 3921 /* No error, don't finish the state yet. */
731f534f 3922 finish_state.release ();
cd0fc7c3 3923}
c906108c 3924
d3d4baed
PA
3925/* Cleanup that reinstalls the readline callback handler, if the
3926 target is running in the background. If while handling the target
3927 event something triggered a secondary prompt, like e.g., a
3928 pagination prompt, we'll have removed the callback handler (see
3929 gdb_readline_wrapper_line). Need to do this as we go back to the
3930 event loop, ready to process further input. Note this has no
3931 effect if the handler hasn't actually been removed, because calling
3932 rl_callback_handler_install resets the line buffer, thus losing
3933 input. */
3934
3935static void
d238133d 3936reinstall_readline_callback_handler_cleanup ()
d3d4baed 3937{
3b12939d
PA
3938 struct ui *ui = current_ui;
3939
3940 if (!ui->async)
6c400b59
PA
3941 {
3942 /* We're not going back to the top level event loop yet. Don't
3943 install the readline callback, as it'd prep the terminal,
3944 readline-style (raw, noecho) (e.g., --batch). We'll install
3945 it the next time the prompt is displayed, when we're ready
3946 for input. */
3947 return;
3948 }
3949
3b12939d 3950 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3951 gdb_rl_callback_handler_reinstall ();
3952}
3953
243a9253
PA
3954/* Clean up the FSMs of threads that are now stopped. In non-stop,
3955 that's just the event thread. In all-stop, that's all threads. */
3956
3957static void
3958clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3959{
08036331
PA
3960 if (ecs->event_thread != NULL
3961 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3962 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3963
3964 if (!non_stop)
3965 {
08036331 3966 for (thread_info *thr : all_non_exited_threads ())
dda83cd7 3967 {
243a9253
PA
3968 if (thr->thread_fsm == NULL)
3969 continue;
3970 if (thr == ecs->event_thread)
3971 continue;
3972
00431a78 3973 switch_to_thread (thr);
46e3ed7f 3974 thr->thread_fsm->clean_up (thr);
243a9253
PA
3975 }
3976
3977 if (ecs->event_thread != NULL)
00431a78 3978 switch_to_thread (ecs->event_thread);
243a9253
PA
3979 }
3980}
3981
3b12939d
PA
3982/* Helper for all_uis_check_sync_execution_done that works on the
3983 current UI. */
3984
3985static void
3986check_curr_ui_sync_execution_done (void)
3987{
3988 struct ui *ui = current_ui;
3989
3990 if (ui->prompt_state == PROMPT_NEEDED
3991 && ui->async
3992 && !gdb_in_secondary_prompt_p (ui))
3993 {
223ffa71 3994 target_terminal::ours ();
76727919 3995 gdb::observers::sync_execution_done.notify ();
3eb7562a 3996 ui_register_input_event_handler (ui);
3b12939d
PA
3997 }
3998}
3999
4000/* See infrun.h. */
4001
4002void
4003all_uis_check_sync_execution_done (void)
4004{
0e454242 4005 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
4006 {
4007 check_curr_ui_sync_execution_done ();
4008 }
4009}
4010
a8836c93
PA
4011/* See infrun.h. */
4012
4013void
4014all_uis_on_sync_execution_starting (void)
4015{
0e454242 4016 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
4017 {
4018 if (current_ui->prompt_state == PROMPT_NEEDED)
4019 async_disable_stdin ();
4020 }
4021}
4022
1777feb0 4023/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 4024 event loop whenever a change of state is detected on the file
1777feb0
MS
4025 descriptor corresponding to the target. It can be called more than
4026 once to complete a single execution command. In such cases we need
4027 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
4028 that this function is called for a single execution command, then
4029 report to the user that the inferior has stopped, and do the
1777feb0 4030 necessary cleanups. */
43ff13b4
JM
4031
4032void
b1a35af2 4033fetch_inferior_event ()
43ff13b4 4034{
3ec3145c
SM
4035 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4036
0d1e5fa7 4037 struct execution_control_state ecss;
a474d7c2 4038 struct execution_control_state *ecs = &ecss;
0f641c01 4039 int cmd_done = 0;
43ff13b4 4040
0d1e5fa7
PA
4041 memset (ecs, 0, sizeof (*ecs));
4042
c61db772
PA
4043 /* Events are always processed with the main UI as current UI. This
4044 way, warnings, debug output, etc. are always consistently sent to
4045 the main console. */
4b6749b9 4046 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 4047
b78b3a29
TBA
4048 /* Temporarily disable pagination. Otherwise, the user would be
4049 given an option to press 'q' to quit, which would cause an early
4050 exit and could leave GDB in a half-baked state. */
4051 scoped_restore save_pagination
4052 = make_scoped_restore (&pagination_enabled, false);
4053
d3d4baed 4054 /* End up with readline processing input, if necessary. */
d238133d
TT
4055 {
4056 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4057
4058 /* We're handling a live event, so make sure we're doing live
4059 debugging. If we're looking at traceframes while the target is
4060 running, we're going to need to get back to that mode after
4061 handling the event. */
4062 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4063 if (non_stop)
4064 {
4065 maybe_restore_traceframe.emplace ();
4066 set_current_traceframe (-1);
4067 }
43ff13b4 4068
873657b9
PA
4069 /* The user/frontend should not notice a thread switch due to
4070 internal events. Make sure we revert to the user selected
4071 thread and frame after handling the event and running any
4072 breakpoint commands. */
4073 scoped_restore_current_thread restore_thread;
d238133d
TT
4074
4075 overlay_cache_invalid = 1;
4076 /* Flush target cache before starting to handle each event. Target
4077 was running and cache could be stale. This is just a heuristic.
4078 Running threads may modify target memory, but we don't get any
4079 event. */
4080 target_dcache_invalidate ();
4081
4082 scoped_restore save_exec_dir
4083 = make_scoped_restore (&execution_direction,
4084 target_execution_direction ());
4085
1192f124
SM
4086 /* Allow targets to pause their resumed threads while we handle
4087 the event. */
4088 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4089
ac0d67ed 4090 if (!do_target_wait (ecs, TARGET_WNOHANG))
1192f124
SM
4091 {
4092 infrun_debug_printf ("do_target_wait returned no event");
4093 disable_commit_resumed.reset_and_commit ();
4094 return;
4095 }
5b6d1e4f
PA
4096
4097 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4098
4099 /* Switch to the target that generated the event, so we can do
7f08fd51
TBA
4100 target calls. */
4101 switch_to_target_no_thread (ecs->target);
d238133d
TT
4102
4103 if (debug_infrun)
5b6d1e4f 4104 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
4105
4106 /* If an error happens while handling the event, propagate GDB's
4107 knowledge of the executing state to the frontend/user running
4108 state. */
4109 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4110 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4111
979a0d13 4112 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4113 still for the thread which has thrown the exception. */
4114 auto defer_bpstat_clear
4115 = make_scope_exit (bpstat_clear_actions);
4116 auto defer_delete_threads
4117 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4118
4119 /* Now figure out what to do with the result of the result. */
4120 handle_inferior_event (ecs);
4121
4122 if (!ecs->wait_some_more)
4123 {
5b6d1e4f 4124 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
758cb810 4125 bool should_stop = true;
d238133d 4126 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4127
d238133d 4128 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4129
d238133d
TT
4130 if (thr != NULL)
4131 {
4132 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4133
d238133d 4134 if (thread_fsm != NULL)
46e3ed7f 4135 should_stop = thread_fsm->should_stop (thr);
d238133d 4136 }
243a9253 4137
d238133d
TT
4138 if (!should_stop)
4139 {
4140 keep_going (ecs);
4141 }
4142 else
4143 {
46e3ed7f 4144 bool should_notify_stop = true;
d238133d 4145 int proceeded = 0;
1840d81a 4146
d238133d 4147 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4148
d238133d 4149 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4150 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4151
d238133d
TT
4152 if (should_notify_stop)
4153 {
4154 /* We may not find an inferior if this was a process exit. */
4155 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4156 proceeded = normal_stop ();
4157 }
243a9253 4158
d238133d
TT
4159 if (!proceeded)
4160 {
b1a35af2 4161 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
4162 cmd_done = 1;
4163 }
873657b9
PA
4164
4165 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4166 previously selected thread is gone. We have two
4167 choices - switch to no thread selected, or restore the
4168 previously selected thread (now exited). We chose the
4169 later, just because that's what GDB used to do. After
4170 this, "info threads" says "The current thread <Thread
4171 ID 2> has terminated." instead of "No thread
4172 selected.". */
4173 if (!non_stop
4174 && cmd_done
4175 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4176 restore_thread.dont_restore ();
d238133d
TT
4177 }
4178 }
4f8d22e3 4179
d238133d
TT
4180 defer_delete_threads.release ();
4181 defer_bpstat_clear.release ();
29f49a6a 4182
d238133d
TT
4183 /* No error, don't finish the thread states yet. */
4184 finish_state.release ();
731f534f 4185
1192f124
SM
4186 disable_commit_resumed.reset_and_commit ();
4187
d238133d
TT
4188 /* This scope is used to ensure that readline callbacks are
4189 reinstalled here. */
4190 }
4f8d22e3 4191
3b12939d
PA
4192 /* If a UI was in sync execution mode, and now isn't, restore its
4193 prompt (a synchronous execution command has finished, and we're
4194 ready for input). */
4195 all_uis_check_sync_execution_done ();
0f641c01
PA
4196
4197 if (cmd_done
0f641c01 4198 && exec_done_display_p
00431a78
PA
4199 && (inferior_ptid == null_ptid
4200 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4201 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4202}
4203
29734269
SM
4204/* See infrun.h. */
4205
edb3359d 4206void
29734269
SM
4207set_step_info (thread_info *tp, struct frame_info *frame,
4208 struct symtab_and_line sal)
edb3359d 4209{
29734269
SM
4210 /* This can be removed once this function no longer implicitly relies on the
4211 inferior_ptid value. */
4212 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4213
16c381f0
JK
4214 tp->control.step_frame_id = get_frame_id (frame);
4215 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4216
4217 tp->current_symtab = sal.symtab;
4218 tp->current_line = sal.line;
4219}
4220
0d1e5fa7
PA
4221/* Clear context switchable stepping state. */
4222
4223void
4e1c45ea 4224init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4225{
7f5ef605 4226 tss->stepped_breakpoint = 0;
0d1e5fa7 4227 tss->stepping_over_breakpoint = 0;
963f9c80 4228 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4229 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4230}
4231
ab1ddbcf 4232/* See infrun.h. */
c32c64b7 4233
6efcd9a8 4234void
5b6d1e4f
PA
4235set_last_target_status (process_stratum_target *target, ptid_t ptid,
4236 target_waitstatus status)
c32c64b7 4237{
5b6d1e4f 4238 target_last_proc_target = target;
c32c64b7
DE
4239 target_last_wait_ptid = ptid;
4240 target_last_waitstatus = status;
4241}
4242
ab1ddbcf 4243/* See infrun.h. */
e02bc4cc
DS
4244
4245void
5b6d1e4f
PA
4246get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4247 target_waitstatus *status)
e02bc4cc 4248{
5b6d1e4f
PA
4249 if (target != nullptr)
4250 *target = target_last_proc_target;
ab1ddbcf
PA
4251 if (ptid != nullptr)
4252 *ptid = target_last_wait_ptid;
4253 if (status != nullptr)
4254 *status = target_last_waitstatus;
e02bc4cc
DS
4255}
4256
ab1ddbcf
PA
4257/* See infrun.h. */
4258
ac264b3b
MS
4259void
4260nullify_last_target_wait_ptid (void)
4261{
5b6d1e4f 4262 target_last_proc_target = nullptr;
ac264b3b 4263 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4264 target_last_waitstatus = {};
ac264b3b
MS
4265}
4266
dcf4fbde 4267/* Switch thread contexts. */
dd80620e
MS
4268
4269static void
00431a78 4270context_switch (execution_control_state *ecs)
dd80620e 4271{
1eb8556f 4272 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4273 && (inferior_ptid == null_ptid
4274 || ecs->event_thread != inferior_thread ()))
fd48f117 4275 {
1eb8556f
SM
4276 infrun_debug_printf ("Switching context from %s to %s",
4277 target_pid_to_str (inferior_ptid).c_str (),
4278 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4279 }
4280
00431a78 4281 switch_to_thread (ecs->event_thread);
dd80620e
MS
4282}
4283
d8dd4d5f
PA
4284/* If the target can't tell whether we've hit breakpoints
4285 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4286 check whether that could have been caused by a breakpoint. If so,
4287 adjust the PC, per gdbarch_decr_pc_after_break. */
4288
4fa8626c 4289static void
d8dd4d5f
PA
4290adjust_pc_after_break (struct thread_info *thread,
4291 struct target_waitstatus *ws)
4fa8626c 4292{
24a73cce
UW
4293 struct regcache *regcache;
4294 struct gdbarch *gdbarch;
118e6252 4295 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4296
4fa8626c
DJ
4297 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4298 we aren't, just return.
9709f61c
DJ
4299
4300 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4301 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4302 implemented by software breakpoints should be handled through the normal
4303 breakpoint layer.
8fb3e588 4304
4fa8626c
DJ
4305 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4306 different signals (SIGILL or SIGEMT for instance), but it is less
4307 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4308 gdbarch_decr_pc_after_break. I don't know any specific target that
4309 generates these signals at breakpoints (the code has been in GDB since at
4310 least 1992) so I can not guess how to handle them here.
8fb3e588 4311
e6cf7916
UW
4312 In earlier versions of GDB, a target with
4313 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4314 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4315 target with both of these set in GDB history, and it seems unlikely to be
4316 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4317
d8dd4d5f 4318 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4319 return;
4320
d8dd4d5f 4321 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4322 return;
4323
4058b839
PA
4324 /* In reverse execution, when a breakpoint is hit, the instruction
4325 under it has already been de-executed. The reported PC always
4326 points at the breakpoint address, so adjusting it further would
4327 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4328 architecture:
4329
4330 B1 0x08000000 : INSN1
4331 B2 0x08000001 : INSN2
4332 0x08000002 : INSN3
4333 PC -> 0x08000003 : INSN4
4334
4335 Say you're stopped at 0x08000003 as above. Reverse continuing
4336 from that point should hit B2 as below. Reading the PC when the
4337 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4338 been de-executed already.
4339
4340 B1 0x08000000 : INSN1
4341 B2 PC -> 0x08000001 : INSN2
4342 0x08000002 : INSN3
4343 0x08000003 : INSN4
4344
4345 We can't apply the same logic as for forward execution, because
4346 we would wrongly adjust the PC to 0x08000000, since there's a
4347 breakpoint at PC - 1. We'd then report a hit on B1, although
4348 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4349 behaviour. */
4350 if (execution_direction == EXEC_REVERSE)
4351 return;
4352
1cf4d951
PA
4353 /* If the target can tell whether the thread hit a SW breakpoint,
4354 trust it. Targets that can tell also adjust the PC
4355 themselves. */
4356 if (target_supports_stopped_by_sw_breakpoint ())
4357 return;
4358
4359 /* Note that relying on whether a breakpoint is planted in memory to
4360 determine this can fail. E.g,. the breakpoint could have been
4361 removed since. Or the thread could have been told to step an
4362 instruction the size of a breakpoint instruction, and only
4363 _after_ was a breakpoint inserted at its address. */
4364
24a73cce
UW
4365 /* If this target does not decrement the PC after breakpoints, then
4366 we have nothing to do. */
00431a78 4367 regcache = get_thread_regcache (thread);
ac7936df 4368 gdbarch = regcache->arch ();
118e6252 4369
527a273a 4370 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4371 if (decr_pc == 0)
24a73cce
UW
4372 return;
4373
8b86c959 4374 const address_space *aspace = regcache->aspace ();
6c95b8df 4375
8aad930b
AC
4376 /* Find the location where (if we've hit a breakpoint) the
4377 breakpoint would be. */
118e6252 4378 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4379
1cf4d951
PA
4380 /* If the target can't tell whether a software breakpoint triggered,
4381 fallback to figuring it out based on breakpoints we think were
4382 inserted in the target, and on whether the thread was stepped or
4383 continued. */
4384
1c5cfe86
PA
4385 /* Check whether there actually is a software breakpoint inserted at
4386 that location.
4387
4388 If in non-stop mode, a race condition is possible where we've
4389 removed a breakpoint, but stop events for that breakpoint were
4390 already queued and arrive later. To suppress those spurious
4391 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4392 and retire them after a number of stop events are reported. Note
4393 this is an heuristic and can thus get confused. The real fix is
4394 to get the "stopped by SW BP and needs adjustment" info out of
4395 the target/kernel (and thus never reach here; see above). */
6c95b8df 4396 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4397 || (target_is_non_stop_p ()
4398 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4399 {
07036511 4400 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4401
8213266a 4402 if (record_full_is_used ())
07036511
TT
4403 restore_operation_disable.emplace
4404 (record_full_gdb_operation_disable_set ());
96429cc8 4405
1c0fdd0e
UW
4406 /* When using hardware single-step, a SIGTRAP is reported for both
4407 a completed single-step and a software breakpoint. Need to
4408 differentiate between the two, as the latter needs adjusting
4409 but the former does not.
4410
4411 The SIGTRAP can be due to a completed hardware single-step only if
4412 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4413 - this thread is currently being stepped
4414
4415 If any of these events did not occur, we must have stopped due
4416 to hitting a software breakpoint, and have to back up to the
4417 breakpoint address.
4418
4419 As a special case, we could have hardware single-stepped a
4420 software breakpoint. In this case (prev_pc == breakpoint_pc),
4421 we also need to back up to the breakpoint address. */
4422
d8dd4d5f
PA
4423 if (thread_has_single_step_breakpoints_set (thread)
4424 || !currently_stepping (thread)
4425 || (thread->stepped_breakpoint
4426 && thread->prev_pc == breakpoint_pc))
515630c5 4427 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4428 }
4fa8626c
DJ
4429}
4430
c4464ade 4431static bool
edb3359d
DJ
4432stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4433{
4434 for (frame = get_prev_frame (frame);
4435 frame != NULL;
4436 frame = get_prev_frame (frame))
4437 {
4438 if (frame_id_eq (get_frame_id (frame), step_frame_id))
c4464ade
SM
4439 return true;
4440
edb3359d
DJ
4441 if (get_frame_type (frame) != INLINE_FRAME)
4442 break;
4443 }
4444
c4464ade 4445 return false;
edb3359d
DJ
4446}
4447
4a4c04f1
BE
4448/* Look for an inline frame that is marked for skip.
4449 If PREV_FRAME is TRUE start at the previous frame,
4450 otherwise start at the current frame. Stop at the
4451 first non-inline frame, or at the frame where the
4452 step started. */
4453
4454static bool
4455inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4456{
4457 struct frame_info *frame = get_current_frame ();
4458
4459 if (prev_frame)
4460 frame = get_prev_frame (frame);
4461
4462 for (; frame != NULL; frame = get_prev_frame (frame))
4463 {
4464 const char *fn = NULL;
4465 symtab_and_line sal;
4466 struct symbol *sym;
4467
4468 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4469 break;
4470 if (get_frame_type (frame) != INLINE_FRAME)
4471 break;
4472
4473 sal = find_frame_sal (frame);
4474 sym = get_frame_function (frame);
4475
4476 if (sym != NULL)
4477 fn = sym->print_name ();
4478
4479 if (sal.line != 0
4480 && function_name_is_marked_for_skip (fn, sal))
4481 return true;
4482 }
4483
4484 return false;
4485}
4486
c65d6b55
PA
4487/* If the event thread has the stop requested flag set, pretend it
4488 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4489 target_stop). */
4490
4491static bool
4492handle_stop_requested (struct execution_control_state *ecs)
4493{
4494 if (ecs->event_thread->stop_requested)
4495 {
4496 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4497 ecs->ws.value.sig = GDB_SIGNAL_0;
4498 handle_signal_stop (ecs);
4499 return true;
4500 }
4501 return false;
4502}
4503
a96d9b2e 4504/* Auxiliary function that handles syscall entry/return events.
c4464ade
SM
4505 It returns true if the inferior should keep going (and GDB
4506 should ignore the event), or false if the event deserves to be
a96d9b2e 4507 processed. */
ca2163eb 4508
c4464ade 4509static bool
ca2163eb 4510handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4511{
ca2163eb 4512 struct regcache *regcache;
ca2163eb
PA
4513 int syscall_number;
4514
00431a78 4515 context_switch (ecs);
ca2163eb 4516
00431a78 4517 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4518 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4519 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4520
a96d9b2e
SDJ
4521 if (catch_syscall_enabled () > 0
4522 && catching_syscall_number (syscall_number) > 0)
4523 {
1eb8556f 4524 infrun_debug_printf ("syscall number=%d", syscall_number);
a96d9b2e 4525
16c381f0 4526 ecs->event_thread->control.stop_bpstat
a01bda52 4527 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4528 ecs->event_thread->suspend.stop_pc,
4529 ecs->event_thread, &ecs->ws);
ab04a2af 4530
c65d6b55 4531 if (handle_stop_requested (ecs))
c4464ade 4532 return false;
c65d6b55 4533
ce12b012 4534 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4535 {
4536 /* Catchpoint hit. */
c4464ade 4537 return false;
ca2163eb 4538 }
a96d9b2e 4539 }
ca2163eb 4540
c65d6b55 4541 if (handle_stop_requested (ecs))
c4464ade 4542 return false;
c65d6b55 4543
ca2163eb 4544 /* If no catchpoint triggered for this, then keep going. */
ca2163eb 4545 keep_going (ecs);
c4464ade
SM
4546
4547 return true;
a96d9b2e
SDJ
4548}
4549
7e324e48
GB
4550/* Lazily fill in the execution_control_state's stop_func_* fields. */
4551
4552static void
4553fill_in_stop_func (struct gdbarch *gdbarch,
4554 struct execution_control_state *ecs)
4555{
4556 if (!ecs->stop_func_filled_in)
4557 {
98a617f8 4558 const block *block;
fe830662 4559 const general_symbol_info *gsi;
98a617f8 4560
7e324e48
GB
4561 /* Don't care about return value; stop_func_start and stop_func_name
4562 will both be 0 if it doesn't work. */
fe830662
TT
4563 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4564 &gsi,
4565 &ecs->stop_func_start,
4566 &ecs->stop_func_end,
4567 &block);
4568 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
98a617f8
KB
4569
4570 /* The call to find_pc_partial_function, above, will set
4571 stop_func_start and stop_func_end to the start and end
4572 of the range containing the stop pc. If this range
4573 contains the entry pc for the block (which is always the
4574 case for contiguous blocks), advance stop_func_start past
4575 the function's start offset and entrypoint. Note that
4576 stop_func_start is NOT advanced when in a range of a
4577 non-contiguous block that does not contain the entry pc. */
4578 if (block != nullptr
4579 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4580 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4581 {
4582 ecs->stop_func_start
4583 += gdbarch_deprecated_function_start_offset (gdbarch);
4584
4585 if (gdbarch_skip_entrypoint_p (gdbarch))
4586 ecs->stop_func_start
4587 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4588 }
591a12a1 4589
7e324e48
GB
4590 ecs->stop_func_filled_in = 1;
4591 }
4592}
4593
4f5d7f63 4594
00431a78 4595/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4596
4597static enum stop_kind
00431a78 4598get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4599{
5b6d1e4f 4600 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4601
4602 gdb_assert (inf != NULL);
4603 return inf->control.stop_soon;
4604}
4605
5b6d1e4f
PA
4606/* Poll for one event out of the current target. Store the resulting
4607 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4608
4609static ptid_t
5b6d1e4f 4610poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4611{
4612 ptid_t event_ptid;
372316f1
PA
4613
4614 overlay_cache_invalid = 1;
4615
4616 /* Flush target cache before starting to handle each event.
4617 Target was running and cache could be stale. This is just a
4618 heuristic. Running threads may modify target memory, but we
4619 don't get any event. */
4620 target_dcache_invalidate ();
4621
4622 if (deprecated_target_wait_hook)
5b6d1e4f 4623 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4624 else
5b6d1e4f 4625 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4626
4627 if (debug_infrun)
5b6d1e4f 4628 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4629
4630 return event_ptid;
4631}
4632
5b6d1e4f
PA
4633/* Wait for one event out of any target. */
4634
4635static wait_one_event
4636wait_one ()
4637{
4638 while (1)
4639 {
4640 for (inferior *inf : all_inferiors ())
4641 {
4642 process_stratum_target *target = inf->process_target ();
4643 if (target == NULL
4644 || !target->is_async_p ()
4645 || !target->threads_executing)
4646 continue;
4647
4648 switch_to_inferior_no_thread (inf);
4649
4650 wait_one_event event;
4651 event.target = target;
4652 event.ptid = poll_one_curr_target (&event.ws);
4653
4654 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4655 {
4656 /* If nothing is resumed, remove the target from the
4657 event loop. */
4658 target_async (0);
4659 }
4660 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4661 return event;
4662 }
4663
4664 /* Block waiting for some event. */
4665
4666 fd_set readfds;
4667 int nfds = 0;
4668
4669 FD_ZERO (&readfds);
4670
4671 for (inferior *inf : all_inferiors ())
4672 {
4673 process_stratum_target *target = inf->process_target ();
4674 if (target == NULL
4675 || !target->is_async_p ()
4676 || !target->threads_executing)
4677 continue;
4678
4679 int fd = target->async_wait_fd ();
4680 FD_SET (fd, &readfds);
4681 if (nfds <= fd)
4682 nfds = fd + 1;
4683 }
4684
4685 if (nfds == 0)
4686 {
4687 /* No waitable targets left. All must be stopped. */
4688 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4689 }
4690
4691 QUIT;
4692
4693 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4694 if (numfds < 0)
4695 {
4696 if (errno == EINTR)
4697 continue;
4698 else
4699 perror_with_name ("interruptible_select");
4700 }
4701 }
4702}
4703
372316f1
PA
4704/* Save the thread's event and stop reason to process it later. */
4705
4706static void
5b6d1e4f 4707save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4708{
1eb8556f
SM
4709 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4710 target_waitstatus_to_string (ws).c_str (),
4711 tp->ptid.pid (),
4712 tp->ptid.lwp (),
4713 tp->ptid.tid ());
372316f1
PA
4714
4715 /* Record for later. */
4716 tp->suspend.waitstatus = *ws;
4717 tp->suspend.waitstatus_pending_p = 1;
4718
372316f1
PA
4719 if (ws->kind == TARGET_WAITKIND_STOPPED
4720 && ws->value.sig == GDB_SIGNAL_TRAP)
4721 {
89ba430c
SM
4722 struct regcache *regcache = get_thread_regcache (tp);
4723 const address_space *aspace = regcache->aspace ();
372316f1
PA
4724 CORE_ADDR pc = regcache_read_pc (regcache);
4725
4726 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4727
18493a00
PA
4728 scoped_restore_current_thread restore_thread;
4729 switch_to_thread (tp);
4730
4731 if (target_stopped_by_watchpoint ())
372316f1
PA
4732 {
4733 tp->suspend.stop_reason
4734 = TARGET_STOPPED_BY_WATCHPOINT;
4735 }
4736 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4737 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4738 {
4739 tp->suspend.stop_reason
4740 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4741 }
4742 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4743 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4744 {
4745 tp->suspend.stop_reason
4746 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4747 }
4748 else if (!target_supports_stopped_by_hw_breakpoint ()
4749 && hardware_breakpoint_inserted_here_p (aspace,
4750 pc))
4751 {
4752 tp->suspend.stop_reason
4753 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4754 }
4755 else if (!target_supports_stopped_by_sw_breakpoint ()
4756 && software_breakpoint_inserted_here_p (aspace,
4757 pc))
4758 {
4759 tp->suspend.stop_reason
4760 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4761 }
4762 else if (!thread_has_single_step_breakpoints_set (tp)
4763 && currently_stepping (tp))
4764 {
4765 tp->suspend.stop_reason
4766 = TARGET_STOPPED_BY_SINGLE_STEP;
4767 }
4768 }
4769}
4770
293b3ebc
TBA
4771/* Mark the non-executing threads accordingly. In all-stop, all
4772 threads of all processes are stopped when we get any event
4773 reported. In non-stop mode, only the event thread stops. */
4774
4775static void
4776mark_non_executing_threads (process_stratum_target *target,
4777 ptid_t event_ptid,
4778 struct target_waitstatus ws)
4779{
4780 ptid_t mark_ptid;
4781
4782 if (!target_is_non_stop_p ())
4783 mark_ptid = minus_one_ptid;
4784 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4785 || ws.kind == TARGET_WAITKIND_EXITED)
4786 {
4787 /* If we're handling a process exit in non-stop mode, even
4788 though threads haven't been deleted yet, one would think
4789 that there is nothing to do, as threads of the dead process
4790 will be soon deleted, and threads of any other process were
4791 left running. However, on some targets, threads survive a
4792 process exit event. E.g., for the "checkpoint" command,
4793 when the current checkpoint/fork exits, linux-fork.c
4794 automatically switches to another fork from within
4795 target_mourn_inferior, by associating the same
4796 inferior/thread to another fork. We haven't mourned yet at
4797 this point, but we must mark any threads left in the
4798 process as not-executing so that finish_thread_state marks
4799 them stopped (in the user's perspective) if/when we present
4800 the stop to the user. */
4801 mark_ptid = ptid_t (event_ptid.pid ());
4802 }
4803 else
4804 mark_ptid = event_ptid;
4805
4806 set_executing (target, mark_ptid, false);
4807
4808 /* Likewise the resumed flag. */
4809 set_resumed (target, mark_ptid, false);
4810}
4811
d758e62c
PA
4812/* Handle one event after stopping threads. If the eventing thread
4813 reports back any interesting event, we leave it pending. If the
4814 eventing thread was in the middle of a displaced step, we
8ff53139
PA
4815 cancel/finish it, and unless the thread's inferior is being
4816 detached, put the thread back in the step-over chain. Returns true
4817 if there are no resumed threads left in the target (thus there's no
4818 point in waiting further), false otherwise. */
d758e62c
PA
4819
4820static bool
4821handle_one (const wait_one_event &event)
4822{
4823 infrun_debug_printf
4824 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4825 target_pid_to_str (event.ptid).c_str ());
4826
4827 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4828 {
4829 /* All resumed threads exited. */
4830 return true;
4831 }
4832 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4833 || event.ws.kind == TARGET_WAITKIND_EXITED
4834 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4835 {
4836 /* One thread/process exited/signalled. */
4837
4838 thread_info *t = nullptr;
4839
4840 /* The target may have reported just a pid. If so, try
4841 the first non-exited thread. */
4842 if (event.ptid.is_pid ())
4843 {
4844 int pid = event.ptid.pid ();
4845 inferior *inf = find_inferior_pid (event.target, pid);
4846 for (thread_info *tp : inf->non_exited_threads ())
4847 {
4848 t = tp;
4849 break;
4850 }
4851
4852 /* If there is no available thread, the event would
4853 have to be appended to a per-inferior event list,
4854 which does not exist (and if it did, we'd have
4855 to adjust run control command to be able to
4856 resume such an inferior). We assert here instead
4857 of going into an infinite loop. */
4858 gdb_assert (t != nullptr);
4859
4860 infrun_debug_printf
4861 ("using %s", target_pid_to_str (t->ptid).c_str ());
4862 }
4863 else
4864 {
4865 t = find_thread_ptid (event.target, event.ptid);
4866 /* Check if this is the first time we see this thread.
4867 Don't bother adding if it individually exited. */
4868 if (t == nullptr
4869 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4870 t = add_thread (event.target, event.ptid);
4871 }
4872
4873 if (t != nullptr)
4874 {
4875 /* Set the threads as non-executing to avoid
4876 another stop attempt on them. */
4877 switch_to_thread_no_regs (t);
4878 mark_non_executing_threads (event.target, event.ptid,
4879 event.ws);
4880 save_waitstatus (t, &event.ws);
4881 t->stop_requested = false;
4882 }
4883 }
4884 else
4885 {
4886 thread_info *t = find_thread_ptid (event.target, event.ptid);
4887 if (t == NULL)
4888 t = add_thread (event.target, event.ptid);
4889
4890 t->stop_requested = 0;
4891 t->executing = 0;
4892 t->resumed = false;
4893 t->control.may_range_step = 0;
4894
4895 /* This may be the first time we see the inferior report
4896 a stop. */
4897 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4898 if (inf->needs_setup)
4899 {
4900 switch_to_thread_no_regs (t);
4901 setup_inferior (0);
4902 }
4903
4904 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4905 && event.ws.value.sig == GDB_SIGNAL_0)
4906 {
4907 /* We caught the event that we intended to catch, so
4908 there's no event pending. */
4909 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4910 t->suspend.waitstatus_pending_p = 0;
4911
4912 if (displaced_step_finish (t, GDB_SIGNAL_0)
4913 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4914 {
4915 /* Add it back to the step-over queue. */
4916 infrun_debug_printf
4917 ("displaced-step of %s canceled",
4918 target_pid_to_str (t->ptid).c_str ());
4919
4920 t->control.trap_expected = 0;
8ff53139
PA
4921 if (!t->inf->detaching)
4922 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
4923 }
4924 }
4925 else
4926 {
4927 enum gdb_signal sig;
4928 struct regcache *regcache;
4929
4930 infrun_debug_printf
4931 ("target_wait %s, saving status for %d.%ld.%ld",
4932 target_waitstatus_to_string (&event.ws).c_str (),
4933 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4934
4935 /* Record for later. */
4936 save_waitstatus (t, &event.ws);
4937
4938 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4939 ? event.ws.value.sig : GDB_SIGNAL_0);
4940
4941 if (displaced_step_finish (t, sig)
4942 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4943 {
4944 /* Add it back to the step-over queue. */
4945 t->control.trap_expected = 0;
8ff53139
PA
4946 if (!t->inf->detaching)
4947 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
4948 }
4949
4950 regcache = get_thread_regcache (t);
4951 t->suspend.stop_pc = regcache_read_pc (regcache);
4952
4953 infrun_debug_printf ("saved stop_pc=%s for %s "
4954 "(currently_stepping=%d)",
4955 paddress (target_gdbarch (),
4956 t->suspend.stop_pc),
4957 target_pid_to_str (t->ptid).c_str (),
4958 currently_stepping (t));
4959 }
4960 }
4961
4962 return false;
4963}
4964
6efcd9a8 4965/* See infrun.h. */
372316f1 4966
6efcd9a8 4967void
4ffff7d3 4968stop_all_threads (const char *reason, inferior *inf)
372316f1
PA
4969{
4970 /* We may need multiple passes to discover all threads. */
4971 int pass;
4972 int iterations = 0;
372316f1 4973
53cccef1 4974 gdb_assert (exists_non_stop_target ());
372316f1 4975
4ffff7d3
SM
4976 INFRUN_SCOPED_DEBUG_START_END ("reason=%s, inf=%d", reason,
4977 inf != nullptr ? inf->num : -1);
372316f1 4978
00431a78 4979 scoped_restore_current_thread restore_thread;
372316f1 4980
4ffff7d3 4981 /* Enable thread events on relevant targets. */
6ad82919
TBA
4982 for (auto *target : all_non_exited_process_targets ())
4983 {
4ffff7d3
SM
4984 if (inf != nullptr && inf->process_target () != target)
4985 continue;
4986
6ad82919
TBA
4987 switch_to_target_no_thread (target);
4988 target_thread_events (true);
4989 }
4990
4991 SCOPE_EXIT
4992 {
4ffff7d3 4993 /* Disable thread events on relevant targets. */
6ad82919
TBA
4994 for (auto *target : all_non_exited_process_targets ())
4995 {
4ffff7d3
SM
4996 if (inf != nullptr && inf->process_target () != target)
4997 continue;
4998
6ad82919
TBA
4999 switch_to_target_no_thread (target);
5000 target_thread_events (false);
5001 }
5002
17417fb0 5003 /* Use debug_prefixed_printf directly to get a meaningful function
dda83cd7 5004 name. */
6ad82919 5005 if (debug_infrun)
17417fb0 5006 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
6ad82919 5007 };
65706a29 5008
372316f1
PA
5009 /* Request threads to stop, and then wait for the stops. Because
5010 threads we already know about can spawn more threads while we're
5011 trying to stop them, and we only learn about new threads when we
5012 update the thread list, do this in a loop, and keep iterating
5013 until two passes find no threads that need to be stopped. */
5014 for (pass = 0; pass < 2; pass++, iterations++)
5015 {
1eb8556f 5016 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
372316f1
PA
5017 while (1)
5018 {
29d6859f 5019 int waits_needed = 0;
372316f1 5020
a05575d3
TBA
5021 for (auto *target : all_non_exited_process_targets ())
5022 {
4ffff7d3
SM
5023 if (inf != nullptr && inf->process_target () != target)
5024 continue;
5025
a05575d3
TBA
5026 switch_to_target_no_thread (target);
5027 update_thread_list ();
5028 }
372316f1
PA
5029
5030 /* Go through all threads looking for threads that we need
5031 to tell the target to stop. */
08036331 5032 for (thread_info *t : all_non_exited_threads ())
372316f1 5033 {
4ffff7d3
SM
5034 if (inf != nullptr && t->inf != inf)
5035 continue;
5036
53cccef1
TBA
5037 /* For a single-target setting with an all-stop target,
5038 we would not even arrive here. For a multi-target
5039 setting, until GDB is able to handle a mixture of
5040 all-stop and non-stop targets, simply skip all-stop
5041 targets' threads. This should be fine due to the
5042 protection of 'check_multi_target_resumption'. */
5043
5044 switch_to_thread_no_regs (t);
5045 if (!target_is_non_stop_p ())
5046 continue;
5047
372316f1
PA
5048 if (t->executing)
5049 {
5050 /* If already stopping, don't request a stop again.
5051 We just haven't seen the notification yet. */
5052 if (!t->stop_requested)
5053 {
1eb8556f
SM
5054 infrun_debug_printf (" %s executing, need stop",
5055 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5056 target_stop (t->ptid);
5057 t->stop_requested = 1;
5058 }
5059 else
5060 {
1eb8556f
SM
5061 infrun_debug_printf (" %s executing, already stopping",
5062 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5063 }
5064
5065 if (t->stop_requested)
29d6859f 5066 waits_needed++;
372316f1
PA
5067 }
5068 else
5069 {
1eb8556f
SM
5070 infrun_debug_printf (" %s not executing",
5071 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5072
5073 /* The thread may be not executing, but still be
5074 resumed with a pending status to process. */
719546c4 5075 t->resumed = false;
372316f1
PA
5076 }
5077 }
5078
29d6859f 5079 if (waits_needed == 0)
372316f1
PA
5080 break;
5081
5082 /* If we find new threads on the second iteration, restart
5083 over. We want to see two iterations in a row with all
5084 threads stopped. */
5085 if (pass > 0)
5086 pass = -1;
5087
29d6859f 5088 for (int i = 0; i < waits_needed; i++)
c29705b7 5089 {
29d6859f 5090 wait_one_event event = wait_one ();
d758e62c
PA
5091 if (handle_one (event))
5092 break;
372316f1
PA
5093 }
5094 }
5095 }
372316f1
PA
5096}
5097
f4836ba9
PA
5098/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5099
c4464ade 5100static bool
f4836ba9
PA
5101handle_no_resumed (struct execution_control_state *ecs)
5102{
3b12939d 5103 if (target_can_async_p ())
f4836ba9 5104 {
c4464ade 5105 bool any_sync = false;
f4836ba9 5106
2dab0c7b 5107 for (ui *ui : all_uis ())
3b12939d
PA
5108 {
5109 if (ui->prompt_state == PROMPT_BLOCKED)
5110 {
c4464ade 5111 any_sync = true;
3b12939d
PA
5112 break;
5113 }
5114 }
5115 if (!any_sync)
5116 {
5117 /* There were no unwaited-for children left in the target, but,
5118 we're not synchronously waiting for events either. Just
5119 ignore. */
5120
1eb8556f 5121 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d 5122 prepare_to_wait (ecs);
c4464ade 5123 return true;
3b12939d 5124 }
f4836ba9
PA
5125 }
5126
5127 /* Otherwise, if we were running a synchronous execution command, we
5128 may need to cancel it and give the user back the terminal.
5129
5130 In non-stop mode, the target can't tell whether we've already
5131 consumed previous stop events, so it can end up sending us a
5132 no-resumed event like so:
5133
5134 #0 - thread 1 is left stopped
5135
5136 #1 - thread 2 is resumed and hits breakpoint
dda83cd7 5137 -> TARGET_WAITKIND_STOPPED
f4836ba9
PA
5138
5139 #2 - thread 3 is resumed and exits
dda83cd7 5140 this is the last resumed thread, so
f4836ba9
PA
5141 -> TARGET_WAITKIND_NO_RESUMED
5142
5143 #3 - gdb processes stop for thread 2 and decides to re-resume
dda83cd7 5144 it.
f4836ba9
PA
5145
5146 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
dda83cd7 5147 thread 2 is now resumed, so the event should be ignored.
f4836ba9
PA
5148
5149 IOW, if the stop for thread 2 doesn't end a foreground command,
5150 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5151 event. But it could be that the event meant that thread 2 itself
5152 (or whatever other thread was the last resumed thread) exited.
5153
5154 To address this we refresh the thread list and check whether we
5155 have resumed threads _now_. In the example above, this removes
5156 thread 3 from the thread list. If thread 2 was re-resumed, we
5157 ignore this event. If we find no thread resumed, then we cancel
7d3badc6
PA
5158 the synchronous command and show "no unwaited-for " to the
5159 user. */
f4836ba9 5160
d6cc5d98 5161 inferior *curr_inf = current_inferior ();
7d3badc6 5162
d6cc5d98
PA
5163 scoped_restore_current_thread restore_thread;
5164
5165 for (auto *target : all_non_exited_process_targets ())
5166 {
5167 switch_to_target_no_thread (target);
5168 update_thread_list ();
5169 }
5170
5171 /* If:
5172
5173 - the current target has no thread executing, and
5174 - the current inferior is native, and
5175 - the current inferior is the one which has the terminal, and
5176 - we did nothing,
5177
5178 then a Ctrl-C from this point on would remain stuck in the
5179 kernel, until a thread resumes and dequeues it. That would
5180 result in the GDB CLI not reacting to Ctrl-C, not able to
5181 interrupt the program. To address this, if the current inferior
5182 no longer has any thread executing, we give the terminal to some
5183 other inferior that has at least one thread executing. */
5184 bool swap_terminal = true;
5185
5186 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5187 whether to report it to the user. */
5188 bool ignore_event = false;
7d3badc6
PA
5189
5190 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 5191 {
d6cc5d98
PA
5192 if (swap_terminal && thread->executing)
5193 {
5194 if (thread->inf != curr_inf)
5195 {
5196 target_terminal::ours ();
5197
5198 switch_to_thread (thread);
5199 target_terminal::inferior ();
5200 }
5201 swap_terminal = false;
5202 }
5203
5204 if (!ignore_event
5205 && (thread->executing
5206 || thread->suspend.waitstatus_pending_p))
f4836ba9 5207 {
7d3badc6
PA
5208 /* Either there were no unwaited-for children left in the
5209 target at some point, but there are now, or some target
5210 other than the eventing one has unwaited-for children
5211 left. Just ignore. */
1eb8556f
SM
5212 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5213 "(ignoring: found resumed)");
d6cc5d98
PA
5214
5215 ignore_event = true;
f4836ba9 5216 }
d6cc5d98
PA
5217
5218 if (ignore_event && !swap_terminal)
5219 break;
5220 }
5221
5222 if (ignore_event)
5223 {
5224 switch_to_inferior_no_thread (curr_inf);
5225 prepare_to_wait (ecs);
c4464ade 5226 return true;
f4836ba9
PA
5227 }
5228
5229 /* Go ahead and report the event. */
c4464ade 5230 return false;
f4836ba9
PA
5231}
5232
05ba8510
PA
5233/* Given an execution control state that has been freshly filled in by
5234 an event from the inferior, figure out what it means and take
5235 appropriate action.
5236
5237 The alternatives are:
5238
22bcd14b 5239 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5240 debugger.
5241
5242 2) keep_going and return; to wait for the next event (set
5243 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5244 once). */
c906108c 5245
ec9499be 5246static void
595915c1 5247handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5248{
595915c1
TT
5249 /* Make sure that all temporary struct value objects that were
5250 created during the handling of the event get deleted at the
5251 end. */
5252 scoped_value_mark free_values;
5253
1eb8556f 5254 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5255
28736962
PA
5256 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5257 {
5258 /* We had an event in the inferior, but we are not interested in
5259 handling it at this level. The lower layers have already
5260 done what needs to be done, if anything.
5261
5262 One of the possible circumstances for this is when the
5263 inferior produces output for the console. The inferior has
5264 not stopped, and we are ignoring the event. Another possible
5265 circumstance is any event which the lower level knows will be
5266 reported multiple times without an intervening resume. */
28736962
PA
5267 prepare_to_wait (ecs);
5268 return;
5269 }
5270
65706a29
PA
5271 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5272 {
65706a29
PA
5273 prepare_to_wait (ecs);
5274 return;
5275 }
5276
0e5bf2a8 5277 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5278 && handle_no_resumed (ecs))
5279 return;
0e5bf2a8 5280
5b6d1e4f
PA
5281 /* Cache the last target/ptid/waitstatus. */
5282 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5283
ca005067 5284 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5285 stop_stack_dummy = STOP_NONE;
ca005067 5286
0e5bf2a8
PA
5287 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5288 {
5289 /* No unwaited-for children left. IOW, all resumed children
5290 have exited. */
c4464ade 5291 stop_print_frame = false;
22bcd14b 5292 stop_waiting (ecs);
0e5bf2a8
PA
5293 return;
5294 }
5295
8c90c137 5296 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5297 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5298 {
5b6d1e4f 5299 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5300 /* If it's a new thread, add it to the thread database. */
5301 if (ecs->event_thread == NULL)
5b6d1e4f 5302 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5303
5304 /* Disable range stepping. If the next step request could use a
5305 range, this will be end up re-enabled then. */
5306 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5307 }
88ed393a
JK
5308
5309 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5310 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5311
5312 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5313 reinit_frame_cache ();
5314
28736962
PA
5315 breakpoint_retire_moribund ();
5316
2b009048
DJ
5317 /* First, distinguish signals caused by the debugger from signals
5318 that have to do with the program's own actions. Note that
5319 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5320 on the operating system version. Here we detect when a SIGILL or
5321 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5322 something similar for SIGSEGV, since a SIGSEGV will be generated
5323 when we're trying to execute a breakpoint instruction on a
5324 non-executable stack. This happens for call dummy breakpoints
5325 for architectures like SPARC that place call dummies on the
5326 stack. */
2b009048 5327 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5328 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5329 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5330 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5331 {
00431a78 5332 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5333
a01bda52 5334 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5335 regcache_read_pc (regcache)))
5336 {
1eb8556f 5337 infrun_debug_printf ("Treating signal as SIGTRAP");
a493e3e2 5338 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5339 }
2b009048
DJ
5340 }
5341
293b3ebc 5342 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5343
488f131b
JB
5344 switch (ecs->ws.kind)
5345 {
5346 case TARGET_WAITKIND_LOADED:
72d383bb
SM
5347 {
5348 context_switch (ecs);
5349 /* Ignore gracefully during startup of the inferior, as it might
5350 be the shell which has just loaded some objects, otherwise
5351 add the symbols for the newly loaded objects. Also ignore at
5352 the beginning of an attach or remote session; we will query
5353 the full list of libraries once the connection is
5354 established. */
5355
5356 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5357 if (stop_soon == NO_STOP_QUIETLY)
5358 {
5359 struct regcache *regcache;
edcc5120 5360
72d383bb 5361 regcache = get_thread_regcache (ecs->event_thread);
edcc5120 5362
72d383bb 5363 handle_solib_event ();
ab04a2af 5364
72d383bb
SM
5365 ecs->event_thread->control.stop_bpstat
5366 = bpstat_stop_status (regcache->aspace (),
5367 ecs->event_thread->suspend.stop_pc,
5368 ecs->event_thread, &ecs->ws);
c65d6b55 5369
72d383bb 5370 if (handle_stop_requested (ecs))
94c57d6a 5371 return;
488f131b 5372
72d383bb
SM
5373 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5374 {
5375 /* A catchpoint triggered. */
5376 process_event_stop_test (ecs);
5377 return;
5378 }
55409f9d 5379
72d383bb
SM
5380 /* If requested, stop when the dynamic linker notifies
5381 gdb of events. This allows the user to get control
5382 and place breakpoints in initializer routines for
5383 dynamically loaded objects (among other things). */
5384 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5385 if (stop_on_solib_events)
5386 {
5387 /* Make sure we print "Stopped due to solib-event" in
5388 normal_stop. */
5389 stop_print_frame = true;
b0f4b84b 5390
72d383bb
SM
5391 stop_waiting (ecs);
5392 return;
5393 }
5394 }
b0f4b84b 5395
72d383bb
SM
5396 /* If we are skipping through a shell, or through shared library
5397 loading that we aren't interested in, resume the program. If
5398 we're running the program normally, also resume. */
5399 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5400 {
5401 /* Loading of shared libraries might have changed breakpoint
5402 addresses. Make sure new breakpoints are inserted. */
5403 if (stop_soon == NO_STOP_QUIETLY)
5404 insert_breakpoints ();
5405 resume (GDB_SIGNAL_0);
5406 prepare_to_wait (ecs);
5407 return;
5408 }
5c09a2c5 5409
72d383bb
SM
5410 /* But stop if we're attaching or setting up a remote
5411 connection. */
5412 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5413 || stop_soon == STOP_QUIETLY_REMOTE)
5414 {
5415 infrun_debug_printf ("quietly stopped");
5416 stop_waiting (ecs);
5417 return;
5418 }
5419
5420 internal_error (__FILE__, __LINE__,
5421 _("unhandled stop_soon: %d"), (int) stop_soon);
5422 }
c5aa993b 5423
488f131b 5424 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5425 if (handle_stop_requested (ecs))
5426 return;
00431a78 5427 context_switch (ecs);
64ce06e4 5428 resume (GDB_SIGNAL_0);
488f131b
JB
5429 prepare_to_wait (ecs);
5430 return;
c5aa993b 5431
65706a29 5432 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5433 if (handle_stop_requested (ecs))
5434 return;
00431a78 5435 context_switch (ecs);
65706a29
PA
5436 if (!switch_back_to_stepped_thread (ecs))
5437 keep_going (ecs);
5438 return;
5439
488f131b 5440 case TARGET_WAITKIND_EXITED:
940c3c06 5441 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5442 {
5443 /* Depending on the system, ecs->ptid may point to a thread or
5444 to a process. On some targets, target_mourn_inferior may
5445 need to have access to the just-exited thread. That is the
5446 case of GNU/Linux's "checkpoint" support, for example.
5447 Call the switch_to_xxx routine as appropriate. */
5448 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5449 if (thr != nullptr)
5450 switch_to_thread (thr);
5451 else
5452 {
5453 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5454 switch_to_inferior_no_thread (inf);
5455 }
5456 }
6c95b8df 5457 handle_vfork_child_exec_or_exit (0);
223ffa71 5458 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5459
0c557179
SDJ
5460 /* Clearing any previous state of convenience variables. */
5461 clear_exit_convenience_vars ();
5462
940c3c06
PA
5463 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5464 {
5465 /* Record the exit code in the convenience variable $_exitcode, so
5466 that the user can inspect this again later. */
5467 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5468 (LONGEST) ecs->ws.value.integer);
5469
5470 /* Also record this in the inferior itself. */
5471 current_inferior ()->has_exit_code = 1;
5472 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5473
98eb56a4
PA
5474 /* Support the --return-child-result option. */
5475 return_child_result_value = ecs->ws.value.integer;
5476
76727919 5477 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5478 }
5479 else
0c557179 5480 {
00431a78 5481 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5482
5483 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5484 {
5485 /* Set the value of the internal variable $_exitsignal,
5486 which holds the signal uncaught by the inferior. */
5487 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5488 gdbarch_gdb_signal_to_target (gdbarch,
5489 ecs->ws.value.sig));
5490 }
5491 else
5492 {
5493 /* We don't have access to the target's method used for
5494 converting between signal numbers (GDB's internal
5495 representation <-> target's representation).
5496 Therefore, we cannot do a good job at displaying this
5497 information to the user. It's better to just warn
5498 her about it (if infrun debugging is enabled), and
5499 give up. */
1eb8556f
SM
5500 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5501 "signal number.");
0c557179
SDJ
5502 }
5503
76727919 5504 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5505 }
8cf64490 5506
488f131b 5507 gdb_flush (gdb_stdout);
bc1e6c81 5508 target_mourn_inferior (inferior_ptid);
c4464ade 5509 stop_print_frame = false;
22bcd14b 5510 stop_waiting (ecs);
488f131b 5511 return;
c5aa993b 5512
488f131b 5513 case TARGET_WAITKIND_FORKED:
deb3b17b 5514 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5515 /* Check whether the inferior is displaced stepping. */
5516 {
00431a78 5517 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5518 struct gdbarch *gdbarch = regcache->arch ();
c0aba012 5519 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639 5520
aeeb758d
JB
5521 /* If this is a fork (child gets its own address space copy)
5522 and some displaced step buffers were in use at the time of
5523 the fork, restore the displaced step buffer bytes in the
5524 child process.
5525
5526 Architectures which support displaced stepping and fork
5527 events must supply an implementation of
5528 gdbarch_displaced_step_restore_all_in_ptid. This is not
5529 enforced during gdbarch validation to support architectures
5530 which support displaced stepping but not forks. */
5531 if (ecs->ws.kind == TARGET_WAITKIND_FORKED
5532 && gdbarch_supports_displaced_stepping (gdbarch))
187b041e
SM
5533 gdbarch_displaced_step_restore_all_in_ptid
5534 (gdbarch, parent_inf, ecs->ws.value.related_pid);
c0aba012
SM
5535
5536 /* If displaced stepping is supported, and thread ecs->ptid is
5537 displaced stepping. */
00431a78 5538 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639 5539 {
e2d96639
YQ
5540 struct regcache *child_regcache;
5541 CORE_ADDR parent_pc;
5542
5543 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5544 indicating that the displaced stepping of syscall instruction
5545 has been done. Perform cleanup for parent process here. Note
5546 that this operation also cleans up the child process for vfork,
5547 because their pages are shared. */
7def77a1 5548 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5549 /* Start a new step-over in another thread if there's one
5550 that needs it. */
5551 start_step_over ();
e2d96639 5552
e2d96639
YQ
5553 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5554 the child's PC is also within the scratchpad. Set the child's PC
5555 to the parent's PC value, which has already been fixed up.
5556 FIXME: we use the parent's aspace here, although we're touching
5557 the child, because the child hasn't been added to the inferior
5558 list yet at this point. */
5559
5560 child_regcache
5b6d1e4f
PA
5561 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5562 ecs->ws.value.related_pid,
e2d96639
YQ
5563 gdbarch,
5564 parent_inf->aspace);
5565 /* Read PC value of parent process. */
5566 parent_pc = regcache_read_pc (regcache);
5567
136821d9
SM
5568 displaced_debug_printf ("write child pc from %s to %s",
5569 paddress (gdbarch,
5570 regcache_read_pc (child_regcache)),
5571 paddress (gdbarch, parent_pc));
e2d96639
YQ
5572
5573 regcache_write_pc (child_regcache, parent_pc);
5574 }
5575 }
5576
00431a78 5577 context_switch (ecs);
5a2901d9 5578
b242c3c2
PA
5579 /* Immediately detach breakpoints from the child before there's
5580 any chance of letting the user delete breakpoints from the
5581 breakpoint lists. If we don't do this early, it's easy to
5582 leave left over traps in the child, vis: "break foo; catch
5583 fork; c; <fork>; del; c; <child calls foo>". We only follow
5584 the fork on the last `continue', and by that time the
5585 breakpoint at "foo" is long gone from the breakpoint table.
5586 If we vforked, then we don't need to unpatch here, since both
5587 parent and child are sharing the same memory pages; we'll
5588 need to unpatch at follow/detach time instead to be certain
5589 that new breakpoints added between catchpoint hit time and
5590 vfork follow are detached. */
5591 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5592 {
b242c3c2
PA
5593 /* This won't actually modify the breakpoint list, but will
5594 physically remove the breakpoints from the child. */
d80ee84f 5595 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5596 }
5597
34b7e8a6 5598 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5599
e58b0e63
PA
5600 /* In case the event is caught by a catchpoint, remember that
5601 the event is to be followed at the next resume of the thread,
5602 and not immediately. */
5603 ecs->event_thread->pending_follow = ecs->ws;
5604
f2ffa92b
PA
5605 ecs->event_thread->suspend.stop_pc
5606 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5607
16c381f0 5608 ecs->event_thread->control.stop_bpstat
a01bda52 5609 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5610 ecs->event_thread->suspend.stop_pc,
5611 ecs->event_thread, &ecs->ws);
675bf4cb 5612
c65d6b55
PA
5613 if (handle_stop_requested (ecs))
5614 return;
5615
ce12b012
PA
5616 /* If no catchpoint triggered for this, then keep going. Note
5617 that we're interested in knowing the bpstat actually causes a
5618 stop, not just if it may explain the signal. Software
5619 watchpoints, for example, always appear in the bpstat. */
5620 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5621 {
5ab2fbf1 5622 bool follow_child
3e43a32a 5623 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5624
a493e3e2 5625 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5626
5b6d1e4f
PA
5627 process_stratum_target *targ
5628 = ecs->event_thread->inf->process_target ();
5629
5ab2fbf1 5630 bool should_resume = follow_fork ();
e58b0e63 5631
5b6d1e4f
PA
5632 /* Note that one of these may be an invalid pointer,
5633 depending on detach_fork. */
00431a78 5634 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5635 thread_info *child
5636 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5637
a2077e25
PA
5638 /* At this point, the parent is marked running, and the
5639 child is marked stopped. */
5640
5641 /* If not resuming the parent, mark it stopped. */
5642 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5643 parent->set_running (false);
a2077e25
PA
5644
5645 /* If resuming the child, mark it running. */
5646 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5647 child->set_running (true);
a2077e25 5648
6c95b8df 5649 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5650 if (!detach_fork && (non_stop
5651 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5652 {
5653 if (follow_child)
5654 switch_to_thread (parent);
5655 else
5656 switch_to_thread (child);
5657
5658 ecs->event_thread = inferior_thread ();
5659 ecs->ptid = inferior_ptid;
5660 keep_going (ecs);
5661 }
5662
5663 if (follow_child)
5664 switch_to_thread (child);
5665 else
5666 switch_to_thread (parent);
5667
e58b0e63
PA
5668 ecs->event_thread = inferior_thread ();
5669 ecs->ptid = inferior_ptid;
5670
5671 if (should_resume)
5672 keep_going (ecs);
5673 else
22bcd14b 5674 stop_waiting (ecs);
04e68871
DJ
5675 return;
5676 }
94c57d6a
PA
5677 process_event_stop_test (ecs);
5678 return;
488f131b 5679
6c95b8df
PA
5680 case TARGET_WAITKIND_VFORK_DONE:
5681 /* Done with the shared memory region. Re-insert breakpoints in
5682 the parent, and keep going. */
5683
00431a78 5684 context_switch (ecs);
6c95b8df 5685
060f2ef8 5686 current_inferior ()->thread_waiting_for_vfork_done = nullptr;
56710373 5687 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5688
5689 if (handle_stop_requested (ecs))
5690 return;
5691
6c95b8df
PA
5692 /* This also takes care of reinserting breakpoints in the
5693 previously locked inferior. */
5694 keep_going (ecs);
5695 return;
5696
488f131b 5697 case TARGET_WAITKIND_EXECD:
488f131b 5698
cbd2b4e3
PA
5699 /* Note we can't read registers yet (the stop_pc), because we
5700 don't yet know the inferior's post-exec architecture.
5701 'stop_pc' is explicitly read below instead. */
00431a78 5702 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5703
6c95b8df
PA
5704 /* Do whatever is necessary to the parent branch of the vfork. */
5705 handle_vfork_child_exec_or_exit (1);
5706
795e548f 5707 /* This causes the eventpoints and symbol table to be reset.
dda83cd7
SM
5708 Must do this now, before trying to determine whether to
5709 stop. */
71b43ef8 5710 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5711
17d8546e
DB
5712 /* In follow_exec we may have deleted the original thread and
5713 created a new one. Make sure that the event thread is the
5714 execd thread for that case (this is a nop otherwise). */
5715 ecs->event_thread = inferior_thread ();
5716
f2ffa92b
PA
5717 ecs->event_thread->suspend.stop_pc
5718 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5719
16c381f0 5720 ecs->event_thread->control.stop_bpstat
a01bda52 5721 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5722 ecs->event_thread->suspend.stop_pc,
5723 ecs->event_thread, &ecs->ws);
795e548f 5724
71b43ef8
PA
5725 /* Note that this may be referenced from inside
5726 bpstat_stop_status above, through inferior_has_execd. */
5727 xfree (ecs->ws.value.execd_pathname);
5728 ecs->ws.value.execd_pathname = NULL;
5729
c65d6b55
PA
5730 if (handle_stop_requested (ecs))
5731 return;
5732
04e68871 5733 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5734 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5735 {
a493e3e2 5736 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5737 keep_going (ecs);
5738 return;
5739 }
94c57d6a
PA
5740 process_event_stop_test (ecs);
5741 return;
488f131b 5742
b4dc5ffa 5743 /* Be careful not to try to gather much state about a thread
dda83cd7 5744 that's in a syscall. It's frequently a losing proposition. */
488f131b 5745 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5746 /* Getting the current syscall number. */
94c57d6a
PA
5747 if (handle_syscall_event (ecs) == 0)
5748 process_event_stop_test (ecs);
5749 return;
c906108c 5750
488f131b 5751 /* Before examining the threads further, step this thread to
dda83cd7
SM
5752 get it entirely out of the syscall. (We get notice of the
5753 event when the thread is just on the verge of exiting a
5754 syscall. Stepping one instruction seems to get it back
5755 into user code.) */
488f131b 5756 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5757 if (handle_syscall_event (ecs) == 0)
5758 process_event_stop_test (ecs);
5759 return;
c906108c 5760
488f131b 5761 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5762 handle_signal_stop (ecs);
5763 return;
c906108c 5764
b2175913
MS
5765 case TARGET_WAITKIND_NO_HISTORY:
5766 /* Reverse execution: target ran out of history info. */
eab402df 5767
d1988021 5768 /* Switch to the stopped thread. */
00431a78 5769 context_switch (ecs);
1eb8556f 5770 infrun_debug_printf ("stopped");
d1988021 5771
34b7e8a6 5772 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5773 ecs->event_thread->suspend.stop_pc
5774 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5775
5776 if (handle_stop_requested (ecs))
5777 return;
5778
76727919 5779 gdb::observers::no_history.notify ();
22bcd14b 5780 stop_waiting (ecs);
b2175913 5781 return;
488f131b 5782 }
4f5d7f63
PA
5783}
5784
372316f1 5785/* Restart threads back to what they were trying to do back when we
4ffff7d3
SM
5786 paused them (because of an in-line step-over or vfork, for example).
5787 The EVENT_THREAD thread is ignored (not restarted).
5788
5789 If INF is non-nullptr, only resume threads from INF. */
4d9d9d04
PA
5790
5791static void
4ffff7d3 5792restart_threads (struct thread_info *event_thread, inferior *inf)
372316f1 5793{
4ffff7d3
SM
5794 INFRUN_SCOPED_DEBUG_START_END ("event_thread=%s, inf=%d",
5795 event_thread->ptid.to_string ().c_str (),
5796 inf != nullptr ? inf->num : -1);
5797
372316f1
PA
5798 /* In case the instruction just stepped spawned a new thread. */
5799 update_thread_list ();
5800
08036331 5801 for (thread_info *tp : all_non_exited_threads ())
372316f1 5802 {
4ffff7d3
SM
5803 if (inf != nullptr && tp->inf != inf)
5804 continue;
5805
ac7d717c
PA
5806 if (tp->inf->detaching)
5807 {
5808 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5809 target_pid_to_str (tp->ptid).c_str ());
5810 continue;
5811 }
5812
f3f8ece4
PA
5813 switch_to_thread_no_regs (tp);
5814
372316f1
PA
5815 if (tp == event_thread)
5816 {
1eb8556f
SM
5817 infrun_debug_printf ("restart threads: [%s] is event thread",
5818 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5819 continue;
5820 }
5821
5822 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5823 {
1eb8556f
SM
5824 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5825 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5826 continue;
5827 }
5828
5829 if (tp->resumed)
5830 {
1eb8556f
SM
5831 infrun_debug_printf ("restart threads: [%s] resumed",
5832 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5833 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5834 continue;
5835 }
5836
5837 if (thread_is_in_step_over_chain (tp))
5838 {
1eb8556f
SM
5839 infrun_debug_printf ("restart threads: [%s] needs step-over",
5840 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5841 gdb_assert (!tp->resumed);
5842 continue;
5843 }
5844
5845
5846 if (tp->suspend.waitstatus_pending_p)
5847 {
1eb8556f
SM
5848 infrun_debug_printf ("restart threads: [%s] has pending status",
5849 target_pid_to_str (tp->ptid).c_str ());
719546c4 5850 tp->resumed = true;
372316f1
PA
5851 continue;
5852 }
5853
c65d6b55
PA
5854 gdb_assert (!tp->stop_requested);
5855
372316f1
PA
5856 /* If some thread needs to start a step-over at this point, it
5857 should still be in the step-over queue, and thus skipped
5858 above. */
5859 if (thread_still_needs_step_over (tp))
5860 {
5861 internal_error (__FILE__, __LINE__,
5862 "thread [%s] needs a step-over, but not in "
5863 "step-over queue\n",
a068643d 5864 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5865 }
5866
5867 if (currently_stepping (tp))
5868 {
1eb8556f
SM
5869 infrun_debug_printf ("restart threads: [%s] was stepping",
5870 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5871 keep_going_stepped_thread (tp);
5872 }
5873 else
5874 {
5875 struct execution_control_state ecss;
5876 struct execution_control_state *ecs = &ecss;
5877
1eb8556f
SM
5878 infrun_debug_printf ("restart threads: [%s] continuing",
5879 target_pid_to_str (tp->ptid).c_str ());
372316f1 5880 reset_ecs (ecs, tp);
00431a78 5881 switch_to_thread (tp);
372316f1
PA
5882 keep_going_pass_signal (ecs);
5883 }
5884 }
5885}
5886
5887/* Callback for iterate_over_threads. Find a resumed thread that has
5888 a pending waitstatus. */
5889
5890static int
5891resumed_thread_with_pending_status (struct thread_info *tp,
5892 void *arg)
5893{
5894 return (tp->resumed
5895 && tp->suspend.waitstatus_pending_p);
5896}
5897
5898/* Called when we get an event that may finish an in-line or
5899 out-of-line (displaced stepping) step-over started previously.
5900 Return true if the event is processed and we should go back to the
5901 event loop; false if the caller should continue processing the
5902 event. */
5903
5904static int
4d9d9d04
PA
5905finish_step_over (struct execution_control_state *ecs)
5906{
7def77a1
SM
5907 displaced_step_finish (ecs->event_thread,
5908 ecs->event_thread->suspend.stop_signal);
4d9d9d04 5909
c4464ade 5910 bool had_step_over_info = step_over_info_valid_p ();
372316f1
PA
5911
5912 if (had_step_over_info)
4d9d9d04
PA
5913 {
5914 /* If we're stepping over a breakpoint with all threads locked,
5915 then only the thread that was stepped should be reporting
5916 back an event. */
5917 gdb_assert (ecs->event_thread->control.trap_expected);
5918
c65d6b55 5919 clear_step_over_info ();
4d9d9d04
PA
5920 }
5921
fbea99ea 5922 if (!target_is_non_stop_p ())
372316f1 5923 return 0;
4d9d9d04
PA
5924
5925 /* Start a new step-over in another thread if there's one that
5926 needs it. */
5927 start_step_over ();
372316f1
PA
5928
5929 /* If we were stepping over a breakpoint before, and haven't started
5930 a new in-line step-over sequence, then restart all other threads
5931 (except the event thread). We can't do this in all-stop, as then
5932 e.g., we wouldn't be able to issue any other remote packet until
5933 these other threads stop. */
5934 if (had_step_over_info && !step_over_info_valid_p ())
5935 {
5936 struct thread_info *pending;
5937
5938 /* If we only have threads with pending statuses, the restart
5939 below won't restart any thread and so nothing re-inserts the
5940 breakpoint we just stepped over. But we need it inserted
5941 when we later process the pending events, otherwise if
5942 another thread has a pending event for this breakpoint too,
5943 we'd discard its event (because the breakpoint that
5944 originally caused the event was no longer inserted). */
00431a78 5945 context_switch (ecs);
372316f1
PA
5946 insert_breakpoints ();
5947
5948 restart_threads (ecs->event_thread);
5949
5950 /* If we have events pending, go through handle_inferior_event
5951 again, picking up a pending event at random. This avoids
5952 thread starvation. */
5953
5954 /* But not if we just stepped over a watchpoint in order to let
5955 the instruction execute so we can evaluate its expression.
5956 The set of watchpoints that triggered is recorded in the
5957 breakpoint objects themselves (see bp->watchpoint_triggered).
5958 If we processed another event first, that other event could
5959 clobber this info. */
5960 if (ecs->event_thread->stepping_over_watchpoint)
5961 return 0;
5962
5963 pending = iterate_over_threads (resumed_thread_with_pending_status,
5964 NULL);
5965 if (pending != NULL)
5966 {
5967 struct thread_info *tp = ecs->event_thread;
5968 struct regcache *regcache;
5969
1eb8556f
SM
5970 infrun_debug_printf ("found resumed threads with "
5971 "pending events, saving status");
372316f1
PA
5972
5973 gdb_assert (pending != tp);
5974
5975 /* Record the event thread's event for later. */
5976 save_waitstatus (tp, &ecs->ws);
5977 /* This was cleared early, by handle_inferior_event. Set it
5978 so this pending event is considered by
5979 do_target_wait. */
719546c4 5980 tp->resumed = true;
372316f1
PA
5981
5982 gdb_assert (!tp->executing);
5983
00431a78 5984 regcache = get_thread_regcache (tp);
372316f1
PA
5985 tp->suspend.stop_pc = regcache_read_pc (regcache);
5986
1eb8556f
SM
5987 infrun_debug_printf ("saved stop_pc=%s for %s "
5988 "(currently_stepping=%d)",
5989 paddress (target_gdbarch (),
dda83cd7 5990 tp->suspend.stop_pc),
1eb8556f
SM
5991 target_pid_to_str (tp->ptid).c_str (),
5992 currently_stepping (tp));
372316f1
PA
5993
5994 /* This in-line step-over finished; clear this so we won't
5995 start a new one. This is what handle_signal_stop would
5996 do, if we returned false. */
5997 tp->stepping_over_breakpoint = 0;
5998
5999 /* Wake up the event loop again. */
6000 mark_async_event_handler (infrun_async_inferior_event_token);
6001
6002 prepare_to_wait (ecs);
6003 return 1;
6004 }
6005 }
6006
6007 return 0;
4d9d9d04
PA
6008}
6009
4f5d7f63
PA
6010/* Come here when the program has stopped with a signal. */
6011
6012static void
6013handle_signal_stop (struct execution_control_state *ecs)
6014{
6015 struct frame_info *frame;
6016 struct gdbarch *gdbarch;
6017 int stopped_by_watchpoint;
6018 enum stop_kind stop_soon;
6019 int random_signal;
c906108c 6020
f0407826
DE
6021 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
6022
c65d6b55
PA
6023 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
6024
f0407826
DE
6025 /* Do we need to clean up the state of a thread that has
6026 completed a displaced single-step? (Doing so usually affects
6027 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
6028 if (finish_step_over (ecs))
6029 return;
f0407826
DE
6030
6031 /* If we either finished a single-step or hit a breakpoint, but
6032 the user wanted this thread to be stopped, pretend we got a
6033 SIG0 (generic unsignaled stop). */
6034 if (ecs->event_thread->stop_requested
6035 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6036 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 6037
f2ffa92b
PA
6038 ecs->event_thread->suspend.stop_pc
6039 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 6040
2ab76a18
PA
6041 context_switch (ecs);
6042
6043 if (deprecated_context_hook)
6044 deprecated_context_hook (ecs->event_thread->global_num);
6045
527159b7 6046 if (debug_infrun)
237fc4c9 6047 {
00431a78 6048 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 6049 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 6050
1eb8556f
SM
6051 infrun_debug_printf ("stop_pc=%s",
6052 paddress (reg_gdbarch,
6053 ecs->event_thread->suspend.stop_pc));
d92524f1 6054 if (target_stopped_by_watchpoint ())
237fc4c9 6055 {
dda83cd7 6056 CORE_ADDR addr;
abbb1732 6057
1eb8556f 6058 infrun_debug_printf ("stopped by watchpoint");
237fc4c9 6059
328d42d8
SM
6060 if (target_stopped_data_address (current_inferior ()->top_target (),
6061 &addr))
1eb8556f 6062 infrun_debug_printf ("stopped data address=%s",
dda83cd7
SM
6063 paddress (reg_gdbarch, addr));
6064 else
1eb8556f 6065 infrun_debug_printf ("(no data address available)");
237fc4c9
PA
6066 }
6067 }
527159b7 6068
36fa8042
PA
6069 /* This is originated from start_remote(), start_inferior() and
6070 shared libraries hook functions. */
00431a78 6071 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
6072 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6073 {
1eb8556f 6074 infrun_debug_printf ("quietly stopped");
c4464ade 6075 stop_print_frame = true;
22bcd14b 6076 stop_waiting (ecs);
36fa8042
PA
6077 return;
6078 }
6079
36fa8042
PA
6080 /* This originates from attach_command(). We need to overwrite
6081 the stop_signal here, because some kernels don't ignore a
6082 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6083 See more comments in inferior.h. On the other hand, if we
6084 get a non-SIGSTOP, report it to the user - assume the backend
6085 will handle the SIGSTOP if it should show up later.
6086
6087 Also consider that the attach is complete when we see a
6088 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6089 target extended-remote report it instead of a SIGSTOP
6090 (e.g. gdbserver). We already rely on SIGTRAP being our
6091 signal, so this is no exception.
6092
6093 Also consider that the attach is complete when we see a
6094 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6095 the target to stop all threads of the inferior, in case the
6096 low level attach operation doesn't stop them implicitly. If
6097 they weren't stopped implicitly, then the stub will report a
6098 GDB_SIGNAL_0, meaning: stopped for no particular reason
6099 other than GDB's request. */
6100 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6101 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6102 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6103 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6104 {
c4464ade 6105 stop_print_frame = true;
22bcd14b 6106 stop_waiting (ecs);
36fa8042
PA
6107 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6108 return;
6109 }
6110
568d6575
UW
6111 /* At this point, get hold of the now-current thread's frame. */
6112 frame = get_current_frame ();
6113 gdbarch = get_frame_arch (frame);
6114
2adfaa28 6115 /* Pull the single step breakpoints out of the target. */
af48d08f 6116 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 6117 {
af48d08f 6118 struct regcache *regcache;
af48d08f 6119 CORE_ADDR pc;
2adfaa28 6120
00431a78 6121 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
6122 const address_space *aspace = regcache->aspace ();
6123
af48d08f 6124 pc = regcache_read_pc (regcache);
34b7e8a6 6125
af48d08f
PA
6126 /* However, before doing so, if this single-step breakpoint was
6127 actually for another thread, set this thread up for moving
6128 past it. */
6129 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6130 aspace, pc))
6131 {
6132 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 6133 {
1eb8556f
SM
6134 infrun_debug_printf ("[%s] hit another thread's single-step "
6135 "breakpoint",
6136 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
6137 ecs->hit_singlestep_breakpoint = 1;
6138 }
6139 }
6140 else
6141 {
1eb8556f
SM
6142 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6143 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 6144 }
488f131b 6145 }
af48d08f 6146 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6147
963f9c80
PA
6148 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6149 && ecs->event_thread->control.trap_expected
6150 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6151 stopped_by_watchpoint = 0;
6152 else
6153 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6154
6155 /* If necessary, step over this watchpoint. We'll be back to display
6156 it in a moment. */
6157 if (stopped_by_watchpoint
9aed480c 6158 && (target_have_steppable_watchpoint ()
568d6575 6159 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6160 {
488f131b 6161 /* At this point, we are stopped at an instruction which has
dda83cd7
SM
6162 attempted to write to a piece of memory under control of
6163 a watchpoint. The instruction hasn't actually executed
6164 yet. If we were to evaluate the watchpoint expression
6165 now, we would get the old value, and therefore no change
6166 would seem to have occurred.
6167
6168 In order to make watchpoints work `right', we really need
6169 to complete the memory write, and then evaluate the
6170 watchpoint expression. We do this by single-stepping the
d983da9c
DJ
6171 target.
6172
7f89fd65 6173 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6174 it. For example, the PA can (with some kernel cooperation)
6175 single step over a watchpoint without disabling the watchpoint.
6176
6177 It is far more common to need to disable a watchpoint to step
6178 the inferior over it. If we have non-steppable watchpoints,
6179 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6180 disable all watchpoints.
6181
6182 Any breakpoint at PC must also be stepped over -- if there's
6183 one, it will have already triggered before the watchpoint
6184 triggered, and we either already reported it to the user, or
6185 it didn't cause a stop and we called keep_going. In either
6186 case, if there was a breakpoint at PC, we must be trying to
6187 step past it. */
6188 ecs->event_thread->stepping_over_watchpoint = 1;
6189 keep_going (ecs);
488f131b
JB
6190 return;
6191 }
6192
4e1c45ea 6193 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6194 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6195 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6196 ecs->event_thread->control.stop_step = 0;
c4464ade 6197 stop_print_frame = true;
488f131b 6198 stopped_by_random_signal = 0;
ddfe970e 6199 bpstat stop_chain = NULL;
488f131b 6200
edb3359d
DJ
6201 /* Hide inlined functions starting here, unless we just performed stepi or
6202 nexti. After stepi and nexti, always show the innermost frame (not any
6203 inline function call sites). */
16c381f0 6204 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6205 {
00431a78
PA
6206 const address_space *aspace
6207 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6208
6209 /* skip_inline_frames is expensive, so we avoid it if we can
6210 determine that the address is one where functions cannot have
6211 been inlined. This improves performance with inferiors that
6212 load a lot of shared libraries, because the solib event
6213 breakpoint is defined as the address of a function (i.e. not
6214 inline). Note that we have to check the previous PC as well
6215 as the current one to catch cases when we have just
6216 single-stepped off a breakpoint prior to reinstating it.
6217 Note that we're assuming that the code we single-step to is
6218 not inline, but that's not definitive: there's nothing
6219 preventing the event breakpoint function from containing
6220 inlined code, and the single-step ending up there. If the
6221 user had set a breakpoint on that inlined code, the missing
6222 skip_inline_frames call would break things. Fortunately
6223 that's an extremely unlikely scenario. */
f2ffa92b
PA
6224 if (!pc_at_non_inline_function (aspace,
6225 ecs->event_thread->suspend.stop_pc,
6226 &ecs->ws)
a210c238
MR
6227 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6228 && ecs->event_thread->control.trap_expected
6229 && pc_at_non_inline_function (aspace,
6230 ecs->event_thread->prev_pc,
09ac7c10 6231 &ecs->ws)))
1c5a993e 6232 {
f2ffa92b
PA
6233 stop_chain = build_bpstat_chain (aspace,
6234 ecs->event_thread->suspend.stop_pc,
6235 &ecs->ws);
00431a78 6236 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6237
6238 /* Re-fetch current thread's frame in case that invalidated
6239 the frame cache. */
6240 frame = get_current_frame ();
6241 gdbarch = get_frame_arch (frame);
6242 }
0574c78f 6243 }
edb3359d 6244
a493e3e2 6245 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6246 && ecs->event_thread->control.trap_expected
568d6575 6247 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6248 && currently_stepping (ecs->event_thread))
3352ef37 6249 {
b50d7442 6250 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6251 also on an instruction that needs to be stepped multiple
1777feb0 6252 times before it's been fully executing. E.g., architectures
3352ef37
AC
6253 with a delay slot. It needs to be stepped twice, once for
6254 the instruction and once for the delay slot. */
6255 int step_through_delay
568d6575 6256 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6257
1eb8556f
SM
6258 if (step_through_delay)
6259 infrun_debug_printf ("step through delay");
6260
16c381f0
JK
6261 if (ecs->event_thread->control.step_range_end == 0
6262 && step_through_delay)
3352ef37
AC
6263 {
6264 /* The user issued a continue when stopped at a breakpoint.
6265 Set up for another trap and get out of here. */
dda83cd7
SM
6266 ecs->event_thread->stepping_over_breakpoint = 1;
6267 keep_going (ecs);
6268 return;
3352ef37
AC
6269 }
6270 else if (step_through_delay)
6271 {
6272 /* The user issued a step when stopped at a breakpoint.
6273 Maybe we should stop, maybe we should not - the delay
6274 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6275 case, don't decide that here, just set
6276 ecs->stepping_over_breakpoint, making sure we
6277 single-step again before breakpoints are re-inserted. */
4e1c45ea 6278 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6279 }
6280 }
6281
ab04a2af
TT
6282 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6283 handles this event. */
6284 ecs->event_thread->control.stop_bpstat
a01bda52 6285 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6286 ecs->event_thread->suspend.stop_pc,
6287 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6288
ab04a2af
TT
6289 /* Following in case break condition called a
6290 function. */
c4464ade 6291 stop_print_frame = true;
73dd234f 6292
ab04a2af
TT
6293 /* This is where we handle "moribund" watchpoints. Unlike
6294 software breakpoints traps, hardware watchpoint traps are
6295 always distinguishable from random traps. If no high-level
6296 watchpoint is associated with the reported stop data address
6297 anymore, then the bpstat does not explain the signal ---
6298 simply make sure to ignore it if `stopped_by_watchpoint' is
6299 set. */
6300
1eb8556f 6301 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6302 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6303 GDB_SIGNAL_TRAP)
ab04a2af 6304 && stopped_by_watchpoint)
1eb8556f
SM
6305 {
6306 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6307 "ignoring");
6308 }
73dd234f 6309
bac7d97b 6310 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6311 at one stage in the past included checks for an inferior
6312 function call's call dummy's return breakpoint. The original
6313 comment, that went with the test, read:
03cebad2 6314
ab04a2af
TT
6315 ``End of a stack dummy. Some systems (e.g. Sony news) give
6316 another signal besides SIGTRAP, so check here as well as
6317 above.''
73dd234f 6318
ab04a2af
TT
6319 If someone ever tries to get call dummys on a
6320 non-executable stack to work (where the target would stop
6321 with something like a SIGSEGV), then those tests might need
6322 to be re-instated. Given, however, that the tests were only
6323 enabled when momentary breakpoints were not being used, I
6324 suspect that it won't be the case.
488f131b 6325
ab04a2af
TT
6326 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6327 be necessary for call dummies on a non-executable stack on
6328 SPARC. */
488f131b 6329
bac7d97b 6330 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6331 random_signal
6332 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6333 ecs->event_thread->suspend.stop_signal);
bac7d97b 6334
1cf4d951
PA
6335 /* Maybe this was a trap for a software breakpoint that has since
6336 been removed. */
6337 if (random_signal && target_stopped_by_sw_breakpoint ())
6338 {
5133a315
LM
6339 if (gdbarch_program_breakpoint_here_p (gdbarch,
6340 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6341 {
6342 struct regcache *regcache;
6343 int decr_pc;
6344
6345 /* Re-adjust PC to what the program would see if GDB was not
6346 debugging it. */
00431a78 6347 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6348 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6349 if (decr_pc != 0)
6350 {
07036511
TT
6351 gdb::optional<scoped_restore_tmpl<int>>
6352 restore_operation_disable;
1cf4d951
PA
6353
6354 if (record_full_is_used ())
07036511
TT
6355 restore_operation_disable.emplace
6356 (record_full_gdb_operation_disable_set ());
1cf4d951 6357
f2ffa92b
PA
6358 regcache_write_pc (regcache,
6359 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6360 }
6361 }
6362 else
6363 {
6364 /* A delayed software breakpoint event. Ignore the trap. */
1eb8556f 6365 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6366 random_signal = 0;
6367 }
6368 }
6369
6370 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6371 has since been removed. */
6372 if (random_signal && target_stopped_by_hw_breakpoint ())
6373 {
6374 /* A delayed hardware breakpoint event. Ignore the trap. */
1eb8556f
SM
6375 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6376 "trap, ignoring");
1cf4d951
PA
6377 random_signal = 0;
6378 }
6379
bac7d97b
PA
6380 /* If not, perhaps stepping/nexting can. */
6381 if (random_signal)
6382 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6383 && currently_stepping (ecs->event_thread));
ab04a2af 6384
2adfaa28
PA
6385 /* Perhaps the thread hit a single-step breakpoint of _another_
6386 thread. Single-step breakpoints are transparent to the
6387 breakpoints module. */
6388 if (random_signal)
6389 random_signal = !ecs->hit_singlestep_breakpoint;
6390
bac7d97b
PA
6391 /* No? Perhaps we got a moribund watchpoint. */
6392 if (random_signal)
6393 random_signal = !stopped_by_watchpoint;
ab04a2af 6394
c65d6b55
PA
6395 /* Always stop if the user explicitly requested this thread to
6396 remain stopped. */
6397 if (ecs->event_thread->stop_requested)
6398 {
6399 random_signal = 1;
1eb8556f 6400 infrun_debug_printf ("user-requested stop");
c65d6b55
PA
6401 }
6402
488f131b
JB
6403 /* For the program's own signals, act according to
6404 the signal handling tables. */
6405
ce12b012 6406 if (random_signal)
488f131b
JB
6407 {
6408 /* Signal not for debugging purposes. */
c9737c08 6409 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6410
1eb8556f
SM
6411 infrun_debug_printf ("random signal (%s)",
6412 gdb_signal_to_symbol_string (stop_signal));
527159b7 6413
488f131b
JB
6414 stopped_by_random_signal = 1;
6415
252fbfc8
PA
6416 /* Always stop on signals if we're either just gaining control
6417 of the program, or the user explicitly requested this thread
6418 to remain stopped. */
d6b48e9c 6419 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6420 || ecs->event_thread->stop_requested
8ff53139 6421 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
488f131b 6422 {
22bcd14b 6423 stop_waiting (ecs);
488f131b
JB
6424 return;
6425 }
b57bacec
PA
6426
6427 /* Notify observers the signal has "handle print" set. Note we
6428 returned early above if stopping; normal_stop handles the
6429 printing in that case. */
6430 if (signal_print[ecs->event_thread->suspend.stop_signal])
6431 {
6432 /* The signal table tells us to print about this signal. */
223ffa71 6433 target_terminal::ours_for_output ();
76727919 6434 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6435 target_terminal::inferior ();
b57bacec 6436 }
488f131b
JB
6437
6438 /* Clear the signal if it should not be passed. */
16c381f0 6439 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6440 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6441
f2ffa92b 6442 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6443 && ecs->event_thread->control.trap_expected
8358c15c 6444 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6445 {
6446 /* We were just starting a new sequence, attempting to
6447 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6448 Instead this signal arrives. This signal will take us out
68f53502
AC
6449 of the stepping range so GDB needs to remember to, when
6450 the signal handler returns, resume stepping off that
6451 breakpoint. */
6452 /* To simplify things, "continue" is forced to use the same
6453 code paths as single-step - set a breakpoint at the
6454 signal return address and then, once hit, step off that
6455 breakpoint. */
1eb8556f 6456 infrun_debug_printf ("signal arrived while stepping over breakpoint");
d3169d93 6457
2c03e5be 6458 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6459 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6460 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6461 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6462
6463 /* If we were nexting/stepping some other thread, switch to
6464 it, so that we don't continue it, losing control. */
6465 if (!switch_back_to_stepped_thread (ecs))
6466 keep_going (ecs);
9d799f85 6467 return;
68f53502 6468 }
9d799f85 6469
e5f8a7cc 6470 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6471 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6472 ecs->event_thread)
e5f8a7cc 6473 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6474 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6475 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6476 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6477 {
6478 /* The inferior is about to take a signal that will take it
6479 out of the single step range. Set a breakpoint at the
6480 current PC (which is presumably where the signal handler
6481 will eventually return) and then allow the inferior to
6482 run free.
6483
6484 Note that this is only needed for a signal delivered
6485 while in the single-step range. Nested signals aren't a
6486 problem as they eventually all return. */
1eb8556f 6487 infrun_debug_printf ("signal may take us out of single-step range");
237fc4c9 6488
372316f1 6489 clear_step_over_info ();
2c03e5be 6490 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6491 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6492 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6493 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6494 keep_going (ecs);
6495 return;
d303a6c7 6496 }
9d799f85 6497
85102364 6498 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6499 when either there's a nested signal, or when there's a
6500 pending signal enabled just as the signal handler returns
6501 (leaving the inferior at the step-resume-breakpoint without
6502 actually executing it). Either way continue until the
6503 breakpoint is really hit. */
c447ac0b
PA
6504
6505 if (!switch_back_to_stepped_thread (ecs))
6506 {
1eb8556f 6507 infrun_debug_printf ("random signal, keep going");
c447ac0b
PA
6508
6509 keep_going (ecs);
6510 }
6511 return;
488f131b 6512 }
94c57d6a
PA
6513
6514 process_event_stop_test (ecs);
6515}
6516
6517/* Come here when we've got some debug event / signal we can explain
6518 (IOW, not a random signal), and test whether it should cause a
6519 stop, or whether we should resume the inferior (transparently).
6520 E.g., could be a breakpoint whose condition evaluates false; we
6521 could be still stepping within the line; etc. */
6522
6523static void
6524process_event_stop_test (struct execution_control_state *ecs)
6525{
6526 struct symtab_and_line stop_pc_sal;
6527 struct frame_info *frame;
6528 struct gdbarch *gdbarch;
cdaa5b73
PA
6529 CORE_ADDR jmp_buf_pc;
6530 struct bpstat_what what;
94c57d6a 6531
cdaa5b73 6532 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6533
cdaa5b73
PA
6534 frame = get_current_frame ();
6535 gdbarch = get_frame_arch (frame);
fcf3daef 6536
cdaa5b73 6537 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6538
cdaa5b73
PA
6539 if (what.call_dummy)
6540 {
6541 stop_stack_dummy = what.call_dummy;
6542 }
186c406b 6543
243a9253
PA
6544 /* A few breakpoint types have callbacks associated (e.g.,
6545 bp_jit_event). Run them now. */
6546 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6547
cdaa5b73
PA
6548 /* If we hit an internal event that triggers symbol changes, the
6549 current frame will be invalidated within bpstat_what (e.g., if we
6550 hit an internal solib event). Re-fetch it. */
6551 frame = get_current_frame ();
6552 gdbarch = get_frame_arch (frame);
e2e4d78b 6553
cdaa5b73
PA
6554 switch (what.main_action)
6555 {
6556 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6557 /* If we hit the breakpoint at longjmp while stepping, we
6558 install a momentary breakpoint at the target of the
6559 jmp_buf. */
186c406b 6560
1eb8556f 6561 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6562
cdaa5b73 6563 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6564
cdaa5b73
PA
6565 if (what.is_longjmp)
6566 {
6567 struct value *arg_value;
6568
6569 /* If we set the longjmp breakpoint via a SystemTap probe,
6570 then use it to extract the arguments. The destination PC
6571 is the third argument to the probe. */
6572 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6573 if (arg_value)
8fa0c4f8
AA
6574 {
6575 jmp_buf_pc = value_as_address (arg_value);
6576 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6577 }
cdaa5b73
PA
6578 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6579 || !gdbarch_get_longjmp_target (gdbarch,
6580 frame, &jmp_buf_pc))
e2e4d78b 6581 {
1eb8556f
SM
6582 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6583 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6584 keep_going (ecs);
6585 return;
e2e4d78b 6586 }
e2e4d78b 6587
cdaa5b73
PA
6588 /* Insert a breakpoint at resume address. */
6589 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6590 }
6591 else
6592 check_exception_resume (ecs, frame);
6593 keep_going (ecs);
6594 return;
e81a37f7 6595
cdaa5b73
PA
6596 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6597 {
6598 struct frame_info *init_frame;
e81a37f7 6599
cdaa5b73 6600 /* There are several cases to consider.
c906108c 6601
cdaa5b73
PA
6602 1. The initiating frame no longer exists. In this case we
6603 must stop, because the exception or longjmp has gone too
6604 far.
2c03e5be 6605
cdaa5b73
PA
6606 2. The initiating frame exists, and is the same as the
6607 current frame. We stop, because the exception or longjmp
6608 has been caught.
2c03e5be 6609
cdaa5b73
PA
6610 3. The initiating frame exists and is different from the
6611 current frame. This means the exception or longjmp has
6612 been caught beneath the initiating frame, so keep going.
c906108c 6613
cdaa5b73
PA
6614 4. longjmp breakpoint has been placed just to protect
6615 against stale dummy frames and user is not interested in
6616 stopping around longjmps. */
c5aa993b 6617
1eb8556f 6618 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6619
cdaa5b73
PA
6620 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6621 != NULL);
6622 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6623
cdaa5b73
PA
6624 if (what.is_longjmp)
6625 {
b67a2c6f 6626 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6627
cdaa5b73 6628 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6629 {
cdaa5b73
PA
6630 /* Case 4. */
6631 keep_going (ecs);
6632 return;
e5ef252a 6633 }
cdaa5b73 6634 }
c5aa993b 6635
cdaa5b73 6636 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6637
cdaa5b73
PA
6638 if (init_frame)
6639 {
6640 struct frame_id current_id
6641 = get_frame_id (get_current_frame ());
6642 if (frame_id_eq (current_id,
6643 ecs->event_thread->initiating_frame))
6644 {
6645 /* Case 2. Fall through. */
6646 }
6647 else
6648 {
6649 /* Case 3. */
6650 keep_going (ecs);
6651 return;
6652 }
68f53502 6653 }
488f131b 6654
cdaa5b73
PA
6655 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6656 exists. */
6657 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6658
bdc36728 6659 end_stepping_range (ecs);
cdaa5b73
PA
6660 }
6661 return;
e5ef252a 6662
cdaa5b73 6663 case BPSTAT_WHAT_SINGLE:
1eb8556f 6664 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6665 ecs->event_thread->stepping_over_breakpoint = 1;
6666 /* Still need to check other stuff, at least the case where we
6667 are stepping and step out of the right range. */
6668 break;
e5ef252a 6669
cdaa5b73 6670 case BPSTAT_WHAT_STEP_RESUME:
1eb8556f 6671 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6672
cdaa5b73
PA
6673 delete_step_resume_breakpoint (ecs->event_thread);
6674 if (ecs->event_thread->control.proceed_to_finish
6675 && execution_direction == EXEC_REVERSE)
6676 {
6677 struct thread_info *tp = ecs->event_thread;
6678
6679 /* We are finishing a function in reverse, and just hit the
6680 step-resume breakpoint at the start address of the
6681 function, and we're almost there -- just need to back up
6682 by one more single-step, which should take us back to the
6683 function call. */
6684 tp->control.step_range_start = tp->control.step_range_end = 1;
6685 keep_going (ecs);
e5ef252a 6686 return;
cdaa5b73
PA
6687 }
6688 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6689 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6690 && execution_direction == EXEC_REVERSE)
6691 {
6692 /* We are stepping over a function call in reverse, and just
6693 hit the step-resume breakpoint at the start address of
6694 the function. Go back to single-stepping, which should
6695 take us back to the function call. */
6696 ecs->event_thread->stepping_over_breakpoint = 1;
6697 keep_going (ecs);
6698 return;
6699 }
6700 break;
e5ef252a 6701
cdaa5b73 6702 case BPSTAT_WHAT_STOP_NOISY:
1eb8556f 6703 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
c4464ade 6704 stop_print_frame = true;
e5ef252a 6705
33bf4c5c 6706 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6707 whether a/the breakpoint is there when the thread is next
6708 resumed. */
6709 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6710
22bcd14b 6711 stop_waiting (ecs);
cdaa5b73 6712 return;
e5ef252a 6713
cdaa5b73 6714 case BPSTAT_WHAT_STOP_SILENT:
1eb8556f 6715 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
c4464ade 6716 stop_print_frame = false;
e5ef252a 6717
33bf4c5c 6718 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6719 whether a/the breakpoint is there when the thread is next
6720 resumed. */
6721 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6722 stop_waiting (ecs);
cdaa5b73
PA
6723 return;
6724
6725 case BPSTAT_WHAT_HP_STEP_RESUME:
1eb8556f 6726 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6727
6728 delete_step_resume_breakpoint (ecs->event_thread);
6729 if (ecs->event_thread->step_after_step_resume_breakpoint)
6730 {
6731 /* Back when the step-resume breakpoint was inserted, we
6732 were trying to single-step off a breakpoint. Go back to
6733 doing that. */
6734 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6735 ecs->event_thread->stepping_over_breakpoint = 1;
6736 keep_going (ecs);
6737 return;
e5ef252a 6738 }
cdaa5b73
PA
6739 break;
6740
6741 case BPSTAT_WHAT_KEEP_CHECKING:
6742 break;
e5ef252a 6743 }
c906108c 6744
af48d08f
PA
6745 /* If we stepped a permanent breakpoint and we had a high priority
6746 step-resume breakpoint for the address we stepped, but we didn't
6747 hit it, then we must have stepped into the signal handler. The
6748 step-resume was only necessary to catch the case of _not_
6749 stepping into the handler, so delete it, and fall through to
6750 checking whether the step finished. */
6751 if (ecs->event_thread->stepped_breakpoint)
6752 {
6753 struct breakpoint *sr_bp
6754 = ecs->event_thread->control.step_resume_breakpoint;
6755
8d707a12
PA
6756 if (sr_bp != NULL
6757 && sr_bp->loc->permanent
af48d08f
PA
6758 && sr_bp->type == bp_hp_step_resume
6759 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6760 {
1eb8556f 6761 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6762 delete_step_resume_breakpoint (ecs->event_thread);
6763 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6764 }
6765 }
6766
cdaa5b73
PA
6767 /* We come here if we hit a breakpoint but should not stop for it.
6768 Possibly we also were stepping and should stop for that. So fall
6769 through and test for stepping. But, if not stepping, do not
6770 stop. */
c906108c 6771
a7212384
UW
6772 /* In all-stop mode, if we're currently stepping but have stopped in
6773 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6774 if (switch_back_to_stepped_thread (ecs))
6775 return;
776f04fa 6776
8358c15c 6777 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6778 {
1eb8556f 6779 infrun_debug_printf ("step-resume breakpoint is inserted");
527159b7 6780
488f131b 6781 /* Having a step-resume breakpoint overrides anything
dda83cd7
SM
6782 else having to do with stepping commands until
6783 that breakpoint is reached. */
488f131b
JB
6784 keep_going (ecs);
6785 return;
6786 }
c5aa993b 6787
16c381f0 6788 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6789 {
1eb8556f 6790 infrun_debug_printf ("no stepping, continue");
488f131b 6791 /* Likewise if we aren't even stepping. */
488f131b
JB
6792 keep_going (ecs);
6793 return;
6794 }
c5aa993b 6795
4b7703ad
JB
6796 /* Re-fetch current thread's frame in case the code above caused
6797 the frame cache to be re-initialized, making our FRAME variable
6798 a dangling pointer. */
6799 frame = get_current_frame ();
628fe4e4 6800 gdbarch = get_frame_arch (frame);
7e324e48 6801 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6802
488f131b 6803 /* If stepping through a line, keep going if still within it.
c906108c 6804
488f131b
JB
6805 Note that step_range_end is the address of the first instruction
6806 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6807 within it!
6808
6809 Note also that during reverse execution, we may be stepping
6810 through a function epilogue and therefore must detect when
6811 the current-frame changes in the middle of a line. */
6812
f2ffa92b
PA
6813 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6814 ecs->event_thread)
31410e84 6815 && (execution_direction != EXEC_REVERSE
388a8562 6816 || frame_id_eq (get_frame_id (frame),
16c381f0 6817 ecs->event_thread->control.step_frame_id)))
488f131b 6818 {
1eb8556f
SM
6819 infrun_debug_printf
6820 ("stepping inside range [%s-%s]",
6821 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6822 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6823
c1e36e3e
PA
6824 /* Tentatively re-enable range stepping; `resume' disables it if
6825 necessary (e.g., if we're stepping over a breakpoint or we
6826 have software watchpoints). */
6827 ecs->event_thread->control.may_range_step = 1;
6828
b2175913
MS
6829 /* When stepping backward, stop at beginning of line range
6830 (unless it's the function entry point, in which case
6831 keep going back to the call point). */
f2ffa92b 6832 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6833 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6834 && stop_pc != ecs->stop_func_start
6835 && execution_direction == EXEC_REVERSE)
bdc36728 6836 end_stepping_range (ecs);
b2175913
MS
6837 else
6838 keep_going (ecs);
6839
488f131b
JB
6840 return;
6841 }
c5aa993b 6842
488f131b 6843 /* We stepped out of the stepping range. */
c906108c 6844
488f131b 6845 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6846 loader dynamic symbol resolution code...
6847
6848 EXEC_FORWARD: we keep on single stepping until we exit the run
6849 time loader code and reach the callee's address.
6850
6851 EXEC_REVERSE: we've already executed the callee (backward), and
6852 the runtime loader code is handled just like any other
6853 undebuggable function call. Now we need only keep stepping
6854 backward through the trampoline code, and that's handled further
6855 down, so there is nothing for us to do here. */
6856
6857 if (execution_direction != EXEC_REVERSE
16c381f0 6858 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6859 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6860 {
4c8c40e6 6861 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6862 gdbarch_skip_solib_resolver (gdbarch,
6863 ecs->event_thread->suspend.stop_pc);
c906108c 6864
1eb8556f 6865 infrun_debug_printf ("stepped into dynsym resolve code");
527159b7 6866
488f131b
JB
6867 if (pc_after_resolver)
6868 {
6869 /* Set up a step-resume breakpoint at the address
6870 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6871 symtab_and_line sr_sal;
488f131b 6872 sr_sal.pc = pc_after_resolver;
6c95b8df 6873 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6874
a6d9a66e
UW
6875 insert_step_resume_breakpoint_at_sal (gdbarch,
6876 sr_sal, null_frame_id);
c5aa993b 6877 }
c906108c 6878
488f131b
JB
6879 keep_going (ecs);
6880 return;
6881 }
c906108c 6882
1d509aa6
MM
6883 /* Step through an indirect branch thunk. */
6884 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6885 && gdbarch_in_indirect_branch_thunk (gdbarch,
6886 ecs->event_thread->suspend.stop_pc))
1d509aa6 6887 {
1eb8556f 6888 infrun_debug_printf ("stepped into indirect branch thunk");
1d509aa6
MM
6889 keep_going (ecs);
6890 return;
6891 }
6892
16c381f0
JK
6893 if (ecs->event_thread->control.step_range_end != 1
6894 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6895 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6896 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6897 {
1eb8556f 6898 infrun_debug_printf ("stepped into signal trampoline");
42edda50 6899 /* The inferior, while doing a "step" or "next", has ended up in
dda83cd7
SM
6900 a signal trampoline (either by a signal being delivered or by
6901 the signal handler returning). Just single-step until the
6902 inferior leaves the trampoline (either by calling the handler
6903 or returning). */
488f131b
JB
6904 keep_going (ecs);
6905 return;
6906 }
c906108c 6907
14132e89
MR
6908 /* If we're in the return path from a shared library trampoline,
6909 we want to proceed through the trampoline when stepping. */
6910 /* macro/2012-04-25: This needs to come before the subroutine
6911 call check below as on some targets return trampolines look
6912 like subroutine calls (MIPS16 return thunks). */
6913 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6914 ecs->event_thread->suspend.stop_pc,
6915 ecs->stop_func_name)
14132e89
MR
6916 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6917 {
6918 /* Determine where this trampoline returns. */
f2ffa92b
PA
6919 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6920 CORE_ADDR real_stop_pc
6921 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6922
1eb8556f 6923 infrun_debug_printf ("stepped into solib return tramp");
14132e89
MR
6924
6925 /* Only proceed through if we know where it's going. */
6926 if (real_stop_pc)
6927 {
6928 /* And put the step-breakpoint there and go until there. */
51abb421 6929 symtab_and_line sr_sal;
14132e89
MR
6930 sr_sal.pc = real_stop_pc;
6931 sr_sal.section = find_pc_overlay (sr_sal.pc);
6932 sr_sal.pspace = get_frame_program_space (frame);
6933
6934 /* Do not specify what the fp should be when we stop since
6935 on some machines the prologue is where the new fp value
6936 is established. */
6937 insert_step_resume_breakpoint_at_sal (gdbarch,
6938 sr_sal, null_frame_id);
6939
6940 /* Restart without fiddling with the step ranges or
6941 other state. */
6942 keep_going (ecs);
6943 return;
6944 }
6945 }
6946
c17eaafe
DJ
6947 /* Check for subroutine calls. The check for the current frame
6948 equalling the step ID is not necessary - the check of the
6949 previous frame's ID is sufficient - but it is a common case and
6950 cheaper than checking the previous frame's ID.
14e60db5
DJ
6951
6952 NOTE: frame_id_eq will never report two invalid frame IDs as
6953 being equal, so to get into this block, both the current and
6954 previous frame must have valid frame IDs. */
005ca36a
JB
6955 /* The outer_frame_id check is a heuristic to detect stepping
6956 through startup code. If we step over an instruction which
6957 sets the stack pointer from an invalid value to a valid value,
6958 we may detect that as a subroutine call from the mythical
6959 "outermost" function. This could be fixed by marking
6960 outermost frames as !stack_p,code_p,special_p. Then the
6961 initial outermost frame, before sp was valid, would
ce6cca6d 6962 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6963 for more. */
edb3359d 6964 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6965 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6966 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6967 ecs->event_thread->control.step_stack_frame_id)
6968 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6969 outer_frame_id)
885eeb5b 6970 || (ecs->event_thread->control.step_start_function
f2ffa92b 6971 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6972 {
f2ffa92b 6973 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6974 CORE_ADDR real_stop_pc;
8fb3e588 6975
1eb8556f 6976 infrun_debug_printf ("stepped into subroutine");
527159b7 6977
b7a084be 6978 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6979 {
6980 /* I presume that step_over_calls is only 0 when we're
6981 supposed to be stepping at the assembly language level
6982 ("stepi"). Just stop. */
388a8562 6983 /* And this works the same backward as frontward. MVS */
bdc36728 6984 end_stepping_range (ecs);
95918acb
AC
6985 return;
6986 }
8fb3e588 6987
388a8562
MS
6988 /* Reverse stepping through solib trampolines. */
6989
6990 if (execution_direction == EXEC_REVERSE
16c381f0 6991 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6992 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6993 || (ecs->stop_func_start == 0
6994 && in_solib_dynsym_resolve_code (stop_pc))))
6995 {
6996 /* Any solib trampoline code can be handled in reverse
6997 by simply continuing to single-step. We have already
6998 executed the solib function (backwards), and a few
6999 steps will take us back through the trampoline to the
7000 caller. */
7001 keep_going (ecs);
7002 return;
7003 }
7004
16c381f0 7005 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 7006 {
b2175913
MS
7007 /* We're doing a "next".
7008
7009 Normal (forward) execution: set a breakpoint at the
7010 callee's return address (the address at which the caller
7011 will resume).
7012
7013 Reverse (backward) execution. set the step-resume
7014 breakpoint at the start of the function that we just
7015 stepped into (backwards), and continue to there. When we
6130d0b7 7016 get there, we'll need to single-step back to the caller. */
b2175913
MS
7017
7018 if (execution_direction == EXEC_REVERSE)
7019 {
acf9414f
JK
7020 /* If we're already at the start of the function, we've either
7021 just stepped backward into a single instruction function,
7022 or stepped back out of a signal handler to the first instruction
7023 of the function. Just keep going, which will single-step back
7024 to the caller. */
58c48e72 7025 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 7026 {
acf9414f 7027 /* Normal function call return (static or dynamic). */
51abb421 7028 symtab_and_line sr_sal;
acf9414f
JK
7029 sr_sal.pc = ecs->stop_func_start;
7030 sr_sal.pspace = get_frame_program_space (frame);
7031 insert_step_resume_breakpoint_at_sal (gdbarch,
7032 sr_sal, null_frame_id);
7033 }
b2175913
MS
7034 }
7035 else
568d6575 7036 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7037
8567c30f
AC
7038 keep_going (ecs);
7039 return;
7040 }
a53c66de 7041
95918acb 7042 /* If we are in a function call trampoline (a stub between the
dda83cd7
SM
7043 calling routine and the real function), locate the real
7044 function. That's what tells us (a) whether we want to step
7045 into it at all, and (b) what prologue we want to run to the
7046 end of, if we do step into it. */
568d6575 7047 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 7048 if (real_stop_pc == 0)
568d6575 7049 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
7050 if (real_stop_pc != 0)
7051 ecs->stop_func_start = real_stop_pc;
8fb3e588 7052
db5f024e 7053 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 7054 {
51abb421 7055 symtab_and_line sr_sal;
1b2bfbb9 7056 sr_sal.pc = ecs->stop_func_start;
6c95b8df 7057 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 7058
a6d9a66e
UW
7059 insert_step_resume_breakpoint_at_sal (gdbarch,
7060 sr_sal, null_frame_id);
8fb3e588
AC
7061 keep_going (ecs);
7062 return;
1b2bfbb9
RC
7063 }
7064
95918acb 7065 /* If we have line number information for the function we are
1bfeeb0f
JL
7066 thinking of stepping into and the function isn't on the skip
7067 list, step into it.
95918acb 7068
dda83cd7
SM
7069 If there are several symtabs at that PC (e.g. with include
7070 files), just want to know whether *any* of them have line
7071 numbers. find_pc_line handles this. */
95918acb
AC
7072 {
7073 struct symtab_and_line tmp_sal;
8fb3e588 7074
95918acb 7075 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 7076 if (tmp_sal.line != 0
85817405 7077 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
7078 tmp_sal)
7079 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 7080 {
b2175913 7081 if (execution_direction == EXEC_REVERSE)
568d6575 7082 handle_step_into_function_backward (gdbarch, ecs);
b2175913 7083 else
568d6575 7084 handle_step_into_function (gdbarch, ecs);
95918acb
AC
7085 return;
7086 }
7087 }
7088
7089 /* If we have no line number and the step-stop-if-no-debug is
dda83cd7
SM
7090 set, we stop the step so that the user has a chance to switch
7091 in assembly mode. */
16c381f0 7092 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 7093 && step_stop_if_no_debug)
95918acb 7094 {
bdc36728 7095 end_stepping_range (ecs);
95918acb
AC
7096 return;
7097 }
7098
b2175913
MS
7099 if (execution_direction == EXEC_REVERSE)
7100 {
acf9414f
JK
7101 /* If we're already at the start of the function, we've either just
7102 stepped backward into a single instruction function without line
7103 number info, or stepped back out of a signal handler to the first
7104 instruction of the function without line number info. Just keep
7105 going, which will single-step back to the caller. */
7106 if (ecs->stop_func_start != stop_pc)
7107 {
7108 /* Set a breakpoint at callee's start address.
7109 From there we can step once and be back in the caller. */
51abb421 7110 symtab_and_line sr_sal;
acf9414f
JK
7111 sr_sal.pc = ecs->stop_func_start;
7112 sr_sal.pspace = get_frame_program_space (frame);
7113 insert_step_resume_breakpoint_at_sal (gdbarch,
7114 sr_sal, null_frame_id);
7115 }
b2175913
MS
7116 }
7117 else
7118 /* Set a breakpoint at callee's return address (the address
7119 at which the caller will resume). */
568d6575 7120 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7121
95918acb 7122 keep_going (ecs);
488f131b 7123 return;
488f131b 7124 }
c906108c 7125
fdd654f3
MS
7126 /* Reverse stepping through solib trampolines. */
7127
7128 if (execution_direction == EXEC_REVERSE
16c381f0 7129 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7130 {
f2ffa92b
PA
7131 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7132
fdd654f3
MS
7133 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7134 || (ecs->stop_func_start == 0
7135 && in_solib_dynsym_resolve_code (stop_pc)))
7136 {
7137 /* Any solib trampoline code can be handled in reverse
7138 by simply continuing to single-step. We have already
7139 executed the solib function (backwards), and a few
7140 steps will take us back through the trampoline to the
7141 caller. */
7142 keep_going (ecs);
7143 return;
7144 }
7145 else if (in_solib_dynsym_resolve_code (stop_pc))
7146 {
7147 /* Stepped backward into the solib dynsym resolver.
7148 Set a breakpoint at its start and continue, then
7149 one more step will take us out. */
51abb421 7150 symtab_and_line sr_sal;
fdd654f3 7151 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7152 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7153 insert_step_resume_breakpoint_at_sal (gdbarch,
7154 sr_sal, null_frame_id);
7155 keep_going (ecs);
7156 return;
7157 }
7158 }
7159
8c95582d
AB
7160 /* This always returns the sal for the inner-most frame when we are in a
7161 stack of inlined frames, even if GDB actually believes that it is in a
7162 more outer frame. This is checked for below by calls to
7163 inline_skipped_frames. */
f2ffa92b 7164 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7165
1b2bfbb9
RC
7166 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7167 the trampoline processing logic, however, there are some trampolines
7168 that have no names, so we should do trampoline handling first. */
16c381f0 7169 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7170 && ecs->stop_func_name == NULL
2afb61aa 7171 && stop_pc_sal.line == 0)
1b2bfbb9 7172 {
1eb8556f 7173 infrun_debug_printf ("stepped into undebuggable function");
527159b7 7174
1b2bfbb9 7175 /* The inferior just stepped into, or returned to, an
dda83cd7
SM
7176 undebuggable function (where there is no debugging information
7177 and no line number corresponding to the address where the
7178 inferior stopped). Since we want to skip this kind of code,
7179 we keep going until the inferior returns from this
7180 function - unless the user has asked us not to (via
7181 set step-mode) or we no longer know how to get back
7182 to the call site. */
14e60db5 7183 if (step_stop_if_no_debug
c7ce8faa 7184 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7185 {
7186 /* If we have no line number and the step-stop-if-no-debug
7187 is set, we stop the step so that the user has a chance to
7188 switch in assembly mode. */
bdc36728 7189 end_stepping_range (ecs);
1b2bfbb9
RC
7190 return;
7191 }
7192 else
7193 {
7194 /* Set a breakpoint at callee's return address (the address
7195 at which the caller will resume). */
568d6575 7196 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7197 keep_going (ecs);
7198 return;
7199 }
7200 }
7201
16c381f0 7202 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7203 {
7204 /* It is stepi or nexti. We always want to stop stepping after
dda83cd7 7205 one instruction. */
1eb8556f 7206 infrun_debug_printf ("stepi/nexti");
bdc36728 7207 end_stepping_range (ecs);
1b2bfbb9
RC
7208 return;
7209 }
7210
2afb61aa 7211 if (stop_pc_sal.line == 0)
488f131b
JB
7212 {
7213 /* We have no line number information. That means to stop
dda83cd7
SM
7214 stepping (does this always happen right after one instruction,
7215 when we do "s" in a function with no line numbers,
7216 or can this happen as a result of a return or longjmp?). */
1eb8556f 7217 infrun_debug_printf ("line number info");
bdc36728 7218 end_stepping_range (ecs);
488f131b
JB
7219 return;
7220 }
c906108c 7221
edb3359d
DJ
7222 /* Look for "calls" to inlined functions, part one. If the inline
7223 frame machinery detected some skipped call sites, we have entered
7224 a new inline function. */
7225
7226 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7227 ecs->event_thread->control.step_frame_id)
00431a78 7228 && inline_skipped_frames (ecs->event_thread))
edb3359d 7229 {
1eb8556f 7230 infrun_debug_printf ("stepped into inlined function");
edb3359d 7231
51abb421 7232 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7233
16c381f0 7234 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7235 {
7236 /* For "step", we're going to stop. But if the call site
7237 for this inlined function is on the same source line as
7238 we were previously stepping, go down into the function
7239 first. Otherwise stop at the call site. */
7240
7241 if (call_sal.line == ecs->event_thread->current_line
7242 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7243 {
7244 step_into_inline_frame (ecs->event_thread);
7245 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7246 {
7247 keep_going (ecs);
7248 return;
7249 }
7250 }
edb3359d 7251
bdc36728 7252 end_stepping_range (ecs);
edb3359d
DJ
7253 return;
7254 }
7255 else
7256 {
7257 /* For "next", we should stop at the call site if it is on a
7258 different source line. Otherwise continue through the
7259 inlined function. */
7260 if (call_sal.line == ecs->event_thread->current_line
7261 && call_sal.symtab == ecs->event_thread->current_symtab)
7262 keep_going (ecs);
7263 else
bdc36728 7264 end_stepping_range (ecs);
edb3359d
DJ
7265 return;
7266 }
7267 }
7268
7269 /* Look for "calls" to inlined functions, part two. If we are still
7270 in the same real function we were stepping through, but we have
7271 to go further up to find the exact frame ID, we are stepping
7272 through a more inlined call beyond its call site. */
7273
7274 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7275 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7276 ecs->event_thread->control.step_frame_id)
edb3359d 7277 && stepped_in_from (get_current_frame (),
16c381f0 7278 ecs->event_thread->control.step_frame_id))
edb3359d 7279 {
1eb8556f 7280 infrun_debug_printf ("stepping through inlined function");
edb3359d 7281
4a4c04f1
BE
7282 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7283 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7284 keep_going (ecs);
7285 else
bdc36728 7286 end_stepping_range (ecs);
edb3359d
DJ
7287 return;
7288 }
7289
8c95582d 7290 bool refresh_step_info = true;
f2ffa92b 7291 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea 7292 && (ecs->event_thread->current_line != stop_pc_sal.line
24b21115 7293 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7294 {
ebde6f2d
TV
7295 /* We are at a different line. */
7296
8c95582d
AB
7297 if (stop_pc_sal.is_stmt)
7298 {
ebde6f2d
TV
7299 /* We are at the start of a statement.
7300
7301 So stop. Note that we don't stop if we step into the middle of a
7302 statement. That is said to make things like for (;;) statements
7303 work better. */
1eb8556f 7304 infrun_debug_printf ("stepped to a different line");
8c95582d
AB
7305 end_stepping_range (ecs);
7306 return;
7307 }
7308 else if (frame_id_eq (get_frame_id (get_current_frame ()),
ebde6f2d 7309 ecs->event_thread->control.step_frame_id))
8c95582d 7310 {
ebde6f2d
TV
7311 /* We are not at the start of a statement, and we have not changed
7312 frame.
7313
7314 We ignore this line table entry, and continue stepping forward,
8c95582d
AB
7315 looking for a better place to stop. */
7316 refresh_step_info = false;
1eb8556f
SM
7317 infrun_debug_printf ("stepped to a different line, but "
7318 "it's not the start of a statement");
8c95582d 7319 }
ebde6f2d
TV
7320 else
7321 {
7322 /* We are not the start of a statement, and we have changed frame.
7323
7324 We ignore this line table entry, and continue stepping forward,
7325 looking for a better place to stop. Keep refresh_step_info at
7326 true to note that the frame has changed, but ignore the line
7327 number to make sure we don't ignore a subsequent entry with the
7328 same line number. */
7329 stop_pc_sal.line = 0;
7330 infrun_debug_printf ("stepped to a different frame, but "
7331 "it's not the start of a statement");
7332 }
488f131b 7333 }
c906108c 7334
488f131b 7335 /* We aren't done stepping.
c906108c 7336
488f131b
JB
7337 Optimize by setting the stepping range to the line.
7338 (We might not be in the original line, but if we entered a
7339 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7340 things like for(;;) statements work better.)
7341
7342 If we entered a SAL that indicates a non-statement line table entry,
7343 then we update the stepping range, but we don't update the step info,
7344 which includes things like the line number we are stepping away from.
7345 This means we will stop when we find a line table entry that is marked
7346 as is-statement, even if it matches the non-statement one we just
7347 stepped into. */
c906108c 7348
16c381f0
JK
7349 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7350 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7351 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7352 if (refresh_step_info)
7353 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7354
1eb8556f 7355 infrun_debug_printf ("keep going");
488f131b 7356 keep_going (ecs);
104c1213
JM
7357}
7358
408f6686
PA
7359static bool restart_stepped_thread (process_stratum_target *resume_target,
7360 ptid_t resume_ptid);
7361
c447ac0b
PA
7362/* In all-stop mode, if we're currently stepping but have stopped in
7363 some other thread, we may need to switch back to the stepped
7364 thread. Returns true we set the inferior running, false if we left
7365 it stopped (and the event needs further processing). */
7366
c4464ade 7367static bool
c447ac0b
PA
7368switch_back_to_stepped_thread (struct execution_control_state *ecs)
7369{
fbea99ea 7370 if (!target_is_non_stop_p ())
c447ac0b 7371 {
99619bea
PA
7372 /* If any thread is blocked on some internal breakpoint, and we
7373 simply need to step over that breakpoint to get it going
7374 again, do that first. */
7375
7376 /* However, if we see an event for the stepping thread, then we
7377 know all other threads have been moved past their breakpoints
7378 already. Let the caller check whether the step is finished,
7379 etc., before deciding to move it past a breakpoint. */
7380 if (ecs->event_thread->control.step_range_end != 0)
c4464ade 7381 return false;
99619bea
PA
7382
7383 /* Check if the current thread is blocked on an incomplete
7384 step-over, interrupted by a random signal. */
7385 if (ecs->event_thread->control.trap_expected
7386 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7387 {
1eb8556f
SM
7388 infrun_debug_printf
7389 ("need to finish step-over of [%s]",
7390 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea 7391 keep_going (ecs);
c4464ade 7392 return true;
99619bea 7393 }
2adfaa28 7394
99619bea
PA
7395 /* Check if the current thread is blocked by a single-step
7396 breakpoint of another thread. */
7397 if (ecs->hit_singlestep_breakpoint)
7398 {
1eb8556f
SM
7399 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7400 target_pid_to_str (ecs->ptid).c_str ());
99619bea 7401 keep_going (ecs);
c4464ade 7402 return true;
99619bea
PA
7403 }
7404
4d9d9d04
PA
7405 /* If this thread needs yet another step-over (e.g., stepping
7406 through a delay slot), do it first before moving on to
7407 another thread. */
7408 if (thread_still_needs_step_over (ecs->event_thread))
7409 {
1eb8556f
SM
7410 infrun_debug_printf
7411 ("thread [%s] still needs step-over",
7412 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04 7413 keep_going (ecs);
c4464ade 7414 return true;
4d9d9d04 7415 }
70509625 7416
483805cf
PA
7417 /* If scheduler locking applies even if not stepping, there's no
7418 need to walk over threads. Above we've checked whether the
7419 current thread is stepping. If some other thread not the
7420 event thread is stepping, then it must be that scheduler
7421 locking is not in effect. */
856e7dd6 7422 if (schedlock_applies (ecs->event_thread))
c4464ade 7423 return false;
483805cf 7424
4d9d9d04
PA
7425 /* Otherwise, we no longer expect a trap in the current thread.
7426 Clear the trap_expected flag before switching back -- this is
7427 what keep_going does as well, if we call it. */
7428 ecs->event_thread->control.trap_expected = 0;
7429
7430 /* Likewise, clear the signal if it should not be passed. */
7431 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7432 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7433
408f6686 7434 if (restart_stepped_thread (ecs->target, ecs->ptid))
4d9d9d04
PA
7435 {
7436 prepare_to_wait (ecs);
c4464ade 7437 return true;
4d9d9d04
PA
7438 }
7439
408f6686
PA
7440 switch_to_thread (ecs->event_thread);
7441 }
4d9d9d04 7442
408f6686
PA
7443 return false;
7444}
f3f8ece4 7445
408f6686
PA
7446/* Look for the thread that was stepping, and resume it.
7447 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7448 is resuming. Return true if a thread was started, false
7449 otherwise. */
483805cf 7450
408f6686
PA
7451static bool
7452restart_stepped_thread (process_stratum_target *resume_target,
7453 ptid_t resume_ptid)
7454{
7455 /* Do all pending step-overs before actually proceeding with
7456 step/next/etc. */
7457 if (start_step_over ())
7458 return true;
483805cf 7459
408f6686
PA
7460 for (thread_info *tp : all_threads_safe ())
7461 {
7462 if (tp->state == THREAD_EXITED)
7463 continue;
7464
7465 if (tp->suspend.waitstatus_pending_p)
7466 continue;
483805cf 7467
408f6686
PA
7468 /* Ignore threads of processes the caller is not
7469 resuming. */
7470 if (!sched_multi
7471 && (tp->inf->process_target () != resume_target
7472 || tp->inf->pid != resume_ptid.pid ()))
7473 continue;
483805cf 7474
408f6686
PA
7475 if (tp->control.trap_expected)
7476 {
7477 infrun_debug_printf ("switching back to stepped thread (step-over)");
483805cf 7478
408f6686
PA
7479 if (keep_going_stepped_thread (tp))
7480 return true;
99619bea 7481 }
408f6686
PA
7482 }
7483
7484 for (thread_info *tp : all_threads_safe ())
7485 {
7486 if (tp->state == THREAD_EXITED)
7487 continue;
7488
7489 if (tp->suspend.waitstatus_pending_p)
7490 continue;
99619bea 7491
408f6686
PA
7492 /* Ignore threads of processes the caller is not
7493 resuming. */
7494 if (!sched_multi
7495 && (tp->inf->process_target () != resume_target
7496 || tp->inf->pid != resume_ptid.pid ()))
7497 continue;
7498
7499 /* Did we find the stepping thread? */
7500 if (tp->control.step_range_end)
99619bea 7501 {
408f6686 7502 infrun_debug_printf ("switching back to stepped thread (stepping)");
c447ac0b 7503
408f6686
PA
7504 if (keep_going_stepped_thread (tp))
7505 return true;
2ac7589c
PA
7506 }
7507 }
2adfaa28 7508
c4464ade 7509 return false;
2ac7589c 7510}
2adfaa28 7511
408f6686
PA
7512/* See infrun.h. */
7513
7514void
7515restart_after_all_stop_detach (process_stratum_target *proc_target)
7516{
7517 /* Note we don't check target_is_non_stop_p() here, because the
7518 current inferior may no longer have a process_stratum target
7519 pushed, as we just detached. */
7520
7521 /* See if we have a THREAD_RUNNING thread that need to be
7522 re-resumed. If we have any thread that is already executing,
7523 then we don't need to resume the target -- it is already been
7524 resumed. With the remote target (in all-stop), it's even
7525 impossible to issue another resumption if the target is already
7526 resumed, until the target reports a stop. */
7527 for (thread_info *thr : all_threads (proc_target))
7528 {
7529 if (thr->state != THREAD_RUNNING)
7530 continue;
7531
7532 /* If we have any thread that is already executing, then we
7533 don't need to resume the target -- it is already been
7534 resumed. */
7535 if (thr->executing)
7536 return;
7537
7538 /* If we have a pending event to process, skip resuming the
7539 target and go straight to processing it. */
7540 if (thr->resumed && thr->suspend.waitstatus_pending_p)
7541 return;
7542 }
7543
7544 /* Alright, we need to re-resume the target. If a thread was
7545 stepping, we need to restart it stepping. */
7546 if (restart_stepped_thread (proc_target, minus_one_ptid))
7547 return;
7548
7549 /* Otherwise, find the first THREAD_RUNNING thread and resume
7550 it. */
7551 for (thread_info *thr : all_threads (proc_target))
7552 {
7553 if (thr->state != THREAD_RUNNING)
7554 continue;
7555
7556 execution_control_state ecs;
7557 reset_ecs (&ecs, thr);
7558 switch_to_thread (thr);
7559 keep_going (&ecs);
7560 return;
7561 }
7562}
7563
2ac7589c
PA
7564/* Set a previously stepped thread back to stepping. Returns true on
7565 success, false if the resume is not possible (e.g., the thread
7566 vanished). */
7567
c4464ade 7568static bool
2ac7589c
PA
7569keep_going_stepped_thread (struct thread_info *tp)
7570{
7571 struct frame_info *frame;
2ac7589c
PA
7572 struct execution_control_state ecss;
7573 struct execution_control_state *ecs = &ecss;
2adfaa28 7574
2ac7589c
PA
7575 /* If the stepping thread exited, then don't try to switch back and
7576 resume it, which could fail in several different ways depending
7577 on the target. Instead, just keep going.
2adfaa28 7578
2ac7589c
PA
7579 We can find a stepping dead thread in the thread list in two
7580 cases:
2adfaa28 7581
2ac7589c
PA
7582 - The target supports thread exit events, and when the target
7583 tries to delete the thread from the thread list, inferior_ptid
7584 pointed at the exiting thread. In such case, calling
7585 delete_thread does not really remove the thread from the list;
7586 instead, the thread is left listed, with 'exited' state.
64ce06e4 7587
2ac7589c
PA
7588 - The target's debug interface does not support thread exit
7589 events, and so we have no idea whatsoever if the previously
7590 stepping thread is still alive. For that reason, we need to
7591 synchronously query the target now. */
2adfaa28 7592
00431a78 7593 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7594 {
1eb8556f
SM
7595 infrun_debug_printf ("not resuming previously stepped thread, it has "
7596 "vanished");
2ac7589c 7597
00431a78 7598 delete_thread (tp);
c4464ade 7599 return false;
c447ac0b 7600 }
2ac7589c 7601
1eb8556f 7602 infrun_debug_printf ("resuming previously stepped thread");
2ac7589c
PA
7603
7604 reset_ecs (ecs, tp);
00431a78 7605 switch_to_thread (tp);
2ac7589c 7606
f2ffa92b 7607 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7608 frame = get_current_frame ();
2ac7589c
PA
7609
7610 /* If the PC of the thread we were trying to single-step has
7611 changed, then that thread has trapped or been signaled, but the
7612 event has not been reported to GDB yet. Re-poll the target
7613 looking for this particular thread's event (i.e. temporarily
7614 enable schedlock) by:
7615
7616 - setting a break at the current PC
7617 - resuming that particular thread, only (by setting trap
7618 expected)
7619
7620 This prevents us continuously moving the single-step breakpoint
7621 forward, one instruction at a time, overstepping. */
7622
f2ffa92b 7623 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7624 {
7625 ptid_t resume_ptid;
7626
1eb8556f
SM
7627 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7628 paddress (target_gdbarch (), tp->prev_pc),
7629 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7630
7631 /* Clear the info of the previous step-over, as it's no longer
7632 valid (if the thread was trying to step over a breakpoint, it
7633 has already succeeded). It's what keep_going would do too,
7634 if we called it. Do this before trying to insert the sss
7635 breakpoint, otherwise if we were previously trying to step
7636 over this exact address in another thread, the breakpoint is
7637 skipped. */
7638 clear_step_over_info ();
7639 tp->control.trap_expected = 0;
7640
7641 insert_single_step_breakpoint (get_frame_arch (frame),
7642 get_frame_address_space (frame),
f2ffa92b 7643 tp->suspend.stop_pc);
2ac7589c 7644
719546c4 7645 tp->resumed = true;
fbea99ea 7646 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
c4464ade 7647 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2ac7589c
PA
7648 }
7649 else
7650 {
1eb8556f 7651 infrun_debug_printf ("expected thread still hasn't advanced");
2ac7589c
PA
7652
7653 keep_going_pass_signal (ecs);
7654 }
c4464ade
SM
7655
7656 return true;
c447ac0b
PA
7657}
7658
8b061563
PA
7659/* Is thread TP in the middle of (software or hardware)
7660 single-stepping? (Note the result of this function must never be
7661 passed directly as target_resume's STEP parameter.) */
104c1213 7662
c4464ade 7663static bool
b3444185 7664currently_stepping (struct thread_info *tp)
a7212384 7665{
8358c15c
JK
7666 return ((tp->control.step_range_end
7667 && tp->control.step_resume_breakpoint == NULL)
7668 || tp->control.trap_expected
af48d08f 7669 || tp->stepped_breakpoint
8358c15c 7670 || bpstat_should_step ());
a7212384
UW
7671}
7672
b2175913
MS
7673/* Inferior has stepped into a subroutine call with source code that
7674 we should not step over. Do step to the first line of code in
7675 it. */
c2c6d25f
JM
7676
7677static void
568d6575
UW
7678handle_step_into_function (struct gdbarch *gdbarch,
7679 struct execution_control_state *ecs)
c2c6d25f 7680{
7e324e48
GB
7681 fill_in_stop_func (gdbarch, ecs);
7682
f2ffa92b
PA
7683 compunit_symtab *cust
7684 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7685 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7686 ecs->stop_func_start
7687 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7688
51abb421 7689 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7690 /* Use the step_resume_break to step until the end of the prologue,
7691 even if that involves jumps (as it seems to on the vax under
7692 4.2). */
7693 /* If the prologue ends in the middle of a source line, continue to
7694 the end of that source line (if it is still within the function).
7695 Otherwise, just go to end of prologue. */
2afb61aa
PA
7696 if (stop_func_sal.end
7697 && stop_func_sal.pc != ecs->stop_func_start
7698 && stop_func_sal.end < ecs->stop_func_end)
7699 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7700
2dbd5e30
KB
7701 /* Architectures which require breakpoint adjustment might not be able
7702 to place a breakpoint at the computed address. If so, the test
7703 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7704 ecs->stop_func_start to an address at which a breakpoint may be
7705 legitimately placed.
8fb3e588 7706
2dbd5e30
KB
7707 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7708 made, GDB will enter an infinite loop when stepping through
7709 optimized code consisting of VLIW instructions which contain
7710 subinstructions corresponding to different source lines. On
7711 FR-V, it's not permitted to place a breakpoint on any but the
7712 first subinstruction of a VLIW instruction. When a breakpoint is
7713 set, GDB will adjust the breakpoint address to the beginning of
7714 the VLIW instruction. Thus, we need to make the corresponding
7715 adjustment here when computing the stop address. */
8fb3e588 7716
568d6575 7717 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7718 {
7719 ecs->stop_func_start
568d6575 7720 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7721 ecs->stop_func_start);
2dbd5e30
KB
7722 }
7723
f2ffa92b 7724 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7725 {
7726 /* We are already there: stop now. */
bdc36728 7727 end_stepping_range (ecs);
c2c6d25f
JM
7728 return;
7729 }
7730 else
7731 {
7732 /* Put the step-breakpoint there and go until there. */
51abb421 7733 symtab_and_line sr_sal;
c2c6d25f
JM
7734 sr_sal.pc = ecs->stop_func_start;
7735 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7736 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7737
c2c6d25f 7738 /* Do not specify what the fp should be when we stop since on
dda83cd7
SM
7739 some machines the prologue is where the new fp value is
7740 established. */
a6d9a66e 7741 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7742
7743 /* And make sure stepping stops right away then. */
16c381f0 7744 ecs->event_thread->control.step_range_end
dda83cd7 7745 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7746 }
7747 keep_going (ecs);
7748}
d4f3574e 7749
b2175913
MS
7750/* Inferior has stepped backward into a subroutine call with source
7751 code that we should not step over. Do step to the beginning of the
7752 last line of code in it. */
7753
7754static void
568d6575
UW
7755handle_step_into_function_backward (struct gdbarch *gdbarch,
7756 struct execution_control_state *ecs)
b2175913 7757{
43f3e411 7758 struct compunit_symtab *cust;
167e4384 7759 struct symtab_and_line stop_func_sal;
b2175913 7760
7e324e48
GB
7761 fill_in_stop_func (gdbarch, ecs);
7762
f2ffa92b 7763 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7764 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7765 ecs->stop_func_start
7766 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7767
f2ffa92b 7768 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7769
7770 /* OK, we're just going to keep stepping here. */
f2ffa92b 7771 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7772 {
7773 /* We're there already. Just stop stepping now. */
bdc36728 7774 end_stepping_range (ecs);
b2175913
MS
7775 }
7776 else
7777 {
7778 /* Else just reset the step range and keep going.
7779 No step-resume breakpoint, they don't work for
7780 epilogues, which can have multiple entry paths. */
16c381f0
JK
7781 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7782 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7783 keep_going (ecs);
7784 }
7785 return;
7786}
7787
d3169d93 7788/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7789 This is used to both functions and to skip over code. */
7790
7791static void
2c03e5be
PA
7792insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7793 struct symtab_and_line sr_sal,
7794 struct frame_id sr_id,
7795 enum bptype sr_type)
44cbf7b5 7796{
611c83ae
PA
7797 /* There should never be more than one step-resume or longjmp-resume
7798 breakpoint per thread, so we should never be setting a new
44cbf7b5 7799 step_resume_breakpoint when one is already active. */
8358c15c 7800 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7801 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7802
1eb8556f
SM
7803 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7804 paddress (gdbarch, sr_sal.pc));
d3169d93 7805
8358c15c 7806 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7807 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7808}
7809
9da8c2a0 7810void
2c03e5be
PA
7811insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7812 struct symtab_and_line sr_sal,
7813 struct frame_id sr_id)
7814{
7815 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7816 sr_sal, sr_id,
7817 bp_step_resume);
44cbf7b5 7818}
7ce450bd 7819
2c03e5be
PA
7820/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7821 This is used to skip a potential signal handler.
7ce450bd 7822
14e60db5
DJ
7823 This is called with the interrupted function's frame. The signal
7824 handler, when it returns, will resume the interrupted function at
7825 RETURN_FRAME.pc. */
d303a6c7
AC
7826
7827static void
2c03e5be 7828insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7829{
f4c1edd8 7830 gdb_assert (return_frame != NULL);
d303a6c7 7831
51abb421
PA
7832 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7833
7834 symtab_and_line sr_sal;
568d6575 7835 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7836 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7837 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7838
2c03e5be
PA
7839 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7840 get_stack_frame_id (return_frame),
7841 bp_hp_step_resume);
d303a6c7
AC
7842}
7843
2c03e5be
PA
7844/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7845 is used to skip a function after stepping into it (for "next" or if
7846 the called function has no debugging information).
14e60db5
DJ
7847
7848 The current function has almost always been reached by single
7849 stepping a call or return instruction. NEXT_FRAME belongs to the
7850 current function, and the breakpoint will be set at the caller's
7851 resume address.
7852
7853 This is a separate function rather than reusing
2c03e5be 7854 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7855 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7856 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7857
7858static void
7859insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7860{
14e60db5
DJ
7861 /* We shouldn't have gotten here if we don't know where the call site
7862 is. */
c7ce8faa 7863 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7864
51abb421 7865 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7866
51abb421 7867 symtab_and_line sr_sal;
c7ce8faa
DJ
7868 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7869 frame_unwind_caller_pc (next_frame));
14e60db5 7870 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7871 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7872
a6d9a66e 7873 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7874 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7875}
7876
611c83ae
PA
7877/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7878 new breakpoint at the target of a jmp_buf. The handling of
7879 longjmp-resume uses the same mechanisms used for handling
7880 "step-resume" breakpoints. */
7881
7882static void
a6d9a66e 7883insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7884{
e81a37f7
TT
7885 /* There should never be more than one longjmp-resume breakpoint per
7886 thread, so we should never be setting a new
611c83ae 7887 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7888 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7889
1eb8556f
SM
7890 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7891 paddress (gdbarch, pc));
611c83ae 7892
e81a37f7 7893 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7894 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7895}
7896
186c406b
TT
7897/* Insert an exception resume breakpoint. TP is the thread throwing
7898 the exception. The block B is the block of the unwinder debug hook
7899 function. FRAME is the frame corresponding to the call to this
7900 function. SYM is the symbol of the function argument holding the
7901 target PC of the exception. */
7902
7903static void
7904insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7905 const struct block *b,
186c406b
TT
7906 struct frame_info *frame,
7907 struct symbol *sym)
7908{
a70b8144 7909 try
186c406b 7910 {
63e43d3a 7911 struct block_symbol vsym;
186c406b
TT
7912 struct value *value;
7913 CORE_ADDR handler;
7914 struct breakpoint *bp;
7915
987012b8 7916 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7917 b, VAR_DOMAIN);
63e43d3a 7918 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7919 /* If the value was optimized out, revert to the old behavior. */
7920 if (! value_optimized_out (value))
7921 {
7922 handler = value_as_address (value);
7923
1eb8556f
SM
7924 infrun_debug_printf ("exception resume at %lx",
7925 (unsigned long) handler);
186c406b
TT
7926
7927 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7928 handler,
7929 bp_exception_resume).release ();
c70a6932
JK
7930
7931 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7932 frame = NULL;
7933
5d5658a1 7934 bp->thread = tp->global_num;
186c406b
TT
7935 inferior_thread ()->control.exception_resume_breakpoint = bp;
7936 }
7937 }
230d2906 7938 catch (const gdb_exception_error &e)
492d29ea
PA
7939 {
7940 /* We want to ignore errors here. */
7941 }
186c406b
TT
7942}
7943
28106bc2
SDJ
7944/* A helper for check_exception_resume that sets an
7945 exception-breakpoint based on a SystemTap probe. */
7946
7947static void
7948insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7949 const struct bound_probe *probe,
28106bc2
SDJ
7950 struct frame_info *frame)
7951{
7952 struct value *arg_value;
7953 CORE_ADDR handler;
7954 struct breakpoint *bp;
7955
7956 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7957 if (!arg_value)
7958 return;
7959
7960 handler = value_as_address (arg_value);
7961
1eb8556f
SM
7962 infrun_debug_printf ("exception resume at %s",
7963 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7964
7965 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7966 handler, bp_exception_resume).release ();
5d5658a1 7967 bp->thread = tp->global_num;
28106bc2
SDJ
7968 inferior_thread ()->control.exception_resume_breakpoint = bp;
7969}
7970
186c406b
TT
7971/* This is called when an exception has been intercepted. Check to
7972 see whether the exception's destination is of interest, and if so,
7973 set an exception resume breakpoint there. */
7974
7975static void
7976check_exception_resume (struct execution_control_state *ecs,
28106bc2 7977 struct frame_info *frame)
186c406b 7978{
729662a5 7979 struct bound_probe probe;
28106bc2
SDJ
7980 struct symbol *func;
7981
7982 /* First see if this exception unwinding breakpoint was set via a
7983 SystemTap probe point. If so, the probe has two arguments: the
7984 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7985 set a breakpoint there. */
6bac7473 7986 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7987 if (probe.prob)
28106bc2 7988 {
729662a5 7989 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7990 return;
7991 }
7992
7993 func = get_frame_function (frame);
7994 if (!func)
7995 return;
186c406b 7996
a70b8144 7997 try
186c406b 7998 {
3977b71f 7999 const struct block *b;
8157b174 8000 struct block_iterator iter;
186c406b
TT
8001 struct symbol *sym;
8002 int argno = 0;
8003
8004 /* The exception breakpoint is a thread-specific breakpoint on
8005 the unwinder's debug hook, declared as:
8006
8007 void _Unwind_DebugHook (void *cfa, void *handler);
8008
8009 The CFA argument indicates the frame to which control is
8010 about to be transferred. HANDLER is the destination PC.
8011
8012 We ignore the CFA and set a temporary breakpoint at HANDLER.
8013 This is not extremely efficient but it avoids issues in gdb
8014 with computing the DWARF CFA, and it also works even in weird
8015 cases such as throwing an exception from inside a signal
8016 handler. */
8017
8018 b = SYMBOL_BLOCK_VALUE (func);
8019 ALL_BLOCK_SYMBOLS (b, iter, sym)
8020 {
8021 if (!SYMBOL_IS_ARGUMENT (sym))
8022 continue;
8023
8024 if (argno == 0)
8025 ++argno;
8026 else
8027 {
8028 insert_exception_resume_breakpoint (ecs->event_thread,
8029 b, frame, sym);
8030 break;
8031 }
8032 }
8033 }
230d2906 8034 catch (const gdb_exception_error &e)
492d29ea
PA
8035 {
8036 }
186c406b
TT
8037}
8038
104c1213 8039static void
22bcd14b 8040stop_waiting (struct execution_control_state *ecs)
104c1213 8041{
1eb8556f 8042 infrun_debug_printf ("stop_waiting");
527159b7 8043
cd0fc7c3
SS
8044 /* Let callers know we don't want to wait for the inferior anymore. */
8045 ecs->wait_some_more = 0;
fbea99ea 8046
53cccef1 8047 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 8048 threads now that we're presenting the stop to the user. */
53cccef1 8049 if (!non_stop && exists_non_stop_target ())
3cebef98 8050 stop_all_threads ("presenting stop to user in all-stop");
cd0fc7c3
SS
8051}
8052
4d9d9d04
PA
8053/* Like keep_going, but passes the signal to the inferior, even if the
8054 signal is set to nopass. */
d4f3574e
SS
8055
8056static void
4d9d9d04 8057keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 8058{
d7e15655 8059 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 8060 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 8061
d4f3574e 8062 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 8063 ecs->event_thread->prev_pc
fc75c28b 8064 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 8065
4d9d9d04 8066 if (ecs->event_thread->control.trap_expected)
d4f3574e 8067 {
4d9d9d04
PA
8068 struct thread_info *tp = ecs->event_thread;
8069
1eb8556f
SM
8070 infrun_debug_printf ("%s has trap_expected set, "
8071 "resuming to collect trap",
8072 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 8073
a9ba6bae
PA
8074 /* We haven't yet gotten our trap, and either: intercepted a
8075 non-signal event (e.g., a fork); or took a signal which we
8076 are supposed to pass through to the inferior. Simply
8077 continue. */
64ce06e4 8078 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 8079 }
372316f1
PA
8080 else if (step_over_info_valid_p ())
8081 {
8082 /* Another thread is stepping over a breakpoint in-line. If
8083 this thread needs a step-over too, queue the request. In
8084 either case, this resume must be deferred for later. */
8085 struct thread_info *tp = ecs->event_thread;
8086
8087 if (ecs->hit_singlestep_breakpoint
8088 || thread_still_needs_step_over (tp))
8089 {
1eb8556f
SM
8090 infrun_debug_printf ("step-over already in progress: "
8091 "step-over for %s deferred",
8092 target_pid_to_str (tp->ptid).c_str ());
28d5518b 8093 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
8094 }
8095 else
8096 {
1eb8556f
SM
8097 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8098 target_pid_to_str (tp->ptid).c_str ());
372316f1 8099 }
372316f1 8100 }
d4f3574e
SS
8101 else
8102 {
31e77af2 8103 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
8104 int remove_bp;
8105 int remove_wps;
8d297bbf 8106 step_over_what step_what;
31e77af2 8107
d4f3574e 8108 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
8109 anyway (if we got a signal, the user asked it be passed to
8110 the child)
8111 -- or --
8112 We got our expected trap, but decided we should resume from
8113 it.
d4f3574e 8114
a9ba6bae 8115 We're going to run this baby now!
d4f3574e 8116
c36b740a
VP
8117 Note that insert_breakpoints won't try to re-insert
8118 already inserted breakpoints. Therefore, we don't
8119 care if breakpoints were already inserted, or not. */
a9ba6bae 8120
31e77af2
PA
8121 /* If we need to step over a breakpoint, and we're not using
8122 displaced stepping to do so, insert all breakpoints
8123 (watchpoints, etc.) but the one we're stepping over, step one
8124 instruction, and then re-insert the breakpoint when that step
8125 is finished. */
963f9c80 8126
6c4cfb24
PA
8127 step_what = thread_still_needs_step_over (ecs->event_thread);
8128
963f9c80 8129 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8130 || (step_what & STEP_OVER_BREAKPOINT));
8131 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8132
cb71640d
PA
8133 /* We can't use displaced stepping if we need to step past a
8134 watchpoint. The instruction copied to the scratch pad would
8135 still trigger the watchpoint. */
8136 if (remove_bp
3fc8eb30 8137 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8138 {
a01bda52 8139 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8140 regcache_read_pc (regcache), remove_wps,
8141 ecs->event_thread->global_num);
45e8c884 8142 }
963f9c80 8143 else if (remove_wps)
21edc42f 8144 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8145
8146 /* If we now need to do an in-line step-over, we need to stop
8147 all other threads. Note this must be done before
8148 insert_breakpoints below, because that removes the breakpoint
8149 we're about to step over, otherwise other threads could miss
8150 it. */
fbea99ea 8151 if (step_over_info_valid_p () && target_is_non_stop_p ())
3cebef98 8152 stop_all_threads ("starting in-line step-over");
abbb1732 8153
31e77af2 8154 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8155 try
31e77af2
PA
8156 {
8157 insert_breakpoints ();
8158 }
230d2906 8159 catch (const gdb_exception_error &e)
31e77af2
PA
8160 {
8161 exception_print (gdb_stderr, e);
22bcd14b 8162 stop_waiting (ecs);
bdf2a94a 8163 clear_step_over_info ();
31e77af2 8164 return;
d4f3574e
SS
8165 }
8166
963f9c80 8167 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8168
64ce06e4 8169 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8170 }
8171
488f131b 8172 prepare_to_wait (ecs);
d4f3574e
SS
8173}
8174
4d9d9d04
PA
8175/* Called when we should continue running the inferior, because the
8176 current event doesn't cause a user visible stop. This does the
8177 resuming part; waiting for the next event is done elsewhere. */
8178
8179static void
8180keep_going (struct execution_control_state *ecs)
8181{
8182 if (ecs->event_thread->control.trap_expected
8183 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8184 ecs->event_thread->control.trap_expected = 0;
8185
8186 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8187 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8188 keep_going_pass_signal (ecs);
8189}
8190
104c1213
JM
8191/* This function normally comes after a resume, before
8192 handle_inferior_event exits. It takes care of any last bits of
8193 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8194
104c1213
JM
8195static void
8196prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8197{
1eb8556f 8198 infrun_debug_printf ("prepare_to_wait");
104c1213 8199
104c1213 8200 ecs->wait_some_more = 1;
0b333c5e 8201
42bd97a6
PA
8202 /* If the target can't async, emulate it by marking the infrun event
8203 handler such that as soon as we get back to the event-loop, we
8204 immediately end up in fetch_inferior_event again calling
8205 target_wait. */
8206 if (!target_can_async_p ())
0b333c5e 8207 mark_infrun_async_event_handler ();
c906108c 8208}
11cf8741 8209
fd664c91 8210/* We are done with the step range of a step/next/si/ni command.
b57bacec 8211 Called once for each n of a "step n" operation. */
fd664c91
PA
8212
8213static void
bdc36728 8214end_stepping_range (struct execution_control_state *ecs)
fd664c91 8215{
bdc36728 8216 ecs->event_thread->control.stop_step = 1;
bdc36728 8217 stop_waiting (ecs);
fd664c91
PA
8218}
8219
33d62d64
JK
8220/* Several print_*_reason functions to print why the inferior has stopped.
8221 We always print something when the inferior exits, or receives a signal.
8222 The rest of the cases are dealt with later on in normal_stop and
8223 print_it_typical. Ideally there should be a call to one of these
8224 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8225 stop_waiting is called.
33d62d64 8226
fd664c91
PA
8227 Note that we don't call these directly, instead we delegate that to
8228 the interpreters, through observers. Interpreters then call these
8229 with whatever uiout is right. */
33d62d64 8230
fd664c91
PA
8231void
8232print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8233{
fd664c91 8234 /* For CLI-like interpreters, print nothing. */
33d62d64 8235
112e8700 8236 if (uiout->is_mi_like_p ())
fd664c91 8237 {
112e8700 8238 uiout->field_string ("reason",
fd664c91
PA
8239 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8240 }
8241}
33d62d64 8242
fd664c91
PA
8243void
8244print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8245{
33d62d64 8246 annotate_signalled ();
112e8700
SM
8247 if (uiout->is_mi_like_p ())
8248 uiout->field_string
8249 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8250 uiout->text ("\nProgram terminated with signal ");
33d62d64 8251 annotate_signal_name ();
112e8700 8252 uiout->field_string ("signal-name",
2ea28649 8253 gdb_signal_to_name (siggnal));
33d62d64 8254 annotate_signal_name_end ();
112e8700 8255 uiout->text (", ");
33d62d64 8256 annotate_signal_string ();
112e8700 8257 uiout->field_string ("signal-meaning",
2ea28649 8258 gdb_signal_to_string (siggnal));
33d62d64 8259 annotate_signal_string_end ();
112e8700
SM
8260 uiout->text (".\n");
8261 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8262}
8263
fd664c91
PA
8264void
8265print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8266{
fda326dd 8267 struct inferior *inf = current_inferior ();
a068643d 8268 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8269
33d62d64
JK
8270 annotate_exited (exitstatus);
8271 if (exitstatus)
8272 {
112e8700
SM
8273 if (uiout->is_mi_like_p ())
8274 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8275 std::string exit_code_str
8276 = string_printf ("0%o", (unsigned int) exitstatus);
8277 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8278 plongest (inf->num), pidstr.c_str (),
8279 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8280 }
8281 else
11cf8741 8282 {
112e8700
SM
8283 if (uiout->is_mi_like_p ())
8284 uiout->field_string
8285 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8286 uiout->message ("[Inferior %s (%s) exited normally]\n",
8287 plongest (inf->num), pidstr.c_str ());
33d62d64 8288 }
33d62d64
JK
8289}
8290
fd664c91
PA
8291void
8292print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8293{
f303dbd6
PA
8294 struct thread_info *thr = inferior_thread ();
8295
33d62d64
JK
8296 annotate_signal ();
8297
112e8700 8298 if (uiout->is_mi_like_p ())
f303dbd6
PA
8299 ;
8300 else if (show_thread_that_caused_stop ())
33d62d64 8301 {
f303dbd6 8302 const char *name;
33d62d64 8303
112e8700 8304 uiout->text ("\nThread ");
33eca680 8305 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8306
8307 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8308 if (name != NULL)
8309 {
112e8700 8310 uiout->text (" \"");
33eca680 8311 uiout->field_string ("name", name);
112e8700 8312 uiout->text ("\"");
f303dbd6 8313 }
33d62d64 8314 }
f303dbd6 8315 else
112e8700 8316 uiout->text ("\nProgram");
f303dbd6 8317
112e8700
SM
8318 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8319 uiout->text (" stopped");
33d62d64
JK
8320 else
8321 {
112e8700 8322 uiout->text (" received signal ");
8b93c638 8323 annotate_signal_name ();
112e8700
SM
8324 if (uiout->is_mi_like_p ())
8325 uiout->field_string
8326 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8327 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8328 annotate_signal_name_end ();
112e8700 8329 uiout->text (", ");
8b93c638 8330 annotate_signal_string ();
112e8700 8331 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21 8332
272bb05c
JB
8333 struct regcache *regcache = get_current_regcache ();
8334 struct gdbarch *gdbarch = regcache->arch ();
8335 if (gdbarch_report_signal_info_p (gdbarch))
8336 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8337
8b93c638 8338 annotate_signal_string_end ();
33d62d64 8339 }
112e8700 8340 uiout->text (".\n");
33d62d64 8341}
252fbfc8 8342
fd664c91
PA
8343void
8344print_no_history_reason (struct ui_out *uiout)
33d62d64 8345{
112e8700 8346 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8347}
43ff13b4 8348
0c7e1a46
PA
8349/* Print current location without a level number, if we have changed
8350 functions or hit a breakpoint. Print source line if we have one.
8351 bpstat_print contains the logic deciding in detail what to print,
8352 based on the event(s) that just occurred. */
8353
243a9253
PA
8354static void
8355print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8356{
8357 int bpstat_ret;
f486487f 8358 enum print_what source_flag;
0c7e1a46
PA
8359 int do_frame_printing = 1;
8360 struct thread_info *tp = inferior_thread ();
8361
8362 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8363 switch (bpstat_ret)
8364 {
8365 case PRINT_UNKNOWN:
8366 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8367 should) carry around the function and does (or should) use
8368 that when doing a frame comparison. */
8369 if (tp->control.stop_step
8370 && frame_id_eq (tp->control.step_frame_id,
8371 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8372 && (tp->control.step_start_function
8373 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8374 {
8375 /* Finished step, just print source line. */
8376 source_flag = SRC_LINE;
8377 }
8378 else
8379 {
8380 /* Print location and source line. */
8381 source_flag = SRC_AND_LOC;
8382 }
8383 break;
8384 case PRINT_SRC_AND_LOC:
8385 /* Print location and source line. */
8386 source_flag = SRC_AND_LOC;
8387 break;
8388 case PRINT_SRC_ONLY:
8389 source_flag = SRC_LINE;
8390 break;
8391 case PRINT_NOTHING:
8392 /* Something bogus. */
8393 source_flag = SRC_LINE;
8394 do_frame_printing = 0;
8395 break;
8396 default:
8397 internal_error (__FILE__, __LINE__, _("Unknown value."));
8398 }
8399
8400 /* The behavior of this routine with respect to the source
8401 flag is:
8402 SRC_LINE: Print only source line
8403 LOCATION: Print only location
8404 SRC_AND_LOC: Print location and source line. */
8405 if (do_frame_printing)
8406 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8407}
8408
243a9253
PA
8409/* See infrun.h. */
8410
8411void
4c7d57e7 8412print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8413{
243a9253 8414 struct target_waitstatus last;
243a9253
PA
8415 struct thread_info *tp;
8416
5b6d1e4f 8417 get_last_target_status (nullptr, nullptr, &last);
243a9253 8418
67ad9399
TT
8419 {
8420 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8421
67ad9399 8422 print_stop_location (&last);
243a9253 8423
67ad9399 8424 /* Display the auto-display expressions. */
4c7d57e7
TT
8425 if (displays)
8426 do_displays ();
67ad9399 8427 }
243a9253
PA
8428
8429 tp = inferior_thread ();
8430 if (tp->thread_fsm != NULL
46e3ed7f 8431 && tp->thread_fsm->finished_p ())
243a9253
PA
8432 {
8433 struct return_value_info *rv;
8434
46e3ed7f 8435 rv = tp->thread_fsm->return_value ();
243a9253
PA
8436 if (rv != NULL)
8437 print_return_value (uiout, rv);
8438 }
0c7e1a46
PA
8439}
8440
388a7084
PA
8441/* See infrun.h. */
8442
8443void
8444maybe_remove_breakpoints (void)
8445{
55f6301a 8446 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
388a7084
PA
8447 {
8448 if (remove_breakpoints ())
8449 {
223ffa71 8450 target_terminal::ours_for_output ();
388a7084
PA
8451 printf_filtered (_("Cannot remove breakpoints because "
8452 "program is no longer writable.\nFurther "
8453 "execution is probably impossible.\n"));
8454 }
8455 }
8456}
8457
4c2f2a79
PA
8458/* The execution context that just caused a normal stop. */
8459
8460struct stop_context
8461{
2d844eaf 8462 stop_context ();
2d844eaf
TT
8463
8464 DISABLE_COPY_AND_ASSIGN (stop_context);
8465
8466 bool changed () const;
8467
4c2f2a79
PA
8468 /* The stop ID. */
8469 ULONGEST stop_id;
c906108c 8470
4c2f2a79 8471 /* The event PTID. */
c906108c 8472
4c2f2a79
PA
8473 ptid_t ptid;
8474
8475 /* If stopp for a thread event, this is the thread that caused the
8476 stop. */
d634cd0b 8477 thread_info_ref thread;
4c2f2a79
PA
8478
8479 /* The inferior that caused the stop. */
8480 int inf_num;
8481};
8482
2d844eaf 8483/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8484 takes a strong reference to the thread. */
8485
2d844eaf 8486stop_context::stop_context ()
4c2f2a79 8487{
2d844eaf
TT
8488 stop_id = get_stop_id ();
8489 ptid = inferior_ptid;
8490 inf_num = current_inferior ()->num;
4c2f2a79 8491
d7e15655 8492 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8493 {
8494 /* Take a strong reference so that the thread can't be deleted
8495 yet. */
d634cd0b 8496 thread = thread_info_ref::new_reference (inferior_thread ());
4c2f2a79 8497 }
4c2f2a79
PA
8498}
8499
8500/* Return true if the current context no longer matches the saved stop
8501 context. */
8502
2d844eaf
TT
8503bool
8504stop_context::changed () const
8505{
8506 if (ptid != inferior_ptid)
8507 return true;
8508 if (inf_num != current_inferior ()->num)
8509 return true;
8510 if (thread != NULL && thread->state != THREAD_STOPPED)
8511 return true;
8512 if (get_stop_id () != stop_id)
8513 return true;
8514 return false;
4c2f2a79
PA
8515}
8516
8517/* See infrun.h. */
8518
8519int
96baa820 8520normal_stop (void)
c906108c 8521{
73b65bb0 8522 struct target_waitstatus last;
73b65bb0 8523
5b6d1e4f 8524 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8525
4c2f2a79
PA
8526 new_stop_id ();
8527
29f49a6a
PA
8528 /* If an exception is thrown from this point on, make sure to
8529 propagate GDB's knowledge of the executing state to the
8530 frontend/user running state. A QUIT is an easy exception to see
8531 here, so do this before any filtered output. */
731f534f 8532
5b6d1e4f 8533 ptid_t finish_ptid = null_ptid;
731f534f 8534
c35b1492 8535 if (!non_stop)
5b6d1e4f 8536 finish_ptid = minus_one_ptid;
e1316e60
PA
8537 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8538 || last.kind == TARGET_WAITKIND_EXITED)
8539 {
8540 /* On some targets, we may still have live threads in the
8541 inferior when we get a process exit event. E.g., for
8542 "checkpoint", when the current checkpoint/fork exits,
8543 linux-fork.c automatically switches to another fork from
8544 within target_mourn_inferior. */
731f534f 8545 if (inferior_ptid != null_ptid)
5b6d1e4f 8546 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8547 }
8548 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8549 finish_ptid = inferior_ptid;
8550
8551 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8552 if (finish_ptid != null_ptid)
8553 {
8554 maybe_finish_thread_state.emplace
8555 (user_visible_resume_target (finish_ptid), finish_ptid);
8556 }
29f49a6a 8557
b57bacec
PA
8558 /* As we're presenting a stop, and potentially removing breakpoints,
8559 update the thread list so we can tell whether there are threads
8560 running on the target. With target remote, for example, we can
8561 only learn about new threads when we explicitly update the thread
8562 list. Do this before notifying the interpreters about signal
8563 stops, end of stepping ranges, etc., so that the "new thread"
8564 output is emitted before e.g., "Program received signal FOO",
8565 instead of after. */
8566 update_thread_list ();
8567
8568 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8569 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8570
c906108c
SS
8571 /* As with the notification of thread events, we want to delay
8572 notifying the user that we've switched thread context until
8573 the inferior actually stops.
8574
73b65bb0
DJ
8575 There's no point in saying anything if the inferior has exited.
8576 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8577 "received a signal".
8578
8579 Also skip saying anything in non-stop mode. In that mode, as we
8580 don't want GDB to switch threads behind the user's back, to avoid
8581 races where the user is typing a command to apply to thread x,
8582 but GDB switches to thread y before the user finishes entering
8583 the command, fetch_inferior_event installs a cleanup to restore
8584 the current thread back to the thread the user had selected right
8585 after this event is handled, so we're not really switching, only
8586 informing of a stop. */
4f8d22e3 8587 if (!non_stop
731f534f 8588 && previous_inferior_ptid != inferior_ptid
55f6301a 8589 && target_has_execution ()
73b65bb0 8590 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8591 && last.kind != TARGET_WAITKIND_EXITED
8592 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8593 {
0e454242 8594 SWITCH_THRU_ALL_UIS ()
3b12939d 8595 {
223ffa71 8596 target_terminal::ours_for_output ();
3b12939d 8597 printf_filtered (_("[Switching to %s]\n"),
a068643d 8598 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8599 annotate_thread_changed ();
8600 }
39f77062 8601 previous_inferior_ptid = inferior_ptid;
c906108c 8602 }
c906108c 8603
0e5bf2a8
PA
8604 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8605 {
0e454242 8606 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8607 if (current_ui->prompt_state == PROMPT_BLOCKED)
8608 {
223ffa71 8609 target_terminal::ours_for_output ();
3b12939d
PA
8610 printf_filtered (_("No unwaited-for children left.\n"));
8611 }
0e5bf2a8
PA
8612 }
8613
b57bacec 8614 /* Note: this depends on the update_thread_list call above. */
388a7084 8615 maybe_remove_breakpoints ();
c906108c 8616
c906108c
SS
8617 /* If an auto-display called a function and that got a signal,
8618 delete that auto-display to avoid an infinite recursion. */
8619
8620 if (stopped_by_random_signal)
8621 disable_current_display ();
8622
0e454242 8623 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8624 {
8625 async_enable_stdin ();
8626 }
c906108c 8627
388a7084 8628 /* Let the user/frontend see the threads as stopped. */
731f534f 8629 maybe_finish_thread_state.reset ();
388a7084
PA
8630
8631 /* Select innermost stack frame - i.e., current frame is frame 0,
8632 and current location is based on that. Handle the case where the
8633 dummy call is returning after being stopped. E.g. the dummy call
8634 previously hit a breakpoint. (If the dummy call returns
8635 normally, we won't reach here.) Do this before the stop hook is
8636 run, so that it doesn't get to see the temporary dummy frame,
8637 which is not where we'll present the stop. */
8638 if (has_stack_frames ())
8639 {
8640 if (stop_stack_dummy == STOP_STACK_DUMMY)
8641 {
8642 /* Pop the empty frame that contains the stack dummy. This
8643 also restores inferior state prior to the call (struct
8644 infcall_suspend_state). */
8645 struct frame_info *frame = get_current_frame ();
8646
8647 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8648 frame_pop (frame);
8649 /* frame_pop calls reinit_frame_cache as the last thing it
8650 does which means there's now no selected frame. */
8651 }
8652
8653 select_frame (get_current_frame ());
8654
8655 /* Set the current source location. */
8656 set_current_sal_from_frame (get_current_frame ());
8657 }
dd7e2d2b
PA
8658
8659 /* Look up the hook_stop and run it (CLI internally handles problem
8660 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8661 if (stop_command != NULL)
8662 {
2d844eaf 8663 stop_context saved_context;
4c2f2a79 8664
a70b8144 8665 try
bf469271
PA
8666 {
8667 execute_cmd_pre_hook (stop_command);
8668 }
230d2906 8669 catch (const gdb_exception &ex)
bf469271
PA
8670 {
8671 exception_fprintf (gdb_stderr, ex,
8672 "Error while running hook_stop:\n");
8673 }
4c2f2a79
PA
8674
8675 /* If the stop hook resumes the target, then there's no point in
8676 trying to notify about the previous stop; its context is
8677 gone. Likewise if the command switches thread or inferior --
8678 the observers would print a stop for the wrong
8679 thread/inferior. */
2d844eaf
TT
8680 if (saved_context.changed ())
8681 return 1;
4c2f2a79 8682 }
dd7e2d2b 8683
388a7084
PA
8684 /* Notify observers about the stop. This is where the interpreters
8685 print the stop event. */
d7e15655 8686 if (inferior_ptid != null_ptid)
76727919 8687 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
24a7f1b5 8688 stop_print_frame);
388a7084 8689 else
76727919 8690 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8691
243a9253
PA
8692 annotate_stopped ();
8693
55f6301a 8694 if (target_has_execution ())
48844aa6
PA
8695 {
8696 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8697 && last.kind != TARGET_WAITKIND_EXITED
8698 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8699 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8700 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8701 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8702 }
6c95b8df
PA
8703
8704 /* Try to get rid of automatically added inferiors that are no
8705 longer needed. Keeping those around slows down things linearly.
8706 Note that this never removes the current inferior. */
8707 prune_inferiors ();
4c2f2a79
PA
8708
8709 return 0;
c906108c 8710}
c906108c 8711\f
c5aa993b 8712int
96baa820 8713signal_stop_state (int signo)
c906108c 8714{
d6b48e9c 8715 return signal_stop[signo];
c906108c
SS
8716}
8717
c5aa993b 8718int
96baa820 8719signal_print_state (int signo)
c906108c
SS
8720{
8721 return signal_print[signo];
8722}
8723
c5aa993b 8724int
96baa820 8725signal_pass_state (int signo)
c906108c
SS
8726{
8727 return signal_program[signo];
8728}
8729
2455069d
UW
8730static void
8731signal_cache_update (int signo)
8732{
8733 if (signo == -1)
8734 {
a493e3e2 8735 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8736 signal_cache_update (signo);
8737
8738 return;
8739 }
8740
8741 signal_pass[signo] = (signal_stop[signo] == 0
8742 && signal_print[signo] == 0
ab04a2af
TT
8743 && signal_program[signo] == 1
8744 && signal_catch[signo] == 0);
2455069d
UW
8745}
8746
488f131b 8747int
7bda5e4a 8748signal_stop_update (int signo, int state)
d4f3574e
SS
8749{
8750 int ret = signal_stop[signo];
abbb1732 8751
d4f3574e 8752 signal_stop[signo] = state;
2455069d 8753 signal_cache_update (signo);
d4f3574e
SS
8754 return ret;
8755}
8756
488f131b 8757int
7bda5e4a 8758signal_print_update (int signo, int state)
d4f3574e
SS
8759{
8760 int ret = signal_print[signo];
abbb1732 8761
d4f3574e 8762 signal_print[signo] = state;
2455069d 8763 signal_cache_update (signo);
d4f3574e
SS
8764 return ret;
8765}
8766
488f131b 8767int
7bda5e4a 8768signal_pass_update (int signo, int state)
d4f3574e
SS
8769{
8770 int ret = signal_program[signo];
abbb1732 8771
d4f3574e 8772 signal_program[signo] = state;
2455069d 8773 signal_cache_update (signo);
d4f3574e
SS
8774 return ret;
8775}
8776
ab04a2af
TT
8777/* Update the global 'signal_catch' from INFO and notify the
8778 target. */
8779
8780void
8781signal_catch_update (const unsigned int *info)
8782{
8783 int i;
8784
8785 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8786 signal_catch[i] = info[i] > 0;
8787 signal_cache_update (-1);
adc6a863 8788 target_pass_signals (signal_pass);
ab04a2af
TT
8789}
8790
c906108c 8791static void
96baa820 8792sig_print_header (void)
c906108c 8793{
3e43a32a
MS
8794 printf_filtered (_("Signal Stop\tPrint\tPass "
8795 "to program\tDescription\n"));
c906108c
SS
8796}
8797
8798static void
2ea28649 8799sig_print_info (enum gdb_signal oursig)
c906108c 8800{
2ea28649 8801 const char *name = gdb_signal_to_name (oursig);
c906108c 8802 int name_padding = 13 - strlen (name);
96baa820 8803
c906108c
SS
8804 if (name_padding <= 0)
8805 name_padding = 0;
8806
8807 printf_filtered ("%s", name);
488f131b 8808 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8809 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8810 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8811 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8812 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8813}
8814
8815/* Specify how various signals in the inferior should be handled. */
8816
8817static void
0b39b52e 8818handle_command (const char *args, int from_tty)
c906108c 8819{
c906108c 8820 int digits, wordlen;
b926417a 8821 int sigfirst, siglast;
2ea28649 8822 enum gdb_signal oursig;
c906108c 8823 int allsigs;
c906108c
SS
8824
8825 if (args == NULL)
8826 {
e2e0b3e5 8827 error_no_arg (_("signal to handle"));
c906108c
SS
8828 }
8829
1777feb0 8830 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8831
adc6a863
PA
8832 const size_t nsigs = GDB_SIGNAL_LAST;
8833 unsigned char sigs[nsigs] {};
c906108c 8834
1777feb0 8835 /* Break the command line up into args. */
c906108c 8836
773a1edc 8837 gdb_argv built_argv (args);
c906108c
SS
8838
8839 /* Walk through the args, looking for signal oursigs, signal names, and
8840 actions. Signal numbers and signal names may be interspersed with
8841 actions, with the actions being performed for all signals cumulatively
1777feb0 8842 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8843
773a1edc 8844 for (char *arg : built_argv)
c906108c 8845 {
773a1edc
TT
8846 wordlen = strlen (arg);
8847 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8848 {;
8849 }
8850 allsigs = 0;
8851 sigfirst = siglast = -1;
8852
773a1edc 8853 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8854 {
8855 /* Apply action to all signals except those used by the
1777feb0 8856 debugger. Silently skip those. */
c906108c
SS
8857 allsigs = 1;
8858 sigfirst = 0;
8859 siglast = nsigs - 1;
8860 }
773a1edc 8861 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8862 {
8863 SET_SIGS (nsigs, sigs, signal_stop);
8864 SET_SIGS (nsigs, sigs, signal_print);
8865 }
773a1edc 8866 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8867 {
8868 UNSET_SIGS (nsigs, sigs, signal_program);
8869 }
773a1edc 8870 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8871 {
8872 SET_SIGS (nsigs, sigs, signal_print);
8873 }
773a1edc 8874 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8875 {
8876 SET_SIGS (nsigs, sigs, signal_program);
8877 }
773a1edc 8878 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8879 {
8880 UNSET_SIGS (nsigs, sigs, signal_stop);
8881 }
773a1edc 8882 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8883 {
8884 SET_SIGS (nsigs, sigs, signal_program);
8885 }
773a1edc 8886 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8887 {
8888 UNSET_SIGS (nsigs, sigs, signal_print);
8889 UNSET_SIGS (nsigs, sigs, signal_stop);
8890 }
773a1edc 8891 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8892 {
8893 UNSET_SIGS (nsigs, sigs, signal_program);
8894 }
8895 else if (digits > 0)
8896 {
8897 /* It is numeric. The numeric signal refers to our own
8898 internal signal numbering from target.h, not to host/target
8899 signal number. This is a feature; users really should be
8900 using symbolic names anyway, and the common ones like
8901 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8902
8903 sigfirst = siglast = (int)
773a1edc
TT
8904 gdb_signal_from_command (atoi (arg));
8905 if (arg[digits] == '-')
c906108c
SS
8906 {
8907 siglast = (int)
773a1edc 8908 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8909 }
8910 if (sigfirst > siglast)
8911 {
1777feb0 8912 /* Bet he didn't figure we'd think of this case... */
b926417a 8913 std::swap (sigfirst, siglast);
c906108c
SS
8914 }
8915 }
8916 else
8917 {
773a1edc 8918 oursig = gdb_signal_from_name (arg);
a493e3e2 8919 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8920 {
8921 sigfirst = siglast = (int) oursig;
8922 }
8923 else
8924 {
8925 /* Not a number and not a recognized flag word => complain. */
773a1edc 8926 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8927 }
8928 }
8929
8930 /* If any signal numbers or symbol names were found, set flags for
dda83cd7 8931 which signals to apply actions to. */
c906108c 8932
b926417a 8933 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8934 {
2ea28649 8935 switch ((enum gdb_signal) signum)
c906108c 8936 {
a493e3e2
PA
8937 case GDB_SIGNAL_TRAP:
8938 case GDB_SIGNAL_INT:
c906108c
SS
8939 if (!allsigs && !sigs[signum])
8940 {
9e2f0ad4 8941 if (query (_("%s is used by the debugger.\n\
3e43a32a 8942Are you sure you want to change it? "),
2ea28649 8943 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8944 {
8945 sigs[signum] = 1;
8946 }
8947 else
c119e040 8948 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8949 }
8950 break;
a493e3e2
PA
8951 case GDB_SIGNAL_0:
8952 case GDB_SIGNAL_DEFAULT:
8953 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8954 /* Make sure that "all" doesn't print these. */
8955 break;
8956 default:
8957 sigs[signum] = 1;
8958 break;
8959 }
8960 }
c906108c
SS
8961 }
8962
b926417a 8963 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8964 if (sigs[signum])
8965 {
2455069d 8966 signal_cache_update (-1);
adc6a863
PA
8967 target_pass_signals (signal_pass);
8968 target_program_signals (signal_program);
c906108c 8969
3a031f65
PA
8970 if (from_tty)
8971 {
8972 /* Show the results. */
8973 sig_print_header ();
8974 for (; signum < nsigs; signum++)
8975 if (sigs[signum])
aead7601 8976 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8977 }
8978
8979 break;
8980 }
c906108c
SS
8981}
8982
de0bea00
MF
8983/* Complete the "handle" command. */
8984
eb3ff9a5 8985static void
de0bea00 8986handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8987 completion_tracker &tracker,
6f937416 8988 const char *text, const char *word)
de0bea00 8989{
de0bea00
MF
8990 static const char * const keywords[] =
8991 {
8992 "all",
8993 "stop",
8994 "ignore",
8995 "print",
8996 "pass",
8997 "nostop",
8998 "noignore",
8999 "noprint",
9000 "nopass",
9001 NULL,
9002 };
9003
eb3ff9a5
PA
9004 signal_completer (ignore, tracker, text, word);
9005 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
9006}
9007
2ea28649
PA
9008enum gdb_signal
9009gdb_signal_from_command (int num)
ed01b82c
PA
9010{
9011 if (num >= 1 && num <= 15)
2ea28649 9012 return (enum gdb_signal) num;
ed01b82c
PA
9013 error (_("Only signals 1-15 are valid as numeric signals.\n\
9014Use \"info signals\" for a list of symbolic signals."));
9015}
9016
c906108c
SS
9017/* Print current contents of the tables set by the handle command.
9018 It is possible we should just be printing signals actually used
9019 by the current target (but for things to work right when switching
9020 targets, all signals should be in the signal tables). */
9021
9022static void
1d12d88f 9023info_signals_command (const char *signum_exp, int from_tty)
c906108c 9024{
2ea28649 9025 enum gdb_signal oursig;
abbb1732 9026
c906108c
SS
9027 sig_print_header ();
9028
9029 if (signum_exp)
9030 {
9031 /* First see if this is a symbol name. */
2ea28649 9032 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 9033 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
9034 {
9035 /* No, try numeric. */
9036 oursig =
2ea28649 9037 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
9038 }
9039 sig_print_info (oursig);
9040 return;
9041 }
9042
9043 printf_filtered ("\n");
9044 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
9045 for (oursig = GDB_SIGNAL_FIRST;
9046 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 9047 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
9048 {
9049 QUIT;
9050
a493e3e2
PA
9051 if (oursig != GDB_SIGNAL_UNKNOWN
9052 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
9053 sig_print_info (oursig);
9054 }
9055
3e43a32a
MS
9056 printf_filtered (_("\nUse the \"handle\" command "
9057 "to change these tables.\n"));
c906108c 9058}
4aa995e1
PA
9059
9060/* The $_siginfo convenience variable is a bit special. We don't know
9061 for sure the type of the value until we actually have a chance to
7a9dd1b2 9062 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
9063 also dependent on which thread you have selected.
9064
9065 1. making $_siginfo be an internalvar that creates a new value on
9066 access.
9067
9068 2. making the value of $_siginfo be an lval_computed value. */
9069
9070/* This function implements the lval_computed support for reading a
9071 $_siginfo value. */
9072
9073static void
9074siginfo_value_read (struct value *v)
9075{
9076 LONGEST transferred;
9077
a911d87a
PA
9078 /* If we can access registers, so can we access $_siginfo. Likewise
9079 vice versa. */
9080 validate_registers_access ();
c709acd1 9081
4aa995e1 9082 transferred =
328d42d8
SM
9083 target_read (current_inferior ()->top_target (),
9084 TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
9085 NULL,
9086 value_contents_all_raw (v),
9087 value_offset (v),
9088 TYPE_LENGTH (value_type (v)));
9089
9090 if (transferred != TYPE_LENGTH (value_type (v)))
9091 error (_("Unable to read siginfo"));
9092}
9093
9094/* This function implements the lval_computed support for writing a
9095 $_siginfo value. */
9096
9097static void
9098siginfo_value_write (struct value *v, struct value *fromval)
9099{
9100 LONGEST transferred;
9101
a911d87a
PA
9102 /* If we can access registers, so can we access $_siginfo. Likewise
9103 vice versa. */
9104 validate_registers_access ();
c709acd1 9105
328d42d8 9106 transferred = target_write (current_inferior ()->top_target (),
4aa995e1
PA
9107 TARGET_OBJECT_SIGNAL_INFO,
9108 NULL,
9109 value_contents_all_raw (fromval),
9110 value_offset (v),
9111 TYPE_LENGTH (value_type (fromval)));
9112
9113 if (transferred != TYPE_LENGTH (value_type (fromval)))
9114 error (_("Unable to write siginfo"));
9115}
9116
c8f2448a 9117static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9118 {
9119 siginfo_value_read,
9120 siginfo_value_write
9121 };
9122
9123/* Return a new value with the correct type for the siginfo object of
78267919
UW
9124 the current thread using architecture GDBARCH. Return a void value
9125 if there's no object available. */
4aa995e1 9126
2c0b251b 9127static struct value *
22d2b532
SDJ
9128siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9129 void *ignore)
4aa995e1 9130{
841de120 9131 if (target_has_stack ()
d7e15655 9132 && inferior_ptid != null_ptid
78267919 9133 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9134 {
78267919 9135 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9136
78267919 9137 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9138 }
9139
78267919 9140 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9141}
9142
c906108c 9143\f
16c381f0
JK
9144/* infcall_suspend_state contains state about the program itself like its
9145 registers and any signal it received when it last stopped.
9146 This state must be restored regardless of how the inferior function call
9147 ends (either successfully, or after it hits a breakpoint or signal)
9148 if the program is to properly continue where it left off. */
9149
6bf78e29 9150class infcall_suspend_state
7a292a7a 9151{
6bf78e29
AB
9152public:
9153 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9154 once the inferior function call has finished. */
9155 infcall_suspend_state (struct gdbarch *gdbarch,
dda83cd7
SM
9156 const struct thread_info *tp,
9157 struct regcache *regcache)
6bf78e29
AB
9158 : m_thread_suspend (tp->suspend),
9159 m_registers (new readonly_detached_regcache (*regcache))
9160 {
9161 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9162
9163 if (gdbarch_get_siginfo_type_p (gdbarch))
9164 {
dda83cd7
SM
9165 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9166 size_t len = TYPE_LENGTH (type);
6bf78e29 9167
dda83cd7 9168 siginfo_data.reset ((gdb_byte *) xmalloc (len));
6bf78e29 9169
328d42d8
SM
9170 if (target_read (current_inferior ()->top_target (),
9171 TARGET_OBJECT_SIGNAL_INFO, NULL,
dda83cd7
SM
9172 siginfo_data.get (), 0, len) != len)
9173 {
9174 /* Errors ignored. */
9175 siginfo_data.reset (nullptr);
9176 }
6bf78e29
AB
9177 }
9178
9179 if (siginfo_data)
9180 {
dda83cd7
SM
9181 m_siginfo_gdbarch = gdbarch;
9182 m_siginfo_data = std::move (siginfo_data);
6bf78e29
AB
9183 }
9184 }
9185
9186 /* Return a pointer to the stored register state. */
16c381f0 9187
6bf78e29
AB
9188 readonly_detached_regcache *registers () const
9189 {
9190 return m_registers.get ();
9191 }
9192
9193 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9194
9195 void restore (struct gdbarch *gdbarch,
dda83cd7
SM
9196 struct thread_info *tp,
9197 struct regcache *regcache) const
6bf78e29
AB
9198 {
9199 tp->suspend = m_thread_suspend;
9200
9201 if (m_siginfo_gdbarch == gdbarch)
9202 {
dda83cd7 9203 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6bf78e29 9204
dda83cd7 9205 /* Errors ignored. */
328d42d8
SM
9206 target_write (current_inferior ()->top_target (),
9207 TARGET_OBJECT_SIGNAL_INFO, NULL,
dda83cd7 9208 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
6bf78e29
AB
9209 }
9210
9211 /* The inferior can be gone if the user types "print exit(0)"
9212 (and perhaps other times). */
55f6301a 9213 if (target_has_execution ())
6bf78e29
AB
9214 /* NB: The register write goes through to the target. */
9215 regcache->restore (registers ());
9216 }
9217
9218private:
9219 /* How the current thread stopped before the inferior function call was
9220 executed. */
9221 struct thread_suspend_state m_thread_suspend;
9222
9223 /* The registers before the inferior function call was executed. */
9224 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9225
35515841 9226 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9227 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9228
9229 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9230 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9231 content would be invalid. */
6bf78e29 9232 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9233};
9234
cb524840
TT
9235infcall_suspend_state_up
9236save_infcall_suspend_state ()
b89667eb 9237{
b89667eb 9238 struct thread_info *tp = inferior_thread ();
1736ad11 9239 struct regcache *regcache = get_current_regcache ();
ac7936df 9240 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9241
6bf78e29
AB
9242 infcall_suspend_state_up inf_state
9243 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9244
6bf78e29
AB
9245 /* Having saved the current state, adjust the thread state, discarding
9246 any stop signal information. The stop signal is not useful when
9247 starting an inferior function call, and run_inferior_call will not use
9248 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9249 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9250
b89667eb
DE
9251 return inf_state;
9252}
9253
9254/* Restore inferior session state to INF_STATE. */
9255
9256void
16c381f0 9257restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9258{
9259 struct thread_info *tp = inferior_thread ();
1736ad11 9260 struct regcache *regcache = get_current_regcache ();
ac7936df 9261 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9262
6bf78e29 9263 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9264 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9265}
9266
b89667eb 9267void
16c381f0 9268discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9269{
dd848631 9270 delete inf_state;
b89667eb
DE
9271}
9272
daf6667d 9273readonly_detached_regcache *
16c381f0 9274get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9275{
6bf78e29 9276 return inf_state->registers ();
b89667eb
DE
9277}
9278
16c381f0
JK
9279/* infcall_control_state contains state regarding gdb's control of the
9280 inferior itself like stepping control. It also contains session state like
9281 the user's currently selected frame. */
b89667eb 9282
16c381f0 9283struct infcall_control_state
b89667eb 9284{
16c381f0
JK
9285 struct thread_control_state thread_control;
9286 struct inferior_control_state inferior_control;
d82142e2
JK
9287
9288 /* Other fields: */
ee841dd8
TT
9289 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9290 int stopped_by_random_signal = 0;
7a292a7a 9291
79952e69
PA
9292 /* ID and level of the selected frame when the inferior function
9293 call was made. */
ee841dd8 9294 struct frame_id selected_frame_id {};
79952e69 9295 int selected_frame_level = -1;
7a292a7a
SS
9296};
9297
c906108c 9298/* Save all of the information associated with the inferior<==>gdb
b89667eb 9299 connection. */
c906108c 9300
cb524840
TT
9301infcall_control_state_up
9302save_infcall_control_state ()
c906108c 9303{
cb524840 9304 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9305 struct thread_info *tp = inferior_thread ();
d6b48e9c 9306 struct inferior *inf = current_inferior ();
7a292a7a 9307
16c381f0
JK
9308 inf_status->thread_control = tp->control;
9309 inf_status->inferior_control = inf->control;
d82142e2 9310
8358c15c 9311 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9312 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9313
16c381f0
JK
9314 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9315 chain. If caller's caller is walking the chain, they'll be happier if we
9316 hand them back the original chain when restore_infcall_control_state is
9317 called. */
9318 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9319
9320 /* Other fields: */
9321 inf_status->stop_stack_dummy = stop_stack_dummy;
9322 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9323
79952e69
PA
9324 save_selected_frame (&inf_status->selected_frame_id,
9325 &inf_status->selected_frame_level);
b89667eb 9326
7a292a7a 9327 return inf_status;
c906108c
SS
9328}
9329
b89667eb
DE
9330/* Restore inferior session state to INF_STATUS. */
9331
c906108c 9332void
16c381f0 9333restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9334{
4e1c45ea 9335 struct thread_info *tp = inferior_thread ();
d6b48e9c 9336 struct inferior *inf = current_inferior ();
4e1c45ea 9337
8358c15c
JK
9338 if (tp->control.step_resume_breakpoint)
9339 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9340
5b79abe7
TT
9341 if (tp->control.exception_resume_breakpoint)
9342 tp->control.exception_resume_breakpoint->disposition
9343 = disp_del_at_next_stop;
9344
d82142e2 9345 /* Handle the bpstat_copy of the chain. */
16c381f0 9346 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9347
16c381f0
JK
9348 tp->control = inf_status->thread_control;
9349 inf->control = inf_status->inferior_control;
d82142e2
JK
9350
9351 /* Other fields: */
9352 stop_stack_dummy = inf_status->stop_stack_dummy;
9353 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9354
841de120 9355 if (target_has_stack ())
c906108c 9356 {
79952e69
PA
9357 restore_selected_frame (inf_status->selected_frame_id,
9358 inf_status->selected_frame_level);
c906108c 9359 }
c906108c 9360
ee841dd8 9361 delete inf_status;
7a292a7a 9362}
c906108c
SS
9363
9364void
16c381f0 9365discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9366{
8358c15c
JK
9367 if (inf_status->thread_control.step_resume_breakpoint)
9368 inf_status->thread_control.step_resume_breakpoint->disposition
9369 = disp_del_at_next_stop;
9370
5b79abe7
TT
9371 if (inf_status->thread_control.exception_resume_breakpoint)
9372 inf_status->thread_control.exception_resume_breakpoint->disposition
9373 = disp_del_at_next_stop;
9374
1777feb0 9375 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9376 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9377
ee841dd8 9378 delete inf_status;
7a292a7a 9379}
b89667eb 9380\f
7f89fd65 9381/* See infrun.h. */
0c557179
SDJ
9382
9383void
9384clear_exit_convenience_vars (void)
9385{
9386 clear_internalvar (lookup_internalvar ("_exitsignal"));
9387 clear_internalvar (lookup_internalvar ("_exitcode"));
9388}
c5aa993b 9389\f
488f131b 9390
b2175913
MS
9391/* User interface for reverse debugging:
9392 Set exec-direction / show exec-direction commands
9393 (returns error unless target implements to_set_exec_direction method). */
9394
170742de 9395enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9396static const char exec_forward[] = "forward";
9397static const char exec_reverse[] = "reverse";
9398static const char *exec_direction = exec_forward;
40478521 9399static const char *const exec_direction_names[] = {
b2175913
MS
9400 exec_forward,
9401 exec_reverse,
9402 NULL
9403};
9404
9405static void
eb4c3f4a 9406set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9407 struct cmd_list_element *cmd)
9408{
05374cfd 9409 if (target_can_execute_reverse ())
b2175913
MS
9410 {
9411 if (!strcmp (exec_direction, exec_forward))
9412 execution_direction = EXEC_FORWARD;
9413 else if (!strcmp (exec_direction, exec_reverse))
9414 execution_direction = EXEC_REVERSE;
9415 }
8bbed405
MS
9416 else
9417 {
9418 exec_direction = exec_forward;
9419 error (_("Target does not support this operation."));
9420 }
b2175913
MS
9421}
9422
9423static void
9424show_exec_direction_func (struct ui_file *out, int from_tty,
9425 struct cmd_list_element *cmd, const char *value)
9426{
9427 switch (execution_direction) {
9428 case EXEC_FORWARD:
9429 fprintf_filtered (out, _("Forward.\n"));
9430 break;
9431 case EXEC_REVERSE:
9432 fprintf_filtered (out, _("Reverse.\n"));
9433 break;
b2175913 9434 default:
d8b34453
PA
9435 internal_error (__FILE__, __LINE__,
9436 _("bogus execution_direction value: %d"),
9437 (int) execution_direction);
b2175913
MS
9438 }
9439}
9440
d4db2f36
PA
9441static void
9442show_schedule_multiple (struct ui_file *file, int from_tty,
9443 struct cmd_list_element *c, const char *value)
9444{
3e43a32a
MS
9445 fprintf_filtered (file, _("Resuming the execution of threads "
9446 "of all processes is %s.\n"), value);
d4db2f36 9447}
ad52ddc6 9448
22d2b532
SDJ
9449/* Implementation of `siginfo' variable. */
9450
9451static const struct internalvar_funcs siginfo_funcs =
9452{
9453 siginfo_make_value,
9454 NULL,
9455 NULL
9456};
9457
372316f1
PA
9458/* Callback for infrun's target events source. This is marked when a
9459 thread has a pending status to process. */
9460
9461static void
9462infrun_async_inferior_event_handler (gdb_client_data data)
9463{
6b36ddeb 9464 clear_async_event_handler (infrun_async_inferior_event_token);
b1a35af2 9465 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9466}
9467
8087c3fa 9468#if GDB_SELF_TEST
b161a60d
SM
9469namespace selftests
9470{
9471
9472/* Verify that when two threads with the same ptid exist (from two different
9473 targets) and one of them changes ptid, we only update inferior_ptid if
9474 it is appropriate. */
9475
9476static void
9477infrun_thread_ptid_changed ()
9478{
9479 gdbarch *arch = current_inferior ()->gdbarch;
9480
9481 /* The thread which inferior_ptid represents changes ptid. */
9482 {
9483 scoped_restore_current_pspace_and_thread restore;
9484
9485 scoped_mock_context<test_target_ops> target1 (arch);
9486 scoped_mock_context<test_target_ops> target2 (arch);
9487 target2.mock_inferior.next = &target1.mock_inferior;
9488
9489 ptid_t old_ptid (111, 222);
9490 ptid_t new_ptid (111, 333);
9491
9492 target1.mock_inferior.pid = old_ptid.pid ();
9493 target1.mock_thread.ptid = old_ptid;
9494 target2.mock_inferior.pid = old_ptid.pid ();
9495 target2.mock_thread.ptid = old_ptid;
9496
9497 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9498 set_current_inferior (&target1.mock_inferior);
9499
9500 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9501
9502 gdb_assert (inferior_ptid == new_ptid);
9503 }
9504
9505 /* A thread with the same ptid as inferior_ptid, but from another target,
9506 changes ptid. */
9507 {
9508 scoped_restore_current_pspace_and_thread restore;
9509
9510 scoped_mock_context<test_target_ops> target1 (arch);
9511 scoped_mock_context<test_target_ops> target2 (arch);
9512 target2.mock_inferior.next = &target1.mock_inferior;
9513
9514 ptid_t old_ptid (111, 222);
9515 ptid_t new_ptid (111, 333);
9516
9517 target1.mock_inferior.pid = old_ptid.pid ();
9518 target1.mock_thread.ptid = old_ptid;
9519 target2.mock_inferior.pid = old_ptid.pid ();
9520 target2.mock_thread.ptid = old_ptid;
9521
9522 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9523 set_current_inferior (&target2.mock_inferior);
9524
9525 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9526
9527 gdb_assert (inferior_ptid == old_ptid);
9528 }
9529}
9530
9531} /* namespace selftests */
9532
8087c3fa
JB
9533#endif /* GDB_SELF_TEST */
9534
6c265988 9535void _initialize_infrun ();
c906108c 9536void
6c265988 9537_initialize_infrun ()
c906108c 9538{
de0bea00 9539 struct cmd_list_element *c;
c906108c 9540
372316f1
PA
9541 /* Register extra event sources in the event loop. */
9542 infrun_async_inferior_event_token
db20ebdf
SM
9543 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9544 "infrun");
372316f1 9545
e0f25bd9
SM
9546 cmd_list_element *info_signals_cmd
9547 = add_info ("signals", info_signals_command, _("\
1bedd215
AC
9548What debugger does when program gets various signals.\n\
9549Specify a signal as argument to print info on that signal only."));
e0f25bd9 9550 add_info_alias ("handle", info_signals_cmd, 0);
c906108c 9551
de0bea00 9552 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9553Specify how to handle signals.\n\
486c7739 9554Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9555Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9556If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9557will be displayed instead.\n\
9558\n\
c906108c
SS
9559Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9560from 1-15 are allowed for compatibility with old versions of GDB.\n\
9561Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9562The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9563used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9564\n\
1bedd215 9565Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9566\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9567Stop means reenter debugger if this signal happens (implies print).\n\
9568Print means print a message if this signal happens.\n\
9569Pass means let program see this signal; otherwise program doesn't know.\n\
9570Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9571Pass and Stop may be combined.\n\
9572\n\
9573Multiple signals may be specified. Signal numbers and signal names\n\
9574may be interspersed with actions, with the actions being performed for\n\
9575all signals cumulatively specified."));
de0bea00 9576 set_cmd_completer (c, handle_completer);
486c7739 9577
c906108c 9578 if (!dbx_commands)
1a966eab
AC
9579 stop_command = add_cmd ("stop", class_obscure,
9580 not_just_help_class_command, _("\
9581There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9582This allows you to set a list of commands to be run each time execution\n\
1a966eab 9583of the program stops."), &cmdlist);
c906108c 9584
94ba44a6
SM
9585 add_setshow_boolean_cmd
9586 ("infrun", class_maintenance, &debug_infrun,
9587 _("Set inferior debugging."),
9588 _("Show inferior debugging."),
9589 _("When non-zero, inferior specific debugging is enabled."),
9590 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
527159b7 9591
ad52ddc6
PA
9592 add_setshow_boolean_cmd ("non-stop", no_class,
9593 &non_stop_1, _("\
9594Set whether gdb controls the inferior in non-stop mode."), _("\
9595Show whether gdb controls the inferior in non-stop mode."), _("\
9596When debugging a multi-threaded program and this setting is\n\
9597off (the default, also called all-stop mode), when one thread stops\n\
9598(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9599all other threads in the program while you interact with the thread of\n\
9600interest. When you continue or step a thread, you can allow the other\n\
9601threads to run, or have them remain stopped, but while you inspect any\n\
9602thread's state, all threads stop.\n\
9603\n\
9604In non-stop mode, when one thread stops, other threads can continue\n\
9605to run freely. You'll be able to step each thread independently,\n\
9606leave it stopped or free to run as needed."),
9607 set_non_stop,
9608 show_non_stop,
9609 &setlist,
9610 &showlist);
9611
adc6a863 9612 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9613 {
9614 signal_stop[i] = 1;
9615 signal_print[i] = 1;
9616 signal_program[i] = 1;
ab04a2af 9617 signal_catch[i] = 0;
c906108c
SS
9618 }
9619
4d9d9d04
PA
9620 /* Signals caused by debugger's own actions should not be given to
9621 the program afterwards.
9622
9623 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9624 explicitly specifies that it should be delivered to the target
9625 program. Typically, that would occur when a user is debugging a
9626 target monitor on a simulator: the target monitor sets a
9627 breakpoint; the simulator encounters this breakpoint and halts
9628 the simulation handing control to GDB; GDB, noting that the stop
9629 address doesn't map to any known breakpoint, returns control back
9630 to the simulator; the simulator then delivers the hardware
9631 equivalent of a GDB_SIGNAL_TRAP to the program being
9632 debugged. */
a493e3e2
PA
9633 signal_program[GDB_SIGNAL_TRAP] = 0;
9634 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9635
9636 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9637 signal_stop[GDB_SIGNAL_ALRM] = 0;
9638 signal_print[GDB_SIGNAL_ALRM] = 0;
9639 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9640 signal_print[GDB_SIGNAL_VTALRM] = 0;
9641 signal_stop[GDB_SIGNAL_PROF] = 0;
9642 signal_print[GDB_SIGNAL_PROF] = 0;
9643 signal_stop[GDB_SIGNAL_CHLD] = 0;
9644 signal_print[GDB_SIGNAL_CHLD] = 0;
9645 signal_stop[GDB_SIGNAL_IO] = 0;
9646 signal_print[GDB_SIGNAL_IO] = 0;
9647 signal_stop[GDB_SIGNAL_POLL] = 0;
9648 signal_print[GDB_SIGNAL_POLL] = 0;
9649 signal_stop[GDB_SIGNAL_URG] = 0;
9650 signal_print[GDB_SIGNAL_URG] = 0;
9651 signal_stop[GDB_SIGNAL_WINCH] = 0;
9652 signal_print[GDB_SIGNAL_WINCH] = 0;
9653 signal_stop[GDB_SIGNAL_PRIO] = 0;
9654 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9655
cd0fc7c3
SS
9656 /* These signals are used internally by user-level thread
9657 implementations. (See signal(5) on Solaris.) Like the above
9658 signals, a healthy program receives and handles them as part of
9659 its normal operation. */
a493e3e2
PA
9660 signal_stop[GDB_SIGNAL_LWP] = 0;
9661 signal_print[GDB_SIGNAL_LWP] = 0;
9662 signal_stop[GDB_SIGNAL_WAITING] = 0;
9663 signal_print[GDB_SIGNAL_WAITING] = 0;
9664 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9665 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9666 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9667 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9668
2455069d
UW
9669 /* Update cached state. */
9670 signal_cache_update (-1);
9671
85c07804
AC
9672 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9673 &stop_on_solib_events, _("\
9674Set stopping for shared library events."), _("\
9675Show stopping for shared library events."), _("\
c906108c
SS
9676If nonzero, gdb will give control to the user when the dynamic linker\n\
9677notifies gdb of shared library events. The most common event of interest\n\
85c07804 9678to the user would be loading/unloading of a new library."),
f9e14852 9679 set_stop_on_solib_events,
920d2a44 9680 show_stop_on_solib_events,
85c07804 9681 &setlist, &showlist);
c906108c 9682
7ab04401
AC
9683 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9684 follow_fork_mode_kind_names,
9685 &follow_fork_mode_string, _("\
9686Set debugger response to a program call of fork or vfork."), _("\
9687Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9688A fork or vfork creates a new process. follow-fork-mode can be:\n\
9689 parent - the original process is debugged after a fork\n\
9690 child - the new process is debugged after a fork\n\
ea1dd7bc 9691The unfollowed process will continue to run.\n\
7ab04401
AC
9692By default, the debugger will follow the parent process."),
9693 NULL,
920d2a44 9694 show_follow_fork_mode_string,
7ab04401
AC
9695 &setlist, &showlist);
9696
6c95b8df
PA
9697 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9698 follow_exec_mode_names,
9699 &follow_exec_mode_string, _("\
9700Set debugger response to a program call of exec."), _("\
9701Show debugger response to a program call of exec."), _("\
9702An exec call replaces the program image of a process.\n\
9703\n\
9704follow-exec-mode can be:\n\
9705\n\
cce7e648 9706 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9707to this new inferior. The program the process was running before\n\
9708the exec call can be restarted afterwards by restarting the original\n\
9709inferior.\n\
9710\n\
9711 same - the debugger keeps the process bound to the same inferior.\n\
9712The new executable image replaces the previous executable loaded in\n\
9713the inferior. Restarting the inferior after the exec call restarts\n\
9714the executable the process was running after the exec call.\n\
9715\n\
9716By default, the debugger will use the same inferior."),
9717 NULL,
9718 show_follow_exec_mode_string,
9719 &setlist, &showlist);
9720
7ab04401
AC
9721 add_setshow_enum_cmd ("scheduler-locking", class_run,
9722 scheduler_enums, &scheduler_mode, _("\
9723Set mode for locking scheduler during execution."), _("\
9724Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9725off == no locking (threads may preempt at any time)\n\
9726on == full locking (no thread except the current thread may run)\n\
dda83cd7 9727 This applies to both normal execution and replay mode.\n\
f2665db5 9728step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
dda83cd7
SM
9729 In this mode, other threads may run during other commands.\n\
9730 This applies to both normal execution and replay mode.\n\
f2665db5 9731replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9732 set_schedlock_func, /* traps on target vector */
920d2a44 9733 show_scheduler_mode,
7ab04401 9734 &setlist, &showlist);
5fbbeb29 9735
d4db2f36
PA
9736 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9737Set mode for resuming threads of all processes."), _("\
9738Show mode for resuming threads of all processes."), _("\
9739When on, execution commands (such as 'continue' or 'next') resume all\n\
9740threads of all processes. When off (which is the default), execution\n\
9741commands only resume the threads of the current process. The set of\n\
9742threads that are resumed is further refined by the scheduler-locking\n\
9743mode (see help set scheduler-locking)."),
9744 NULL,
9745 show_schedule_multiple,
9746 &setlist, &showlist);
9747
5bf193a2
AC
9748 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9749Set mode of the step operation."), _("\
9750Show mode of the step operation."), _("\
9751When set, doing a step over a function without debug line information\n\
9752will stop at the first instruction of that function. Otherwise, the\n\
9753function is skipped and the step command stops at a different source line."),
9754 NULL,
920d2a44 9755 show_step_stop_if_no_debug,
5bf193a2 9756 &setlist, &showlist);
ca6724c1 9757
72d0e2c5
YQ
9758 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9759 &can_use_displaced_stepping, _("\
237fc4c9
PA
9760Set debugger's willingness to use displaced stepping."), _("\
9761Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9762If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9763supported by the target architecture. If off, gdb will not use displaced\n\
9764stepping to step over breakpoints, even if such is supported by the target\n\
9765architecture. If auto (which is the default), gdb will use displaced stepping\n\
9766if the target architecture supports it and non-stop mode is active, but will not\n\
9767use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9768 NULL,
9769 show_can_use_displaced_stepping,
9770 &setlist, &showlist);
237fc4c9 9771
b2175913
MS
9772 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9773 &exec_direction, _("Set direction of execution.\n\
9774Options are 'forward' or 'reverse'."),
9775 _("Show direction of execution (forward/reverse)."),
9776 _("Tells gdb whether to execute forward or backward."),
9777 set_exec_direction_func, show_exec_direction_func,
9778 &setlist, &showlist);
9779
6c95b8df
PA
9780 /* Set/show detach-on-fork: user-settable mode. */
9781
9782 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9783Set whether gdb will detach the child of a fork."), _("\
9784Show whether gdb will detach the child of a fork."), _("\
9785Tells gdb whether to detach the child of a fork."),
9786 NULL, NULL, &setlist, &showlist);
9787
03583c20
UW
9788 /* Set/show disable address space randomization mode. */
9789
9790 add_setshow_boolean_cmd ("disable-randomization", class_support,
9791 &disable_randomization, _("\
9792Set disabling of debuggee's virtual address space randomization."), _("\
9793Show disabling of debuggee's virtual address space randomization."), _("\
9794When this mode is on (which is the default), randomization of the virtual\n\
9795address space is disabled. Standalone programs run with the randomization\n\
9796enabled by default on some platforms."),
9797 &set_disable_randomization,
9798 &show_disable_randomization,
9799 &setlist, &showlist);
9800
ca6724c1 9801 /* ptid initializations */
ca6724c1
KB
9802 inferior_ptid = null_ptid;
9803 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9804
c90e7d63
SM
9805 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9806 "infrun");
9807 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9808 "infrun");
9809 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9810 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9811 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
4aa995e1
PA
9812
9813 /* Explicitly create without lookup, since that tries to create a
9814 value with a void typed value, and when we get here, gdbarch
9815 isn't initialized yet. At this point, we're quite sure there
9816 isn't another convenience variable of the same name. */
22d2b532 9817 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9818
9819 add_setshow_boolean_cmd ("observer", no_class,
9820 &observer_mode_1, _("\
9821Set whether gdb controls the inferior in observer mode."), _("\
9822Show whether gdb controls the inferior in observer mode."), _("\
9823In observer mode, GDB can get data from the inferior, but not\n\
9824affect its execution. Registers and memory may not be changed,\n\
9825breakpoints may not be set, and the program cannot be interrupted\n\
9826or signalled."),
9827 set_observer_mode,
9828 show_observer_mode,
9829 &setlist,
9830 &showlist);
b161a60d
SM
9831
9832#if GDB_SELF_TEST
9833 selftests::register_test ("infrun_thread_ptid_changed",
9834 selftests::infrun_thread_ptid_changed);
9835#endif
c906108c 9836}
This page took 3.345143 seconds and 4 git commands to generate.