Restartable sequences: self-tests
[deliverable/linux.git] / mm / compaction.c
CommitLineData
748446bb
MG
1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
698b1b30 10#include <linux/cpu.h>
748446bb
MG
11#include <linux/swap.h>
12#include <linux/migrate.h>
13#include <linux/compaction.h>
14#include <linux/mm_inline.h>
15#include <linux/backing-dev.h>
76ab0f53 16#include <linux/sysctl.h>
ed4a6d7f 17#include <linux/sysfs.h>
bf6bddf1 18#include <linux/balloon_compaction.h>
194159fb 19#include <linux/page-isolation.h>
b8c73fc2 20#include <linux/kasan.h>
698b1b30
VB
21#include <linux/kthread.h>
22#include <linux/freezer.h>
748446bb
MG
23#include "internal.h"
24
010fc29a
MK
25#ifdef CONFIG_COMPACTION
26static inline void count_compact_event(enum vm_event_item item)
27{
28 count_vm_event(item);
29}
30
31static inline void count_compact_events(enum vm_event_item item, long delta)
32{
33 count_vm_events(item, delta);
34}
35#else
36#define count_compact_event(item) do { } while (0)
37#define count_compact_events(item, delta) do { } while (0)
38#endif
39
ff9543fd
MN
40#if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
b7aba698
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/compaction.h>
44
06b6640a
VB
45#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
748446bb
MG
50static unsigned long release_freepages(struct list_head *freelist)
51{
52 struct page *page, *next;
6bace090 53 unsigned long high_pfn = 0;
748446bb
MG
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 56 unsigned long pfn = page_to_pfn(page);
748446bb
MG
57 list_del(&page->lru);
58 __free_page(page);
6bace090
VB
59 if (pfn > high_pfn)
60 high_pfn = pfn;
748446bb
MG
61 }
62
6bace090 63 return high_pfn;
748446bb
MG
64}
65
ff9543fd
MN
66static void map_pages(struct list_head *list)
67{
68 struct page *page;
69
70 list_for_each_entry(page, list, lru) {
71 arch_alloc_page(page, 0);
72 kernel_map_pages(page, 1, 1);
b8c73fc2 73 kasan_alloc_pages(page, 0);
ff9543fd
MN
74 }
75}
76
47118af0
MN
77static inline bool migrate_async_suitable(int migratetype)
78{
79 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80}
81
bb13ffeb 82#ifdef CONFIG_COMPACTION
24e2716f
JK
83
84/* Do not skip compaction more than 64 times */
85#define COMPACT_MAX_DEFER_SHIFT 6
86
87/*
88 * Compaction is deferred when compaction fails to result in a page
89 * allocation success. 1 << compact_defer_limit compactions are skipped up
90 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
91 */
92void defer_compaction(struct zone *zone, int order)
93{
94 zone->compact_considered = 0;
95 zone->compact_defer_shift++;
96
97 if (order < zone->compact_order_failed)
98 zone->compact_order_failed = order;
99
100 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
101 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
102
103 trace_mm_compaction_defer_compaction(zone, order);
104}
105
106/* Returns true if compaction should be skipped this time */
107bool compaction_deferred(struct zone *zone, int order)
108{
109 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
110
111 if (order < zone->compact_order_failed)
112 return false;
113
114 /* Avoid possible overflow */
115 if (++zone->compact_considered > defer_limit)
116 zone->compact_considered = defer_limit;
117
118 if (zone->compact_considered >= defer_limit)
119 return false;
120
121 trace_mm_compaction_deferred(zone, order);
122
123 return true;
124}
125
126/*
127 * Update defer tracking counters after successful compaction of given order,
128 * which means an allocation either succeeded (alloc_success == true) or is
129 * expected to succeed.
130 */
131void compaction_defer_reset(struct zone *zone, int order,
132 bool alloc_success)
133{
134 if (alloc_success) {
135 zone->compact_considered = 0;
136 zone->compact_defer_shift = 0;
137 }
138 if (order >= zone->compact_order_failed)
139 zone->compact_order_failed = order + 1;
140
141 trace_mm_compaction_defer_reset(zone, order);
142}
143
144/* Returns true if restarting compaction after many failures */
145bool compaction_restarting(struct zone *zone, int order)
146{
147 if (order < zone->compact_order_failed)
148 return false;
149
150 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
151 zone->compact_considered >= 1UL << zone->compact_defer_shift;
152}
153
bb13ffeb
MG
154/* Returns true if the pageblock should be scanned for pages to isolate. */
155static inline bool isolation_suitable(struct compact_control *cc,
156 struct page *page)
157{
158 if (cc->ignore_skip_hint)
159 return true;
160
161 return !get_pageblock_skip(page);
162}
163
02333641
VB
164static void reset_cached_positions(struct zone *zone)
165{
166 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
167 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 168 zone->compact_cached_free_pfn =
06b6640a 169 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
170}
171
bb13ffeb
MG
172/*
173 * This function is called to clear all cached information on pageblocks that
174 * should be skipped for page isolation when the migrate and free page scanner
175 * meet.
176 */
62997027 177static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb
MG
178{
179 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 180 unsigned long end_pfn = zone_end_pfn(zone);
bb13ffeb
MG
181 unsigned long pfn;
182
62997027 183 zone->compact_blockskip_flush = false;
bb13ffeb
MG
184
185 /* Walk the zone and mark every pageblock as suitable for isolation */
186 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
187 struct page *page;
188
189 cond_resched();
190
191 if (!pfn_valid(pfn))
192 continue;
193
194 page = pfn_to_page(pfn);
195 if (zone != page_zone(page))
196 continue;
197
198 clear_pageblock_skip(page);
199 }
02333641
VB
200
201 reset_cached_positions(zone);
bb13ffeb
MG
202}
203
62997027
MG
204void reset_isolation_suitable(pg_data_t *pgdat)
205{
206 int zoneid;
207
208 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
209 struct zone *zone = &pgdat->node_zones[zoneid];
210 if (!populated_zone(zone))
211 continue;
212
213 /* Only flush if a full compaction finished recently */
214 if (zone->compact_blockskip_flush)
215 __reset_isolation_suitable(zone);
216 }
217}
218
bb13ffeb
MG
219/*
220 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 221 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 222 */
c89511ab
MG
223static void update_pageblock_skip(struct compact_control *cc,
224 struct page *page, unsigned long nr_isolated,
edc2ca61 225 bool migrate_scanner)
bb13ffeb 226{
c89511ab 227 struct zone *zone = cc->zone;
35979ef3 228 unsigned long pfn;
6815bf3f
JK
229
230 if (cc->ignore_skip_hint)
231 return;
232
bb13ffeb
MG
233 if (!page)
234 return;
235
35979ef3
DR
236 if (nr_isolated)
237 return;
238
edc2ca61 239 set_pageblock_skip(page);
c89511ab 240
35979ef3
DR
241 pfn = page_to_pfn(page);
242
243 /* Update where async and sync compaction should restart */
244 if (migrate_scanner) {
35979ef3
DR
245 if (pfn > zone->compact_cached_migrate_pfn[0])
246 zone->compact_cached_migrate_pfn[0] = pfn;
e0b9daeb
DR
247 if (cc->mode != MIGRATE_ASYNC &&
248 pfn > zone->compact_cached_migrate_pfn[1])
35979ef3
DR
249 zone->compact_cached_migrate_pfn[1] = pfn;
250 } else {
35979ef3
DR
251 if (pfn < zone->compact_cached_free_pfn)
252 zone->compact_cached_free_pfn = pfn;
c89511ab 253 }
bb13ffeb
MG
254}
255#else
256static inline bool isolation_suitable(struct compact_control *cc,
257 struct page *page)
258{
259 return true;
260}
261
c89511ab
MG
262static void update_pageblock_skip(struct compact_control *cc,
263 struct page *page, unsigned long nr_isolated,
edc2ca61 264 bool migrate_scanner)
bb13ffeb
MG
265{
266}
267#endif /* CONFIG_COMPACTION */
268
8b44d279
VB
269/*
270 * Compaction requires the taking of some coarse locks that are potentially
271 * very heavily contended. For async compaction, back out if the lock cannot
272 * be taken immediately. For sync compaction, spin on the lock if needed.
273 *
274 * Returns true if the lock is held
275 * Returns false if the lock is not held and compaction should abort
276 */
277static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
278 struct compact_control *cc)
2a1402aa 279{
8b44d279
VB
280 if (cc->mode == MIGRATE_ASYNC) {
281 if (!spin_trylock_irqsave(lock, *flags)) {
282 cc->contended = COMPACT_CONTENDED_LOCK;
283 return false;
284 }
285 } else {
286 spin_lock_irqsave(lock, *flags);
287 }
1f9efdef 288
8b44d279 289 return true;
2a1402aa
MG
290}
291
c67fe375
MG
292/*
293 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
294 * very heavily contended. The lock should be periodically unlocked to avoid
295 * having disabled IRQs for a long time, even when there is nobody waiting on
296 * the lock. It might also be that allowing the IRQs will result in
297 * need_resched() becoming true. If scheduling is needed, async compaction
298 * aborts. Sync compaction schedules.
299 * Either compaction type will also abort if a fatal signal is pending.
300 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 301 *
8b44d279
VB
302 * Returns true if compaction should abort due to fatal signal pending, or
303 * async compaction due to need_resched()
304 * Returns false when compaction can continue (sync compaction might have
305 * scheduled)
c67fe375 306 */
8b44d279
VB
307static bool compact_unlock_should_abort(spinlock_t *lock,
308 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 309{
8b44d279
VB
310 if (*locked) {
311 spin_unlock_irqrestore(lock, flags);
312 *locked = false;
313 }
1f9efdef 314
8b44d279
VB
315 if (fatal_signal_pending(current)) {
316 cc->contended = COMPACT_CONTENDED_SCHED;
317 return true;
318 }
c67fe375 319
8b44d279 320 if (need_resched()) {
e0b9daeb 321 if (cc->mode == MIGRATE_ASYNC) {
8b44d279
VB
322 cc->contended = COMPACT_CONTENDED_SCHED;
323 return true;
c67fe375 324 }
c67fe375 325 cond_resched();
c67fe375
MG
326 }
327
8b44d279 328 return false;
c67fe375
MG
329}
330
be976572
VB
331/*
332 * Aside from avoiding lock contention, compaction also periodically checks
333 * need_resched() and either schedules in sync compaction or aborts async
8b44d279 334 * compaction. This is similar to what compact_unlock_should_abort() does, but
be976572
VB
335 * is used where no lock is concerned.
336 *
337 * Returns false when no scheduling was needed, or sync compaction scheduled.
338 * Returns true when async compaction should abort.
339 */
340static inline bool compact_should_abort(struct compact_control *cc)
341{
342 /* async compaction aborts if contended */
343 if (need_resched()) {
344 if (cc->mode == MIGRATE_ASYNC) {
1f9efdef 345 cc->contended = COMPACT_CONTENDED_SCHED;
be976572
VB
346 return true;
347 }
348
349 cond_resched();
350 }
351
352 return false;
353}
354
85aa125f 355/*
9e4be470
JM
356 * Isolate free pages onto a private freelist. If @strict is true, will abort
357 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
358 * (even though it may still end up isolating some pages).
85aa125f 359 */
f40d1e42 360static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 361 unsigned long *start_pfn,
85aa125f
MN
362 unsigned long end_pfn,
363 struct list_head *freelist,
364 bool strict)
748446bb 365{
b7aba698 366 int nr_scanned = 0, total_isolated = 0;
bb13ffeb 367 struct page *cursor, *valid_page = NULL;
b8b2d825 368 unsigned long flags = 0;
f40d1e42 369 bool locked = false;
e14c720e 370 unsigned long blockpfn = *start_pfn;
748446bb 371
748446bb
MG
372 cursor = pfn_to_page(blockpfn);
373
f40d1e42 374 /* Isolate free pages. */
748446bb
MG
375 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
376 int isolated, i;
377 struct page *page = cursor;
378
8b44d279
VB
379 /*
380 * Periodically drop the lock (if held) regardless of its
381 * contention, to give chance to IRQs. Abort if fatal signal
382 * pending or async compaction detects need_resched()
383 */
384 if (!(blockpfn % SWAP_CLUSTER_MAX)
385 && compact_unlock_should_abort(&cc->zone->lock, flags,
386 &locked, cc))
387 break;
388
b7aba698 389 nr_scanned++;
f40d1e42 390 if (!pfn_valid_within(blockpfn))
2af120bc
LA
391 goto isolate_fail;
392
bb13ffeb
MG
393 if (!valid_page)
394 valid_page = page;
9fcd6d2e
VB
395
396 /*
397 * For compound pages such as THP and hugetlbfs, we can save
398 * potentially a lot of iterations if we skip them at once.
399 * The check is racy, but we can consider only valid values
400 * and the only danger is skipping too much.
401 */
402 if (PageCompound(page)) {
403 unsigned int comp_order = compound_order(page);
404
405 if (likely(comp_order < MAX_ORDER)) {
406 blockpfn += (1UL << comp_order) - 1;
407 cursor += (1UL << comp_order) - 1;
408 }
409
410 goto isolate_fail;
411 }
412
f40d1e42 413 if (!PageBuddy(page))
2af120bc 414 goto isolate_fail;
f40d1e42
MG
415
416 /*
69b7189f
VB
417 * If we already hold the lock, we can skip some rechecking.
418 * Note that if we hold the lock now, checked_pageblock was
419 * already set in some previous iteration (or strict is true),
420 * so it is correct to skip the suitable migration target
421 * recheck as well.
f40d1e42 422 */
69b7189f
VB
423 if (!locked) {
424 /*
425 * The zone lock must be held to isolate freepages.
426 * Unfortunately this is a very coarse lock and can be
427 * heavily contended if there are parallel allocations
428 * or parallel compactions. For async compaction do not
429 * spin on the lock and we acquire the lock as late as
430 * possible.
431 */
8b44d279
VB
432 locked = compact_trylock_irqsave(&cc->zone->lock,
433 &flags, cc);
69b7189f
VB
434 if (!locked)
435 break;
f40d1e42 436
69b7189f
VB
437 /* Recheck this is a buddy page under lock */
438 if (!PageBuddy(page))
439 goto isolate_fail;
440 }
748446bb
MG
441
442 /* Found a free page, break it into order-0 pages */
443 isolated = split_free_page(page);
a4f04f2c
DR
444 if (!isolated)
445 break;
446
748446bb 447 total_isolated += isolated;
a4f04f2c 448 cc->nr_freepages += isolated;
748446bb
MG
449 for (i = 0; i < isolated; i++) {
450 list_add(&page->lru, freelist);
451 page++;
452 }
a4f04f2c
DR
453 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
454 blockpfn += isolated;
455 break;
748446bb 456 }
a4f04f2c
DR
457 /* Advance to the end of split page */
458 blockpfn += isolated - 1;
459 cursor += isolated - 1;
460 continue;
2af120bc
LA
461
462isolate_fail:
463 if (strict)
464 break;
465 else
466 continue;
467
748446bb
MG
468 }
469
a4f04f2c
DR
470 if (locked)
471 spin_unlock_irqrestore(&cc->zone->lock, flags);
472
9fcd6d2e
VB
473 /*
474 * There is a tiny chance that we have read bogus compound_order(),
475 * so be careful to not go outside of the pageblock.
476 */
477 if (unlikely(blockpfn > end_pfn))
478 blockpfn = end_pfn;
479
e34d85f0
JK
480 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
481 nr_scanned, total_isolated);
482
e14c720e
VB
483 /* Record how far we have got within the block */
484 *start_pfn = blockpfn;
485
f40d1e42
MG
486 /*
487 * If strict isolation is requested by CMA then check that all the
488 * pages requested were isolated. If there were any failures, 0 is
489 * returned and CMA will fail.
490 */
2af120bc 491 if (strict && blockpfn < end_pfn)
f40d1e42
MG
492 total_isolated = 0;
493
bb13ffeb
MG
494 /* Update the pageblock-skip if the whole pageblock was scanned */
495 if (blockpfn == end_pfn)
edc2ca61 496 update_pageblock_skip(cc, valid_page, total_isolated, false);
bb13ffeb 497
010fc29a 498 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
397487db 499 if (total_isolated)
010fc29a 500 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
501 return total_isolated;
502}
503
85aa125f
MN
504/**
505 * isolate_freepages_range() - isolate free pages.
506 * @start_pfn: The first PFN to start isolating.
507 * @end_pfn: The one-past-last PFN.
508 *
509 * Non-free pages, invalid PFNs, or zone boundaries within the
510 * [start_pfn, end_pfn) range are considered errors, cause function to
511 * undo its actions and return zero.
512 *
513 * Otherwise, function returns one-past-the-last PFN of isolated page
514 * (which may be greater then end_pfn if end fell in a middle of
515 * a free page).
516 */
ff9543fd 517unsigned long
bb13ffeb
MG
518isolate_freepages_range(struct compact_control *cc,
519 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 520{
e1409c32 521 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
522 LIST_HEAD(freelist);
523
7d49d886 524 pfn = start_pfn;
06b6640a 525 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
526 if (block_start_pfn < cc->zone->zone_start_pfn)
527 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 528 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
529
530 for (; pfn < end_pfn; pfn += isolated,
e1409c32 531 block_start_pfn = block_end_pfn,
7d49d886 532 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
533 /* Protect pfn from changing by isolate_freepages_block */
534 unsigned long isolate_start_pfn = pfn;
85aa125f 535
85aa125f
MN
536 block_end_pfn = min(block_end_pfn, end_pfn);
537
58420016
JK
538 /*
539 * pfn could pass the block_end_pfn if isolated freepage
540 * is more than pageblock order. In this case, we adjust
541 * scanning range to right one.
542 */
543 if (pfn >= block_end_pfn) {
06b6640a
VB
544 block_start_pfn = pageblock_start_pfn(pfn);
545 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
546 block_end_pfn = min(block_end_pfn, end_pfn);
547 }
548
e1409c32
JK
549 if (!pageblock_pfn_to_page(block_start_pfn,
550 block_end_pfn, cc->zone))
7d49d886
VB
551 break;
552
e14c720e
VB
553 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
554 block_end_pfn, &freelist, true);
85aa125f
MN
555
556 /*
557 * In strict mode, isolate_freepages_block() returns 0 if
558 * there are any holes in the block (ie. invalid PFNs or
559 * non-free pages).
560 */
561 if (!isolated)
562 break;
563
564 /*
565 * If we managed to isolate pages, it is always (1 << n) *
566 * pageblock_nr_pages for some non-negative n. (Max order
567 * page may span two pageblocks).
568 */
569 }
570
571 /* split_free_page does not map the pages */
572 map_pages(&freelist);
573
574 if (pfn < end_pfn) {
575 /* Loop terminated early, cleanup. */
576 release_freepages(&freelist);
577 return 0;
578 }
579
580 /* We don't use freelists for anything. */
581 return pfn;
582}
583
748446bb 584/* Update the number of anon and file isolated pages in the zone */
edc2ca61 585static void acct_isolated(struct zone *zone, struct compact_control *cc)
748446bb
MG
586{
587 struct page *page;
b9e84ac1 588 unsigned int count[2] = { 0, };
748446bb 589
edc2ca61
VB
590 if (list_empty(&cc->migratepages))
591 return;
592
b9e84ac1
MK
593 list_for_each_entry(page, &cc->migratepages, lru)
594 count[!!page_is_file_cache(page)]++;
748446bb 595
edc2ca61
VB
596 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
597 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
748446bb
MG
598}
599
600/* Similar to reclaim, but different enough that they don't share logic */
601static bool too_many_isolated(struct zone *zone)
602{
bc693045 603 unsigned long active, inactive, isolated;
748446bb
MG
604
605 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
606 zone_page_state(zone, NR_INACTIVE_ANON);
bc693045
MK
607 active = zone_page_state(zone, NR_ACTIVE_FILE) +
608 zone_page_state(zone, NR_ACTIVE_ANON);
748446bb
MG
609 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
610 zone_page_state(zone, NR_ISOLATED_ANON);
611
bc693045 612 return isolated > (inactive + active) / 2;
748446bb
MG
613}
614
2fe86e00 615/**
edc2ca61
VB
616 * isolate_migratepages_block() - isolate all migrate-able pages within
617 * a single pageblock
2fe86e00 618 * @cc: Compaction control structure.
edc2ca61
VB
619 * @low_pfn: The first PFN to isolate
620 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
621 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
622 *
623 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
624 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
625 * Returns zero if there is a fatal signal pending, otherwise PFN of the
626 * first page that was not scanned (which may be both less, equal to or more
627 * than end_pfn).
2fe86e00 628 *
edc2ca61
VB
629 * The pages are isolated on cc->migratepages list (not required to be empty),
630 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
631 * is neither read nor updated.
748446bb 632 */
edc2ca61
VB
633static unsigned long
634isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
635 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 636{
edc2ca61 637 struct zone *zone = cc->zone;
b7aba698 638 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 639 struct lruvec *lruvec;
b8b2d825 640 unsigned long flags = 0;
2a1402aa 641 bool locked = false;
bb13ffeb 642 struct page *page = NULL, *valid_page = NULL;
e34d85f0 643 unsigned long start_pfn = low_pfn;
fdd048e1
VB
644 bool skip_on_failure = false;
645 unsigned long next_skip_pfn = 0;
748446bb 646
748446bb
MG
647 /*
648 * Ensure that there are not too many pages isolated from the LRU
649 * list by either parallel reclaimers or compaction. If there are,
650 * delay for some time until fewer pages are isolated
651 */
652 while (unlikely(too_many_isolated(zone))) {
f9e35b3b 653 /* async migration should just abort */
e0b9daeb 654 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 655 return 0;
f9e35b3b 656
748446bb
MG
657 congestion_wait(BLK_RW_ASYNC, HZ/10);
658
659 if (fatal_signal_pending(current))
2fe86e00 660 return 0;
748446bb
MG
661 }
662
be976572
VB
663 if (compact_should_abort(cc))
664 return 0;
aeef4b83 665
fdd048e1
VB
666 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
667 skip_on_failure = true;
668 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
669 }
670
748446bb 671 /* Time to isolate some pages for migration */
748446bb 672 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8
VB
673 bool is_lru;
674
fdd048e1
VB
675 if (skip_on_failure && low_pfn >= next_skip_pfn) {
676 /*
677 * We have isolated all migration candidates in the
678 * previous order-aligned block, and did not skip it due
679 * to failure. We should migrate the pages now and
680 * hopefully succeed compaction.
681 */
682 if (nr_isolated)
683 break;
684
685 /*
686 * We failed to isolate in the previous order-aligned
687 * block. Set the new boundary to the end of the
688 * current block. Note we can't simply increase
689 * next_skip_pfn by 1 << order, as low_pfn might have
690 * been incremented by a higher number due to skipping
691 * a compound or a high-order buddy page in the
692 * previous loop iteration.
693 */
694 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
695 }
696
8b44d279
VB
697 /*
698 * Periodically drop the lock (if held) regardless of its
699 * contention, to give chance to IRQs. Abort async compaction
700 * if contended.
701 */
702 if (!(low_pfn % SWAP_CLUSTER_MAX)
703 && compact_unlock_should_abort(&zone->lru_lock, flags,
704 &locked, cc))
705 break;
c67fe375 706
748446bb 707 if (!pfn_valid_within(low_pfn))
fdd048e1 708 goto isolate_fail;
b7aba698 709 nr_scanned++;
748446bb 710
748446bb 711 page = pfn_to_page(low_pfn);
dc908600 712
bb13ffeb
MG
713 if (!valid_page)
714 valid_page = page;
715
6c14466c 716 /*
99c0fd5e
VB
717 * Skip if free. We read page order here without zone lock
718 * which is generally unsafe, but the race window is small and
719 * the worst thing that can happen is that we skip some
720 * potential isolation targets.
6c14466c 721 */
99c0fd5e
VB
722 if (PageBuddy(page)) {
723 unsigned long freepage_order = page_order_unsafe(page);
724
725 /*
726 * Without lock, we cannot be sure that what we got is
727 * a valid page order. Consider only values in the
728 * valid order range to prevent low_pfn overflow.
729 */
730 if (freepage_order > 0 && freepage_order < MAX_ORDER)
731 low_pfn += (1UL << freepage_order) - 1;
748446bb 732 continue;
99c0fd5e 733 }
748446bb 734
bf6bddf1
RA
735 /*
736 * Check may be lockless but that's ok as we recheck later.
737 * It's possible to migrate LRU pages and balloon pages
738 * Skip any other type of page
739 */
29c0dde8
VB
740 is_lru = PageLRU(page);
741 if (!is_lru) {
bf6bddf1 742 if (unlikely(balloon_page_movable(page))) {
d6d86c0a 743 if (balloon_page_isolate(page)) {
bf6bddf1 744 /* Successfully isolated */
b6c75016 745 goto isolate_success;
bf6bddf1
RA
746 }
747 }
bf6bddf1 748 }
bc835011
AA
749
750 /*
29c0dde8
VB
751 * Regardless of being on LRU, compound pages such as THP and
752 * hugetlbfs are not to be compacted. We can potentially save
753 * a lot of iterations if we skip them at once. The check is
754 * racy, but we can consider only valid values and the only
755 * danger is skipping too much.
bc835011 756 */
29c0dde8
VB
757 if (PageCompound(page)) {
758 unsigned int comp_order = compound_order(page);
759
760 if (likely(comp_order < MAX_ORDER))
761 low_pfn += (1UL << comp_order) - 1;
edc2ca61 762
fdd048e1 763 goto isolate_fail;
2a1402aa
MG
764 }
765
29c0dde8 766 if (!is_lru)
fdd048e1 767 goto isolate_fail;
29c0dde8 768
119d6d59
DR
769 /*
770 * Migration will fail if an anonymous page is pinned in memory,
771 * so avoid taking lru_lock and isolating it unnecessarily in an
772 * admittedly racy check.
773 */
774 if (!page_mapping(page) &&
775 page_count(page) > page_mapcount(page))
fdd048e1 776 goto isolate_fail;
119d6d59 777
69b7189f
VB
778 /* If we already hold the lock, we can skip some rechecking */
779 if (!locked) {
8b44d279
VB
780 locked = compact_trylock_irqsave(&zone->lru_lock,
781 &flags, cc);
69b7189f
VB
782 if (!locked)
783 break;
2a1402aa 784
29c0dde8 785 /* Recheck PageLRU and PageCompound under lock */
69b7189f 786 if (!PageLRU(page))
fdd048e1 787 goto isolate_fail;
29c0dde8
VB
788
789 /*
790 * Page become compound since the non-locked check,
791 * and it's on LRU. It can only be a THP so the order
792 * is safe to read and it's 0 for tail pages.
793 */
794 if (unlikely(PageCompound(page))) {
795 low_pfn += (1UL << compound_order(page)) - 1;
fdd048e1 796 goto isolate_fail;
69b7189f 797 }
bc835011
AA
798 }
799
fa9add64
HD
800 lruvec = mem_cgroup_page_lruvec(page, zone);
801
748446bb 802 /* Try isolate the page */
edc2ca61 803 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 804 goto isolate_fail;
748446bb 805
29c0dde8 806 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 807
748446bb 808 /* Successfully isolated */
fa9add64 809 del_page_from_lru_list(page, lruvec, page_lru(page));
b6c75016
JK
810
811isolate_success:
fdd048e1 812 list_add(&page->lru, &cc->migratepages);
748446bb 813 cc->nr_migratepages++;
b7aba698 814 nr_isolated++;
748446bb 815
a34753d2
VB
816 /*
817 * Record where we could have freed pages by migration and not
818 * yet flushed them to buddy allocator.
819 * - this is the lowest page that was isolated and likely be
820 * then freed by migration.
821 */
822 if (!cc->last_migrated_pfn)
823 cc->last_migrated_pfn = low_pfn;
824
748446bb 825 /* Avoid isolating too much */
31b8384a
HD
826 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
827 ++low_pfn;
748446bb 828 break;
31b8384a 829 }
fdd048e1
VB
830
831 continue;
832isolate_fail:
833 if (!skip_on_failure)
834 continue;
835
836 /*
837 * We have isolated some pages, but then failed. Release them
838 * instead of migrating, as we cannot form the cc->order buddy
839 * page anyway.
840 */
841 if (nr_isolated) {
842 if (locked) {
843 spin_unlock_irqrestore(&zone->lru_lock, flags);
844 locked = false;
845 }
846 acct_isolated(zone, cc);
847 putback_movable_pages(&cc->migratepages);
848 cc->nr_migratepages = 0;
849 cc->last_migrated_pfn = 0;
850 nr_isolated = 0;
851 }
852
853 if (low_pfn < next_skip_pfn) {
854 low_pfn = next_skip_pfn - 1;
855 /*
856 * The check near the loop beginning would have updated
857 * next_skip_pfn too, but this is a bit simpler.
858 */
859 next_skip_pfn += 1UL << cc->order;
860 }
748446bb
MG
861 }
862
99c0fd5e
VB
863 /*
864 * The PageBuddy() check could have potentially brought us outside
865 * the range to be scanned.
866 */
867 if (unlikely(low_pfn > end_pfn))
868 low_pfn = end_pfn;
869
c67fe375
MG
870 if (locked)
871 spin_unlock_irqrestore(&zone->lru_lock, flags);
748446bb 872
50b5b094
VB
873 /*
874 * Update the pageblock-skip information and cached scanner pfn,
875 * if the whole pageblock was scanned without isolating any page.
50b5b094 876 */
35979ef3 877 if (low_pfn == end_pfn)
edc2ca61 878 update_pageblock_skip(cc, valid_page, nr_isolated, true);
bb13ffeb 879
e34d85f0
JK
880 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
881 nr_scanned, nr_isolated);
b7aba698 882
010fc29a 883 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
397487db 884 if (nr_isolated)
010fc29a 885 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 886
2fe86e00
MN
887 return low_pfn;
888}
889
edc2ca61
VB
890/**
891 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
892 * @cc: Compaction control structure.
893 * @start_pfn: The first PFN to start isolating.
894 * @end_pfn: The one-past-last PFN.
895 *
896 * Returns zero if isolation fails fatally due to e.g. pending signal.
897 * Otherwise, function returns one-past-the-last PFN of isolated page
898 * (which may be greater than end_pfn if end fell in a middle of a THP page).
899 */
900unsigned long
901isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
902 unsigned long end_pfn)
903{
e1409c32 904 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
905
906 /* Scan block by block. First and last block may be incomplete */
907 pfn = start_pfn;
06b6640a 908 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
909 if (block_start_pfn < cc->zone->zone_start_pfn)
910 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 911 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
912
913 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 914 block_start_pfn = block_end_pfn,
edc2ca61
VB
915 block_end_pfn += pageblock_nr_pages) {
916
917 block_end_pfn = min(block_end_pfn, end_pfn);
918
e1409c32
JK
919 if (!pageblock_pfn_to_page(block_start_pfn,
920 block_end_pfn, cc->zone))
edc2ca61
VB
921 continue;
922
923 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
924 ISOLATE_UNEVICTABLE);
925
14af4a5e 926 if (!pfn)
edc2ca61 927 break;
6ea41c0c
JK
928
929 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
930 break;
edc2ca61
VB
931 }
932 acct_isolated(cc->zone, cc);
933
934 return pfn;
935}
936
ff9543fd
MN
937#endif /* CONFIG_COMPACTION || CONFIG_CMA */
938#ifdef CONFIG_COMPACTION
018e9a49
AM
939
940/* Returns true if the page is within a block suitable for migration to */
941static bool suitable_migration_target(struct page *page)
942{
943 /* If the page is a large free page, then disallow migration */
944 if (PageBuddy(page)) {
945 /*
946 * We are checking page_order without zone->lock taken. But
947 * the only small danger is that we skip a potentially suitable
948 * pageblock, so it's not worth to check order for valid range.
949 */
950 if (page_order_unsafe(page) >= pageblock_order)
951 return false;
952 }
953
954 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
955 if (migrate_async_suitable(get_pageblock_migratetype(page)))
956 return true;
957
958 /* Otherwise skip the block */
959 return false;
960}
961
f2849aa0
VB
962/*
963 * Test whether the free scanner has reached the same or lower pageblock than
964 * the migration scanner, and compaction should thus terminate.
965 */
966static inline bool compact_scanners_met(struct compact_control *cc)
967{
968 return (cc->free_pfn >> pageblock_order)
969 <= (cc->migrate_pfn >> pageblock_order);
970}
971
2fe86e00 972/*
ff9543fd
MN
973 * Based on information in the current compact_control, find blocks
974 * suitable for isolating free pages from and then isolate them.
2fe86e00 975 */
edc2ca61 976static void isolate_freepages(struct compact_control *cc)
2fe86e00 977{
edc2ca61 978 struct zone *zone = cc->zone;
ff9543fd 979 struct page *page;
c96b9e50 980 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 981 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
982 unsigned long block_end_pfn; /* end of current pageblock */
983 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 984 struct list_head *freelist = &cc->freepages;
2fe86e00 985
ff9543fd
MN
986 /*
987 * Initialise the free scanner. The starting point is where we last
49e068f0 988 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
989 * zone when isolating for the first time. For looping we also need
990 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
991 * block_start_pfn -= pageblock_nr_pages in the for loop.
992 * For ending point, take care when isolating in last pageblock of a
993 * a zone which ends in the middle of a pageblock.
49e068f0
VB
994 * The low boundary is the end of the pageblock the migration scanner
995 * is using.
ff9543fd 996 */
e14c720e 997 isolate_start_pfn = cc->free_pfn;
06b6640a 998 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
c96b9e50
VB
999 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1000 zone_end_pfn(zone));
06b6640a 1001 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
2fe86e00 1002
ff9543fd
MN
1003 /*
1004 * Isolate free pages until enough are available to migrate the
1005 * pages on cc->migratepages. We stop searching if the migrate
1006 * and free page scanners meet or enough free pages are isolated.
1007 */
f5f61a32 1008 for (; block_start_pfn >= low_pfn;
c96b9e50 1009 block_end_pfn = block_start_pfn,
e14c720e
VB
1010 block_start_pfn -= pageblock_nr_pages,
1011 isolate_start_pfn = block_start_pfn) {
a4f04f2c 1012 unsigned long isolated;
2fe86e00 1013
f6ea3adb
DR
1014 /*
1015 * This can iterate a massively long zone without finding any
1016 * suitable migration targets, so periodically check if we need
be976572 1017 * to schedule, or even abort async compaction.
f6ea3adb 1018 */
be976572
VB
1019 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1020 && compact_should_abort(cc))
1021 break;
f6ea3adb 1022
7d49d886
VB
1023 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1024 zone);
1025 if (!page)
ff9543fd
MN
1026 continue;
1027
1028 /* Check the block is suitable for migration */
68e3e926 1029 if (!suitable_migration_target(page))
ff9543fd 1030 continue;
68e3e926 1031
bb13ffeb
MG
1032 /* If isolation recently failed, do not retry */
1033 if (!isolation_suitable(cc, page))
1034 continue;
1035
e14c720e 1036 /* Found a block suitable for isolating free pages from. */
a4f04f2c
DR
1037 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1038 block_end_pfn, freelist, false);
1039 /* If isolation failed early, do not continue needlessly */
1040 if (!isolated && isolate_start_pfn < block_end_pfn &&
1041 cc->nr_migratepages > cc->nr_freepages)
1042 break;
ff9543fd 1043
e14c720e 1044 /*
f5f61a32
VB
1045 * If we isolated enough freepages, or aborted due to async
1046 * compaction being contended, terminate the loop.
e14c720e
VB
1047 * Remember where the free scanner should restart next time,
1048 * which is where isolate_freepages_block() left off.
1049 * But if it scanned the whole pageblock, isolate_start_pfn
1050 * now points at block_end_pfn, which is the start of the next
1051 * pageblock.
1052 * In that case we will however want to restart at the start
1053 * of the previous pageblock.
1054 */
f5f61a32
VB
1055 if ((cc->nr_freepages >= cc->nr_migratepages)
1056 || cc->contended) {
1057 if (isolate_start_pfn >= block_end_pfn)
1058 isolate_start_pfn =
1059 block_start_pfn - pageblock_nr_pages;
be976572 1060 break;
f5f61a32
VB
1061 } else {
1062 /*
1063 * isolate_freepages_block() should not terminate
1064 * prematurely unless contended, or isolated enough
1065 */
1066 VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1067 }
ff9543fd
MN
1068 }
1069
1070 /* split_free_page does not map the pages */
1071 map_pages(freelist);
1072
7ed695e0 1073 /*
f5f61a32
VB
1074 * Record where the free scanner will restart next time. Either we
1075 * broke from the loop and set isolate_start_pfn based on the last
1076 * call to isolate_freepages_block(), or we met the migration scanner
1077 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1078 */
f5f61a32 1079 cc->free_pfn = isolate_start_pfn;
748446bb
MG
1080}
1081
1082/*
1083 * This is a migrate-callback that "allocates" freepages by taking pages
1084 * from the isolated freelists in the block we are migrating to.
1085 */
1086static struct page *compaction_alloc(struct page *migratepage,
1087 unsigned long data,
1088 int **result)
1089{
1090 struct compact_control *cc = (struct compact_control *)data;
1091 struct page *freepage;
1092
be976572
VB
1093 /*
1094 * Isolate free pages if necessary, and if we are not aborting due to
1095 * contention.
1096 */
748446bb 1097 if (list_empty(&cc->freepages)) {
be976572 1098 if (!cc->contended)
edc2ca61 1099 isolate_freepages(cc);
748446bb
MG
1100
1101 if (list_empty(&cc->freepages))
1102 return NULL;
1103 }
1104
1105 freepage = list_entry(cc->freepages.next, struct page, lru);
1106 list_del(&freepage->lru);
1107 cc->nr_freepages--;
1108
1109 return freepage;
1110}
1111
1112/*
d53aea3d
DR
1113 * This is a migrate-callback that "frees" freepages back to the isolated
1114 * freelist. All pages on the freelist are from the same zone, so there is no
1115 * special handling needed for NUMA.
1116 */
1117static void compaction_free(struct page *page, unsigned long data)
1118{
1119 struct compact_control *cc = (struct compact_control *)data;
1120
1121 list_add(&page->lru, &cc->freepages);
1122 cc->nr_freepages++;
1123}
1124
ff9543fd
MN
1125/* possible outcome of isolate_migratepages */
1126typedef enum {
1127 ISOLATE_ABORT, /* Abort compaction now */
1128 ISOLATE_NONE, /* No pages isolated, continue scanning */
1129 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1130} isolate_migrate_t;
1131
5bbe3547
EM
1132/*
1133 * Allow userspace to control policy on scanning the unevictable LRU for
1134 * compactable pages.
1135 */
1136int sysctl_compact_unevictable_allowed __read_mostly = 1;
1137
ff9543fd 1138/*
edc2ca61
VB
1139 * Isolate all pages that can be migrated from the first suitable block,
1140 * starting at the block pointed to by the migrate scanner pfn within
1141 * compact_control.
ff9543fd
MN
1142 */
1143static isolate_migrate_t isolate_migratepages(struct zone *zone,
1144 struct compact_control *cc)
1145{
e1409c32
JK
1146 unsigned long block_start_pfn;
1147 unsigned long block_end_pfn;
1148 unsigned long low_pfn;
edc2ca61
VB
1149 struct page *page;
1150 const isolate_mode_t isolate_mode =
5bbe3547 1151 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
edc2ca61 1152 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
ff9543fd 1153
edc2ca61
VB
1154 /*
1155 * Start at where we last stopped, or beginning of the zone as
1156 * initialized by compact_zone()
1157 */
1158 low_pfn = cc->migrate_pfn;
06b6640a 1159 block_start_pfn = pageblock_start_pfn(low_pfn);
e1409c32
JK
1160 if (block_start_pfn < zone->zone_start_pfn)
1161 block_start_pfn = zone->zone_start_pfn;
ff9543fd
MN
1162
1163 /* Only scan within a pageblock boundary */
06b6640a 1164 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1165
edc2ca61
VB
1166 /*
1167 * Iterate over whole pageblocks until we find the first suitable.
1168 * Do not cross the free scanner.
1169 */
e1409c32
JK
1170 for (; block_end_pfn <= cc->free_pfn;
1171 low_pfn = block_end_pfn,
1172 block_start_pfn = block_end_pfn,
1173 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1174
edc2ca61
VB
1175 /*
1176 * This can potentially iterate a massively long zone with
1177 * many pageblocks unsuitable, so periodically check if we
1178 * need to schedule, or even abort async compaction.
1179 */
1180 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1181 && compact_should_abort(cc))
1182 break;
ff9543fd 1183
e1409c32
JK
1184 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1185 zone);
7d49d886 1186 if (!page)
edc2ca61
VB
1187 continue;
1188
edc2ca61
VB
1189 /* If isolation recently failed, do not retry */
1190 if (!isolation_suitable(cc, page))
1191 continue;
1192
1193 /*
1194 * For async compaction, also only scan in MOVABLE blocks.
1195 * Async compaction is optimistic to see if the minimum amount
1196 * of work satisfies the allocation.
1197 */
1198 if (cc->mode == MIGRATE_ASYNC &&
1199 !migrate_async_suitable(get_pageblock_migratetype(page)))
1200 continue;
1201
1202 /* Perform the isolation */
e1409c32
JK
1203 low_pfn = isolate_migratepages_block(cc, low_pfn,
1204 block_end_pfn, isolate_mode);
edc2ca61 1205
ff59909a
HD
1206 if (!low_pfn || cc->contended) {
1207 acct_isolated(zone, cc);
edc2ca61 1208 return ISOLATE_ABORT;
ff59909a 1209 }
edc2ca61
VB
1210
1211 /*
1212 * Either we isolated something and proceed with migration. Or
1213 * we failed and compact_zone should decide if we should
1214 * continue or not.
1215 */
1216 break;
1217 }
1218
1219 acct_isolated(zone, cc);
f2849aa0
VB
1220 /* Record where migration scanner will be restarted. */
1221 cc->migrate_pfn = low_pfn;
ff9543fd 1222
edc2ca61 1223 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1224}
1225
21c527a3
YB
1226/*
1227 * order == -1 is expected when compacting via
1228 * /proc/sys/vm/compact_memory
1229 */
1230static inline bool is_via_compact_memory(int order)
1231{
1232 return order == -1;
1233}
1234
ea7ab982 1235static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
6d7ce559 1236 const int migratetype)
748446bb 1237{
8fb74b9f 1238 unsigned int order;
5a03b051 1239 unsigned long watermark;
56de7263 1240
be976572 1241 if (cc->contended || fatal_signal_pending(current))
2d1e1041 1242 return COMPACT_CONTENDED;
748446bb 1243
753341a4 1244 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1245 if (compact_scanners_met(cc)) {
55b7c4c9 1246 /* Let the next compaction start anew. */
02333641 1247 reset_cached_positions(zone);
55b7c4c9 1248
62997027
MG
1249 /*
1250 * Mark that the PG_migrate_skip information should be cleared
accf6242 1251 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1252 * flag itself as the decision to be clear should be directly
1253 * based on an allocation request.
1254 */
accf6242 1255 if (cc->direct_compaction)
62997027
MG
1256 zone->compact_blockskip_flush = true;
1257
c8f7de0b
MH
1258 if (cc->whole_zone)
1259 return COMPACT_COMPLETE;
1260 else
1261 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1262 }
748446bb 1263
21c527a3 1264 if (is_via_compact_memory(cc->order))
56de7263
MG
1265 return COMPACT_CONTINUE;
1266
3957c776
MH
1267 /* Compaction run is not finished if the watermark is not met */
1268 watermark = low_wmark_pages(zone);
3957c776 1269
ebff3980
VB
1270 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1271 cc->alloc_flags))
3957c776
MH
1272 return COMPACT_CONTINUE;
1273
56de7263 1274 /* Direct compactor: Is a suitable page free? */
8fb74b9f
MG
1275 for (order = cc->order; order < MAX_ORDER; order++) {
1276 struct free_area *area = &zone->free_area[order];
2149cdae 1277 bool can_steal;
8fb74b9f
MG
1278
1279 /* Job done if page is free of the right migratetype */
6d7ce559 1280 if (!list_empty(&area->free_list[migratetype]))
8fb74b9f
MG
1281 return COMPACT_PARTIAL;
1282
2149cdae
JK
1283#ifdef CONFIG_CMA
1284 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1285 if (migratetype == MIGRATE_MOVABLE &&
1286 !list_empty(&area->free_list[MIGRATE_CMA]))
1287 return COMPACT_PARTIAL;
1288#endif
1289 /*
1290 * Job done if allocation would steal freepages from
1291 * other migratetype buddy lists.
1292 */
1293 if (find_suitable_fallback(area, order, migratetype,
1294 true, &can_steal) != -1)
56de7263
MG
1295 return COMPACT_PARTIAL;
1296 }
1297
837d026d
JK
1298 return COMPACT_NO_SUITABLE_PAGE;
1299}
1300
ea7ab982
MH
1301static enum compact_result compact_finished(struct zone *zone,
1302 struct compact_control *cc,
1303 const int migratetype)
837d026d
JK
1304{
1305 int ret;
1306
1307 ret = __compact_finished(zone, cc, migratetype);
1308 trace_mm_compaction_finished(zone, cc->order, ret);
1309 if (ret == COMPACT_NO_SUITABLE_PAGE)
1310 ret = COMPACT_CONTINUE;
1311
1312 return ret;
748446bb
MG
1313}
1314
3e7d3449
MG
1315/*
1316 * compaction_suitable: Is this suitable to run compaction on this zone now?
1317 * Returns
1318 * COMPACT_SKIPPED - If there are too few free pages for compaction
1319 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1320 * COMPACT_CONTINUE - If compaction should run now
1321 */
ea7ab982 1322static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1323 unsigned int alloc_flags,
86a294a8
MH
1324 int classzone_idx,
1325 unsigned long wmark_target)
3e7d3449
MG
1326{
1327 int fragindex;
1328 unsigned long watermark;
1329
21c527a3 1330 if (is_via_compact_memory(order))
3957c776
MH
1331 return COMPACT_CONTINUE;
1332
ebff3980
VB
1333 watermark = low_wmark_pages(zone);
1334 /*
1335 * If watermarks for high-order allocation are already met, there
1336 * should be no need for compaction at all.
1337 */
1338 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1339 alloc_flags))
1340 return COMPACT_PARTIAL;
1341
3e7d3449
MG
1342 /*
1343 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1344 * This is because during migration, copies of pages need to be
1345 * allocated and for a short time, the footprint is higher
1346 */
ebff3980 1347 watermark += (2UL << order);
86a294a8
MH
1348 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1349 alloc_flags, wmark_target))
3e7d3449
MG
1350 return COMPACT_SKIPPED;
1351
1352 /*
1353 * fragmentation index determines if allocation failures are due to
1354 * low memory or external fragmentation
1355 *
ebff3980
VB
1356 * index of -1000 would imply allocations might succeed depending on
1357 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
1358 * index towards 0 implies failure is due to lack of memory
1359 * index towards 1000 implies failure is due to fragmentation
1360 *
1361 * Only compact if a failure would be due to fragmentation.
1362 */
1363 fragindex = fragmentation_index(zone, order);
1364 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
837d026d 1365 return COMPACT_NOT_SUITABLE_ZONE;
3e7d3449 1366
3e7d3449
MG
1367 return COMPACT_CONTINUE;
1368}
1369
ea7ab982 1370enum compact_result compaction_suitable(struct zone *zone, int order,
c603844b
MG
1371 unsigned int alloc_flags,
1372 int classzone_idx)
837d026d 1373{
ea7ab982 1374 enum compact_result ret;
837d026d 1375
86a294a8
MH
1376 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1377 zone_page_state(zone, NR_FREE_PAGES));
837d026d
JK
1378 trace_mm_compaction_suitable(zone, order, ret);
1379 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1380 ret = COMPACT_SKIPPED;
1381
1382 return ret;
1383}
1384
86a294a8
MH
1385bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1386 int alloc_flags)
1387{
1388 struct zone *zone;
1389 struct zoneref *z;
1390
1391 /*
1392 * Make sure at least one zone would pass __compaction_suitable if we continue
1393 * retrying the reclaim.
1394 */
1395 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1396 ac->nodemask) {
1397 unsigned long available;
1398 enum compact_result compact_result;
1399
1400 /*
1401 * Do not consider all the reclaimable memory because we do not
1402 * want to trash just for a single high order allocation which
1403 * is even not guaranteed to appear even if __compaction_suitable
1404 * is happy about the watermark check.
1405 */
1406 available = zone_reclaimable_pages(zone) / order;
1407 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1408 compact_result = __compaction_suitable(zone, order, alloc_flags,
1409 ac_classzone_idx(ac), available);
1410 if (compact_result != COMPACT_SKIPPED &&
1411 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1412 return true;
1413 }
1414
1415 return false;
1416}
1417
ea7ab982 1418static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
748446bb 1419{
ea7ab982 1420 enum compact_result ret;
c89511ab 1421 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1422 unsigned long end_pfn = zone_end_pfn(zone);
6d7ce559 1423 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
e0b9daeb 1424 const bool sync = cc->mode != MIGRATE_ASYNC;
748446bb 1425
ebff3980
VB
1426 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1427 cc->classzone_idx);
c46649de
MH
1428 /* Compaction is likely to fail */
1429 if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
3e7d3449 1430 return ret;
c46649de
MH
1431
1432 /* huh, compaction_suitable is returning something unexpected */
1433 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 1434
d3132e4b
VB
1435 /*
1436 * Clear pageblock skip if there were failures recently and compaction
accf6242 1437 * is about to be retried after being deferred.
d3132e4b 1438 */
accf6242 1439 if (compaction_restarting(zone, cc->order))
d3132e4b
VB
1440 __reset_isolation_suitable(zone);
1441
c89511ab
MG
1442 /*
1443 * Setup to move all movable pages to the end of the zone. Used cached
1444 * information on where the scanners should start but check that it
1445 * is initialised by ensuring the values are within zone boundaries.
1446 */
e0b9daeb 1447 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
c89511ab 1448 cc->free_pfn = zone->compact_cached_free_pfn;
623446e4 1449 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
06b6640a 1450 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
c89511ab
MG
1451 zone->compact_cached_free_pfn = cc->free_pfn;
1452 }
623446e4 1453 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
c89511ab 1454 cc->migrate_pfn = start_pfn;
35979ef3
DR
1455 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1456 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
c89511ab 1457 }
c8f7de0b
MH
1458
1459 if (cc->migrate_pfn == start_pfn)
1460 cc->whole_zone = true;
1461
1a16718c 1462 cc->last_migrated_pfn = 0;
748446bb 1463
16c4a097
JK
1464 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1465 cc->free_pfn, end_pfn, sync);
0eb927c0 1466
748446bb
MG
1467 migrate_prep_local();
1468
6d7ce559
DR
1469 while ((ret = compact_finished(zone, cc, migratetype)) ==
1470 COMPACT_CONTINUE) {
9d502c1c 1471 int err;
748446bb 1472
f9e35b3b
MG
1473 switch (isolate_migratepages(zone, cc)) {
1474 case ISOLATE_ABORT:
2d1e1041 1475 ret = COMPACT_CONTENDED;
5733c7d1 1476 putback_movable_pages(&cc->migratepages);
e64c5237 1477 cc->nr_migratepages = 0;
f9e35b3b
MG
1478 goto out;
1479 case ISOLATE_NONE:
fdaf7f5c
VB
1480 /*
1481 * We haven't isolated and migrated anything, but
1482 * there might still be unflushed migrations from
1483 * previous cc->order aligned block.
1484 */
1485 goto check_drain;
f9e35b3b
MG
1486 case ISOLATE_SUCCESS:
1487 ;
1488 }
748446bb 1489
d53aea3d 1490 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 1491 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 1492 MR_COMPACTION);
748446bb 1493
f8c9301f
VB
1494 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1495 &cc->migratepages);
748446bb 1496
f8c9301f
VB
1497 /* All pages were either migrated or will be released */
1498 cc->nr_migratepages = 0;
9d502c1c 1499 if (err) {
5733c7d1 1500 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
1501 /*
1502 * migrate_pages() may return -ENOMEM when scanners meet
1503 * and we want compact_finished() to detect it
1504 */
f2849aa0 1505 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 1506 ret = COMPACT_CONTENDED;
4bf2bba3
DR
1507 goto out;
1508 }
fdd048e1
VB
1509 /*
1510 * We failed to migrate at least one page in the current
1511 * order-aligned block, so skip the rest of it.
1512 */
1513 if (cc->direct_compaction &&
1514 (cc->mode == MIGRATE_ASYNC)) {
1515 cc->migrate_pfn = block_end_pfn(
1516 cc->migrate_pfn - 1, cc->order);
1517 /* Draining pcplists is useless in this case */
1518 cc->last_migrated_pfn = 0;
1519
1520 }
748446bb 1521 }
fdaf7f5c 1522
fdaf7f5c
VB
1523check_drain:
1524 /*
1525 * Has the migration scanner moved away from the previous
1526 * cc->order aligned block where we migrated from? If yes,
1527 * flush the pages that were freed, so that they can merge and
1528 * compact_finished() can detect immediately if allocation
1529 * would succeed.
1530 */
1a16718c 1531 if (cc->order > 0 && cc->last_migrated_pfn) {
fdaf7f5c
VB
1532 int cpu;
1533 unsigned long current_block_start =
06b6640a 1534 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 1535
1a16718c 1536 if (cc->last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
1537 cpu = get_cpu();
1538 lru_add_drain_cpu(cpu);
1539 drain_local_pages(zone);
1540 put_cpu();
1541 /* No more flushing until we migrate again */
1a16718c 1542 cc->last_migrated_pfn = 0;
fdaf7f5c
VB
1543 }
1544 }
1545
748446bb
MG
1546 }
1547
f9e35b3b 1548out:
6bace090
VB
1549 /*
1550 * Release free pages and update where the free scanner should restart,
1551 * so we don't leave any returned pages behind in the next attempt.
1552 */
1553 if (cc->nr_freepages > 0) {
1554 unsigned long free_pfn = release_freepages(&cc->freepages);
1555
1556 cc->nr_freepages = 0;
1557 VM_BUG_ON(free_pfn == 0);
1558 /* The cached pfn is always the first in a pageblock */
06b6640a 1559 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
1560 /*
1561 * Only go back, not forward. The cached pfn might have been
1562 * already reset to zone end in compact_finished()
1563 */
1564 if (free_pfn > zone->compact_cached_free_pfn)
1565 zone->compact_cached_free_pfn = free_pfn;
1566 }
748446bb 1567
16c4a097
JK
1568 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1569 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 1570
2d1e1041
VB
1571 if (ret == COMPACT_CONTENDED)
1572 ret = COMPACT_PARTIAL;
1573
748446bb
MG
1574 return ret;
1575}
76ab0f53 1576
ea7ab982 1577static enum compact_result compact_zone_order(struct zone *zone, int order,
ebff3980 1578 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
c603844b 1579 unsigned int alloc_flags, int classzone_idx)
56de7263 1580{
ea7ab982 1581 enum compact_result ret;
56de7263
MG
1582 struct compact_control cc = {
1583 .nr_freepages = 0,
1584 .nr_migratepages = 0,
1585 .order = order,
6d7ce559 1586 .gfp_mask = gfp_mask,
56de7263 1587 .zone = zone,
e0b9daeb 1588 .mode = mode,
ebff3980
VB
1589 .alloc_flags = alloc_flags,
1590 .classzone_idx = classzone_idx,
accf6242 1591 .direct_compaction = true,
56de7263
MG
1592 };
1593 INIT_LIST_HEAD(&cc.freepages);
1594 INIT_LIST_HEAD(&cc.migratepages);
1595
e64c5237
SL
1596 ret = compact_zone(zone, &cc);
1597
1598 VM_BUG_ON(!list_empty(&cc.freepages));
1599 VM_BUG_ON(!list_empty(&cc.migratepages));
1600
1601 *contended = cc.contended;
1602 return ret;
56de7263
MG
1603}
1604
5e771905
MG
1605int sysctl_extfrag_threshold = 500;
1606
56de7263
MG
1607/**
1608 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 1609 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
1610 * @order: The order of the current allocation
1611 * @alloc_flags: The allocation flags of the current allocation
1612 * @ac: The context of current allocation
e0b9daeb 1613 * @mode: The migration mode for async, sync light, or sync migration
1f9efdef
VB
1614 * @contended: Return value that determines if compaction was aborted due to
1615 * need_resched() or lock contention
56de7263
MG
1616 *
1617 * This is the main entry point for direct page compaction.
1618 */
ea7ab982 1619enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b
MG
1620 unsigned int alloc_flags, const struct alloc_context *ac,
1621 enum migrate_mode mode, int *contended)
56de7263 1622{
56de7263
MG
1623 int may_enter_fs = gfp_mask & __GFP_FS;
1624 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
1625 struct zoneref *z;
1626 struct zone *zone;
1d4746d3 1627 enum compact_result rc = COMPACT_SKIPPED;
1f9efdef
VB
1628 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1629
1630 *contended = COMPACT_CONTENDED_NONE;
56de7263 1631
4ffb6335 1632 /* Check if the GFP flags allow compaction */
c5a73c3d 1633 if (!order || !may_enter_fs || !may_perform_io)
53853e2d 1634 return COMPACT_SKIPPED;
56de7263 1635
837d026d
JK
1636 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1637
56de7263 1638 /* Compact each zone in the list */
1a6d53a1
VB
1639 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1640 ac->nodemask) {
ea7ab982 1641 enum compact_result status;
1f9efdef 1642 int zone_contended;
56de7263 1643
1d4746d3
MH
1644 if (compaction_deferred(zone, order)) {
1645 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 1646 continue;
1d4746d3 1647 }
53853e2d 1648
e0b9daeb 1649 status = compact_zone_order(zone, order, gfp_mask, mode,
1a6d53a1 1650 &zone_contended, alloc_flags,
93ea9964 1651 ac_classzone_idx(ac));
56de7263 1652 rc = max(status, rc);
1f9efdef
VB
1653 /*
1654 * It takes at least one zone that wasn't lock contended
1655 * to clear all_zones_contended.
1656 */
1657 all_zones_contended &= zone_contended;
56de7263 1658
3e7d3449 1659 /* If a normal allocation would succeed, stop compacting */
ebff3980 1660 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
93ea9964 1661 ac_classzone_idx(ac), alloc_flags)) {
53853e2d
VB
1662 /*
1663 * We think the allocation will succeed in this zone,
1664 * but it is not certain, hence the false. The caller
1665 * will repeat this with true if allocation indeed
1666 * succeeds in this zone.
1667 */
1668 compaction_defer_reset(zone, order, false);
1f9efdef
VB
1669 /*
1670 * It is possible that async compaction aborted due to
1671 * need_resched() and the watermarks were ok thanks to
1672 * somebody else freeing memory. The allocation can
1673 * however still fail so we better signal the
1674 * need_resched() contention anyway (this will not
1675 * prevent the allocation attempt).
1676 */
1677 if (zone_contended == COMPACT_CONTENDED_SCHED)
1678 *contended = COMPACT_CONTENDED_SCHED;
1679
1680 goto break_loop;
1681 }
1682
c8f7de0b
MH
1683 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1684 status == COMPACT_PARTIAL_SKIPPED)) {
53853e2d
VB
1685 /*
1686 * We think that allocation won't succeed in this zone
1687 * so we defer compaction there. If it ends up
1688 * succeeding after all, it will be reset.
1689 */
1690 defer_compaction(zone, order);
1691 }
1f9efdef
VB
1692
1693 /*
1694 * We might have stopped compacting due to need_resched() in
1695 * async compaction, or due to a fatal signal detected. In that
1696 * case do not try further zones and signal need_resched()
1697 * contention.
1698 */
1699 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1700 || fatal_signal_pending(current)) {
1701 *contended = COMPACT_CONTENDED_SCHED;
1702 goto break_loop;
1703 }
1704
1705 continue;
1706break_loop:
1707 /*
1708 * We might not have tried all the zones, so be conservative
1709 * and assume they are not all lock contended.
1710 */
1711 all_zones_contended = 0;
1712 break;
56de7263
MG
1713 }
1714
1f9efdef
VB
1715 /*
1716 * If at least one zone wasn't deferred or skipped, we report if all
1717 * zones that were tried were lock contended.
1718 */
1d4746d3 1719 if (rc > COMPACT_INACTIVE && all_zones_contended)
1f9efdef
VB
1720 *contended = COMPACT_CONTENDED_LOCK;
1721
56de7263
MG
1722 return rc;
1723}
1724
1725
76ab0f53 1726/* Compact all zones within a node */
7103f16d 1727static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
76ab0f53
MG
1728{
1729 int zoneid;
76ab0f53
MG
1730 struct zone *zone;
1731
76ab0f53 1732 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
1733
1734 zone = &pgdat->node_zones[zoneid];
1735 if (!populated_zone(zone))
1736 continue;
1737
7be62de9
RR
1738 cc->nr_freepages = 0;
1739 cc->nr_migratepages = 0;
1740 cc->zone = zone;
1741 INIT_LIST_HEAD(&cc->freepages);
1742 INIT_LIST_HEAD(&cc->migratepages);
76ab0f53 1743
195b0c60
GK
1744 /*
1745 * When called via /proc/sys/vm/compact_memory
1746 * this makes sure we compact the whole zone regardless of
1747 * cached scanner positions.
1748 */
21c527a3 1749 if (is_via_compact_memory(cc->order))
195b0c60
GK
1750 __reset_isolation_suitable(zone);
1751
21c527a3
YB
1752 if (is_via_compact_memory(cc->order) ||
1753 !compaction_deferred(zone, cc->order))
7be62de9 1754 compact_zone(zone, cc);
76ab0f53 1755
7be62de9
RR
1756 VM_BUG_ON(!list_empty(&cc->freepages));
1757 VM_BUG_ON(!list_empty(&cc->migratepages));
75469345
JK
1758
1759 if (is_via_compact_memory(cc->order))
1760 continue;
1761
1762 if (zone_watermark_ok(zone, cc->order,
1763 low_wmark_pages(zone), 0, 0))
1764 compaction_defer_reset(zone, cc->order, false);
76ab0f53 1765 }
76ab0f53
MG
1766}
1767
7103f16d 1768void compact_pgdat(pg_data_t *pgdat, int order)
7be62de9
RR
1769{
1770 struct compact_control cc = {
1771 .order = order,
e0b9daeb 1772 .mode = MIGRATE_ASYNC,
7be62de9
RR
1773 };
1774
3a7200af
MG
1775 if (!order)
1776 return;
1777
7103f16d 1778 __compact_pgdat(pgdat, &cc);
7be62de9
RR
1779}
1780
7103f16d 1781static void compact_node(int nid)
7be62de9 1782{
7be62de9
RR
1783 struct compact_control cc = {
1784 .order = -1,
e0b9daeb 1785 .mode = MIGRATE_SYNC,
91ca9186 1786 .ignore_skip_hint = true,
7be62de9
RR
1787 };
1788
7103f16d 1789 __compact_pgdat(NODE_DATA(nid), &cc);
7be62de9
RR
1790}
1791
76ab0f53 1792/* Compact all nodes in the system */
7964c06d 1793static void compact_nodes(void)
76ab0f53
MG
1794{
1795 int nid;
1796
8575ec29
HD
1797 /* Flush pending updates to the LRU lists */
1798 lru_add_drain_all();
1799
76ab0f53
MG
1800 for_each_online_node(nid)
1801 compact_node(nid);
76ab0f53
MG
1802}
1803
1804/* The written value is actually unused, all memory is compacted */
1805int sysctl_compact_memory;
1806
fec4eb2c
YB
1807/*
1808 * This is the entry point for compacting all nodes via
1809 * /proc/sys/vm/compact_memory
1810 */
76ab0f53
MG
1811int sysctl_compaction_handler(struct ctl_table *table, int write,
1812 void __user *buffer, size_t *length, loff_t *ppos)
1813{
1814 if (write)
7964c06d 1815 compact_nodes();
76ab0f53
MG
1816
1817 return 0;
1818}
ed4a6d7f 1819
5e771905
MG
1820int sysctl_extfrag_handler(struct ctl_table *table, int write,
1821 void __user *buffer, size_t *length, loff_t *ppos)
1822{
1823 proc_dointvec_minmax(table, write, buffer, length, ppos);
1824
1825 return 0;
1826}
1827
ed4a6d7f 1828#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 1829static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 1830 struct device_attribute *attr,
ed4a6d7f
MG
1831 const char *buf, size_t count)
1832{
8575ec29
HD
1833 int nid = dev->id;
1834
1835 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1836 /* Flush pending updates to the LRU lists */
1837 lru_add_drain_all();
1838
1839 compact_node(nid);
1840 }
ed4a6d7f
MG
1841
1842 return count;
1843}
10fbcf4c 1844static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
ed4a6d7f
MG
1845
1846int compaction_register_node(struct node *node)
1847{
10fbcf4c 1848 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1849}
1850
1851void compaction_unregister_node(struct node *node)
1852{
10fbcf4c 1853 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1854}
1855#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 1856
698b1b30
VB
1857static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1858{
172400c6 1859 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
1860}
1861
1862static bool kcompactd_node_suitable(pg_data_t *pgdat)
1863{
1864 int zoneid;
1865 struct zone *zone;
1866 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1867
6cd9dc3e 1868 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
1869 zone = &pgdat->node_zones[zoneid];
1870
1871 if (!populated_zone(zone))
1872 continue;
1873
1874 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1875 classzone_idx) == COMPACT_CONTINUE)
1876 return true;
1877 }
1878
1879 return false;
1880}
1881
1882static void kcompactd_do_work(pg_data_t *pgdat)
1883{
1884 /*
1885 * With no special task, compact all zones so that a page of requested
1886 * order is allocatable.
1887 */
1888 int zoneid;
1889 struct zone *zone;
1890 struct compact_control cc = {
1891 .order = pgdat->kcompactd_max_order,
1892 .classzone_idx = pgdat->kcompactd_classzone_idx,
1893 .mode = MIGRATE_SYNC_LIGHT,
1894 .ignore_skip_hint = true,
1895
1896 };
1897 bool success = false;
1898
1899 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1900 cc.classzone_idx);
1901 count_vm_event(KCOMPACTD_WAKE);
1902
6cd9dc3e 1903 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
1904 int status;
1905
1906 zone = &pgdat->node_zones[zoneid];
1907 if (!populated_zone(zone))
1908 continue;
1909
1910 if (compaction_deferred(zone, cc.order))
1911 continue;
1912
1913 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1914 COMPACT_CONTINUE)
1915 continue;
1916
1917 cc.nr_freepages = 0;
1918 cc.nr_migratepages = 0;
1919 cc.zone = zone;
1920 INIT_LIST_HEAD(&cc.freepages);
1921 INIT_LIST_HEAD(&cc.migratepages);
1922
172400c6
VB
1923 if (kthread_should_stop())
1924 return;
698b1b30
VB
1925 status = compact_zone(zone, &cc);
1926
1927 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1928 cc.classzone_idx, 0)) {
1929 success = true;
1930 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 1931 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
698b1b30
VB
1932 /*
1933 * We use sync migration mode here, so we defer like
1934 * sync direct compaction does.
1935 */
1936 defer_compaction(zone, cc.order);
1937 }
1938
1939 VM_BUG_ON(!list_empty(&cc.freepages));
1940 VM_BUG_ON(!list_empty(&cc.migratepages));
1941 }
1942
1943 /*
1944 * Regardless of success, we are done until woken up next. But remember
1945 * the requested order/classzone_idx in case it was higher/tighter than
1946 * our current ones
1947 */
1948 if (pgdat->kcompactd_max_order <= cc.order)
1949 pgdat->kcompactd_max_order = 0;
1950 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1951 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1952}
1953
1954void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1955{
1956 if (!order)
1957 return;
1958
1959 if (pgdat->kcompactd_max_order < order)
1960 pgdat->kcompactd_max_order = order;
1961
1962 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1963 pgdat->kcompactd_classzone_idx = classzone_idx;
1964
1965 if (!waitqueue_active(&pgdat->kcompactd_wait))
1966 return;
1967
1968 if (!kcompactd_node_suitable(pgdat))
1969 return;
1970
1971 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1972 classzone_idx);
1973 wake_up_interruptible(&pgdat->kcompactd_wait);
1974}
1975
1976/*
1977 * The background compaction daemon, started as a kernel thread
1978 * from the init process.
1979 */
1980static int kcompactd(void *p)
1981{
1982 pg_data_t *pgdat = (pg_data_t*)p;
1983 struct task_struct *tsk = current;
1984
1985 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1986
1987 if (!cpumask_empty(cpumask))
1988 set_cpus_allowed_ptr(tsk, cpumask);
1989
1990 set_freezable();
1991
1992 pgdat->kcompactd_max_order = 0;
1993 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1994
1995 while (!kthread_should_stop()) {
1996 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1997 wait_event_freezable(pgdat->kcompactd_wait,
1998 kcompactd_work_requested(pgdat));
1999
2000 kcompactd_do_work(pgdat);
2001 }
2002
2003 return 0;
2004}
2005
2006/*
2007 * This kcompactd start function will be called by init and node-hot-add.
2008 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2009 */
2010int kcompactd_run(int nid)
2011{
2012 pg_data_t *pgdat = NODE_DATA(nid);
2013 int ret = 0;
2014
2015 if (pgdat->kcompactd)
2016 return 0;
2017
2018 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2019 if (IS_ERR(pgdat->kcompactd)) {
2020 pr_err("Failed to start kcompactd on node %d\n", nid);
2021 ret = PTR_ERR(pgdat->kcompactd);
2022 pgdat->kcompactd = NULL;
2023 }
2024 return ret;
2025}
2026
2027/*
2028 * Called by memory hotplug when all memory in a node is offlined. Caller must
2029 * hold mem_hotplug_begin/end().
2030 */
2031void kcompactd_stop(int nid)
2032{
2033 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2034
2035 if (kcompactd) {
2036 kthread_stop(kcompactd);
2037 NODE_DATA(nid)->kcompactd = NULL;
2038 }
2039}
2040
2041/*
2042 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2043 * not required for correctness. So if the last cpu in a node goes
2044 * away, we get changed to run anywhere: as the first one comes back,
2045 * restore their cpu bindings.
2046 */
2047static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2048 void *hcpu)
2049{
2050 int nid;
2051
2052 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2053 for_each_node_state(nid, N_MEMORY) {
2054 pg_data_t *pgdat = NODE_DATA(nid);
2055 const struct cpumask *mask;
2056
2057 mask = cpumask_of_node(pgdat->node_id);
2058
2059 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2060 /* One of our CPUs online: restore mask */
2061 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2062 }
2063 }
2064 return NOTIFY_OK;
2065}
2066
2067static int __init kcompactd_init(void)
2068{
2069 int nid;
2070
2071 for_each_node_state(nid, N_MEMORY)
2072 kcompactd_run(nid);
2073 hotcpu_notifier(cpu_callback, 0);
2074 return 0;
2075}
2076subsys_initcall(kcompactd_init)
2077
ff9543fd 2078#endif /* CONFIG_COMPACTION */
This page took 0.680393 seconds and 5 git commands to generate.