d4e6fcb698004b869f2b21428e225db62590fa2c
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{no87},
142 @code{no287},
143 @code{no387},
144 @code{no687},
145 @code{cmov},
146 @code{nocmov},
147 @code{fxsr},
148 @code{nofxsr},
149 @code{mmx},
150 @code{nommx},
151 @code{sse},
152 @code{sse2},
153 @code{sse3},
154 @code{sse4a},
155 @code{ssse3},
156 @code{sse4.1},
157 @code{sse4.2},
158 @code{sse4},
159 @code{nosse},
160 @code{nosse2},
161 @code{nosse3},
162 @code{nosse4a},
163 @code{nossse3},
164 @code{nosse4.1},
165 @code{nosse4.2},
166 @code{nosse4},
167 @code{avx},
168 @code{avx2},
169 @code{noavx},
170 @code{noavx2},
171 @code{adx},
172 @code{rdseed},
173 @code{prfchw},
174 @code{smap},
175 @code{mpx},
176 @code{sha},
177 @code{rdpid},
178 @code{ptwrite},
179 @code{cet},
180 @code{gfni},
181 @code{vaes},
182 @code{vpclmulqdq},
183 @code{prefetchwt1},
184 @code{clflushopt},
185 @code{se1},
186 @code{clwb},
187 @code{movdiri},
188 @code{movdir64b},
189 @code{enqcmd},
190 @code{serialize},
191 @code{tsxldtrk},
192 @code{avx512f},
193 @code{avx512cd},
194 @code{avx512er},
195 @code{avx512pf},
196 @code{avx512vl},
197 @code{avx512bw},
198 @code{avx512dq},
199 @code{avx512ifma},
200 @code{avx512vbmi},
201 @code{avx512_4fmaps},
202 @code{avx512_4vnniw},
203 @code{avx512_vpopcntdq},
204 @code{avx512_vbmi2},
205 @code{avx512_vnni},
206 @code{avx512_bitalg},
207 @code{avx512_vp2intersect},
208 @code{avx512_bf16},
209 @code{noavx512f},
210 @code{noavx512cd},
211 @code{noavx512er},
212 @code{noavx512pf},
213 @code{noavx512vl},
214 @code{noavx512bw},
215 @code{noavx512dq},
216 @code{noavx512ifma},
217 @code{noavx512vbmi},
218 @code{noavx512_4fmaps},
219 @code{noavx512_4vnniw},
220 @code{noavx512_vpopcntdq},
221 @code{noavx512_vbmi2},
222 @code{noavx512_vnni},
223 @code{noavx512_bitalg},
224 @code{noavx512_vp2intersect},
225 @code{noavx512_bf16},
226 @code{noenqcmd},
227 @code{noserialize},
228 @code{notsxldtrk},
229 @code{vmx},
230 @code{vmfunc},
231 @code{smx},
232 @code{xsave},
233 @code{xsaveopt},
234 @code{xsavec},
235 @code{xsaves},
236 @code{aes},
237 @code{pclmul},
238 @code{fsgsbase},
239 @code{rdrnd},
240 @code{f16c},
241 @code{bmi2},
242 @code{fma},
243 @code{movbe},
244 @code{ept},
245 @code{lzcnt},
246 @code{popcnt},
247 @code{hle},
248 @code{rtm},
249 @code{invpcid},
250 @code{clflush},
251 @code{mwaitx},
252 @code{clzero},
253 @code{wbnoinvd},
254 @code{pconfig},
255 @code{waitpkg},
256 @code{cldemote},
257 @code{rdpru},
258 @code{mcommit},
259 @code{sev_es},
260 @code{lwp},
261 @code{fma4},
262 @code{xop},
263 @code{cx16},
264 @code{syscall},
265 @code{rdtscp},
266 @code{3dnow},
267 @code{3dnowa},
268 @code{sse4a},
269 @code{sse5},
270 @code{svme} and
271 @code{padlock}.
272 Note that rather than extending a basic instruction set, the extension
273 mnemonics starting with @code{no} revoke the respective functionality.
274
275 When the @code{.arch} directive is used with @option{-march}, the
276 @code{.arch} directive will take precedent.
277
278 @cindex @samp{-mtune=} option, i386
279 @cindex @samp{-mtune=} option, x86-64
280 @item -mtune=@var{CPU}
281 This option specifies a processor to optimize for. When used in
282 conjunction with the @option{-march} option, only instructions
283 of the processor specified by the @option{-march} option will be
284 generated.
285
286 Valid @var{CPU} values are identical to the processor list of
287 @option{-march=@var{CPU}}.
288
289 @cindex @samp{-msse2avx} option, i386
290 @cindex @samp{-msse2avx} option, x86-64
291 @item -msse2avx
292 This option specifies that the assembler should encode SSE instructions
293 with VEX prefix.
294
295 @cindex @samp{-msse-check=} option, i386
296 @cindex @samp{-msse-check=} option, x86-64
297 @item -msse-check=@var{none}
298 @itemx -msse-check=@var{warning}
299 @itemx -msse-check=@var{error}
300 These options control if the assembler should check SSE instructions.
301 @option{-msse-check=@var{none}} will make the assembler not to check SSE
302 instructions, which is the default. @option{-msse-check=@var{warning}}
303 will make the assembler issue a warning for any SSE instruction.
304 @option{-msse-check=@var{error}} will make the assembler issue an error
305 for any SSE instruction.
306
307 @cindex @samp{-mavxscalar=} option, i386
308 @cindex @samp{-mavxscalar=} option, x86-64
309 @item -mavxscalar=@var{128}
310 @itemx -mavxscalar=@var{256}
311 These options control how the assembler should encode scalar AVX
312 instructions. @option{-mavxscalar=@var{128}} will encode scalar
313 AVX instructions with 128bit vector length, which is the default.
314 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
315 with 256bit vector length.
316
317 WARNING: Don't use this for production code - due to CPU errata the
318 resulting code may not work on certain models.
319
320 @cindex @samp{-mvexwig=} option, i386
321 @cindex @samp{-mvexwig=} option, x86-64
322 @item -mvexwig=@var{0}
323 @itemx -mvexwig=@var{1}
324 These options control how the assembler should encode VEX.W-ignored (WIG)
325 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
326 instructions with vex.w = 0, which is the default.
327 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
328 vex.w = 1.
329
330 WARNING: Don't use this for production code - due to CPU errata the
331 resulting code may not work on certain models.
332
333 @cindex @samp{-mevexlig=} option, i386
334 @cindex @samp{-mevexlig=} option, x86-64
335 @item -mevexlig=@var{128}
336 @itemx -mevexlig=@var{256}
337 @itemx -mevexlig=@var{512}
338 These options control how the assembler should encode length-ignored
339 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
340 EVEX instructions with 128bit vector length, which is the default.
341 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
342 encode LIG EVEX instructions with 256bit and 512bit vector length,
343 respectively.
344
345 @cindex @samp{-mevexwig=} option, i386
346 @cindex @samp{-mevexwig=} option, x86-64
347 @item -mevexwig=@var{0}
348 @itemx -mevexwig=@var{1}
349 These options control how the assembler should encode w-ignored (WIG)
350 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
351 EVEX instructions with evex.w = 0, which is the default.
352 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
353 evex.w = 1.
354
355 @cindex @samp{-mmnemonic=} option, i386
356 @cindex @samp{-mmnemonic=} option, x86-64
357 @item -mmnemonic=@var{att}
358 @itemx -mmnemonic=@var{intel}
359 This option specifies instruction mnemonic for matching instructions.
360 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
361 take precedent.
362
363 @cindex @samp{-msyntax=} option, i386
364 @cindex @samp{-msyntax=} option, x86-64
365 @item -msyntax=@var{att}
366 @itemx -msyntax=@var{intel}
367 This option specifies instruction syntax when processing instructions.
368 The @code{.att_syntax} and @code{.intel_syntax} directives will
369 take precedent.
370
371 @cindex @samp{-mnaked-reg} option, i386
372 @cindex @samp{-mnaked-reg} option, x86-64
373 @item -mnaked-reg
374 This option specifies that registers don't require a @samp{%} prefix.
375 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
376
377 @cindex @samp{-madd-bnd-prefix} option, i386
378 @cindex @samp{-madd-bnd-prefix} option, x86-64
379 @item -madd-bnd-prefix
380 This option forces the assembler to add BND prefix to all branches, even
381 if such prefix was not explicitly specified in the source code.
382
383 @cindex @samp{-mshared} option, i386
384 @cindex @samp{-mshared} option, x86-64
385 @item -mno-shared
386 On ELF target, the assembler normally optimizes out non-PLT relocations
387 against defined non-weak global branch targets with default visibility.
388 The @samp{-mshared} option tells the assembler to generate code which
389 may go into a shared library where all non-weak global branch targets
390 with default visibility can be preempted. The resulting code is
391 slightly bigger. This option only affects the handling of branch
392 instructions.
393
394 @cindex @samp{-mbig-obj} option, i386
395 @cindex @samp{-mbig-obj} option, x86-64
396 @item -mbig-obj
397 On PE/COFF target this option forces the use of big object file
398 format, which allows more than 32768 sections.
399
400 @cindex @samp{-momit-lock-prefix=} option, i386
401 @cindex @samp{-momit-lock-prefix=} option, x86-64
402 @item -momit-lock-prefix=@var{no}
403 @itemx -momit-lock-prefix=@var{yes}
404 These options control how the assembler should encode lock prefix.
405 This option is intended as a workaround for processors, that fail on
406 lock prefix. This option can only be safely used with single-core,
407 single-thread computers
408 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
409 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
410 which is the default.
411
412 @cindex @samp{-mfence-as-lock-add=} option, i386
413 @cindex @samp{-mfence-as-lock-add=} option, x86-64
414 @item -mfence-as-lock-add=@var{no}
415 @itemx -mfence-as-lock-add=@var{yes}
416 These options control how the assembler should encode lfence, mfence and
417 sfence.
418 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
419 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
420 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
421 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
422 sfence as usual, which is the default.
423
424 @cindex @samp{-mrelax-relocations=} option, i386
425 @cindex @samp{-mrelax-relocations=} option, x86-64
426 @item -mrelax-relocations=@var{no}
427 @itemx -mrelax-relocations=@var{yes}
428 These options control whether the assembler should generate relax
429 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
430 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
431 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
432 @option{-mrelax-relocations=@var{no}} will not generate relax
433 relocations. The default can be controlled by a configure option
434 @option{--enable-x86-relax-relocations}.
435
436 @cindex @samp{-malign-branch-boundary=} option, i386
437 @cindex @samp{-malign-branch-boundary=} option, x86-64
438 @item -malign-branch-boundary=@var{NUM}
439 This option controls how the assembler should align branches with segment
440 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
441 no less than 16. Branches will be aligned within @var{NUM} byte
442 boundary. @option{-malign-branch-boundary=0}, which is the default,
443 doesn't align branches.
444
445 @cindex @samp{-malign-branch=} option, i386
446 @cindex @samp{-malign-branch=} option, x86-64
447 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
448 This option specifies types of branches to align. @var{TYPE} is
449 combination of @samp{jcc}, which aligns conditional jumps,
450 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
451 which aligns unconditional jumps, @samp{call} which aligns calls,
452 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
453 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
454
455 @cindex @samp{-malign-branch-prefix-size=} option, i386
456 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
457 @item -malign-branch-prefix-size=@var{NUM}
458 This option specifies the maximum number of prefixes on an instruction
459 to align branches. @var{NUM} should be between 0 and 5. The default
460 @var{NUM} is 5.
461
462 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
463 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
464 @item -mbranches-within-32B-boundaries
465 This option aligns conditional jumps, fused conditional jumps and
466 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
467 on an instruction. It is equivalent to
468 @option{-malign-branch-boundary=32}
469 @option{-malign-branch=jcc+fused+jmp}
470 @option{-malign-branch-prefix-size=5}.
471 The default doesn't align branches.
472
473 @cindex @samp{-mlfence-after-load=} option, i386
474 @cindex @samp{-mlfence-after-load=} option, x86-64
475 @item -mlfence-after-load=@var{no}
476 @itemx -mlfence-after-load=@var{yes}
477 These options control whether the assembler should generate lfence
478 after load instructions. @option{-mlfence-after-load=@var{yes}} will
479 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
480 lfence, which is the default.
481
482 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
483 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
484 @item -mlfence-before-indirect-branch=@var{none}
485 @item -mlfence-before-indirect-branch=@var{all}
486 @item -mlfence-before-indirect-branch=@var{register}
487 @itemx -mlfence-before-indirect-branch=@var{memory}
488 These options control whether the assembler should generate lfence
489 before indirect near branch instructions.
490 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
491 before indirect near branch via register and issue a warning before
492 indirect near branch via memory.
493 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
494 there's no explict @option{-mlfence-before-ret=}.
495 @option{-mlfence-before-indirect-branch=@var{register}} will generate
496 lfence before indirect near branch via register.
497 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
498 warning before indirect near branch via memory.
499 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
500 lfence nor issue warning, which is the default. Note that lfence won't
501 be generated before indirect near branch via register with
502 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
503 after loading branch target register.
504
505 @cindex @samp{-mlfence-before-ret=} option, i386
506 @cindex @samp{-mlfence-before-ret=} option, x86-64
507 @item -mlfence-before-ret=@var{none}
508 @item -mlfence-before-ret=@var{shl}
509 @item -mlfence-before-ret=@var{or}
510 @item -mlfence-before-ret=@var{yes}
511 @itemx -mlfence-before-ret=@var{not}
512 These options control whether the assembler should generate lfence
513 before ret. @option{-mlfence-before-ret=@var{or}} will generate
514 generate or instruction with lfence.
515 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
516 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
517 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
518 generate lfence, which is the default.
519
520 @cindex @samp{-mx86-used-note=} option, i386
521 @cindex @samp{-mx86-used-note=} option, x86-64
522 @item -mx86-used-note=@var{no}
523 @itemx -mx86-used-note=@var{yes}
524 These options control whether the assembler should generate
525 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
526 GNU property notes. The default can be controlled by the
527 @option{--enable-x86-used-note} configure option.
528
529 @cindex @samp{-mevexrcig=} option, i386
530 @cindex @samp{-mevexrcig=} option, x86-64
531 @item -mevexrcig=@var{rne}
532 @itemx -mevexrcig=@var{rd}
533 @itemx -mevexrcig=@var{ru}
534 @itemx -mevexrcig=@var{rz}
535 These options control how the assembler should encode SAE-only
536 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
537 of EVEX instruction with 00, which is the default.
538 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
539 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
540 with 01, 10 and 11 RC bits, respectively.
541
542 @cindex @samp{-mamd64} option, x86-64
543 @cindex @samp{-mintel64} option, x86-64
544 @item -mamd64
545 @itemx -mintel64
546 This option specifies that the assembler should accept only AMD64 or
547 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
548 only and AMD64 ISAs.
549
550 @cindex @samp{-O0} option, i386
551 @cindex @samp{-O0} option, x86-64
552 @cindex @samp{-O} option, i386
553 @cindex @samp{-O} option, x86-64
554 @cindex @samp{-O1} option, i386
555 @cindex @samp{-O1} option, x86-64
556 @cindex @samp{-O2} option, i386
557 @cindex @samp{-O2} option, x86-64
558 @cindex @samp{-Os} option, i386
559 @cindex @samp{-Os} option, x86-64
560 @item -O0 | -O | -O1 | -O2 | -Os
561 Optimize instruction encoding with smaller instruction size. @samp{-O}
562 and @samp{-O1} encode 64-bit register load instructions with 64-bit
563 immediate as 32-bit register load instructions with 31-bit or 32-bits
564 immediates, encode 64-bit register clearing instructions with 32-bit
565 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
566 register clearing instructions with 128-bit VEX vector register
567 clearing instructions, encode 128-bit/256-bit EVEX vector
568 register load/store instructions with VEX vector register load/store
569 instructions, and encode 128-bit/256-bit EVEX packed integer logical
570 instructions with 128-bit/256-bit VEX packed integer logical.
571
572 @samp{-O2} includes @samp{-O1} optimization plus encodes
573 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
574 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
575 instructions with commutative source operands will also have their
576 source operands swapped if this allows using the 2-byte VEX prefix form
577 instead of the 3-byte one. Certain forms of AND as well as OR with the
578 same (register) operand specified twice will also be changed to TEST.
579
580 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
581 and 64-bit register tests with immediate as 8-bit register test with
582 immediate. @samp{-O0} turns off this optimization.
583
584 @end table
585 @c man end
586
587 @node i386-Directives
588 @section x86 specific Directives
589
590 @cindex machine directives, x86
591 @cindex x86 machine directives
592 @table @code
593
594 @cindex @code{lcomm} directive, COFF
595 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
596 Reserve @var{length} (an absolute expression) bytes for a local common
597 denoted by @var{symbol}. The section and value of @var{symbol} are
598 those of the new local common. The addresses are allocated in the bss
599 section, so that at run-time the bytes start off zeroed. Since
600 @var{symbol} is not declared global, it is normally not visible to
601 @code{@value{LD}}. The optional third parameter, @var{alignment},
602 specifies the desired alignment of the symbol in the bss section.
603
604 This directive is only available for COFF based x86 targets.
605
606 @cindex @code{largecomm} directive, ELF
607 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
608 This directive behaves in the same way as the @code{comm} directive
609 except that the data is placed into the @var{.lbss} section instead of
610 the @var{.bss} section @ref{Comm}.
611
612 The directive is intended to be used for data which requires a large
613 amount of space, and it is only available for ELF based x86_64
614 targets.
615
616 @cindex @code{value} directive
617 @item .value @var{expression} [, @var{expression}]
618 This directive behaves in the same way as the @code{.short} directive,
619 taking a series of comma separated expressions and storing them as
620 two-byte wide values into the current section.
621
622 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
623
624 @end table
625
626 @node i386-Syntax
627 @section i386 Syntactical Considerations
628 @menu
629 * i386-Variations:: AT&T Syntax versus Intel Syntax
630 * i386-Chars:: Special Characters
631 @end menu
632
633 @node i386-Variations
634 @subsection AT&T Syntax versus Intel Syntax
635
636 @cindex i386 intel_syntax pseudo op
637 @cindex intel_syntax pseudo op, i386
638 @cindex i386 att_syntax pseudo op
639 @cindex att_syntax pseudo op, i386
640 @cindex i386 syntax compatibility
641 @cindex syntax compatibility, i386
642 @cindex x86-64 intel_syntax pseudo op
643 @cindex intel_syntax pseudo op, x86-64
644 @cindex x86-64 att_syntax pseudo op
645 @cindex att_syntax pseudo op, x86-64
646 @cindex x86-64 syntax compatibility
647 @cindex syntax compatibility, x86-64
648
649 @code{@value{AS}} now supports assembly using Intel assembler syntax.
650 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
651 back to the usual AT&T mode for compatibility with the output of
652 @code{@value{GCC}}. Either of these directives may have an optional
653 argument, @code{prefix}, or @code{noprefix} specifying whether registers
654 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
655 different from Intel syntax. We mention these differences because
656 almost all 80386 documents use Intel syntax. Notable differences
657 between the two syntaxes are:
658
659 @cindex immediate operands, i386
660 @cindex i386 immediate operands
661 @cindex register operands, i386
662 @cindex i386 register operands
663 @cindex jump/call operands, i386
664 @cindex i386 jump/call operands
665 @cindex operand delimiters, i386
666
667 @cindex immediate operands, x86-64
668 @cindex x86-64 immediate operands
669 @cindex register operands, x86-64
670 @cindex x86-64 register operands
671 @cindex jump/call operands, x86-64
672 @cindex x86-64 jump/call operands
673 @cindex operand delimiters, x86-64
674 @itemize @bullet
675 @item
676 AT&T immediate operands are preceded by @samp{$}; Intel immediate
677 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
678 AT&T register operands are preceded by @samp{%}; Intel register operands
679 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
680 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
681
682 @cindex i386 source, destination operands
683 @cindex source, destination operands; i386
684 @cindex x86-64 source, destination operands
685 @cindex source, destination operands; x86-64
686 @item
687 AT&T and Intel syntax use the opposite order for source and destination
688 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
689 @samp{source, dest} convention is maintained for compatibility with
690 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
691 instructions with 2 immediate operands, such as the @samp{enter}
692 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
693
694 @cindex mnemonic suffixes, i386
695 @cindex sizes operands, i386
696 @cindex i386 size suffixes
697 @cindex mnemonic suffixes, x86-64
698 @cindex sizes operands, x86-64
699 @cindex x86-64 size suffixes
700 @item
701 In AT&T syntax the size of memory operands is determined from the last
702 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
703 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
704 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
705 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
706 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
707 no other way to disambiguate an instruction. Intel syntax accomplishes this by
708 prefixing memory operands (@emph{not} the instruction mnemonics) with
709 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
710 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
711 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
712 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
713 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
714
715 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
716 instruction with the 64-bit displacement or immediate operand.
717
718 @cindex return instructions, i386
719 @cindex i386 jump, call, return
720 @cindex return instructions, x86-64
721 @cindex x86-64 jump, call, return
722 @item
723 Immediate form long jumps and calls are
724 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
725 Intel syntax is
726 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
727 instruction
728 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
729 @samp{ret far @var{stack-adjust}}.
730
731 @cindex sections, i386
732 @cindex i386 sections
733 @cindex sections, x86-64
734 @cindex x86-64 sections
735 @item
736 The AT&T assembler does not provide support for multiple section
737 programs. Unix style systems expect all programs to be single sections.
738 @end itemize
739
740 @node i386-Chars
741 @subsection Special Characters
742
743 @cindex line comment character, i386
744 @cindex i386 line comment character
745 The presence of a @samp{#} appearing anywhere on a line indicates the
746 start of a comment that extends to the end of that line.
747
748 If a @samp{#} appears as the first character of a line then the whole
749 line is treated as a comment, but in this case the line can also be a
750 logical line number directive (@pxref{Comments}) or a preprocessor
751 control command (@pxref{Preprocessing}).
752
753 If the @option{--divide} command-line option has not been specified
754 then the @samp{/} character appearing anywhere on a line also
755 introduces a line comment.
756
757 @cindex line separator, i386
758 @cindex statement separator, i386
759 @cindex i386 line separator
760 The @samp{;} character can be used to separate statements on the same
761 line.
762
763 @node i386-Mnemonics
764 @section i386-Mnemonics
765 @subsection Instruction Naming
766
767 @cindex i386 instruction naming
768 @cindex instruction naming, i386
769 @cindex x86-64 instruction naming
770 @cindex instruction naming, x86-64
771
772 Instruction mnemonics are suffixed with one character modifiers which
773 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
774 and @samp{q} specify byte, word, long and quadruple word operands. If
775 no suffix is specified by an instruction then @code{@value{AS}} tries to
776 fill in the missing suffix based on the destination register operand
777 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
778 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
779 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
780 assembler which assumes that a missing mnemonic suffix implies long
781 operand size. (This incompatibility does not affect compiler output
782 since compilers always explicitly specify the mnemonic suffix.)
783
784 When there is no sizing suffix and no (suitable) register operands to
785 deduce the size of memory operands, with a few exceptions and where long
786 operand size is possible in the first place, operand size will default
787 to long in 32- and 64-bit modes. Similarly it will default to short in
788 16-bit mode. Noteworthy exceptions are
789
790 @itemize @bullet
791 @item
792 Instructions with an implicit on-stack operand as well as branches,
793 which default to quad in 64-bit mode.
794
795 @item
796 Sign- and zero-extending moves, which default to byte size source
797 operands.
798
799 @item
800 Floating point insns with integer operands, which default to short (for
801 perhaps historical reasons).
802
803 @item
804 CRC32 with a 64-bit destination, which defaults to a quad source
805 operand.
806
807 @end itemize
808
809 @cindex encoding options, i386
810 @cindex encoding options, x86-64
811
812 Different encoding options can be specified via pseudo prefixes:
813
814 @itemize @bullet
815 @item
816 @samp{@{disp8@}} -- prefer 8-bit displacement.
817
818 @item
819 @samp{@{disp32@}} -- prefer 32-bit displacement.
820
821 @item
822 @samp{@{load@}} -- prefer load-form instruction.
823
824 @item
825 @samp{@{store@}} -- prefer store-form instruction.
826
827 @item
828 @samp{@{vex@}} -- encode with VEX prefix.
829
830 @item
831 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
832
833 @item
834 @samp{@{evex@}} -- encode with EVEX prefix.
835
836 @item
837 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
838 instructions (x86-64 only). Note that this differs from the @samp{rex}
839 prefix which generates REX prefix unconditionally.
840
841 @item
842 @samp{@{nooptimize@}} -- disable instruction size optimization.
843 @end itemize
844
845 @cindex conversion instructions, i386
846 @cindex i386 conversion instructions
847 @cindex conversion instructions, x86-64
848 @cindex x86-64 conversion instructions
849 The Intel-syntax conversion instructions
850
851 @itemize @bullet
852 @item
853 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
854
855 @item
856 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
857
858 @item
859 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
860
861 @item
862 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
863
864 @item
865 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
866 (x86-64 only),
867
868 @item
869 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
870 @samp{%rdx:%rax} (x86-64 only),
871 @end itemize
872
873 @noindent
874 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
875 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
876 instructions.
877
878 @cindex extension instructions, i386
879 @cindex i386 extension instructions
880 @cindex extension instructions, x86-64
881 @cindex x86-64 extension instructions
882 The Intel-syntax extension instructions
883
884 @itemize @bullet
885 @item
886 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
887
888 @item
889 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
890
891 @item
892 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
893 (x86-64 only).
894
895 @item
896 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
897
898 @item
899 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
900 (x86-64 only).
901
902 @item
903 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
904 (x86-64 only).
905
906 @item
907 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
908
909 @item
910 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
911
912 @item
913 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
914 (x86-64 only).
915
916 @item
917 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
918
919 @item
920 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
921 (x86-64 only).
922 @end itemize
923
924 @noindent
925 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
926 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
927 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
928 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
929 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
930
931 @cindex jump instructions, i386
932 @cindex call instructions, i386
933 @cindex jump instructions, x86-64
934 @cindex call instructions, x86-64
935 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
936 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
937 convention.
938
939 @subsection AT&T Mnemonic versus Intel Mnemonic
940
941 @cindex i386 mnemonic compatibility
942 @cindex mnemonic compatibility, i386
943
944 @code{@value{AS}} supports assembly using Intel mnemonic.
945 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
946 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
947 syntax for compatibility with the output of @code{@value{GCC}}.
948 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
949 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
950 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
951 assembler with different mnemonics from those in Intel IA32 specification.
952 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
953
954 @itemize @bullet
955 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
956 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
957 destination register with both AT&T and Intel mnemonics.
958 @end itemize
959
960 @node i386-Regs
961 @section Register Naming
962
963 @cindex i386 registers
964 @cindex registers, i386
965 @cindex x86-64 registers
966 @cindex registers, x86-64
967 Register operands are always prefixed with @samp{%}. The 80386 registers
968 consist of
969
970 @itemize @bullet
971 @item
972 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
973 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
974 frame pointer), and @samp{%esp} (the stack pointer).
975
976 @item
977 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
978 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
979
980 @item
981 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
982 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
983 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
984 @samp{%cx}, and @samp{%dx})
985
986 @item
987 the 6 section registers @samp{%cs} (code section), @samp{%ds}
988 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
989 and @samp{%gs}.
990
991 @item
992 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
993 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
994
995 @item
996 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
997 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
998
999 @item
1000 the 2 test registers @samp{%tr6} and @samp{%tr7}.
1001
1002 @item
1003 the 8 floating point register stack @samp{%st} or equivalently
1004 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1005 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1006 These registers are overloaded by 8 MMX registers @samp{%mm0},
1007 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1008 @samp{%mm6} and @samp{%mm7}.
1009
1010 @item
1011 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1012 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1013 @end itemize
1014
1015 The AMD x86-64 architecture extends the register set by:
1016
1017 @itemize @bullet
1018 @item
1019 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1020 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1021 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1022 pointer)
1023
1024 @item
1025 the 8 extended registers @samp{%r8}--@samp{%r15}.
1026
1027 @item
1028 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1029
1030 @item
1031 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1032
1033 @item
1034 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1035
1036 @item
1037 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1038
1039 @item
1040 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1041
1042 @item
1043 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1044 @end itemize
1045
1046 With the AVX extensions more registers were made available:
1047
1048 @itemize @bullet
1049
1050 @item
1051 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1052 available in 32-bit mode). The bottom 128 bits are overlaid with the
1053 @samp{xmm0}--@samp{xmm15} registers.
1054
1055 @end itemize
1056
1057 The AVX2 extensions made in 64-bit mode more registers available:
1058
1059 @itemize @bullet
1060
1061 @item
1062 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1063 registers @samp{%ymm16}--@samp{%ymm31}.
1064
1065 @end itemize
1066
1067 The AVX512 extensions added the following registers:
1068
1069 @itemize @bullet
1070
1071 @item
1072 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1073 available in 32-bit mode). The bottom 128 bits are overlaid with the
1074 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1075 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1076
1077 @item
1078 the 8 mask registers @samp{%k0}--@samp{%k7}.
1079
1080 @end itemize
1081
1082 @node i386-Prefixes
1083 @section Instruction Prefixes
1084
1085 @cindex i386 instruction prefixes
1086 @cindex instruction prefixes, i386
1087 @cindex prefixes, i386
1088 Instruction prefixes are used to modify the following instruction. They
1089 are used to repeat string instructions, to provide section overrides, to
1090 perform bus lock operations, and to change operand and address sizes.
1091 (Most instructions that normally operate on 32-bit operands will use
1092 16-bit operands if the instruction has an ``operand size'' prefix.)
1093 Instruction prefixes are best written on the same line as the instruction
1094 they act upon. For example, the @samp{scas} (scan string) instruction is
1095 repeated with:
1096
1097 @smallexample
1098 repne scas %es:(%edi),%al
1099 @end smallexample
1100
1101 You may also place prefixes on the lines immediately preceding the
1102 instruction, but this circumvents checks that @code{@value{AS}} does
1103 with prefixes, and will not work with all prefixes.
1104
1105 Here is a list of instruction prefixes:
1106
1107 @cindex section override prefixes, i386
1108 @itemize @bullet
1109 @item
1110 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1111 @samp{fs}, @samp{gs}. These are automatically added by specifying
1112 using the @var{section}:@var{memory-operand} form for memory references.
1113
1114 @cindex size prefixes, i386
1115 @item
1116 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1117 change 32-bit operands/addresses into 16-bit operands/addresses,
1118 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1119 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1120 @emph{must} appear on the same line of code as the instruction they
1121 modify. For example, in a 16-bit @code{.code16} section, you might
1122 write:
1123
1124 @smallexample
1125 addr32 jmpl *(%ebx)
1126 @end smallexample
1127
1128 @cindex bus lock prefixes, i386
1129 @cindex inhibiting interrupts, i386
1130 @item
1131 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1132 the instruction it precedes. (This is only valid with certain
1133 instructions; see a 80386 manual for details).
1134
1135 @cindex coprocessor wait, i386
1136 @item
1137 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1138 complete the current instruction. This should never be needed for the
1139 80386/80387 combination.
1140
1141 @cindex repeat prefixes, i386
1142 @item
1143 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1144 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1145 times if the current address size is 16-bits).
1146 @cindex REX prefixes, i386
1147 @item
1148 The @samp{rex} family of prefixes is used by x86-64 to encode
1149 extensions to i386 instruction set. The @samp{rex} prefix has four
1150 bits --- an operand size overwrite (@code{64}) used to change operand size
1151 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1152 register set.
1153
1154 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1155 instruction emits @samp{rex} prefix with all the bits set. By omitting
1156 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1157 prefixes as well. Normally, there is no need to write the prefixes
1158 explicitly, since gas will automatically generate them based on the
1159 instruction operands.
1160 @end itemize
1161
1162 @node i386-Memory
1163 @section Memory References
1164
1165 @cindex i386 memory references
1166 @cindex memory references, i386
1167 @cindex x86-64 memory references
1168 @cindex memory references, x86-64
1169 An Intel syntax indirect memory reference of the form
1170
1171 @smallexample
1172 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1173 @end smallexample
1174
1175 @noindent
1176 is translated into the AT&T syntax
1177
1178 @smallexample
1179 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1180 @end smallexample
1181
1182 @noindent
1183 where @var{base} and @var{index} are the optional 32-bit base and
1184 index registers, @var{disp} is the optional displacement, and
1185 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1186 to calculate the address of the operand. If no @var{scale} is
1187 specified, @var{scale} is taken to be 1. @var{section} specifies the
1188 optional section register for the memory operand, and may override the
1189 default section register (see a 80386 manual for section register
1190 defaults). Note that section overrides in AT&T syntax @emph{must}
1191 be preceded by a @samp{%}. If you specify a section override which
1192 coincides with the default section register, @code{@value{AS}} does @emph{not}
1193 output any section register override prefixes to assemble the given
1194 instruction. Thus, section overrides can be specified to emphasize which
1195 section register is used for a given memory operand.
1196
1197 Here are some examples of Intel and AT&T style memory references:
1198
1199 @table @asis
1200 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1201 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1202 missing, and the default section is used (@samp{%ss} for addressing with
1203 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1204
1205 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1206 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1207 @samp{foo}. All other fields are missing. The section register here
1208 defaults to @samp{%ds}.
1209
1210 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1211 This uses the value pointed to by @samp{foo} as a memory operand.
1212 Note that @var{base} and @var{index} are both missing, but there is only
1213 @emph{one} @samp{,}. This is a syntactic exception.
1214
1215 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1216 This selects the contents of the variable @samp{foo} with section
1217 register @var{section} being @samp{%gs}.
1218 @end table
1219
1220 Absolute (as opposed to PC relative) call and jump operands must be
1221 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1222 always chooses PC relative addressing for jump/call labels.
1223
1224 Any instruction that has a memory operand, but no register operand,
1225 @emph{must} specify its size (byte, word, long, or quadruple) with an
1226 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1227 respectively).
1228
1229 The x86-64 architecture adds an RIP (instruction pointer relative)
1230 addressing. This addressing mode is specified by using @samp{rip} as a
1231 base register. Only constant offsets are valid. For example:
1232
1233 @table @asis
1234 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1235 Points to the address 1234 bytes past the end of the current
1236 instruction.
1237
1238 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1239 Points to the @code{symbol} in RIP relative way, this is shorter than
1240 the default absolute addressing.
1241 @end table
1242
1243 Other addressing modes remain unchanged in x86-64 architecture, except
1244 registers used are 64-bit instead of 32-bit.
1245
1246 @node i386-Jumps
1247 @section Handling of Jump Instructions
1248
1249 @cindex jump optimization, i386
1250 @cindex i386 jump optimization
1251 @cindex jump optimization, x86-64
1252 @cindex x86-64 jump optimization
1253 Jump instructions are always optimized to use the smallest possible
1254 displacements. This is accomplished by using byte (8-bit) displacement
1255 jumps whenever the target is sufficiently close. If a byte displacement
1256 is insufficient a long displacement is used. We do not support
1257 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1258 instruction with the @samp{data16} instruction prefix), since the 80386
1259 insists upon masking @samp{%eip} to 16 bits after the word displacement
1260 is added. (See also @pxref{i386-Arch})
1261
1262 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1263 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1264 displacements, so that if you use these instructions (@code{@value{GCC}} does
1265 not use them) you may get an error message (and incorrect code). The AT&T
1266 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1267 to
1268
1269 @smallexample
1270 jcxz cx_zero
1271 jmp cx_nonzero
1272 cx_zero: jmp foo
1273 cx_nonzero:
1274 @end smallexample
1275
1276 @node i386-Float
1277 @section Floating Point
1278
1279 @cindex i386 floating point
1280 @cindex floating point, i386
1281 @cindex x86-64 floating point
1282 @cindex floating point, x86-64
1283 All 80387 floating point types except packed BCD are supported.
1284 (BCD support may be added without much difficulty). These data
1285 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1286 double (64-bit), and extended (80-bit) precision floating point.
1287 Each supported type has an instruction mnemonic suffix and a constructor
1288 associated with it. Instruction mnemonic suffixes specify the operand's
1289 data type. Constructors build these data types into memory.
1290
1291 @cindex @code{float} directive, i386
1292 @cindex @code{single} directive, i386
1293 @cindex @code{double} directive, i386
1294 @cindex @code{tfloat} directive, i386
1295 @cindex @code{float} directive, x86-64
1296 @cindex @code{single} directive, x86-64
1297 @cindex @code{double} directive, x86-64
1298 @cindex @code{tfloat} directive, x86-64
1299 @itemize @bullet
1300 @item
1301 Floating point constructors are @samp{.float} or @samp{.single},
1302 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1303 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1304 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1305 only supports this format via the @samp{fldt} (load 80-bit real to stack
1306 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1307
1308 @cindex @code{word} directive, i386
1309 @cindex @code{long} directive, i386
1310 @cindex @code{int} directive, i386
1311 @cindex @code{quad} directive, i386
1312 @cindex @code{word} directive, x86-64
1313 @cindex @code{long} directive, x86-64
1314 @cindex @code{int} directive, x86-64
1315 @cindex @code{quad} directive, x86-64
1316 @item
1317 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1318 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1319 corresponding instruction mnemonic suffixes are @samp{s} (single),
1320 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1321 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1322 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1323 stack) instructions.
1324 @end itemize
1325
1326 Register to register operations should not use instruction mnemonic suffixes.
1327 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1328 wrote @samp{fst %st, %st(1)}, since all register to register operations
1329 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1330 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1331 then stores the result in the 4 byte location @samp{mem})
1332
1333 @node i386-SIMD
1334 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1335
1336 @cindex MMX, i386
1337 @cindex 3DNow!, i386
1338 @cindex SIMD, i386
1339 @cindex MMX, x86-64
1340 @cindex 3DNow!, x86-64
1341 @cindex SIMD, x86-64
1342
1343 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1344 instructions for integer data), available on Intel's Pentium MMX
1345 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1346 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1347 instruction set (SIMD instructions for 32-bit floating point data)
1348 available on AMD's K6-2 processor and possibly others in the future.
1349
1350 Currently, @code{@value{AS}} does not support Intel's floating point
1351 SIMD, Katmai (KNI).
1352
1353 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1354 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1355 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1356 floating point values. The MMX registers cannot be used at the same time
1357 as the floating point stack.
1358
1359 See Intel and AMD documentation, keeping in mind that the operand order in
1360 instructions is reversed from the Intel syntax.
1361
1362 @node i386-LWP
1363 @section AMD's Lightweight Profiling Instructions
1364
1365 @cindex LWP, i386
1366 @cindex LWP, x86-64
1367
1368 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1369 instruction set, available on AMD's Family 15h (Orochi) processors.
1370
1371 LWP enables applications to collect and manage performance data, and
1372 react to performance events. The collection of performance data
1373 requires no context switches. LWP runs in the context of a thread and
1374 so several counters can be used independently across multiple threads.
1375 LWP can be used in both 64-bit and legacy 32-bit modes.
1376
1377 For detailed information on the LWP instruction set, see the
1378 @cite{AMD Lightweight Profiling Specification} available at
1379 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1380
1381 @node i386-BMI
1382 @section Bit Manipulation Instructions
1383
1384 @cindex BMI, i386
1385 @cindex BMI, x86-64
1386
1387 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1388
1389 BMI instructions provide several instructions implementing individual
1390 bit manipulation operations such as isolation, masking, setting, or
1391 resetting.
1392
1393 @c Need to add a specification citation here when available.
1394
1395 @node i386-TBM
1396 @section AMD's Trailing Bit Manipulation Instructions
1397
1398 @cindex TBM, i386
1399 @cindex TBM, x86-64
1400
1401 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1402 instruction set, available on AMD's BDVER2 processors (Trinity and
1403 Viperfish).
1404
1405 TBM instructions provide instructions implementing individual bit
1406 manipulation operations such as isolating, masking, setting, resetting,
1407 complementing, and operations on trailing zeros and ones.
1408
1409 @c Need to add a specification citation here when available.
1410
1411 @node i386-16bit
1412 @section Writing 16-bit Code
1413
1414 @cindex i386 16-bit code
1415 @cindex 16-bit code, i386
1416 @cindex real-mode code, i386
1417 @cindex @code{code16gcc} directive, i386
1418 @cindex @code{code16} directive, i386
1419 @cindex @code{code32} directive, i386
1420 @cindex @code{code64} directive, i386
1421 @cindex @code{code64} directive, x86-64
1422 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1423 or 64-bit x86-64 code depending on the default configuration,
1424 it also supports writing code to run in real mode or in 16-bit protected
1425 mode code segments. To do this, put a @samp{.code16} or
1426 @samp{.code16gcc} directive before the assembly language instructions to
1427 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1428 32-bit code with the @samp{.code32} directive or 64-bit code with the
1429 @samp{.code64} directive.
1430
1431 @samp{.code16gcc} provides experimental support for generating 16-bit
1432 code from gcc, and differs from @samp{.code16} in that @samp{call},
1433 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1434 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1435 default to 32-bit size. This is so that the stack pointer is
1436 manipulated in the same way over function calls, allowing access to
1437 function parameters at the same stack offsets as in 32-bit mode.
1438 @samp{.code16gcc} also automatically adds address size prefixes where
1439 necessary to use the 32-bit addressing modes that gcc generates.
1440
1441 The code which @code{@value{AS}} generates in 16-bit mode will not
1442 necessarily run on a 16-bit pre-80386 processor. To write code that
1443 runs on such a processor, you must refrain from using @emph{any} 32-bit
1444 constructs which require @code{@value{AS}} to output address or operand
1445 size prefixes.
1446
1447 Note that writing 16-bit code instructions by explicitly specifying a
1448 prefix or an instruction mnemonic suffix within a 32-bit code section
1449 generates different machine instructions than those generated for a
1450 16-bit code segment. In a 32-bit code section, the following code
1451 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1452 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1453
1454 @smallexample
1455 pushw $4
1456 @end smallexample
1457
1458 The same code in a 16-bit code section would generate the machine
1459 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1460 is correct since the processor default operand size is assumed to be 16
1461 bits in a 16-bit code section.
1462
1463 @node i386-Arch
1464 @section Specifying CPU Architecture
1465
1466 @cindex arch directive, i386
1467 @cindex i386 arch directive
1468 @cindex arch directive, x86-64
1469 @cindex x86-64 arch directive
1470
1471 @code{@value{AS}} may be told to assemble for a particular CPU
1472 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1473 directive enables a warning when gas detects an instruction that is not
1474 supported on the CPU specified. The choices for @var{cpu_type} are:
1475
1476 @multitable @columnfractions .20 .20 .20 .20
1477 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1478 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1479 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1480 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1481 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1482 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1483 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1484 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1485 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1486 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1487 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1488 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1489 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1490 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1491 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1492 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1493 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1494 @item @samp{.hle}
1495 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1496 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1497 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1498 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1499 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1500 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1501 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1502 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1503 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1504 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1505 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1506 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1507 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1508 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1509 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1510 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1511 @item @samp{.mcommit} @tab @samp{.sev_es}
1512 @end multitable
1513
1514 Apart from the warning, there are only two other effects on
1515 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1516 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1517 will automatically use a two byte opcode sequence. The larger three
1518 byte opcode sequence is used on the 486 (and when no architecture is
1519 specified) because it executes faster on the 486. Note that you can
1520 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1521 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1522 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1523 conditional jumps will be promoted when necessary to a two instruction
1524 sequence consisting of a conditional jump of the opposite sense around
1525 an unconditional jump to the target.
1526
1527 Following the CPU architecture (but not a sub-architecture, which are those
1528 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1529 control automatic promotion of conditional jumps. @samp{jumps} is the
1530 default, and enables jump promotion; All external jumps will be of the long
1531 variety, and file-local jumps will be promoted as necessary.
1532 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1533 byte offset jumps, and warns about file-local conditional jumps that
1534 @code{@value{AS}} promotes.
1535 Unconditional jumps are treated as for @samp{jumps}.
1536
1537 For example
1538
1539 @smallexample
1540 .arch i8086,nojumps
1541 @end smallexample
1542
1543 @node i386-ISA
1544 @section AMD64 ISA vs. Intel64 ISA
1545
1546 There are some discrepancies between AMD64 and Intel64 ISAs.
1547
1548 @itemize @bullet
1549 @item For @samp{movsxd} with 16-bit destination register, AMD64
1550 supports 32-bit source operand and Intel64 supports 16-bit source
1551 operand.
1552
1553 @item For far branches (with explicit memory operand), both ISAs support
1554 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1555 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1556 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1557 syntax.
1558
1559 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1560 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1561 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1562 operands).
1563
1564 @end itemize
1565
1566 @node i386-Bugs
1567 @section AT&T Syntax bugs
1568
1569 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1570 assemblers, generate floating point instructions with reversed source
1571 and destination registers in certain cases. Unfortunately, gcc and
1572 possibly many other programs use this reversed syntax, so we're stuck
1573 with it.
1574
1575 For example
1576
1577 @smallexample
1578 fsub %st,%st(3)
1579 @end smallexample
1580 @noindent
1581 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1582 than the expected @samp{%st(3) - %st}. This happens with all the
1583 non-commutative arithmetic floating point operations with two register
1584 operands where the source register is @samp{%st} and the destination
1585 register is @samp{%st(i)}.
1586
1587 @node i386-Notes
1588 @section Notes
1589
1590 @cindex i386 @code{mul}, @code{imul} instructions
1591 @cindex @code{mul} instruction, i386
1592 @cindex @code{imul} instruction, i386
1593 @cindex @code{mul} instruction, x86-64
1594 @cindex @code{imul} instruction, x86-64
1595 There is some trickery concerning the @samp{mul} and @samp{imul}
1596 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1597 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1598 for @samp{imul}) can be output only in the one operand form. Thus,
1599 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1600 the expanding multiply would clobber the @samp{%edx} register, and this
1601 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1602 64-bit product in @samp{%edx:%eax}.
1603
1604 We have added a two operand form of @samp{imul} when the first operand
1605 is an immediate mode expression and the second operand is a register.
1606 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1607 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1608 $69, %eax, %eax}.
1609
This page took 0.060245 seconds and 3 git commands to generate.