a9af00559c69f9c6e145d65f48031dd20e7aad07
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2021 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit-head.h"
36 #include "dwarf2/cu.h"
37 #include "dwarf2/index-cache.h"
38 #include "dwarf2/index-common.h"
39 #include "dwarf2/leb.h"
40 #include "dwarf2/line-header.h"
41 #include "dwarf2/dwz.h"
42 #include "dwarf2/macro.h"
43 #include "dwarf2/die.h"
44 #include "dwarf2/sect-names.h"
45 #include "dwarf2/stringify.h"
46 #include "dwarf2/public.h"
47 #include "bfd.h"
48 #include "elf-bfd.h"
49 #include "symtab.h"
50 #include "gdbtypes.h"
51 #include "objfiles.h"
52 #include "dwarf2.h"
53 #include "demangle.h"
54 #include "gdb-demangle.h"
55 #include "filenames.h" /* for DOSish file names */
56 #include "language.h"
57 #include "complaints.h"
58 #include "dwarf2/expr.h"
59 #include "dwarf2/loc.h"
60 #include "cp-support.h"
61 #include "hashtab.h"
62 #include "command.h"
63 #include "gdbcmd.h"
64 #include "block.h"
65 #include "addrmap.h"
66 #include "typeprint.h"
67 #include "psympriv.h"
68 #include "c-lang.h"
69 #include "go-lang.h"
70 #include "valprint.h"
71 #include "gdbcore.h" /* for gnutarget */
72 #include "gdb/gdb-index.h"
73 #include "gdb_bfd.h"
74 #include "f-lang.h"
75 #include "source.h"
76 #include "build-id.h"
77 #include "namespace.h"
78 #include "gdbsupport/function-view.h"
79 #include "gdbsupport/gdb_optional.h"
80 #include "gdbsupport/underlying.h"
81 #include "gdbsupport/hash_enum.h"
82 #include "filename-seen-cache.h"
83 #include "producer.h"
84 #include <fcntl.h>
85 #include <algorithm>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include "rust-lang.h"
89 #include "gdbsupport/pathstuff.h"
90 #include "count-one-bits.h"
91 #include <unordered_set>
92
93 /* When == 1, print basic high level tracing messages.
94 When > 1, be more verbose.
95 This is in contrast to the low level DIE reading of dwarf_die_debug. */
96 static unsigned int dwarf_read_debug = 0;
97
98 /* Print a "dwarf-read" debug statement if dwarf_read_debug is >= 1. */
99
100 #define dwarf_read_debug_printf(fmt, ...) \
101 debug_prefixed_printf_cond (dwarf_read_debug >= 1, "dwarf-read", fmt, \
102 ##__VA_ARGS__)
103
104 /* Print a "dwarf-read" debug statement if dwarf_read_debug is >= 2. */
105
106 #define dwarf_read_debug_printf_v(fmt, ...) \
107 debug_prefixed_printf_cond (dwarf_read_debug >= 2, "dwarf-read", fmt, \
108 ##__VA_ARGS__)
109
110 /* When non-zero, dump DIEs after they are read in. */
111 static unsigned int dwarf_die_debug = 0;
112
113 /* When non-zero, dump line number entries as they are read in. */
114 unsigned int dwarf_line_debug = 0;
115
116 /* When true, cross-check physname against demangler. */
117 static bool check_physname = false;
118
119 /* When true, do not reject deprecated .gdb_index sections. */
120 static bool use_deprecated_index_sections = false;
121
122 /* This is used to store the data that is always per objfile. */
123 static const objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
124
125 /* These are used to store the dwarf2_per_bfd objects.
126
127 objfiles having the same BFD, which doesn't require relocations, are going to
128 share a dwarf2_per_bfd object, which is held in the _bfd_data_key version.
129
130 Other objfiles are not going to share a dwarf2_per_bfd with any other
131 objfiles, so they'll have their own version kept in the _objfile_data_key
132 version. */
133 static const struct bfd_key<dwarf2_per_bfd> dwarf2_per_bfd_bfd_data_key;
134 static const struct objfile_key<dwarf2_per_bfd> dwarf2_per_bfd_objfile_data_key;
135
136 /* The "aclass" indices for various kinds of computed DWARF symbols. */
137
138 static int dwarf2_locexpr_index;
139 static int dwarf2_loclist_index;
140 static int dwarf2_locexpr_block_index;
141 static int dwarf2_loclist_block_index;
142
143 /* Size of .debug_loclists section header for 32-bit DWARF format. */
144 #define LOCLIST_HEADER_SIZE32 12
145
146 /* Size of .debug_loclists section header for 64-bit DWARF format. */
147 #define LOCLIST_HEADER_SIZE64 20
148
149 /* Size of .debug_rnglists section header for 32-bit DWARF format. */
150 #define RNGLIST_HEADER_SIZE32 12
151
152 /* Size of .debug_rnglists section header for 64-bit DWARF format. */
153 #define RNGLIST_HEADER_SIZE64 20
154
155 /* An index into a (C++) symbol name component in a symbol name as
156 recorded in the mapped_index's symbol table. For each C++ symbol
157 in the symbol table, we record one entry for the start of each
158 component in the symbol in a table of name components, and then
159 sort the table, in order to be able to binary search symbol names,
160 ignoring leading namespaces, both completion and regular look up.
161 For example, for symbol "A::B::C", we'll have an entry that points
162 to "A::B::C", another that points to "B::C", and another for "C".
163 Note that function symbols in GDB index have no parameter
164 information, just the function/method names. You can convert a
165 name_component to a "const char *" using the
166 'mapped_index::symbol_name_at(offset_type)' method. */
167
168 struct name_component
169 {
170 /* Offset in the symbol name where the component starts. Stored as
171 a (32-bit) offset instead of a pointer to save memory and improve
172 locality on 64-bit architectures. */
173 offset_type name_offset;
174
175 /* The symbol's index in the symbol and constant pool tables of a
176 mapped_index. */
177 offset_type idx;
178 };
179
180 /* Base class containing bits shared by both .gdb_index and
181 .debug_name indexes. */
182
183 struct mapped_index_base
184 {
185 mapped_index_base () = default;
186 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
187
188 /* The name_component table (a sorted vector). See name_component's
189 description above. */
190 std::vector<name_component> name_components;
191
192 /* How NAME_COMPONENTS is sorted. */
193 enum case_sensitivity name_components_casing;
194
195 /* Return the number of names in the symbol table. */
196 virtual size_t symbol_name_count () const = 0;
197
198 /* Get the name of the symbol at IDX in the symbol table. */
199 virtual const char *symbol_name_at
200 (offset_type idx, dwarf2_per_objfile *per_objfile) const = 0;
201
202 /* Return whether the name at IDX in the symbol table should be
203 ignored. */
204 virtual bool symbol_name_slot_invalid (offset_type idx) const
205 {
206 return false;
207 }
208
209 /* Build the symbol name component sorted vector, if we haven't
210 yet. */
211 void build_name_components (dwarf2_per_objfile *per_objfile);
212
213 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
214 possible matches for LN_NO_PARAMS in the name component
215 vector. */
216 std::pair<std::vector<name_component>::const_iterator,
217 std::vector<name_component>::const_iterator>
218 find_name_components_bounds (const lookup_name_info &ln_no_params,
219 enum language lang,
220 dwarf2_per_objfile *per_objfile) const;
221
222 /* Prevent deleting/destroying via a base class pointer. */
223 protected:
224 ~mapped_index_base() = default;
225 };
226
227 /* This is a view into the index that converts from bytes to an
228 offset_type, and allows indexing. Unaligned bytes are specifically
229 allowed here, and handled via unpacking. */
230
231 class offset_view
232 {
233 public:
234 offset_view () = default;
235
236 explicit offset_view (gdb::array_view<const gdb_byte> bytes)
237 : m_bytes (bytes)
238 {
239 }
240
241 /* Extract the INDEXth offset_type from the array. */
242 offset_type operator[] (size_t index) const
243 {
244 const gdb_byte *bytes = &m_bytes[index * sizeof (offset_type)];
245 return (offset_type) extract_unsigned_integer (bytes,
246 sizeof (offset_type),
247 BFD_ENDIAN_LITTLE);
248 }
249
250 /* Return the number of offset_types in this array. */
251 size_t size () const
252 {
253 return m_bytes.size () / sizeof (offset_type);
254 }
255
256 /* Return true if this view is empty. */
257 bool empty () const
258 {
259 return m_bytes.empty ();
260 }
261
262 private:
263 /* The underlying bytes. */
264 gdb::array_view<const gdb_byte> m_bytes;
265 };
266
267 /* A description of the mapped index. The file format is described in
268 a comment by the code that writes the index. */
269 struct mapped_index final : public mapped_index_base
270 {
271 /* Index data format version. */
272 int version = 0;
273
274 /* The address table data. */
275 gdb::array_view<const gdb_byte> address_table;
276
277 /* The symbol table, implemented as a hash table. */
278 offset_view symbol_table;
279
280 /* A pointer to the constant pool. */
281 gdb::array_view<const gdb_byte> constant_pool;
282
283 /* Return the index into the constant pool of the name of the IDXth
284 symbol in the symbol table. */
285 offset_type symbol_name_index (offset_type idx) const
286 {
287 return symbol_table[2 * idx];
288 }
289
290 /* Return the index into the constant pool of the CU vector of the
291 IDXth symbol in the symbol table. */
292 offset_type symbol_vec_index (offset_type idx) const
293 {
294 return symbol_table[2 * idx + 1];
295 }
296
297 bool symbol_name_slot_invalid (offset_type idx) const override
298 {
299 return (symbol_name_index (idx) == 0
300 && symbol_vec_index (idx) == 0);
301 }
302
303 /* Convenience method to get at the name of the symbol at IDX in the
304 symbol table. */
305 const char *symbol_name_at
306 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
307 {
308 return (const char *) (this->constant_pool.data ()
309 + symbol_name_index (idx));
310 }
311
312 size_t symbol_name_count () const override
313 { return this->symbol_table.size () / 2; }
314 };
315
316 /* A description of the mapped .debug_names.
317 Uninitialized map has CU_COUNT 0. */
318 struct mapped_debug_names final : public mapped_index_base
319 {
320 bfd_endian dwarf5_byte_order;
321 bool dwarf5_is_dwarf64;
322 bool augmentation_is_gdb;
323 uint8_t offset_size;
324 uint32_t cu_count = 0;
325 uint32_t tu_count, bucket_count, name_count;
326 const gdb_byte *cu_table_reordered, *tu_table_reordered;
327 const uint32_t *bucket_table_reordered, *hash_table_reordered;
328 const gdb_byte *name_table_string_offs_reordered;
329 const gdb_byte *name_table_entry_offs_reordered;
330 const gdb_byte *entry_pool;
331
332 struct index_val
333 {
334 ULONGEST dwarf_tag;
335 struct attr
336 {
337 /* Attribute name DW_IDX_*. */
338 ULONGEST dw_idx;
339
340 /* Attribute form DW_FORM_*. */
341 ULONGEST form;
342
343 /* Value if FORM is DW_FORM_implicit_const. */
344 LONGEST implicit_const;
345 };
346 std::vector<attr> attr_vec;
347 };
348
349 std::unordered_map<ULONGEST, index_val> abbrev_map;
350
351 const char *namei_to_name
352 (uint32_t namei, dwarf2_per_objfile *per_objfile) const;
353
354 /* Implementation of the mapped_index_base virtual interface, for
355 the name_components cache. */
356
357 const char *symbol_name_at
358 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
359 { return namei_to_name (idx, per_objfile); }
360
361 size_t symbol_name_count () const override
362 { return this->name_count; }
363 };
364
365 /* See dwarf2read.h. */
366
367 dwarf2_per_objfile *
368 get_dwarf2_per_objfile (struct objfile *objfile)
369 {
370 return dwarf2_objfile_data_key.get (objfile);
371 }
372
373 /* Default names of the debugging sections. */
374
375 /* Note that if the debugging section has been compressed, it might
376 have a name like .zdebug_info. */
377
378 const struct dwarf2_debug_sections dwarf2_elf_names =
379 {
380 { ".debug_info", ".zdebug_info" },
381 { ".debug_abbrev", ".zdebug_abbrev" },
382 { ".debug_line", ".zdebug_line" },
383 { ".debug_loc", ".zdebug_loc" },
384 { ".debug_loclists", ".zdebug_loclists" },
385 { ".debug_macinfo", ".zdebug_macinfo" },
386 { ".debug_macro", ".zdebug_macro" },
387 { ".debug_str", ".zdebug_str" },
388 { ".debug_str_offsets", ".zdebug_str_offsets" },
389 { ".debug_line_str", ".zdebug_line_str" },
390 { ".debug_ranges", ".zdebug_ranges" },
391 { ".debug_rnglists", ".zdebug_rnglists" },
392 { ".debug_types", ".zdebug_types" },
393 { ".debug_addr", ".zdebug_addr" },
394 { ".debug_frame", ".zdebug_frame" },
395 { ".eh_frame", NULL },
396 { ".gdb_index", ".zgdb_index" },
397 { ".debug_names", ".zdebug_names" },
398 { ".debug_aranges", ".zdebug_aranges" },
399 23
400 };
401
402 /* List of DWO/DWP sections. */
403
404 static const struct dwop_section_names
405 {
406 struct dwarf2_section_names abbrev_dwo;
407 struct dwarf2_section_names info_dwo;
408 struct dwarf2_section_names line_dwo;
409 struct dwarf2_section_names loc_dwo;
410 struct dwarf2_section_names loclists_dwo;
411 struct dwarf2_section_names macinfo_dwo;
412 struct dwarf2_section_names macro_dwo;
413 struct dwarf2_section_names rnglists_dwo;
414 struct dwarf2_section_names str_dwo;
415 struct dwarf2_section_names str_offsets_dwo;
416 struct dwarf2_section_names types_dwo;
417 struct dwarf2_section_names cu_index;
418 struct dwarf2_section_names tu_index;
419 }
420 dwop_section_names =
421 {
422 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
423 { ".debug_info.dwo", ".zdebug_info.dwo" },
424 { ".debug_line.dwo", ".zdebug_line.dwo" },
425 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
426 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
427 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
428 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
429 { ".debug_rnglists.dwo", ".zdebug_rnglists.dwo" },
430 { ".debug_str.dwo", ".zdebug_str.dwo" },
431 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
432 { ".debug_types.dwo", ".zdebug_types.dwo" },
433 { ".debug_cu_index", ".zdebug_cu_index" },
434 { ".debug_tu_index", ".zdebug_tu_index" },
435 };
436
437 /* local data types */
438
439 /* The location list and range list sections (.debug_loclists & .debug_rnglists)
440 begin with a header, which contains the following information. */
441 struct loclists_rnglists_header
442 {
443 /* A 4-byte or 12-byte length containing the length of the
444 set of entries for this compilation unit, not including the
445 length field itself. */
446 unsigned int length;
447
448 /* A 2-byte version identifier. */
449 short version;
450
451 /* A 1-byte unsigned integer containing the size in bytes of an address on
452 the target system. */
453 unsigned char addr_size;
454
455 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
456 on the target system. */
457 unsigned char segment_collector_size;
458
459 /* A 4-byte count of the number of offsets that follow the header. */
460 unsigned int offset_entry_count;
461 };
462
463 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
464 This includes type_unit_group and quick_file_names. */
465
466 struct stmt_list_hash
467 {
468 /* The DWO unit this table is from or NULL if there is none. */
469 struct dwo_unit *dwo_unit;
470
471 /* Offset in .debug_line or .debug_line.dwo. */
472 sect_offset line_sect_off;
473 };
474
475 /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to
476 an object of this type. This contains elements of type unit groups
477 that can be shared across objfiles. The non-shareable parts are in
478 type_unit_group_unshareable. */
479
480 struct type_unit_group : public dwarf2_per_cu_data
481 {
482 /* The TUs that share this DW_AT_stmt_list entry.
483 This is added to while parsing type units to build partial symtabs,
484 and is deleted afterwards and not used again. */
485 std::vector<signatured_type *> *tus = nullptr;
486
487 /* The data used to construct the hash key. */
488 struct stmt_list_hash hash {};
489 };
490
491 /* These sections are what may appear in a (real or virtual) DWO file. */
492
493 struct dwo_sections
494 {
495 struct dwarf2_section_info abbrev;
496 struct dwarf2_section_info line;
497 struct dwarf2_section_info loc;
498 struct dwarf2_section_info loclists;
499 struct dwarf2_section_info macinfo;
500 struct dwarf2_section_info macro;
501 struct dwarf2_section_info rnglists;
502 struct dwarf2_section_info str;
503 struct dwarf2_section_info str_offsets;
504 /* In the case of a virtual DWO file, these two are unused. */
505 struct dwarf2_section_info info;
506 std::vector<dwarf2_section_info> types;
507 };
508
509 /* CUs/TUs in DWP/DWO files. */
510
511 struct dwo_unit
512 {
513 /* Backlink to the containing struct dwo_file. */
514 struct dwo_file *dwo_file;
515
516 /* The "id" that distinguishes this CU/TU.
517 .debug_info calls this "dwo_id", .debug_types calls this "signature".
518 Since signatures came first, we stick with it for consistency. */
519 ULONGEST signature;
520
521 /* The section this CU/TU lives in, in the DWO file. */
522 struct dwarf2_section_info *section;
523
524 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
525 sect_offset sect_off;
526 unsigned int length;
527
528 /* For types, offset in the type's DIE of the type defined by this TU. */
529 cu_offset type_offset_in_tu;
530 };
531
532 /* include/dwarf2.h defines the DWP section codes.
533 It defines a max value but it doesn't define a min value, which we
534 use for error checking, so provide one. */
535
536 enum dwp_v2_section_ids
537 {
538 DW_SECT_MIN = 1
539 };
540
541 /* Data for one DWO file.
542
543 This includes virtual DWO files (a virtual DWO file is a DWO file as it
544 appears in a DWP file). DWP files don't really have DWO files per se -
545 comdat folding of types "loses" the DWO file they came from, and from
546 a high level view DWP files appear to contain a mass of random types.
547 However, to maintain consistency with the non-DWP case we pretend DWP
548 files contain virtual DWO files, and we assign each TU with one virtual
549 DWO file (generally based on the line and abbrev section offsets -
550 a heuristic that seems to work in practice). */
551
552 struct dwo_file
553 {
554 dwo_file () = default;
555 DISABLE_COPY_AND_ASSIGN (dwo_file);
556
557 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
558 For virtual DWO files the name is constructed from the section offsets
559 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
560 from related CU+TUs. */
561 const char *dwo_name = nullptr;
562
563 /* The DW_AT_comp_dir attribute. */
564 const char *comp_dir = nullptr;
565
566 /* The bfd, when the file is open. Otherwise this is NULL.
567 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
568 gdb_bfd_ref_ptr dbfd;
569
570 /* The sections that make up this DWO file.
571 Remember that for virtual DWO files in DWP V2 or DWP V5, these are virtual
572 sections (for lack of a better name). */
573 struct dwo_sections sections {};
574
575 /* The CUs in the file.
576 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
577 an extension to handle LLVM's Link Time Optimization output (where
578 multiple source files may be compiled into a single object/dwo pair). */
579 htab_up cus;
580
581 /* Table of TUs in the file.
582 Each element is a struct dwo_unit. */
583 htab_up tus;
584 };
585
586 /* These sections are what may appear in a DWP file. */
587
588 struct dwp_sections
589 {
590 /* These are used by all DWP versions (1, 2 and 5). */
591 struct dwarf2_section_info str;
592 struct dwarf2_section_info cu_index;
593 struct dwarf2_section_info tu_index;
594
595 /* These are only used by DWP version 2 and version 5 files.
596 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
597 sections are referenced by section number, and are not recorded here.
598 In DWP version 2 or 5 there is at most one copy of all these sections,
599 each section being (effectively) comprised of the concatenation of all of
600 the individual sections that exist in the version 1 format.
601 To keep the code simple we treat each of these concatenated pieces as a
602 section itself (a virtual section?). */
603 struct dwarf2_section_info abbrev;
604 struct dwarf2_section_info info;
605 struct dwarf2_section_info line;
606 struct dwarf2_section_info loc;
607 struct dwarf2_section_info loclists;
608 struct dwarf2_section_info macinfo;
609 struct dwarf2_section_info macro;
610 struct dwarf2_section_info rnglists;
611 struct dwarf2_section_info str_offsets;
612 struct dwarf2_section_info types;
613 };
614
615 /* These sections are what may appear in a virtual DWO file in DWP version 1.
616 A virtual DWO file is a DWO file as it appears in a DWP file. */
617
618 struct virtual_v1_dwo_sections
619 {
620 struct dwarf2_section_info abbrev;
621 struct dwarf2_section_info line;
622 struct dwarf2_section_info loc;
623 struct dwarf2_section_info macinfo;
624 struct dwarf2_section_info macro;
625 struct dwarf2_section_info str_offsets;
626 /* Each DWP hash table entry records one CU or one TU.
627 That is recorded here, and copied to dwo_unit.section. */
628 struct dwarf2_section_info info_or_types;
629 };
630
631 /* Similar to virtual_v1_dwo_sections, but for DWP version 2 or 5.
632 In version 2, the sections of the DWO files are concatenated together
633 and stored in one section of that name. Thus each ELF section contains
634 several "virtual" sections. */
635
636 struct virtual_v2_or_v5_dwo_sections
637 {
638 bfd_size_type abbrev_offset;
639 bfd_size_type abbrev_size;
640
641 bfd_size_type line_offset;
642 bfd_size_type line_size;
643
644 bfd_size_type loc_offset;
645 bfd_size_type loc_size;
646
647 bfd_size_type loclists_offset;
648 bfd_size_type loclists_size;
649
650 bfd_size_type macinfo_offset;
651 bfd_size_type macinfo_size;
652
653 bfd_size_type macro_offset;
654 bfd_size_type macro_size;
655
656 bfd_size_type rnglists_offset;
657 bfd_size_type rnglists_size;
658
659 bfd_size_type str_offsets_offset;
660 bfd_size_type str_offsets_size;
661
662 /* Each DWP hash table entry records one CU or one TU.
663 That is recorded here, and copied to dwo_unit.section. */
664 bfd_size_type info_or_types_offset;
665 bfd_size_type info_or_types_size;
666 };
667
668 /* Contents of DWP hash tables. */
669
670 struct dwp_hash_table
671 {
672 uint32_t version, nr_columns;
673 uint32_t nr_units, nr_slots;
674 const gdb_byte *hash_table, *unit_table;
675 union
676 {
677 struct
678 {
679 const gdb_byte *indices;
680 } v1;
681 struct
682 {
683 /* This is indexed by column number and gives the id of the section
684 in that column. */
685 #define MAX_NR_V2_DWO_SECTIONS \
686 (1 /* .debug_info or .debug_types */ \
687 + 1 /* .debug_abbrev */ \
688 + 1 /* .debug_line */ \
689 + 1 /* .debug_loc */ \
690 + 1 /* .debug_str_offsets */ \
691 + 1 /* .debug_macro or .debug_macinfo */)
692 int section_ids[MAX_NR_V2_DWO_SECTIONS];
693 const gdb_byte *offsets;
694 const gdb_byte *sizes;
695 } v2;
696 struct
697 {
698 /* This is indexed by column number and gives the id of the section
699 in that column. */
700 #define MAX_NR_V5_DWO_SECTIONS \
701 (1 /* .debug_info */ \
702 + 1 /* .debug_abbrev */ \
703 + 1 /* .debug_line */ \
704 + 1 /* .debug_loclists */ \
705 + 1 /* .debug_str_offsets */ \
706 + 1 /* .debug_macro */ \
707 + 1 /* .debug_rnglists */)
708 int section_ids[MAX_NR_V5_DWO_SECTIONS];
709 const gdb_byte *offsets;
710 const gdb_byte *sizes;
711 } v5;
712 } section_pool;
713 };
714
715 /* Data for one DWP file. */
716
717 struct dwp_file
718 {
719 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
720 : name (name_),
721 dbfd (std::move (abfd))
722 {
723 }
724
725 /* Name of the file. */
726 const char *name;
727
728 /* File format version. */
729 int version = 0;
730
731 /* The bfd. */
732 gdb_bfd_ref_ptr dbfd;
733
734 /* Section info for this file. */
735 struct dwp_sections sections {};
736
737 /* Table of CUs in the file. */
738 const struct dwp_hash_table *cus = nullptr;
739
740 /* Table of TUs in the file. */
741 const struct dwp_hash_table *tus = nullptr;
742
743 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
744 htab_up loaded_cus;
745 htab_up loaded_tus;
746
747 /* Table to map ELF section numbers to their sections.
748 This is only needed for the DWP V1 file format. */
749 unsigned int num_sections = 0;
750 asection **elf_sections = nullptr;
751 };
752
753 /* Struct used to pass misc. parameters to read_die_and_children, et
754 al. which are used for both .debug_info and .debug_types dies.
755 All parameters here are unchanging for the life of the call. This
756 struct exists to abstract away the constant parameters of die reading. */
757
758 struct die_reader_specs
759 {
760 /* The bfd of die_section. */
761 bfd *abfd;
762
763 /* The CU of the DIE we are parsing. */
764 struct dwarf2_cu *cu;
765
766 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
767 struct dwo_file *dwo_file;
768
769 /* The section the die comes from.
770 This is either .debug_info or .debug_types, or the .dwo variants. */
771 struct dwarf2_section_info *die_section;
772
773 /* die_section->buffer. */
774 const gdb_byte *buffer;
775
776 /* The end of the buffer. */
777 const gdb_byte *buffer_end;
778
779 /* The abbreviation table to use when reading the DIEs. */
780 struct abbrev_table *abbrev_table;
781 };
782
783 /* A subclass of die_reader_specs that holds storage and has complex
784 constructor and destructor behavior. */
785
786 class cutu_reader : public die_reader_specs
787 {
788 public:
789
790 cutu_reader (dwarf2_per_cu_data *this_cu,
791 dwarf2_per_objfile *per_objfile,
792 struct abbrev_table *abbrev_table,
793 dwarf2_cu *existing_cu,
794 bool skip_partial);
795
796 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
797 dwarf2_per_objfile *per_objfile,
798 struct dwarf2_cu *parent_cu = nullptr,
799 struct dwo_file *dwo_file = nullptr);
800
801 DISABLE_COPY_AND_ASSIGN (cutu_reader);
802
803 const gdb_byte *info_ptr = nullptr;
804 struct die_info *comp_unit_die = nullptr;
805 bool dummy_p = false;
806
807 /* Release the new CU, putting it on the chain. This cannot be done
808 for dummy CUs. */
809 void keep ();
810
811 private:
812 void init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
813 dwarf2_per_objfile *per_objfile,
814 dwarf2_cu *existing_cu);
815
816 struct dwarf2_per_cu_data *m_this_cu;
817 std::unique_ptr<dwarf2_cu> m_new_cu;
818
819 /* The ordinary abbreviation table. */
820 abbrev_table_up m_abbrev_table_holder;
821
822 /* The DWO abbreviation table. */
823 abbrev_table_up m_dwo_abbrev_table;
824 };
825
826 /* When we construct a partial symbol table entry we only
827 need this much information. */
828 struct partial_die_info : public allocate_on_obstack
829 {
830 partial_die_info (sect_offset sect_off, const struct abbrev_info *abbrev);
831
832 /* Disable assign but still keep copy ctor, which is needed
833 load_partial_dies. */
834 partial_die_info& operator=(const partial_die_info& rhs) = delete;
835 partial_die_info (const partial_die_info &) = default;
836
837 /* Adjust the partial die before generating a symbol for it. This
838 function may set the is_external flag or change the DIE's
839 name. */
840 void fixup (struct dwarf2_cu *cu);
841
842 /* Read a minimal amount of information into the minimal die
843 structure. */
844 const gdb_byte *read (const struct die_reader_specs *reader,
845 const struct abbrev_info &abbrev,
846 const gdb_byte *info_ptr);
847
848 /* Compute the name of this partial DIE. This memoizes the
849 result, so it is safe to call multiple times. */
850 const char *name (dwarf2_cu *cu);
851
852 /* Offset of this DIE. */
853 const sect_offset sect_off;
854
855 /* DWARF-2 tag for this DIE. */
856 const ENUM_BITFIELD(dwarf_tag) tag : 16;
857
858 /* Assorted flags describing the data found in this DIE. */
859 const unsigned int has_children : 1;
860
861 unsigned int is_external : 1;
862 unsigned int is_declaration : 1;
863 unsigned int has_type : 1;
864 unsigned int has_specification : 1;
865 unsigned int has_pc_info : 1;
866 unsigned int may_be_inlined : 1;
867
868 /* This DIE has been marked DW_AT_main_subprogram. */
869 unsigned int main_subprogram : 1;
870
871 /* Flag set if the SCOPE field of this structure has been
872 computed. */
873 unsigned int scope_set : 1;
874
875 /* Flag set if the DIE has a byte_size attribute. */
876 unsigned int has_byte_size : 1;
877
878 /* Flag set if the DIE has a DW_AT_const_value attribute. */
879 unsigned int has_const_value : 1;
880
881 /* Flag set if any of the DIE's children are template arguments. */
882 unsigned int has_template_arguments : 1;
883
884 /* Flag set if fixup has been called on this die. */
885 unsigned int fixup_called : 1;
886
887 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
888 unsigned int is_dwz : 1;
889
890 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
891 unsigned int spec_is_dwz : 1;
892
893 unsigned int canonical_name : 1;
894
895 /* The name of this DIE. Normally the value of DW_AT_name, but
896 sometimes a default name for unnamed DIEs. */
897 const char *raw_name = nullptr;
898
899 /* The linkage name, if present. */
900 const char *linkage_name = nullptr;
901
902 /* The scope to prepend to our children. This is generally
903 allocated on the comp_unit_obstack, so will disappear
904 when this compilation unit leaves the cache. */
905 const char *scope = nullptr;
906
907 /* Some data associated with the partial DIE. The tag determines
908 which field is live. */
909 union
910 {
911 /* The location description associated with this DIE, if any. */
912 struct dwarf_block *locdesc;
913 /* The offset of an import, for DW_TAG_imported_unit. */
914 sect_offset sect_off;
915 } d {};
916
917 /* If HAS_PC_INFO, the PC range associated with this DIE. */
918 CORE_ADDR lowpc = 0;
919 CORE_ADDR highpc = 0;
920
921 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
922 DW_AT_sibling, if any. */
923 /* NOTE: This member isn't strictly necessary, partial_die_info::read
924 could return DW_AT_sibling values to its caller load_partial_dies. */
925 const gdb_byte *sibling = nullptr;
926
927 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
928 DW_AT_specification (or DW_AT_abstract_origin or
929 DW_AT_extension). */
930 sect_offset spec_offset {};
931
932 /* Pointers to this DIE's parent, first child, and next sibling,
933 if any. */
934 struct partial_die_info *die_parent = nullptr;
935 struct partial_die_info *die_child = nullptr;
936 struct partial_die_info *die_sibling = nullptr;
937
938 friend struct partial_die_info *
939 dwarf2_cu::find_partial_die (sect_offset sect_off);
940
941 private:
942 /* Only need to do look up in dwarf2_cu::find_partial_die. */
943 partial_die_info (sect_offset sect_off)
944 : partial_die_info (sect_off, DW_TAG_padding, 0)
945 {
946 }
947
948 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
949 int has_children_)
950 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
951 {
952 is_external = 0;
953 is_declaration = 0;
954 has_type = 0;
955 has_specification = 0;
956 has_pc_info = 0;
957 may_be_inlined = 0;
958 main_subprogram = 0;
959 scope_set = 0;
960 has_byte_size = 0;
961 has_const_value = 0;
962 has_template_arguments = 0;
963 fixup_called = 0;
964 is_dwz = 0;
965 spec_is_dwz = 0;
966 canonical_name = 0;
967 }
968 };
969
970 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
971 but this would require a corresponding change in unpack_field_as_long
972 and friends. */
973 static int bits_per_byte = 8;
974
975 struct variant_part_builder;
976
977 /* When reading a variant, we track a bit more information about the
978 field, and store it in an object of this type. */
979
980 struct variant_field
981 {
982 int first_field = -1;
983 int last_field = -1;
984
985 /* A variant can contain other variant parts. */
986 std::vector<variant_part_builder> variant_parts;
987
988 /* If we see a DW_TAG_variant, then this will be set if this is the
989 default branch. */
990 bool default_branch = false;
991 /* If we see a DW_AT_discr_value, then this will be the discriminant
992 value. */
993 ULONGEST discriminant_value = 0;
994 /* If we see a DW_AT_discr_list, then this is a pointer to the list
995 data. */
996 struct dwarf_block *discr_list_data = nullptr;
997 };
998
999 /* This represents a DW_TAG_variant_part. */
1000
1001 struct variant_part_builder
1002 {
1003 /* The offset of the discriminant field. */
1004 sect_offset discriminant_offset {};
1005
1006 /* Variants that are direct children of this variant part. */
1007 std::vector<variant_field> variants;
1008
1009 /* True if we're currently reading a variant. */
1010 bool processing_variant = false;
1011 };
1012
1013 struct nextfield
1014 {
1015 int accessibility = 0;
1016 int virtuality = 0;
1017 /* Variant parts need to find the discriminant, which is a DIE
1018 reference. We track the section offset of each field to make
1019 this link. */
1020 sect_offset offset;
1021 struct field field {};
1022 };
1023
1024 struct fnfieldlist
1025 {
1026 const char *name = nullptr;
1027 std::vector<struct fn_field> fnfields;
1028 };
1029
1030 /* The routines that read and process dies for a C struct or C++ class
1031 pass lists of data member fields and lists of member function fields
1032 in an instance of a field_info structure, as defined below. */
1033 struct field_info
1034 {
1035 /* List of data member and baseclasses fields. */
1036 std::vector<struct nextfield> fields;
1037 std::vector<struct nextfield> baseclasses;
1038
1039 /* Set if the accessibility of one of the fields is not public. */
1040 bool non_public_fields = false;
1041
1042 /* Member function fieldlist array, contains name of possibly overloaded
1043 member function, number of overloaded member functions and a pointer
1044 to the head of the member function field chain. */
1045 std::vector<struct fnfieldlist> fnfieldlists;
1046
1047 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1048 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1049 std::vector<struct decl_field> typedef_field_list;
1050
1051 /* Nested types defined by this class and the number of elements in this
1052 list. */
1053 std::vector<struct decl_field> nested_types_list;
1054
1055 /* If non-null, this is the variant part we are currently
1056 reading. */
1057 variant_part_builder *current_variant_part = nullptr;
1058 /* This holds all the top-level variant parts attached to the type
1059 we're reading. */
1060 std::vector<variant_part_builder> variant_parts;
1061
1062 /* Return the total number of fields (including baseclasses). */
1063 int nfields () const
1064 {
1065 return fields.size () + baseclasses.size ();
1066 }
1067 };
1068
1069 /* Loaded secondary compilation units are kept in memory until they
1070 have not been referenced for the processing of this many
1071 compilation units. Set this to zero to disable caching. Cache
1072 sizes of up to at least twenty will improve startup time for
1073 typical inter-CU-reference binaries, at an obvious memory cost. */
1074 static int dwarf_max_cache_age = 5;
1075 static void
1076 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c, const char *value)
1078 {
1079 fprintf_filtered (file, _("The upper bound on the age of cached "
1080 "DWARF compilation units is %s.\n"),
1081 value);
1082 }
1083 \f
1084 /* local function prototypes */
1085
1086 static void dwarf2_find_base_address (struct die_info *die,
1087 struct dwarf2_cu *cu);
1088
1089 static dwarf2_psymtab *create_partial_symtab
1090 (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
1091 const char *name);
1092
1093 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1094 const gdb_byte *info_ptr,
1095 struct die_info *type_unit_die);
1096
1097 static void dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile);
1098
1099 static void scan_partial_symbols (struct partial_die_info *,
1100 CORE_ADDR *, CORE_ADDR *,
1101 int, struct dwarf2_cu *);
1102
1103 static void add_partial_symbol (struct partial_die_info *,
1104 struct dwarf2_cu *);
1105
1106 static void add_partial_namespace (struct partial_die_info *pdi,
1107 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1108 int set_addrmap, struct dwarf2_cu *cu);
1109
1110 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1111 CORE_ADDR *highpc, int set_addrmap,
1112 struct dwarf2_cu *cu);
1113
1114 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1115 struct dwarf2_cu *cu);
1116
1117 static void add_partial_subprogram (struct partial_die_info *pdi,
1118 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1119 int need_pc, struct dwarf2_cu *cu);
1120
1121 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1122
1123 static struct partial_die_info *load_partial_dies
1124 (const struct die_reader_specs *, const gdb_byte *, int);
1125
1126 /* A pair of partial_die_info and compilation unit. */
1127 struct cu_partial_die_info
1128 {
1129 /* The compilation unit of the partial_die_info. */
1130 struct dwarf2_cu *cu;
1131 /* A partial_die_info. */
1132 struct partial_die_info *pdi;
1133
1134 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1135 : cu (cu),
1136 pdi (pdi)
1137 { /* Nothing. */ }
1138
1139 private:
1140 cu_partial_die_info () = delete;
1141 };
1142
1143 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1144 struct dwarf2_cu *);
1145
1146 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1147 struct attribute *,
1148 const struct attr_abbrev *,
1149 const gdb_byte *);
1150
1151 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1152 struct attribute *attr, dwarf_tag tag);
1153
1154 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1155
1156 static sect_offset read_abbrev_offset (dwarf2_per_objfile *per_objfile,
1157 dwarf2_section_info *, sect_offset);
1158
1159 static const char *read_indirect_string
1160 (dwarf2_per_objfile *per_objfile, bfd *, const gdb_byte *,
1161 const struct comp_unit_head *, unsigned int *);
1162
1163 static const char *read_indirect_string_at_offset
1164 (dwarf2_per_objfile *per_objfile, LONGEST str_offset);
1165
1166 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1167 const gdb_byte *,
1168 unsigned int *);
1169
1170 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1171 ULONGEST str_index);
1172
1173 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1174 ULONGEST str_index);
1175
1176 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1177 struct dwarf2_cu *);
1178
1179 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1180 struct dwarf2_cu *cu);
1181
1182 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1183
1184 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1185 struct dwarf2_cu *cu);
1186
1187 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1188
1189 static struct die_info *die_specification (struct die_info *die,
1190 struct dwarf2_cu **);
1191
1192 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1193 struct dwarf2_cu *cu);
1194
1195 static void dwarf_decode_lines (struct line_header *, const char *,
1196 struct dwarf2_cu *, dwarf2_psymtab *,
1197 CORE_ADDR, int decode_mapping);
1198
1199 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1200 const char *);
1201
1202 static struct symbol *new_symbol (struct die_info *, struct type *,
1203 struct dwarf2_cu *, struct symbol * = NULL);
1204
1205 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1206 struct dwarf2_cu *);
1207
1208 static void dwarf2_const_value_attr (const struct attribute *attr,
1209 struct type *type,
1210 const char *name,
1211 struct obstack *obstack,
1212 struct dwarf2_cu *cu, LONGEST *value,
1213 const gdb_byte **bytes,
1214 struct dwarf2_locexpr_baton **baton);
1215
1216 static struct type *read_subrange_index_type (struct die_info *die,
1217 struct dwarf2_cu *cu);
1218
1219 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1220
1221 static int need_gnat_info (struct dwarf2_cu *);
1222
1223 static struct type *die_descriptive_type (struct die_info *,
1224 struct dwarf2_cu *);
1225
1226 static void set_descriptive_type (struct type *, struct die_info *,
1227 struct dwarf2_cu *);
1228
1229 static struct type *die_containing_type (struct die_info *,
1230 struct dwarf2_cu *);
1231
1232 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1233 struct dwarf2_cu *);
1234
1235 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1236
1237 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1238
1239 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1240
1241 static char *typename_concat (struct obstack *obs, const char *prefix,
1242 const char *suffix, int physname,
1243 struct dwarf2_cu *cu);
1244
1245 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1246
1247 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1248
1249 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1250
1251 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1252
1253 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1254
1255 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1256
1257 /* Return the .debug_loclists section to use for cu. */
1258 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1259
1260 /* Return the .debug_rnglists section to use for cu. */
1261 static struct dwarf2_section_info *cu_debug_rnglists_section
1262 (struct dwarf2_cu *cu, dwarf_tag tag);
1263
1264 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1265 values. Keep the items ordered with increasing constraints compliance. */
1266 enum pc_bounds_kind
1267 {
1268 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1269 PC_BOUNDS_NOT_PRESENT,
1270
1271 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1272 were present but they do not form a valid range of PC addresses. */
1273 PC_BOUNDS_INVALID,
1274
1275 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1276 PC_BOUNDS_RANGES,
1277
1278 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1279 PC_BOUNDS_HIGH_LOW,
1280 };
1281
1282 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1283 CORE_ADDR *, CORE_ADDR *,
1284 struct dwarf2_cu *,
1285 dwarf2_psymtab *);
1286
1287 static void get_scope_pc_bounds (struct die_info *,
1288 CORE_ADDR *, CORE_ADDR *,
1289 struct dwarf2_cu *);
1290
1291 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1292 CORE_ADDR, struct dwarf2_cu *);
1293
1294 static void dwarf2_add_field (struct field_info *, struct die_info *,
1295 struct dwarf2_cu *);
1296
1297 static void dwarf2_attach_fields_to_type (struct field_info *,
1298 struct type *, struct dwarf2_cu *);
1299
1300 static void dwarf2_add_member_fn (struct field_info *,
1301 struct die_info *, struct type *,
1302 struct dwarf2_cu *);
1303
1304 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1305 struct type *,
1306 struct dwarf2_cu *);
1307
1308 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1309
1310 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1311
1312 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1313
1314 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1315
1316 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1317
1318 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1319
1320 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1321
1322 static struct type *read_module_type (struct die_info *die,
1323 struct dwarf2_cu *cu);
1324
1325 static const char *namespace_name (struct die_info *die,
1326 int *is_anonymous, struct dwarf2_cu *);
1327
1328 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1329
1330 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1331 bool * = nullptr);
1332
1333 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1334 struct dwarf2_cu *);
1335
1336 static struct die_info *read_die_and_siblings_1
1337 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1338 struct die_info *);
1339
1340 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1341 const gdb_byte *info_ptr,
1342 const gdb_byte **new_info_ptr,
1343 struct die_info *parent);
1344
1345 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1346 struct die_info **, const gdb_byte *,
1347 int);
1348
1349 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1350 struct die_info **, const gdb_byte *);
1351
1352 static void process_die (struct die_info *, struct dwarf2_cu *);
1353
1354 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1355 struct objfile *);
1356
1357 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1358
1359 static const char *dwarf2_full_name (const char *name,
1360 struct die_info *die,
1361 struct dwarf2_cu *cu);
1362
1363 static const char *dwarf2_physname (const char *name, struct die_info *die,
1364 struct dwarf2_cu *cu);
1365
1366 static struct die_info *dwarf2_extension (struct die_info *die,
1367 struct dwarf2_cu **);
1368
1369 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1370
1371 static void dump_die_for_error (struct die_info *);
1372
1373 static void dump_die_1 (struct ui_file *, int level, int max_level,
1374 struct die_info *);
1375
1376 /*static*/ void dump_die (struct die_info *, int max_level);
1377
1378 static void store_in_ref_table (struct die_info *,
1379 struct dwarf2_cu *);
1380
1381 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1382 const struct attribute *,
1383 struct dwarf2_cu **);
1384
1385 static struct die_info *follow_die_ref (struct die_info *,
1386 const struct attribute *,
1387 struct dwarf2_cu **);
1388
1389 static struct die_info *follow_die_sig (struct die_info *,
1390 const struct attribute *,
1391 struct dwarf2_cu **);
1392
1393 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1394 struct dwarf2_cu *);
1395
1396 static struct type *get_DW_AT_signature_type (struct die_info *,
1397 const struct attribute *,
1398 struct dwarf2_cu *);
1399
1400 static void load_full_type_unit (dwarf2_per_cu_data *per_cu,
1401 dwarf2_per_objfile *per_objfile);
1402
1403 static void read_signatured_type (signatured_type *sig_type,
1404 dwarf2_per_objfile *per_objfile);
1405
1406 static int attr_to_dynamic_prop (const struct attribute *attr,
1407 struct die_info *die, struct dwarf2_cu *cu,
1408 struct dynamic_prop *prop, struct type *type);
1409
1410 /* memory allocation interface */
1411
1412 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1413
1414 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1415
1416 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1417
1418 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1419 struct dwarf2_loclist_baton *baton,
1420 const struct attribute *attr);
1421
1422 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1423 struct symbol *sym,
1424 struct dwarf2_cu *cu,
1425 int is_block);
1426
1427 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1428 const gdb_byte *info_ptr,
1429 const struct abbrev_info *abbrev);
1430
1431 static hashval_t partial_die_hash (const void *item);
1432
1433 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1434
1435 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1436 (sect_offset sect_off, unsigned int offset_in_dwz,
1437 dwarf2_per_objfile *per_objfile);
1438
1439 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1440 struct die_info *comp_unit_die,
1441 enum language pretend_language);
1442
1443 static struct type *set_die_type (struct die_info *, struct type *,
1444 struct dwarf2_cu *, bool = false);
1445
1446 static void create_all_comp_units (dwarf2_per_objfile *per_objfile);
1447
1448 static void load_full_comp_unit (dwarf2_per_cu_data *per_cu,
1449 dwarf2_per_objfile *per_objfile,
1450 dwarf2_cu *existing_cu,
1451 bool skip_partial,
1452 enum language pretend_language);
1453
1454 static void process_full_comp_unit (dwarf2_cu *cu,
1455 enum language pretend_language);
1456
1457 static void process_full_type_unit (dwarf2_cu *cu,
1458 enum language pretend_language);
1459
1460 static struct type *get_die_type_at_offset (sect_offset,
1461 dwarf2_per_cu_data *per_cu,
1462 dwarf2_per_objfile *per_objfile);
1463
1464 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1465
1466 static void queue_comp_unit (dwarf2_per_cu_data *per_cu,
1467 dwarf2_per_objfile *per_objfile,
1468 enum language pretend_language);
1469
1470 static void process_queue (dwarf2_per_objfile *per_objfile);
1471
1472 /* Class, the destructor of which frees all allocated queue entries. This
1473 will only have work to do if an error was thrown while processing the
1474 dwarf. If no error was thrown then the queue entries should have all
1475 been processed, and freed, as we went along. */
1476
1477 class dwarf2_queue_guard
1478 {
1479 public:
1480 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1481 : m_per_objfile (per_objfile)
1482 {
1483 gdb_assert (!m_per_objfile->per_bfd->queue.has_value ());
1484
1485 m_per_objfile->per_bfd->queue.emplace ();
1486 }
1487
1488 /* Free any entries remaining on the queue. There should only be
1489 entries left if we hit an error while processing the dwarf. */
1490 ~dwarf2_queue_guard ()
1491 {
1492 gdb_assert (m_per_objfile->per_bfd->queue.has_value ());
1493
1494 m_per_objfile->per_bfd->queue.reset ();
1495 }
1496
1497 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1498
1499 private:
1500 dwarf2_per_objfile *m_per_objfile;
1501 };
1502
1503 dwarf2_queue_item::~dwarf2_queue_item ()
1504 {
1505 /* Anything still marked queued is likely to be in an
1506 inconsistent state, so discard it. */
1507 if (per_cu->queued)
1508 {
1509 per_objfile->remove_cu (per_cu);
1510 per_cu->queued = 0;
1511 }
1512 }
1513
1514 /* See dwarf2/read.h. */
1515
1516 void
1517 dwarf2_per_cu_data_deleter::operator() (dwarf2_per_cu_data *data)
1518 {
1519 if (data->is_debug_types)
1520 delete static_cast<signatured_type *> (data);
1521 else
1522 delete data;
1523 }
1524
1525 /* The return type of find_file_and_directory. Note, the enclosed
1526 string pointers are only valid while this object is valid. */
1527
1528 struct file_and_directory
1529 {
1530 /* The filename. This is never NULL. */
1531 const char *name;
1532
1533 /* The compilation directory. NULL if not known. If we needed to
1534 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1535 points directly to the DW_AT_comp_dir string attribute owned by
1536 the obstack that owns the DIE. */
1537 const char *comp_dir;
1538
1539 /* If we needed to build a new string for comp_dir, this is what
1540 owns the storage. */
1541 std::string comp_dir_storage;
1542 };
1543
1544 static file_and_directory find_file_and_directory (struct die_info *die,
1545 struct dwarf2_cu *cu);
1546
1547 static htab_up allocate_signatured_type_table ();
1548
1549 static htab_up allocate_dwo_unit_table ();
1550
1551 static struct dwo_unit *lookup_dwo_unit_in_dwp
1552 (dwarf2_per_objfile *per_objfile, struct dwp_file *dwp_file,
1553 const char *comp_dir, ULONGEST signature, int is_debug_types);
1554
1555 static struct dwp_file *get_dwp_file (dwarf2_per_objfile *per_objfile);
1556
1557 static struct dwo_unit *lookup_dwo_comp_unit
1558 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
1559 ULONGEST signature);
1560
1561 static struct dwo_unit *lookup_dwo_type_unit
1562 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir);
1563
1564 static void queue_and_load_all_dwo_tus (dwarf2_cu *cu);
1565
1566 /* A unique pointer to a dwo_file. */
1567
1568 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1569
1570 static void process_cu_includes (dwarf2_per_objfile *per_objfile);
1571
1572 static void check_producer (struct dwarf2_cu *cu);
1573 \f
1574 /* Various complaints about symbol reading that don't abort the process. */
1575
1576 static void
1577 dwarf2_debug_line_missing_file_complaint (void)
1578 {
1579 complaint (_(".debug_line section has line data without a file"));
1580 }
1581
1582 static void
1583 dwarf2_debug_line_missing_end_sequence_complaint (void)
1584 {
1585 complaint (_(".debug_line section has line "
1586 "program sequence without an end"));
1587 }
1588
1589 static void
1590 dwarf2_complex_location_expr_complaint (void)
1591 {
1592 complaint (_("location expression too complex"));
1593 }
1594
1595 static void
1596 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1597 int arg3)
1598 {
1599 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1600 arg1, arg2, arg3);
1601 }
1602
1603 static void
1604 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1605 {
1606 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1607 arg1, arg2);
1608 }
1609
1610 /* Hash function for line_header_hash. */
1611
1612 static hashval_t
1613 line_header_hash (const struct line_header *ofs)
1614 {
1615 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1616 }
1617
1618 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1619
1620 static hashval_t
1621 line_header_hash_voidp (const void *item)
1622 {
1623 const struct line_header *ofs = (const struct line_header *) item;
1624
1625 return line_header_hash (ofs);
1626 }
1627
1628 /* Equality function for line_header_hash. */
1629
1630 static int
1631 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1632 {
1633 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1634 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1635
1636 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1637 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1638 }
1639
1640 \f
1641
1642 /* See declaration. */
1643
1644 dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names,
1645 bool can_copy_)
1646 : obfd (obfd),
1647 can_copy (can_copy_)
1648 {
1649 if (names == NULL)
1650 names = &dwarf2_elf_names;
1651
1652 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1653 locate_sections (obfd, sec, *names);
1654 }
1655
1656 dwarf2_per_bfd::~dwarf2_per_bfd ()
1657 {
1658 for (auto &per_cu : all_comp_units)
1659 per_cu->imported_symtabs_free ();
1660
1661 /* Everything else should be on this->obstack. */
1662 }
1663
1664 /* See read.h. */
1665
1666 void
1667 dwarf2_per_objfile::remove_all_cus ()
1668 {
1669 gdb_assert (!this->per_bfd->queue.has_value ());
1670
1671 for (auto pair : m_dwarf2_cus)
1672 delete pair.second;
1673
1674 m_dwarf2_cus.clear ();
1675 }
1676
1677 /* A helper class that calls free_cached_comp_units on
1678 destruction. */
1679
1680 class free_cached_comp_units
1681 {
1682 public:
1683
1684 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1685 : m_per_objfile (per_objfile)
1686 {
1687 }
1688
1689 ~free_cached_comp_units ()
1690 {
1691 m_per_objfile->remove_all_cus ();
1692 }
1693
1694 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1695
1696 private:
1697
1698 dwarf2_per_objfile *m_per_objfile;
1699 };
1700
1701 /* See read.h. */
1702
1703 bool
1704 dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu_data *per_cu) const
1705 {
1706 gdb_assert (per_cu->index < this->m_symtabs.size ());
1707
1708 return this->m_symtabs[per_cu->index] != nullptr;
1709 }
1710
1711 /* See read.h. */
1712
1713 compunit_symtab *
1714 dwarf2_per_objfile::get_symtab (const dwarf2_per_cu_data *per_cu) const
1715 {
1716 gdb_assert (per_cu->index < this->m_symtabs.size ());
1717
1718 return this->m_symtabs[per_cu->index];
1719 }
1720
1721 /* See read.h. */
1722
1723 void
1724 dwarf2_per_objfile::set_symtab (const dwarf2_per_cu_data *per_cu,
1725 compunit_symtab *symtab)
1726 {
1727 gdb_assert (per_cu->index < this->m_symtabs.size ());
1728 gdb_assert (this->m_symtabs[per_cu->index] == nullptr);
1729
1730 this->m_symtabs[per_cu->index] = symtab;
1731 }
1732
1733 /* Try to locate the sections we need for DWARF 2 debugging
1734 information and return true if we have enough to do something.
1735 NAMES points to the dwarf2 section names, or is NULL if the standard
1736 ELF names are used. CAN_COPY is true for formats where symbol
1737 interposition is possible and so symbol values must follow copy
1738 relocation rules. */
1739
1740 int
1741 dwarf2_has_info (struct objfile *objfile,
1742 const struct dwarf2_debug_sections *names,
1743 bool can_copy)
1744 {
1745 if (objfile->flags & OBJF_READNEVER)
1746 return 0;
1747
1748 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
1749
1750 if (per_objfile == NULL)
1751 {
1752 dwarf2_per_bfd *per_bfd;
1753
1754 /* We can share a "dwarf2_per_bfd" with other objfiles if the
1755 BFD doesn't require relocations.
1756
1757 We don't share with objfiles for which -readnow was requested,
1758 because it would complicate things when loading the same BFD with
1759 -readnow and then without -readnow. */
1760 if (!gdb_bfd_requires_relocations (objfile->obfd)
1761 && (objfile->flags & OBJF_READNOW) == 0)
1762 {
1763 /* See if one has been created for this BFD yet. */
1764 per_bfd = dwarf2_per_bfd_bfd_data_key.get (objfile->obfd);
1765
1766 if (per_bfd == nullptr)
1767 {
1768 /* No, create it now. */
1769 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1770 dwarf2_per_bfd_bfd_data_key.set (objfile->obfd, per_bfd);
1771 }
1772 }
1773 else
1774 {
1775 /* No sharing possible, create one specifically for this objfile. */
1776 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1777 dwarf2_per_bfd_objfile_data_key.set (objfile, per_bfd);
1778 }
1779
1780 per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd);
1781 }
1782
1783 return (!per_objfile->per_bfd->info.is_virtual
1784 && per_objfile->per_bfd->info.s.section != NULL
1785 && !per_objfile->per_bfd->abbrev.is_virtual
1786 && per_objfile->per_bfd->abbrev.s.section != NULL);
1787 }
1788
1789 /* See declaration. */
1790
1791 void
1792 dwarf2_per_bfd::locate_sections (bfd *abfd, asection *sectp,
1793 const dwarf2_debug_sections &names)
1794 {
1795 flagword aflag = bfd_section_flags (sectp);
1796
1797 if ((aflag & SEC_HAS_CONTENTS) == 0)
1798 {
1799 }
1800 else if (elf_section_data (sectp)->this_hdr.sh_size
1801 > bfd_get_file_size (abfd))
1802 {
1803 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1804 warning (_("Discarding section %s which has a section size (%s"
1805 ") larger than the file size [in module %s]"),
1806 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1807 bfd_get_filename (abfd));
1808 }
1809 else if (names.info.matches (sectp->name))
1810 {
1811 this->info.s.section = sectp;
1812 this->info.size = bfd_section_size (sectp);
1813 }
1814 else if (names.abbrev.matches (sectp->name))
1815 {
1816 this->abbrev.s.section = sectp;
1817 this->abbrev.size = bfd_section_size (sectp);
1818 }
1819 else if (names.line.matches (sectp->name))
1820 {
1821 this->line.s.section = sectp;
1822 this->line.size = bfd_section_size (sectp);
1823 }
1824 else if (names.loc.matches (sectp->name))
1825 {
1826 this->loc.s.section = sectp;
1827 this->loc.size = bfd_section_size (sectp);
1828 }
1829 else if (names.loclists.matches (sectp->name))
1830 {
1831 this->loclists.s.section = sectp;
1832 this->loclists.size = bfd_section_size (sectp);
1833 }
1834 else if (names.macinfo.matches (sectp->name))
1835 {
1836 this->macinfo.s.section = sectp;
1837 this->macinfo.size = bfd_section_size (sectp);
1838 }
1839 else if (names.macro.matches (sectp->name))
1840 {
1841 this->macro.s.section = sectp;
1842 this->macro.size = bfd_section_size (sectp);
1843 }
1844 else if (names.str.matches (sectp->name))
1845 {
1846 this->str.s.section = sectp;
1847 this->str.size = bfd_section_size (sectp);
1848 }
1849 else if (names.str_offsets.matches (sectp->name))
1850 {
1851 this->str_offsets.s.section = sectp;
1852 this->str_offsets.size = bfd_section_size (sectp);
1853 }
1854 else if (names.line_str.matches (sectp->name))
1855 {
1856 this->line_str.s.section = sectp;
1857 this->line_str.size = bfd_section_size (sectp);
1858 }
1859 else if (names.addr.matches (sectp->name))
1860 {
1861 this->addr.s.section = sectp;
1862 this->addr.size = bfd_section_size (sectp);
1863 }
1864 else if (names.frame.matches (sectp->name))
1865 {
1866 this->frame.s.section = sectp;
1867 this->frame.size = bfd_section_size (sectp);
1868 }
1869 else if (names.eh_frame.matches (sectp->name))
1870 {
1871 this->eh_frame.s.section = sectp;
1872 this->eh_frame.size = bfd_section_size (sectp);
1873 }
1874 else if (names.ranges.matches (sectp->name))
1875 {
1876 this->ranges.s.section = sectp;
1877 this->ranges.size = bfd_section_size (sectp);
1878 }
1879 else if (names.rnglists.matches (sectp->name))
1880 {
1881 this->rnglists.s.section = sectp;
1882 this->rnglists.size = bfd_section_size (sectp);
1883 }
1884 else if (names.types.matches (sectp->name))
1885 {
1886 struct dwarf2_section_info type_section;
1887
1888 memset (&type_section, 0, sizeof (type_section));
1889 type_section.s.section = sectp;
1890 type_section.size = bfd_section_size (sectp);
1891
1892 this->types.push_back (type_section);
1893 }
1894 else if (names.gdb_index.matches (sectp->name))
1895 {
1896 this->gdb_index.s.section = sectp;
1897 this->gdb_index.size = bfd_section_size (sectp);
1898 }
1899 else if (names.debug_names.matches (sectp->name))
1900 {
1901 this->debug_names.s.section = sectp;
1902 this->debug_names.size = bfd_section_size (sectp);
1903 }
1904 else if (names.debug_aranges.matches (sectp->name))
1905 {
1906 this->debug_aranges.s.section = sectp;
1907 this->debug_aranges.size = bfd_section_size (sectp);
1908 }
1909
1910 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1911 && bfd_section_vma (sectp) == 0)
1912 this->has_section_at_zero = true;
1913 }
1914
1915 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1916 SECTION_NAME. */
1917
1918 void
1919 dwarf2_get_section_info (struct objfile *objfile,
1920 enum dwarf2_section_enum sect,
1921 asection **sectp, const gdb_byte **bufp,
1922 bfd_size_type *sizep)
1923 {
1924 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
1925 struct dwarf2_section_info *info;
1926
1927 /* We may see an objfile without any DWARF, in which case we just
1928 return nothing. */
1929 if (per_objfile == NULL)
1930 {
1931 *sectp = NULL;
1932 *bufp = NULL;
1933 *sizep = 0;
1934 return;
1935 }
1936 switch (sect)
1937 {
1938 case DWARF2_DEBUG_FRAME:
1939 info = &per_objfile->per_bfd->frame;
1940 break;
1941 case DWARF2_EH_FRAME:
1942 info = &per_objfile->per_bfd->eh_frame;
1943 break;
1944 default:
1945 gdb_assert_not_reached ("unexpected section");
1946 }
1947
1948 info->read (objfile);
1949
1950 *sectp = info->get_bfd_section ();
1951 *bufp = info->buffer;
1952 *sizep = info->size;
1953 }
1954
1955 \f
1956 /* DWARF quick_symbol_functions support. */
1957
1958 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1959 unique line tables, so we maintain a separate table of all .debug_line
1960 derived entries to support the sharing.
1961 All the quick functions need is the list of file names. We discard the
1962 line_header when we're done and don't need to record it here. */
1963 struct quick_file_names
1964 {
1965 /* The data used to construct the hash key. */
1966 struct stmt_list_hash hash;
1967
1968 /* The number of entries in file_names, real_names. */
1969 unsigned int num_file_names;
1970
1971 /* The file names from the line table, after being run through
1972 file_full_name. */
1973 const char **file_names;
1974
1975 /* The file names from the line table after being run through
1976 gdb_realpath. These are computed lazily. */
1977 const char **real_names;
1978 };
1979
1980 /* When using the index (and thus not using psymtabs), each CU has an
1981 object of this type. This is used to hold information needed by
1982 the various "quick" methods. */
1983 struct dwarf2_per_cu_quick_data
1984 {
1985 /* The file table. This can be NULL if there was no file table
1986 or it's currently not read in.
1987 NOTE: This points into dwarf2_per_objfile->per_bfd->quick_file_names_table. */
1988 struct quick_file_names *file_names;
1989
1990 /* A temporary mark bit used when iterating over all CUs in
1991 expand_symtabs_matching. */
1992 unsigned int mark : 1;
1993
1994 /* True if we've tried to read the file table and found there isn't one.
1995 There will be no point in trying to read it again next time. */
1996 unsigned int no_file_data : 1;
1997 };
1998
1999 /* A subclass of psymbol_functions that arranges to read the DWARF
2000 partial symbols when needed. */
2001 struct lazy_dwarf_reader : public psymbol_functions
2002 {
2003 using psymbol_functions::psymbol_functions;
2004
2005 bool can_lazily_read_symbols () override
2006 {
2007 return true;
2008 }
2009
2010 void read_partial_symbols (struct objfile *objfile) override
2011 {
2012 if (dwarf2_has_info (objfile, nullptr))
2013 dwarf2_build_psymtabs (objfile, this);
2014 }
2015 };
2016
2017 static quick_symbol_functions_up
2018 make_lazy_dwarf_reader ()
2019 {
2020 return quick_symbol_functions_up (new lazy_dwarf_reader);
2021 }
2022
2023 struct dwarf2_base_index_functions : public quick_symbol_functions
2024 {
2025 bool has_symbols (struct objfile *objfile) override;
2026
2027 bool has_unexpanded_symtabs (struct objfile *objfile) override;
2028
2029 struct symtab *find_last_source_symtab (struct objfile *objfile) override;
2030
2031 void forget_cached_source_info (struct objfile *objfile) override;
2032
2033 enum language lookup_global_symbol_language (struct objfile *objfile,
2034 const char *name,
2035 domain_enum domain,
2036 bool *symbol_found_p) override
2037 {
2038 *symbol_found_p = false;
2039 return language_unknown;
2040 }
2041
2042 void print_stats (struct objfile *objfile, bool print_bcache) override;
2043
2044 void expand_all_symtabs (struct objfile *objfile) override;
2045
2046 struct compunit_symtab *find_pc_sect_compunit_symtab
2047 (struct objfile *objfile, struct bound_minimal_symbol msymbol,
2048 CORE_ADDR pc, struct obj_section *section, int warn_if_readin) override;
2049
2050 struct compunit_symtab *find_compunit_symtab_by_address
2051 (struct objfile *objfile, CORE_ADDR address) override
2052 {
2053 return nullptr;
2054 }
2055
2056 void map_symbol_filenames (struct objfile *objfile,
2057 gdb::function_view<symbol_filename_ftype> fun,
2058 bool need_fullname) override;
2059 };
2060
2061 struct dwarf2_gdb_index : public dwarf2_base_index_functions
2062 {
2063 void dump (struct objfile *objfile) override;
2064
2065 void expand_matching_symbols
2066 (struct objfile *,
2067 const lookup_name_info &lookup_name,
2068 domain_enum domain,
2069 int global,
2070 symbol_compare_ftype *ordered_compare) override;
2071
2072 bool expand_symtabs_matching
2073 (struct objfile *objfile,
2074 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
2075 const lookup_name_info *lookup_name,
2076 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
2077 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
2078 block_search_flags search_flags,
2079 domain_enum domain,
2080 enum search_domain kind) override;
2081 };
2082
2083 struct dwarf2_debug_names_index : public dwarf2_base_index_functions
2084 {
2085 void dump (struct objfile *objfile) override;
2086
2087 void expand_matching_symbols
2088 (struct objfile *,
2089 const lookup_name_info &lookup_name,
2090 domain_enum domain,
2091 int global,
2092 symbol_compare_ftype *ordered_compare) override;
2093
2094 bool expand_symtabs_matching
2095 (struct objfile *objfile,
2096 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
2097 const lookup_name_info *lookup_name,
2098 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
2099 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
2100 block_search_flags search_flags,
2101 domain_enum domain,
2102 enum search_domain kind) override;
2103 };
2104
2105 static quick_symbol_functions_up
2106 make_dwarf_gdb_index ()
2107 {
2108 return quick_symbol_functions_up (new dwarf2_gdb_index);
2109 }
2110
2111 static quick_symbol_functions_up
2112 make_dwarf_debug_names ()
2113 {
2114 return quick_symbol_functions_up (new dwarf2_debug_names_index);
2115 }
2116
2117 /* Utility hash function for a stmt_list_hash. */
2118
2119 static hashval_t
2120 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2121 {
2122 hashval_t v = 0;
2123
2124 if (stmt_list_hash->dwo_unit != NULL)
2125 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2126 v += to_underlying (stmt_list_hash->line_sect_off);
2127 return v;
2128 }
2129
2130 /* Utility equality function for a stmt_list_hash. */
2131
2132 static int
2133 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2134 const struct stmt_list_hash *rhs)
2135 {
2136 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2137 return 0;
2138 if (lhs->dwo_unit != NULL
2139 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2140 return 0;
2141
2142 return lhs->line_sect_off == rhs->line_sect_off;
2143 }
2144
2145 /* Hash function for a quick_file_names. */
2146
2147 static hashval_t
2148 hash_file_name_entry (const void *e)
2149 {
2150 const struct quick_file_names *file_data
2151 = (const struct quick_file_names *) e;
2152
2153 return hash_stmt_list_entry (&file_data->hash);
2154 }
2155
2156 /* Equality function for a quick_file_names. */
2157
2158 static int
2159 eq_file_name_entry (const void *a, const void *b)
2160 {
2161 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2162 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2163
2164 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2165 }
2166
2167 /* Delete function for a quick_file_names. */
2168
2169 static void
2170 delete_file_name_entry (void *e)
2171 {
2172 struct quick_file_names *file_data = (struct quick_file_names *) e;
2173 int i;
2174
2175 for (i = 0; i < file_data->num_file_names; ++i)
2176 {
2177 xfree ((void*) file_data->file_names[i]);
2178 if (file_data->real_names)
2179 xfree ((void*) file_data->real_names[i]);
2180 }
2181
2182 /* The space for the struct itself lives on the obstack, so we don't
2183 free it here. */
2184 }
2185
2186 /* Create a quick_file_names hash table. */
2187
2188 static htab_up
2189 create_quick_file_names_table (unsigned int nr_initial_entries)
2190 {
2191 return htab_up (htab_create_alloc (nr_initial_entries,
2192 hash_file_name_entry, eq_file_name_entry,
2193 delete_file_name_entry, xcalloc, xfree));
2194 }
2195
2196 /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This
2197 function is unrelated to symtabs, symtab would have to be created afterwards.
2198 You should call age_cached_comp_units after processing the CU. */
2199
2200 static dwarf2_cu *
2201 load_cu (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
2202 bool skip_partial)
2203 {
2204 if (per_cu->is_debug_types)
2205 load_full_type_unit (per_cu, per_objfile);
2206 else
2207 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
2208 skip_partial, language_minimal);
2209
2210 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
2211 if (cu == nullptr)
2212 return nullptr; /* Dummy CU. */
2213
2214 dwarf2_find_base_address (cu->dies, cu);
2215
2216 return cu;
2217 }
2218
2219 /* Read in the symbols for PER_CU in the context of PER_OBJFILE. */
2220
2221 static void
2222 dw2_do_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2223 dwarf2_per_objfile *per_objfile, bool skip_partial)
2224 {
2225 /* Skip type_unit_groups, reading the type units they contain
2226 is handled elsewhere. */
2227 if (per_cu->type_unit_group_p ())
2228 return;
2229
2230 {
2231 /* The destructor of dwarf2_queue_guard frees any entries left on
2232 the queue. After this point we're guaranteed to leave this function
2233 with the dwarf queue empty. */
2234 dwarf2_queue_guard q_guard (per_objfile);
2235
2236 if (!per_objfile->symtab_set_p (per_cu))
2237 {
2238 queue_comp_unit (per_cu, per_objfile, language_minimal);
2239 dwarf2_cu *cu = load_cu (per_cu, per_objfile, skip_partial);
2240
2241 /* If we just loaded a CU from a DWO, and we're working with an index
2242 that may badly handle TUs, load all the TUs in that DWO as well.
2243 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2244 if (!per_cu->is_debug_types
2245 && cu != NULL
2246 && cu->dwo_unit != NULL
2247 && per_objfile->per_bfd->index_table != NULL
2248 && per_objfile->per_bfd->index_table->version <= 7
2249 /* DWP files aren't supported yet. */
2250 && get_dwp_file (per_objfile) == NULL)
2251 queue_and_load_all_dwo_tus (cu);
2252 }
2253
2254 process_queue (per_objfile);
2255 }
2256
2257 /* Age the cache, releasing compilation units that have not
2258 been used recently. */
2259 per_objfile->age_comp_units ();
2260 }
2261
2262 /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is
2263 the per-objfile for which this symtab is instantiated.
2264
2265 Returns the resulting symbol table. */
2266
2267 static struct compunit_symtab *
2268 dw2_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2269 dwarf2_per_objfile *per_objfile,
2270 bool skip_partial)
2271 {
2272 gdb_assert (per_objfile->per_bfd->using_index);
2273
2274 if (!per_objfile->symtab_set_p (per_cu))
2275 {
2276 free_cached_comp_units freer (per_objfile);
2277 scoped_restore decrementer = increment_reading_symtab ();
2278 dw2_do_instantiate_symtab (per_cu, per_objfile, skip_partial);
2279 process_cu_includes (per_objfile);
2280 }
2281
2282 return per_objfile->get_symtab (per_cu);
2283 }
2284
2285 /* See read.h. */
2286
2287 dwarf2_per_cu_data_up
2288 dwarf2_per_bfd::allocate_per_cu ()
2289 {
2290 dwarf2_per_cu_data_up result (new dwarf2_per_cu_data);
2291 result->per_bfd = this;
2292 result->index = all_comp_units.size ();
2293 return result;
2294 }
2295
2296 /* See read.h. */
2297
2298 signatured_type_up
2299 dwarf2_per_bfd::allocate_signatured_type (ULONGEST signature)
2300 {
2301 signatured_type_up result (new signatured_type (signature));
2302 result->per_bfd = this;
2303 result->index = all_comp_units.size ();
2304 result->is_debug_types = true;
2305 tu_stats.nr_tus++;
2306 return result;
2307 }
2308
2309 /* Return a new dwarf2_per_cu_data allocated on the per-bfd
2310 obstack, and constructed with the specified field values. */
2311
2312 static dwarf2_per_cu_data_up
2313 create_cu_from_index_list (dwarf2_per_bfd *per_bfd,
2314 struct dwarf2_section_info *section,
2315 int is_dwz,
2316 sect_offset sect_off, ULONGEST length)
2317 {
2318 dwarf2_per_cu_data_up the_cu = per_bfd->allocate_per_cu ();
2319 the_cu->sect_off = sect_off;
2320 the_cu->length = length;
2321 the_cu->section = section;
2322 the_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
2323 struct dwarf2_per_cu_quick_data);
2324 the_cu->is_dwz = is_dwz;
2325 return the_cu;
2326 }
2327
2328 /* A helper for create_cus_from_index that handles a given list of
2329 CUs. */
2330
2331 static void
2332 create_cus_from_index_list (dwarf2_per_bfd *per_bfd,
2333 const gdb_byte *cu_list, offset_type n_elements,
2334 struct dwarf2_section_info *section,
2335 int is_dwz)
2336 {
2337 for (offset_type i = 0; i < n_elements; i += 2)
2338 {
2339 gdb_static_assert (sizeof (ULONGEST) >= 8);
2340
2341 sect_offset sect_off
2342 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2343 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2344 cu_list += 2 * 8;
2345
2346 dwarf2_per_cu_data_up per_cu
2347 = create_cu_from_index_list (per_bfd, section, is_dwz, sect_off,
2348 length);
2349 per_bfd->all_comp_units.push_back (std::move (per_cu));
2350 }
2351 }
2352
2353 /* Read the CU list from the mapped index, and use it to create all
2354 the CU objects for PER_BFD. */
2355
2356 static void
2357 create_cus_from_index (dwarf2_per_bfd *per_bfd,
2358 const gdb_byte *cu_list, offset_type cu_list_elements,
2359 const gdb_byte *dwz_list, offset_type dwz_elements)
2360 {
2361 gdb_assert (per_bfd->all_comp_units.empty ());
2362 per_bfd->all_comp_units.reserve ((cu_list_elements + dwz_elements) / 2);
2363
2364 create_cus_from_index_list (per_bfd, cu_list, cu_list_elements,
2365 &per_bfd->info, 0);
2366
2367 if (dwz_elements == 0)
2368 return;
2369
2370 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
2371 create_cus_from_index_list (per_bfd, dwz_list, dwz_elements,
2372 &dwz->info, 1);
2373 }
2374
2375 /* Create the signatured type hash table from the index. */
2376
2377 static void
2378 create_signatured_type_table_from_index
2379 (dwarf2_per_bfd *per_bfd, struct dwarf2_section_info *section,
2380 const gdb_byte *bytes, offset_type elements)
2381 {
2382 htab_up sig_types_hash = allocate_signatured_type_table ();
2383
2384 for (offset_type i = 0; i < elements; i += 3)
2385 {
2386 signatured_type_up sig_type;
2387 ULONGEST signature;
2388 void **slot;
2389 cu_offset type_offset_in_tu;
2390
2391 gdb_static_assert (sizeof (ULONGEST) >= 8);
2392 sect_offset sect_off
2393 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2394 type_offset_in_tu
2395 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2396 BFD_ENDIAN_LITTLE);
2397 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2398 bytes += 3 * 8;
2399
2400 sig_type = per_bfd->allocate_signatured_type (signature);
2401 sig_type->type_offset_in_tu = type_offset_in_tu;
2402 sig_type->section = section;
2403 sig_type->sect_off = sect_off;
2404 sig_type->v.quick
2405 = OBSTACK_ZALLOC (&per_bfd->obstack,
2406 struct dwarf2_per_cu_quick_data);
2407
2408 slot = htab_find_slot (sig_types_hash.get (), sig_type.get (), INSERT);
2409 *slot = sig_type.get ();
2410
2411 per_bfd->all_comp_units.emplace_back (sig_type.release ());
2412 }
2413
2414 per_bfd->signatured_types = std::move (sig_types_hash);
2415 }
2416
2417 /* Create the signatured type hash table from .debug_names. */
2418
2419 static void
2420 create_signatured_type_table_from_debug_names
2421 (dwarf2_per_objfile *per_objfile,
2422 const mapped_debug_names &map,
2423 struct dwarf2_section_info *section,
2424 struct dwarf2_section_info *abbrev_section)
2425 {
2426 struct objfile *objfile = per_objfile->objfile;
2427
2428 section->read (objfile);
2429 abbrev_section->read (objfile);
2430
2431 htab_up sig_types_hash = allocate_signatured_type_table ();
2432
2433 for (uint32_t i = 0; i < map.tu_count; ++i)
2434 {
2435 signatured_type_up sig_type;
2436 void **slot;
2437
2438 sect_offset sect_off
2439 = (sect_offset) (extract_unsigned_integer
2440 (map.tu_table_reordered + i * map.offset_size,
2441 map.offset_size,
2442 map.dwarf5_byte_order));
2443
2444 comp_unit_head cu_header;
2445 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
2446 abbrev_section,
2447 section->buffer + to_underlying (sect_off),
2448 rcuh_kind::TYPE);
2449
2450 sig_type = per_objfile->per_bfd->allocate_signatured_type
2451 (cu_header.signature);
2452 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2453 sig_type->section = section;
2454 sig_type->sect_off = sect_off;
2455 sig_type->v.quick
2456 = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
2457 struct dwarf2_per_cu_quick_data);
2458
2459 slot = htab_find_slot (sig_types_hash.get (), sig_type.get (), INSERT);
2460 *slot = sig_type.get ();
2461
2462 per_objfile->per_bfd->all_comp_units.emplace_back (sig_type.release ());
2463 }
2464
2465 per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2466 }
2467
2468 /* Read the address map data from the mapped index, and use it to
2469 populate the psymtabs_addrmap. */
2470
2471 static void
2472 create_addrmap_from_index (dwarf2_per_objfile *per_objfile,
2473 struct mapped_index *index)
2474 {
2475 struct objfile *objfile = per_objfile->objfile;
2476 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2477 struct gdbarch *gdbarch = objfile->arch ();
2478 const gdb_byte *iter, *end;
2479 struct addrmap *mutable_map;
2480 CORE_ADDR baseaddr;
2481
2482 auto_obstack temp_obstack;
2483
2484 mutable_map = addrmap_create_mutable (&temp_obstack);
2485
2486 iter = index->address_table.data ();
2487 end = iter + index->address_table.size ();
2488
2489 baseaddr = objfile->text_section_offset ();
2490
2491 while (iter < end)
2492 {
2493 ULONGEST hi, lo, cu_index;
2494 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2495 iter += 8;
2496 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2497 iter += 8;
2498 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2499 iter += 4;
2500
2501 if (lo > hi)
2502 {
2503 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2504 hex_string (lo), hex_string (hi));
2505 continue;
2506 }
2507
2508 if (cu_index >= per_bfd->all_comp_units.size ())
2509 {
2510 complaint (_(".gdb_index address table has invalid CU number %u"),
2511 (unsigned) cu_index);
2512 continue;
2513 }
2514
2515 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2516 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2517 addrmap_set_empty (mutable_map, lo, hi - 1,
2518 per_bfd->get_cu (cu_index));
2519 }
2520
2521 per_bfd->index_addrmap = addrmap_create_fixed (mutable_map,
2522 &per_bfd->obstack);
2523 }
2524
2525 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2526 populate the psymtabs_addrmap. */
2527
2528 static void
2529 create_addrmap_from_aranges (dwarf2_per_objfile *per_objfile,
2530 struct dwarf2_section_info *section)
2531 {
2532 struct objfile *objfile = per_objfile->objfile;
2533 bfd *abfd = objfile->obfd;
2534 struct gdbarch *gdbarch = objfile->arch ();
2535 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2536 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2537
2538 auto_obstack temp_obstack;
2539 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2540
2541 std::unordered_map<sect_offset,
2542 dwarf2_per_cu_data *,
2543 gdb::hash_enum<sect_offset>>
2544 debug_info_offset_to_per_cu;
2545 for (const auto &per_cu : per_bfd->all_comp_units)
2546 {
2547 const auto insertpair
2548 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off,
2549 per_cu.get ());
2550 if (!insertpair.second)
2551 {
2552 warning (_("Section .debug_aranges in %s has duplicate "
2553 "debug_info_offset %s, ignoring .debug_aranges."),
2554 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2555 return;
2556 }
2557 }
2558
2559 section->read (objfile);
2560
2561 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2562
2563 const gdb_byte *addr = section->buffer;
2564
2565 while (addr < section->buffer + section->size)
2566 {
2567 const gdb_byte *const entry_addr = addr;
2568 unsigned int bytes_read;
2569
2570 const LONGEST entry_length = read_initial_length (abfd, addr,
2571 &bytes_read);
2572 addr += bytes_read;
2573
2574 const gdb_byte *const entry_end = addr + entry_length;
2575 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2576 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2577 if (addr + entry_length > section->buffer + section->size)
2578 {
2579 warning (_("Section .debug_aranges in %s entry at offset %s "
2580 "length %s exceeds section length %s, "
2581 "ignoring .debug_aranges."),
2582 objfile_name (objfile),
2583 plongest (entry_addr - section->buffer),
2584 plongest (bytes_read + entry_length),
2585 pulongest (section->size));
2586 return;
2587 }
2588
2589 /* The version number. */
2590 const uint16_t version = read_2_bytes (abfd, addr);
2591 addr += 2;
2592 if (version != 2)
2593 {
2594 warning (_("Section .debug_aranges in %s entry at offset %s "
2595 "has unsupported version %d, ignoring .debug_aranges."),
2596 objfile_name (objfile),
2597 plongest (entry_addr - section->buffer), version);
2598 return;
2599 }
2600
2601 const uint64_t debug_info_offset
2602 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2603 addr += offset_size;
2604 const auto per_cu_it
2605 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2606 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2607 {
2608 warning (_("Section .debug_aranges in %s entry at offset %s "
2609 "debug_info_offset %s does not exists, "
2610 "ignoring .debug_aranges."),
2611 objfile_name (objfile),
2612 plongest (entry_addr - section->buffer),
2613 pulongest (debug_info_offset));
2614 return;
2615 }
2616 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2617
2618 const uint8_t address_size = *addr++;
2619 if (address_size < 1 || address_size > 8)
2620 {
2621 warning (_("Section .debug_aranges in %s entry at offset %s "
2622 "address_size %u is invalid, ignoring .debug_aranges."),
2623 objfile_name (objfile),
2624 plongest (entry_addr - section->buffer), address_size);
2625 return;
2626 }
2627
2628 const uint8_t segment_selector_size = *addr++;
2629 if (segment_selector_size != 0)
2630 {
2631 warning (_("Section .debug_aranges in %s entry at offset %s "
2632 "segment_selector_size %u is not supported, "
2633 "ignoring .debug_aranges."),
2634 objfile_name (objfile),
2635 plongest (entry_addr - section->buffer),
2636 segment_selector_size);
2637 return;
2638 }
2639
2640 /* Must pad to an alignment boundary that is twice the address
2641 size. It is undocumented by the DWARF standard but GCC does
2642 use it. However, not every compiler does this. We can see
2643 whether it has happened by looking at the total length of the
2644 contents of the aranges for this CU -- it if isn't a multiple
2645 of twice the address size, then we skip any leftover
2646 bytes. */
2647 addr += (entry_end - addr) % (2 * address_size);
2648
2649 for (;;)
2650 {
2651 if (addr + 2 * address_size > entry_end)
2652 {
2653 warning (_("Section .debug_aranges in %s entry at offset %s "
2654 "address list is not properly terminated, "
2655 "ignoring .debug_aranges."),
2656 objfile_name (objfile),
2657 plongest (entry_addr - section->buffer));
2658 return;
2659 }
2660 ULONGEST start = extract_unsigned_integer (addr, address_size,
2661 dwarf5_byte_order);
2662 addr += address_size;
2663 ULONGEST length = extract_unsigned_integer (addr, address_size,
2664 dwarf5_byte_order);
2665 addr += address_size;
2666 if (start == 0 && length == 0)
2667 break;
2668 if (start == 0 && !per_bfd->has_section_at_zero)
2669 {
2670 /* Symbol was eliminated due to a COMDAT group. */
2671 continue;
2672 }
2673 ULONGEST end = start + length;
2674 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2675 - baseaddr);
2676 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2677 - baseaddr);
2678 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2679 }
2680 }
2681
2682 per_bfd->index_addrmap = addrmap_create_fixed (mutable_map,
2683 &per_bfd->obstack);
2684 }
2685
2686 /* A helper function that reads the .gdb_index from BUFFER and fills
2687 in MAP. FILENAME is the name of the file containing the data;
2688 it is used for error reporting. DEPRECATED_OK is true if it is
2689 ok to use deprecated sections.
2690
2691 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2692 out parameters that are filled in with information about the CU and
2693 TU lists in the section.
2694
2695 Returns true if all went well, false otherwise. */
2696
2697 static bool
2698 read_gdb_index_from_buffer (const char *filename,
2699 bool deprecated_ok,
2700 gdb::array_view<const gdb_byte> buffer,
2701 struct mapped_index *map,
2702 const gdb_byte **cu_list,
2703 offset_type *cu_list_elements,
2704 const gdb_byte **types_list,
2705 offset_type *types_list_elements)
2706 {
2707 const gdb_byte *addr = &buffer[0];
2708 offset_view metadata (buffer);
2709
2710 /* Version check. */
2711 offset_type version = metadata[0];
2712 /* Versions earlier than 3 emitted every copy of a psymbol. This
2713 causes the index to behave very poorly for certain requests. Version 3
2714 contained incomplete addrmap. So, it seems better to just ignore such
2715 indices. */
2716 if (version < 4)
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
2721 warning (_("Skipping obsolete .gdb_index section in %s."),
2722 filename);
2723 warning_printed = 1;
2724 }
2725 return 0;
2726 }
2727 /* Index version 4 uses a different hash function than index version
2728 5 and later.
2729
2730 Versions earlier than 6 did not emit psymbols for inlined
2731 functions. Using these files will cause GDB not to be able to
2732 set breakpoints on inlined functions by name, so we ignore these
2733 indices unless the user has done
2734 "set use-deprecated-index-sections on". */
2735 if (version < 6 && !deprecated_ok)
2736 {
2737 static int warning_printed = 0;
2738 if (!warning_printed)
2739 {
2740 warning (_("\
2741 Skipping deprecated .gdb_index section in %s.\n\
2742 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2743 to use the section anyway."),
2744 filename);
2745 warning_printed = 1;
2746 }
2747 return 0;
2748 }
2749 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2750 of the TU (for symbols coming from TUs),
2751 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2752 Plus gold-generated indices can have duplicate entries for global symbols,
2753 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2754 These are just performance bugs, and we can't distinguish gdb-generated
2755 indices from gold-generated ones, so issue no warning here. */
2756
2757 /* Indexes with higher version than the one supported by GDB may be no
2758 longer backward compatible. */
2759 if (version > 8)
2760 return 0;
2761
2762 map->version = version;
2763
2764 int i = 1;
2765 *cu_list = addr + metadata[i];
2766 *cu_list_elements = (metadata[i + 1] - metadata[i]) / 8;
2767 ++i;
2768
2769 *types_list = addr + metadata[i];
2770 *types_list_elements = (metadata[i + 1] - metadata[i]) / 8;
2771 ++i;
2772
2773 const gdb_byte *address_table = addr + metadata[i];
2774 const gdb_byte *address_table_end = addr + metadata[i + 1];
2775 map->address_table
2776 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2777 ++i;
2778
2779 const gdb_byte *symbol_table = addr + metadata[i];
2780 const gdb_byte *symbol_table_end = addr + metadata[i + 1];
2781 map->symbol_table
2782 = offset_view (gdb::array_view<const gdb_byte> (symbol_table,
2783 symbol_table_end));
2784
2785 ++i;
2786 map->constant_pool = buffer.slice (metadata[i]);
2787
2788 return 1;
2789 }
2790
2791 /* Callback types for dwarf2_read_gdb_index. */
2792
2793 typedef gdb::function_view
2794 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_bfd *)>
2795 get_gdb_index_contents_ftype;
2796 typedef gdb::function_view
2797 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2798 get_gdb_index_contents_dwz_ftype;
2799
2800 /* Read .gdb_index. If everything went ok, initialize the "quick"
2801 elements of all the CUs and return 1. Otherwise, return 0. */
2802
2803 static int
2804 dwarf2_read_gdb_index
2805 (dwarf2_per_objfile *per_objfile,
2806 get_gdb_index_contents_ftype get_gdb_index_contents,
2807 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2808 {
2809 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2810 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2811 struct dwz_file *dwz;
2812 struct objfile *objfile = per_objfile->objfile;
2813 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2814
2815 gdb::array_view<const gdb_byte> main_index_contents
2816 = get_gdb_index_contents (objfile, per_bfd);
2817
2818 if (main_index_contents.empty ())
2819 return 0;
2820
2821 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
2822 if (!read_gdb_index_from_buffer (objfile_name (objfile),
2823 use_deprecated_index_sections,
2824 main_index_contents, map.get (), &cu_list,
2825 &cu_list_elements, &types_list,
2826 &types_list_elements))
2827 return 0;
2828
2829 /* Don't use the index if it's empty. */
2830 if (map->symbol_table.empty ())
2831 return 0;
2832
2833 /* If there is a .dwz file, read it so we can get its CU list as
2834 well. */
2835 dwz = dwarf2_get_dwz_file (per_bfd);
2836 if (dwz != NULL)
2837 {
2838 struct mapped_index dwz_map;
2839 const gdb_byte *dwz_types_ignore;
2840 offset_type dwz_types_elements_ignore;
2841
2842 gdb::array_view<const gdb_byte> dwz_index_content
2843 = get_gdb_index_contents_dwz (objfile, dwz);
2844
2845 if (dwz_index_content.empty ())
2846 return 0;
2847
2848 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
2849 1, dwz_index_content, &dwz_map,
2850 &dwz_list, &dwz_list_elements,
2851 &dwz_types_ignore,
2852 &dwz_types_elements_ignore))
2853 {
2854 warning (_("could not read '.gdb_index' section from %s; skipping"),
2855 bfd_get_filename (dwz->dwz_bfd.get ()));
2856 return 0;
2857 }
2858 }
2859
2860 create_cus_from_index (per_bfd, cu_list, cu_list_elements, dwz_list,
2861 dwz_list_elements);
2862
2863 if (types_list_elements)
2864 {
2865 /* We can only handle a single .debug_types when we have an
2866 index. */
2867 if (per_bfd->types.size () != 1)
2868 return 0;
2869
2870 dwarf2_section_info *section = &per_bfd->types[0];
2871
2872 create_signatured_type_table_from_index (per_bfd, section, types_list,
2873 types_list_elements);
2874 }
2875
2876 create_addrmap_from_index (per_objfile, map.get ());
2877
2878 per_bfd->index_table = std::move (map);
2879 per_bfd->using_index = 1;
2880 per_bfd->quick_file_names_table =
2881 create_quick_file_names_table (per_bfd->all_comp_units.size ());
2882
2883 return 1;
2884 }
2885
2886 /* die_reader_func for dw2_get_file_names. */
2887
2888 static void
2889 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2890 struct die_info *comp_unit_die)
2891 {
2892 struct dwarf2_cu *cu = reader->cu;
2893 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2894 dwarf2_per_objfile *per_objfile = cu->per_objfile;
2895 struct dwarf2_per_cu_data *lh_cu;
2896 struct attribute *attr;
2897 void **slot;
2898 struct quick_file_names *qfn;
2899
2900 gdb_assert (! this_cu->is_debug_types);
2901
2902 /* Our callers never want to match partial units -- instead they
2903 will match the enclosing full CU. */
2904 if (comp_unit_die->tag == DW_TAG_partial_unit)
2905 {
2906 this_cu->v.quick->no_file_data = 1;
2907 return;
2908 }
2909
2910 lh_cu = this_cu;
2911 slot = NULL;
2912
2913 line_header_up lh;
2914 sect_offset line_offset {};
2915
2916 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2917 if (attr != nullptr && attr->form_is_unsigned ())
2918 {
2919 struct quick_file_names find_entry;
2920
2921 line_offset = (sect_offset) attr->as_unsigned ();
2922
2923 /* We may have already read in this line header (TU line header sharing).
2924 If we have we're done. */
2925 find_entry.hash.dwo_unit = cu->dwo_unit;
2926 find_entry.hash.line_sect_off = line_offset;
2927 slot = htab_find_slot (per_objfile->per_bfd->quick_file_names_table.get (),
2928 &find_entry, INSERT);
2929 if (*slot != NULL)
2930 {
2931 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
2932 return;
2933 }
2934
2935 lh = dwarf_decode_line_header (line_offset, cu);
2936 }
2937 if (lh == NULL)
2938 {
2939 lh_cu->v.quick->no_file_data = 1;
2940 return;
2941 }
2942
2943 qfn = XOBNEW (&per_objfile->per_bfd->obstack, struct quick_file_names);
2944 qfn->hash.dwo_unit = cu->dwo_unit;
2945 qfn->hash.line_sect_off = line_offset;
2946 gdb_assert (slot != NULL);
2947 *slot = qfn;
2948
2949 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
2950
2951 int offset = 0;
2952 if (strcmp (fnd.name, "<unknown>") != 0)
2953 ++offset;
2954
2955 qfn->num_file_names = offset + lh->file_names_size ();
2956 qfn->file_names =
2957 XOBNEWVEC (&per_objfile->per_bfd->obstack, const char *,
2958 qfn->num_file_names);
2959 if (offset != 0)
2960 qfn->file_names[0] = xstrdup (fnd.name);
2961 for (int i = 0; i < lh->file_names_size (); ++i)
2962 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
2963 fnd.comp_dir).release ();
2964 qfn->real_names = NULL;
2965
2966 lh_cu->v.quick->file_names = qfn;
2967 }
2968
2969 /* A helper for the "quick" functions which attempts to read the line
2970 table for THIS_CU. */
2971
2972 static struct quick_file_names *
2973 dw2_get_file_names (dwarf2_per_cu_data *this_cu,
2974 dwarf2_per_objfile *per_objfile)
2975 {
2976 /* This should never be called for TUs. */
2977 gdb_assert (! this_cu->is_debug_types);
2978 /* Nor type unit groups. */
2979 gdb_assert (! this_cu->type_unit_group_p ());
2980
2981 if (this_cu->v.quick->file_names != NULL)
2982 return this_cu->v.quick->file_names;
2983 /* If we know there is no line data, no point in looking again. */
2984 if (this_cu->v.quick->no_file_data)
2985 return NULL;
2986
2987 cutu_reader reader (this_cu, per_objfile);
2988 if (!reader.dummy_p)
2989 dw2_get_file_names_reader (&reader, reader.comp_unit_die);
2990
2991 if (this_cu->v.quick->no_file_data)
2992 return NULL;
2993 return this_cu->v.quick->file_names;
2994 }
2995
2996 /* A helper for the "quick" functions which computes and caches the
2997 real path for a given file name from the line table. */
2998
2999 static const char *
3000 dw2_get_real_path (dwarf2_per_objfile *per_objfile,
3001 struct quick_file_names *qfn, int index)
3002 {
3003 if (qfn->real_names == NULL)
3004 qfn->real_names = OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
3005 qfn->num_file_names, const char *);
3006
3007 if (qfn->real_names[index] == NULL)
3008 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3009
3010 return qfn->real_names[index];
3011 }
3012
3013 struct symtab *
3014 dwarf2_base_index_functions::find_last_source_symtab (struct objfile *objfile)
3015 {
3016 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3017 dwarf2_per_cu_data *dwarf_cu
3018 = per_objfile->per_bfd->all_comp_units.back ().get ();
3019 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, per_objfile, false);
3020
3021 if (cust == NULL)
3022 return NULL;
3023
3024 return compunit_primary_filetab (cust);
3025 }
3026
3027 /* Traversal function for dw2_forget_cached_source_info. */
3028
3029 static int
3030 dw2_free_cached_file_names (void **slot, void *info)
3031 {
3032 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3033
3034 if (file_data->real_names)
3035 {
3036 int i;
3037
3038 for (i = 0; i < file_data->num_file_names; ++i)
3039 {
3040 xfree ((void*) file_data->real_names[i]);
3041 file_data->real_names[i] = NULL;
3042 }
3043 }
3044
3045 return 1;
3046 }
3047
3048 void
3049 dwarf2_base_index_functions::forget_cached_source_info
3050 (struct objfile *objfile)
3051 {
3052 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3053
3054 htab_traverse_noresize (per_objfile->per_bfd->quick_file_names_table.get (),
3055 dw2_free_cached_file_names, NULL);
3056 }
3057
3058 /* Struct used to manage iterating over all CUs looking for a symbol. */
3059
3060 struct dw2_symtab_iterator
3061 {
3062 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3063 dwarf2_per_objfile *per_objfile;
3064 /* If set, only look for symbols that match that block. Valid values are
3065 GLOBAL_BLOCK and STATIC_BLOCK. */
3066 gdb::optional<block_enum> block_index;
3067 /* The kind of symbol we're looking for. */
3068 domain_enum domain;
3069 /* The list of CUs from the index entry of the symbol,
3070 or NULL if not found. */
3071 offset_view vec;
3072 /* The next element in VEC to look at. */
3073 int next;
3074 /* The number of elements in VEC, or zero if there is no match. */
3075 int length;
3076 /* Have we seen a global version of the symbol?
3077 If so we can ignore all further global instances.
3078 This is to work around gold/15646, inefficient gold-generated
3079 indices. */
3080 int global_seen;
3081 };
3082
3083 /* Initialize the index symtab iterator ITER, offset_type NAMEI variant. */
3084
3085 static void
3086 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3087 dwarf2_per_objfile *per_objfile,
3088 gdb::optional<block_enum> block_index,
3089 domain_enum domain, offset_type namei)
3090 {
3091 iter->per_objfile = per_objfile;
3092 iter->block_index = block_index;
3093 iter->domain = domain;
3094 iter->next = 0;
3095 iter->global_seen = 0;
3096 iter->vec = {};
3097 iter->length = 0;
3098
3099 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3100 /* index is NULL if OBJF_READNOW. */
3101 if (index == NULL)
3102 return;
3103
3104 gdb_assert (!index->symbol_name_slot_invalid (namei));
3105 offset_type vec_idx = index->symbol_vec_index (namei);
3106
3107 iter->vec = offset_view (index->constant_pool.slice (vec_idx));
3108 iter->length = iter->vec[0];
3109 }
3110
3111 /* Return the next matching CU or NULL if there are no more. */
3112
3113 static struct dwarf2_per_cu_data *
3114 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3115 {
3116 dwarf2_per_objfile *per_objfile = iter->per_objfile;
3117
3118 for ( ; iter->next < iter->length; ++iter->next)
3119 {
3120 offset_type cu_index_and_attrs = iter->vec[iter->next + 1];
3121 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3122 gdb_index_symbol_kind symbol_kind =
3123 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3124 /* Only check the symbol attributes if they're present.
3125 Indices prior to version 7 don't record them,
3126 and indices >= 7 may elide them for certain symbols
3127 (gold does this). */
3128 int attrs_valid =
3129 (per_objfile->per_bfd->index_table->version >= 7
3130 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3131
3132 /* Don't crash on bad data. */
3133 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
3134 {
3135 complaint (_(".gdb_index entry has bad CU index"
3136 " [in module %s]"), objfile_name (per_objfile->objfile));
3137 continue;
3138 }
3139
3140 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (cu_index);
3141
3142 /* Skip if already read in. */
3143 if (per_objfile->symtab_set_p (per_cu))
3144 continue;
3145
3146 /* Check static vs global. */
3147 if (attrs_valid)
3148 {
3149 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3150
3151 if (iter->block_index.has_value ())
3152 {
3153 bool want_static = *iter->block_index == STATIC_BLOCK;
3154
3155 if (is_static != want_static)
3156 continue;
3157 }
3158
3159 /* Work around gold/15646. */
3160 if (!is_static
3161 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
3162 {
3163 if (iter->global_seen)
3164 continue;
3165
3166 iter->global_seen = 1;
3167 }
3168 }
3169
3170 /* Only check the symbol's kind if it has one. */
3171 if (attrs_valid)
3172 {
3173 switch (iter->domain)
3174 {
3175 case VAR_DOMAIN:
3176 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3177 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3178 /* Some types are also in VAR_DOMAIN. */
3179 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3180 continue;
3181 break;
3182 case STRUCT_DOMAIN:
3183 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3184 continue;
3185 break;
3186 case LABEL_DOMAIN:
3187 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3188 continue;
3189 break;
3190 case MODULE_DOMAIN:
3191 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3192 continue;
3193 break;
3194 default:
3195 break;
3196 }
3197 }
3198
3199 ++iter->next;
3200 return per_cu;
3201 }
3202
3203 return NULL;
3204 }
3205
3206 void
3207 dwarf2_base_index_functions::print_stats (struct objfile *objfile,
3208 bool print_bcache)
3209 {
3210 if (print_bcache)
3211 return;
3212
3213 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3214 int total = per_objfile->per_bfd->all_comp_units.size ();
3215 int count = 0;
3216
3217 for (int i = 0; i < total; ++i)
3218 {
3219 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (i);
3220
3221 if (!per_objfile->symtab_set_p (per_cu))
3222 ++count;
3223 }
3224 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3225 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3226 }
3227
3228 /* This dumps minimal information about the index.
3229 It is called via "mt print objfiles".
3230 One use is to verify .gdb_index has been loaded by the
3231 gdb.dwarf2/gdb-index.exp testcase. */
3232
3233 void
3234 dwarf2_gdb_index::dump (struct objfile *objfile)
3235 {
3236 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3237
3238 gdb_assert (per_objfile->per_bfd->using_index);
3239 printf_filtered (".gdb_index:");
3240 if (per_objfile->per_bfd->index_table != NULL)
3241 {
3242 printf_filtered (" version %d\n",
3243 per_objfile->per_bfd->index_table->version);
3244 }
3245 else
3246 printf_filtered (" faked for \"readnow\"\n");
3247 printf_filtered ("\n");
3248 }
3249
3250 void
3251 dwarf2_base_index_functions::expand_all_symtabs (struct objfile *objfile)
3252 {
3253 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3254 int total_units = per_objfile->per_bfd->all_comp_units.size ();
3255
3256 for (int i = 0; i < total_units; ++i)
3257 {
3258 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (i);
3259
3260 /* We don't want to directly expand a partial CU, because if we
3261 read it with the wrong language, then assertion failures can
3262 be triggered later on. See PR symtab/23010. So, tell
3263 dw2_instantiate_symtab to skip partial CUs -- any important
3264 partial CU will be read via DW_TAG_imported_unit anyway. */
3265 dw2_instantiate_symtab (per_cu, per_objfile, true);
3266 }
3267 }
3268
3269 static bool
3270 dw2_expand_symtabs_matching_symbol
3271 (mapped_index_base &index,
3272 const lookup_name_info &lookup_name_in,
3273 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3274 gdb::function_view<bool (offset_type)> match_callback,
3275 dwarf2_per_objfile *per_objfile);
3276
3277 static bool
3278 dw2_expand_symtabs_matching_one
3279 (dwarf2_per_cu_data *per_cu,
3280 dwarf2_per_objfile *per_objfile,
3281 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3282 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3283
3284 void
3285 dwarf2_gdb_index::expand_matching_symbols
3286 (struct objfile *objfile,
3287 const lookup_name_info &name, domain_enum domain,
3288 int global,
3289 symbol_compare_ftype *ordered_compare)
3290 {
3291 /* Used for Ada. */
3292 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3293
3294 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3295
3296 if (per_objfile->per_bfd->index_table != nullptr)
3297 {
3298 mapped_index &index = *per_objfile->per_bfd->index_table;
3299
3300 const char *match_name = name.ada ().lookup_name ().c_str ();
3301 auto matcher = [&] (const char *symname)
3302 {
3303 if (ordered_compare == nullptr)
3304 return true;
3305 return ordered_compare (symname, match_name) == 0;
3306 };
3307
3308 dw2_expand_symtabs_matching_symbol (index, name, matcher,
3309 [&] (offset_type namei)
3310 {
3311 struct dw2_symtab_iterator iter;
3312 struct dwarf2_per_cu_data *per_cu;
3313
3314 dw2_symtab_iter_init (&iter, per_objfile, block_kind, domain,
3315 namei);
3316 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3317 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
3318 nullptr);
3319 return true;
3320 }, per_objfile);
3321 }
3322 else
3323 {
3324 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3325 proceed assuming all symtabs have been read in. */
3326 }
3327 }
3328
3329 /* Starting from a search name, return the string that finds the upper
3330 bound of all strings that start with SEARCH_NAME in a sorted name
3331 list. Returns the empty string to indicate that the upper bound is
3332 the end of the list. */
3333
3334 static std::string
3335 make_sort_after_prefix_name (const char *search_name)
3336 {
3337 /* When looking to complete "func", we find the upper bound of all
3338 symbols that start with "func" by looking for where we'd insert
3339 the closest string that would follow "func" in lexicographical
3340 order. Usually, that's "func"-with-last-character-incremented,
3341 i.e. "fund". Mind non-ASCII characters, though. Usually those
3342 will be UTF-8 multi-byte sequences, but we can't be certain.
3343 Especially mind the 0xff character, which is a valid character in
3344 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3345 rule out compilers allowing it in identifiers. Note that
3346 conveniently, strcmp/strcasecmp are specified to compare
3347 characters interpreted as unsigned char. So what we do is treat
3348 the whole string as a base 256 number composed of a sequence of
3349 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3350 to 0, and carries 1 to the following more-significant position.
3351 If the very first character in SEARCH_NAME ends up incremented
3352 and carries/overflows, then the upper bound is the end of the
3353 list. The string after the empty string is also the empty
3354 string.
3355
3356 Some examples of this operation:
3357
3358 SEARCH_NAME => "+1" RESULT
3359
3360 "abc" => "abd"
3361 "ab\xff" => "ac"
3362 "\xff" "a" "\xff" => "\xff" "b"
3363 "\xff" => ""
3364 "\xff\xff" => ""
3365 "" => ""
3366
3367 Then, with these symbols for example:
3368
3369 func
3370 func1
3371 fund
3372
3373 completing "func" looks for symbols between "func" and
3374 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3375 which finds "func" and "func1", but not "fund".
3376
3377 And with:
3378
3379 funcÿ (Latin1 'ÿ' [0xff])
3380 funcÿ1
3381 fund
3382
3383 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3384 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3385
3386 And with:
3387
3388 ÿÿ (Latin1 'ÿ' [0xff])
3389 ÿÿ1
3390
3391 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3392 the end of the list.
3393 */
3394 std::string after = search_name;
3395 while (!after.empty () && (unsigned char) after.back () == 0xff)
3396 after.pop_back ();
3397 if (!after.empty ())
3398 after.back () = (unsigned char) after.back () + 1;
3399 return after;
3400 }
3401
3402 /* See declaration. */
3403
3404 std::pair<std::vector<name_component>::const_iterator,
3405 std::vector<name_component>::const_iterator>
3406 mapped_index_base::find_name_components_bounds
3407 (const lookup_name_info &lookup_name_without_params, language lang,
3408 dwarf2_per_objfile *per_objfile) const
3409 {
3410 auto *name_cmp
3411 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3412
3413 const char *lang_name
3414 = lookup_name_without_params.language_lookup_name (lang);
3415
3416 /* Comparison function object for lower_bound that matches against a
3417 given symbol name. */
3418 auto lookup_compare_lower = [&] (const name_component &elem,
3419 const char *name)
3420 {
3421 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3422 const char *elem_name = elem_qualified + elem.name_offset;
3423 return name_cmp (elem_name, name) < 0;
3424 };
3425
3426 /* Comparison function object for upper_bound that matches against a
3427 given symbol name. */
3428 auto lookup_compare_upper = [&] (const char *name,
3429 const name_component &elem)
3430 {
3431 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3432 const char *elem_name = elem_qualified + elem.name_offset;
3433 return name_cmp (name, elem_name) < 0;
3434 };
3435
3436 auto begin = this->name_components.begin ();
3437 auto end = this->name_components.end ();
3438
3439 /* Find the lower bound. */
3440 auto lower = [&] ()
3441 {
3442 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3443 return begin;
3444 else
3445 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3446 } ();
3447
3448 /* Find the upper bound. */
3449 auto upper = [&] ()
3450 {
3451 if (lookup_name_without_params.completion_mode ())
3452 {
3453 /* In completion mode, we want UPPER to point past all
3454 symbols names that have the same prefix. I.e., with
3455 these symbols, and completing "func":
3456
3457 function << lower bound
3458 function1
3459 other_function << upper bound
3460
3461 We find the upper bound by looking for the insertion
3462 point of "func"-with-last-character-incremented,
3463 i.e. "fund". */
3464 std::string after = make_sort_after_prefix_name (lang_name);
3465 if (after.empty ())
3466 return end;
3467 return std::lower_bound (lower, end, after.c_str (),
3468 lookup_compare_lower);
3469 }
3470 else
3471 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3472 } ();
3473
3474 return {lower, upper};
3475 }
3476
3477 /* See declaration. */
3478
3479 void
3480 mapped_index_base::build_name_components (dwarf2_per_objfile *per_objfile)
3481 {
3482 if (!this->name_components.empty ())
3483 return;
3484
3485 this->name_components_casing = case_sensitivity;
3486 auto *name_cmp
3487 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3488
3489 /* The code below only knows how to break apart components of C++
3490 symbol names (and other languages that use '::' as
3491 namespace/module separator) and Ada symbol names. */
3492 auto count = this->symbol_name_count ();
3493 for (offset_type idx = 0; idx < count; idx++)
3494 {
3495 if (this->symbol_name_slot_invalid (idx))
3496 continue;
3497
3498 const char *name = this->symbol_name_at (idx, per_objfile);
3499
3500 /* Add each name component to the name component table. */
3501 unsigned int previous_len = 0;
3502
3503 if (strstr (name, "::") != nullptr)
3504 {
3505 for (unsigned int current_len = cp_find_first_component (name);
3506 name[current_len] != '\0';
3507 current_len += cp_find_first_component (name + current_len))
3508 {
3509 gdb_assert (name[current_len] == ':');
3510 this->name_components.push_back ({previous_len, idx});
3511 /* Skip the '::'. */
3512 current_len += 2;
3513 previous_len = current_len;
3514 }
3515 }
3516 else
3517 {
3518 /* Handle the Ada encoded (aka mangled) form here. */
3519 for (const char *iter = strstr (name, "__");
3520 iter != nullptr;
3521 iter = strstr (iter, "__"))
3522 {
3523 this->name_components.push_back ({previous_len, idx});
3524 iter += 2;
3525 previous_len = iter - name;
3526 }
3527 }
3528
3529 this->name_components.push_back ({previous_len, idx});
3530 }
3531
3532 /* Sort name_components elements by name. */
3533 auto name_comp_compare = [&] (const name_component &left,
3534 const name_component &right)
3535 {
3536 const char *left_qualified
3537 = this->symbol_name_at (left.idx, per_objfile);
3538 const char *right_qualified
3539 = this->symbol_name_at (right.idx, per_objfile);
3540
3541 const char *left_name = left_qualified + left.name_offset;
3542 const char *right_name = right_qualified + right.name_offset;
3543
3544 return name_cmp (left_name, right_name) < 0;
3545 };
3546
3547 std::sort (this->name_components.begin (),
3548 this->name_components.end (),
3549 name_comp_compare);
3550 }
3551
3552 /* Helper for dw2_expand_symtabs_matching that works with a
3553 mapped_index_base instead of the containing objfile. This is split
3554 to a separate function in order to be able to unit test the
3555 name_components matching using a mock mapped_index_base. For each
3556 symbol name that matches, calls MATCH_CALLBACK, passing it the
3557 symbol's index in the mapped_index_base symbol table. */
3558
3559 static bool
3560 dw2_expand_symtabs_matching_symbol
3561 (mapped_index_base &index,
3562 const lookup_name_info &lookup_name_in,
3563 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3564 gdb::function_view<bool (offset_type)> match_callback,
3565 dwarf2_per_objfile *per_objfile)
3566 {
3567 lookup_name_info lookup_name_without_params
3568 = lookup_name_in.make_ignore_params ();
3569
3570 /* Build the symbol name component sorted vector, if we haven't
3571 yet. */
3572 index.build_name_components (per_objfile);
3573
3574 /* The same symbol may appear more than once in the range though.
3575 E.g., if we're looking for symbols that complete "w", and we have
3576 a symbol named "w1::w2", we'll find the two name components for
3577 that same symbol in the range. To be sure we only call the
3578 callback once per symbol, we first collect the symbol name
3579 indexes that matched in a temporary vector and ignore
3580 duplicates. */
3581 std::vector<offset_type> matches;
3582
3583 struct name_and_matcher
3584 {
3585 symbol_name_matcher_ftype *matcher;
3586 const char *name;
3587
3588 bool operator== (const name_and_matcher &other) const
3589 {
3590 return matcher == other.matcher && strcmp (name, other.name) == 0;
3591 }
3592 };
3593
3594 /* A vector holding all the different symbol name matchers, for all
3595 languages. */
3596 std::vector<name_and_matcher> matchers;
3597
3598 for (int i = 0; i < nr_languages; i++)
3599 {
3600 enum language lang_e = (enum language) i;
3601
3602 const language_defn *lang = language_def (lang_e);
3603 symbol_name_matcher_ftype *name_matcher
3604 = lang->get_symbol_name_matcher (lookup_name_without_params);
3605
3606 name_and_matcher key {
3607 name_matcher,
3608 lookup_name_without_params.language_lookup_name (lang_e)
3609 };
3610
3611 /* Don't insert the same comparison routine more than once.
3612 Note that we do this linear walk. This is not a problem in
3613 practice because the number of supported languages is
3614 low. */
3615 if (std::find (matchers.begin (), matchers.end (), key)
3616 != matchers.end ())
3617 continue;
3618 matchers.push_back (std::move (key));
3619
3620 auto bounds
3621 = index.find_name_components_bounds (lookup_name_without_params,
3622 lang_e, per_objfile);
3623
3624 /* Now for each symbol name in range, check to see if we have a name
3625 match, and if so, call the MATCH_CALLBACK callback. */
3626
3627 for (; bounds.first != bounds.second; ++bounds.first)
3628 {
3629 const char *qualified
3630 = index.symbol_name_at (bounds.first->idx, per_objfile);
3631
3632 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3633 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3634 continue;
3635
3636 matches.push_back (bounds.first->idx);
3637 }
3638 }
3639
3640 std::sort (matches.begin (), matches.end ());
3641
3642 /* Finally call the callback, once per match. */
3643 ULONGEST prev = -1;
3644 bool result = true;
3645 for (offset_type idx : matches)
3646 {
3647 if (prev != idx)
3648 {
3649 if (!match_callback (idx))
3650 {
3651 result = false;
3652 break;
3653 }
3654 prev = idx;
3655 }
3656 }
3657
3658 /* Above we use a type wider than idx's for 'prev', since 0 and
3659 (offset_type)-1 are both possible values. */
3660 static_assert (sizeof (prev) > sizeof (offset_type), "");
3661
3662 return result;
3663 }
3664
3665 #if GDB_SELF_TEST
3666
3667 namespace selftests { namespace dw2_expand_symtabs_matching {
3668
3669 /* A mock .gdb_index/.debug_names-like name index table, enough to
3670 exercise dw2_expand_symtabs_matching_symbol, which works with the
3671 mapped_index_base interface. Builds an index from the symbol list
3672 passed as parameter to the constructor. */
3673 class mock_mapped_index : public mapped_index_base
3674 {
3675 public:
3676 mock_mapped_index (gdb::array_view<const char *> symbols)
3677 : m_symbol_table (symbols)
3678 {}
3679
3680 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
3681
3682 /* Return the number of names in the symbol table. */
3683 size_t symbol_name_count () const override
3684 {
3685 return m_symbol_table.size ();
3686 }
3687
3688 /* Get the name of the symbol at IDX in the symbol table. */
3689 const char *symbol_name_at
3690 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
3691 {
3692 return m_symbol_table[idx];
3693 }
3694
3695 private:
3696 gdb::array_view<const char *> m_symbol_table;
3697 };
3698
3699 /* Convenience function that converts a NULL pointer to a "<null>"
3700 string, to pass to print routines. */
3701
3702 static const char *
3703 string_or_null (const char *str)
3704 {
3705 return str != NULL ? str : "<null>";
3706 }
3707
3708 /* Check if a lookup_name_info built from
3709 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
3710 index. EXPECTED_LIST is the list of expected matches, in expected
3711 matching order. If no match expected, then an empty list is
3712 specified. Returns true on success. On failure prints a warning
3713 indicating the file:line that failed, and returns false. */
3714
3715 static bool
3716 check_match (const char *file, int line,
3717 mock_mapped_index &mock_index,
3718 const char *name, symbol_name_match_type match_type,
3719 bool completion_mode,
3720 std::initializer_list<const char *> expected_list,
3721 dwarf2_per_objfile *per_objfile)
3722 {
3723 lookup_name_info lookup_name (name, match_type, completion_mode);
3724
3725 bool matched = true;
3726
3727 auto mismatch = [&] (const char *expected_str,
3728 const char *got)
3729 {
3730 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
3731 "expected=\"%s\", got=\"%s\"\n"),
3732 file, line,
3733 (match_type == symbol_name_match_type::FULL
3734 ? "FULL" : "WILD"),
3735 name, string_or_null (expected_str), string_or_null (got));
3736 matched = false;
3737 };
3738
3739 auto expected_it = expected_list.begin ();
3740 auto expected_end = expected_list.end ();
3741
3742 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
3743 nullptr,
3744 [&] (offset_type idx)
3745 {
3746 const char *matched_name = mock_index.symbol_name_at (idx, per_objfile);
3747 const char *expected_str
3748 = expected_it == expected_end ? NULL : *expected_it++;
3749
3750 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
3751 mismatch (expected_str, matched_name);
3752 return true;
3753 }, per_objfile);
3754
3755 const char *expected_str
3756 = expected_it == expected_end ? NULL : *expected_it++;
3757 if (expected_str != NULL)
3758 mismatch (expected_str, NULL);
3759
3760 return matched;
3761 }
3762
3763 /* The symbols added to the mock mapped_index for testing (in
3764 canonical form). */
3765 static const char *test_symbols[] = {
3766 "function",
3767 "std::bar",
3768 "std::zfunction",
3769 "std::zfunction2",
3770 "w1::w2",
3771 "ns::foo<char*>",
3772 "ns::foo<int>",
3773 "ns::foo<long>",
3774 "ns2::tmpl<int>::foo2",
3775 "(anonymous namespace)::A::B::C",
3776
3777 /* These are used to check that the increment-last-char in the
3778 matching algorithm for completion doesn't match "t1_fund" when
3779 completing "t1_func". */
3780 "t1_func",
3781 "t1_func1",
3782 "t1_fund",
3783 "t1_fund1",
3784
3785 /* A UTF-8 name with multi-byte sequences to make sure that
3786 cp-name-parser understands this as a single identifier ("função"
3787 is "function" in PT). */
3788 u8"u8função",
3789
3790 /* \377 (0xff) is Latin1 'ÿ'. */
3791 "yfunc\377",
3792
3793 /* \377 (0xff) is Latin1 'ÿ'. */
3794 "\377",
3795 "\377\377123",
3796
3797 /* A name with all sorts of complications. Starts with "z" to make
3798 it easier for the completion tests below. */
3799 #define Z_SYM_NAME \
3800 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
3801 "::tuple<(anonymous namespace)::ui*, " \
3802 "std::default_delete<(anonymous namespace)::ui>, void>"
3803
3804 Z_SYM_NAME
3805 };
3806
3807 /* Returns true if the mapped_index_base::find_name_component_bounds
3808 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
3809 in completion mode. */
3810
3811 static bool
3812 check_find_bounds_finds (mapped_index_base &index,
3813 const char *search_name,
3814 gdb::array_view<const char *> expected_syms,
3815 dwarf2_per_objfile *per_objfile)
3816 {
3817 lookup_name_info lookup_name (search_name,
3818 symbol_name_match_type::FULL, true);
3819
3820 auto bounds = index.find_name_components_bounds (lookup_name,
3821 language_cplus,
3822 per_objfile);
3823
3824 size_t distance = std::distance (bounds.first, bounds.second);
3825 if (distance != expected_syms.size ())
3826 return false;
3827
3828 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
3829 {
3830 auto nc_elem = bounds.first + exp_elem;
3831 const char *qualified = index.symbol_name_at (nc_elem->idx, per_objfile);
3832 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
3833 return false;
3834 }
3835
3836 return true;
3837 }
3838
3839 /* Test the lower-level mapped_index::find_name_component_bounds
3840 method. */
3841
3842 static void
3843 test_mapped_index_find_name_component_bounds ()
3844 {
3845 mock_mapped_index mock_index (test_symbols);
3846
3847 mock_index.build_name_components (NULL /* per_objfile */);
3848
3849 /* Test the lower-level mapped_index::find_name_component_bounds
3850 method in completion mode. */
3851 {
3852 static const char *expected_syms[] = {
3853 "t1_func",
3854 "t1_func1",
3855 };
3856
3857 SELF_CHECK (check_find_bounds_finds
3858 (mock_index, "t1_func", expected_syms,
3859 NULL /* per_objfile */));
3860 }
3861
3862 /* Check that the increment-last-char in the name matching algorithm
3863 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
3864 {
3865 static const char *expected_syms1[] = {
3866 "\377",
3867 "\377\377123",
3868 };
3869 SELF_CHECK (check_find_bounds_finds
3870 (mock_index, "\377", expected_syms1, NULL /* per_objfile */));
3871
3872 static const char *expected_syms2[] = {
3873 "\377\377123",
3874 };
3875 SELF_CHECK (check_find_bounds_finds
3876 (mock_index, "\377\377", expected_syms2,
3877 NULL /* per_objfile */));
3878 }
3879 }
3880
3881 /* Test dw2_expand_symtabs_matching_symbol. */
3882
3883 static void
3884 test_dw2_expand_symtabs_matching_symbol ()
3885 {
3886 mock_mapped_index mock_index (test_symbols);
3887
3888 /* We let all tests run until the end even if some fails, for debug
3889 convenience. */
3890 bool any_mismatch = false;
3891
3892 /* Create the expected symbols list (an initializer_list). Needed
3893 because lists have commas, and we need to pass them to CHECK,
3894 which is a macro. */
3895 #define EXPECT(...) { __VA_ARGS__ }
3896
3897 /* Wrapper for check_match that passes down the current
3898 __FILE__/__LINE__. */
3899 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
3900 any_mismatch |= !check_match (__FILE__, __LINE__, \
3901 mock_index, \
3902 NAME, MATCH_TYPE, COMPLETION_MODE, \
3903 EXPECTED_LIST, NULL)
3904
3905 /* Identity checks. */
3906 for (const char *sym : test_symbols)
3907 {
3908 /* Should be able to match all existing symbols. */
3909 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
3910 EXPECT (sym));
3911
3912 /* Should be able to match all existing symbols with
3913 parameters. */
3914 std::string with_params = std::string (sym) + "(int)";
3915 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
3916 EXPECT (sym));
3917
3918 /* Should be able to match all existing symbols with
3919 parameters and qualifiers. */
3920 with_params = std::string (sym) + " ( int ) const";
3921 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
3922 EXPECT (sym));
3923
3924 /* This should really find sym, but cp-name-parser.y doesn't
3925 know about lvalue/rvalue qualifiers yet. */
3926 with_params = std::string (sym) + " ( int ) &&";
3927 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
3928 {});
3929 }
3930
3931 /* Check that the name matching algorithm for completion doesn't get
3932 confused with Latin1 'ÿ' / 0xff. */
3933 {
3934 static const char str[] = "\377";
3935 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
3936 EXPECT ("\377", "\377\377123"));
3937 }
3938
3939 /* Check that the increment-last-char in the matching algorithm for
3940 completion doesn't match "t1_fund" when completing "t1_func". */
3941 {
3942 static const char str[] = "t1_func";
3943 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
3944 EXPECT ("t1_func", "t1_func1"));
3945 }
3946
3947 /* Check that completion mode works at each prefix of the expected
3948 symbol name. */
3949 {
3950 static const char str[] = "function(int)";
3951 size_t len = strlen (str);
3952 std::string lookup;
3953
3954 for (size_t i = 1; i < len; i++)
3955 {
3956 lookup.assign (str, i);
3957 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
3958 EXPECT ("function"));
3959 }
3960 }
3961
3962 /* While "w" is a prefix of both components, the match function
3963 should still only be called once. */
3964 {
3965 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
3966 EXPECT ("w1::w2"));
3967 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
3968 EXPECT ("w1::w2"));
3969 }
3970
3971 /* Same, with a "complicated" symbol. */
3972 {
3973 static const char str[] = Z_SYM_NAME;
3974 size_t len = strlen (str);
3975 std::string lookup;
3976
3977 for (size_t i = 1; i < len; i++)
3978 {
3979 lookup.assign (str, i);
3980 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
3981 EXPECT (Z_SYM_NAME));
3982 }
3983 }
3984
3985 /* In FULL mode, an incomplete symbol doesn't match. */
3986 {
3987 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
3988 {});
3989 }
3990
3991 /* A complete symbol with parameters matches any overload, since the
3992 index has no overload info. */
3993 {
3994 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
3995 EXPECT ("std::zfunction", "std::zfunction2"));
3996 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
3997 EXPECT ("std::zfunction", "std::zfunction2"));
3998 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
3999 EXPECT ("std::zfunction", "std::zfunction2"));
4000 }
4001
4002 /* Check that whitespace is ignored appropriately. A symbol with a
4003 template argument list. */
4004 {
4005 static const char expected[] = "ns::foo<int>";
4006 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4007 EXPECT (expected));
4008 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4009 EXPECT (expected));
4010 }
4011
4012 /* Check that whitespace is ignored appropriately. A symbol with a
4013 template argument list that includes a pointer. */
4014 {
4015 static const char expected[] = "ns::foo<char*>";
4016 /* Try both completion and non-completion modes. */
4017 static const bool completion_mode[2] = {false, true};
4018 for (size_t i = 0; i < 2; i++)
4019 {
4020 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4021 completion_mode[i], EXPECT (expected));
4022 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4023 completion_mode[i], EXPECT (expected));
4024
4025 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4026 completion_mode[i], EXPECT (expected));
4027 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4028 completion_mode[i], EXPECT (expected));
4029 }
4030 }
4031
4032 {
4033 /* Check method qualifiers are ignored. */
4034 static const char expected[] = "ns::foo<char*>";
4035 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4036 symbol_name_match_type::FULL, true, EXPECT (expected));
4037 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4038 symbol_name_match_type::FULL, true, EXPECT (expected));
4039 CHECK_MATCH ("foo < char * > ( int ) const",
4040 symbol_name_match_type::WILD, true, EXPECT (expected));
4041 CHECK_MATCH ("foo < char * > ( int ) &&",
4042 symbol_name_match_type::WILD, true, EXPECT (expected));
4043 }
4044
4045 /* Test lookup names that don't match anything. */
4046 {
4047 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4048 {});
4049
4050 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4051 {});
4052 }
4053
4054 /* Some wild matching tests, exercising "(anonymous namespace)",
4055 which should not be confused with a parameter list. */
4056 {
4057 static const char *syms[] = {
4058 "A::B::C",
4059 "B::C",
4060 "C",
4061 "A :: B :: C ( int )",
4062 "B :: C ( int )",
4063 "C ( int )",
4064 };
4065
4066 for (const char *s : syms)
4067 {
4068 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4069 EXPECT ("(anonymous namespace)::A::B::C"));
4070 }
4071 }
4072
4073 {
4074 static const char expected[] = "ns2::tmpl<int>::foo2";
4075 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4076 EXPECT (expected));
4077 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4078 EXPECT (expected));
4079 }
4080
4081 SELF_CHECK (!any_mismatch);
4082
4083 #undef EXPECT
4084 #undef CHECK_MATCH
4085 }
4086
4087 static void
4088 run_test ()
4089 {
4090 test_mapped_index_find_name_component_bounds ();
4091 test_dw2_expand_symtabs_matching_symbol ();
4092 }
4093
4094 }} // namespace selftests::dw2_expand_symtabs_matching
4095
4096 #endif /* GDB_SELF_TEST */
4097
4098 /* If FILE_MATCHER is NULL or if PER_CU has
4099 dwarf2_per_cu_quick_data::MARK set (see
4100 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4101 EXPANSION_NOTIFY on it. */
4102
4103 static bool
4104 dw2_expand_symtabs_matching_one
4105 (dwarf2_per_cu_data *per_cu,
4106 dwarf2_per_objfile *per_objfile,
4107 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4108 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4109 {
4110 if (file_matcher == NULL || per_cu->v.quick->mark)
4111 {
4112 bool symtab_was_null = !per_objfile->symtab_set_p (per_cu);
4113
4114 compunit_symtab *symtab
4115 = dw2_instantiate_symtab (per_cu, per_objfile, false);
4116 gdb_assert (symtab != nullptr);
4117
4118 if (expansion_notify != NULL && symtab_was_null)
4119 return expansion_notify (symtab);
4120 }
4121 return true;
4122 }
4123
4124 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4125 matched, to expand corresponding CUs that were marked. IDX is the
4126 index of the symbol name that matched. */
4127
4128 static bool
4129 dw2_expand_marked_cus
4130 (dwarf2_per_objfile *per_objfile, offset_type idx,
4131 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4132 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4133 block_search_flags search_flags,
4134 search_domain kind)
4135 {
4136 offset_type vec_len, vec_idx;
4137 bool global_seen = false;
4138 mapped_index &index = *per_objfile->per_bfd->index_table;
4139
4140 offset_view vec (index.constant_pool.slice (index.symbol_vec_index (idx)));
4141 vec_len = vec[0];
4142 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4143 {
4144 offset_type cu_index_and_attrs = vec[vec_idx + 1];
4145 /* This value is only valid for index versions >= 7. */
4146 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4147 gdb_index_symbol_kind symbol_kind =
4148 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4149 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4150 /* Only check the symbol attributes if they're present.
4151 Indices prior to version 7 don't record them,
4152 and indices >= 7 may elide them for certain symbols
4153 (gold does this). */
4154 int attrs_valid =
4155 (index.version >= 7
4156 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4157
4158 /* Work around gold/15646. */
4159 if (attrs_valid
4160 && !is_static
4161 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
4162 {
4163 if (global_seen)
4164 continue;
4165
4166 global_seen = true;
4167 }
4168
4169 /* Only check the symbol's kind if it has one. */
4170 if (attrs_valid)
4171 {
4172 if (is_static)
4173 {
4174 if ((search_flags & SEARCH_STATIC_BLOCK) == 0)
4175 continue;
4176 }
4177 else
4178 {
4179 if ((search_flags & SEARCH_GLOBAL_BLOCK) == 0)
4180 continue;
4181 }
4182
4183 switch (kind)
4184 {
4185 case VARIABLES_DOMAIN:
4186 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4187 continue;
4188 break;
4189 case FUNCTIONS_DOMAIN:
4190 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4191 continue;
4192 break;
4193 case TYPES_DOMAIN:
4194 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4195 continue;
4196 break;
4197 case MODULES_DOMAIN:
4198 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4199 continue;
4200 break;
4201 default:
4202 break;
4203 }
4204 }
4205
4206 /* Don't crash on bad data. */
4207 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
4208 {
4209 complaint (_(".gdb_index entry has bad CU index"
4210 " [in module %s]"), objfile_name (per_objfile->objfile));
4211 continue;
4212 }
4213
4214 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (cu_index);
4215 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
4216 expansion_notify))
4217 return false;
4218 }
4219
4220 return true;
4221 }
4222
4223 /* If FILE_MATCHER is non-NULL, set all the
4224 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4225 that match FILE_MATCHER. */
4226
4227 static void
4228 dw_expand_symtabs_matching_file_matcher
4229 (dwarf2_per_objfile *per_objfile,
4230 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4231 {
4232 if (file_matcher == NULL)
4233 return;
4234
4235 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4236 htab_eq_pointer,
4237 NULL, xcalloc, xfree));
4238 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4239 htab_eq_pointer,
4240 NULL, xcalloc, xfree));
4241
4242 /* The rule is CUs specify all the files, including those used by
4243 any TU, so there's no need to scan TUs here. */
4244
4245 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4246 {
4247 QUIT;
4248
4249 if (per_cu->is_debug_types)
4250 continue;
4251 per_cu->v.quick->mark = 0;
4252
4253 /* We only need to look at symtabs not already expanded. */
4254 if (per_objfile->symtab_set_p (per_cu.get ()))
4255 continue;
4256
4257 quick_file_names *file_data = dw2_get_file_names (per_cu.get (),
4258 per_objfile);
4259 if (file_data == NULL)
4260 continue;
4261
4262 if (htab_find (visited_not_found.get (), file_data) != NULL)
4263 continue;
4264 else if (htab_find (visited_found.get (), file_data) != NULL)
4265 {
4266 per_cu->v.quick->mark = 1;
4267 continue;
4268 }
4269
4270 for (int j = 0; j < file_data->num_file_names; ++j)
4271 {
4272 const char *this_real_name;
4273
4274 if (file_matcher (file_data->file_names[j], false))
4275 {
4276 per_cu->v.quick->mark = 1;
4277 break;
4278 }
4279
4280 /* Before we invoke realpath, which can get expensive when many
4281 files are involved, do a quick comparison of the basenames. */
4282 if (!basenames_may_differ
4283 && !file_matcher (lbasename (file_data->file_names[j]),
4284 true))
4285 continue;
4286
4287 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
4288 if (file_matcher (this_real_name, false))
4289 {
4290 per_cu->v.quick->mark = 1;
4291 break;
4292 }
4293 }
4294
4295 void **slot = htab_find_slot (per_cu->v.quick->mark
4296 ? visited_found.get ()
4297 : visited_not_found.get (),
4298 file_data, INSERT);
4299 *slot = file_data;
4300 }
4301 }
4302
4303 bool
4304 dwarf2_gdb_index::expand_symtabs_matching
4305 (struct objfile *objfile,
4306 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4307 const lookup_name_info *lookup_name,
4308 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4309 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4310 block_search_flags search_flags,
4311 domain_enum domain,
4312 enum search_domain kind)
4313 {
4314 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4315
4316 /* index_table is NULL if OBJF_READNOW. */
4317 if (!per_objfile->per_bfd->index_table)
4318 return true;
4319
4320 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
4321
4322 if (symbol_matcher == NULL && lookup_name == NULL)
4323 {
4324 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4325 {
4326 QUIT;
4327
4328 if (!dw2_expand_symtabs_matching_one (per_cu.get (), per_objfile,
4329 file_matcher,
4330 expansion_notify))
4331 return false;
4332 }
4333 return true;
4334 }
4335
4336 mapped_index &index = *per_objfile->per_bfd->index_table;
4337
4338 bool result
4339 = dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4340 symbol_matcher,
4341 [&] (offset_type idx)
4342 {
4343 if (!dw2_expand_marked_cus (per_objfile, idx, file_matcher,
4344 expansion_notify, search_flags, kind))
4345 return false;
4346 return true;
4347 }, per_objfile);
4348
4349 return result;
4350 }
4351
4352 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4353 symtab. */
4354
4355 static struct compunit_symtab *
4356 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4357 CORE_ADDR pc)
4358 {
4359 int i;
4360
4361 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4362 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4363 return cust;
4364
4365 if (cust->includes == NULL)
4366 return NULL;
4367
4368 for (i = 0; cust->includes[i]; ++i)
4369 {
4370 struct compunit_symtab *s = cust->includes[i];
4371
4372 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4373 if (s != NULL)
4374 return s;
4375 }
4376
4377 return NULL;
4378 }
4379
4380 struct compunit_symtab *
4381 dwarf2_base_index_functions::find_pc_sect_compunit_symtab
4382 (struct objfile *objfile,
4383 struct bound_minimal_symbol msymbol,
4384 CORE_ADDR pc,
4385 struct obj_section *section,
4386 int warn_if_readin)
4387 {
4388 struct dwarf2_per_cu_data *data;
4389 struct compunit_symtab *result;
4390
4391 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4392 if (per_objfile->per_bfd->index_addrmap == nullptr)
4393 return NULL;
4394
4395 CORE_ADDR baseaddr = objfile->text_section_offset ();
4396 data = ((struct dwarf2_per_cu_data *)
4397 addrmap_find (per_objfile->per_bfd->index_addrmap,
4398 pc - baseaddr));
4399 if (!data)
4400 return NULL;
4401
4402 if (warn_if_readin && per_objfile->symtab_set_p (data))
4403 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4404 paddress (objfile->arch (), pc));
4405
4406 result = recursively_find_pc_sect_compunit_symtab
4407 (dw2_instantiate_symtab (data, per_objfile, false), pc);
4408
4409 gdb_assert (result != NULL);
4410 return result;
4411 }
4412
4413 void
4414 dwarf2_base_index_functions::map_symbol_filenames
4415 (struct objfile *objfile,
4416 gdb::function_view<symbol_filename_ftype> fun,
4417 bool need_fullname)
4418 {
4419 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4420
4421 /* Use caches to ensure we only call FUN once for each filename. */
4422 filename_seen_cache filenames_cache;
4423 std::unordered_set<quick_file_names *> qfn_cache;
4424
4425 /* The rule is CUs specify all the files, including those used by any TU,
4426 so there's no need to scan TUs here. We can ignore file names coming
4427 from already-expanded CUs. It is possible that an expanded CU might
4428 reuse the file names data from a currently unexpanded CU, in this
4429 case we don't want to report the files from the unexpanded CU. */
4430
4431 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4432 {
4433 if (per_objfile->symtab_set_p (per_cu.get ()))
4434 {
4435 if (per_cu->v.quick->file_names != nullptr)
4436 qfn_cache.insert (per_cu->v.quick->file_names);
4437 }
4438 }
4439
4440 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4441 {
4442 /* We only need to look at symtabs not already expanded. */
4443 if (per_objfile->symtab_set_p (per_cu.get ()))
4444 continue;
4445
4446 quick_file_names *file_data = dw2_get_file_names (per_cu.get (),
4447 per_objfile);
4448 if (file_data == nullptr
4449 || qfn_cache.find (file_data) != qfn_cache.end ())
4450 continue;
4451
4452 for (int j = 0; j < file_data->num_file_names; ++j)
4453 {
4454 const char *filename = file_data->file_names[j];
4455 filenames_cache.seen (filename);
4456 }
4457 }
4458
4459 filenames_cache.traverse ([&] (const char *filename)
4460 {
4461 gdb::unique_xmalloc_ptr<char> this_real_name;
4462
4463 if (need_fullname)
4464 this_real_name = gdb_realpath (filename);
4465 fun (filename, this_real_name.get ());
4466 });
4467 }
4468
4469 bool
4470 dwarf2_base_index_functions::has_symbols (struct objfile *objfile)
4471 {
4472 return true;
4473 }
4474
4475 /* See quick_symbol_functions::has_unexpanded_symtabs in quick-symbol.h. */
4476
4477 bool
4478 dwarf2_base_index_functions::has_unexpanded_symtabs (struct objfile *objfile)
4479 {
4480 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4481
4482 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4483 {
4484 /* Is this already expanded? */
4485 if (per_objfile->symtab_set_p (per_cu.get ()))
4486 continue;
4487
4488 /* It has not yet been expanded. */
4489 return true;
4490 }
4491
4492 return false;
4493 }
4494
4495 /* DWARF-5 debug_names reader. */
4496
4497 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4498 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4499
4500 /* A helper function that reads the .debug_names section in SECTION
4501 and fills in MAP. FILENAME is the name of the file containing the
4502 section; it is used for error reporting.
4503
4504 Returns true if all went well, false otherwise. */
4505
4506 static bool
4507 read_debug_names_from_section (struct objfile *objfile,
4508 const char *filename,
4509 struct dwarf2_section_info *section,
4510 mapped_debug_names &map)
4511 {
4512 if (section->empty ())
4513 return false;
4514
4515 /* Older elfutils strip versions could keep the section in the main
4516 executable while splitting it for the separate debug info file. */
4517 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4518 return false;
4519
4520 section->read (objfile);
4521
4522 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4523
4524 const gdb_byte *addr = section->buffer;
4525
4526 bfd *const abfd = section->get_bfd_owner ();
4527
4528 unsigned int bytes_read;
4529 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4530 addr += bytes_read;
4531
4532 map.dwarf5_is_dwarf64 = bytes_read != 4;
4533 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4534 if (bytes_read + length != section->size)
4535 {
4536 /* There may be multiple per-CU indices. */
4537 warning (_("Section .debug_names in %s length %s does not match "
4538 "section length %s, ignoring .debug_names."),
4539 filename, plongest (bytes_read + length),
4540 pulongest (section->size));
4541 return false;
4542 }
4543
4544 /* The version number. */
4545 uint16_t version = read_2_bytes (abfd, addr);
4546 addr += 2;
4547 if (version != 5)
4548 {
4549 warning (_("Section .debug_names in %s has unsupported version %d, "
4550 "ignoring .debug_names."),
4551 filename, version);
4552 return false;
4553 }
4554
4555 /* Padding. */
4556 uint16_t padding = read_2_bytes (abfd, addr);
4557 addr += 2;
4558 if (padding != 0)
4559 {
4560 warning (_("Section .debug_names in %s has unsupported padding %d, "
4561 "ignoring .debug_names."),
4562 filename, padding);
4563 return false;
4564 }
4565
4566 /* comp_unit_count - The number of CUs in the CU list. */
4567 map.cu_count = read_4_bytes (abfd, addr);
4568 addr += 4;
4569
4570 /* local_type_unit_count - The number of TUs in the local TU
4571 list. */
4572 map.tu_count = read_4_bytes (abfd, addr);
4573 addr += 4;
4574
4575 /* foreign_type_unit_count - The number of TUs in the foreign TU
4576 list. */
4577 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4578 addr += 4;
4579 if (foreign_tu_count != 0)
4580 {
4581 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4582 "ignoring .debug_names."),
4583 filename, static_cast<unsigned long> (foreign_tu_count));
4584 return false;
4585 }
4586
4587 /* bucket_count - The number of hash buckets in the hash lookup
4588 table. */
4589 map.bucket_count = read_4_bytes (abfd, addr);
4590 addr += 4;
4591
4592 /* name_count - The number of unique names in the index. */
4593 map.name_count = read_4_bytes (abfd, addr);
4594 addr += 4;
4595
4596 /* abbrev_table_size - The size in bytes of the abbreviations
4597 table. */
4598 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4599 addr += 4;
4600
4601 /* augmentation_string_size - The size in bytes of the augmentation
4602 string. This value is rounded up to a multiple of 4. */
4603 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4604 addr += 4;
4605 map.augmentation_is_gdb = ((augmentation_string_size
4606 == sizeof (dwarf5_augmentation))
4607 && memcmp (addr, dwarf5_augmentation,
4608 sizeof (dwarf5_augmentation)) == 0);
4609 augmentation_string_size += (-augmentation_string_size) & 3;
4610 addr += augmentation_string_size;
4611
4612 /* List of CUs */
4613 map.cu_table_reordered = addr;
4614 addr += map.cu_count * map.offset_size;
4615
4616 /* List of Local TUs */
4617 map.tu_table_reordered = addr;
4618 addr += map.tu_count * map.offset_size;
4619
4620 /* Hash Lookup Table */
4621 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4622 addr += map.bucket_count * 4;
4623 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4624 addr += map.name_count * 4;
4625
4626 /* Name Table */
4627 map.name_table_string_offs_reordered = addr;
4628 addr += map.name_count * map.offset_size;
4629 map.name_table_entry_offs_reordered = addr;
4630 addr += map.name_count * map.offset_size;
4631
4632 const gdb_byte *abbrev_table_start = addr;
4633 for (;;)
4634 {
4635 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4636 addr += bytes_read;
4637 if (index_num == 0)
4638 break;
4639
4640 const auto insertpair
4641 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4642 if (!insertpair.second)
4643 {
4644 warning (_("Section .debug_names in %s has duplicate index %s, "
4645 "ignoring .debug_names."),
4646 filename, pulongest (index_num));
4647 return false;
4648 }
4649 mapped_debug_names::index_val &indexval = insertpair.first->second;
4650 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4651 addr += bytes_read;
4652
4653 for (;;)
4654 {
4655 mapped_debug_names::index_val::attr attr;
4656 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4657 addr += bytes_read;
4658 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4659 addr += bytes_read;
4660 if (attr.form == DW_FORM_implicit_const)
4661 {
4662 attr.implicit_const = read_signed_leb128 (abfd, addr,
4663 &bytes_read);
4664 addr += bytes_read;
4665 }
4666 if (attr.dw_idx == 0 && attr.form == 0)
4667 break;
4668 indexval.attr_vec.push_back (std::move (attr));
4669 }
4670 }
4671 if (addr != abbrev_table_start + abbrev_table_size)
4672 {
4673 warning (_("Section .debug_names in %s has abbreviation_table "
4674 "of size %s vs. written as %u, ignoring .debug_names."),
4675 filename, plongest (addr - abbrev_table_start),
4676 abbrev_table_size);
4677 return false;
4678 }
4679 map.entry_pool = addr;
4680
4681 return true;
4682 }
4683
4684 /* A helper for create_cus_from_debug_names that handles the MAP's CU
4685 list. */
4686
4687 static void
4688 create_cus_from_debug_names_list (dwarf2_per_bfd *per_bfd,
4689 const mapped_debug_names &map,
4690 dwarf2_section_info &section,
4691 bool is_dwz)
4692 {
4693 if (!map.augmentation_is_gdb)
4694 {
4695 for (uint32_t i = 0; i < map.cu_count; ++i)
4696 {
4697 sect_offset sect_off
4698 = (sect_offset) (extract_unsigned_integer
4699 (map.cu_table_reordered + i * map.offset_size,
4700 map.offset_size,
4701 map.dwarf5_byte_order));
4702 /* We don't know the length of the CU, because the CU list in a
4703 .debug_names index can be incomplete, so we can't use the start
4704 of the next CU as end of this CU. We create the CUs here with
4705 length 0, and in cutu_reader::cutu_reader we'll fill in the
4706 actual length. */
4707 dwarf2_per_cu_data_up per_cu
4708 = create_cu_from_index_list (per_bfd, &section, is_dwz,
4709 sect_off, 0);
4710 per_bfd->all_comp_units.push_back (std::move (per_cu));
4711 }
4712 return;
4713 }
4714
4715 sect_offset sect_off_prev;
4716 for (uint32_t i = 0; i <= map.cu_count; ++i)
4717 {
4718 sect_offset sect_off_next;
4719 if (i < map.cu_count)
4720 {
4721 sect_off_next
4722 = (sect_offset) (extract_unsigned_integer
4723 (map.cu_table_reordered + i * map.offset_size,
4724 map.offset_size,
4725 map.dwarf5_byte_order));
4726 }
4727 else
4728 sect_off_next = (sect_offset) section.size;
4729 if (i >= 1)
4730 {
4731 const ULONGEST length = sect_off_next - sect_off_prev;
4732 dwarf2_per_cu_data_up per_cu
4733 = create_cu_from_index_list (per_bfd, &section, is_dwz,
4734 sect_off_prev, length);
4735 per_bfd->all_comp_units.push_back (std::move (per_cu));
4736 }
4737 sect_off_prev = sect_off_next;
4738 }
4739 }
4740
4741 /* Read the CU list from the mapped index, and use it to create all
4742 the CU objects for this dwarf2_per_objfile. */
4743
4744 static void
4745 create_cus_from_debug_names (dwarf2_per_bfd *per_bfd,
4746 const mapped_debug_names &map,
4747 const mapped_debug_names &dwz_map)
4748 {
4749 gdb_assert (per_bfd->all_comp_units.empty ());
4750 per_bfd->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
4751
4752 create_cus_from_debug_names_list (per_bfd, map, per_bfd->info,
4753 false /* is_dwz */);
4754
4755 if (dwz_map.cu_count == 0)
4756 return;
4757
4758 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
4759 create_cus_from_debug_names_list (per_bfd, dwz_map, dwz->info,
4760 true /* is_dwz */);
4761 }
4762
4763 /* Read .debug_names. If everything went ok, initialize the "quick"
4764 elements of all the CUs and return true. Otherwise, return false. */
4765
4766 static bool
4767 dwarf2_read_debug_names (dwarf2_per_objfile *per_objfile)
4768 {
4769 std::unique_ptr<mapped_debug_names> map (new mapped_debug_names);
4770 mapped_debug_names dwz_map;
4771 struct objfile *objfile = per_objfile->objfile;
4772 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
4773
4774 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
4775 &per_bfd->debug_names, *map))
4776 return false;
4777
4778 /* Don't use the index if it's empty. */
4779 if (map->name_count == 0)
4780 return false;
4781
4782 /* If there is a .dwz file, read it so we can get its CU list as
4783 well. */
4784 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
4785 if (dwz != NULL)
4786 {
4787 if (!read_debug_names_from_section (objfile,
4788 bfd_get_filename (dwz->dwz_bfd.get ()),
4789 &dwz->debug_names, dwz_map))
4790 {
4791 warning (_("could not read '.debug_names' section from %s; skipping"),
4792 bfd_get_filename (dwz->dwz_bfd.get ()));
4793 return false;
4794 }
4795 }
4796
4797 create_cus_from_debug_names (per_bfd, *map, dwz_map);
4798
4799 if (map->tu_count != 0)
4800 {
4801 /* We can only handle a single .debug_types when we have an
4802 index. */
4803 if (per_bfd->types.size () != 1)
4804 return false;
4805
4806 dwarf2_section_info *section = &per_bfd->types[0];
4807
4808 create_signatured_type_table_from_debug_names
4809 (per_objfile, *map, section, &per_bfd->abbrev);
4810 }
4811
4812 create_addrmap_from_aranges (per_objfile, &per_bfd->debug_aranges);
4813
4814 per_bfd->debug_names_table = std::move (map);
4815 per_bfd->using_index = 1;
4816 per_bfd->quick_file_names_table =
4817 create_quick_file_names_table (per_bfd->all_comp_units.size ());
4818
4819 return true;
4820 }
4821
4822 /* Type used to manage iterating over all CUs looking for a symbol for
4823 .debug_names. */
4824
4825 class dw2_debug_names_iterator
4826 {
4827 public:
4828 dw2_debug_names_iterator (const mapped_debug_names &map,
4829 block_search_flags block_index,
4830 domain_enum domain,
4831 const char *name, dwarf2_per_objfile *per_objfile)
4832 : m_map (map), m_block_index (block_index), m_domain (domain),
4833 m_addr (find_vec_in_debug_names (map, name, per_objfile)),
4834 m_per_objfile (per_objfile)
4835 {}
4836
4837 dw2_debug_names_iterator (const mapped_debug_names &map,
4838 search_domain search, uint32_t namei,
4839 dwarf2_per_objfile *per_objfile,
4840 domain_enum domain = UNDEF_DOMAIN)
4841 : m_map (map),
4842 m_domain (domain),
4843 m_search (search),
4844 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
4845 m_per_objfile (per_objfile)
4846 {}
4847
4848 dw2_debug_names_iterator (const mapped_debug_names &map,
4849 block_search_flags block_index, domain_enum domain,
4850 uint32_t namei, dwarf2_per_objfile *per_objfile)
4851 : m_map (map), m_block_index (block_index), m_domain (domain),
4852 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
4853 m_per_objfile (per_objfile)
4854 {}
4855
4856 /* Return the next matching CU or NULL if there are no more. */
4857 dwarf2_per_cu_data *next ();
4858
4859 private:
4860 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
4861 const char *name,
4862 dwarf2_per_objfile *per_objfile);
4863 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
4864 uint32_t namei,
4865 dwarf2_per_objfile *per_objfile);
4866
4867 /* The internalized form of .debug_names. */
4868 const mapped_debug_names &m_map;
4869
4870 /* Restrict the search to these blocks. */
4871 block_search_flags m_block_index = (SEARCH_GLOBAL_BLOCK
4872 | SEARCH_STATIC_BLOCK);
4873
4874 /* The kind of symbol we're looking for. */
4875 const domain_enum m_domain = UNDEF_DOMAIN;
4876 const search_domain m_search = ALL_DOMAIN;
4877
4878 /* The list of CUs from the index entry of the symbol, or NULL if
4879 not found. */
4880 const gdb_byte *m_addr;
4881
4882 dwarf2_per_objfile *m_per_objfile;
4883 };
4884
4885 const char *
4886 mapped_debug_names::namei_to_name
4887 (uint32_t namei, dwarf2_per_objfile *per_objfile) const
4888 {
4889 const ULONGEST namei_string_offs
4890 = extract_unsigned_integer ((name_table_string_offs_reordered
4891 + namei * offset_size),
4892 offset_size,
4893 dwarf5_byte_order);
4894 return read_indirect_string_at_offset (per_objfile, namei_string_offs);
4895 }
4896
4897 /* Find a slot in .debug_names for the object named NAME. If NAME is
4898 found, return pointer to its pool data. If NAME cannot be found,
4899 return NULL. */
4900
4901 const gdb_byte *
4902 dw2_debug_names_iterator::find_vec_in_debug_names
4903 (const mapped_debug_names &map, const char *name,
4904 dwarf2_per_objfile *per_objfile)
4905 {
4906 int (*cmp) (const char *, const char *);
4907
4908 gdb::unique_xmalloc_ptr<char> without_params;
4909 if (current_language->la_language == language_cplus
4910 || current_language->la_language == language_fortran
4911 || current_language->la_language == language_d)
4912 {
4913 /* NAME is already canonical. Drop any qualifiers as
4914 .debug_names does not contain any. */
4915
4916 if (strchr (name, '(') != NULL)
4917 {
4918 without_params = cp_remove_params (name);
4919 if (without_params != NULL)
4920 name = without_params.get ();
4921 }
4922 }
4923
4924 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
4925
4926 const uint32_t full_hash = dwarf5_djb_hash (name);
4927 uint32_t namei
4928 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
4929 (map.bucket_table_reordered
4930 + (full_hash % map.bucket_count)), 4,
4931 map.dwarf5_byte_order);
4932 if (namei == 0)
4933 return NULL;
4934 --namei;
4935 if (namei >= map.name_count)
4936 {
4937 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
4938 "[in module %s]"),
4939 namei, map.name_count,
4940 objfile_name (per_objfile->objfile));
4941 return NULL;
4942 }
4943
4944 for (;;)
4945 {
4946 const uint32_t namei_full_hash
4947 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
4948 (map.hash_table_reordered + namei), 4,
4949 map.dwarf5_byte_order);
4950 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
4951 return NULL;
4952
4953 if (full_hash == namei_full_hash)
4954 {
4955 const char *const namei_string = map.namei_to_name (namei, per_objfile);
4956
4957 #if 0 /* An expensive sanity check. */
4958 if (namei_full_hash != dwarf5_djb_hash (namei_string))
4959 {
4960 complaint (_("Wrong .debug_names hash for string at index %u "
4961 "[in module %s]"),
4962 namei, objfile_name (dwarf2_per_objfile->objfile));
4963 return NULL;
4964 }
4965 #endif
4966
4967 if (cmp (namei_string, name) == 0)
4968 {
4969 const ULONGEST namei_entry_offs
4970 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
4971 + namei * map.offset_size),
4972 map.offset_size, map.dwarf5_byte_order);
4973 return map.entry_pool + namei_entry_offs;
4974 }
4975 }
4976
4977 ++namei;
4978 if (namei >= map.name_count)
4979 return NULL;
4980 }
4981 }
4982
4983 const gdb_byte *
4984 dw2_debug_names_iterator::find_vec_in_debug_names
4985 (const mapped_debug_names &map, uint32_t namei, dwarf2_per_objfile *per_objfile)
4986 {
4987 if (namei >= map.name_count)
4988 {
4989 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
4990 "[in module %s]"),
4991 namei, map.name_count,
4992 objfile_name (per_objfile->objfile));
4993 return NULL;
4994 }
4995
4996 const ULONGEST namei_entry_offs
4997 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
4998 + namei * map.offset_size),
4999 map.offset_size, map.dwarf5_byte_order);
5000 return map.entry_pool + namei_entry_offs;
5001 }
5002
5003 /* See dw2_debug_names_iterator. */
5004
5005 dwarf2_per_cu_data *
5006 dw2_debug_names_iterator::next ()
5007 {
5008 if (m_addr == NULL)
5009 return NULL;
5010
5011 dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd;
5012 struct objfile *objfile = m_per_objfile->objfile;
5013 bfd *const abfd = objfile->obfd;
5014
5015 again:
5016
5017 unsigned int bytes_read;
5018 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5019 m_addr += bytes_read;
5020 if (abbrev == 0)
5021 return NULL;
5022
5023 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5024 if (indexval_it == m_map.abbrev_map.cend ())
5025 {
5026 complaint (_("Wrong .debug_names undefined abbrev code %s "
5027 "[in module %s]"),
5028 pulongest (abbrev), objfile_name (objfile));
5029 return NULL;
5030 }
5031 const mapped_debug_names::index_val &indexval = indexval_it->second;
5032 enum class symbol_linkage {
5033 unknown,
5034 static_,
5035 extern_,
5036 } symbol_linkage_ = symbol_linkage::unknown;
5037 dwarf2_per_cu_data *per_cu = NULL;
5038 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5039 {
5040 ULONGEST ull;
5041 switch (attr.form)
5042 {
5043 case DW_FORM_implicit_const:
5044 ull = attr.implicit_const;
5045 break;
5046 case DW_FORM_flag_present:
5047 ull = 1;
5048 break;
5049 case DW_FORM_udata:
5050 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5051 m_addr += bytes_read;
5052 break;
5053 case DW_FORM_ref4:
5054 ull = read_4_bytes (abfd, m_addr);
5055 m_addr += 4;
5056 break;
5057 case DW_FORM_ref8:
5058 ull = read_8_bytes (abfd, m_addr);
5059 m_addr += 8;
5060 break;
5061 case DW_FORM_ref_sig8:
5062 ull = read_8_bytes (abfd, m_addr);
5063 m_addr += 8;
5064 break;
5065 default:
5066 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5067 dwarf_form_name (attr.form),
5068 objfile_name (objfile));
5069 return NULL;
5070 }
5071 switch (attr.dw_idx)
5072 {
5073 case DW_IDX_compile_unit:
5074 /* Don't crash on bad data. */
5075 if (ull >= per_bfd->all_comp_units.size ())
5076 {
5077 complaint (_(".debug_names entry has bad CU index %s"
5078 " [in module %s]"),
5079 pulongest (ull),
5080 objfile_name (objfile));
5081 continue;
5082 }
5083 per_cu = per_bfd->get_cu (ull);
5084 break;
5085 case DW_IDX_type_unit:
5086 /* Don't crash on bad data. */
5087 if (ull >= per_bfd->tu_stats.nr_tus)
5088 {
5089 complaint (_(".debug_names entry has bad TU index %s"
5090 " [in module %s]"),
5091 pulongest (ull),
5092 objfile_name (objfile));
5093 continue;
5094 }
5095 per_cu = per_bfd->get_cu (ull + per_bfd->tu_stats.nr_tus);
5096 break;
5097 case DW_IDX_die_offset:
5098 /* In a per-CU index (as opposed to a per-module index), index
5099 entries without CU attribute implicitly refer to the single CU. */
5100 if (per_cu == NULL)
5101 per_cu = per_bfd->get_cu (0);
5102 break;
5103 case DW_IDX_GNU_internal:
5104 if (!m_map.augmentation_is_gdb)
5105 break;
5106 symbol_linkage_ = symbol_linkage::static_;
5107 break;
5108 case DW_IDX_GNU_external:
5109 if (!m_map.augmentation_is_gdb)
5110 break;
5111 symbol_linkage_ = symbol_linkage::extern_;
5112 break;
5113 }
5114 }
5115
5116 /* Skip if already read in. */
5117 if (m_per_objfile->symtab_set_p (per_cu))
5118 goto again;
5119
5120 /* Check static vs global. */
5121 if (symbol_linkage_ != symbol_linkage::unknown)
5122 {
5123 if (symbol_linkage_ == symbol_linkage::static_)
5124 {
5125 if ((m_block_index & SEARCH_STATIC_BLOCK) == 0)
5126 goto again;
5127 }
5128 else
5129 {
5130 if ((m_block_index & SEARCH_GLOBAL_BLOCK) == 0)
5131 goto again;
5132 }
5133 }
5134
5135 /* Match dw2_symtab_iter_next, symbol_kind
5136 and debug_names::psymbol_tag. */
5137 switch (m_domain)
5138 {
5139 case VAR_DOMAIN:
5140 switch (indexval.dwarf_tag)
5141 {
5142 case DW_TAG_variable:
5143 case DW_TAG_subprogram:
5144 /* Some types are also in VAR_DOMAIN. */
5145 case DW_TAG_typedef:
5146 case DW_TAG_structure_type:
5147 break;
5148 default:
5149 goto again;
5150 }
5151 break;
5152 case STRUCT_DOMAIN:
5153 switch (indexval.dwarf_tag)
5154 {
5155 case DW_TAG_typedef:
5156 case DW_TAG_structure_type:
5157 break;
5158 default:
5159 goto again;
5160 }
5161 break;
5162 case LABEL_DOMAIN:
5163 switch (indexval.dwarf_tag)
5164 {
5165 case 0:
5166 case DW_TAG_variable:
5167 break;
5168 default:
5169 goto again;
5170 }
5171 break;
5172 case MODULE_DOMAIN:
5173 switch (indexval.dwarf_tag)
5174 {
5175 case DW_TAG_module:
5176 break;
5177 default:
5178 goto again;
5179 }
5180 break;
5181 default:
5182 break;
5183 }
5184
5185 /* Match dw2_expand_symtabs_matching, symbol_kind and
5186 debug_names::psymbol_tag. */
5187 switch (m_search)
5188 {
5189 case VARIABLES_DOMAIN:
5190 switch (indexval.dwarf_tag)
5191 {
5192 case DW_TAG_variable:
5193 break;
5194 default:
5195 goto again;
5196 }
5197 break;
5198 case FUNCTIONS_DOMAIN:
5199 switch (indexval.dwarf_tag)
5200 {
5201 case DW_TAG_subprogram:
5202 break;
5203 default:
5204 goto again;
5205 }
5206 break;
5207 case TYPES_DOMAIN:
5208 switch (indexval.dwarf_tag)
5209 {
5210 case DW_TAG_typedef:
5211 case DW_TAG_structure_type:
5212 break;
5213 default:
5214 goto again;
5215 }
5216 break;
5217 case MODULES_DOMAIN:
5218 switch (indexval.dwarf_tag)
5219 {
5220 case DW_TAG_module:
5221 break;
5222 default:
5223 goto again;
5224 }
5225 default:
5226 break;
5227 }
5228
5229 return per_cu;
5230 }
5231
5232 /* This dumps minimal information about .debug_names. It is called
5233 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5234 uses this to verify that .debug_names has been loaded. */
5235
5236 void
5237 dwarf2_debug_names_index::dump (struct objfile *objfile)
5238 {
5239 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5240
5241 gdb_assert (per_objfile->per_bfd->using_index);
5242 printf_filtered (".debug_names:");
5243 if (per_objfile->per_bfd->debug_names_table)
5244 printf_filtered (" exists\n");
5245 else
5246 printf_filtered (" faked for \"readnow\"\n");
5247 printf_filtered ("\n");
5248 }
5249
5250 void
5251 dwarf2_debug_names_index::expand_matching_symbols
5252 (struct objfile *objfile,
5253 const lookup_name_info &name, domain_enum domain,
5254 int global,
5255 symbol_compare_ftype *ordered_compare)
5256 {
5257 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5258
5259 /* debug_names_table is NULL if OBJF_READNOW. */
5260 if (!per_objfile->per_bfd->debug_names_table)
5261 return;
5262
5263 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5264 const block_search_flags block_flags
5265 = global ? SEARCH_GLOBAL_BLOCK : SEARCH_STATIC_BLOCK;
5266
5267 const char *match_name = name.ada ().lookup_name ().c_str ();
5268 auto matcher = [&] (const char *symname)
5269 {
5270 if (ordered_compare == nullptr)
5271 return true;
5272 return ordered_compare (symname, match_name) == 0;
5273 };
5274
5275 dw2_expand_symtabs_matching_symbol (map, name, matcher,
5276 [&] (offset_type namei)
5277 {
5278 /* The name was matched, now expand corresponding CUs that were
5279 marked. */
5280 dw2_debug_names_iterator iter (map, block_flags, domain, namei,
5281 per_objfile);
5282
5283 struct dwarf2_per_cu_data *per_cu;
5284 while ((per_cu = iter.next ()) != NULL)
5285 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
5286 nullptr);
5287 return true;
5288 }, per_objfile);
5289 }
5290
5291 bool
5292 dwarf2_debug_names_index::expand_symtabs_matching
5293 (struct objfile *objfile,
5294 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5295 const lookup_name_info *lookup_name,
5296 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5297 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5298 block_search_flags search_flags,
5299 domain_enum domain,
5300 enum search_domain kind)
5301 {
5302 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5303
5304 /* debug_names_table is NULL if OBJF_READNOW. */
5305 if (!per_objfile->per_bfd->debug_names_table)
5306 return true;
5307
5308 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
5309
5310 if (symbol_matcher == NULL && lookup_name == NULL)
5311 {
5312 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
5313 {
5314 QUIT;
5315
5316 if (!dw2_expand_symtabs_matching_one (per_cu.get (), per_objfile,
5317 file_matcher,
5318 expansion_notify))
5319 return false;
5320 }
5321 return true;
5322 }
5323
5324 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5325
5326 bool result
5327 = dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5328 symbol_matcher,
5329 [&] (offset_type namei)
5330 {
5331 /* The name was matched, now expand corresponding CUs that were
5332 marked. */
5333 dw2_debug_names_iterator iter (map, kind, namei, per_objfile, domain);
5334
5335 struct dwarf2_per_cu_data *per_cu;
5336 while ((per_cu = iter.next ()) != NULL)
5337 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile,
5338 file_matcher,
5339 expansion_notify))
5340 return false;
5341 return true;
5342 }, per_objfile);
5343
5344 return result;
5345 }
5346
5347 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5348 to either a dwarf2_per_bfd or dwz_file object. */
5349
5350 template <typename T>
5351 static gdb::array_view<const gdb_byte>
5352 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5353 {
5354 dwarf2_section_info *section = &section_owner->gdb_index;
5355
5356 if (section->empty ())
5357 return {};
5358
5359 /* Older elfutils strip versions could keep the section in the main
5360 executable while splitting it for the separate debug info file. */
5361 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5362 return {};
5363
5364 section->read (obj);
5365
5366 /* dwarf2_section_info::size is a bfd_size_type, while
5367 gdb::array_view works with size_t. On 32-bit hosts, with
5368 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5369 is 32-bit. So we need an explicit narrowing conversion here.
5370 This is fine, because it's impossible to allocate or mmap an
5371 array/buffer larger than what size_t can represent. */
5372 return gdb::make_array_view (section->buffer, section->size);
5373 }
5374
5375 /* Lookup the index cache for the contents of the index associated to
5376 DWARF2_OBJ. */
5377
5378 static gdb::array_view<const gdb_byte>
5379 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd)
5380 {
5381 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5382 if (build_id == nullptr)
5383 return {};
5384
5385 return global_index_cache.lookup_gdb_index (build_id,
5386 &dwarf2_per_bfd->index_cache_res);
5387 }
5388
5389 /* Same as the above, but for DWZ. */
5390
5391 static gdb::array_view<const gdb_byte>
5392 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5393 {
5394 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5395 if (build_id == nullptr)
5396 return {};
5397
5398 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5399 }
5400
5401 /* See dwarf2/public.h. */
5402
5403 void
5404 dwarf2_initialize_objfile (struct objfile *objfile)
5405 {
5406 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5407 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5408
5409 dwarf_read_debug_printf ("called");
5410
5411 /* If we're about to read full symbols, don't bother with the
5412 indices. In this case we also don't care if some other debug
5413 format is making psymtabs, because they are all about to be
5414 expanded anyway. */
5415 if ((objfile->flags & OBJF_READNOW))
5416 {
5417 dwarf_read_debug_printf ("readnow requested");
5418
5419 /* When using READNOW, the using_index flag (set below) indicates that
5420 PER_BFD was already initialized, when we loaded some other objfile. */
5421 if (per_bfd->using_index)
5422 {
5423 dwarf_read_debug_printf ("using_index already set");
5424 per_objfile->resize_symtabs ();
5425 objfile->qf.push_front (make_dwarf_gdb_index ());
5426 return;
5427 }
5428
5429 per_bfd->using_index = 1;
5430 create_all_comp_units (per_objfile);
5431 per_bfd->quick_file_names_table
5432 = create_quick_file_names_table (per_bfd->all_comp_units.size ());
5433 per_objfile->resize_symtabs ();
5434
5435 for (int i = 0; i < per_bfd->all_comp_units.size (); ++i)
5436 {
5437 dwarf2_per_cu_data *per_cu = per_bfd->get_cu (i);
5438
5439 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
5440 struct dwarf2_per_cu_quick_data);
5441 }
5442
5443 /* Arrange for gdb to see the "quick" functions. However, these
5444 functions will be no-ops because we will have expanded all
5445 symtabs. */
5446 objfile->qf.push_front (make_dwarf_gdb_index ());
5447 return;
5448 }
5449
5450 /* Was a debug names index already read when we processed an objfile sharing
5451 PER_BFD? */
5452 if (per_bfd->debug_names_table != nullptr)
5453 {
5454 dwarf_read_debug_printf ("re-using shared debug names table");
5455 per_objfile->resize_symtabs ();
5456 objfile->qf.push_front (make_dwarf_debug_names ());
5457 return;
5458 }
5459
5460 /* Was a GDB index already read when we processed an objfile sharing
5461 PER_BFD? */
5462 if (per_bfd->index_table != nullptr)
5463 {
5464 dwarf_read_debug_printf ("re-using shared index table");
5465 per_objfile->resize_symtabs ();
5466 objfile->qf.push_front (make_dwarf_gdb_index ());
5467 return;
5468 }
5469
5470 /* There might already be partial symtabs built for this BFD. This happens
5471 when loading the same binary twice with the index-cache enabled. If so,
5472 don't try to read an index. The objfile / per_objfile initialization will
5473 be completed in dwarf2_build_psymtabs, in the standard partial symtabs
5474 code path. */
5475 if (per_bfd->partial_symtabs != nullptr)
5476 {
5477 dwarf_read_debug_printf ("re-using shared partial symtabs");
5478 objfile->qf.push_front (make_lazy_dwarf_reader ());
5479 return;
5480 }
5481
5482 if (dwarf2_read_debug_names (per_objfile))
5483 {
5484 dwarf_read_debug_printf ("found debug names");
5485 per_objfile->resize_symtabs ();
5486 objfile->qf.push_front (make_dwarf_debug_names ());
5487 return;
5488 }
5489
5490 if (dwarf2_read_gdb_index (per_objfile,
5491 get_gdb_index_contents_from_section<struct dwarf2_per_bfd>,
5492 get_gdb_index_contents_from_section<dwz_file>))
5493 {
5494 dwarf_read_debug_printf ("found gdb index from file");
5495 per_objfile->resize_symtabs ();
5496 objfile->qf.push_front (make_dwarf_gdb_index ());
5497 return;
5498 }
5499
5500 /* ... otherwise, try to find the index in the index cache. */
5501 if (dwarf2_read_gdb_index (per_objfile,
5502 get_gdb_index_contents_from_cache,
5503 get_gdb_index_contents_from_cache_dwz))
5504 {
5505 dwarf_read_debug_printf ("found gdb index from cache");
5506 global_index_cache.hit ();
5507 per_objfile->resize_symtabs ();
5508 objfile->qf.push_front (make_dwarf_gdb_index ());
5509 return;
5510 }
5511
5512 global_index_cache.miss ();
5513 objfile->qf.push_front (make_lazy_dwarf_reader ());
5514 }
5515
5516 \f
5517
5518 /* Build a partial symbol table. */
5519
5520 void
5521 dwarf2_build_psymtabs (struct objfile *objfile, psymbol_functions *psf)
5522 {
5523 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5524 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5525
5526 if (per_bfd->partial_symtabs != nullptr)
5527 {
5528 /* Partial symbols were already read, so now we can simply
5529 attach them. */
5530 if (psf == nullptr)
5531 {
5532 psf = new psymbol_functions (per_bfd->partial_symtabs);
5533 objfile->qf.emplace_front (psf);
5534 }
5535 else
5536 psf->set_partial_symtabs (per_bfd->partial_symtabs);
5537 per_objfile->resize_symtabs ();
5538 return;
5539 }
5540
5541 if (psf == nullptr)
5542 {
5543 psf = new psymbol_functions;
5544 objfile->qf.emplace_front (psf);
5545 }
5546 const std::shared_ptr<psymtab_storage> &partial_symtabs
5547 = psf->get_partial_symtabs ();
5548
5549 /* Set the local reference to partial symtabs, so that we don't try
5550 to read them again if reading another objfile with the same BFD.
5551 If we can't in fact share, this won't make a difference anyway as
5552 the dwarf2_per_bfd object won't be shared. */
5553 per_bfd->partial_symtabs = partial_symtabs;
5554
5555 try
5556 {
5557 /* This isn't really ideal: all the data we allocate on the
5558 objfile's obstack is still uselessly kept around. However,
5559 freeing it seems unsafe. */
5560 psymtab_discarder psymtabs (partial_symtabs.get ());
5561 dwarf2_build_psymtabs_hard (per_objfile);
5562 psymtabs.keep ();
5563
5564 per_objfile->resize_symtabs ();
5565
5566 /* (maybe) store an index in the cache. */
5567 global_index_cache.store (per_objfile);
5568 }
5569 catch (const gdb_exception_error &except)
5570 {
5571 exception_print (gdb_stderr, except);
5572 }
5573 }
5574
5575 /* Find the base address of the compilation unit for range lists and
5576 location lists. It will normally be specified by DW_AT_low_pc.
5577 In DWARF-3 draft 4, the base address could be overridden by
5578 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5579 compilation units with discontinuous ranges. */
5580
5581 static void
5582 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5583 {
5584 struct attribute *attr;
5585
5586 cu->base_address.reset ();
5587
5588 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5589 if (attr != nullptr)
5590 cu->base_address = attr->as_address ();
5591 else
5592 {
5593 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5594 if (attr != nullptr)
5595 cu->base_address = attr->as_address ();
5596 }
5597 }
5598
5599 /* Helper function that returns the proper abbrev section for
5600 THIS_CU. */
5601
5602 static struct dwarf2_section_info *
5603 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5604 {
5605 struct dwarf2_section_info *abbrev;
5606 dwarf2_per_bfd *per_bfd = this_cu->per_bfd;
5607
5608 if (this_cu->is_dwz)
5609 abbrev = &dwarf2_get_dwz_file (per_bfd, true)->abbrev;
5610 else
5611 abbrev = &per_bfd->abbrev;
5612
5613 return abbrev;
5614 }
5615
5616 /* Fetch the abbreviation table offset from a comp or type unit header. */
5617
5618 static sect_offset
5619 read_abbrev_offset (dwarf2_per_objfile *per_objfile,
5620 struct dwarf2_section_info *section,
5621 sect_offset sect_off)
5622 {
5623 bfd *abfd = section->get_bfd_owner ();
5624 const gdb_byte *info_ptr;
5625 unsigned int initial_length_size, offset_size;
5626 uint16_t version;
5627
5628 section->read (per_objfile->objfile);
5629 info_ptr = section->buffer + to_underlying (sect_off);
5630 read_initial_length (abfd, info_ptr, &initial_length_size);
5631 offset_size = initial_length_size == 4 ? 4 : 8;
5632 info_ptr += initial_length_size;
5633
5634 version = read_2_bytes (abfd, info_ptr);
5635 info_ptr += 2;
5636 if (version >= 5)
5637 {
5638 /* Skip unit type and address size. */
5639 info_ptr += 2;
5640 }
5641
5642 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5643 }
5644
5645 /* A partial symtab that is used only for include files. */
5646 struct dwarf2_include_psymtab : public partial_symtab
5647 {
5648 dwarf2_include_psymtab (const char *filename,
5649 psymtab_storage *partial_symtabs,
5650 objfile_per_bfd_storage *objfile_per_bfd)
5651 : partial_symtab (filename, partial_symtabs, objfile_per_bfd)
5652 {
5653 }
5654
5655 void read_symtab (struct objfile *objfile) override
5656 {
5657 /* It's an include file, no symbols to read for it.
5658 Everything is in the includer symtab. */
5659
5660 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5661 expansion of the includer psymtab. We use the dependencies[0] field to
5662 model the includer. But if we go the regular route of calling
5663 expand_psymtab here, and having expand_psymtab call expand_dependencies
5664 to expand the includer, we'll only use expand_psymtab on the includer
5665 (making it a non-toplevel psymtab), while if we expand the includer via
5666 another path, we'll use read_symtab (making it a toplevel psymtab).
5667 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5668 psymtab, and trigger read_symtab on the includer here directly. */
5669 includer ()->read_symtab (objfile);
5670 }
5671
5672 void expand_psymtab (struct objfile *objfile) override
5673 {
5674 /* This is not called by read_symtab, and should not be called by any
5675 expand_dependencies. */
5676 gdb_assert (false);
5677 }
5678
5679 bool readin_p (struct objfile *objfile) const override
5680 {
5681 return includer ()->readin_p (objfile);
5682 }
5683
5684 compunit_symtab *get_compunit_symtab (struct objfile *objfile) const override
5685 {
5686 return nullptr;
5687 }
5688
5689 private:
5690 partial_symtab *includer () const
5691 {
5692 /* An include psymtab has exactly one dependency: the psymtab that
5693 includes it. */
5694 gdb_assert (this->number_of_dependencies == 1);
5695 return this->dependencies[0];
5696 }
5697 };
5698
5699 /* Allocate a new partial symtab for file named NAME and mark this new
5700 partial symtab as being an include of PST. */
5701
5702 static void
5703 dwarf2_create_include_psymtab (dwarf2_per_bfd *per_bfd,
5704 const char *name,
5705 dwarf2_psymtab *pst,
5706 psymtab_storage *partial_symtabs,
5707 objfile_per_bfd_storage *objfile_per_bfd)
5708 {
5709 dwarf2_include_psymtab *subpst
5710 = new dwarf2_include_psymtab (name, partial_symtabs, objfile_per_bfd);
5711
5712 if (!IS_ABSOLUTE_PATH (subpst->filename))
5713 subpst->dirname = pst->dirname;
5714
5715 subpst->dependencies = per_bfd->partial_symtabs->allocate_dependencies (1);
5716 subpst->dependencies[0] = pst;
5717 subpst->number_of_dependencies = 1;
5718 }
5719
5720 /* Read the Line Number Program data and extract the list of files
5721 included by the source file represented by PST. Build an include
5722 partial symtab for each of these included files. */
5723
5724 static void
5725 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5726 struct die_info *die,
5727 dwarf2_psymtab *pst)
5728 {
5729 line_header_up lh;
5730 struct attribute *attr;
5731
5732 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5733 if (attr != nullptr && attr->form_is_unsigned ())
5734 lh = dwarf_decode_line_header ((sect_offset) attr->as_unsigned (), cu);
5735 if (lh == NULL)
5736 return; /* No linetable, so no includes. */
5737
5738 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
5739 that we pass in the raw text_low here; that is ok because we're
5740 only decoding the line table to make include partial symtabs, and
5741 so the addresses aren't really used. */
5742 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
5743 pst->raw_text_low (), 1);
5744 }
5745
5746 static hashval_t
5747 hash_signatured_type (const void *item)
5748 {
5749 const struct signatured_type *sig_type
5750 = (const struct signatured_type *) item;
5751
5752 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5753 return sig_type->signature;
5754 }
5755
5756 static int
5757 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5758 {
5759 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5760 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5761
5762 return lhs->signature == rhs->signature;
5763 }
5764
5765 /* Allocate a hash table for signatured types. */
5766
5767 static htab_up
5768 allocate_signatured_type_table ()
5769 {
5770 return htab_up (htab_create_alloc (41,
5771 hash_signatured_type,
5772 eq_signatured_type,
5773 NULL, xcalloc, xfree));
5774 }
5775
5776 /* A helper for create_debug_types_hash_table. Read types from SECTION
5777 and fill them into TYPES_HTAB. It will process only type units,
5778 therefore DW_UT_type. */
5779
5780 static void
5781 create_debug_type_hash_table (dwarf2_per_objfile *per_objfile,
5782 struct dwo_file *dwo_file,
5783 dwarf2_section_info *section, htab_up &types_htab,
5784 rcuh_kind section_kind)
5785 {
5786 struct objfile *objfile = per_objfile->objfile;
5787 struct dwarf2_section_info *abbrev_section;
5788 bfd *abfd;
5789 const gdb_byte *info_ptr, *end_ptr;
5790
5791 abbrev_section = &dwo_file->sections.abbrev;
5792
5793 dwarf_read_debug_printf ("Reading %s for %s",
5794 section->get_name (),
5795 abbrev_section->get_file_name ());
5796
5797 section->read (objfile);
5798 info_ptr = section->buffer;
5799
5800 if (info_ptr == NULL)
5801 return;
5802
5803 /* We can't set abfd until now because the section may be empty or
5804 not present, in which case the bfd is unknown. */
5805 abfd = section->get_bfd_owner ();
5806
5807 /* We don't use cutu_reader here because we don't need to read
5808 any dies: the signature is in the header. */
5809
5810 end_ptr = info_ptr + section->size;
5811 while (info_ptr < end_ptr)
5812 {
5813 signatured_type_up sig_type;
5814 struct dwo_unit *dwo_tu;
5815 void **slot;
5816 const gdb_byte *ptr = info_ptr;
5817 struct comp_unit_head header;
5818 unsigned int length;
5819
5820 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5821
5822 /* Initialize it due to a false compiler warning. */
5823 header.signature = -1;
5824 header.type_cu_offset_in_tu = (cu_offset) -1;
5825
5826 /* We need to read the type's signature in order to build the hash
5827 table, but we don't need anything else just yet. */
5828
5829 ptr = read_and_check_comp_unit_head (per_objfile, &header, section,
5830 abbrev_section, ptr, section_kind);
5831
5832 length = header.get_length ();
5833
5834 /* Skip dummy type units. */
5835 if (ptr >= info_ptr + length
5836 || peek_abbrev_code (abfd, ptr) == 0
5837 || (header.unit_type != DW_UT_type
5838 && header.unit_type != DW_UT_split_type))
5839 {
5840 info_ptr += length;
5841 continue;
5842 }
5843
5844 if (types_htab == NULL)
5845 types_htab = allocate_dwo_unit_table ();
5846
5847 dwo_tu = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, dwo_unit);
5848 dwo_tu->dwo_file = dwo_file;
5849 dwo_tu->signature = header.signature;
5850 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5851 dwo_tu->section = section;
5852 dwo_tu->sect_off = sect_off;
5853 dwo_tu->length = length;
5854
5855 slot = htab_find_slot (types_htab.get (), dwo_tu, INSERT);
5856 gdb_assert (slot != NULL);
5857 if (*slot != NULL)
5858 complaint (_("debug type entry at offset %s is duplicate to"
5859 " the entry at offset %s, signature %s"),
5860 sect_offset_str (sect_off),
5861 sect_offset_str (dwo_tu->sect_off),
5862 hex_string (header.signature));
5863 *slot = dwo_tu;
5864
5865 dwarf_read_debug_printf_v (" offset %s, signature %s",
5866 sect_offset_str (sect_off),
5867 hex_string (header.signature));
5868
5869 info_ptr += length;
5870 }
5871 }
5872
5873 /* Create the hash table of all entries in the .debug_types
5874 (or .debug_types.dwo) section(s).
5875 DWO_FILE is a pointer to the DWO file object.
5876
5877 The result is a pointer to the hash table or NULL if there are no types.
5878
5879 Note: This function processes DWO files only, not DWP files. */
5880
5881 static void
5882 create_debug_types_hash_table (dwarf2_per_objfile *per_objfile,
5883 struct dwo_file *dwo_file,
5884 gdb::array_view<dwarf2_section_info> type_sections,
5885 htab_up &types_htab)
5886 {
5887 for (dwarf2_section_info &section : type_sections)
5888 create_debug_type_hash_table (per_objfile, dwo_file, &section, types_htab,
5889 rcuh_kind::TYPE);
5890 }
5891
5892 /* Add an entry for signature SIG to dwarf2_per_objfile->per_bfd->signatured_types.
5893 If SLOT is non-NULL, it is the entry to use in the hash table.
5894 Otherwise we find one. */
5895
5896 static struct signatured_type *
5897 add_type_unit (dwarf2_per_objfile *per_objfile, ULONGEST sig, void **slot)
5898 {
5899 if (per_objfile->per_bfd->all_comp_units.size ()
5900 == per_objfile->per_bfd->all_comp_units.capacity ())
5901 ++per_objfile->per_bfd->tu_stats.nr_all_type_units_reallocs;
5902
5903 signatured_type_up sig_type_holder
5904 = per_objfile->per_bfd->allocate_signatured_type (sig);
5905 signatured_type *sig_type = sig_type_holder.get ();
5906
5907 per_objfile->resize_symtabs ();
5908
5909 per_objfile->per_bfd->all_comp_units.emplace_back
5910 (sig_type_holder.release ());
5911 if (per_objfile->per_bfd->using_index)
5912 {
5913 sig_type->v.quick =
5914 OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
5915 struct dwarf2_per_cu_quick_data);
5916 }
5917
5918 if (slot == NULL)
5919 {
5920 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
5921 sig_type, INSERT);
5922 }
5923 gdb_assert (*slot == NULL);
5924 *slot = sig_type;
5925 /* The rest of sig_type must be filled in by the caller. */
5926 return sig_type;
5927 }
5928
5929 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5930 Fill in SIG_ENTRY with DWO_ENTRY. */
5931
5932 static void
5933 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile *per_objfile,
5934 struct signatured_type *sig_entry,
5935 struct dwo_unit *dwo_entry)
5936 {
5937 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5938
5939 /* Make sure we're not clobbering something we don't expect to. */
5940 gdb_assert (! sig_entry->queued);
5941 gdb_assert (per_objfile->get_cu (sig_entry) == NULL);
5942 if (per_bfd->using_index)
5943 {
5944 gdb_assert (sig_entry->v.quick != NULL);
5945 gdb_assert (!per_objfile->symtab_set_p (sig_entry));
5946 }
5947 else
5948 gdb_assert (sig_entry->v.psymtab == NULL);
5949 gdb_assert (sig_entry->signature == dwo_entry->signature);
5950 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5951 gdb_assert (sig_entry->type_unit_group == NULL);
5952 gdb_assert (sig_entry->dwo_unit == NULL);
5953
5954 sig_entry->section = dwo_entry->section;
5955 sig_entry->sect_off = dwo_entry->sect_off;
5956 sig_entry->length = dwo_entry->length;
5957 sig_entry->reading_dwo_directly = 1;
5958 sig_entry->per_bfd = per_bfd;
5959 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5960 sig_entry->dwo_unit = dwo_entry;
5961 }
5962
5963 /* Subroutine of lookup_signatured_type.
5964 If we haven't read the TU yet, create the signatured_type data structure
5965 for a TU to be read in directly from a DWO file, bypassing the stub.
5966 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5967 using .gdb_index, then when reading a CU we want to stay in the DWO file
5968 containing that CU. Otherwise we could end up reading several other DWO
5969 files (due to comdat folding) to process the transitive closure of all the
5970 mentioned TUs, and that can be slow. The current DWO file will have every
5971 type signature that it needs.
5972 We only do this for .gdb_index because in the psymtab case we already have
5973 to read all the DWOs to build the type unit groups. */
5974
5975 static struct signatured_type *
5976 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5977 {
5978 dwarf2_per_objfile *per_objfile = cu->per_objfile;
5979 struct dwo_file *dwo_file;
5980 struct dwo_unit find_dwo_entry, *dwo_entry;
5981 void **slot;
5982
5983 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
5984
5985 /* If TU skeletons have been removed then we may not have read in any
5986 TUs yet. */
5987 if (per_objfile->per_bfd->signatured_types == NULL)
5988 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
5989
5990 /* We only ever need to read in one copy of a signatured type.
5991 Use the global signatured_types array to do our own comdat-folding
5992 of types. If this is the first time we're reading this TU, and
5993 the TU has an entry in .gdb_index, replace the recorded data from
5994 .gdb_index with this TU. */
5995
5996 signatured_type find_sig_entry (sig);
5997 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
5998 &find_sig_entry, INSERT);
5999 signatured_type *sig_entry = (struct signatured_type *) *slot;
6000
6001 /* We can get here with the TU already read, *or* in the process of being
6002 read. Don't reassign the global entry to point to this DWO if that's
6003 the case. Also note that if the TU is already being read, it may not
6004 have come from a DWO, the program may be a mix of Fission-compiled
6005 code and non-Fission-compiled code. */
6006
6007 /* Have we already tried to read this TU?
6008 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6009 needn't exist in the global table yet). */
6010 if (sig_entry != NULL && sig_entry->tu_read)
6011 return sig_entry;
6012
6013 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6014 dwo_unit of the TU itself. */
6015 dwo_file = cu->dwo_unit->dwo_file;
6016
6017 /* Ok, this is the first time we're reading this TU. */
6018 if (dwo_file->tus == NULL)
6019 return NULL;
6020 find_dwo_entry.signature = sig;
6021 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6022 &find_dwo_entry);
6023 if (dwo_entry == NULL)
6024 return NULL;
6025
6026 /* If the global table doesn't have an entry for this TU, add one. */
6027 if (sig_entry == NULL)
6028 sig_entry = add_type_unit (per_objfile, sig, slot);
6029
6030 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6031 sig_entry->tu_read = 1;
6032 return sig_entry;
6033 }
6034
6035 /* Subroutine of lookup_signatured_type.
6036 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6037 then try the DWP file. If the TU stub (skeleton) has been removed then
6038 it won't be in .gdb_index. */
6039
6040 static struct signatured_type *
6041 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6042 {
6043 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6044 struct dwp_file *dwp_file = get_dwp_file (per_objfile);
6045 struct dwo_unit *dwo_entry;
6046 void **slot;
6047
6048 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6049 gdb_assert (dwp_file != NULL);
6050
6051 /* If TU skeletons have been removed then we may not have read in any
6052 TUs yet. */
6053 if (per_objfile->per_bfd->signatured_types == NULL)
6054 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6055
6056 signatured_type find_sig_entry (sig);
6057 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6058 &find_sig_entry, INSERT);
6059 signatured_type *sig_entry = (struct signatured_type *) *slot;
6060
6061 /* Have we already tried to read this TU?
6062 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6063 needn't exist in the global table yet). */
6064 if (sig_entry != NULL)
6065 return sig_entry;
6066
6067 if (dwp_file->tus == NULL)
6068 return NULL;
6069 dwo_entry = lookup_dwo_unit_in_dwp (per_objfile, dwp_file, NULL, sig,
6070 1 /* is_debug_types */);
6071 if (dwo_entry == NULL)
6072 return NULL;
6073
6074 sig_entry = add_type_unit (per_objfile, sig, slot);
6075 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6076
6077 return sig_entry;
6078 }
6079
6080 /* Lookup a signature based type for DW_FORM_ref_sig8.
6081 Returns NULL if signature SIG is not present in the table.
6082 It is up to the caller to complain about this. */
6083
6084 static struct signatured_type *
6085 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6086 {
6087 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6088
6089 if (cu->dwo_unit && per_objfile->per_bfd->using_index)
6090 {
6091 /* We're in a DWO/DWP file, and we're using .gdb_index.
6092 These cases require special processing. */
6093 if (get_dwp_file (per_objfile) == NULL)
6094 return lookup_dwo_signatured_type (cu, sig);
6095 else
6096 return lookup_dwp_signatured_type (cu, sig);
6097 }
6098 else
6099 {
6100 if (per_objfile->per_bfd->signatured_types == NULL)
6101 return NULL;
6102 signatured_type find_entry (sig);
6103 return ((struct signatured_type *)
6104 htab_find (per_objfile->per_bfd->signatured_types.get (),
6105 &find_entry));
6106 }
6107 }
6108
6109 /* Low level DIE reading support. */
6110
6111 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6112
6113 static void
6114 init_cu_die_reader (struct die_reader_specs *reader,
6115 struct dwarf2_cu *cu,
6116 struct dwarf2_section_info *section,
6117 struct dwo_file *dwo_file,
6118 struct abbrev_table *abbrev_table)
6119 {
6120 gdb_assert (section->readin && section->buffer != NULL);
6121 reader->abfd = section->get_bfd_owner ();
6122 reader->cu = cu;
6123 reader->dwo_file = dwo_file;
6124 reader->die_section = section;
6125 reader->buffer = section->buffer;
6126 reader->buffer_end = section->buffer + section->size;
6127 reader->abbrev_table = abbrev_table;
6128 }
6129
6130 /* Subroutine of cutu_reader to simplify it.
6131 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6132 There's just a lot of work to do, and cutu_reader is big enough
6133 already.
6134
6135 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6136 from it to the DIE in the DWO. If NULL we are skipping the stub.
6137 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6138 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6139 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6140 STUB_COMP_DIR may be non-NULL.
6141 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6142 are filled in with the info of the DIE from the DWO file.
6143 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6144 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6145 kept around for at least as long as *RESULT_READER.
6146
6147 The result is non-zero if a valid (non-dummy) DIE was found. */
6148
6149 static int
6150 read_cutu_die_from_dwo (dwarf2_cu *cu,
6151 struct dwo_unit *dwo_unit,
6152 struct die_info *stub_comp_unit_die,
6153 const char *stub_comp_dir,
6154 struct die_reader_specs *result_reader,
6155 const gdb_byte **result_info_ptr,
6156 struct die_info **result_comp_unit_die,
6157 abbrev_table_up *result_dwo_abbrev_table)
6158 {
6159 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6160 dwarf2_per_cu_data *per_cu = cu->per_cu;
6161 struct objfile *objfile = per_objfile->objfile;
6162 bfd *abfd;
6163 const gdb_byte *begin_info_ptr, *info_ptr;
6164 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6165 int i,num_extra_attrs;
6166 struct dwarf2_section_info *dwo_abbrev_section;
6167 struct die_info *comp_unit_die;
6168
6169 /* At most one of these may be provided. */
6170 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6171
6172 /* These attributes aren't processed until later:
6173 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6174 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6175 referenced later. However, these attributes are found in the stub
6176 which we won't have later. In order to not impose this complication
6177 on the rest of the code, we read them here and copy them to the
6178 DWO CU/TU die. */
6179
6180 stmt_list = NULL;
6181 low_pc = NULL;
6182 high_pc = NULL;
6183 ranges = NULL;
6184 comp_dir = NULL;
6185
6186 if (stub_comp_unit_die != NULL)
6187 {
6188 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6189 DWO file. */
6190 if (!per_cu->is_debug_types)
6191 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6192 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6193 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6194 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6195 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6196
6197 cu->addr_base = stub_comp_unit_die->addr_base ();
6198
6199 /* There should be a DW_AT_GNU_ranges_base attribute here (if needed).
6200 We need the value before we can process DW_AT_ranges values from the
6201 DWO. */
6202 cu->gnu_ranges_base = stub_comp_unit_die->gnu_ranges_base ();
6203
6204 /* For DWARF5: record the DW_AT_rnglists_base value from the skeleton. If
6205 there are attributes of form DW_FORM_rnglistx in the skeleton, they'll
6206 need the rnglists base. Attributes of form DW_FORM_rnglistx in the
6207 split unit don't use it, as the DWO has its own .debug_rnglists.dwo
6208 section. */
6209 cu->rnglists_base = stub_comp_unit_die->rnglists_base ();
6210 }
6211 else if (stub_comp_dir != NULL)
6212 {
6213 /* Reconstruct the comp_dir attribute to simplify the code below. */
6214 comp_dir = OBSTACK_ZALLOC (&cu->comp_unit_obstack, struct attribute);
6215 comp_dir->name = DW_AT_comp_dir;
6216 comp_dir->form = DW_FORM_string;
6217 comp_dir->set_string_noncanonical (stub_comp_dir);
6218 }
6219
6220 /* Set up for reading the DWO CU/TU. */
6221 cu->dwo_unit = dwo_unit;
6222 dwarf2_section_info *section = dwo_unit->section;
6223 section->read (objfile);
6224 abfd = section->get_bfd_owner ();
6225 begin_info_ptr = info_ptr = (section->buffer
6226 + to_underlying (dwo_unit->sect_off));
6227 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6228
6229 if (per_cu->is_debug_types)
6230 {
6231 signatured_type *sig_type = (struct signatured_type *) per_cu;
6232
6233 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6234 section, dwo_abbrev_section,
6235 info_ptr, rcuh_kind::TYPE);
6236 /* This is not an assert because it can be caused by bad debug info. */
6237 if (sig_type->signature != cu->header.signature)
6238 {
6239 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6240 " TU at offset %s [in module %s]"),
6241 hex_string (sig_type->signature),
6242 hex_string (cu->header.signature),
6243 sect_offset_str (dwo_unit->sect_off),
6244 bfd_get_filename (abfd));
6245 }
6246 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6247 /* For DWOs coming from DWP files, we don't know the CU length
6248 nor the type's offset in the TU until now. */
6249 dwo_unit->length = cu->header.get_length ();
6250 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6251
6252 /* Establish the type offset that can be used to lookup the type.
6253 For DWO files, we don't know it until now. */
6254 sig_type->type_offset_in_section
6255 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6256 }
6257 else
6258 {
6259 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6260 section, dwo_abbrev_section,
6261 info_ptr, rcuh_kind::COMPILE);
6262 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6263 /* For DWOs coming from DWP files, we don't know the CU length
6264 until now. */
6265 dwo_unit->length = cu->header.get_length ();
6266 }
6267
6268 dwo_abbrev_section->read (objfile);
6269 *result_dwo_abbrev_table
6270 = abbrev_table::read (dwo_abbrev_section, cu->header.abbrev_sect_off);
6271 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6272 result_dwo_abbrev_table->get ());
6273
6274 /* Read in the die, but leave space to copy over the attributes
6275 from the stub. This has the benefit of simplifying the rest of
6276 the code - all the work to maintain the illusion of a single
6277 DW_TAG_{compile,type}_unit DIE is done here. */
6278 num_extra_attrs = ((stmt_list != NULL)
6279 + (low_pc != NULL)
6280 + (high_pc != NULL)
6281 + (ranges != NULL)
6282 + (comp_dir != NULL));
6283 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6284 num_extra_attrs);
6285
6286 /* Copy over the attributes from the stub to the DIE we just read in. */
6287 comp_unit_die = *result_comp_unit_die;
6288 i = comp_unit_die->num_attrs;
6289 if (stmt_list != NULL)
6290 comp_unit_die->attrs[i++] = *stmt_list;
6291 if (low_pc != NULL)
6292 comp_unit_die->attrs[i++] = *low_pc;
6293 if (high_pc != NULL)
6294 comp_unit_die->attrs[i++] = *high_pc;
6295 if (ranges != NULL)
6296 comp_unit_die->attrs[i++] = *ranges;
6297 if (comp_dir != NULL)
6298 comp_unit_die->attrs[i++] = *comp_dir;
6299 comp_unit_die->num_attrs += num_extra_attrs;
6300
6301 if (dwarf_die_debug)
6302 {
6303 fprintf_unfiltered (gdb_stdlog,
6304 "Read die from %s@0x%x of %s:\n",
6305 section->get_name (),
6306 (unsigned) (begin_info_ptr - section->buffer),
6307 bfd_get_filename (abfd));
6308 dump_die (comp_unit_die, dwarf_die_debug);
6309 }
6310
6311 /* Skip dummy compilation units. */
6312 if (info_ptr >= begin_info_ptr + dwo_unit->length
6313 || peek_abbrev_code (abfd, info_ptr) == 0)
6314 return 0;
6315
6316 *result_info_ptr = info_ptr;
6317 return 1;
6318 }
6319
6320 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6321 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6322 signature is part of the header. */
6323 static gdb::optional<ULONGEST>
6324 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6325 {
6326 if (cu->header.version >= 5)
6327 return cu->header.signature;
6328 struct attribute *attr;
6329 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6330 if (attr == nullptr || !attr->form_is_unsigned ())
6331 return gdb::optional<ULONGEST> ();
6332 return attr->as_unsigned ();
6333 }
6334
6335 /* Subroutine of cutu_reader to simplify it.
6336 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6337 Returns NULL if the specified DWO unit cannot be found. */
6338
6339 static struct dwo_unit *
6340 lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name)
6341 {
6342 dwarf2_per_cu_data *per_cu = cu->per_cu;
6343 struct dwo_unit *dwo_unit;
6344 const char *comp_dir;
6345
6346 gdb_assert (cu != NULL);
6347
6348 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6349 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6350 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6351
6352 if (per_cu->is_debug_types)
6353 dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir);
6354 else
6355 {
6356 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6357
6358 if (!signature.has_value ())
6359 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6360 " [in module %s]"),
6361 dwo_name, bfd_get_filename (per_cu->per_bfd->obfd));
6362
6363 dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature);
6364 }
6365
6366 return dwo_unit;
6367 }
6368
6369 /* Subroutine of cutu_reader to simplify it.
6370 See it for a description of the parameters.
6371 Read a TU directly from a DWO file, bypassing the stub. */
6372
6373 void
6374 cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
6375 dwarf2_per_objfile *per_objfile,
6376 dwarf2_cu *existing_cu)
6377 {
6378 struct signatured_type *sig_type;
6379
6380 /* Verify we can do the following downcast, and that we have the
6381 data we need. */
6382 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6383 sig_type = (struct signatured_type *) this_cu;
6384 gdb_assert (sig_type->dwo_unit != NULL);
6385
6386 dwarf2_cu *cu;
6387
6388 if (existing_cu != nullptr)
6389 {
6390 cu = existing_cu;
6391 gdb_assert (cu->dwo_unit == sig_type->dwo_unit);
6392 /* There's no need to do the rereading_dwo_cu handling that
6393 cutu_reader does since we don't read the stub. */
6394 }
6395 else
6396 {
6397 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
6398 in per_objfile yet. */
6399 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6400 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6401 cu = m_new_cu.get ();
6402 }
6403
6404 /* A future optimization, if needed, would be to use an existing
6405 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6406 could share abbrev tables. */
6407
6408 if (read_cutu_die_from_dwo (cu, sig_type->dwo_unit,
6409 NULL /* stub_comp_unit_die */,
6410 sig_type->dwo_unit->dwo_file->comp_dir,
6411 this, &info_ptr,
6412 &comp_unit_die,
6413 &m_dwo_abbrev_table) == 0)
6414 {
6415 /* Dummy die. */
6416 dummy_p = true;
6417 }
6418 }
6419
6420 /* Initialize a CU (or TU) and read its DIEs.
6421 If the CU defers to a DWO file, read the DWO file as well.
6422
6423 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6424 Otherwise the table specified in the comp unit header is read in and used.
6425 This is an optimization for when we already have the abbrev table.
6426
6427 If EXISTING_CU is non-NULL, then use it. Otherwise, a new CU is
6428 allocated. */
6429
6430 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
6431 dwarf2_per_objfile *per_objfile,
6432 struct abbrev_table *abbrev_table,
6433 dwarf2_cu *existing_cu,
6434 bool skip_partial)
6435 : die_reader_specs {},
6436 m_this_cu (this_cu)
6437 {
6438 struct objfile *objfile = per_objfile->objfile;
6439 struct dwarf2_section_info *section = this_cu->section;
6440 bfd *abfd = section->get_bfd_owner ();
6441 const gdb_byte *begin_info_ptr;
6442 struct signatured_type *sig_type = NULL;
6443 struct dwarf2_section_info *abbrev_section;
6444 /* Non-zero if CU currently points to a DWO file and we need to
6445 reread it. When this happens we need to reread the skeleton die
6446 before we can reread the DWO file (this only applies to CUs, not TUs). */
6447 int rereading_dwo_cu = 0;
6448
6449 if (dwarf_die_debug)
6450 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6451 this_cu->is_debug_types ? "type" : "comp",
6452 sect_offset_str (this_cu->sect_off));
6453
6454 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6455 file (instead of going through the stub), short-circuit all of this. */
6456 if (this_cu->reading_dwo_directly)
6457 {
6458 /* Narrow down the scope of possibilities to have to understand. */
6459 gdb_assert (this_cu->is_debug_types);
6460 gdb_assert (abbrev_table == NULL);
6461 init_tu_and_read_dwo_dies (this_cu, per_objfile, existing_cu);
6462 return;
6463 }
6464
6465 /* This is cheap if the section is already read in. */
6466 section->read (objfile);
6467
6468 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6469
6470 abbrev_section = get_abbrev_section_for_cu (this_cu);
6471
6472 dwarf2_cu *cu;
6473
6474 if (existing_cu != nullptr)
6475 {
6476 cu = existing_cu;
6477 /* If this CU is from a DWO file we need to start over, we need to
6478 refetch the attributes from the skeleton CU.
6479 This could be optimized by retrieving those attributes from when we
6480 were here the first time: the previous comp_unit_die was stored in
6481 comp_unit_obstack. But there's no data yet that we need this
6482 optimization. */
6483 if (cu->dwo_unit != NULL)
6484 rereading_dwo_cu = 1;
6485 }
6486 else
6487 {
6488 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
6489 in per_objfile yet. */
6490 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6491 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6492 cu = m_new_cu.get ();
6493 }
6494
6495 /* Get the header. */
6496 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6497 {
6498 /* We already have the header, there's no need to read it in again. */
6499 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6500 }
6501 else
6502 {
6503 if (this_cu->is_debug_types)
6504 {
6505 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6506 section, abbrev_section,
6507 info_ptr, rcuh_kind::TYPE);
6508
6509 /* Since per_cu is the first member of struct signatured_type,
6510 we can go from a pointer to one to a pointer to the other. */
6511 sig_type = (struct signatured_type *) this_cu;
6512 gdb_assert (sig_type->signature == cu->header.signature);
6513 gdb_assert (sig_type->type_offset_in_tu
6514 == cu->header.type_cu_offset_in_tu);
6515 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6516
6517 /* LENGTH has not been set yet for type units if we're
6518 using .gdb_index. */
6519 this_cu->length = cu->header.get_length ();
6520
6521 /* Establish the type offset that can be used to lookup the type. */
6522 sig_type->type_offset_in_section =
6523 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6524
6525 this_cu->dwarf_version = cu->header.version;
6526 }
6527 else
6528 {
6529 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6530 section, abbrev_section,
6531 info_ptr,
6532 rcuh_kind::COMPILE);
6533
6534 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6535 if (this_cu->length == 0)
6536 this_cu->length = cu->header.get_length ();
6537 else
6538 gdb_assert (this_cu->length == cu->header.get_length ());
6539 this_cu->dwarf_version = cu->header.version;
6540 }
6541 }
6542
6543 /* Skip dummy compilation units. */
6544 if (info_ptr >= begin_info_ptr + this_cu->length
6545 || peek_abbrev_code (abfd, info_ptr) == 0)
6546 {
6547 dummy_p = true;
6548 return;
6549 }
6550
6551 /* If we don't have them yet, read the abbrevs for this compilation unit.
6552 And if we need to read them now, make sure they're freed when we're
6553 done. */
6554 if (abbrev_table != NULL)
6555 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6556 else
6557 {
6558 abbrev_section->read (objfile);
6559 m_abbrev_table_holder
6560 = abbrev_table::read (abbrev_section, cu->header.abbrev_sect_off);
6561 abbrev_table = m_abbrev_table_holder.get ();
6562 }
6563
6564 /* Read the top level CU/TU die. */
6565 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6566 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6567
6568 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6569 {
6570 dummy_p = true;
6571 return;
6572 }
6573
6574 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6575 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6576 table from the DWO file and pass the ownership over to us. It will be
6577 referenced from READER, so we must make sure to free it after we're done
6578 with READER.
6579
6580 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6581 DWO CU, that this test will fail (the attribute will not be present). */
6582 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6583 if (dwo_name != nullptr)
6584 {
6585 struct dwo_unit *dwo_unit;
6586 struct die_info *dwo_comp_unit_die;
6587
6588 if (comp_unit_die->has_children)
6589 {
6590 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6591 " has children (offset %s) [in module %s]"),
6592 sect_offset_str (this_cu->sect_off),
6593 bfd_get_filename (abfd));
6594 }
6595 dwo_unit = lookup_dwo_unit (cu, comp_unit_die, dwo_name);
6596 if (dwo_unit != NULL)
6597 {
6598 if (read_cutu_die_from_dwo (cu, dwo_unit,
6599 comp_unit_die, NULL,
6600 this, &info_ptr,
6601 &dwo_comp_unit_die,
6602 &m_dwo_abbrev_table) == 0)
6603 {
6604 /* Dummy die. */
6605 dummy_p = true;
6606 return;
6607 }
6608 comp_unit_die = dwo_comp_unit_die;
6609 }
6610 else
6611 {
6612 /* Yikes, we couldn't find the rest of the DIE, we only have
6613 the stub. A complaint has already been logged. There's
6614 not much more we can do except pass on the stub DIE to
6615 die_reader_func. We don't want to throw an error on bad
6616 debug info. */
6617 }
6618 }
6619 }
6620
6621 void
6622 cutu_reader::keep ()
6623 {
6624 /* Done, clean up. */
6625 gdb_assert (!dummy_p);
6626 if (m_new_cu != NULL)
6627 {
6628 /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it
6629 now. */
6630 dwarf2_per_objfile *per_objfile = m_new_cu->per_objfile;
6631 per_objfile->set_cu (m_this_cu, m_new_cu.release ());
6632 }
6633 }
6634
6635 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
6636 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
6637 assumed to have already done the lookup to find the DWO file).
6638
6639 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6640 THIS_CU->is_debug_types, but nothing else.
6641
6642 We fill in THIS_CU->length.
6643
6644 THIS_CU->cu is always freed when done.
6645 This is done in order to not leave THIS_CU->cu in a state where we have
6646 to care whether it refers to the "main" CU or the DWO CU.
6647
6648 When parent_cu is passed, it is used to provide a default value for
6649 str_offsets_base and addr_base from the parent. */
6650
6651 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
6652 dwarf2_per_objfile *per_objfile,
6653 struct dwarf2_cu *parent_cu,
6654 struct dwo_file *dwo_file)
6655 : die_reader_specs {},
6656 m_this_cu (this_cu)
6657 {
6658 struct objfile *objfile = per_objfile->objfile;
6659 struct dwarf2_section_info *section = this_cu->section;
6660 bfd *abfd = section->get_bfd_owner ();
6661 struct dwarf2_section_info *abbrev_section;
6662 const gdb_byte *begin_info_ptr, *info_ptr;
6663
6664 if (dwarf_die_debug)
6665 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6666 this_cu->is_debug_types ? "type" : "comp",
6667 sect_offset_str (this_cu->sect_off));
6668
6669 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6670
6671 abbrev_section = (dwo_file != NULL
6672 ? &dwo_file->sections.abbrev
6673 : get_abbrev_section_for_cu (this_cu));
6674
6675 /* This is cheap if the section is already read in. */
6676 section->read (objfile);
6677
6678 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6679
6680 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6681 info_ptr = read_and_check_comp_unit_head (per_objfile, &m_new_cu->header,
6682 section, abbrev_section, info_ptr,
6683 (this_cu->is_debug_types
6684 ? rcuh_kind::TYPE
6685 : rcuh_kind::COMPILE));
6686
6687 if (parent_cu != nullptr)
6688 {
6689 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
6690 m_new_cu->addr_base = parent_cu->addr_base;
6691 }
6692 this_cu->length = m_new_cu->header.get_length ();
6693
6694 /* Skip dummy compilation units. */
6695 if (info_ptr >= begin_info_ptr + this_cu->length
6696 || peek_abbrev_code (abfd, info_ptr) == 0)
6697 {
6698 dummy_p = true;
6699 return;
6700 }
6701
6702 abbrev_section->read (objfile);
6703 m_abbrev_table_holder
6704 = abbrev_table::read (abbrev_section, m_new_cu->header.abbrev_sect_off);
6705
6706 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
6707 m_abbrev_table_holder.get ());
6708 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6709 }
6710
6711 \f
6712 /* Type Unit Groups.
6713
6714 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6715 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6716 so that all types coming from the same compilation (.o file) are grouped
6717 together. A future step could be to put the types in the same symtab as
6718 the CU the types ultimately came from. */
6719
6720 static hashval_t
6721 hash_type_unit_group (const void *item)
6722 {
6723 const struct type_unit_group *tu_group
6724 = (const struct type_unit_group *) item;
6725
6726 return hash_stmt_list_entry (&tu_group->hash);
6727 }
6728
6729 static int
6730 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6731 {
6732 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6733 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6734
6735 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6736 }
6737
6738 /* Allocate a hash table for type unit groups. */
6739
6740 static htab_up
6741 allocate_type_unit_groups_table ()
6742 {
6743 return htab_up (htab_create_alloc (3,
6744 hash_type_unit_group,
6745 eq_type_unit_group,
6746 htab_delete_entry<type_unit_group>,
6747 xcalloc, xfree));
6748 }
6749
6750 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6751 partial symtabs. We combine several TUs per psymtab to not let the size
6752 of any one psymtab grow too big. */
6753 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6754 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6755
6756 /* Helper routine for get_type_unit_group.
6757 Create the type_unit_group object used to hold one or more TUs. */
6758
6759 static std::unique_ptr<type_unit_group>
6760 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6761 {
6762 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6763 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6764
6765 std::unique_ptr<type_unit_group> tu_group (new type_unit_group);
6766 tu_group->per_bfd = per_bfd;
6767
6768 if (per_bfd->using_index)
6769 {
6770 tu_group->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
6771 struct dwarf2_per_cu_quick_data);
6772 }
6773 else
6774 {
6775 unsigned int line_offset = to_underlying (line_offset_struct);
6776 dwarf2_psymtab *pst;
6777 std::string name;
6778
6779 /* Give the symtab a useful name for debug purposes. */
6780 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6781 name = string_printf ("<type_units_%d>",
6782 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6783 else
6784 name = string_printf ("<type_units_at_0x%x>", line_offset);
6785
6786 pst = create_partial_symtab (tu_group.get (), per_objfile,
6787 name.c_str ());
6788 pst->anonymous = true;
6789 }
6790
6791 tu_group->hash.dwo_unit = cu->dwo_unit;
6792 tu_group->hash.line_sect_off = line_offset_struct;
6793
6794 return tu_group;
6795 }
6796
6797 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6798 STMT_LIST is a DW_AT_stmt_list attribute. */
6799
6800 static struct type_unit_group *
6801 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6802 {
6803 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6804 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
6805 struct type_unit_group *tu_group;
6806 void **slot;
6807 unsigned int line_offset;
6808 struct type_unit_group type_unit_group_for_lookup;
6809
6810 if (per_objfile->per_bfd->type_unit_groups == NULL)
6811 per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table ();
6812
6813 /* Do we need to create a new group, or can we use an existing one? */
6814
6815 if (stmt_list != nullptr && stmt_list->form_is_unsigned ())
6816 {
6817 line_offset = stmt_list->as_unsigned ();
6818 ++tu_stats->nr_symtab_sharers;
6819 }
6820 else
6821 {
6822 /* Ugh, no stmt_list. Rare, but we have to handle it.
6823 We can do various things here like create one group per TU or
6824 spread them over multiple groups to split up the expansion work.
6825 To avoid worst case scenarios (too many groups or too large groups)
6826 we, umm, group them in bunches. */
6827 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6828 | (tu_stats->nr_stmt_less_type_units
6829 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6830 ++tu_stats->nr_stmt_less_type_units;
6831 }
6832
6833 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6834 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6835 slot = htab_find_slot (per_objfile->per_bfd->type_unit_groups.get (),
6836 &type_unit_group_for_lookup, INSERT);
6837 if (*slot == nullptr)
6838 {
6839 sect_offset line_offset_struct = (sect_offset) line_offset;
6840 std::unique_ptr<type_unit_group> grp
6841 = create_type_unit_group (cu, line_offset_struct);
6842 *slot = grp.release ();
6843 ++tu_stats->nr_symtabs;
6844 }
6845
6846 tu_group = (struct type_unit_group *) *slot;
6847 gdb_assert (tu_group != nullptr);
6848 return tu_group;
6849 }
6850 \f
6851 /* Partial symbol tables. */
6852
6853 /* Create a psymtab named NAME and assign it to PER_CU.
6854
6855 The caller must fill in the following details:
6856 dirname, textlow, texthigh. */
6857
6858 static dwarf2_psymtab *
6859 create_partial_symtab (dwarf2_per_cu_data *per_cu,
6860 dwarf2_per_objfile *per_objfile,
6861 const char *name)
6862 {
6863 dwarf2_psymtab *pst
6864 = new dwarf2_psymtab (name, per_objfile->per_bfd->partial_symtabs.get (),
6865 per_objfile->objfile->per_bfd, per_cu);
6866
6867 pst->psymtabs_addrmap_supported = true;
6868
6869 /* This is the glue that links PST into GDB's symbol API. */
6870 per_cu->v.psymtab = pst;
6871
6872 return pst;
6873 }
6874
6875 /* DIE reader function for process_psymtab_comp_unit. */
6876
6877 static void
6878 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6879 const gdb_byte *info_ptr,
6880 struct die_info *comp_unit_die,
6881 enum language pretend_language)
6882 {
6883 struct dwarf2_cu *cu = reader->cu;
6884 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6885 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6886 struct objfile *objfile = per_objfile->objfile;
6887 struct gdbarch *gdbarch = objfile->arch ();
6888 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6889 CORE_ADDR baseaddr;
6890 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6891 dwarf2_psymtab *pst;
6892 enum pc_bounds_kind cu_bounds_kind;
6893 const char *filename;
6894
6895 gdb_assert (! per_cu->is_debug_types);
6896
6897 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
6898
6899 /* Allocate a new partial symbol table structure. */
6900 gdb::unique_xmalloc_ptr<char> debug_filename;
6901 static const char artificial[] = "<artificial>";
6902 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6903 if (filename == NULL)
6904 filename = "";
6905 else if (strcmp (filename, artificial) == 0)
6906 {
6907 debug_filename.reset (concat (artificial, "@",
6908 sect_offset_str (per_cu->sect_off),
6909 (char *) NULL));
6910 filename = debug_filename.get ();
6911 }
6912
6913 pst = create_partial_symtab (per_cu, per_objfile, filename);
6914
6915 /* This must be done before calling dwarf2_build_include_psymtabs. */
6916 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6917
6918 baseaddr = objfile->text_section_offset ();
6919
6920 dwarf2_find_base_address (comp_unit_die, cu);
6921
6922 /* Possibly set the default values of LOWPC and HIGHPC from
6923 `DW_AT_ranges'. */
6924 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6925 &best_highpc, cu, pst);
6926 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6927 {
6928 CORE_ADDR low
6929 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
6930 - baseaddr);
6931 CORE_ADDR high
6932 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
6933 - baseaddr - 1);
6934 /* Store the contiguous range if it is not empty; it can be
6935 empty for CUs with no code. */
6936 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
6937 low, high, pst);
6938 }
6939
6940 /* Check if comp unit has_children.
6941 If so, read the rest of the partial symbols from this comp unit.
6942 If not, there's no more debug_info for this comp unit. */
6943 if (comp_unit_die->has_children)
6944 {
6945 struct partial_die_info *first_die;
6946 CORE_ADDR lowpc, highpc;
6947
6948 lowpc = ((CORE_ADDR) -1);
6949 highpc = ((CORE_ADDR) 0);
6950
6951 first_die = load_partial_dies (reader, info_ptr, 1);
6952
6953 scan_partial_symbols (first_die, &lowpc, &highpc,
6954 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6955
6956 /* If we didn't find a lowpc, set it to highpc to avoid
6957 complaints from `maint check'. */
6958 if (lowpc == ((CORE_ADDR) -1))
6959 lowpc = highpc;
6960
6961 /* If the compilation unit didn't have an explicit address range,
6962 then use the information extracted from its child dies. */
6963 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6964 {
6965 best_lowpc = lowpc;
6966 best_highpc = highpc;
6967 }
6968 }
6969 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
6970 best_lowpc + baseaddr)
6971 - baseaddr);
6972 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
6973 best_highpc + baseaddr)
6974 - baseaddr);
6975
6976 pst->end ();
6977
6978 if (!cu->per_cu->imported_symtabs_empty ())
6979 {
6980 int i;
6981 int len = cu->per_cu->imported_symtabs_size ();
6982
6983 /* Fill in 'dependencies' here; we fill in 'users' in a
6984 post-pass. */
6985 pst->number_of_dependencies = len;
6986 pst->dependencies
6987 = per_bfd->partial_symtabs->allocate_dependencies (len);
6988 for (i = 0; i < len; ++i)
6989 {
6990 pst->dependencies[i]
6991 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
6992 }
6993
6994 cu->per_cu->imported_symtabs_free ();
6995 }
6996
6997 /* Get the list of files included in the current compilation unit,
6998 and build a psymtab for each of them. */
6999 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7000
7001 dwarf_read_debug_printf ("Psymtab for %s unit @%s: %s - %s"
7002 ", %d global, %d static syms",
7003 per_cu->is_debug_types ? "type" : "comp",
7004 sect_offset_str (per_cu->sect_off),
7005 paddress (gdbarch, pst->text_low (objfile)),
7006 paddress (gdbarch, pst->text_high (objfile)),
7007 (int) pst->global_psymbols.size (),
7008 (int) pst->static_psymbols.size ());
7009 }
7010
7011 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7012 Process compilation unit THIS_CU for a psymtab. */
7013
7014 static void
7015 process_psymtab_comp_unit (dwarf2_per_cu_data *this_cu,
7016 dwarf2_per_objfile *per_objfile,
7017 bool want_partial_unit,
7018 enum language pretend_language)
7019 {
7020 /* If this compilation unit was already read in, free the
7021 cached copy in order to read it in again. This is
7022 necessary because we skipped some symbols when we first
7023 read in the compilation unit (see load_partial_dies).
7024 This problem could be avoided, but the benefit is unclear. */
7025 per_objfile->remove_cu (this_cu);
7026
7027 cutu_reader reader (this_cu, per_objfile, nullptr, nullptr, false);
7028
7029 if (reader.comp_unit_die == nullptr)
7030 return;
7031
7032 switch (reader.comp_unit_die->tag)
7033 {
7034 case DW_TAG_compile_unit:
7035 this_cu->unit_type = DW_UT_compile;
7036 break;
7037 case DW_TAG_partial_unit:
7038 this_cu->unit_type = DW_UT_partial;
7039 break;
7040 case DW_TAG_type_unit:
7041 this_cu->unit_type = DW_UT_type;
7042 break;
7043 default:
7044 error (_("Dwarf Error: unexpected tag '%s' at offset %s [in module %s]"),
7045 dwarf_tag_name (reader.comp_unit_die->tag),
7046 sect_offset_str (reader.cu->per_cu->sect_off),
7047 objfile_name (per_objfile->objfile));
7048 }
7049
7050 if (reader.dummy_p)
7051 {
7052 /* Nothing. */
7053 }
7054 else if (this_cu->is_debug_types)
7055 build_type_psymtabs_reader (&reader, reader.info_ptr,
7056 reader.comp_unit_die);
7057 else if (want_partial_unit
7058 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7059 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7060 reader.comp_unit_die,
7061 pretend_language);
7062
7063 /* Age out any secondary CUs. */
7064 per_objfile->age_comp_units ();
7065 }
7066
7067 /* Reader function for build_type_psymtabs. */
7068
7069 static void
7070 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7071 const gdb_byte *info_ptr,
7072 struct die_info *type_unit_die)
7073 {
7074 dwarf2_per_objfile *per_objfile = reader->cu->per_objfile;
7075 struct dwarf2_cu *cu = reader->cu;
7076 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7077 struct signatured_type *sig_type;
7078 struct type_unit_group *tu_group;
7079 struct attribute *attr;
7080 struct partial_die_info *first_die;
7081 CORE_ADDR lowpc, highpc;
7082 dwarf2_psymtab *pst;
7083
7084 gdb_assert (per_cu->is_debug_types);
7085 sig_type = (struct signatured_type *) per_cu;
7086
7087 if (! type_unit_die->has_children)
7088 return;
7089
7090 attr = type_unit_die->attr (DW_AT_stmt_list);
7091 tu_group = get_type_unit_group (cu, attr);
7092
7093 if (tu_group->tus == nullptr)
7094 tu_group->tus = new std::vector<signatured_type *>;
7095 tu_group->tus->push_back (sig_type);
7096
7097 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7098 pst = create_partial_symtab (per_cu, per_objfile, "");
7099 pst->anonymous = true;
7100
7101 first_die = load_partial_dies (reader, info_ptr, 1);
7102
7103 lowpc = (CORE_ADDR) -1;
7104 highpc = (CORE_ADDR) 0;
7105 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7106
7107 pst->end ();
7108 }
7109
7110 /* Struct used to sort TUs by their abbreviation table offset. */
7111
7112 struct tu_abbrev_offset
7113 {
7114 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7115 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7116 {}
7117
7118 /* This is used when sorting. */
7119 bool operator< (const tu_abbrev_offset &other) const
7120 {
7121 return abbrev_offset < other.abbrev_offset;
7122 }
7123
7124 signatured_type *sig_type;
7125 sect_offset abbrev_offset;
7126 };
7127
7128 /* Efficiently read all the type units.
7129
7130 The efficiency is because we sort TUs by the abbrev table they use and
7131 only read each abbrev table once. In one program there are 200K TUs
7132 sharing 8K abbrev tables.
7133
7134 The main purpose of this function is to support building the
7135 dwarf2_per_objfile->per_bfd->type_unit_groups table.
7136 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7137 can collapse the search space by grouping them by stmt_list.
7138 The savings can be significant, in the same program from above the 200K TUs
7139 share 8K stmt_list tables.
7140
7141 FUNC is expected to call get_type_unit_group, which will create the
7142 struct type_unit_group if necessary and add it to
7143 dwarf2_per_objfile->per_bfd->type_unit_groups. */
7144
7145 static void
7146 build_type_psymtabs (dwarf2_per_objfile *per_objfile)
7147 {
7148 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7149 abbrev_table_up abbrev_table;
7150 sect_offset abbrev_offset;
7151
7152 /* It's up to the caller to not call us multiple times. */
7153 gdb_assert (per_objfile->per_bfd->type_unit_groups == NULL);
7154
7155 if (per_objfile->per_bfd->tu_stats.nr_tus == 0)
7156 return;
7157
7158 /* TUs typically share abbrev tables, and there can be way more TUs than
7159 abbrev tables. Sort by abbrev table to reduce the number of times we
7160 read each abbrev table in.
7161 Alternatives are to punt or to maintain a cache of abbrev tables.
7162 This is simpler and efficient enough for now.
7163
7164 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7165 symtab to use). Typically TUs with the same abbrev offset have the same
7166 stmt_list value too so in practice this should work well.
7167
7168 The basic algorithm here is:
7169
7170 sort TUs by abbrev table
7171 for each TU with same abbrev table:
7172 read abbrev table if first user
7173 read TU top level DIE
7174 [IWBN if DWO skeletons had DW_AT_stmt_list]
7175 call FUNC */
7176
7177 dwarf_read_debug_printf ("Building type unit groups ...");
7178
7179 /* Sort in a separate table to maintain the order of all_comp_units
7180 for .gdb_index: TU indices directly index all_type_units. */
7181 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7182 sorted_by_abbrev.reserve (per_objfile->per_bfd->tu_stats.nr_tus);
7183
7184 for (const auto &cu : per_objfile->per_bfd->all_comp_units)
7185 {
7186 if (cu->is_debug_types)
7187 {
7188 auto sig_type = static_cast<signatured_type *> (cu.get ());
7189 sorted_by_abbrev.emplace_back
7190 (sig_type, read_abbrev_offset (per_objfile, sig_type->section,
7191 sig_type->sect_off));
7192 }
7193 }
7194
7195 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end ());
7196
7197 abbrev_offset = (sect_offset) ~(unsigned) 0;
7198
7199 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7200 {
7201 /* Switch to the next abbrev table if necessary. */
7202 if (abbrev_table == NULL
7203 || tu.abbrev_offset != abbrev_offset)
7204 {
7205 abbrev_offset = tu.abbrev_offset;
7206 per_objfile->per_bfd->abbrev.read (per_objfile->objfile);
7207 abbrev_table =
7208 abbrev_table::read (&per_objfile->per_bfd->abbrev, abbrev_offset);
7209 ++tu_stats->nr_uniq_abbrev_tables;
7210 }
7211
7212 cutu_reader reader (tu.sig_type, per_objfile,
7213 abbrev_table.get (), nullptr, false);
7214 if (!reader.dummy_p)
7215 build_type_psymtabs_reader (&reader, reader.info_ptr,
7216 reader.comp_unit_die);
7217 }
7218 }
7219
7220 /* Print collected type unit statistics. */
7221
7222 static void
7223 print_tu_stats (dwarf2_per_objfile *per_objfile)
7224 {
7225 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7226
7227 dwarf_read_debug_printf ("Type unit statistics:");
7228 dwarf_read_debug_printf (" %d TUs", tu_stats->nr_tus);
7229 dwarf_read_debug_printf (" %d uniq abbrev tables",
7230 tu_stats->nr_uniq_abbrev_tables);
7231 dwarf_read_debug_printf (" %d symtabs from stmt_list entries",
7232 tu_stats->nr_symtabs);
7233 dwarf_read_debug_printf (" %d symtab sharers",
7234 tu_stats->nr_symtab_sharers);
7235 dwarf_read_debug_printf (" %d type units without a stmt_list",
7236 tu_stats->nr_stmt_less_type_units);
7237 dwarf_read_debug_printf (" %d all_type_units reallocs",
7238 tu_stats->nr_all_type_units_reallocs);
7239 }
7240
7241 /* Traversal function for build_type_psymtabs. */
7242
7243 static int
7244 build_type_psymtab_dependencies (void **slot, void *info)
7245 {
7246 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7247 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7248 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7249 dwarf2_psymtab *pst = tu_group->v.psymtab;
7250 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7251 int i;
7252
7253 gdb_assert (len > 0);
7254 gdb_assert (tu_group->type_unit_group_p ());
7255
7256 pst->number_of_dependencies = len;
7257 pst->dependencies = per_bfd->partial_symtabs->allocate_dependencies (len);
7258 for (i = 0; i < len; ++i)
7259 {
7260 struct signatured_type *iter = tu_group->tus->at (i);
7261 gdb_assert (iter->is_debug_types);
7262 pst->dependencies[i] = iter->v.psymtab;
7263 iter->type_unit_group = tu_group;
7264 }
7265
7266 delete tu_group->tus;
7267 tu_group->tus = nullptr;
7268
7269 return 1;
7270 }
7271
7272 /* Traversal function for process_skeletonless_type_unit.
7273 Read a TU in a DWO file and build partial symbols for it. */
7274
7275 static int
7276 process_skeletonless_type_unit (void **slot, void *info)
7277 {
7278 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7279 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7280
7281 /* If this TU doesn't exist in the global table, add it and read it in. */
7282
7283 if (per_objfile->per_bfd->signatured_types == NULL)
7284 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
7285
7286 signatured_type find_entry (dwo_unit->signature);
7287 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
7288 &find_entry, INSERT);
7289 /* If we've already seen this type there's nothing to do. What's happening
7290 is we're doing our own version of comdat-folding here. */
7291 if (*slot != NULL)
7292 return 1;
7293
7294 /* This does the job that create_all_comp_units would have done for
7295 this TU. */
7296 signatured_type *entry
7297 = add_type_unit (per_objfile, dwo_unit->signature, slot);
7298 fill_in_sig_entry_from_dwo_entry (per_objfile, entry, dwo_unit);
7299 *slot = entry;
7300
7301 /* This does the job that build_type_psymtabs would have done. */
7302 cutu_reader reader (entry, per_objfile, nullptr, nullptr, false);
7303 if (!reader.dummy_p)
7304 build_type_psymtabs_reader (&reader, reader.info_ptr,
7305 reader.comp_unit_die);
7306
7307 return 1;
7308 }
7309
7310 /* Traversal function for process_skeletonless_type_units. */
7311
7312 static int
7313 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7314 {
7315 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7316
7317 if (dwo_file->tus != NULL)
7318 htab_traverse_noresize (dwo_file->tus.get (),
7319 process_skeletonless_type_unit, info);
7320
7321 return 1;
7322 }
7323
7324 /* Scan all TUs of DWO files, verifying we've processed them.
7325 This is needed in case a TU was emitted without its skeleton.
7326 Note: This can't be done until we know what all the DWO files are. */
7327
7328 static void
7329 process_skeletonless_type_units (dwarf2_per_objfile *per_objfile)
7330 {
7331 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7332 if (get_dwp_file (per_objfile) == NULL
7333 && per_objfile->per_bfd->dwo_files != NULL)
7334 {
7335 htab_traverse_noresize (per_objfile->per_bfd->dwo_files.get (),
7336 process_dwo_file_for_skeletonless_type_units,
7337 per_objfile);
7338 }
7339 }
7340
7341 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7342
7343 static void
7344 set_partial_user (dwarf2_per_objfile *per_objfile)
7345 {
7346 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
7347 {
7348 dwarf2_psymtab *pst = per_cu->v.psymtab;
7349
7350 if (pst == NULL)
7351 continue;
7352
7353 for (int j = 0; j < pst->number_of_dependencies; ++j)
7354 {
7355 /* Set the 'user' field only if it is not already set. */
7356 if (pst->dependencies[j]->user == NULL)
7357 pst->dependencies[j]->user = pst;
7358 }
7359 }
7360 }
7361
7362 /* Build the partial symbol table by doing a quick pass through the
7363 .debug_info and .debug_abbrev sections. */
7364
7365 static void
7366 dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile)
7367 {
7368 struct objfile *objfile = per_objfile->objfile;
7369 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7370
7371 dwarf_read_debug_printf ("Building psymtabs of objfile %s ...",
7372 objfile_name (objfile));
7373
7374 scoped_restore restore_reading_psyms
7375 = make_scoped_restore (&per_bfd->reading_partial_symbols, true);
7376
7377 per_bfd->info.read (objfile);
7378
7379 /* Any cached compilation units will be linked by the per-objfile
7380 read_in_chain. Make sure to free them when we're done. */
7381 free_cached_comp_units freer (per_objfile);
7382
7383 create_all_comp_units (per_objfile);
7384 build_type_psymtabs (per_objfile);
7385
7386 /* Create a temporary address map on a temporary obstack. We later
7387 copy this to the final obstack. */
7388 auto_obstack temp_obstack;
7389
7390 scoped_restore save_psymtabs_addrmap
7391 = make_scoped_restore (&per_bfd->partial_symtabs->psymtabs_addrmap,
7392 addrmap_create_mutable (&temp_obstack));
7393
7394 for (const auto &per_cu : per_bfd->all_comp_units)
7395 {
7396 if (per_cu->v.psymtab != NULL)
7397 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7398 continue;
7399 process_psymtab_comp_unit (per_cu.get (), per_objfile, false,
7400 language_minimal);
7401 }
7402
7403 /* This has to wait until we read the CUs, we need the list of DWOs. */
7404 process_skeletonless_type_units (per_objfile);
7405
7406 /* Now that all TUs have been processed we can fill in the dependencies. */
7407 if (per_bfd->type_unit_groups != NULL)
7408 {
7409 htab_traverse_noresize (per_bfd->type_unit_groups.get (),
7410 build_type_psymtab_dependencies, per_objfile);
7411 }
7412
7413 if (dwarf_read_debug > 0)
7414 print_tu_stats (per_objfile);
7415
7416 set_partial_user (per_objfile);
7417
7418 per_bfd->partial_symtabs->psymtabs_addrmap
7419 = addrmap_create_fixed (per_bfd->partial_symtabs->psymtabs_addrmap,
7420 per_bfd->partial_symtabs->obstack ());
7421 /* At this point we want to keep the address map. */
7422 save_psymtabs_addrmap.release ();
7423
7424 dwarf_read_debug_printf ("Done building psymtabs of %s",
7425 objfile_name (objfile));
7426 }
7427
7428 /* Load the partial DIEs for a secondary CU into memory.
7429 This is also used when rereading a primary CU with load_all_dies. */
7430
7431 static void
7432 load_partial_comp_unit (dwarf2_per_cu_data *this_cu,
7433 dwarf2_per_objfile *per_objfile,
7434 dwarf2_cu *existing_cu)
7435 {
7436 cutu_reader reader (this_cu, per_objfile, nullptr, existing_cu, false);
7437
7438 if (!reader.dummy_p)
7439 {
7440 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7441 language_minimal);
7442
7443 /* Check if comp unit has_children.
7444 If so, read the rest of the partial symbols from this comp unit.
7445 If not, there's no more debug_info for this comp unit. */
7446 if (reader.comp_unit_die->has_children)
7447 load_partial_dies (&reader, reader.info_ptr, 0);
7448
7449 reader.keep ();
7450 }
7451 }
7452
7453 static void
7454 read_comp_units_from_section (dwarf2_per_objfile *per_objfile,
7455 struct dwarf2_section_info *section,
7456 struct dwarf2_section_info *abbrev_section,
7457 unsigned int is_dwz,
7458 htab_up &types_htab,
7459 rcuh_kind section_kind)
7460 {
7461 const gdb_byte *info_ptr;
7462 struct objfile *objfile = per_objfile->objfile;
7463
7464 dwarf_read_debug_printf ("Reading %s for %s",
7465 section->get_name (),
7466 section->get_file_name ());
7467
7468 section->read (objfile);
7469
7470 info_ptr = section->buffer;
7471
7472 while (info_ptr < section->buffer + section->size)
7473 {
7474 dwarf2_per_cu_data_up this_cu;
7475
7476 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7477
7478 comp_unit_head cu_header;
7479 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
7480 abbrev_section, info_ptr,
7481 section_kind);
7482
7483 /* Save the compilation unit for later lookup. */
7484 if (cu_header.unit_type != DW_UT_type)
7485 this_cu = per_objfile->per_bfd->allocate_per_cu ();
7486 else
7487 {
7488 if (types_htab == nullptr)
7489 types_htab = allocate_signatured_type_table ();
7490
7491 auto sig_type = per_objfile->per_bfd->allocate_signatured_type
7492 (cu_header.signature);
7493 signatured_type *sig_ptr = sig_type.get ();
7494 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7495 this_cu.reset (sig_type.release ());
7496
7497 void **slot = htab_find_slot (types_htab.get (), sig_ptr, INSERT);
7498 gdb_assert (slot != nullptr);
7499 if (*slot != nullptr)
7500 complaint (_("debug type entry at offset %s is duplicate to"
7501 " the entry at offset %s, signature %s"),
7502 sect_offset_str (sect_off),
7503 sect_offset_str (sig_ptr->sect_off),
7504 hex_string (sig_ptr->signature));
7505 *slot = sig_ptr;
7506 }
7507 this_cu->sect_off = sect_off;
7508 this_cu->length = cu_header.length + cu_header.initial_length_size;
7509 this_cu->is_dwz = is_dwz;
7510 this_cu->section = section;
7511
7512 info_ptr = info_ptr + this_cu->length;
7513 per_objfile->per_bfd->all_comp_units.push_back (std::move (this_cu));
7514 }
7515 }
7516
7517 /* Create a list of all compilation units in OBJFILE.
7518 This is only done for -readnow and building partial symtabs. */
7519
7520 static void
7521 create_all_comp_units (dwarf2_per_objfile *per_objfile)
7522 {
7523 htab_up types_htab;
7524
7525 read_comp_units_from_section (per_objfile, &per_objfile->per_bfd->info,
7526 &per_objfile->per_bfd->abbrev, 0,
7527 types_htab, rcuh_kind::COMPILE);
7528 for (dwarf2_section_info &section : per_objfile->per_bfd->types)
7529 read_comp_units_from_section (per_objfile, &section,
7530 &per_objfile->per_bfd->abbrev, 0,
7531 types_htab, rcuh_kind::TYPE);
7532
7533 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
7534 if (dwz != NULL)
7535 read_comp_units_from_section (per_objfile, &dwz->info, &dwz->abbrev, 1,
7536 types_htab, rcuh_kind::COMPILE);
7537
7538 per_objfile->per_bfd->signatured_types = std::move (types_htab);
7539 }
7540
7541 /* Process all loaded DIEs for compilation unit CU, starting at
7542 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7543 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7544 DW_AT_ranges). See the comments of add_partial_subprogram on how
7545 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7546
7547 static void
7548 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7549 CORE_ADDR *highpc, int set_addrmap,
7550 struct dwarf2_cu *cu)
7551 {
7552 struct partial_die_info *pdi;
7553
7554 /* Now, march along the PDI's, descending into ones which have
7555 interesting children but skipping the children of the other ones,
7556 until we reach the end of the compilation unit. */
7557
7558 pdi = first_die;
7559
7560 while (pdi != NULL)
7561 {
7562 pdi->fixup (cu);
7563
7564 /* Anonymous namespaces or modules have no name but have interesting
7565 children, so we need to look at them. Ditto for anonymous
7566 enums. */
7567
7568 if (pdi->raw_name != NULL || pdi->tag == DW_TAG_namespace
7569 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7570 || pdi->tag == DW_TAG_imported_unit
7571 || pdi->tag == DW_TAG_inlined_subroutine)
7572 {
7573 switch (pdi->tag)
7574 {
7575 case DW_TAG_subprogram:
7576 case DW_TAG_inlined_subroutine:
7577 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7578 if (cu->per_cu->lang == language_cplus)
7579 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7580 set_addrmap, cu);
7581 break;
7582 case DW_TAG_constant:
7583 case DW_TAG_variable:
7584 case DW_TAG_typedef:
7585 case DW_TAG_union_type:
7586 if (!pdi->is_declaration
7587 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7588 {
7589 add_partial_symbol (pdi, cu);
7590 }
7591 break;
7592 case DW_TAG_class_type:
7593 case DW_TAG_interface_type:
7594 case DW_TAG_structure_type:
7595 if (!pdi->is_declaration)
7596 {
7597 add_partial_symbol (pdi, cu);
7598 }
7599 if ((cu->per_cu->lang == language_rust
7600 || cu->per_cu->lang == language_cplus)
7601 && pdi->has_children)
7602 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7603 set_addrmap, cu);
7604 break;
7605 case DW_TAG_enumeration_type:
7606 if (!pdi->is_declaration)
7607 add_partial_enumeration (pdi, cu);
7608 break;
7609 case DW_TAG_base_type:
7610 case DW_TAG_subrange_type:
7611 /* File scope base type definitions are added to the partial
7612 symbol table. */
7613 add_partial_symbol (pdi, cu);
7614 break;
7615 case DW_TAG_namespace:
7616 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7617 break;
7618 case DW_TAG_module:
7619 if (!pdi->is_declaration)
7620 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7621 break;
7622 case DW_TAG_imported_unit:
7623 {
7624 struct dwarf2_per_cu_data *per_cu;
7625
7626 /* For now we don't handle imported units in type units. */
7627 if (cu->per_cu->is_debug_types)
7628 {
7629 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7630 " supported in type units [in module %s]"),
7631 objfile_name (cu->per_objfile->objfile));
7632 }
7633
7634 per_cu = dwarf2_find_containing_comp_unit
7635 (pdi->d.sect_off, pdi->is_dwz, cu->per_objfile);
7636
7637 /* Go read the partial unit, if needed. */
7638 if (per_cu->v.psymtab == NULL)
7639 process_psymtab_comp_unit (per_cu, cu->per_objfile, true,
7640 cu->per_cu->lang);
7641
7642 cu->per_cu->imported_symtabs_push (per_cu);
7643 }
7644 break;
7645 case DW_TAG_imported_declaration:
7646 add_partial_symbol (pdi, cu);
7647 break;
7648 default:
7649 break;
7650 }
7651 }
7652
7653 /* If the die has a sibling, skip to the sibling. */
7654
7655 pdi = pdi->die_sibling;
7656 }
7657 }
7658
7659 /* Functions used to compute the fully scoped name of a partial DIE.
7660
7661 Normally, this is simple. For C++, the parent DIE's fully scoped
7662 name is concatenated with "::" and the partial DIE's name.
7663 Enumerators are an exception; they use the scope of their parent
7664 enumeration type, i.e. the name of the enumeration type is not
7665 prepended to the enumerator.
7666
7667 There are two complexities. One is DW_AT_specification; in this
7668 case "parent" means the parent of the target of the specification,
7669 instead of the direct parent of the DIE. The other is compilers
7670 which do not emit DW_TAG_namespace; in this case we try to guess
7671 the fully qualified name of structure types from their members'
7672 linkage names. This must be done using the DIE's children rather
7673 than the children of any DW_AT_specification target. We only need
7674 to do this for structures at the top level, i.e. if the target of
7675 any DW_AT_specification (if any; otherwise the DIE itself) does not
7676 have a parent. */
7677
7678 /* Compute the scope prefix associated with PDI's parent, in
7679 compilation unit CU. The result will be allocated on CU's
7680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7681 field. NULL is returned if no prefix is necessary. */
7682 static const char *
7683 partial_die_parent_scope (struct partial_die_info *pdi,
7684 struct dwarf2_cu *cu)
7685 {
7686 const char *grandparent_scope;
7687 struct partial_die_info *parent, *real_pdi;
7688
7689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7690 then this means the parent of the specification DIE. */
7691
7692 real_pdi = pdi;
7693 while (real_pdi->has_specification)
7694 {
7695 auto res = find_partial_die (real_pdi->spec_offset,
7696 real_pdi->spec_is_dwz, cu);
7697 real_pdi = res.pdi;
7698 cu = res.cu;
7699 }
7700
7701 parent = real_pdi->die_parent;
7702 if (parent == NULL)
7703 return NULL;
7704
7705 if (parent->scope_set)
7706 return parent->scope;
7707
7708 parent->fixup (cu);
7709
7710 grandparent_scope = partial_die_parent_scope (parent, cu);
7711
7712 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7713 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7714 Work around this problem here. */
7715 if (cu->per_cu->lang == language_cplus
7716 && parent->tag == DW_TAG_namespace
7717 && strcmp (parent->name (cu), "::") == 0
7718 && grandparent_scope == NULL)
7719 {
7720 parent->scope = NULL;
7721 parent->scope_set = 1;
7722 return NULL;
7723 }
7724
7725 /* Nested subroutines in Fortran get a prefix. */
7726 if (pdi->tag == DW_TAG_enumerator)
7727 /* Enumerators should not get the name of the enumeration as a prefix. */
7728 parent->scope = grandparent_scope;
7729 else if (parent->tag == DW_TAG_namespace
7730 || parent->tag == DW_TAG_module
7731 || parent->tag == DW_TAG_structure_type
7732 || parent->tag == DW_TAG_class_type
7733 || parent->tag == DW_TAG_interface_type
7734 || parent->tag == DW_TAG_union_type
7735 || parent->tag == DW_TAG_enumeration_type
7736 || (cu->per_cu->lang == language_fortran
7737 && parent->tag == DW_TAG_subprogram
7738 && pdi->tag == DW_TAG_subprogram))
7739 {
7740 if (grandparent_scope == NULL)
7741 parent->scope = parent->name (cu);
7742 else
7743 parent->scope = typename_concat (&cu->comp_unit_obstack,
7744 grandparent_scope,
7745 parent->name (cu), 0, cu);
7746 }
7747 else
7748 {
7749 /* FIXME drow/2004-04-01: What should we be doing with
7750 function-local names? For partial symbols, we should probably be
7751 ignoring them. */
7752 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
7753 dwarf_tag_name (parent->tag),
7754 sect_offset_str (pdi->sect_off));
7755 parent->scope = grandparent_scope;
7756 }
7757
7758 parent->scope_set = 1;
7759 return parent->scope;
7760 }
7761
7762 /* Return the fully scoped name associated with PDI, from compilation unit
7763 CU. The result will be allocated with malloc. */
7764
7765 static gdb::unique_xmalloc_ptr<char>
7766 partial_die_full_name (struct partial_die_info *pdi,
7767 struct dwarf2_cu *cu)
7768 {
7769 const char *parent_scope;
7770
7771 /* If this is a template instantiation, we can not work out the
7772 template arguments from partial DIEs. So, unfortunately, we have
7773 to go through the full DIEs. At least any work we do building
7774 types here will be reused if full symbols are loaded later. */
7775 if (pdi->has_template_arguments)
7776 {
7777 pdi->fixup (cu);
7778
7779 if (pdi->name (cu) != NULL && strchr (pdi->name (cu), '<') == NULL)
7780 {
7781 struct die_info *die;
7782 struct attribute attr;
7783 struct dwarf2_cu *ref_cu = cu;
7784
7785 /* DW_FORM_ref_addr is using section offset. */
7786 attr.name = (enum dwarf_attribute) 0;
7787 attr.form = DW_FORM_ref_addr;
7788 attr.u.unsnd = to_underlying (pdi->sect_off);
7789 die = follow_die_ref (NULL, &attr, &ref_cu);
7790
7791 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7792 }
7793 }
7794
7795 parent_scope = partial_die_parent_scope (pdi, cu);
7796 if (parent_scope == NULL)
7797 return NULL;
7798 else
7799 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
7800 pdi->name (cu),
7801 0, cu));
7802 }
7803
7804 static void
7805 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7806 {
7807 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7808 struct objfile *objfile = per_objfile->objfile;
7809 struct gdbarch *gdbarch = objfile->arch ();
7810 CORE_ADDR addr = 0;
7811 const char *actual_name = NULL;
7812 CORE_ADDR baseaddr;
7813
7814 baseaddr = objfile->text_section_offset ();
7815
7816 gdb::unique_xmalloc_ptr<char> built_actual_name
7817 = partial_die_full_name (pdi, cu);
7818 if (built_actual_name != NULL)
7819 actual_name = built_actual_name.get ();
7820
7821 if (actual_name == NULL)
7822 actual_name = pdi->name (cu);
7823
7824 partial_symbol psymbol;
7825 memset (&psymbol, 0, sizeof (psymbol));
7826 psymbol.ginfo.set_language (cu->per_cu->lang,
7827 &objfile->objfile_obstack);
7828 psymbol.ginfo.set_section_index (-1);
7829
7830 /* The code below indicates that the psymbol should be installed by
7831 setting this. */
7832 gdb::optional<psymbol_placement> where;
7833
7834 switch (pdi->tag)
7835 {
7836 case DW_TAG_inlined_subroutine:
7837 case DW_TAG_subprogram:
7838 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
7839 - baseaddr);
7840 if (pdi->is_external
7841 || cu->per_cu->lang == language_ada
7842 || (cu->per_cu->lang == language_fortran
7843 && pdi->die_parent != NULL
7844 && pdi->die_parent->tag == DW_TAG_subprogram))
7845 {
7846 /* Normally, only "external" DIEs are part of the global scope.
7847 But in Ada and Fortran, we want to be able to access nested
7848 procedures globally. So all Ada and Fortran subprograms are
7849 stored in the global scope. */
7850 where = psymbol_placement::GLOBAL;
7851 }
7852 else
7853 where = psymbol_placement::STATIC;
7854
7855 psymbol.domain = VAR_DOMAIN;
7856 psymbol.aclass = LOC_BLOCK;
7857 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
7858 psymbol.ginfo.value.address = addr;
7859
7860 if (pdi->main_subprogram && actual_name != NULL)
7861 set_objfile_main_name (objfile, actual_name, cu->per_cu->lang);
7862 break;
7863 case DW_TAG_constant:
7864 psymbol.domain = VAR_DOMAIN;
7865 psymbol.aclass = LOC_STATIC;
7866 where = (pdi->is_external
7867 ? psymbol_placement::GLOBAL
7868 : psymbol_placement::STATIC);
7869 break;
7870 case DW_TAG_variable:
7871 if (pdi->d.locdesc)
7872 addr = decode_locdesc (pdi->d.locdesc, cu);
7873
7874 if (pdi->d.locdesc
7875 && addr == 0
7876 && !per_objfile->per_bfd->has_section_at_zero)
7877 {
7878 /* A global or static variable may also have been stripped
7879 out by the linker if unused, in which case its address
7880 will be nullified; do not add such variables into partial
7881 symbol table then. */
7882 }
7883 else if (pdi->is_external)
7884 {
7885 /* Global Variable.
7886 Don't enter into the minimal symbol tables as there is
7887 a minimal symbol table entry from the ELF symbols already.
7888 Enter into partial symbol table if it has a location
7889 descriptor or a type.
7890 If the location descriptor is missing, new_symbol will create
7891 a LOC_UNRESOLVED symbol, the address of the variable will then
7892 be determined from the minimal symbol table whenever the variable
7893 is referenced.
7894 The address for the partial symbol table entry is not
7895 used by GDB, but it comes in handy for debugging partial symbol
7896 table building. */
7897
7898 if (pdi->d.locdesc || pdi->has_type)
7899 {
7900 psymbol.domain = VAR_DOMAIN;
7901 psymbol.aclass = LOC_STATIC;
7902 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
7903 psymbol.ginfo.value.address = addr;
7904 where = psymbol_placement::GLOBAL;
7905 }
7906 }
7907 else
7908 {
7909 int has_loc = pdi->d.locdesc != NULL;
7910
7911 /* Static Variable. Skip symbols whose value we cannot know (those
7912 without location descriptors or constant values). */
7913 if (!has_loc && !pdi->has_const_value)
7914 return;
7915
7916 psymbol.domain = VAR_DOMAIN;
7917 psymbol.aclass = LOC_STATIC;
7918 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
7919 if (has_loc)
7920 psymbol.ginfo.value.address = addr;
7921 where = psymbol_placement::STATIC;
7922 }
7923 break;
7924 case DW_TAG_array_type:
7925 case DW_TAG_typedef:
7926 case DW_TAG_base_type:
7927 case DW_TAG_subrange_type:
7928 psymbol.domain = VAR_DOMAIN;
7929 psymbol.aclass = LOC_TYPEDEF;
7930 where = psymbol_placement::STATIC;
7931 break;
7932 case DW_TAG_imported_declaration:
7933 case DW_TAG_namespace:
7934 psymbol.domain = VAR_DOMAIN;
7935 psymbol.aclass = LOC_TYPEDEF;
7936 where = psymbol_placement::GLOBAL;
7937 break;
7938 case DW_TAG_module:
7939 /* With Fortran 77 there might be a "BLOCK DATA" module
7940 available without any name. If so, we skip the module as it
7941 doesn't bring any value. */
7942 if (actual_name != nullptr)
7943 {
7944 psymbol.domain = MODULE_DOMAIN;
7945 psymbol.aclass = LOC_TYPEDEF;
7946 where = psymbol_placement::GLOBAL;
7947 }
7948 break;
7949 case DW_TAG_class_type:
7950 case DW_TAG_interface_type:
7951 case DW_TAG_structure_type:
7952 case DW_TAG_union_type:
7953 case DW_TAG_enumeration_type:
7954 /* Skip external references. The DWARF standard says in the section
7955 about "Structure, Union, and Class Type Entries": "An incomplete
7956 structure, union or class type is represented by a structure,
7957 union or class entry that does not have a byte size attribute
7958 and that has a DW_AT_declaration attribute." */
7959 if (!pdi->has_byte_size && pdi->is_declaration)
7960 return;
7961
7962 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7963 static vs. global. */
7964 psymbol.domain = STRUCT_DOMAIN;
7965 psymbol.aclass = LOC_TYPEDEF;
7966 where = (cu->per_cu->lang == language_cplus
7967 ? psymbol_placement::GLOBAL
7968 : psymbol_placement::STATIC);
7969 break;
7970 case DW_TAG_enumerator:
7971 psymbol.domain = VAR_DOMAIN;
7972 psymbol.aclass = LOC_CONST;
7973 where = (cu->per_cu->lang == language_cplus
7974 ? psymbol_placement::GLOBAL
7975 : psymbol_placement::STATIC);
7976 break;
7977 default:
7978 break;
7979 }
7980
7981 if (where.has_value ())
7982 {
7983 if (built_actual_name != nullptr)
7984 actual_name = objfile->intern (actual_name);
7985 if (pdi->linkage_name == nullptr
7986 || cu->per_cu->lang == language_ada)
7987 psymbol.ginfo.set_linkage_name (actual_name);
7988 else
7989 {
7990 psymbol.ginfo.set_demangled_name (actual_name,
7991 &objfile->objfile_obstack);
7992 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
7993 }
7994 cu->per_cu->v.psymtab->add_psymbol
7995 (psymbol, *where, per_objfile->per_bfd->partial_symtabs.get (),
7996 objfile);
7997 }
7998 }
7999
8000 /* Read a partial die corresponding to a namespace; also, add a symbol
8001 corresponding to that namespace to the symbol table. NAMESPACE is
8002 the name of the enclosing namespace. */
8003
8004 static void
8005 add_partial_namespace (struct partial_die_info *pdi,
8006 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8007 int set_addrmap, struct dwarf2_cu *cu)
8008 {
8009 /* Add a symbol for the namespace. */
8010
8011 add_partial_symbol (pdi, cu);
8012
8013 /* Now scan partial symbols in that namespace. */
8014
8015 if (pdi->has_children)
8016 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8017 }
8018
8019 /* Read a partial die corresponding to a Fortran module. */
8020
8021 static void
8022 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8023 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8024 {
8025 /* Add a symbol for the namespace. */
8026
8027 add_partial_symbol (pdi, cu);
8028
8029 /* Now scan partial symbols in that module. */
8030
8031 if (pdi->has_children)
8032 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8033 }
8034
8035 /* Read a partial die corresponding to a subprogram or an inlined
8036 subprogram and create a partial symbol for that subprogram.
8037 When the CU language allows it, this routine also defines a partial
8038 symbol for each nested subprogram that this subprogram contains.
8039 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8040 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8041
8042 PDI may also be a lexical block, in which case we simply search
8043 recursively for subprograms defined inside that lexical block.
8044 Again, this is only performed when the CU language allows this
8045 type of definitions. */
8046
8047 static void
8048 add_partial_subprogram (struct partial_die_info *pdi,
8049 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8050 int set_addrmap, struct dwarf2_cu *cu)
8051 {
8052 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8053 {
8054 if (pdi->has_pc_info)
8055 {
8056 if (pdi->lowpc < *lowpc)
8057 *lowpc = pdi->lowpc;
8058 if (pdi->highpc > *highpc)
8059 *highpc = pdi->highpc;
8060 if (set_addrmap)
8061 {
8062 struct objfile *objfile = cu->per_objfile->objfile;
8063 dwarf2_per_bfd *per_bfd = cu->per_objfile->per_bfd;
8064 struct gdbarch *gdbarch = objfile->arch ();
8065 CORE_ADDR baseaddr;
8066 CORE_ADDR this_highpc;
8067 CORE_ADDR this_lowpc;
8068
8069 baseaddr = objfile->text_section_offset ();
8070 this_lowpc
8071 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8072 pdi->lowpc + baseaddr)
8073 - baseaddr);
8074 this_highpc
8075 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8076 pdi->highpc + baseaddr)
8077 - baseaddr);
8078 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
8079 this_lowpc, this_highpc - 1,
8080 cu->per_cu->v.psymtab);
8081 }
8082 }
8083
8084 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8085 {
8086 if (!pdi->is_declaration)
8087 /* Ignore subprogram DIEs that do not have a name, they are
8088 illegal. Do not emit a complaint at this point, we will
8089 do so when we convert this psymtab into a symtab. */
8090 if (pdi->name (cu))
8091 add_partial_symbol (pdi, cu);
8092 }
8093 }
8094
8095 if (! pdi->has_children)
8096 return;
8097
8098 if (cu->per_cu->lang == language_ada
8099 || cu->per_cu->lang == language_fortran)
8100 {
8101 pdi = pdi->die_child;
8102 while (pdi != NULL)
8103 {
8104 pdi->fixup (cu);
8105 if (pdi->tag == DW_TAG_subprogram
8106 || pdi->tag == DW_TAG_inlined_subroutine
8107 || pdi->tag == DW_TAG_lexical_block)
8108 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8109 pdi = pdi->die_sibling;
8110 }
8111 }
8112 }
8113
8114 /* Read a partial die corresponding to an enumeration type. */
8115
8116 static void
8117 add_partial_enumeration (struct partial_die_info *enum_pdi,
8118 struct dwarf2_cu *cu)
8119 {
8120 struct partial_die_info *pdi;
8121
8122 if (enum_pdi->name (cu) != NULL)
8123 add_partial_symbol (enum_pdi, cu);
8124
8125 pdi = enum_pdi->die_child;
8126 while (pdi)
8127 {
8128 if (pdi->tag != DW_TAG_enumerator || pdi->raw_name == NULL)
8129 complaint (_("malformed enumerator DIE ignored"));
8130 else
8131 add_partial_symbol (pdi, cu);
8132 pdi = pdi->die_sibling;
8133 }
8134 }
8135
8136 /* Return the initial uleb128 in the die at INFO_PTR. */
8137
8138 static unsigned int
8139 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8140 {
8141 unsigned int bytes_read;
8142
8143 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8144 }
8145
8146 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8147 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8148
8149 Return the corresponding abbrev, or NULL if the number is zero (indicating
8150 an empty DIE). In either case *BYTES_READ will be set to the length of
8151 the initial number. */
8152
8153 static const struct abbrev_info *
8154 peek_die_abbrev (const die_reader_specs &reader,
8155 const gdb_byte *info_ptr, unsigned int *bytes_read)
8156 {
8157 dwarf2_cu *cu = reader.cu;
8158 bfd *abfd = reader.abfd;
8159 unsigned int abbrev_number
8160 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8161
8162 if (abbrev_number == 0)
8163 return NULL;
8164
8165 const abbrev_info *abbrev
8166 = reader.abbrev_table->lookup_abbrev (abbrev_number);
8167 if (!abbrev)
8168 {
8169 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8170 " at offset %s [in module %s]"),
8171 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8172 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8173 }
8174
8175 return abbrev;
8176 }
8177
8178 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8179 Returns a pointer to the end of a series of DIEs, terminated by an empty
8180 DIE. Any children of the skipped DIEs will also be skipped. */
8181
8182 static const gdb_byte *
8183 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8184 {
8185 while (1)
8186 {
8187 unsigned int bytes_read;
8188 const abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr,
8189 &bytes_read);
8190
8191 if (abbrev == NULL)
8192 return info_ptr + bytes_read;
8193 else
8194 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8195 }
8196 }
8197
8198 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8199 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8200 abbrev corresponding to that skipped uleb128 should be passed in
8201 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8202 children. */
8203
8204 static const gdb_byte *
8205 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8206 const struct abbrev_info *abbrev)
8207 {
8208 unsigned int bytes_read;
8209 struct attribute attr;
8210 bfd *abfd = reader->abfd;
8211 struct dwarf2_cu *cu = reader->cu;
8212 const gdb_byte *buffer = reader->buffer;
8213 const gdb_byte *buffer_end = reader->buffer_end;
8214 unsigned int form, i;
8215
8216 for (i = 0; i < abbrev->num_attrs; i++)
8217 {
8218 /* The only abbrev we care about is DW_AT_sibling. */
8219 if (abbrev->attrs[i].name == DW_AT_sibling)
8220 {
8221 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8222 if (attr.form == DW_FORM_ref_addr)
8223 complaint (_("ignoring absolute DW_AT_sibling"));
8224 else
8225 {
8226 sect_offset off = attr.get_ref_die_offset ();
8227 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8228
8229 if (sibling_ptr < info_ptr)
8230 complaint (_("DW_AT_sibling points backwards"));
8231 else if (sibling_ptr > reader->buffer_end)
8232 reader->die_section->overflow_complaint ();
8233 else
8234 return sibling_ptr;
8235 }
8236 }
8237
8238 /* If it isn't DW_AT_sibling, skip this attribute. */
8239 form = abbrev->attrs[i].form;
8240 skip_attribute:
8241 switch (form)
8242 {
8243 case DW_FORM_ref_addr:
8244 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8245 and later it is offset sized. */
8246 if (cu->header.version == 2)
8247 info_ptr += cu->header.addr_size;
8248 else
8249 info_ptr += cu->header.offset_size;
8250 break;
8251 case DW_FORM_GNU_ref_alt:
8252 info_ptr += cu->header.offset_size;
8253 break;
8254 case DW_FORM_addr:
8255 info_ptr += cu->header.addr_size;
8256 break;
8257 case DW_FORM_data1:
8258 case DW_FORM_ref1:
8259 case DW_FORM_flag:
8260 case DW_FORM_strx1:
8261 info_ptr += 1;
8262 break;
8263 case DW_FORM_flag_present:
8264 case DW_FORM_implicit_const:
8265 break;
8266 case DW_FORM_data2:
8267 case DW_FORM_ref2:
8268 case DW_FORM_strx2:
8269 info_ptr += 2;
8270 break;
8271 case DW_FORM_strx3:
8272 info_ptr += 3;
8273 break;
8274 case DW_FORM_data4:
8275 case DW_FORM_ref4:
8276 case DW_FORM_strx4:
8277 info_ptr += 4;
8278 break;
8279 case DW_FORM_data8:
8280 case DW_FORM_ref8:
8281 case DW_FORM_ref_sig8:
8282 info_ptr += 8;
8283 break;
8284 case DW_FORM_data16:
8285 info_ptr += 16;
8286 break;
8287 case DW_FORM_string:
8288 read_direct_string (abfd, info_ptr, &bytes_read);
8289 info_ptr += bytes_read;
8290 break;
8291 case DW_FORM_sec_offset:
8292 case DW_FORM_strp:
8293 case DW_FORM_GNU_strp_alt:
8294 info_ptr += cu->header.offset_size;
8295 break;
8296 case DW_FORM_exprloc:
8297 case DW_FORM_block:
8298 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8299 info_ptr += bytes_read;
8300 break;
8301 case DW_FORM_block1:
8302 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8303 break;
8304 case DW_FORM_block2:
8305 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8306 break;
8307 case DW_FORM_block4:
8308 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8309 break;
8310 case DW_FORM_addrx:
8311 case DW_FORM_strx:
8312 case DW_FORM_sdata:
8313 case DW_FORM_udata:
8314 case DW_FORM_ref_udata:
8315 case DW_FORM_GNU_addr_index:
8316 case DW_FORM_GNU_str_index:
8317 case DW_FORM_rnglistx:
8318 case DW_FORM_loclistx:
8319 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8320 break;
8321 case DW_FORM_indirect:
8322 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8323 info_ptr += bytes_read;
8324 /* We need to continue parsing from here, so just go back to
8325 the top. */
8326 goto skip_attribute;
8327
8328 default:
8329 error (_("Dwarf Error: Cannot handle %s "
8330 "in DWARF reader [in module %s]"),
8331 dwarf_form_name (form),
8332 bfd_get_filename (abfd));
8333 }
8334 }
8335
8336 if (abbrev->has_children)
8337 return skip_children (reader, info_ptr);
8338 else
8339 return info_ptr;
8340 }
8341
8342 /* Locate ORIG_PDI's sibling.
8343 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8344
8345 static const gdb_byte *
8346 locate_pdi_sibling (const struct die_reader_specs *reader,
8347 struct partial_die_info *orig_pdi,
8348 const gdb_byte *info_ptr)
8349 {
8350 /* Do we know the sibling already? */
8351
8352 if (orig_pdi->sibling)
8353 return orig_pdi->sibling;
8354
8355 /* Are there any children to deal with? */
8356
8357 if (!orig_pdi->has_children)
8358 return info_ptr;
8359
8360 /* Skip the children the long way. */
8361
8362 return skip_children (reader, info_ptr);
8363 }
8364
8365 /* Expand this partial symbol table into a full symbol table. SELF is
8366 not NULL. */
8367
8368 void
8369 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8370 {
8371 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8372
8373 gdb_assert (!per_objfile->symtab_set_p (per_cu_data));
8374
8375 /* If this psymtab is constructed from a debug-only objfile, the
8376 has_section_at_zero flag will not necessarily be correct. We
8377 can get the correct value for this flag by looking at the data
8378 associated with the (presumably stripped) associated objfile. */
8379 if (objfile->separate_debug_objfile_backlink)
8380 {
8381 dwarf2_per_objfile *per_objfile_backlink
8382 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8383
8384 per_objfile->per_bfd->has_section_at_zero
8385 = per_objfile_backlink->per_bfd->has_section_at_zero;
8386 }
8387
8388 expand_psymtab (objfile);
8389
8390 process_cu_includes (per_objfile);
8391 }
8392 \f
8393 /* Reading in full CUs. */
8394
8395 /* Add PER_CU to the queue. */
8396
8397 static void
8398 queue_comp_unit (dwarf2_per_cu_data *per_cu,
8399 dwarf2_per_objfile *per_objfile,
8400 enum language pretend_language)
8401 {
8402 per_cu->queued = 1;
8403
8404 gdb_assert (per_objfile->per_bfd->queue.has_value ());
8405 per_cu->per_bfd->queue->emplace (per_cu, per_objfile, pretend_language);
8406 }
8407
8408 /* If PER_CU is not yet expanded of queued for expansion, add it to the queue.
8409
8410 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8411 dependency.
8412
8413 Return true if maybe_queue_comp_unit requires the caller to load the CU's
8414 DIEs, false otherwise.
8415
8416 Explanation: there is an invariant that if a CU is queued for expansion
8417 (present in `dwarf2_per_bfd::queue`), then its DIEs are loaded
8418 (a dwarf2_cu object exists for this CU, and `dwarf2_per_objfile::get_cu`
8419 returns non-nullptr). If the CU gets enqueued by this function but its DIEs
8420 are not yet loaded, the the caller must load the CU's DIEs to ensure the
8421 invariant is respected.
8422
8423 The caller is therefore not required to load the CU's DIEs (we return false)
8424 if:
8425
8426 - the CU is already expanded, and therefore does not get enqueued
8427 - the CU gets enqueued for expansion, but its DIEs are already loaded
8428
8429 Note that the caller should not use this function's return value as an
8430 indicator of whether the CU's DIEs are loaded right now, it should check
8431 that by calling `dwarf2_per_objfile::get_cu` instead. */
8432
8433 static int
8434 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8435 dwarf2_per_cu_data *per_cu,
8436 dwarf2_per_objfile *per_objfile,
8437 enum language pretend_language)
8438 {
8439 /* We may arrive here during partial symbol reading, if we need full
8440 DIEs to process an unusual case (e.g. template arguments). Do
8441 not queue PER_CU, just tell our caller to load its DIEs. */
8442 if (per_cu->per_bfd->reading_partial_symbols)
8443 {
8444 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8445
8446 if (cu == NULL || cu->dies == NULL)
8447 return 1;
8448 return 0;
8449 }
8450
8451 /* Mark the dependence relation so that we don't flush PER_CU
8452 too early. */
8453 if (dependent_cu != NULL)
8454 dependent_cu->add_dependence (per_cu);
8455
8456 /* If it's already on the queue, we have nothing to do. */
8457 if (per_cu->queued)
8458 {
8459 /* Verify the invariant that if a CU is queued for expansion, its DIEs are
8460 loaded. */
8461 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
8462
8463 /* If the CU is queued for expansion, it should not already be
8464 expanded. */
8465 gdb_assert (!per_objfile->symtab_set_p (per_cu));
8466
8467 /* The DIEs are already loaded, the caller doesn't need to do it. */
8468 return 0;
8469 }
8470
8471 bool queued = false;
8472 if (!per_objfile->symtab_set_p (per_cu))
8473 {
8474 /* Add it to the queue. */
8475 queue_comp_unit (per_cu, per_objfile, pretend_language);
8476 queued = true;
8477 }
8478
8479 /* If the compilation unit is already loaded, just mark it as
8480 used. */
8481 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8482 if (cu != nullptr)
8483 cu->last_used = 0;
8484
8485 /* Ask the caller to load the CU's DIEs if the CU got enqueued for expansion
8486 and the DIEs are not already loaded. */
8487 return queued && cu == nullptr;
8488 }
8489
8490 /* Process the queue. */
8491
8492 static void
8493 process_queue (dwarf2_per_objfile *per_objfile)
8494 {
8495 dwarf_read_debug_printf ("Expanding one or more symtabs of objfile %s ...",
8496 objfile_name (per_objfile->objfile));
8497
8498 /* The queue starts out with one item, but following a DIE reference
8499 may load a new CU, adding it to the end of the queue. */
8500 while (!per_objfile->per_bfd->queue->empty ())
8501 {
8502 dwarf2_queue_item &item = per_objfile->per_bfd->queue->front ();
8503 dwarf2_per_cu_data *per_cu = item.per_cu;
8504
8505 if (!per_objfile->symtab_set_p (per_cu))
8506 {
8507 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8508
8509 /* Skip dummy CUs. */
8510 if (cu != nullptr)
8511 {
8512 unsigned int debug_print_threshold;
8513 char buf[100];
8514
8515 if (per_cu->is_debug_types)
8516 {
8517 struct signatured_type *sig_type =
8518 (struct signatured_type *) per_cu;
8519
8520 sprintf (buf, "TU %s at offset %s",
8521 hex_string (sig_type->signature),
8522 sect_offset_str (per_cu->sect_off));
8523 /* There can be 100s of TUs.
8524 Only print them in verbose mode. */
8525 debug_print_threshold = 2;
8526 }
8527 else
8528 {
8529 sprintf (buf, "CU at offset %s",
8530 sect_offset_str (per_cu->sect_off));
8531 debug_print_threshold = 1;
8532 }
8533
8534 if (dwarf_read_debug >= debug_print_threshold)
8535 dwarf_read_debug_printf ("Expanding symtab of %s", buf);
8536
8537 if (per_cu->is_debug_types)
8538 process_full_type_unit (cu, item.pretend_language);
8539 else
8540 process_full_comp_unit (cu, item.pretend_language);
8541
8542 if (dwarf_read_debug >= debug_print_threshold)
8543 dwarf_read_debug_printf ("Done expanding %s", buf);
8544 }
8545 }
8546
8547 per_cu->queued = 0;
8548 per_objfile->per_bfd->queue->pop ();
8549 }
8550
8551 dwarf_read_debug_printf ("Done expanding symtabs of %s.",
8552 objfile_name (per_objfile->objfile));
8553 }
8554
8555 /* Read in full symbols for PST, and anything it depends on. */
8556
8557 void
8558 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8559 {
8560 gdb_assert (!readin_p (objfile));
8561
8562 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8563 free_cached_comp_units freer (per_objfile);
8564 expand_dependencies (objfile);
8565
8566 dw2_do_instantiate_symtab (per_cu_data, per_objfile, false);
8567 gdb_assert (get_compunit_symtab (objfile) != nullptr);
8568 }
8569
8570 /* See psympriv.h. */
8571
8572 bool
8573 dwarf2_psymtab::readin_p (struct objfile *objfile) const
8574 {
8575 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8576 return per_objfile->symtab_set_p (per_cu_data);
8577 }
8578
8579 /* See psympriv.h. */
8580
8581 compunit_symtab *
8582 dwarf2_psymtab::get_compunit_symtab (struct objfile *objfile) const
8583 {
8584 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8585 return per_objfile->get_symtab (per_cu_data);
8586 }
8587
8588 /* Trivial hash function for die_info: the hash value of a DIE
8589 is its offset in .debug_info for this objfile. */
8590
8591 static hashval_t
8592 die_hash (const void *item)
8593 {
8594 const struct die_info *die = (const struct die_info *) item;
8595
8596 return to_underlying (die->sect_off);
8597 }
8598
8599 /* Trivial comparison function for die_info structures: two DIEs
8600 are equal if they have the same offset. */
8601
8602 static int
8603 die_eq (const void *item_lhs, const void *item_rhs)
8604 {
8605 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8606 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8607
8608 return die_lhs->sect_off == die_rhs->sect_off;
8609 }
8610
8611 /* Load the DIEs associated with PER_CU into memory.
8612
8613 In some cases, the caller, while reading partial symbols, will need to load
8614 the full symbols for the CU for some reason. It will already have a
8615 dwarf2_cu object for THIS_CU and pass it as EXISTING_CU, so it can be re-used
8616 rather than creating a new one. */
8617
8618 static void
8619 load_full_comp_unit (dwarf2_per_cu_data *this_cu,
8620 dwarf2_per_objfile *per_objfile,
8621 dwarf2_cu *existing_cu,
8622 bool skip_partial,
8623 enum language pretend_language)
8624 {
8625 gdb_assert (! this_cu->is_debug_types);
8626
8627 cutu_reader reader (this_cu, per_objfile, NULL, existing_cu, skip_partial);
8628 if (reader.dummy_p)
8629 return;
8630
8631 struct dwarf2_cu *cu = reader.cu;
8632 const gdb_byte *info_ptr = reader.info_ptr;
8633
8634 gdb_assert (cu->die_hash == NULL);
8635 cu->die_hash =
8636 htab_create_alloc_ex (cu->header.length / 12,
8637 die_hash,
8638 die_eq,
8639 NULL,
8640 &cu->comp_unit_obstack,
8641 hashtab_obstack_allocate,
8642 dummy_obstack_deallocate);
8643
8644 if (reader.comp_unit_die->has_children)
8645 reader.comp_unit_die->child
8646 = read_die_and_siblings (&reader, reader.info_ptr,
8647 &info_ptr, reader.comp_unit_die);
8648 cu->dies = reader.comp_unit_die;
8649 /* comp_unit_die is not stored in die_hash, no need. */
8650
8651 /* We try not to read any attributes in this function, because not
8652 all CUs needed for references have been loaded yet, and symbol
8653 table processing isn't initialized. But we have to set the CU language,
8654 or we won't be able to build types correctly.
8655 Similarly, if we do not read the producer, we can not apply
8656 producer-specific interpretation. */
8657 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8658
8659 reader.keep ();
8660 }
8661
8662 /* Add a DIE to the delayed physname list. */
8663
8664 static void
8665 add_to_method_list (struct type *type, int fnfield_index, int index,
8666 const char *name, struct die_info *die,
8667 struct dwarf2_cu *cu)
8668 {
8669 struct delayed_method_info mi;
8670 mi.type = type;
8671 mi.fnfield_index = fnfield_index;
8672 mi.index = index;
8673 mi.name = name;
8674 mi.die = die;
8675 cu->method_list.push_back (mi);
8676 }
8677
8678 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8679 "const" / "volatile". If so, decrements LEN by the length of the
8680 modifier and return true. Otherwise return false. */
8681
8682 template<size_t N>
8683 static bool
8684 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8685 {
8686 size_t mod_len = sizeof (mod) - 1;
8687 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8688 {
8689 len -= mod_len;
8690 return true;
8691 }
8692 return false;
8693 }
8694
8695 /* Compute the physnames of any methods on the CU's method list.
8696
8697 The computation of method physnames is delayed in order to avoid the
8698 (bad) condition that one of the method's formal parameters is of an as yet
8699 incomplete type. */
8700
8701 static void
8702 compute_delayed_physnames (struct dwarf2_cu *cu)
8703 {
8704 /* Only C++ delays computing physnames. */
8705 if (cu->method_list.empty ())
8706 return;
8707 gdb_assert (cu->per_cu->lang == language_cplus);
8708
8709 for (const delayed_method_info &mi : cu->method_list)
8710 {
8711 const char *physname;
8712 struct fn_fieldlist *fn_flp
8713 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
8714 physname = dwarf2_physname (mi.name, mi.die, cu);
8715 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
8716 = physname ? physname : "";
8717
8718 /* Since there's no tag to indicate whether a method is a
8719 const/volatile overload, extract that information out of the
8720 demangled name. */
8721 if (physname != NULL)
8722 {
8723 size_t len = strlen (physname);
8724
8725 while (1)
8726 {
8727 if (physname[len] == ')') /* shortcut */
8728 break;
8729 else if (check_modifier (physname, len, " const"))
8730 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
8731 else if (check_modifier (physname, len, " volatile"))
8732 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
8733 else
8734 break;
8735 }
8736 }
8737 }
8738
8739 /* The list is no longer needed. */
8740 cu->method_list.clear ();
8741 }
8742
8743 /* Go objects should be embedded in a DW_TAG_module DIE,
8744 and it's not clear if/how imported objects will appear.
8745 To keep Go support simple until that's worked out,
8746 go back through what we've read and create something usable.
8747 We could do this while processing each DIE, and feels kinda cleaner,
8748 but that way is more invasive.
8749 This is to, for example, allow the user to type "p var" or "b main"
8750 without having to specify the package name, and allow lookups
8751 of module.object to work in contexts that use the expression
8752 parser. */
8753
8754 static void
8755 fixup_go_packaging (struct dwarf2_cu *cu)
8756 {
8757 gdb::unique_xmalloc_ptr<char> package_name;
8758 struct pending *list;
8759 int i;
8760
8761 for (list = *cu->get_builder ()->get_global_symbols ();
8762 list != NULL;
8763 list = list->next)
8764 {
8765 for (i = 0; i < list->nsyms; ++i)
8766 {
8767 struct symbol *sym = list->symbol[i];
8768
8769 if (sym->language () == language_go
8770 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8771 {
8772 gdb::unique_xmalloc_ptr<char> this_package_name
8773 (go_symbol_package_name (sym));
8774
8775 if (this_package_name == NULL)
8776 continue;
8777 if (package_name == NULL)
8778 package_name = std::move (this_package_name);
8779 else
8780 {
8781 struct objfile *objfile = cu->per_objfile->objfile;
8782 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
8783 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
8784 (symbol_symtab (sym) != NULL
8785 ? symtab_to_filename_for_display
8786 (symbol_symtab (sym))
8787 : objfile_name (objfile)),
8788 this_package_name.get (), package_name.get ());
8789 }
8790 }
8791 }
8792 }
8793
8794 if (package_name != NULL)
8795 {
8796 struct objfile *objfile = cu->per_objfile->objfile;
8797 const char *saved_package_name = objfile->intern (package_name.get ());
8798 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8799 saved_package_name);
8800 struct symbol *sym;
8801
8802 sym = new (&objfile->objfile_obstack) symbol;
8803 sym->set_language (language_go, &objfile->objfile_obstack);
8804 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
8805 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8806 e.g., "main" finds the "main" module and not C's main(). */
8807 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8808 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8809 SYMBOL_TYPE (sym) = type;
8810
8811 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
8812 }
8813 }
8814
8815 /* Allocate a fully-qualified name consisting of the two parts on the
8816 obstack. */
8817
8818 static const char *
8819 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
8820 {
8821 return obconcat (obstack, p1, "::", p2, (char *) NULL);
8822 }
8823
8824 /* A helper that allocates a variant part to attach to a Rust enum
8825 type. OBSTACK is where the results should be allocated. TYPE is
8826 the type we're processing. DISCRIMINANT_INDEX is the index of the
8827 discriminant. It must be the index of one of the fields of TYPE,
8828 or -1 to mean there is no discriminant (univariant enum).
8829 DEFAULT_INDEX is the index of the default field; or -1 if there is
8830 no default. RANGES is indexed by "effective" field number (the
8831 field index, but omitting the discriminant and default fields) and
8832 must hold the discriminant values used by the variants. Note that
8833 RANGES must have a lifetime at least as long as OBSTACK -- either
8834 already allocated on it, or static. */
8835
8836 static void
8837 alloc_rust_variant (struct obstack *obstack, struct type *type,
8838 int discriminant_index, int default_index,
8839 gdb::array_view<discriminant_range> ranges)
8840 {
8841 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. */
8842 gdb_assert (discriminant_index == -1
8843 || (discriminant_index >= 0
8844 && discriminant_index < type->num_fields ()));
8845 gdb_assert (default_index == -1
8846 || (default_index >= 0 && default_index < type->num_fields ()));
8847
8848 /* We have one variant for each non-discriminant field. */
8849 int n_variants = type->num_fields ();
8850 if (discriminant_index != -1)
8851 --n_variants;
8852
8853 variant *variants = new (obstack) variant[n_variants];
8854 int var_idx = 0;
8855 int range_idx = 0;
8856 for (int i = 0; i < type->num_fields (); ++i)
8857 {
8858 if (i == discriminant_index)
8859 continue;
8860
8861 variants[var_idx].first_field = i;
8862 variants[var_idx].last_field = i + 1;
8863
8864 /* The default field does not need a range, but other fields do.
8865 We skipped the discriminant above. */
8866 if (i != default_index)
8867 {
8868 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
8869 ++range_idx;
8870 }
8871
8872 ++var_idx;
8873 }
8874
8875 gdb_assert (range_idx == ranges.size ());
8876 gdb_assert (var_idx == n_variants);
8877
8878 variant_part *part = new (obstack) variant_part;
8879 part->discriminant_index = discriminant_index;
8880 /* If there is no discriminant, then whether it is signed is of no
8881 consequence. */
8882 part->is_unsigned
8883 = (discriminant_index == -1
8884 ? false
8885 : type->field (discriminant_index).type ()->is_unsigned ());
8886 part->variants = gdb::array_view<variant> (variants, n_variants);
8887
8888 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
8889 gdb::array_view<variant_part> *prop_value
8890 = new (storage) gdb::array_view<variant_part> (part, 1);
8891
8892 struct dynamic_prop prop;
8893 prop.set_variant_parts (prop_value);
8894
8895 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
8896 }
8897
8898 /* Some versions of rustc emitted enums in an unusual way.
8899
8900 Ordinary enums were emitted as unions. The first element of each
8901 structure in the union was named "RUST$ENUM$DISR". This element
8902 held the discriminant.
8903
8904 These versions of Rust also implemented the "non-zero"
8905 optimization. When the enum had two values, and one is empty and
8906 the other holds a pointer that cannot be zero, the pointer is used
8907 as the discriminant, with a zero value meaning the empty variant.
8908 Here, the union's first member is of the form
8909 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
8910 where the fieldnos are the indices of the fields that should be
8911 traversed in order to find the field (which may be several fields deep)
8912 and the variantname is the name of the variant of the case when the
8913 field is zero.
8914
8915 This function recognizes whether TYPE is of one of these forms,
8916 and, if so, smashes it to be a variant type. */
8917
8918 static void
8919 quirk_rust_enum (struct type *type, struct objfile *objfile)
8920 {
8921 gdb_assert (type->code () == TYPE_CODE_UNION);
8922
8923 /* We don't need to deal with empty enums. */
8924 if (type->num_fields () == 0)
8925 return;
8926
8927 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
8928 if (type->num_fields () == 1
8929 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
8930 {
8931 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
8932
8933 /* Decode the field name to find the offset of the
8934 discriminant. */
8935 ULONGEST bit_offset = 0;
8936 struct type *field_type = type->field (0).type ();
8937 while (name[0] >= '0' && name[0] <= '9')
8938 {
8939 char *tail;
8940 unsigned long index = strtoul (name, &tail, 10);
8941 name = tail;
8942 if (*name != '$'
8943 || index >= field_type->num_fields ()
8944 || (TYPE_FIELD_LOC_KIND (field_type, index)
8945 != FIELD_LOC_KIND_BITPOS))
8946 {
8947 complaint (_("Could not parse Rust enum encoding string \"%s\""
8948 "[in module %s]"),
8949 TYPE_FIELD_NAME (type, 0),
8950 objfile_name (objfile));
8951 return;
8952 }
8953 ++name;
8954
8955 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
8956 field_type = field_type->field (index).type ();
8957 }
8958
8959 /* Smash this type to be a structure type. We have to do this
8960 because the type has already been recorded. */
8961 type->set_code (TYPE_CODE_STRUCT);
8962 type->set_num_fields (3);
8963 /* Save the field we care about. */
8964 struct field saved_field = type->field (0);
8965 type->set_fields
8966 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
8967
8968 /* Put the discriminant at index 0. */
8969 type->field (0).set_type (field_type);
8970 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
8971 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
8972 SET_FIELD_BITPOS (type->field (0), bit_offset);
8973
8974 /* The order of fields doesn't really matter, so put the real
8975 field at index 1 and the data-less field at index 2. */
8976 type->field (1) = saved_field;
8977 TYPE_FIELD_NAME (type, 1)
8978 = rust_last_path_segment (type->field (1).type ()->name ());
8979 type->field (1).type ()->set_name
8980 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
8981 TYPE_FIELD_NAME (type, 1)));
8982
8983 const char *dataless_name
8984 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
8985 name);
8986 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
8987 dataless_name);
8988 type->field (2).set_type (dataless_type);
8989 /* NAME points into the original discriminant name, which
8990 already has the correct lifetime. */
8991 TYPE_FIELD_NAME (type, 2) = name;
8992 SET_FIELD_BITPOS (type->field (2), 0);
8993
8994 /* Indicate that this is a variant type. */
8995 static discriminant_range ranges[1] = { { 0, 0 } };
8996 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
8997 }
8998 /* A union with a single anonymous field is probably an old-style
8999 univariant enum. */
9000 else if (type->num_fields () == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9001 {
9002 /* Smash this type to be a structure type. We have to do this
9003 because the type has already been recorded. */
9004 type->set_code (TYPE_CODE_STRUCT);
9005
9006 struct type *field_type = type->field (0).type ();
9007 const char *variant_name
9008 = rust_last_path_segment (field_type->name ());
9009 TYPE_FIELD_NAME (type, 0) = variant_name;
9010 field_type->set_name
9011 (rust_fully_qualify (&objfile->objfile_obstack,
9012 type->name (), variant_name));
9013
9014 alloc_rust_variant (&objfile->objfile_obstack, type, -1, 0, {});
9015 }
9016 else
9017 {
9018 struct type *disr_type = nullptr;
9019 for (int i = 0; i < type->num_fields (); ++i)
9020 {
9021 disr_type = type->field (i).type ();
9022
9023 if (disr_type->code () != TYPE_CODE_STRUCT)
9024 {
9025 /* All fields of a true enum will be structs. */
9026 return;
9027 }
9028 else if (disr_type->num_fields () == 0)
9029 {
9030 /* Could be data-less variant, so keep going. */
9031 disr_type = nullptr;
9032 }
9033 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9034 "RUST$ENUM$DISR") != 0)
9035 {
9036 /* Not a Rust enum. */
9037 return;
9038 }
9039 else
9040 {
9041 /* Found one. */
9042 break;
9043 }
9044 }
9045
9046 /* If we got here without a discriminant, then it's probably
9047 just a union. */
9048 if (disr_type == nullptr)
9049 return;
9050
9051 /* Smash this type to be a structure type. We have to do this
9052 because the type has already been recorded. */
9053 type->set_code (TYPE_CODE_STRUCT);
9054
9055 /* Make space for the discriminant field. */
9056 struct field *disr_field = &disr_type->field (0);
9057 field *new_fields
9058 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9059 * sizeof (struct field)));
9060 memcpy (new_fields + 1, type->fields (),
9061 type->num_fields () * sizeof (struct field));
9062 type->set_fields (new_fields);
9063 type->set_num_fields (type->num_fields () + 1);
9064
9065 /* Install the discriminant at index 0 in the union. */
9066 type->field (0) = *disr_field;
9067 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9068 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9069
9070 /* We need a way to find the correct discriminant given a
9071 variant name. For convenience we build a map here. */
9072 struct type *enum_type = disr_field->type ();
9073 std::unordered_map<std::string, ULONGEST> discriminant_map;
9074 for (int i = 0; i < enum_type->num_fields (); ++i)
9075 {
9076 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9077 {
9078 const char *name
9079 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9080 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9081 }
9082 }
9083
9084 int n_fields = type->num_fields ();
9085 /* We don't need a range entry for the discriminant, but we do
9086 need one for every other field, as there is no default
9087 variant. */
9088 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9089 discriminant_range,
9090 n_fields - 1);
9091 /* Skip the discriminant here. */
9092 for (int i = 1; i < n_fields; ++i)
9093 {
9094 /* Find the final word in the name of this variant's type.
9095 That name can be used to look up the correct
9096 discriminant. */
9097 const char *variant_name
9098 = rust_last_path_segment (type->field (i).type ()->name ());
9099
9100 auto iter = discriminant_map.find (variant_name);
9101 if (iter != discriminant_map.end ())
9102 {
9103 ranges[i - 1].low = iter->second;
9104 ranges[i - 1].high = iter->second;
9105 }
9106
9107 /* In Rust, each element should have the size of the
9108 enclosing enum. */
9109 TYPE_LENGTH (type->field (i).type ()) = TYPE_LENGTH (type);
9110
9111 /* Remove the discriminant field, if it exists. */
9112 struct type *sub_type = type->field (i).type ();
9113 if (sub_type->num_fields () > 0)
9114 {
9115 sub_type->set_num_fields (sub_type->num_fields () - 1);
9116 sub_type->set_fields (sub_type->fields () + 1);
9117 }
9118 TYPE_FIELD_NAME (type, i) = variant_name;
9119 sub_type->set_name
9120 (rust_fully_qualify (&objfile->objfile_obstack,
9121 type->name (), variant_name));
9122 }
9123
9124 /* Indicate that this is a variant type. */
9125 alloc_rust_variant (&objfile->objfile_obstack, type, 0, -1,
9126 gdb::array_view<discriminant_range> (ranges,
9127 n_fields - 1));
9128 }
9129 }
9130
9131 /* Rewrite some Rust unions to be structures with variants parts. */
9132
9133 static void
9134 rust_union_quirks (struct dwarf2_cu *cu)
9135 {
9136 gdb_assert (cu->per_cu->lang == language_rust);
9137 for (type *type_ : cu->rust_unions)
9138 quirk_rust_enum (type_, cu->per_objfile->objfile);
9139 /* We don't need this any more. */
9140 cu->rust_unions.clear ();
9141 }
9142
9143 /* See read.h. */
9144
9145 type_unit_group_unshareable *
9146 dwarf2_per_objfile::get_type_unit_group_unshareable (type_unit_group *tu_group)
9147 {
9148 auto iter = this->m_type_units.find (tu_group);
9149 if (iter != this->m_type_units.end ())
9150 return iter->second.get ();
9151
9152 type_unit_group_unshareable_up uniq (new type_unit_group_unshareable);
9153 type_unit_group_unshareable *result = uniq.get ();
9154 this->m_type_units[tu_group] = std::move (uniq);
9155 return result;
9156 }
9157
9158 struct type *
9159 dwarf2_per_objfile::get_type_for_signatured_type
9160 (signatured_type *sig_type) const
9161 {
9162 auto iter = this->m_type_map.find (sig_type);
9163 if (iter == this->m_type_map.end ())
9164 return nullptr;
9165
9166 return iter->second;
9167 }
9168
9169 void dwarf2_per_objfile::set_type_for_signatured_type
9170 (signatured_type *sig_type, struct type *type)
9171 {
9172 gdb_assert (this->m_type_map.find (sig_type) == this->m_type_map.end ());
9173
9174 this->m_type_map[sig_type] = type;
9175 }
9176
9177 /* A helper function for computing the list of all symbol tables
9178 included by PER_CU. */
9179
9180 static void
9181 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9182 htab_t all_children, htab_t all_type_symtabs,
9183 dwarf2_per_cu_data *per_cu,
9184 dwarf2_per_objfile *per_objfile,
9185 struct compunit_symtab *immediate_parent)
9186 {
9187 void **slot = htab_find_slot (all_children, per_cu, INSERT);
9188 if (*slot != NULL)
9189 {
9190 /* This inclusion and its children have been processed. */
9191 return;
9192 }
9193
9194 *slot = per_cu;
9195
9196 /* Only add a CU if it has a symbol table. */
9197 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9198 if (cust != NULL)
9199 {
9200 /* If this is a type unit only add its symbol table if we haven't
9201 seen it yet (type unit per_cu's can share symtabs). */
9202 if (per_cu->is_debug_types)
9203 {
9204 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9205 if (*slot == NULL)
9206 {
9207 *slot = cust;
9208 result->push_back (cust);
9209 if (cust->user == NULL)
9210 cust->user = immediate_parent;
9211 }
9212 }
9213 else
9214 {
9215 result->push_back (cust);
9216 if (cust->user == NULL)
9217 cust->user = immediate_parent;
9218 }
9219 }
9220
9221 if (!per_cu->imported_symtabs_empty ())
9222 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9223 {
9224 recursively_compute_inclusions (result, all_children,
9225 all_type_symtabs, ptr, per_objfile,
9226 cust);
9227 }
9228 }
9229
9230 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9231 PER_CU. */
9232
9233 static void
9234 compute_compunit_symtab_includes (dwarf2_per_cu_data *per_cu,
9235 dwarf2_per_objfile *per_objfile)
9236 {
9237 gdb_assert (! per_cu->is_debug_types);
9238
9239 if (!per_cu->imported_symtabs_empty ())
9240 {
9241 int len;
9242 std::vector<compunit_symtab *> result_symtabs;
9243 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9244
9245 /* If we don't have a symtab, we can just skip this case. */
9246 if (cust == NULL)
9247 return;
9248
9249 htab_up all_children (htab_create_alloc (1, htab_hash_pointer,
9250 htab_eq_pointer,
9251 NULL, xcalloc, xfree));
9252 htab_up all_type_symtabs (htab_create_alloc (1, htab_hash_pointer,
9253 htab_eq_pointer,
9254 NULL, xcalloc, xfree));
9255
9256 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9257 {
9258 recursively_compute_inclusions (&result_symtabs, all_children.get (),
9259 all_type_symtabs.get (), ptr,
9260 per_objfile, cust);
9261 }
9262
9263 /* Now we have a transitive closure of all the included symtabs. */
9264 len = result_symtabs.size ();
9265 cust->includes
9266 = XOBNEWVEC (&per_objfile->objfile->objfile_obstack,
9267 struct compunit_symtab *, len + 1);
9268 memcpy (cust->includes, result_symtabs.data (),
9269 len * sizeof (compunit_symtab *));
9270 cust->includes[len] = NULL;
9271 }
9272 }
9273
9274 /* Compute the 'includes' field for the symtabs of all the CUs we just
9275 read. */
9276
9277 static void
9278 process_cu_includes (dwarf2_per_objfile *per_objfile)
9279 {
9280 for (dwarf2_per_cu_data *iter : per_objfile->per_bfd->just_read_cus)
9281 {
9282 if (! iter->is_debug_types)
9283 compute_compunit_symtab_includes (iter, per_objfile);
9284 }
9285
9286 per_objfile->per_bfd->just_read_cus.clear ();
9287 }
9288
9289 /* Generate full symbol information for CU, whose DIEs have
9290 already been loaded into memory. */
9291
9292 static void
9293 process_full_comp_unit (dwarf2_cu *cu, enum language pretend_language)
9294 {
9295 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9296 struct objfile *objfile = per_objfile->objfile;
9297 struct gdbarch *gdbarch = objfile->arch ();
9298 CORE_ADDR lowpc, highpc;
9299 struct compunit_symtab *cust;
9300 CORE_ADDR baseaddr;
9301 struct block *static_block;
9302 CORE_ADDR addr;
9303
9304 baseaddr = objfile->text_section_offset ();
9305
9306 /* Clear the list here in case something was left over. */
9307 cu->method_list.clear ();
9308
9309 dwarf2_find_base_address (cu->dies, cu);
9310
9311 /* Before we start reading the top-level DIE, ensure it has a valid tag
9312 type. */
9313 switch (cu->dies->tag)
9314 {
9315 case DW_TAG_compile_unit:
9316 case DW_TAG_partial_unit:
9317 case DW_TAG_type_unit:
9318 break;
9319 default:
9320 error (_("Dwarf Error: unexpected tag '%s' at offset %s [in module %s]"),
9321 dwarf_tag_name (cu->dies->tag),
9322 sect_offset_str (cu->per_cu->sect_off),
9323 objfile_name (per_objfile->objfile));
9324 }
9325
9326 /* Do line number decoding in read_file_scope () */
9327 process_die (cu->dies, cu);
9328
9329 /* For now fudge the Go package. */
9330 if (cu->per_cu->lang == language_go)
9331 fixup_go_packaging (cu);
9332
9333 /* Now that we have processed all the DIEs in the CU, all the types
9334 should be complete, and it should now be safe to compute all of the
9335 physnames. */
9336 compute_delayed_physnames (cu);
9337
9338 if (cu->per_cu->lang == language_rust)
9339 rust_union_quirks (cu);
9340
9341 /* Some compilers don't define a DW_AT_high_pc attribute for the
9342 compilation unit. If the DW_AT_high_pc is missing, synthesize
9343 it, by scanning the DIE's below the compilation unit. */
9344 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9345
9346 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9347 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9348
9349 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9350 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9351 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9352 addrmap to help ensure it has an accurate map of pc values belonging to
9353 this comp unit. */
9354 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9355
9356 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9357 SECT_OFF_TEXT (objfile),
9358 0);
9359
9360 if (cust != NULL)
9361 {
9362 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9363
9364 /* Set symtab language to language from DW_AT_language. If the
9365 compilation is from a C file generated by language preprocessors, do
9366 not set the language if it was already deduced by start_subfile. */
9367 if (!(cu->per_cu->lang == language_c
9368 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9369 COMPUNIT_FILETABS (cust)->language = cu->per_cu->lang;
9370
9371 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9372 produce DW_AT_location with location lists but it can be possibly
9373 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9374 there were bugs in prologue debug info, fixed later in GCC-4.5
9375 by "unwind info for epilogues" patch (which is not directly related).
9376
9377 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9378 needed, it would be wrong due to missing DW_AT_producer there.
9379
9380 Still one can confuse GDB by using non-standard GCC compilation
9381 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9382 */
9383 if (cu->has_loclist && gcc_4_minor >= 5)
9384 cust->locations_valid = 1;
9385
9386 if (gcc_4_minor >= 5)
9387 cust->epilogue_unwind_valid = 1;
9388
9389 cust->call_site_htab = cu->call_site_htab;
9390 }
9391
9392 per_objfile->set_symtab (cu->per_cu, cust);
9393
9394 /* Push it for inclusion processing later. */
9395 per_objfile->per_bfd->just_read_cus.push_back (cu->per_cu);
9396
9397 /* Not needed any more. */
9398 cu->reset_builder ();
9399 }
9400
9401 /* Generate full symbol information for type unit CU, whose DIEs have
9402 already been loaded into memory. */
9403
9404 static void
9405 process_full_type_unit (dwarf2_cu *cu,
9406 enum language pretend_language)
9407 {
9408 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9409 struct objfile *objfile = per_objfile->objfile;
9410 struct compunit_symtab *cust;
9411 struct signatured_type *sig_type;
9412
9413 gdb_assert (cu->per_cu->is_debug_types);
9414 sig_type = (struct signatured_type *) cu->per_cu;
9415
9416 /* Clear the list here in case something was left over. */
9417 cu->method_list.clear ();
9418
9419 /* The symbol tables are set up in read_type_unit_scope. */
9420 process_die (cu->dies, cu);
9421
9422 /* For now fudge the Go package. */
9423 if (cu->per_cu->lang == language_go)
9424 fixup_go_packaging (cu);
9425
9426 /* Now that we have processed all the DIEs in the CU, all the types
9427 should be complete, and it should now be safe to compute all of the
9428 physnames. */
9429 compute_delayed_physnames (cu);
9430
9431 if (cu->per_cu->lang == language_rust)
9432 rust_union_quirks (cu);
9433
9434 /* TUs share symbol tables.
9435 If this is the first TU to use this symtab, complete the construction
9436 of it with end_expandable_symtab. Otherwise, complete the addition of
9437 this TU's symbols to the existing symtab. */
9438 type_unit_group_unshareable *tug_unshare =
9439 per_objfile->get_type_unit_group_unshareable (sig_type->type_unit_group);
9440 if (tug_unshare->compunit_symtab == NULL)
9441 {
9442 buildsym_compunit *builder = cu->get_builder ();
9443 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9444 tug_unshare->compunit_symtab = cust;
9445
9446 if (cust != NULL)
9447 {
9448 /* Set symtab language to language from DW_AT_language. If the
9449 compilation is from a C file generated by language preprocessors,
9450 do not set the language if it was already deduced by
9451 start_subfile. */
9452 if (!(cu->per_cu->lang == language_c
9453 && COMPUNIT_FILETABS (cust)->language != language_c))
9454 COMPUNIT_FILETABS (cust)->language = cu->per_cu->lang;
9455 }
9456 }
9457 else
9458 {
9459 cu->get_builder ()->augment_type_symtab ();
9460 cust = tug_unshare->compunit_symtab;
9461 }
9462
9463 per_objfile->set_symtab (cu->per_cu, cust);
9464
9465 /* Not needed any more. */
9466 cu->reset_builder ();
9467 }
9468
9469 /* Process an imported unit DIE. */
9470
9471 static void
9472 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9473 {
9474 struct attribute *attr;
9475
9476 /* For now we don't handle imported units in type units. */
9477 if (cu->per_cu->is_debug_types)
9478 {
9479 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9480 " supported in type units [in module %s]"),
9481 objfile_name (cu->per_objfile->objfile));
9482 }
9483
9484 attr = dwarf2_attr (die, DW_AT_import, cu);
9485 if (attr != NULL)
9486 {
9487 sect_offset sect_off = attr->get_ref_die_offset ();
9488 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9489 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9490 dwarf2_per_cu_data *per_cu
9491 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, per_objfile);
9492
9493 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9494 into another compilation unit, at root level. Regard this as a hint,
9495 and ignore it. */
9496 if (die->parent && die->parent->parent == NULL
9497 && per_cu->unit_type == DW_UT_compile
9498 && per_cu->lang == language_cplus)
9499 return;
9500
9501 /* If necessary, add it to the queue and load its DIEs. */
9502 if (maybe_queue_comp_unit (cu, per_cu, per_objfile,
9503 cu->per_cu->lang))
9504 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
9505 false, cu->per_cu->lang);
9506
9507 cu->per_cu->imported_symtabs_push (per_cu);
9508 }
9509 }
9510
9511 /* RAII object that represents a process_die scope: i.e.,
9512 starts/finishes processing a DIE. */
9513 class process_die_scope
9514 {
9515 public:
9516 process_die_scope (die_info *die, dwarf2_cu *cu)
9517 : m_die (die), m_cu (cu)
9518 {
9519 /* We should only be processing DIEs not already in process. */
9520 gdb_assert (!m_die->in_process);
9521 m_die->in_process = true;
9522 }
9523
9524 ~process_die_scope ()
9525 {
9526 m_die->in_process = false;
9527
9528 /* If we're done processing the DIE for the CU that owns the line
9529 header, we don't need the line header anymore. */
9530 if (m_cu->line_header_die_owner == m_die)
9531 {
9532 delete m_cu->line_header;
9533 m_cu->line_header = NULL;
9534 m_cu->line_header_die_owner = NULL;
9535 }
9536 }
9537
9538 private:
9539 die_info *m_die;
9540 dwarf2_cu *m_cu;
9541 };
9542
9543 /* Process a die and its children. */
9544
9545 static void
9546 process_die (struct die_info *die, struct dwarf2_cu *cu)
9547 {
9548 process_die_scope scope (die, cu);
9549
9550 switch (die->tag)
9551 {
9552 case DW_TAG_padding:
9553 break;
9554 case DW_TAG_compile_unit:
9555 case DW_TAG_partial_unit:
9556 read_file_scope (die, cu);
9557 break;
9558 case DW_TAG_type_unit:
9559 read_type_unit_scope (die, cu);
9560 break;
9561 case DW_TAG_subprogram:
9562 /* Nested subprograms in Fortran get a prefix. */
9563 if (cu->per_cu->lang == language_fortran
9564 && die->parent != NULL
9565 && die->parent->tag == DW_TAG_subprogram)
9566 cu->processing_has_namespace_info = true;
9567 /* Fall through. */
9568 case DW_TAG_inlined_subroutine:
9569 read_func_scope (die, cu);
9570 break;
9571 case DW_TAG_lexical_block:
9572 case DW_TAG_try_block:
9573 case DW_TAG_catch_block:
9574 read_lexical_block_scope (die, cu);
9575 break;
9576 case DW_TAG_call_site:
9577 case DW_TAG_GNU_call_site:
9578 read_call_site_scope (die, cu);
9579 break;
9580 case DW_TAG_class_type:
9581 case DW_TAG_interface_type:
9582 case DW_TAG_structure_type:
9583 case DW_TAG_union_type:
9584 process_structure_scope (die, cu);
9585 break;
9586 case DW_TAG_enumeration_type:
9587 process_enumeration_scope (die, cu);
9588 break;
9589
9590 /* These dies have a type, but processing them does not create
9591 a symbol or recurse to process the children. Therefore we can
9592 read them on-demand through read_type_die. */
9593 case DW_TAG_subroutine_type:
9594 case DW_TAG_set_type:
9595 case DW_TAG_pointer_type:
9596 case DW_TAG_ptr_to_member_type:
9597 case DW_TAG_reference_type:
9598 case DW_TAG_rvalue_reference_type:
9599 case DW_TAG_string_type:
9600 break;
9601
9602 case DW_TAG_array_type:
9603 /* We only need to handle this case for Ada -- in other
9604 languages, it's normal for the compiler to emit a typedef
9605 instead. */
9606 if (cu->per_cu->lang != language_ada)
9607 break;
9608 /* FALLTHROUGH */
9609 case DW_TAG_base_type:
9610 case DW_TAG_subrange_type:
9611 case DW_TAG_typedef:
9612 /* Add a typedef symbol for the type definition, if it has a
9613 DW_AT_name. */
9614 new_symbol (die, read_type_die (die, cu), cu);
9615 break;
9616 case DW_TAG_common_block:
9617 read_common_block (die, cu);
9618 break;
9619 case DW_TAG_common_inclusion:
9620 break;
9621 case DW_TAG_namespace:
9622 cu->processing_has_namespace_info = true;
9623 read_namespace (die, cu);
9624 break;
9625 case DW_TAG_module:
9626 cu->processing_has_namespace_info = true;
9627 read_module (die, cu);
9628 break;
9629 case DW_TAG_imported_declaration:
9630 cu->processing_has_namespace_info = true;
9631 if (read_namespace_alias (die, cu))
9632 break;
9633 /* The declaration is not a global namespace alias. */
9634 /* Fall through. */
9635 case DW_TAG_imported_module:
9636 cu->processing_has_namespace_info = true;
9637 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9638 || cu->per_cu->lang != language_fortran))
9639 complaint (_("Tag '%s' has unexpected children"),
9640 dwarf_tag_name (die->tag));
9641 read_import_statement (die, cu);
9642 break;
9643
9644 case DW_TAG_imported_unit:
9645 process_imported_unit_die (die, cu);
9646 break;
9647
9648 case DW_TAG_variable:
9649 read_variable (die, cu);
9650 break;
9651
9652 default:
9653 new_symbol (die, NULL, cu);
9654 break;
9655 }
9656 }
9657 \f
9658 /* DWARF name computation. */
9659
9660 /* A helper function for dwarf2_compute_name which determines whether DIE
9661 needs to have the name of the scope prepended to the name listed in the
9662 die. */
9663
9664 static int
9665 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9666 {
9667 struct attribute *attr;
9668
9669 switch (die->tag)
9670 {
9671 case DW_TAG_namespace:
9672 case DW_TAG_typedef:
9673 case DW_TAG_class_type:
9674 case DW_TAG_interface_type:
9675 case DW_TAG_structure_type:
9676 case DW_TAG_union_type:
9677 case DW_TAG_enumeration_type:
9678 case DW_TAG_enumerator:
9679 case DW_TAG_subprogram:
9680 case DW_TAG_inlined_subroutine:
9681 case DW_TAG_member:
9682 case DW_TAG_imported_declaration:
9683 return 1;
9684
9685 case DW_TAG_variable:
9686 case DW_TAG_constant:
9687 /* We only need to prefix "globally" visible variables. These include
9688 any variable marked with DW_AT_external or any variable that
9689 lives in a namespace. [Variables in anonymous namespaces
9690 require prefixing, but they are not DW_AT_external.] */
9691
9692 if (dwarf2_attr (die, DW_AT_specification, cu))
9693 {
9694 struct dwarf2_cu *spec_cu = cu;
9695
9696 return die_needs_namespace (die_specification (die, &spec_cu),
9697 spec_cu);
9698 }
9699
9700 attr = dwarf2_attr (die, DW_AT_external, cu);
9701 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9702 && die->parent->tag != DW_TAG_module)
9703 return 0;
9704 /* A variable in a lexical block of some kind does not need a
9705 namespace, even though in C++ such variables may be external
9706 and have a mangled name. */
9707 if (die->parent->tag == DW_TAG_lexical_block
9708 || die->parent->tag == DW_TAG_try_block
9709 || die->parent->tag == DW_TAG_catch_block
9710 || die->parent->tag == DW_TAG_subprogram)
9711 return 0;
9712 return 1;
9713
9714 default:
9715 return 0;
9716 }
9717 }
9718
9719 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9720 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9721 defined for the given DIE. */
9722
9723 static struct attribute *
9724 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9725 {
9726 struct attribute *attr;
9727
9728 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9729 if (attr == NULL)
9730 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9731
9732 return attr;
9733 }
9734
9735 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9736 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9737 defined for the given DIE. */
9738
9739 static const char *
9740 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9741 {
9742 const char *linkage_name;
9743
9744 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9745 if (linkage_name == NULL)
9746 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9747
9748 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9749 See https://github.com/rust-lang/rust/issues/32925. */
9750 if (cu->per_cu->lang == language_rust && linkage_name != NULL
9751 && strchr (linkage_name, '{') != NULL)
9752 linkage_name = NULL;
9753
9754 return linkage_name;
9755 }
9756
9757 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9758 compute the physname for the object, which include a method's:
9759 - formal parameters (C++),
9760 - receiver type (Go),
9761
9762 The term "physname" is a bit confusing.
9763 For C++, for example, it is the demangled name.
9764 For Go, for example, it's the mangled name.
9765
9766 For Ada, return the DIE's linkage name rather than the fully qualified
9767 name. PHYSNAME is ignored..
9768
9769 The result is allocated on the objfile->per_bfd's obstack and
9770 canonicalized. */
9771
9772 static const char *
9773 dwarf2_compute_name (const char *name,
9774 struct die_info *die, struct dwarf2_cu *cu,
9775 int physname)
9776 {
9777 struct objfile *objfile = cu->per_objfile->objfile;
9778
9779 if (name == NULL)
9780 name = dwarf2_name (die, cu);
9781
9782 enum language lang = cu->per_cu->lang;
9783
9784 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9785 but otherwise compute it by typename_concat inside GDB.
9786 FIXME: Actually this is not really true, or at least not always true.
9787 It's all very confusing. compute_and_set_names doesn't try to demangle
9788 Fortran names because there is no mangling standard. So new_symbol
9789 will set the demangled name to the result of dwarf2_full_name, and it is
9790 the demangled name that GDB uses if it exists. */
9791 if (lang == language_ada
9792 || (lang == language_fortran && physname))
9793 {
9794 /* For Ada unit, we prefer the linkage name over the name, as
9795 the former contains the exported name, which the user expects
9796 to be able to reference. Ideally, we want the user to be able
9797 to reference this entity using either natural or linkage name,
9798 but we haven't started looking at this enhancement yet. */
9799 const char *linkage_name = dw2_linkage_name (die, cu);
9800
9801 if (linkage_name != NULL)
9802 return linkage_name;
9803 }
9804
9805 /* These are the only languages we know how to qualify names in. */
9806 if (name != NULL
9807 && (lang == language_cplus
9808 || lang == language_fortran || lang == language_d
9809 || lang == language_rust))
9810 {
9811 if (die_needs_namespace (die, cu))
9812 {
9813 const char *prefix;
9814 const char *canonical_name = NULL;
9815
9816 string_file buf;
9817
9818 prefix = determine_prefix (die, cu);
9819 if (*prefix != '\0')
9820 {
9821 gdb::unique_xmalloc_ptr<char> prefixed_name
9822 (typename_concat (NULL, prefix, name, physname, cu));
9823
9824 buf.puts (prefixed_name.get ());
9825 }
9826 else
9827 buf.puts (name);
9828
9829 /* Template parameters may be specified in the DIE's DW_AT_name, or
9830 as children with DW_TAG_template_type_param or
9831 DW_TAG_value_type_param. If the latter, add them to the name
9832 here. If the name already has template parameters, then
9833 skip this step; some versions of GCC emit both, and
9834 it is more efficient to use the pre-computed name.
9835
9836 Something to keep in mind about this process: it is very
9837 unlikely, or in some cases downright impossible, to produce
9838 something that will match the mangled name of a function.
9839 If the definition of the function has the same debug info,
9840 we should be able to match up with it anyway. But fallbacks
9841 using the minimal symbol, for instance to find a method
9842 implemented in a stripped copy of libstdc++, will not work.
9843 If we do not have debug info for the definition, we will have to
9844 match them up some other way.
9845
9846 When we do name matching there is a related problem with function
9847 templates; two instantiated function templates are allowed to
9848 differ only by their return types, which we do not add here. */
9849
9850 if (lang == language_cplus && strchr (name, '<') == NULL)
9851 {
9852 struct attribute *attr;
9853 struct die_info *child;
9854 int first = 1;
9855
9856 die->building_fullname = 1;
9857
9858 for (child = die->child; child != NULL; child = child->sibling)
9859 {
9860 struct type *type;
9861 LONGEST value;
9862 const gdb_byte *bytes;
9863 struct dwarf2_locexpr_baton *baton;
9864 struct value *v;
9865
9866 if (child->tag != DW_TAG_template_type_param
9867 && child->tag != DW_TAG_template_value_param)
9868 continue;
9869
9870 if (first)
9871 {
9872 buf.puts ("<");
9873 first = 0;
9874 }
9875 else
9876 buf.puts (", ");
9877
9878 attr = dwarf2_attr (child, DW_AT_type, cu);
9879 if (attr == NULL)
9880 {
9881 complaint (_("template parameter missing DW_AT_type"));
9882 buf.puts ("UNKNOWN_TYPE");
9883 continue;
9884 }
9885 type = die_type (child, cu);
9886
9887 if (child->tag == DW_TAG_template_type_param)
9888 {
9889 cu->language_defn->print_type (type, "", &buf, -1, 0,
9890 &type_print_raw_options);
9891 continue;
9892 }
9893
9894 attr = dwarf2_attr (child, DW_AT_const_value, cu);
9895 if (attr == NULL)
9896 {
9897 complaint (_("template parameter missing "
9898 "DW_AT_const_value"));
9899 buf.puts ("UNKNOWN_VALUE");
9900 continue;
9901 }
9902
9903 dwarf2_const_value_attr (attr, type, name,
9904 &cu->comp_unit_obstack, cu,
9905 &value, &bytes, &baton);
9906
9907 if (type->has_no_signedness ())
9908 /* GDB prints characters as NUMBER 'CHAR'. If that's
9909 changed, this can use value_print instead. */
9910 cu->language_defn->printchar (value, type, &buf);
9911 else
9912 {
9913 struct value_print_options opts;
9914
9915 if (baton != NULL)
9916 v = dwarf2_evaluate_loc_desc (type, NULL,
9917 baton->data,
9918 baton->size,
9919 baton->per_cu,
9920 baton->per_objfile);
9921 else if (bytes != NULL)
9922 {
9923 v = allocate_value (type);
9924 memcpy (value_contents_writeable (v), bytes,
9925 TYPE_LENGTH (type));
9926 }
9927 else
9928 v = value_from_longest (type, value);
9929
9930 /* Specify decimal so that we do not depend on
9931 the radix. */
9932 get_formatted_print_options (&opts, 'd');
9933 opts.raw = 1;
9934 value_print (v, &buf, &opts);
9935 release_value (v);
9936 }
9937 }
9938
9939 die->building_fullname = 0;
9940
9941 if (!first)
9942 {
9943 /* Close the argument list, with a space if necessary
9944 (nested templates). */
9945 if (!buf.empty () && buf.string ().back () == '>')
9946 buf.puts (" >");
9947 else
9948 buf.puts (">");
9949 }
9950 }
9951
9952 /* For C++ methods, append formal parameter type
9953 information, if PHYSNAME. */
9954
9955 if (physname && die->tag == DW_TAG_subprogram
9956 && lang == language_cplus)
9957 {
9958 struct type *type = read_type_die (die, cu);
9959
9960 c_type_print_args (type, &buf, 1, lang,
9961 &type_print_raw_options);
9962
9963 if (lang == language_cplus)
9964 {
9965 /* Assume that an artificial first parameter is
9966 "this", but do not crash if it is not. RealView
9967 marks unnamed (and thus unused) parameters as
9968 artificial; there is no way to differentiate
9969 the two cases. */
9970 if (type->num_fields () > 0
9971 && TYPE_FIELD_ARTIFICIAL (type, 0)
9972 && type->field (0).type ()->code () == TYPE_CODE_PTR
9973 && TYPE_CONST (TYPE_TARGET_TYPE (type->field (0).type ())))
9974 buf.puts (" const");
9975 }
9976 }
9977
9978 const std::string &intermediate_name = buf.string ();
9979
9980 if (lang == language_cplus)
9981 canonical_name
9982 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
9983 objfile);
9984
9985 /* If we only computed INTERMEDIATE_NAME, or if
9986 INTERMEDIATE_NAME is already canonical, then we need to
9987 intern it. */
9988 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
9989 name = objfile->intern (intermediate_name);
9990 else
9991 name = canonical_name;
9992 }
9993 }
9994
9995 return name;
9996 }
9997
9998 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9999 If scope qualifiers are appropriate they will be added. The result
10000 will be allocated on the storage_obstack, or NULL if the DIE does
10001 not have a name. NAME may either be from a previous call to
10002 dwarf2_name or NULL.
10003
10004 The output string will be canonicalized (if C++). */
10005
10006 static const char *
10007 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10008 {
10009 return dwarf2_compute_name (name, die, cu, 0);
10010 }
10011
10012 /* Construct a physname for the given DIE in CU. NAME may either be
10013 from a previous call to dwarf2_name or NULL. The result will be
10014 allocated on the objfile_objstack or NULL if the DIE does not have a
10015 name.
10016
10017 The output string will be canonicalized (if C++). */
10018
10019 static const char *
10020 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10021 {
10022 struct objfile *objfile = cu->per_objfile->objfile;
10023 const char *retval, *mangled = NULL, *canon = NULL;
10024 int need_copy = 1;
10025
10026 /* In this case dwarf2_compute_name is just a shortcut not building anything
10027 on its own. */
10028 if (!die_needs_namespace (die, cu))
10029 return dwarf2_compute_name (name, die, cu, 1);
10030
10031 if (cu->per_cu->lang != language_rust)
10032 mangled = dw2_linkage_name (die, cu);
10033
10034 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10035 has computed. */
10036 gdb::unique_xmalloc_ptr<char> demangled;
10037 if (mangled != NULL)
10038 {
10039 if (cu->language_defn->store_sym_names_in_linkage_form_p ())
10040 {
10041 /* Do nothing (do not demangle the symbol name). */
10042 }
10043 else
10044 {
10045 /* Use DMGL_RET_DROP for C++ template functions to suppress
10046 their return type. It is easier for GDB users to search
10047 for such functions as `name(params)' than `long name(params)'.
10048 In such case the minimal symbol names do not match the full
10049 symbol names but for template functions there is never a need
10050 to look up their definition from their declaration so
10051 the only disadvantage remains the minimal symbol variant
10052 `long name(params)' does not have the proper inferior type. */
10053 demangled.reset (gdb_demangle (mangled,
10054 (DMGL_PARAMS | DMGL_ANSI
10055 | DMGL_RET_DROP)));
10056 }
10057 if (demangled)
10058 canon = demangled.get ();
10059 else
10060 {
10061 canon = mangled;
10062 need_copy = 0;
10063 }
10064 }
10065
10066 if (canon == NULL || check_physname)
10067 {
10068 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10069
10070 if (canon != NULL && strcmp (physname, canon) != 0)
10071 {
10072 /* It may not mean a bug in GDB. The compiler could also
10073 compute DW_AT_linkage_name incorrectly. But in such case
10074 GDB would need to be bug-to-bug compatible. */
10075
10076 complaint (_("Computed physname <%s> does not match demangled <%s> "
10077 "(from linkage <%s>) - DIE at %s [in module %s]"),
10078 physname, canon, mangled, sect_offset_str (die->sect_off),
10079 objfile_name (objfile));
10080
10081 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10082 is available here - over computed PHYSNAME. It is safer
10083 against both buggy GDB and buggy compilers. */
10084
10085 retval = canon;
10086 }
10087 else
10088 {
10089 retval = physname;
10090 need_copy = 0;
10091 }
10092 }
10093 else
10094 retval = canon;
10095
10096 if (need_copy)
10097 retval = objfile->intern (retval);
10098
10099 return retval;
10100 }
10101
10102 /* Inspect DIE in CU for a namespace alias. If one exists, record
10103 a new symbol for it.
10104
10105 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10106
10107 static int
10108 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10109 {
10110 struct attribute *attr;
10111
10112 /* If the die does not have a name, this is not a namespace
10113 alias. */
10114 attr = dwarf2_attr (die, DW_AT_name, cu);
10115 if (attr != NULL)
10116 {
10117 int num;
10118 struct die_info *d = die;
10119 struct dwarf2_cu *imported_cu = cu;
10120
10121 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10122 keep inspecting DIEs until we hit the underlying import. */
10123 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10124 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10125 {
10126 attr = dwarf2_attr (d, DW_AT_import, cu);
10127 if (attr == NULL)
10128 break;
10129
10130 d = follow_die_ref (d, attr, &imported_cu);
10131 if (d->tag != DW_TAG_imported_declaration)
10132 break;
10133 }
10134
10135 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10136 {
10137 complaint (_("DIE at %s has too many recursively imported "
10138 "declarations"), sect_offset_str (d->sect_off));
10139 return 0;
10140 }
10141
10142 if (attr != NULL)
10143 {
10144 struct type *type;
10145 sect_offset sect_off = attr->get_ref_die_offset ();
10146
10147 type = get_die_type_at_offset (sect_off, cu->per_cu, cu->per_objfile);
10148 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10149 {
10150 /* This declaration is a global namespace alias. Add
10151 a symbol for it whose type is the aliased namespace. */
10152 new_symbol (die, type, cu);
10153 return 1;
10154 }
10155 }
10156 }
10157
10158 return 0;
10159 }
10160
10161 /* Return the using directives repository (global or local?) to use in the
10162 current context for CU.
10163
10164 For Ada, imported declarations can materialize renamings, which *may* be
10165 global. However it is impossible (for now?) in DWARF to distinguish
10166 "external" imported declarations and "static" ones. As all imported
10167 declarations seem to be static in all other languages, make them all CU-wide
10168 global only in Ada. */
10169
10170 static struct using_direct **
10171 using_directives (struct dwarf2_cu *cu)
10172 {
10173 if (cu->per_cu->lang == language_ada
10174 && cu->get_builder ()->outermost_context_p ())
10175 return cu->get_builder ()->get_global_using_directives ();
10176 else
10177 return cu->get_builder ()->get_local_using_directives ();
10178 }
10179
10180 /* Read the import statement specified by the given die and record it. */
10181
10182 static void
10183 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10184 {
10185 struct objfile *objfile = cu->per_objfile->objfile;
10186 struct attribute *import_attr;
10187 struct die_info *imported_die, *child_die;
10188 struct dwarf2_cu *imported_cu;
10189 const char *imported_name;
10190 const char *imported_name_prefix;
10191 const char *canonical_name;
10192 const char *import_alias;
10193 const char *imported_declaration = NULL;
10194 const char *import_prefix;
10195 std::vector<const char *> excludes;
10196
10197 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10198 if (import_attr == NULL)
10199 {
10200 complaint (_("Tag '%s' has no DW_AT_import"),
10201 dwarf_tag_name (die->tag));
10202 return;
10203 }
10204
10205 imported_cu = cu;
10206 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10207 imported_name = dwarf2_name (imported_die, imported_cu);
10208 if (imported_name == NULL)
10209 {
10210 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10211
10212 The import in the following code:
10213 namespace A
10214 {
10215 typedef int B;
10216 }
10217
10218 int main ()
10219 {
10220 using A::B;
10221 B b;
10222 return b;
10223 }
10224
10225 ...
10226 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10227 <52> DW_AT_decl_file : 1
10228 <53> DW_AT_decl_line : 6
10229 <54> DW_AT_import : <0x75>
10230 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10231 <59> DW_AT_name : B
10232 <5b> DW_AT_decl_file : 1
10233 <5c> DW_AT_decl_line : 2
10234 <5d> DW_AT_type : <0x6e>
10235 ...
10236 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10237 <76> DW_AT_byte_size : 4
10238 <77> DW_AT_encoding : 5 (signed)
10239
10240 imports the wrong die ( 0x75 instead of 0x58 ).
10241 This case will be ignored until the gcc bug is fixed. */
10242 return;
10243 }
10244
10245 /* Figure out the local name after import. */
10246 import_alias = dwarf2_name (die, cu);
10247
10248 /* Figure out where the statement is being imported to. */
10249 import_prefix = determine_prefix (die, cu);
10250
10251 /* Figure out what the scope of the imported die is and prepend it
10252 to the name of the imported die. */
10253 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10254
10255 if (imported_die->tag != DW_TAG_namespace
10256 && imported_die->tag != DW_TAG_module)
10257 {
10258 imported_declaration = imported_name;
10259 canonical_name = imported_name_prefix;
10260 }
10261 else if (strlen (imported_name_prefix) > 0)
10262 canonical_name = obconcat (&objfile->objfile_obstack,
10263 imported_name_prefix,
10264 (cu->per_cu->lang == language_d
10265 ? "."
10266 : "::"),
10267 imported_name, (char *) NULL);
10268 else
10269 canonical_name = imported_name;
10270
10271 if (die->tag == DW_TAG_imported_module
10272 && cu->per_cu->lang == language_fortran)
10273 for (child_die = die->child; child_die && child_die->tag;
10274 child_die = child_die->sibling)
10275 {
10276 /* DWARF-4: A Fortran use statement with a “rename list” may be
10277 represented by an imported module entry with an import attribute
10278 referring to the module and owned entries corresponding to those
10279 entities that are renamed as part of being imported. */
10280
10281 if (child_die->tag != DW_TAG_imported_declaration)
10282 {
10283 complaint (_("child DW_TAG_imported_declaration expected "
10284 "- DIE at %s [in module %s]"),
10285 sect_offset_str (child_die->sect_off),
10286 objfile_name (objfile));
10287 continue;
10288 }
10289
10290 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10291 if (import_attr == NULL)
10292 {
10293 complaint (_("Tag '%s' has no DW_AT_import"),
10294 dwarf_tag_name (child_die->tag));
10295 continue;
10296 }
10297
10298 imported_cu = cu;
10299 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10300 &imported_cu);
10301 imported_name = dwarf2_name (imported_die, imported_cu);
10302 if (imported_name == NULL)
10303 {
10304 complaint (_("child DW_TAG_imported_declaration has unknown "
10305 "imported name - DIE at %s [in module %s]"),
10306 sect_offset_str (child_die->sect_off),
10307 objfile_name (objfile));
10308 continue;
10309 }
10310
10311 excludes.push_back (imported_name);
10312
10313 process_die (child_die, cu);
10314 }
10315
10316 add_using_directive (using_directives (cu),
10317 import_prefix,
10318 canonical_name,
10319 import_alias,
10320 imported_declaration,
10321 excludes,
10322 0,
10323 &objfile->objfile_obstack);
10324 }
10325
10326 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10327 types, but gives them a size of zero. Starting with version 14,
10328 ICC is compatible with GCC. */
10329
10330 static bool
10331 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10332 {
10333 if (!cu->checked_producer)
10334 check_producer (cu);
10335
10336 return cu->producer_is_icc_lt_14;
10337 }
10338
10339 /* ICC generates a DW_AT_type for C void functions. This was observed on
10340 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10341 which says that void functions should not have a DW_AT_type. */
10342
10343 static bool
10344 producer_is_icc (struct dwarf2_cu *cu)
10345 {
10346 if (!cu->checked_producer)
10347 check_producer (cu);
10348
10349 return cu->producer_is_icc;
10350 }
10351
10352 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10353 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10354 this, it was first present in GCC release 4.3.0. */
10355
10356 static bool
10357 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10358 {
10359 if (!cu->checked_producer)
10360 check_producer (cu);
10361
10362 return cu->producer_is_gcc_lt_4_3;
10363 }
10364
10365 static file_and_directory
10366 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10367 {
10368 file_and_directory res;
10369
10370 /* Find the filename. Do not use dwarf2_name here, since the filename
10371 is not a source language identifier. */
10372 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10373 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10374
10375 if (res.comp_dir == NULL
10376 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10377 && IS_ABSOLUTE_PATH (res.name))
10378 {
10379 res.comp_dir_storage = ldirname (res.name);
10380 if (!res.comp_dir_storage.empty ())
10381 res.comp_dir = res.comp_dir_storage.c_str ();
10382 }
10383 if (res.comp_dir != NULL)
10384 {
10385 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10386 directory, get rid of it. */
10387 const char *cp = strchr (res.comp_dir, ':');
10388
10389 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10390 res.comp_dir = cp + 1;
10391 }
10392
10393 if (res.name == NULL)
10394 res.name = "<unknown>";
10395
10396 return res;
10397 }
10398
10399 /* Handle DW_AT_stmt_list for a compilation unit.
10400 DIE is the DW_TAG_compile_unit die for CU.
10401 COMP_DIR is the compilation directory. LOWPC is passed to
10402 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10403
10404 static void
10405 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10406 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10407 {
10408 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10409 struct attribute *attr;
10410 struct line_header line_header_local;
10411 hashval_t line_header_local_hash;
10412 void **slot;
10413 int decode_mapping;
10414
10415 gdb_assert (! cu->per_cu->is_debug_types);
10416
10417 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10418 if (attr == NULL || !attr->form_is_unsigned ())
10419 return;
10420
10421 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
10422
10423 /* The line header hash table is only created if needed (it exists to
10424 prevent redundant reading of the line table for partial_units).
10425 If we're given a partial_unit, we'll need it. If we're given a
10426 compile_unit, then use the line header hash table if it's already
10427 created, but don't create one just yet. */
10428
10429 if (per_objfile->line_header_hash == NULL
10430 && die->tag == DW_TAG_partial_unit)
10431 {
10432 per_objfile->line_header_hash
10433 .reset (htab_create_alloc (127, line_header_hash_voidp,
10434 line_header_eq_voidp,
10435 htab_delete_entry<line_header>,
10436 xcalloc, xfree));
10437 }
10438
10439 line_header_local.sect_off = line_offset;
10440 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10441 line_header_local_hash = line_header_hash (&line_header_local);
10442 if (per_objfile->line_header_hash != NULL)
10443 {
10444 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
10445 &line_header_local,
10446 line_header_local_hash, NO_INSERT);
10447
10448 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10449 is not present in *SLOT (since if there is something in *SLOT then
10450 it will be for a partial_unit). */
10451 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10452 {
10453 gdb_assert (*slot != NULL);
10454 cu->line_header = (struct line_header *) *slot;
10455 return;
10456 }
10457 }
10458
10459 /* dwarf_decode_line_header does not yet provide sufficient information.
10460 We always have to call also dwarf_decode_lines for it. */
10461 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10462 if (lh == NULL)
10463 return;
10464
10465 cu->line_header = lh.release ();
10466 cu->line_header_die_owner = die;
10467
10468 if (per_objfile->line_header_hash == NULL)
10469 slot = NULL;
10470 else
10471 {
10472 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
10473 &line_header_local,
10474 line_header_local_hash, INSERT);
10475 gdb_assert (slot != NULL);
10476 }
10477 if (slot != NULL && *slot == NULL)
10478 {
10479 /* This newly decoded line number information unit will be owned
10480 by line_header_hash hash table. */
10481 *slot = cu->line_header;
10482 cu->line_header_die_owner = NULL;
10483 }
10484 else
10485 {
10486 /* We cannot free any current entry in (*slot) as that struct line_header
10487 may be already used by multiple CUs. Create only temporary decoded
10488 line_header for this CU - it may happen at most once for each line
10489 number information unit. And if we're not using line_header_hash
10490 then this is what we want as well. */
10491 gdb_assert (die->tag != DW_TAG_partial_unit);
10492 }
10493 decode_mapping = (die->tag != DW_TAG_partial_unit);
10494 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10495 decode_mapping);
10496
10497 }
10498
10499 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10500
10501 static void
10502 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10503 {
10504 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10505 struct objfile *objfile = per_objfile->objfile;
10506 struct gdbarch *gdbarch = objfile->arch ();
10507 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10508 CORE_ADDR highpc = ((CORE_ADDR) 0);
10509 struct attribute *attr;
10510 struct die_info *child_die;
10511 CORE_ADDR baseaddr;
10512
10513 prepare_one_comp_unit (cu, die, cu->per_cu->lang);
10514 baseaddr = objfile->text_section_offset ();
10515
10516 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10517
10518 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10519 from finish_block. */
10520 if (lowpc == ((CORE_ADDR) -1))
10521 lowpc = highpc;
10522 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10523
10524 file_and_directory fnd = find_file_and_directory (die, cu);
10525
10526 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10527
10528 gdb_assert (per_objfile->sym_cu == nullptr);
10529 scoped_restore restore_sym_cu
10530 = make_scoped_restore (&per_objfile->sym_cu, cu);
10531
10532 /* Decode line number information if present. We do this before
10533 processing child DIEs, so that the line header table is available
10534 for DW_AT_decl_file. */
10535 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10536
10537 /* Process all dies in compilation unit. */
10538 if (die->child != NULL)
10539 {
10540 child_die = die->child;
10541 while (child_die && child_die->tag)
10542 {
10543 process_die (child_die, cu);
10544 child_die = child_die->sibling;
10545 }
10546 }
10547 per_objfile->sym_cu = nullptr;
10548
10549 /* Decode macro information, if present. Dwarf 2 macro information
10550 refers to information in the line number info statement program
10551 header, so we can only read it if we've read the header
10552 successfully. */
10553 attr = dwarf2_attr (die, DW_AT_macros, cu);
10554 if (attr == NULL)
10555 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10556 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
10557 {
10558 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10559 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10560
10561 dwarf_decode_macros (cu, attr->as_unsigned (), 1);
10562 }
10563 else
10564 {
10565 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10566 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
10567 {
10568 unsigned int macro_offset = attr->as_unsigned ();
10569
10570 dwarf_decode_macros (cu, macro_offset, 0);
10571 }
10572 }
10573 }
10574
10575 void
10576 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10577 {
10578 struct type_unit_group *tu_group;
10579 int first_time;
10580 struct attribute *attr;
10581 unsigned int i;
10582 struct signatured_type *sig_type;
10583
10584 gdb_assert (per_cu->is_debug_types);
10585 sig_type = (struct signatured_type *) per_cu;
10586
10587 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10588
10589 /* If we're using .gdb_index (includes -readnow) then
10590 per_cu->type_unit_group may not have been set up yet. */
10591 if (sig_type->type_unit_group == NULL)
10592 sig_type->type_unit_group = get_type_unit_group (this, attr);
10593 tu_group = sig_type->type_unit_group;
10594
10595 /* If we've already processed this stmt_list there's no real need to
10596 do it again, we could fake it and just recreate the part we need
10597 (file name,index -> symtab mapping). If data shows this optimization
10598 is useful we can do it then. */
10599 type_unit_group_unshareable *tug_unshare
10600 = per_objfile->get_type_unit_group_unshareable (tu_group);
10601 first_time = tug_unshare->compunit_symtab == NULL;
10602
10603 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10604 debug info. */
10605 line_header_up lh;
10606 if (attr != NULL && attr->form_is_unsigned ())
10607 {
10608 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
10609 lh = dwarf_decode_line_header (line_offset, this);
10610 }
10611 if (lh == NULL)
10612 {
10613 if (first_time)
10614 start_symtab ("", NULL, 0);
10615 else
10616 {
10617 gdb_assert (tug_unshare->symtabs == NULL);
10618 gdb_assert (m_builder == nullptr);
10619 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
10620 m_builder.reset (new struct buildsym_compunit
10621 (COMPUNIT_OBJFILE (cust), "",
10622 COMPUNIT_DIRNAME (cust),
10623 compunit_language (cust),
10624 0, cust));
10625 list_in_scope = get_builder ()->get_file_symbols ();
10626 }
10627 return;
10628 }
10629
10630 line_header = lh.release ();
10631 line_header_die_owner = die;
10632
10633 if (first_time)
10634 {
10635 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10636
10637 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10638 still initializing it, and our caller (a few levels up)
10639 process_full_type_unit still needs to know if this is the first
10640 time. */
10641
10642 tug_unshare->symtabs
10643 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10644 struct symtab *, line_header->file_names_size ());
10645
10646 auto &file_names = line_header->file_names ();
10647 for (i = 0; i < file_names.size (); ++i)
10648 {
10649 file_entry &fe = file_names[i];
10650 dwarf2_start_subfile (this, fe.name,
10651 fe.include_dir (line_header));
10652 buildsym_compunit *b = get_builder ();
10653 if (b->get_current_subfile ()->symtab == NULL)
10654 {
10655 /* NOTE: start_subfile will recognize when it's been
10656 passed a file it has already seen. So we can't
10657 assume there's a simple mapping from
10658 cu->line_header->file_names to subfiles, plus
10659 cu->line_header->file_names may contain dups. */
10660 b->get_current_subfile ()->symtab
10661 = allocate_symtab (cust, b->get_current_subfile ()->name);
10662 }
10663
10664 fe.symtab = b->get_current_subfile ()->symtab;
10665 tug_unshare->symtabs[i] = fe.symtab;
10666 }
10667 }
10668 else
10669 {
10670 gdb_assert (m_builder == nullptr);
10671 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
10672 m_builder.reset (new struct buildsym_compunit
10673 (COMPUNIT_OBJFILE (cust), "",
10674 COMPUNIT_DIRNAME (cust),
10675 compunit_language (cust),
10676 0, cust));
10677 list_in_scope = get_builder ()->get_file_symbols ();
10678
10679 auto &file_names = line_header->file_names ();
10680 for (i = 0; i < file_names.size (); ++i)
10681 {
10682 file_entry &fe = file_names[i];
10683 fe.symtab = tug_unshare->symtabs[i];
10684 }
10685 }
10686
10687 /* The main symtab is allocated last. Type units don't have DW_AT_name
10688 so they don't have a "real" (so to speak) symtab anyway.
10689 There is later code that will assign the main symtab to all symbols
10690 that don't have one. We need to handle the case of a symbol with a
10691 missing symtab (DW_AT_decl_file) anyway. */
10692 }
10693
10694 /* Process DW_TAG_type_unit.
10695 For TUs we want to skip the first top level sibling if it's not the
10696 actual type being defined by this TU. In this case the first top
10697 level sibling is there to provide context only. */
10698
10699 static void
10700 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10701 {
10702 struct die_info *child_die;
10703
10704 prepare_one_comp_unit (cu, die, language_minimal);
10705
10706 /* Initialize (or reinitialize) the machinery for building symtabs.
10707 We do this before processing child DIEs, so that the line header table
10708 is available for DW_AT_decl_file. */
10709 cu->setup_type_unit_groups (die);
10710
10711 if (die->child != NULL)
10712 {
10713 child_die = die->child;
10714 while (child_die && child_die->tag)
10715 {
10716 process_die (child_die, cu);
10717 child_die = child_die->sibling;
10718 }
10719 }
10720 }
10721 \f
10722 /* DWO/DWP files.
10723
10724 http://gcc.gnu.org/wiki/DebugFission
10725 http://gcc.gnu.org/wiki/DebugFissionDWP
10726
10727 To simplify handling of both DWO files ("object" files with the DWARF info)
10728 and DWP files (a file with the DWOs packaged up into one file), we treat
10729 DWP files as having a collection of virtual DWO files. */
10730
10731 static hashval_t
10732 hash_dwo_file (const void *item)
10733 {
10734 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10735 hashval_t hash;
10736
10737 hash = htab_hash_string (dwo_file->dwo_name);
10738 if (dwo_file->comp_dir != NULL)
10739 hash += htab_hash_string (dwo_file->comp_dir);
10740 return hash;
10741 }
10742
10743 static int
10744 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10745 {
10746 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10747 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10748
10749 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10750 return 0;
10751 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10752 return lhs->comp_dir == rhs->comp_dir;
10753 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10754 }
10755
10756 /* Allocate a hash table for DWO files. */
10757
10758 static htab_up
10759 allocate_dwo_file_hash_table ()
10760 {
10761 return htab_up (htab_create_alloc (41,
10762 hash_dwo_file,
10763 eq_dwo_file,
10764 htab_delete_entry<dwo_file>,
10765 xcalloc, xfree));
10766 }
10767
10768 /* Lookup DWO file DWO_NAME. */
10769
10770 static void **
10771 lookup_dwo_file_slot (dwarf2_per_objfile *per_objfile,
10772 const char *dwo_name,
10773 const char *comp_dir)
10774 {
10775 struct dwo_file find_entry;
10776 void **slot;
10777
10778 if (per_objfile->per_bfd->dwo_files == NULL)
10779 per_objfile->per_bfd->dwo_files = allocate_dwo_file_hash_table ();
10780
10781 find_entry.dwo_name = dwo_name;
10782 find_entry.comp_dir = comp_dir;
10783 slot = htab_find_slot (per_objfile->per_bfd->dwo_files.get (), &find_entry,
10784 INSERT);
10785
10786 return slot;
10787 }
10788
10789 static hashval_t
10790 hash_dwo_unit (const void *item)
10791 {
10792 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10793
10794 /* This drops the top 32 bits of the id, but is ok for a hash. */
10795 return dwo_unit->signature;
10796 }
10797
10798 static int
10799 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10800 {
10801 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10802 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10803
10804 /* The signature is assumed to be unique within the DWO file.
10805 So while object file CU dwo_id's always have the value zero,
10806 that's OK, assuming each object file DWO file has only one CU,
10807 and that's the rule for now. */
10808 return lhs->signature == rhs->signature;
10809 }
10810
10811 /* Allocate a hash table for DWO CUs,TUs.
10812 There is one of these tables for each of CUs,TUs for each DWO file. */
10813
10814 static htab_up
10815 allocate_dwo_unit_table ()
10816 {
10817 /* Start out with a pretty small number.
10818 Generally DWO files contain only one CU and maybe some TUs. */
10819 return htab_up (htab_create_alloc (3,
10820 hash_dwo_unit,
10821 eq_dwo_unit,
10822 NULL, xcalloc, xfree));
10823 }
10824
10825 /* die_reader_func for create_dwo_cu. */
10826
10827 static void
10828 create_dwo_cu_reader (const struct die_reader_specs *reader,
10829 const gdb_byte *info_ptr,
10830 struct die_info *comp_unit_die,
10831 struct dwo_file *dwo_file,
10832 struct dwo_unit *dwo_unit)
10833 {
10834 struct dwarf2_cu *cu = reader->cu;
10835 sect_offset sect_off = cu->per_cu->sect_off;
10836 struct dwarf2_section_info *section = cu->per_cu->section;
10837
10838 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
10839 if (!signature.has_value ())
10840 {
10841 complaint (_("Dwarf Error: debug entry at offset %s is missing"
10842 " its dwo_id [in module %s]"),
10843 sect_offset_str (sect_off), dwo_file->dwo_name);
10844 return;
10845 }
10846
10847 dwo_unit->dwo_file = dwo_file;
10848 dwo_unit->signature = *signature;
10849 dwo_unit->section = section;
10850 dwo_unit->sect_off = sect_off;
10851 dwo_unit->length = cu->per_cu->length;
10852
10853 dwarf_read_debug_printf (" offset %s, dwo_id %s",
10854 sect_offset_str (sect_off),
10855 hex_string (dwo_unit->signature));
10856 }
10857
10858 /* Create the dwo_units for the CUs in a DWO_FILE.
10859 Note: This function processes DWO files only, not DWP files. */
10860
10861 static void
10862 create_cus_hash_table (dwarf2_per_objfile *per_objfile,
10863 dwarf2_cu *cu, struct dwo_file &dwo_file,
10864 dwarf2_section_info &section, htab_up &cus_htab)
10865 {
10866 struct objfile *objfile = per_objfile->objfile;
10867 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
10868 const gdb_byte *info_ptr, *end_ptr;
10869
10870 section.read (objfile);
10871 info_ptr = section.buffer;
10872
10873 if (info_ptr == NULL)
10874 return;
10875
10876 dwarf_read_debug_printf ("Reading %s for %s:",
10877 section.get_name (),
10878 section.get_file_name ());
10879
10880 end_ptr = info_ptr + section.size;
10881 while (info_ptr < end_ptr)
10882 {
10883 struct dwarf2_per_cu_data per_cu;
10884 struct dwo_unit read_unit {};
10885 struct dwo_unit *dwo_unit;
10886 void **slot;
10887 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
10888
10889 per_cu.per_bfd = per_bfd;
10890 per_cu.is_debug_types = 0;
10891 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
10892 per_cu.section = &section;
10893
10894 cutu_reader reader (&per_cu, per_objfile, cu, &dwo_file);
10895 if (!reader.dummy_p)
10896 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
10897 &dwo_file, &read_unit);
10898 info_ptr += per_cu.length;
10899
10900 // If the unit could not be parsed, skip it.
10901 if (read_unit.dwo_file == NULL)
10902 continue;
10903
10904 if (cus_htab == NULL)
10905 cus_htab = allocate_dwo_unit_table ();
10906
10907 dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack,
10908 struct dwo_unit);
10909 *dwo_unit = read_unit;
10910 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
10911 gdb_assert (slot != NULL);
10912 if (*slot != NULL)
10913 {
10914 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
10915 sect_offset dup_sect_off = dup_cu->sect_off;
10916
10917 complaint (_("debug cu entry at offset %s is duplicate to"
10918 " the entry at offset %s, signature %s"),
10919 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
10920 hex_string (dwo_unit->signature));
10921 }
10922 *slot = (void *)dwo_unit;
10923 }
10924 }
10925
10926 /* DWP file .debug_{cu,tu}_index section format:
10927 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
10928 [ref: http://dwarfstd.org/doc/DWARF5.pdf, sect 7.3.5 "DWARF Package Files"]
10929
10930 DWP Versions 1 & 2 are older, pre-standard format versions. The first
10931 officially standard DWP format was published with DWARF v5 and is called
10932 Version 5. There are no versions 3 or 4.
10933
10934 DWP Version 1:
10935
10936 Both index sections have the same format, and serve to map a 64-bit
10937 signature to a set of section numbers. Each section begins with a header,
10938 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
10939 indexes, and a pool of 32-bit section numbers. The index sections will be
10940 aligned at 8-byte boundaries in the file.
10941
10942 The index section header consists of:
10943
10944 V, 32 bit version number
10945 -, 32 bits unused
10946 N, 32 bit number of compilation units or type units in the index
10947 M, 32 bit number of slots in the hash table
10948
10949 Numbers are recorded using the byte order of the application binary.
10950
10951 The hash table begins at offset 16 in the section, and consists of an array
10952 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
10953 order of the application binary). Unused slots in the hash table are 0.
10954 (We rely on the extreme unlikeliness of a signature being exactly 0.)
10955
10956 The parallel table begins immediately after the hash table
10957 (at offset 16 + 8 * M from the beginning of the section), and consists of an
10958 array of 32-bit indexes (using the byte order of the application binary),
10959 corresponding 1-1 with slots in the hash table. Each entry in the parallel
10960 table contains a 32-bit index into the pool of section numbers. For unused
10961 hash table slots, the corresponding entry in the parallel table will be 0.
10962
10963 The pool of section numbers begins immediately following the hash table
10964 (at offset 16 + 12 * M from the beginning of the section). The pool of
10965 section numbers consists of an array of 32-bit words (using the byte order
10966 of the application binary). Each item in the array is indexed starting
10967 from 0. The hash table entry provides the index of the first section
10968 number in the set. Additional section numbers in the set follow, and the
10969 set is terminated by a 0 entry (section number 0 is not used in ELF).
10970
10971 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10972 section must be the first entry in the set, and the .debug_abbrev.dwo must
10973 be the second entry. Other members of the set may follow in any order.
10974
10975 ---
10976
10977 DWP Versions 2 and 5:
10978
10979 DWP Versions 2 and 5 combine all the .debug_info, etc. sections into one,
10980 and the entries in the index tables are now offsets into these sections.
10981 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10982 section.
10983
10984 Index Section Contents:
10985 Header
10986 Hash Table of Signatures dwp_hash_table.hash_table
10987 Parallel Table of Indices dwp_hash_table.unit_table
10988 Table of Section Offsets dwp_hash_table.{v2|v5}.{section_ids,offsets}
10989 Table of Section Sizes dwp_hash_table.{v2|v5}.sizes
10990
10991 The index section header consists of:
10992
10993 V, 32 bit version number
10994 L, 32 bit number of columns in the table of section offsets
10995 N, 32 bit number of compilation units or type units in the index
10996 M, 32 bit number of slots in the hash table
10997
10998 Numbers are recorded using the byte order of the application binary.
10999
11000 The hash table has the same format as version 1.
11001 The parallel table of indices has the same format as version 1,
11002 except that the entries are origin-1 indices into the table of sections
11003 offsets and the table of section sizes.
11004
11005 The table of offsets begins immediately following the parallel table
11006 (at offset 16 + 12 * M from the beginning of the section). The table is
11007 a two-dimensional array of 32-bit words (using the byte order of the
11008 application binary), with L columns and N+1 rows, in row-major order.
11009 Each row in the array is indexed starting from 0. The first row provides
11010 a key to the remaining rows: each column in this row provides an identifier
11011 for a debug section, and the offsets in the same column of subsequent rows
11012 refer to that section. The section identifiers for Version 2 are:
11013
11014 DW_SECT_INFO 1 .debug_info.dwo
11015 DW_SECT_TYPES 2 .debug_types.dwo
11016 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11017 DW_SECT_LINE 4 .debug_line.dwo
11018 DW_SECT_LOC 5 .debug_loc.dwo
11019 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11020 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11021 DW_SECT_MACRO 8 .debug_macro.dwo
11022
11023 The section identifiers for Version 5 are:
11024
11025 DW_SECT_INFO_V5 1 .debug_info.dwo
11026 DW_SECT_RESERVED_V5 2 --
11027 DW_SECT_ABBREV_V5 3 .debug_abbrev.dwo
11028 DW_SECT_LINE_V5 4 .debug_line.dwo
11029 DW_SECT_LOCLISTS_V5 5 .debug_loclists.dwo
11030 DW_SECT_STR_OFFSETS_V5 6 .debug_str_offsets.dwo
11031 DW_SECT_MACRO_V5 7 .debug_macro.dwo
11032 DW_SECT_RNGLISTS_V5 8 .debug_rnglists.dwo
11033
11034 The offsets provided by the CU and TU index sections are the base offsets
11035 for the contributions made by each CU or TU to the corresponding section
11036 in the package file. Each CU and TU header contains an abbrev_offset
11037 field, used to find the abbreviations table for that CU or TU within the
11038 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11039 be interpreted as relative to the base offset given in the index section.
11040 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11041 should be interpreted as relative to the base offset for .debug_line.dwo,
11042 and offsets into other debug sections obtained from DWARF attributes should
11043 also be interpreted as relative to the corresponding base offset.
11044
11045 The table of sizes begins immediately following the table of offsets.
11046 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11047 with L columns and N rows, in row-major order. Each row in the array is
11048 indexed starting from 1 (row 0 is shared by the two tables).
11049
11050 ---
11051
11052 Hash table lookup is handled the same in version 1 and 2:
11053
11054 We assume that N and M will not exceed 2^32 - 1.
11055 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11056
11057 Given a 64-bit compilation unit signature or a type signature S, an entry
11058 in the hash table is located as follows:
11059
11060 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11061 the low-order k bits all set to 1.
11062
11063 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11064
11065 3) If the hash table entry at index H matches the signature, use that
11066 entry. If the hash table entry at index H is unused (all zeroes),
11067 terminate the search: the signature is not present in the table.
11068
11069 4) Let H = (H + H') modulo M. Repeat at Step 3.
11070
11071 Because M > N and H' and M are relatively prime, the search is guaranteed
11072 to stop at an unused slot or find the match. */
11073
11074 /* Create a hash table to map DWO IDs to their CU/TU entry in
11075 .debug_{info,types}.dwo in DWP_FILE.
11076 Returns NULL if there isn't one.
11077 Note: This function processes DWP files only, not DWO files. */
11078
11079 static struct dwp_hash_table *
11080 create_dwp_hash_table (dwarf2_per_objfile *per_objfile,
11081 struct dwp_file *dwp_file, int is_debug_types)
11082 {
11083 struct objfile *objfile = per_objfile->objfile;
11084 bfd *dbfd = dwp_file->dbfd.get ();
11085 const gdb_byte *index_ptr, *index_end;
11086 struct dwarf2_section_info *index;
11087 uint32_t version, nr_columns, nr_units, nr_slots;
11088 struct dwp_hash_table *htab;
11089
11090 if (is_debug_types)
11091 index = &dwp_file->sections.tu_index;
11092 else
11093 index = &dwp_file->sections.cu_index;
11094
11095 if (index->empty ())
11096 return NULL;
11097 index->read (objfile);
11098
11099 index_ptr = index->buffer;
11100 index_end = index_ptr + index->size;
11101
11102 /* For Version 5, the version is really 2 bytes of data & 2 bytes of padding.
11103 For now it's safe to just read 4 bytes (particularly as it's difficult to
11104 tell if you're dealing with Version 5 before you've read the version). */
11105 version = read_4_bytes (dbfd, index_ptr);
11106 index_ptr += 4;
11107 if (version == 2 || version == 5)
11108 nr_columns = read_4_bytes (dbfd, index_ptr);
11109 else
11110 nr_columns = 0;
11111 index_ptr += 4;
11112 nr_units = read_4_bytes (dbfd, index_ptr);
11113 index_ptr += 4;
11114 nr_slots = read_4_bytes (dbfd, index_ptr);
11115 index_ptr += 4;
11116
11117 if (version != 1 && version != 2 && version != 5)
11118 {
11119 error (_("Dwarf Error: unsupported DWP file version (%s)"
11120 " [in module %s]"),
11121 pulongest (version), dwp_file->name);
11122 }
11123 if (nr_slots != (nr_slots & -nr_slots))
11124 {
11125 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11126 " is not power of 2 [in module %s]"),
11127 pulongest (nr_slots), dwp_file->name);
11128 }
11129
11130 htab = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwp_hash_table);
11131 htab->version = version;
11132 htab->nr_columns = nr_columns;
11133 htab->nr_units = nr_units;
11134 htab->nr_slots = nr_slots;
11135 htab->hash_table = index_ptr;
11136 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11137
11138 /* Exit early if the table is empty. */
11139 if (nr_slots == 0 || nr_units == 0
11140 || (version == 2 && nr_columns == 0)
11141 || (version == 5 && nr_columns == 0))
11142 {
11143 /* All must be zero. */
11144 if (nr_slots != 0 || nr_units != 0
11145 || (version == 2 && nr_columns != 0)
11146 || (version == 5 && nr_columns != 0))
11147 {
11148 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11149 " all zero [in modules %s]"),
11150 dwp_file->name);
11151 }
11152 return htab;
11153 }
11154
11155 if (version == 1)
11156 {
11157 htab->section_pool.v1.indices =
11158 htab->unit_table + sizeof (uint32_t) * nr_slots;
11159 /* It's harder to decide whether the section is too small in v1.
11160 V1 is deprecated anyway so we punt. */
11161 }
11162 else if (version == 2)
11163 {
11164 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11165 int *ids = htab->section_pool.v2.section_ids;
11166 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11167 /* Reverse map for error checking. */
11168 int ids_seen[DW_SECT_MAX + 1];
11169 int i;
11170
11171 if (nr_columns < 2)
11172 {
11173 error (_("Dwarf Error: bad DWP hash table, too few columns"
11174 " in section table [in module %s]"),
11175 dwp_file->name);
11176 }
11177 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11178 {
11179 error (_("Dwarf Error: bad DWP hash table, too many columns"
11180 " in section table [in module %s]"),
11181 dwp_file->name);
11182 }
11183 memset (ids, 255, sizeof_ids);
11184 memset (ids_seen, 255, sizeof (ids_seen));
11185 for (i = 0; i < nr_columns; ++i)
11186 {
11187 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11188
11189 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11190 {
11191 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11192 " in section table [in module %s]"),
11193 id, dwp_file->name);
11194 }
11195 if (ids_seen[id] != -1)
11196 {
11197 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11198 " id %d in section table [in module %s]"),
11199 id, dwp_file->name);
11200 }
11201 ids_seen[id] = i;
11202 ids[i] = id;
11203 }
11204 /* Must have exactly one info or types section. */
11205 if (((ids_seen[DW_SECT_INFO] != -1)
11206 + (ids_seen[DW_SECT_TYPES] != -1))
11207 != 1)
11208 {
11209 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11210 " DWO info/types section [in module %s]"),
11211 dwp_file->name);
11212 }
11213 /* Must have an abbrev section. */
11214 if (ids_seen[DW_SECT_ABBREV] == -1)
11215 {
11216 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11217 " section [in module %s]"),
11218 dwp_file->name);
11219 }
11220 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11221 htab->section_pool.v2.sizes =
11222 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11223 * nr_units * nr_columns);
11224 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11225 * nr_units * nr_columns))
11226 > index_end)
11227 {
11228 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11229 " [in module %s]"),
11230 dwp_file->name);
11231 }
11232 }
11233 else /* version == 5 */
11234 {
11235 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11236 int *ids = htab->section_pool.v5.section_ids;
11237 size_t sizeof_ids = sizeof (htab->section_pool.v5.section_ids);
11238 /* Reverse map for error checking. */
11239 int ids_seen[DW_SECT_MAX_V5 + 1];
11240
11241 if (nr_columns < 2)
11242 {
11243 error (_("Dwarf Error: bad DWP hash table, too few columns"
11244 " in section table [in module %s]"),
11245 dwp_file->name);
11246 }
11247 if (nr_columns > MAX_NR_V5_DWO_SECTIONS)
11248 {
11249 error (_("Dwarf Error: bad DWP hash table, too many columns"
11250 " in section table [in module %s]"),
11251 dwp_file->name);
11252 }
11253 memset (ids, 255, sizeof_ids);
11254 memset (ids_seen, 255, sizeof (ids_seen));
11255 for (int i = 0; i < nr_columns; ++i)
11256 {
11257 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11258
11259 if (id < DW_SECT_MIN || id > DW_SECT_MAX_V5)
11260 {
11261 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11262 " in section table [in module %s]"),
11263 id, dwp_file->name);
11264 }
11265 if (ids_seen[id] != -1)
11266 {
11267 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11268 " id %d in section table [in module %s]"),
11269 id, dwp_file->name);
11270 }
11271 ids_seen[id] = i;
11272 ids[i] = id;
11273 }
11274 /* Must have seen an info section. */
11275 if (ids_seen[DW_SECT_INFO_V5] == -1)
11276 {
11277 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11278 " DWO info/types section [in module %s]"),
11279 dwp_file->name);
11280 }
11281 /* Must have an abbrev section. */
11282 if (ids_seen[DW_SECT_ABBREV_V5] == -1)
11283 {
11284 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11285 " section [in module %s]"),
11286 dwp_file->name);
11287 }
11288 htab->section_pool.v5.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11289 htab->section_pool.v5.sizes
11290 = htab->section_pool.v5.offsets + (sizeof (uint32_t)
11291 * nr_units * nr_columns);
11292 if ((htab->section_pool.v5.sizes + (sizeof (uint32_t)
11293 * nr_units * nr_columns))
11294 > index_end)
11295 {
11296 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11297 " [in module %s]"),
11298 dwp_file->name);
11299 }
11300 }
11301
11302 return htab;
11303 }
11304
11305 /* Update SECTIONS with the data from SECTP.
11306
11307 This function is like the other "locate" section routines, but in
11308 this context the sections to read comes from the DWP V1 hash table,
11309 not the full ELF section table.
11310
11311 The result is non-zero for success, or zero if an error was found. */
11312
11313 static int
11314 locate_v1_virtual_dwo_sections (asection *sectp,
11315 struct virtual_v1_dwo_sections *sections)
11316 {
11317 const struct dwop_section_names *names = &dwop_section_names;
11318
11319 if (names->abbrev_dwo.matches (sectp->name))
11320 {
11321 /* There can be only one. */
11322 if (sections->abbrev.s.section != NULL)
11323 return 0;
11324 sections->abbrev.s.section = sectp;
11325 sections->abbrev.size = bfd_section_size (sectp);
11326 }
11327 else if (names->info_dwo.matches (sectp->name)
11328 || names->types_dwo.matches (sectp->name))
11329 {
11330 /* There can be only one. */
11331 if (sections->info_or_types.s.section != NULL)
11332 return 0;
11333 sections->info_or_types.s.section = sectp;
11334 sections->info_or_types.size = bfd_section_size (sectp);
11335 }
11336 else if (names->line_dwo.matches (sectp->name))
11337 {
11338 /* There can be only one. */
11339 if (sections->line.s.section != NULL)
11340 return 0;
11341 sections->line.s.section = sectp;
11342 sections->line.size = bfd_section_size (sectp);
11343 }
11344 else if (names->loc_dwo.matches (sectp->name))
11345 {
11346 /* There can be only one. */
11347 if (sections->loc.s.section != NULL)
11348 return 0;
11349 sections->loc.s.section = sectp;
11350 sections->loc.size = bfd_section_size (sectp);
11351 }
11352 else if (names->macinfo_dwo.matches (sectp->name))
11353 {
11354 /* There can be only one. */
11355 if (sections->macinfo.s.section != NULL)
11356 return 0;
11357 sections->macinfo.s.section = sectp;
11358 sections->macinfo.size = bfd_section_size (sectp);
11359 }
11360 else if (names->macro_dwo.matches (sectp->name))
11361 {
11362 /* There can be only one. */
11363 if (sections->macro.s.section != NULL)
11364 return 0;
11365 sections->macro.s.section = sectp;
11366 sections->macro.size = bfd_section_size (sectp);
11367 }
11368 else if (names->str_offsets_dwo.matches (sectp->name))
11369 {
11370 /* There can be only one. */
11371 if (sections->str_offsets.s.section != NULL)
11372 return 0;
11373 sections->str_offsets.s.section = sectp;
11374 sections->str_offsets.size = bfd_section_size (sectp);
11375 }
11376 else
11377 {
11378 /* No other kind of section is valid. */
11379 return 0;
11380 }
11381
11382 return 1;
11383 }
11384
11385 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11386 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11387 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11388 This is for DWP version 1 files. */
11389
11390 static struct dwo_unit *
11391 create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile *per_objfile,
11392 struct dwp_file *dwp_file,
11393 uint32_t unit_index,
11394 const char *comp_dir,
11395 ULONGEST signature, int is_debug_types)
11396 {
11397 const struct dwp_hash_table *dwp_htab =
11398 is_debug_types ? dwp_file->tus : dwp_file->cus;
11399 bfd *dbfd = dwp_file->dbfd.get ();
11400 const char *kind = is_debug_types ? "TU" : "CU";
11401 struct dwo_file *dwo_file;
11402 struct dwo_unit *dwo_unit;
11403 struct virtual_v1_dwo_sections sections;
11404 void **dwo_file_slot;
11405 int i;
11406
11407 gdb_assert (dwp_file->version == 1);
11408
11409 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V1 file: %s",
11410 kind, pulongest (unit_index), hex_string (signature),
11411 dwp_file->name);
11412
11413 /* Fetch the sections of this DWO unit.
11414 Put a limit on the number of sections we look for so that bad data
11415 doesn't cause us to loop forever. */
11416
11417 #define MAX_NR_V1_DWO_SECTIONS \
11418 (1 /* .debug_info or .debug_types */ \
11419 + 1 /* .debug_abbrev */ \
11420 + 1 /* .debug_line */ \
11421 + 1 /* .debug_loc */ \
11422 + 1 /* .debug_str_offsets */ \
11423 + 1 /* .debug_macro or .debug_macinfo */ \
11424 + 1 /* trailing zero */)
11425
11426 memset (&sections, 0, sizeof (sections));
11427
11428 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11429 {
11430 asection *sectp;
11431 uint32_t section_nr =
11432 read_4_bytes (dbfd,
11433 dwp_htab->section_pool.v1.indices
11434 + (unit_index + i) * sizeof (uint32_t));
11435
11436 if (section_nr == 0)
11437 break;
11438 if (section_nr >= dwp_file->num_sections)
11439 {
11440 error (_("Dwarf Error: bad DWP hash table, section number too large"
11441 " [in module %s]"),
11442 dwp_file->name);
11443 }
11444
11445 sectp = dwp_file->elf_sections[section_nr];
11446 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11447 {
11448 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11449 " [in module %s]"),
11450 dwp_file->name);
11451 }
11452 }
11453
11454 if (i < 2
11455 || sections.info_or_types.empty ()
11456 || sections.abbrev.empty ())
11457 {
11458 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11459 " [in module %s]"),
11460 dwp_file->name);
11461 }
11462 if (i == MAX_NR_V1_DWO_SECTIONS)
11463 {
11464 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11465 " [in module %s]"),
11466 dwp_file->name);
11467 }
11468
11469 /* It's easier for the rest of the code if we fake a struct dwo_file and
11470 have dwo_unit "live" in that. At least for now.
11471
11472 The DWP file can be made up of a random collection of CUs and TUs.
11473 However, for each CU + set of TUs that came from the same original DWO
11474 file, we can combine them back into a virtual DWO file to save space
11475 (fewer struct dwo_file objects to allocate). Remember that for really
11476 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11477
11478 std::string virtual_dwo_name =
11479 string_printf ("virtual-dwo/%d-%d-%d-%d",
11480 sections.abbrev.get_id (),
11481 sections.line.get_id (),
11482 sections.loc.get_id (),
11483 sections.str_offsets.get_id ());
11484 /* Can we use an existing virtual DWO file? */
11485 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
11486 comp_dir);
11487 /* Create one if necessary. */
11488 if (*dwo_file_slot == NULL)
11489 {
11490 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11491 virtual_dwo_name.c_str ());
11492
11493 dwo_file = new struct dwo_file;
11494 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11495 dwo_file->comp_dir = comp_dir;
11496 dwo_file->sections.abbrev = sections.abbrev;
11497 dwo_file->sections.line = sections.line;
11498 dwo_file->sections.loc = sections.loc;
11499 dwo_file->sections.macinfo = sections.macinfo;
11500 dwo_file->sections.macro = sections.macro;
11501 dwo_file->sections.str_offsets = sections.str_offsets;
11502 /* The "str" section is global to the entire DWP file. */
11503 dwo_file->sections.str = dwp_file->sections.str;
11504 /* The info or types section is assigned below to dwo_unit,
11505 there's no need to record it in dwo_file.
11506 Also, we can't simply record type sections in dwo_file because
11507 we record a pointer into the vector in dwo_unit. As we collect more
11508 types we'll grow the vector and eventually have to reallocate space
11509 for it, invalidating all copies of pointers into the previous
11510 contents. */
11511 *dwo_file_slot = dwo_file;
11512 }
11513 else
11514 {
11515 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
11516 virtual_dwo_name.c_str ());
11517
11518 dwo_file = (struct dwo_file *) *dwo_file_slot;
11519 }
11520
11521 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
11522 dwo_unit->dwo_file = dwo_file;
11523 dwo_unit->signature = signature;
11524 dwo_unit->section =
11525 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11526 *dwo_unit->section = sections.info_or_types;
11527 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11528
11529 return dwo_unit;
11530 }
11531
11532 /* Subroutine of create_dwo_unit_in_dwp_v2 and create_dwo_unit_in_dwp_v5 to
11533 simplify them. Given a pointer to the containing section SECTION, and
11534 OFFSET,SIZE of the piece within that section used by a TU/CU, return a
11535 virtual section of just that piece. */
11536
11537 static struct dwarf2_section_info
11538 create_dwp_v2_or_v5_section (dwarf2_per_objfile *per_objfile,
11539 struct dwarf2_section_info *section,
11540 bfd_size_type offset, bfd_size_type size)
11541 {
11542 struct dwarf2_section_info result;
11543 asection *sectp;
11544
11545 gdb_assert (section != NULL);
11546 gdb_assert (!section->is_virtual);
11547
11548 memset (&result, 0, sizeof (result));
11549 result.s.containing_section = section;
11550 result.is_virtual = true;
11551
11552 if (size == 0)
11553 return result;
11554
11555 sectp = section->get_bfd_section ();
11556
11557 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11558 bounds of the real section. This is a pretty-rare event, so just
11559 flag an error (easier) instead of a warning and trying to cope. */
11560 if (sectp == NULL
11561 || offset + size > bfd_section_size (sectp))
11562 {
11563 error (_("Dwarf Error: Bad DWP V2 or V5 section info, doesn't fit"
11564 " in section %s [in module %s]"),
11565 sectp ? bfd_section_name (sectp) : "<unknown>",
11566 objfile_name (per_objfile->objfile));
11567 }
11568
11569 result.virtual_offset = offset;
11570 result.size = size;
11571 return result;
11572 }
11573
11574 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11575 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11576 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11577 This is for DWP version 2 files. */
11578
11579 static struct dwo_unit *
11580 create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile *per_objfile,
11581 struct dwp_file *dwp_file,
11582 uint32_t unit_index,
11583 const char *comp_dir,
11584 ULONGEST signature, int is_debug_types)
11585 {
11586 const struct dwp_hash_table *dwp_htab =
11587 is_debug_types ? dwp_file->tus : dwp_file->cus;
11588 bfd *dbfd = dwp_file->dbfd.get ();
11589 const char *kind = is_debug_types ? "TU" : "CU";
11590 struct dwo_file *dwo_file;
11591 struct dwo_unit *dwo_unit;
11592 struct virtual_v2_or_v5_dwo_sections sections;
11593 void **dwo_file_slot;
11594 int i;
11595
11596 gdb_assert (dwp_file->version == 2);
11597
11598 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V2 file: %s",
11599 kind, pulongest (unit_index), hex_string (signature),
11600 dwp_file->name);
11601
11602 /* Fetch the section offsets of this DWO unit. */
11603
11604 memset (&sections, 0, sizeof (sections));
11605
11606 for (i = 0; i < dwp_htab->nr_columns; ++i)
11607 {
11608 uint32_t offset = read_4_bytes (dbfd,
11609 dwp_htab->section_pool.v2.offsets
11610 + (((unit_index - 1) * dwp_htab->nr_columns
11611 + i)
11612 * sizeof (uint32_t)));
11613 uint32_t size = read_4_bytes (dbfd,
11614 dwp_htab->section_pool.v2.sizes
11615 + (((unit_index - 1) * dwp_htab->nr_columns
11616 + i)
11617 * sizeof (uint32_t)));
11618
11619 switch (dwp_htab->section_pool.v2.section_ids[i])
11620 {
11621 case DW_SECT_INFO:
11622 case DW_SECT_TYPES:
11623 sections.info_or_types_offset = offset;
11624 sections.info_or_types_size = size;
11625 break;
11626 case DW_SECT_ABBREV:
11627 sections.abbrev_offset = offset;
11628 sections.abbrev_size = size;
11629 break;
11630 case DW_SECT_LINE:
11631 sections.line_offset = offset;
11632 sections.line_size = size;
11633 break;
11634 case DW_SECT_LOC:
11635 sections.loc_offset = offset;
11636 sections.loc_size = size;
11637 break;
11638 case DW_SECT_STR_OFFSETS:
11639 sections.str_offsets_offset = offset;
11640 sections.str_offsets_size = size;
11641 break;
11642 case DW_SECT_MACINFO:
11643 sections.macinfo_offset = offset;
11644 sections.macinfo_size = size;
11645 break;
11646 case DW_SECT_MACRO:
11647 sections.macro_offset = offset;
11648 sections.macro_size = size;
11649 break;
11650 }
11651 }
11652
11653 /* It's easier for the rest of the code if we fake a struct dwo_file and
11654 have dwo_unit "live" in that. At least for now.
11655
11656 The DWP file can be made up of a random collection of CUs and TUs.
11657 However, for each CU + set of TUs that came from the same original DWO
11658 file, we can combine them back into a virtual DWO file to save space
11659 (fewer struct dwo_file objects to allocate). Remember that for really
11660 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11661
11662 std::string virtual_dwo_name =
11663 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11664 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11665 (long) (sections.line_size ? sections.line_offset : 0),
11666 (long) (sections.loc_size ? sections.loc_offset : 0),
11667 (long) (sections.str_offsets_size
11668 ? sections.str_offsets_offset : 0));
11669 /* Can we use an existing virtual DWO file? */
11670 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
11671 comp_dir);
11672 /* Create one if necessary. */
11673 if (*dwo_file_slot == NULL)
11674 {
11675 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11676 virtual_dwo_name.c_str ());
11677
11678 dwo_file = new struct dwo_file;
11679 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11680 dwo_file->comp_dir = comp_dir;
11681 dwo_file->sections.abbrev =
11682 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.abbrev,
11683 sections.abbrev_offset,
11684 sections.abbrev_size);
11685 dwo_file->sections.line =
11686 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.line,
11687 sections.line_offset,
11688 sections.line_size);
11689 dwo_file->sections.loc =
11690 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.loc,
11691 sections.loc_offset, sections.loc_size);
11692 dwo_file->sections.macinfo =
11693 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macinfo,
11694 sections.macinfo_offset,
11695 sections.macinfo_size);
11696 dwo_file->sections.macro =
11697 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macro,
11698 sections.macro_offset,
11699 sections.macro_size);
11700 dwo_file->sections.str_offsets =
11701 create_dwp_v2_or_v5_section (per_objfile,
11702 &dwp_file->sections.str_offsets,
11703 sections.str_offsets_offset,
11704 sections.str_offsets_size);
11705 /* The "str" section is global to the entire DWP file. */
11706 dwo_file->sections.str = dwp_file->sections.str;
11707 /* The info or types section is assigned below to dwo_unit,
11708 there's no need to record it in dwo_file.
11709 Also, we can't simply record type sections in dwo_file because
11710 we record a pointer into the vector in dwo_unit. As we collect more
11711 types we'll grow the vector and eventually have to reallocate space
11712 for it, invalidating all copies of pointers into the previous
11713 contents. */
11714 *dwo_file_slot = dwo_file;
11715 }
11716 else
11717 {
11718 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
11719 virtual_dwo_name.c_str ());
11720
11721 dwo_file = (struct dwo_file *) *dwo_file_slot;
11722 }
11723
11724 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
11725 dwo_unit->dwo_file = dwo_file;
11726 dwo_unit->signature = signature;
11727 dwo_unit->section =
11728 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11729 *dwo_unit->section = create_dwp_v2_or_v5_section
11730 (per_objfile,
11731 is_debug_types
11732 ? &dwp_file->sections.types
11733 : &dwp_file->sections.info,
11734 sections.info_or_types_offset,
11735 sections.info_or_types_size);
11736 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11737
11738 return dwo_unit;
11739 }
11740
11741 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11742 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11743 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11744 This is for DWP version 5 files. */
11745
11746 static struct dwo_unit *
11747 create_dwo_unit_in_dwp_v5 (dwarf2_per_objfile *per_objfile,
11748 struct dwp_file *dwp_file,
11749 uint32_t unit_index,
11750 const char *comp_dir,
11751 ULONGEST signature, int is_debug_types)
11752 {
11753 const struct dwp_hash_table *dwp_htab
11754 = is_debug_types ? dwp_file->tus : dwp_file->cus;
11755 bfd *dbfd = dwp_file->dbfd.get ();
11756 const char *kind = is_debug_types ? "TU" : "CU";
11757 struct dwo_file *dwo_file;
11758 struct dwo_unit *dwo_unit;
11759 struct virtual_v2_or_v5_dwo_sections sections {};
11760 void **dwo_file_slot;
11761
11762 gdb_assert (dwp_file->version == 5);
11763
11764 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V5 file: %s",
11765 kind, pulongest (unit_index), hex_string (signature),
11766 dwp_file->name);
11767
11768 /* Fetch the section offsets of this DWO unit. */
11769
11770 /* memset (&sections, 0, sizeof (sections)); */
11771
11772 for (int i = 0; i < dwp_htab->nr_columns; ++i)
11773 {
11774 uint32_t offset = read_4_bytes (dbfd,
11775 dwp_htab->section_pool.v5.offsets
11776 + (((unit_index - 1)
11777 * dwp_htab->nr_columns
11778 + i)
11779 * sizeof (uint32_t)));
11780 uint32_t size = read_4_bytes (dbfd,
11781 dwp_htab->section_pool.v5.sizes
11782 + (((unit_index - 1) * dwp_htab->nr_columns
11783 + i)
11784 * sizeof (uint32_t)));
11785
11786 switch (dwp_htab->section_pool.v5.section_ids[i])
11787 {
11788 case DW_SECT_ABBREV_V5:
11789 sections.abbrev_offset = offset;
11790 sections.abbrev_size = size;
11791 break;
11792 case DW_SECT_INFO_V5:
11793 sections.info_or_types_offset = offset;
11794 sections.info_or_types_size = size;
11795 break;
11796 case DW_SECT_LINE_V5:
11797 sections.line_offset = offset;
11798 sections.line_size = size;
11799 break;
11800 case DW_SECT_LOCLISTS_V5:
11801 sections.loclists_offset = offset;
11802 sections.loclists_size = size;
11803 break;
11804 case DW_SECT_MACRO_V5:
11805 sections.macro_offset = offset;
11806 sections.macro_size = size;
11807 break;
11808 case DW_SECT_RNGLISTS_V5:
11809 sections.rnglists_offset = offset;
11810 sections.rnglists_size = size;
11811 break;
11812 case DW_SECT_STR_OFFSETS_V5:
11813 sections.str_offsets_offset = offset;
11814 sections.str_offsets_size = size;
11815 break;
11816 case DW_SECT_RESERVED_V5:
11817 default:
11818 break;
11819 }
11820 }
11821
11822 /* It's easier for the rest of the code if we fake a struct dwo_file and
11823 have dwo_unit "live" in that. At least for now.
11824
11825 The DWP file can be made up of a random collection of CUs and TUs.
11826 However, for each CU + set of TUs that came from the same original DWO
11827 file, we can combine them back into a virtual DWO file to save space
11828 (fewer struct dwo_file objects to allocate). Remember that for really
11829 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11830
11831 std::string virtual_dwo_name =
11832 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld-%ld-%ld",
11833 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11834 (long) (sections.line_size ? sections.line_offset : 0),
11835 (long) (sections.loclists_size ? sections.loclists_offset : 0),
11836 (long) (sections.str_offsets_size
11837 ? sections.str_offsets_offset : 0),
11838 (long) (sections.macro_size ? sections.macro_offset : 0),
11839 (long) (sections.rnglists_size ? sections.rnglists_offset: 0));
11840 /* Can we use an existing virtual DWO file? */
11841 dwo_file_slot = lookup_dwo_file_slot (per_objfile,
11842 virtual_dwo_name.c_str (),
11843 comp_dir);
11844 /* Create one if necessary. */
11845 if (*dwo_file_slot == NULL)
11846 {
11847 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11848 virtual_dwo_name.c_str ());
11849
11850 dwo_file = new struct dwo_file;
11851 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11852 dwo_file->comp_dir = comp_dir;
11853 dwo_file->sections.abbrev =
11854 create_dwp_v2_or_v5_section (per_objfile,
11855 &dwp_file->sections.abbrev,
11856 sections.abbrev_offset,
11857 sections.abbrev_size);
11858 dwo_file->sections.line =
11859 create_dwp_v2_or_v5_section (per_objfile,
11860 &dwp_file->sections.line,
11861 sections.line_offset, sections.line_size);
11862 dwo_file->sections.macro =
11863 create_dwp_v2_or_v5_section (per_objfile,
11864 &dwp_file->sections.macro,
11865 sections.macro_offset,
11866 sections.macro_size);
11867 dwo_file->sections.loclists =
11868 create_dwp_v2_or_v5_section (per_objfile,
11869 &dwp_file->sections.loclists,
11870 sections.loclists_offset,
11871 sections.loclists_size);
11872 dwo_file->sections.rnglists =
11873 create_dwp_v2_or_v5_section (per_objfile,
11874 &dwp_file->sections.rnglists,
11875 sections.rnglists_offset,
11876 sections.rnglists_size);
11877 dwo_file->sections.str_offsets =
11878 create_dwp_v2_or_v5_section (per_objfile,
11879 &dwp_file->sections.str_offsets,
11880 sections.str_offsets_offset,
11881 sections.str_offsets_size);
11882 /* The "str" section is global to the entire DWP file. */
11883 dwo_file->sections.str = dwp_file->sections.str;
11884 /* The info or types section is assigned below to dwo_unit,
11885 there's no need to record it in dwo_file.
11886 Also, we can't simply record type sections in dwo_file because
11887 we record a pointer into the vector in dwo_unit. As we collect more
11888 types we'll grow the vector and eventually have to reallocate space
11889 for it, invalidating all copies of pointers into the previous
11890 contents. */
11891 *dwo_file_slot = dwo_file;
11892 }
11893 else
11894 {
11895 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
11896 virtual_dwo_name.c_str ());
11897
11898 dwo_file = (struct dwo_file *) *dwo_file_slot;
11899 }
11900
11901 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
11902 dwo_unit->dwo_file = dwo_file;
11903 dwo_unit->signature = signature;
11904 dwo_unit->section
11905 = XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11906 *dwo_unit->section = create_dwp_v2_or_v5_section (per_objfile,
11907 &dwp_file->sections.info,
11908 sections.info_or_types_offset,
11909 sections.info_or_types_size);
11910 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11911
11912 return dwo_unit;
11913 }
11914
11915 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11916 Returns NULL if the signature isn't found. */
11917
11918 static struct dwo_unit *
11919 lookup_dwo_unit_in_dwp (dwarf2_per_objfile *per_objfile,
11920 struct dwp_file *dwp_file, const char *comp_dir,
11921 ULONGEST signature, int is_debug_types)
11922 {
11923 const struct dwp_hash_table *dwp_htab =
11924 is_debug_types ? dwp_file->tus : dwp_file->cus;
11925 bfd *dbfd = dwp_file->dbfd.get ();
11926 uint32_t mask = dwp_htab->nr_slots - 1;
11927 uint32_t hash = signature & mask;
11928 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11929 unsigned int i;
11930 void **slot;
11931 struct dwo_unit find_dwo_cu;
11932
11933 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11934 find_dwo_cu.signature = signature;
11935 slot = htab_find_slot (is_debug_types
11936 ? dwp_file->loaded_tus.get ()
11937 : dwp_file->loaded_cus.get (),
11938 &find_dwo_cu, INSERT);
11939
11940 if (*slot != NULL)
11941 return (struct dwo_unit *) *slot;
11942
11943 /* Use a for loop so that we don't loop forever on bad debug info. */
11944 for (i = 0; i < dwp_htab->nr_slots; ++i)
11945 {
11946 ULONGEST signature_in_table;
11947
11948 signature_in_table =
11949 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11950 if (signature_in_table == signature)
11951 {
11952 uint32_t unit_index =
11953 read_4_bytes (dbfd,
11954 dwp_htab->unit_table + hash * sizeof (uint32_t));
11955
11956 if (dwp_file->version == 1)
11957 {
11958 *slot = create_dwo_unit_in_dwp_v1 (per_objfile, dwp_file,
11959 unit_index, comp_dir,
11960 signature, is_debug_types);
11961 }
11962 else if (dwp_file->version == 2)
11963 {
11964 *slot = create_dwo_unit_in_dwp_v2 (per_objfile, dwp_file,
11965 unit_index, comp_dir,
11966 signature, is_debug_types);
11967 }
11968 else /* version == 5 */
11969 {
11970 *slot = create_dwo_unit_in_dwp_v5 (per_objfile, dwp_file,
11971 unit_index, comp_dir,
11972 signature, is_debug_types);
11973 }
11974 return (struct dwo_unit *) *slot;
11975 }
11976 if (signature_in_table == 0)
11977 return NULL;
11978 hash = (hash + hash2) & mask;
11979 }
11980
11981 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11982 " [in module %s]"),
11983 dwp_file->name);
11984 }
11985
11986 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11987 Open the file specified by FILE_NAME and hand it off to BFD for
11988 preliminary analysis. Return a newly initialized bfd *, which
11989 includes a canonicalized copy of FILE_NAME.
11990 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11991 SEARCH_CWD is true if the current directory is to be searched.
11992 It will be searched before debug-file-directory.
11993 If successful, the file is added to the bfd include table of the
11994 objfile's bfd (see gdb_bfd_record_inclusion).
11995 If unable to find/open the file, return NULL.
11996 NOTE: This function is derived from symfile_bfd_open. */
11997
11998 static gdb_bfd_ref_ptr
11999 try_open_dwop_file (dwarf2_per_objfile *per_objfile,
12000 const char *file_name, int is_dwp, int search_cwd)
12001 {
12002 int desc;
12003 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12004 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12005 to debug_file_directory. */
12006 const char *search_path;
12007 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12008
12009 gdb::unique_xmalloc_ptr<char> search_path_holder;
12010 if (search_cwd)
12011 {
12012 if (*debug_file_directory != '\0')
12013 {
12014 search_path_holder.reset (concat (".", dirname_separator_string,
12015 debug_file_directory,
12016 (char *) NULL));
12017 search_path = search_path_holder.get ();
12018 }
12019 else
12020 search_path = ".";
12021 }
12022 else
12023 search_path = debug_file_directory;
12024
12025 /* Add the path for the executable binary to the list of search paths. */
12026 std::string objfile_dir = ldirname (objfile_name (per_objfile->objfile));
12027 search_path_holder.reset (concat (objfile_dir.c_str (),
12028 dirname_separator_string,
12029 search_path, nullptr));
12030 search_path = search_path_holder.get ();
12031
12032 openp_flags flags = OPF_RETURN_REALPATH;
12033 if (is_dwp)
12034 flags |= OPF_SEARCH_IN_PATH;
12035
12036 gdb::unique_xmalloc_ptr<char> absolute_name;
12037 desc = openp (search_path, flags, file_name,
12038 O_RDONLY | O_BINARY, &absolute_name);
12039 if (desc < 0)
12040 return NULL;
12041
12042 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12043 gnutarget, desc));
12044 if (sym_bfd == NULL)
12045 return NULL;
12046 bfd_set_cacheable (sym_bfd.get (), 1);
12047
12048 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12049 return NULL;
12050
12051 /* Success. Record the bfd as having been included by the objfile's bfd.
12052 This is important because things like demangled_names_hash lives in the
12053 objfile's per_bfd space and may have references to things like symbol
12054 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12055 gdb_bfd_record_inclusion (per_objfile->objfile->obfd, sym_bfd.get ());
12056
12057 return sym_bfd;
12058 }
12059
12060 /* Try to open DWO file FILE_NAME.
12061 COMP_DIR is the DW_AT_comp_dir attribute.
12062 The result is the bfd handle of the file.
12063 If there is a problem finding or opening the file, return NULL.
12064 Upon success, the canonicalized path of the file is stored in the bfd,
12065 same as symfile_bfd_open. */
12066
12067 static gdb_bfd_ref_ptr
12068 open_dwo_file (dwarf2_per_objfile *per_objfile,
12069 const char *file_name, const char *comp_dir)
12070 {
12071 if (IS_ABSOLUTE_PATH (file_name))
12072 return try_open_dwop_file (per_objfile, file_name,
12073 0 /*is_dwp*/, 0 /*search_cwd*/);
12074
12075 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12076
12077 if (comp_dir != NULL)
12078 {
12079 gdb::unique_xmalloc_ptr<char> path_to_try
12080 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12081
12082 /* NOTE: If comp_dir is a relative path, this will also try the
12083 search path, which seems useful. */
12084 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, path_to_try.get (),
12085 0 /*is_dwp*/,
12086 1 /*search_cwd*/));
12087 if (abfd != NULL)
12088 return abfd;
12089 }
12090
12091 /* That didn't work, try debug-file-directory, which, despite its name,
12092 is a list of paths. */
12093
12094 if (*debug_file_directory == '\0')
12095 return NULL;
12096
12097 return try_open_dwop_file (per_objfile, file_name,
12098 0 /*is_dwp*/, 1 /*search_cwd*/);
12099 }
12100
12101 /* This function is mapped across the sections and remembers the offset and
12102 size of each of the DWO debugging sections we are interested in. */
12103
12104 static void
12105 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp,
12106 dwo_sections *dwo_sections)
12107 {
12108 const struct dwop_section_names *names = &dwop_section_names;
12109
12110 if (names->abbrev_dwo.matches (sectp->name))
12111 {
12112 dwo_sections->abbrev.s.section = sectp;
12113 dwo_sections->abbrev.size = bfd_section_size (sectp);
12114 }
12115 else if (names->info_dwo.matches (sectp->name))
12116 {
12117 dwo_sections->info.s.section = sectp;
12118 dwo_sections->info.size = bfd_section_size (sectp);
12119 }
12120 else if (names->line_dwo.matches (sectp->name))
12121 {
12122 dwo_sections->line.s.section = sectp;
12123 dwo_sections->line.size = bfd_section_size (sectp);
12124 }
12125 else if (names->loc_dwo.matches (sectp->name))
12126 {
12127 dwo_sections->loc.s.section = sectp;
12128 dwo_sections->loc.size = bfd_section_size (sectp);
12129 }
12130 else if (names->loclists_dwo.matches (sectp->name))
12131 {
12132 dwo_sections->loclists.s.section = sectp;
12133 dwo_sections->loclists.size = bfd_section_size (sectp);
12134 }
12135 else if (names->macinfo_dwo.matches (sectp->name))
12136 {
12137 dwo_sections->macinfo.s.section = sectp;
12138 dwo_sections->macinfo.size = bfd_section_size (sectp);
12139 }
12140 else if (names->macro_dwo.matches (sectp->name))
12141 {
12142 dwo_sections->macro.s.section = sectp;
12143 dwo_sections->macro.size = bfd_section_size (sectp);
12144 }
12145 else if (names->rnglists_dwo.matches (sectp->name))
12146 {
12147 dwo_sections->rnglists.s.section = sectp;
12148 dwo_sections->rnglists.size = bfd_section_size (sectp);
12149 }
12150 else if (names->str_dwo.matches (sectp->name))
12151 {
12152 dwo_sections->str.s.section = sectp;
12153 dwo_sections->str.size = bfd_section_size (sectp);
12154 }
12155 else if (names->str_offsets_dwo.matches (sectp->name))
12156 {
12157 dwo_sections->str_offsets.s.section = sectp;
12158 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12159 }
12160 else if (names->types_dwo.matches (sectp->name))
12161 {
12162 struct dwarf2_section_info type_section;
12163
12164 memset (&type_section, 0, sizeof (type_section));
12165 type_section.s.section = sectp;
12166 type_section.size = bfd_section_size (sectp);
12167 dwo_sections->types.push_back (type_section);
12168 }
12169 }
12170
12171 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12172 by PER_CU. This is for the non-DWP case.
12173 The result is NULL if DWO_NAME can't be found. */
12174
12175 static struct dwo_file *
12176 open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name,
12177 const char *comp_dir)
12178 {
12179 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12180
12181 gdb_bfd_ref_ptr dbfd = open_dwo_file (per_objfile, dwo_name, comp_dir);
12182 if (dbfd == NULL)
12183 {
12184 dwarf_read_debug_printf ("DWO file not found: %s", dwo_name);
12185
12186 return NULL;
12187 }
12188
12189 dwo_file_up dwo_file (new struct dwo_file);
12190 dwo_file->dwo_name = dwo_name;
12191 dwo_file->comp_dir = comp_dir;
12192 dwo_file->dbfd = std::move (dbfd);
12193
12194 for (asection *sec : gdb_bfd_sections (dwo_file->dbfd))
12195 dwarf2_locate_dwo_sections (dwo_file->dbfd.get (), sec,
12196 &dwo_file->sections);
12197
12198 create_cus_hash_table (per_objfile, cu, *dwo_file, dwo_file->sections.info,
12199 dwo_file->cus);
12200
12201 if (cu->per_cu->dwarf_version < 5)
12202 {
12203 create_debug_types_hash_table (per_objfile, dwo_file.get (),
12204 dwo_file->sections.types, dwo_file->tus);
12205 }
12206 else
12207 {
12208 create_debug_type_hash_table (per_objfile, dwo_file.get (),
12209 &dwo_file->sections.info, dwo_file->tus,
12210 rcuh_kind::COMPILE);
12211 }
12212
12213 dwarf_read_debug_printf ("DWO file found: %s", dwo_name);
12214
12215 return dwo_file.release ();
12216 }
12217
12218 /* This function is mapped across the sections and remembers the offset and
12219 size of each of the DWP debugging sections common to version 1 and 2 that
12220 we are interested in. */
12221
12222 static void
12223 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12224 dwp_file *dwp_file)
12225 {
12226 const struct dwop_section_names *names = &dwop_section_names;
12227 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12228
12229 /* Record the ELF section number for later lookup: this is what the
12230 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12231 gdb_assert (elf_section_nr < dwp_file->num_sections);
12232 dwp_file->elf_sections[elf_section_nr] = sectp;
12233
12234 /* Look for specific sections that we need. */
12235 if (names->str_dwo.matches (sectp->name))
12236 {
12237 dwp_file->sections.str.s.section = sectp;
12238 dwp_file->sections.str.size = bfd_section_size (sectp);
12239 }
12240 else if (names->cu_index.matches (sectp->name))
12241 {
12242 dwp_file->sections.cu_index.s.section = sectp;
12243 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12244 }
12245 else if (names->tu_index.matches (sectp->name))
12246 {
12247 dwp_file->sections.tu_index.s.section = sectp;
12248 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12249 }
12250 }
12251
12252 /* This function is mapped across the sections and remembers the offset and
12253 size of each of the DWP version 2 debugging sections that we are interested
12254 in. This is split into a separate function because we don't know if we
12255 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12256
12257 static void
12258 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12259 {
12260 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12261 const struct dwop_section_names *names = &dwop_section_names;
12262 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12263
12264 /* Record the ELF section number for later lookup: this is what the
12265 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12266 gdb_assert (elf_section_nr < dwp_file->num_sections);
12267 dwp_file->elf_sections[elf_section_nr] = sectp;
12268
12269 /* Look for specific sections that we need. */
12270 if (names->abbrev_dwo.matches (sectp->name))
12271 {
12272 dwp_file->sections.abbrev.s.section = sectp;
12273 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12274 }
12275 else if (names->info_dwo.matches (sectp->name))
12276 {
12277 dwp_file->sections.info.s.section = sectp;
12278 dwp_file->sections.info.size = bfd_section_size (sectp);
12279 }
12280 else if (names->line_dwo.matches (sectp->name))
12281 {
12282 dwp_file->sections.line.s.section = sectp;
12283 dwp_file->sections.line.size = bfd_section_size (sectp);
12284 }
12285 else if (names->loc_dwo.matches (sectp->name))
12286 {
12287 dwp_file->sections.loc.s.section = sectp;
12288 dwp_file->sections.loc.size = bfd_section_size (sectp);
12289 }
12290 else if (names->macinfo_dwo.matches (sectp->name))
12291 {
12292 dwp_file->sections.macinfo.s.section = sectp;
12293 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12294 }
12295 else if (names->macro_dwo.matches (sectp->name))
12296 {
12297 dwp_file->sections.macro.s.section = sectp;
12298 dwp_file->sections.macro.size = bfd_section_size (sectp);
12299 }
12300 else if (names->str_offsets_dwo.matches (sectp->name))
12301 {
12302 dwp_file->sections.str_offsets.s.section = sectp;
12303 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12304 }
12305 else if (names->types_dwo.matches (sectp->name))
12306 {
12307 dwp_file->sections.types.s.section = sectp;
12308 dwp_file->sections.types.size = bfd_section_size (sectp);
12309 }
12310 }
12311
12312 /* This function is mapped across the sections and remembers the offset and
12313 size of each of the DWP version 5 debugging sections that we are interested
12314 in. This is split into a separate function because we don't know if we
12315 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12316
12317 static void
12318 dwarf2_locate_v5_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12319 {
12320 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12321 const struct dwop_section_names *names = &dwop_section_names;
12322 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12323
12324 /* Record the ELF section number for later lookup: this is what the
12325 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12326 gdb_assert (elf_section_nr < dwp_file->num_sections);
12327 dwp_file->elf_sections[elf_section_nr] = sectp;
12328
12329 /* Look for specific sections that we need. */
12330 if (names->abbrev_dwo.matches (sectp->name))
12331 {
12332 dwp_file->sections.abbrev.s.section = sectp;
12333 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12334 }
12335 else if (names->info_dwo.matches (sectp->name))
12336 {
12337 dwp_file->sections.info.s.section = sectp;
12338 dwp_file->sections.info.size = bfd_section_size (sectp);
12339 }
12340 else if (names->line_dwo.matches (sectp->name))
12341 {
12342 dwp_file->sections.line.s.section = sectp;
12343 dwp_file->sections.line.size = bfd_section_size (sectp);
12344 }
12345 else if (names->loclists_dwo.matches (sectp->name))
12346 {
12347 dwp_file->sections.loclists.s.section = sectp;
12348 dwp_file->sections.loclists.size = bfd_section_size (sectp);
12349 }
12350 else if (names->macro_dwo.matches (sectp->name))
12351 {
12352 dwp_file->sections.macro.s.section = sectp;
12353 dwp_file->sections.macro.size = bfd_section_size (sectp);
12354 }
12355 else if (names->rnglists_dwo.matches (sectp->name))
12356 {
12357 dwp_file->sections.rnglists.s.section = sectp;
12358 dwp_file->sections.rnglists.size = bfd_section_size (sectp);
12359 }
12360 else if (names->str_offsets_dwo.matches (sectp->name))
12361 {
12362 dwp_file->sections.str_offsets.s.section = sectp;
12363 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12364 }
12365 }
12366
12367 /* Hash function for dwp_file loaded CUs/TUs. */
12368
12369 static hashval_t
12370 hash_dwp_loaded_cutus (const void *item)
12371 {
12372 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12373
12374 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12375 return dwo_unit->signature;
12376 }
12377
12378 /* Equality function for dwp_file loaded CUs/TUs. */
12379
12380 static int
12381 eq_dwp_loaded_cutus (const void *a, const void *b)
12382 {
12383 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12384 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12385
12386 return dua->signature == dub->signature;
12387 }
12388
12389 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12390
12391 static htab_up
12392 allocate_dwp_loaded_cutus_table ()
12393 {
12394 return htab_up (htab_create_alloc (3,
12395 hash_dwp_loaded_cutus,
12396 eq_dwp_loaded_cutus,
12397 NULL, xcalloc, xfree));
12398 }
12399
12400 /* Try to open DWP file FILE_NAME.
12401 The result is the bfd handle of the file.
12402 If there is a problem finding or opening the file, return NULL.
12403 Upon success, the canonicalized path of the file is stored in the bfd,
12404 same as symfile_bfd_open. */
12405
12406 static gdb_bfd_ref_ptr
12407 open_dwp_file (dwarf2_per_objfile *per_objfile, const char *file_name)
12408 {
12409 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, file_name,
12410 1 /*is_dwp*/,
12411 1 /*search_cwd*/));
12412 if (abfd != NULL)
12413 return abfd;
12414
12415 /* Work around upstream bug 15652.
12416 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12417 [Whether that's a "bug" is debatable, but it is getting in our way.]
12418 We have no real idea where the dwp file is, because gdb's realpath-ing
12419 of the executable's path may have discarded the needed info.
12420 [IWBN if the dwp file name was recorded in the executable, akin to
12421 .gnu_debuglink, but that doesn't exist yet.]
12422 Strip the directory from FILE_NAME and search again. */
12423 if (*debug_file_directory != '\0')
12424 {
12425 /* Don't implicitly search the current directory here.
12426 If the user wants to search "." to handle this case,
12427 it must be added to debug-file-directory. */
12428 return try_open_dwop_file (per_objfile, lbasename (file_name),
12429 1 /*is_dwp*/,
12430 0 /*search_cwd*/);
12431 }
12432
12433 return NULL;
12434 }
12435
12436 /* Initialize the use of the DWP file for the current objfile.
12437 By convention the name of the DWP file is ${objfile}.dwp.
12438 The result is NULL if it can't be found. */
12439
12440 static std::unique_ptr<struct dwp_file>
12441 open_and_init_dwp_file (dwarf2_per_objfile *per_objfile)
12442 {
12443 struct objfile *objfile = per_objfile->objfile;
12444
12445 /* Try to find first .dwp for the binary file before any symbolic links
12446 resolving. */
12447
12448 /* If the objfile is a debug file, find the name of the real binary
12449 file and get the name of dwp file from there. */
12450 std::string dwp_name;
12451 if (objfile->separate_debug_objfile_backlink != NULL)
12452 {
12453 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12454 const char *backlink_basename = lbasename (backlink->original_name);
12455
12456 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12457 }
12458 else
12459 dwp_name = objfile->original_name;
12460
12461 dwp_name += ".dwp";
12462
12463 gdb_bfd_ref_ptr dbfd (open_dwp_file (per_objfile, dwp_name.c_str ()));
12464 if (dbfd == NULL
12465 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12466 {
12467 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12468 dwp_name = objfile_name (objfile);
12469 dwp_name += ".dwp";
12470 dbfd = open_dwp_file (per_objfile, dwp_name.c_str ());
12471 }
12472
12473 if (dbfd == NULL)
12474 {
12475 dwarf_read_debug_printf ("DWP file not found: %s", dwp_name.c_str ());
12476
12477 return std::unique_ptr<dwp_file> ();
12478 }
12479
12480 const char *name = bfd_get_filename (dbfd.get ());
12481 std::unique_ptr<struct dwp_file> dwp_file
12482 (new struct dwp_file (name, std::move (dbfd)));
12483
12484 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12485 dwp_file->elf_sections =
12486 OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
12487 dwp_file->num_sections, asection *);
12488
12489 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
12490 dwarf2_locate_common_dwp_sections (dwp_file->dbfd.get (), sec,
12491 dwp_file.get ());
12492
12493 dwp_file->cus = create_dwp_hash_table (per_objfile, dwp_file.get (), 0);
12494
12495 dwp_file->tus = create_dwp_hash_table (per_objfile, dwp_file.get (), 1);
12496
12497 /* The DWP file version is stored in the hash table. Oh well. */
12498 if (dwp_file->cus && dwp_file->tus
12499 && dwp_file->cus->version != dwp_file->tus->version)
12500 {
12501 /* Technically speaking, we should try to limp along, but this is
12502 pretty bizarre. We use pulongest here because that's the established
12503 portability solution (e.g, we cannot use %u for uint32_t). */
12504 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12505 " TU version %s [in DWP file %s]"),
12506 pulongest (dwp_file->cus->version),
12507 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12508 }
12509
12510 if (dwp_file->cus)
12511 dwp_file->version = dwp_file->cus->version;
12512 else if (dwp_file->tus)
12513 dwp_file->version = dwp_file->tus->version;
12514 else
12515 dwp_file->version = 2;
12516
12517 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
12518 {
12519 if (dwp_file->version == 2)
12520 dwarf2_locate_v2_dwp_sections (dwp_file->dbfd.get (), sec,
12521 dwp_file.get ());
12522 else
12523 dwarf2_locate_v5_dwp_sections (dwp_file->dbfd.get (), sec,
12524 dwp_file.get ());
12525 }
12526
12527 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12528 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12529
12530 dwarf_read_debug_printf ("DWP file found: %s", dwp_file->name);
12531 dwarf_read_debug_printf (" %s CUs, %s TUs",
12532 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12533 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12534
12535 return dwp_file;
12536 }
12537
12538 /* Wrapper around open_and_init_dwp_file, only open it once. */
12539
12540 static struct dwp_file *
12541 get_dwp_file (dwarf2_per_objfile *per_objfile)
12542 {
12543 if (!per_objfile->per_bfd->dwp_checked)
12544 {
12545 per_objfile->per_bfd->dwp_file = open_and_init_dwp_file (per_objfile);
12546 per_objfile->per_bfd->dwp_checked = 1;
12547 }
12548 return per_objfile->per_bfd->dwp_file.get ();
12549 }
12550
12551 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12552 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12553 or in the DWP file for the objfile, referenced by THIS_UNIT.
12554 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12555 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12556
12557 This is called, for example, when wanting to read a variable with a
12558 complex location. Therefore we don't want to do file i/o for every call.
12559 Therefore we don't want to look for a DWO file on every call.
12560 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12561 then we check if we've already seen DWO_NAME, and only THEN do we check
12562 for a DWO file.
12563
12564 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12565 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12566
12567 static struct dwo_unit *
12568 lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12569 ULONGEST signature, int is_debug_types)
12570 {
12571 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12572 struct objfile *objfile = per_objfile->objfile;
12573 const char *kind = is_debug_types ? "TU" : "CU";
12574 void **dwo_file_slot;
12575 struct dwo_file *dwo_file;
12576 struct dwp_file *dwp_file;
12577
12578 /* First see if there's a DWP file.
12579 If we have a DWP file but didn't find the DWO inside it, don't
12580 look for the original DWO file. It makes gdb behave differently
12581 depending on whether one is debugging in the build tree. */
12582
12583 dwp_file = get_dwp_file (per_objfile);
12584 if (dwp_file != NULL)
12585 {
12586 const struct dwp_hash_table *dwp_htab =
12587 is_debug_types ? dwp_file->tus : dwp_file->cus;
12588
12589 if (dwp_htab != NULL)
12590 {
12591 struct dwo_unit *dwo_cutu =
12592 lookup_dwo_unit_in_dwp (per_objfile, dwp_file, comp_dir, signature,
12593 is_debug_types);
12594
12595 if (dwo_cutu != NULL)
12596 {
12597 dwarf_read_debug_printf ("Virtual DWO %s %s found: @%s",
12598 kind, hex_string (signature),
12599 host_address_to_string (dwo_cutu));
12600
12601 return dwo_cutu;
12602 }
12603 }
12604 }
12605 else
12606 {
12607 /* No DWP file, look for the DWO file. */
12608
12609 dwo_file_slot = lookup_dwo_file_slot (per_objfile, dwo_name, comp_dir);
12610 if (*dwo_file_slot == NULL)
12611 {
12612 /* Read in the file and build a table of the CUs/TUs it contains. */
12613 *dwo_file_slot = open_and_init_dwo_file (cu, dwo_name, comp_dir);
12614 }
12615 /* NOTE: This will be NULL if unable to open the file. */
12616 dwo_file = (struct dwo_file *) *dwo_file_slot;
12617
12618 if (dwo_file != NULL)
12619 {
12620 struct dwo_unit *dwo_cutu = NULL;
12621
12622 if (is_debug_types && dwo_file->tus)
12623 {
12624 struct dwo_unit find_dwo_cutu;
12625
12626 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12627 find_dwo_cutu.signature = signature;
12628 dwo_cutu
12629 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12630 &find_dwo_cutu);
12631 }
12632 else if (!is_debug_types && dwo_file->cus)
12633 {
12634 struct dwo_unit find_dwo_cutu;
12635
12636 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12637 find_dwo_cutu.signature = signature;
12638 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12639 &find_dwo_cutu);
12640 }
12641
12642 if (dwo_cutu != NULL)
12643 {
12644 dwarf_read_debug_printf ("DWO %s %s(%s) found: @%s",
12645 kind, dwo_name, hex_string (signature),
12646 host_address_to_string (dwo_cutu));
12647
12648 return dwo_cutu;
12649 }
12650 }
12651 }
12652
12653 /* We didn't find it. This could mean a dwo_id mismatch, or
12654 someone deleted the DWO/DWP file, or the search path isn't set up
12655 correctly to find the file. */
12656
12657 dwarf_read_debug_printf ("DWO %s %s(%s) not found",
12658 kind, dwo_name, hex_string (signature));
12659
12660 /* This is a warning and not a complaint because it can be caused by
12661 pilot error (e.g., user accidentally deleting the DWO). */
12662 {
12663 /* Print the name of the DWP file if we looked there, helps the user
12664 better diagnose the problem. */
12665 std::string dwp_text;
12666
12667 if (dwp_file != NULL)
12668 dwp_text = string_printf (" [in DWP file %s]",
12669 lbasename (dwp_file->name));
12670
12671 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12672 " [in module %s]"),
12673 kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind,
12674 sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile));
12675 }
12676 return NULL;
12677 }
12678
12679 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12680 See lookup_dwo_cutu_unit for details. */
12681
12682 static struct dwo_unit *
12683 lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12684 ULONGEST signature)
12685 {
12686 gdb_assert (!cu->per_cu->is_debug_types);
12687
12688 return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0);
12689 }
12690
12691 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12692 See lookup_dwo_cutu_unit for details. */
12693
12694 static struct dwo_unit *
12695 lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir)
12696 {
12697 gdb_assert (cu->per_cu->is_debug_types);
12698
12699 signatured_type *sig_type = (signatured_type *) cu->per_cu;
12700
12701 return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1);
12702 }
12703
12704 /* Traversal function for queue_and_load_all_dwo_tus. */
12705
12706 static int
12707 queue_and_load_dwo_tu (void **slot, void *info)
12708 {
12709 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12710 dwarf2_cu *cu = (dwarf2_cu *) info;
12711 ULONGEST signature = dwo_unit->signature;
12712 signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature);
12713
12714 if (sig_type != NULL)
12715 {
12716 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12717 a real dependency of PER_CU on SIG_TYPE. That is detected later
12718 while processing PER_CU. */
12719 if (maybe_queue_comp_unit (NULL, sig_type, cu->per_objfile,
12720 cu->per_cu->lang))
12721 load_full_type_unit (sig_type, cu->per_objfile);
12722 cu->per_cu->imported_symtabs_push (sig_type);
12723 }
12724
12725 return 1;
12726 }
12727
12728 /* Queue all TUs contained in the DWO of CU to be read in.
12729 The DWO may have the only definition of the type, though it may not be
12730 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12731 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12732
12733 static void
12734 queue_and_load_all_dwo_tus (dwarf2_cu *cu)
12735 {
12736 struct dwo_unit *dwo_unit;
12737 struct dwo_file *dwo_file;
12738
12739 gdb_assert (cu != nullptr);
12740 gdb_assert (!cu->per_cu->is_debug_types);
12741 gdb_assert (get_dwp_file (cu->per_objfile) == nullptr);
12742
12743 dwo_unit = cu->dwo_unit;
12744 gdb_assert (dwo_unit != NULL);
12745
12746 dwo_file = dwo_unit->dwo_file;
12747 if (dwo_file->tus != NULL)
12748 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu, cu);
12749 }
12750
12751 /* Read in various DIEs. */
12752
12753 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12754 Inherit only the children of the DW_AT_abstract_origin DIE not being
12755 already referenced by DW_AT_abstract_origin from the children of the
12756 current DIE. */
12757
12758 static void
12759 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12760 {
12761 struct die_info *child_die;
12762 sect_offset *offsetp;
12763 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12764 struct die_info *origin_die;
12765 /* Iterator of the ORIGIN_DIE children. */
12766 struct die_info *origin_child_die;
12767 struct attribute *attr;
12768 struct dwarf2_cu *origin_cu;
12769 struct pending **origin_previous_list_in_scope;
12770
12771 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12772 if (!attr)
12773 return;
12774
12775 /* Note that following die references may follow to a die in a
12776 different cu. */
12777
12778 origin_cu = cu;
12779 origin_die = follow_die_ref (die, attr, &origin_cu);
12780
12781 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12782 symbols in. */
12783 origin_previous_list_in_scope = origin_cu->list_in_scope;
12784 origin_cu->list_in_scope = cu->list_in_scope;
12785
12786 if (die->tag != origin_die->tag
12787 && !(die->tag == DW_TAG_inlined_subroutine
12788 && origin_die->tag == DW_TAG_subprogram))
12789 complaint (_("DIE %s and its abstract origin %s have different tags"),
12790 sect_offset_str (die->sect_off),
12791 sect_offset_str (origin_die->sect_off));
12792
12793 /* Find if the concrete and abstract trees are structurally the
12794 same. This is a shallow traversal and it is not bullet-proof;
12795 the compiler can trick the debugger into believing that the trees
12796 are isomorphic, whereas they actually are not. However, the
12797 likelyhood of this happening is pretty low, and a full-fledged
12798 check would be an overkill. */
12799 bool are_isomorphic = true;
12800 die_info *concrete_child = die->child;
12801 die_info *abstract_child = origin_die->child;
12802 while (concrete_child != nullptr || abstract_child != nullptr)
12803 {
12804 if (concrete_child == nullptr
12805 || abstract_child == nullptr
12806 || concrete_child->tag != abstract_child->tag)
12807 {
12808 are_isomorphic = false;
12809 break;
12810 }
12811
12812 concrete_child = concrete_child->sibling;
12813 abstract_child = abstract_child->sibling;
12814 }
12815
12816 /* Walk the origin's children in parallel to the concrete children.
12817 This helps match an origin child in case the debug info misses
12818 DW_AT_abstract_origin attributes. Keep in mind that the abstract
12819 origin tree may not have the same tree structure as the concrete
12820 DIE, though. */
12821 die_info *corresponding_abstract_child
12822 = are_isomorphic ? origin_die->child : nullptr;
12823
12824 std::vector<sect_offset> offsets;
12825
12826 for (child_die = die->child;
12827 child_die && child_die->tag;
12828 child_die = child_die->sibling)
12829 {
12830 struct die_info *child_origin_die;
12831 struct dwarf2_cu *child_origin_cu;
12832
12833 /* We are trying to process concrete instance entries:
12834 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12835 it's not relevant to our analysis here. i.e. detecting DIEs that are
12836 present in the abstract instance but not referenced in the concrete
12837 one. */
12838 if (child_die->tag == DW_TAG_call_site
12839 || child_die->tag == DW_TAG_GNU_call_site)
12840 {
12841 if (are_isomorphic)
12842 corresponding_abstract_child
12843 = corresponding_abstract_child->sibling;
12844 continue;
12845 }
12846
12847 /* For each CHILD_DIE, find the corresponding child of
12848 ORIGIN_DIE. If there is more than one layer of
12849 DW_AT_abstract_origin, follow them all; there shouldn't be,
12850 but GCC versions at least through 4.4 generate this (GCC PR
12851 40573). */
12852 child_origin_die = child_die;
12853 child_origin_cu = cu;
12854 while (1)
12855 {
12856 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12857 child_origin_cu);
12858 if (attr == NULL)
12859 break;
12860 child_origin_die = follow_die_ref (child_origin_die, attr,
12861 &child_origin_cu);
12862 }
12863
12864 /* If missing DW_AT_abstract_origin, try the corresponding child
12865 of the origin. Clang emits such lexical scopes. */
12866 if (child_origin_die == child_die
12867 && dwarf2_attr (child_die, DW_AT_abstract_origin, cu) == nullptr
12868 && are_isomorphic
12869 && child_die->tag == DW_TAG_lexical_block)
12870 child_origin_die = corresponding_abstract_child;
12871
12872 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12873 counterpart may exist. */
12874 if (child_origin_die != child_die)
12875 {
12876 if (child_die->tag != child_origin_die->tag
12877 && !(child_die->tag == DW_TAG_inlined_subroutine
12878 && child_origin_die->tag == DW_TAG_subprogram))
12879 complaint (_("Child DIE %s and its abstract origin %s have "
12880 "different tags"),
12881 sect_offset_str (child_die->sect_off),
12882 sect_offset_str (child_origin_die->sect_off));
12883 if (child_origin_die->parent != origin_die)
12884 complaint (_("Child DIE %s and its abstract origin %s have "
12885 "different parents"),
12886 sect_offset_str (child_die->sect_off),
12887 sect_offset_str (child_origin_die->sect_off));
12888 else
12889 offsets.push_back (child_origin_die->sect_off);
12890 }
12891
12892 if (are_isomorphic)
12893 corresponding_abstract_child = corresponding_abstract_child->sibling;
12894 }
12895 std::sort (offsets.begin (), offsets.end ());
12896 sect_offset *offsets_end = offsets.data () + offsets.size ();
12897 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12898 if (offsetp[-1] == *offsetp)
12899 complaint (_("Multiple children of DIE %s refer "
12900 "to DIE %s as their abstract origin"),
12901 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12902
12903 offsetp = offsets.data ();
12904 origin_child_die = origin_die->child;
12905 while (origin_child_die && origin_child_die->tag)
12906 {
12907 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12908 while (offsetp < offsets_end
12909 && *offsetp < origin_child_die->sect_off)
12910 offsetp++;
12911 if (offsetp >= offsets_end
12912 || *offsetp > origin_child_die->sect_off)
12913 {
12914 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12915 Check whether we're already processing ORIGIN_CHILD_DIE.
12916 This can happen with mutually referenced abstract_origins.
12917 PR 16581. */
12918 if (!origin_child_die->in_process)
12919 process_die (origin_child_die, origin_cu);
12920 }
12921 origin_child_die = origin_child_die->sibling;
12922 }
12923 origin_cu->list_in_scope = origin_previous_list_in_scope;
12924
12925 if (cu != origin_cu)
12926 compute_delayed_physnames (origin_cu);
12927 }
12928
12929 static void
12930 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12931 {
12932 struct objfile *objfile = cu->per_objfile->objfile;
12933 struct gdbarch *gdbarch = objfile->arch ();
12934 struct context_stack *newobj;
12935 CORE_ADDR lowpc;
12936 CORE_ADDR highpc;
12937 struct die_info *child_die;
12938 struct attribute *attr, *call_line, *call_file;
12939 const char *name;
12940 CORE_ADDR baseaddr;
12941 struct block *block;
12942 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12943 std::vector<struct symbol *> template_args;
12944 struct template_symbol *templ_func = NULL;
12945
12946 if (inlined_func)
12947 {
12948 /* If we do not have call site information, we can't show the
12949 caller of this inlined function. That's too confusing, so
12950 only use the scope for local variables. */
12951 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12952 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12953 if (call_line == NULL || call_file == NULL)
12954 {
12955 read_lexical_block_scope (die, cu);
12956 return;
12957 }
12958 }
12959
12960 baseaddr = objfile->text_section_offset ();
12961
12962 name = dwarf2_name (die, cu);
12963
12964 /* Ignore functions with missing or empty names. These are actually
12965 illegal according to the DWARF standard. */
12966 if (name == NULL)
12967 {
12968 complaint (_("missing name for subprogram DIE at %s"),
12969 sect_offset_str (die->sect_off));
12970 return;
12971 }
12972
12973 /* Ignore functions with missing or invalid low and high pc attributes. */
12974 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12975 <= PC_BOUNDS_INVALID)
12976 {
12977 attr = dwarf2_attr (die, DW_AT_external, cu);
12978 if (attr == nullptr || !attr->as_boolean ())
12979 complaint (_("cannot get low and high bounds "
12980 "for subprogram DIE at %s"),
12981 sect_offset_str (die->sect_off));
12982 return;
12983 }
12984
12985 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12986 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12987
12988 /* If we have any template arguments, then we must allocate a
12989 different sort of symbol. */
12990 for (child_die = die->child; child_die; child_die = child_die->sibling)
12991 {
12992 if (child_die->tag == DW_TAG_template_type_param
12993 || child_die->tag == DW_TAG_template_value_param)
12994 {
12995 templ_func = new (&objfile->objfile_obstack) template_symbol;
12996 templ_func->subclass = SYMBOL_TEMPLATE;
12997 break;
12998 }
12999 }
13000
13001 gdb_assert (cu->get_builder () != nullptr);
13002 newobj = cu->get_builder ()->push_context (0, lowpc);
13003 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13004 (struct symbol *) templ_func);
13005
13006 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13007 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13008 cu->per_cu->lang);
13009
13010 /* If there is a location expression for DW_AT_frame_base, record
13011 it. */
13012 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13013 if (attr != nullptr)
13014 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13015
13016 /* If there is a location for the static link, record it. */
13017 newobj->static_link = NULL;
13018 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13019 if (attr != nullptr)
13020 {
13021 newobj->static_link
13022 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13023 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13024 cu->addr_type ());
13025 }
13026
13027 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13028
13029 if (die->child != NULL)
13030 {
13031 child_die = die->child;
13032 while (child_die && child_die->tag)
13033 {
13034 if (child_die->tag == DW_TAG_template_type_param
13035 || child_die->tag == DW_TAG_template_value_param)
13036 {
13037 struct symbol *arg = new_symbol (child_die, NULL, cu);
13038
13039 if (arg != NULL)
13040 template_args.push_back (arg);
13041 }
13042 else
13043 process_die (child_die, cu);
13044 child_die = child_die->sibling;
13045 }
13046 }
13047
13048 inherit_abstract_dies (die, cu);
13049
13050 /* If we have a DW_AT_specification, we might need to import using
13051 directives from the context of the specification DIE. See the
13052 comment in determine_prefix. */
13053 if (cu->per_cu->lang == language_cplus
13054 && dwarf2_attr (die, DW_AT_specification, cu))
13055 {
13056 struct dwarf2_cu *spec_cu = cu;
13057 struct die_info *spec_die = die_specification (die, &spec_cu);
13058
13059 while (spec_die)
13060 {
13061 child_die = spec_die->child;
13062 while (child_die && child_die->tag)
13063 {
13064 if (child_die->tag == DW_TAG_imported_module)
13065 process_die (child_die, spec_cu);
13066 child_die = child_die->sibling;
13067 }
13068
13069 /* In some cases, GCC generates specification DIEs that
13070 themselves contain DW_AT_specification attributes. */
13071 spec_die = die_specification (spec_die, &spec_cu);
13072 }
13073 }
13074
13075 struct context_stack cstk = cu->get_builder ()->pop_context ();
13076 /* Make a block for the local symbols within. */
13077 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13078 cstk.static_link, lowpc, highpc);
13079
13080 /* For C++, set the block's scope. */
13081 if ((cu->per_cu->lang == language_cplus
13082 || cu->per_cu->lang == language_fortran
13083 || cu->per_cu->lang == language_d
13084 || cu->per_cu->lang == language_rust)
13085 && cu->processing_has_namespace_info)
13086 block_set_scope (block, determine_prefix (die, cu),
13087 &objfile->objfile_obstack);
13088
13089 /* If we have address ranges, record them. */
13090 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13091
13092 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13093
13094 /* Attach template arguments to function. */
13095 if (!template_args.empty ())
13096 {
13097 gdb_assert (templ_func != NULL);
13098
13099 templ_func->n_template_arguments = template_args.size ();
13100 templ_func->template_arguments
13101 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13102 templ_func->n_template_arguments);
13103 memcpy (templ_func->template_arguments,
13104 template_args.data (),
13105 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13106
13107 /* Make sure that the symtab is set on the new symbols. Even
13108 though they don't appear in this symtab directly, other parts
13109 of gdb assume that symbols do, and this is reasonably
13110 true. */
13111 for (symbol *sym : template_args)
13112 symbol_set_symtab (sym, symbol_symtab (templ_func));
13113 }
13114
13115 /* In C++, we can have functions nested inside functions (e.g., when
13116 a function declares a class that has methods). This means that
13117 when we finish processing a function scope, we may need to go
13118 back to building a containing block's symbol lists. */
13119 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13120 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13121
13122 /* If we've finished processing a top-level function, subsequent
13123 symbols go in the file symbol list. */
13124 if (cu->get_builder ()->outermost_context_p ())
13125 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13126 }
13127
13128 /* Process all the DIES contained within a lexical block scope. Start
13129 a new scope, process the dies, and then close the scope. */
13130
13131 static void
13132 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13133 {
13134 struct objfile *objfile = cu->per_objfile->objfile;
13135 struct gdbarch *gdbarch = objfile->arch ();
13136 CORE_ADDR lowpc, highpc;
13137 struct die_info *child_die;
13138 CORE_ADDR baseaddr;
13139
13140 baseaddr = objfile->text_section_offset ();
13141
13142 /* Ignore blocks with missing or invalid low and high pc attributes. */
13143 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13144 as multiple lexical blocks? Handling children in a sane way would
13145 be nasty. Might be easier to properly extend generic blocks to
13146 describe ranges. */
13147 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13148 {
13149 case PC_BOUNDS_NOT_PRESENT:
13150 /* DW_TAG_lexical_block has no attributes, process its children as if
13151 there was no wrapping by that DW_TAG_lexical_block.
13152 GCC does no longer produces such DWARF since GCC r224161. */
13153 for (child_die = die->child;
13154 child_die != NULL && child_die->tag;
13155 child_die = child_die->sibling)
13156 {
13157 /* We might already be processing this DIE. This can happen
13158 in an unusual circumstance -- where a subroutine A
13159 appears lexically in another subroutine B, but A actually
13160 inlines B. The recursion is broken here, rather than in
13161 inherit_abstract_dies, because it seems better to simply
13162 drop concrete children here. */
13163 if (!child_die->in_process)
13164 process_die (child_die, cu);
13165 }
13166 return;
13167 case PC_BOUNDS_INVALID:
13168 return;
13169 }
13170 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13171 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13172
13173 cu->get_builder ()->push_context (0, lowpc);
13174 if (die->child != NULL)
13175 {
13176 child_die = die->child;
13177 while (child_die && child_die->tag)
13178 {
13179 process_die (child_die, cu);
13180 child_die = child_die->sibling;
13181 }
13182 }
13183 inherit_abstract_dies (die, cu);
13184 struct context_stack cstk = cu->get_builder ()->pop_context ();
13185
13186 if (*cu->get_builder ()->get_local_symbols () != NULL
13187 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13188 {
13189 struct block *block
13190 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13191 cstk.start_addr, highpc);
13192
13193 /* Note that recording ranges after traversing children, as we
13194 do here, means that recording a parent's ranges entails
13195 walking across all its children's ranges as they appear in
13196 the address map, which is quadratic behavior.
13197
13198 It would be nicer to record the parent's ranges before
13199 traversing its children, simply overriding whatever you find
13200 there. But since we don't even decide whether to create a
13201 block until after we've traversed its children, that's hard
13202 to do. */
13203 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13204 }
13205 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13206 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13207 }
13208
13209 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13210
13211 static void
13212 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13213 {
13214 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13215 struct objfile *objfile = per_objfile->objfile;
13216 struct gdbarch *gdbarch = objfile->arch ();
13217 CORE_ADDR pc, baseaddr;
13218 struct attribute *attr;
13219 struct call_site *call_site, call_site_local;
13220 void **slot;
13221 int nparams;
13222 struct die_info *child_die;
13223
13224 baseaddr = objfile->text_section_offset ();
13225
13226 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13227 if (attr == NULL)
13228 {
13229 /* This was a pre-DWARF-5 GNU extension alias
13230 for DW_AT_call_return_pc. */
13231 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13232 }
13233 if (!attr)
13234 {
13235 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13236 "DIE %s [in module %s]"),
13237 sect_offset_str (die->sect_off), objfile_name (objfile));
13238 return;
13239 }
13240 pc = attr->as_address () + baseaddr;
13241 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13242
13243 if (cu->call_site_htab == NULL)
13244 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13245 NULL, &objfile->objfile_obstack,
13246 hashtab_obstack_allocate, NULL);
13247 call_site_local.pc = pc;
13248 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13249 if (*slot != NULL)
13250 {
13251 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13252 "DIE %s [in module %s]"),
13253 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13254 objfile_name (objfile));
13255 return;
13256 }
13257
13258 /* Count parameters at the caller. */
13259
13260 nparams = 0;
13261 for (child_die = die->child; child_die && child_die->tag;
13262 child_die = child_die->sibling)
13263 {
13264 if (child_die->tag != DW_TAG_call_site_parameter
13265 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13266 {
13267 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13268 "DW_TAG_call_site child DIE %s [in module %s]"),
13269 child_die->tag, sect_offset_str (child_die->sect_off),
13270 objfile_name (objfile));
13271 continue;
13272 }
13273
13274 nparams++;
13275 }
13276
13277 call_site
13278 = ((struct call_site *)
13279 obstack_alloc (&objfile->objfile_obstack,
13280 sizeof (*call_site)
13281 + (sizeof (*call_site->parameter) * (nparams - 1))));
13282 *slot = call_site;
13283 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13284 call_site->pc = pc;
13285
13286 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13287 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13288 {
13289 struct die_info *func_die;
13290
13291 /* Skip also over DW_TAG_inlined_subroutine. */
13292 for (func_die = die->parent;
13293 func_die && func_die->tag != DW_TAG_subprogram
13294 && func_die->tag != DW_TAG_subroutine_type;
13295 func_die = func_die->parent);
13296
13297 /* DW_AT_call_all_calls is a superset
13298 of DW_AT_call_all_tail_calls. */
13299 if (func_die
13300 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13301 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13302 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13303 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13304 {
13305 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13306 not complete. But keep CALL_SITE for look ups via call_site_htab,
13307 both the initial caller containing the real return address PC and
13308 the final callee containing the current PC of a chain of tail
13309 calls do not need to have the tail call list complete. But any
13310 function candidate for a virtual tail call frame searched via
13311 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13312 determined unambiguously. */
13313 }
13314 else
13315 {
13316 struct type *func_type = NULL;
13317
13318 if (func_die)
13319 func_type = get_die_type (func_die, cu);
13320 if (func_type != NULL)
13321 {
13322 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13323
13324 /* Enlist this call site to the function. */
13325 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13326 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13327 }
13328 else
13329 complaint (_("Cannot find function owning DW_TAG_call_site "
13330 "DIE %s [in module %s]"),
13331 sect_offset_str (die->sect_off), objfile_name (objfile));
13332 }
13333 }
13334
13335 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13336 if (attr == NULL)
13337 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13338 if (attr == NULL)
13339 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13340 if (attr == NULL)
13341 {
13342 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13343 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13344 }
13345 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13346 if (!attr || (attr->form_is_block () && attr->as_block ()->size == 0))
13347 /* Keep NULL DWARF_BLOCK. */;
13348 else if (attr->form_is_block ())
13349 {
13350 struct dwarf2_locexpr_baton *dlbaton;
13351 struct dwarf_block *block = attr->as_block ();
13352
13353 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13354 dlbaton->data = block->data;
13355 dlbaton->size = block->size;
13356 dlbaton->per_objfile = per_objfile;
13357 dlbaton->per_cu = cu->per_cu;
13358
13359 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13360 }
13361 else if (attr->form_is_ref ())
13362 {
13363 struct dwarf2_cu *target_cu = cu;
13364 struct die_info *target_die;
13365
13366 target_die = follow_die_ref (die, attr, &target_cu);
13367 gdb_assert (target_cu->per_objfile->objfile == objfile);
13368 if (die_is_declaration (target_die, target_cu))
13369 {
13370 const char *target_physname;
13371
13372 /* Prefer the mangled name; otherwise compute the demangled one. */
13373 target_physname = dw2_linkage_name (target_die, target_cu);
13374 if (target_physname == NULL)
13375 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13376 if (target_physname == NULL)
13377 complaint (_("DW_AT_call_target target DIE has invalid "
13378 "physname, for referencing DIE %s [in module %s]"),
13379 sect_offset_str (die->sect_off), objfile_name (objfile));
13380 else
13381 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13382 }
13383 else
13384 {
13385 CORE_ADDR lowpc;
13386
13387 /* DW_AT_entry_pc should be preferred. */
13388 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13389 <= PC_BOUNDS_INVALID)
13390 complaint (_("DW_AT_call_target target DIE has invalid "
13391 "low pc, for referencing DIE %s [in module %s]"),
13392 sect_offset_str (die->sect_off), objfile_name (objfile));
13393 else
13394 {
13395 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13396 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13397 }
13398 }
13399 }
13400 else
13401 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13402 "block nor reference, for DIE %s [in module %s]"),
13403 sect_offset_str (die->sect_off), objfile_name (objfile));
13404
13405 call_site->per_cu = cu->per_cu;
13406 call_site->per_objfile = per_objfile;
13407
13408 for (child_die = die->child;
13409 child_die && child_die->tag;
13410 child_die = child_die->sibling)
13411 {
13412 struct call_site_parameter *parameter;
13413 struct attribute *loc, *origin;
13414
13415 if (child_die->tag != DW_TAG_call_site_parameter
13416 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13417 {
13418 /* Already printed the complaint above. */
13419 continue;
13420 }
13421
13422 gdb_assert (call_site->parameter_count < nparams);
13423 parameter = &call_site->parameter[call_site->parameter_count];
13424
13425 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13426 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13427 register is contained in DW_AT_call_value. */
13428
13429 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13430 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13431 if (origin == NULL)
13432 {
13433 /* This was a pre-DWARF-5 GNU extension alias
13434 for DW_AT_call_parameter. */
13435 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13436 }
13437 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13438 {
13439 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13440
13441 sect_offset sect_off = origin->get_ref_die_offset ();
13442 if (!cu->header.offset_in_cu_p (sect_off))
13443 {
13444 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13445 binding can be done only inside one CU. Such referenced DIE
13446 therefore cannot be even moved to DW_TAG_partial_unit. */
13447 complaint (_("DW_AT_call_parameter offset is not in CU for "
13448 "DW_TAG_call_site child DIE %s [in module %s]"),
13449 sect_offset_str (child_die->sect_off),
13450 objfile_name (objfile));
13451 continue;
13452 }
13453 parameter->u.param_cu_off
13454 = (cu_offset) (sect_off - cu->header.sect_off);
13455 }
13456 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13457 {
13458 complaint (_("No DW_FORM_block* DW_AT_location for "
13459 "DW_TAG_call_site child DIE %s [in module %s]"),
13460 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13461 continue;
13462 }
13463 else
13464 {
13465 struct dwarf_block *block = loc->as_block ();
13466
13467 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13468 (block->data, &block->data[block->size]);
13469 if (parameter->u.dwarf_reg != -1)
13470 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13471 else if (dwarf_block_to_sp_offset (gdbarch, block->data,
13472 &block->data[block->size],
13473 &parameter->u.fb_offset))
13474 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13475 else
13476 {
13477 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13478 "for DW_FORM_block* DW_AT_location is supported for "
13479 "DW_TAG_call_site child DIE %s "
13480 "[in module %s]"),
13481 sect_offset_str (child_die->sect_off),
13482 objfile_name (objfile));
13483 continue;
13484 }
13485 }
13486
13487 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13488 if (attr == NULL)
13489 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13490 if (attr == NULL || !attr->form_is_block ())
13491 {
13492 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13493 "DW_TAG_call_site child DIE %s [in module %s]"),
13494 sect_offset_str (child_die->sect_off),
13495 objfile_name (objfile));
13496 continue;
13497 }
13498
13499 struct dwarf_block *block = attr->as_block ();
13500 parameter->value = block->data;
13501 parameter->value_size = block->size;
13502
13503 /* Parameters are not pre-cleared by memset above. */
13504 parameter->data_value = NULL;
13505 parameter->data_value_size = 0;
13506 call_site->parameter_count++;
13507
13508 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13509 if (attr == NULL)
13510 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13511 if (attr != nullptr)
13512 {
13513 if (!attr->form_is_block ())
13514 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13515 "DW_TAG_call_site child DIE %s [in module %s]"),
13516 sect_offset_str (child_die->sect_off),
13517 objfile_name (objfile));
13518 else
13519 {
13520 block = attr->as_block ();
13521 parameter->data_value = block->data;
13522 parameter->data_value_size = block->size;
13523 }
13524 }
13525 }
13526 }
13527
13528 /* Helper function for read_variable. If DIE represents a virtual
13529 table, then return the type of the concrete object that is
13530 associated with the virtual table. Otherwise, return NULL. */
13531
13532 static struct type *
13533 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13534 {
13535 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13536 if (attr == NULL)
13537 return NULL;
13538
13539 /* Find the type DIE. */
13540 struct die_info *type_die = NULL;
13541 struct dwarf2_cu *type_cu = cu;
13542
13543 if (attr->form_is_ref ())
13544 type_die = follow_die_ref (die, attr, &type_cu);
13545 if (type_die == NULL)
13546 return NULL;
13547
13548 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13549 return NULL;
13550 return die_containing_type (type_die, type_cu);
13551 }
13552
13553 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13554
13555 static void
13556 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13557 {
13558 struct rust_vtable_symbol *storage = NULL;
13559
13560 if (cu->per_cu->lang == language_rust)
13561 {
13562 struct type *containing_type = rust_containing_type (die, cu);
13563
13564 if (containing_type != NULL)
13565 {
13566 struct objfile *objfile = cu->per_objfile->objfile;
13567
13568 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
13569 storage->concrete_type = containing_type;
13570 storage->subclass = SYMBOL_RUST_VTABLE;
13571 }
13572 }
13573
13574 struct symbol *res = new_symbol (die, NULL, cu, storage);
13575 struct attribute *abstract_origin
13576 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13577 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13578 if (res == NULL && loc && abstract_origin)
13579 {
13580 /* We have a variable without a name, but with a location and an abstract
13581 origin. This may be a concrete instance of an abstract variable
13582 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13583 later. */
13584 struct dwarf2_cu *origin_cu = cu;
13585 struct die_info *origin_die
13586 = follow_die_ref (die, abstract_origin, &origin_cu);
13587 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13588 per_objfile->per_bfd->abstract_to_concrete
13589 [origin_die->sect_off].push_back (die->sect_off);
13590 }
13591 }
13592
13593 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13594 reading .debug_rnglists.
13595 Callback's type should be:
13596 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13597 Return true if the attributes are present and valid, otherwise,
13598 return false. */
13599
13600 template <typename Callback>
13601 static bool
13602 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13603 dwarf_tag tag, Callback &&callback)
13604 {
13605 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13606 struct objfile *objfile = per_objfile->objfile;
13607 bfd *obfd = objfile->obfd;
13608 /* Base address selection entry. */
13609 gdb::optional<CORE_ADDR> base;
13610 const gdb_byte *buffer;
13611 bool overflow = false;
13612 ULONGEST addr_index;
13613 struct dwarf2_section_info *rnglists_section;
13614
13615 base = cu->base_address;
13616 rnglists_section = cu_debug_rnglists_section (cu, tag);
13617 rnglists_section->read (objfile);
13618
13619 if (offset >= rnglists_section->size)
13620 {
13621 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13622 offset);
13623 return false;
13624 }
13625 buffer = rnglists_section->buffer + offset;
13626
13627 while (1)
13628 {
13629 /* Initialize it due to a false compiler warning. */
13630 CORE_ADDR range_beginning = 0, range_end = 0;
13631 const gdb_byte *buf_end = (rnglists_section->buffer
13632 + rnglists_section->size);
13633 unsigned int bytes_read;
13634
13635 if (buffer == buf_end)
13636 {
13637 overflow = true;
13638 break;
13639 }
13640 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13641 switch (rlet)
13642 {
13643 case DW_RLE_end_of_list:
13644 break;
13645 case DW_RLE_base_address:
13646 if (buffer + cu->header.addr_size > buf_end)
13647 {
13648 overflow = true;
13649 break;
13650 }
13651 base = cu->header.read_address (obfd, buffer, &bytes_read);
13652 buffer += bytes_read;
13653 break;
13654 case DW_RLE_base_addressx:
13655 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13656 buffer += bytes_read;
13657 base = read_addr_index (cu, addr_index);
13658 break;
13659 case DW_RLE_start_length:
13660 if (buffer + cu->header.addr_size > buf_end)
13661 {
13662 overflow = true;
13663 break;
13664 }
13665 range_beginning = cu->header.read_address (obfd, buffer,
13666 &bytes_read);
13667 buffer += bytes_read;
13668 range_end = (range_beginning
13669 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13670 buffer += bytes_read;
13671 if (buffer > buf_end)
13672 {
13673 overflow = true;
13674 break;
13675 }
13676 break;
13677 case DW_RLE_startx_length:
13678 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13679 buffer += bytes_read;
13680 range_beginning = read_addr_index (cu, addr_index);
13681 if (buffer > buf_end)
13682 {
13683 overflow = true;
13684 break;
13685 }
13686 range_end = (range_beginning
13687 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13688 buffer += bytes_read;
13689 break;
13690 case DW_RLE_offset_pair:
13691 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13692 buffer += bytes_read;
13693 if (buffer > buf_end)
13694 {
13695 overflow = true;
13696 break;
13697 }
13698 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13699 buffer += bytes_read;
13700 if (buffer > buf_end)
13701 {
13702 overflow = true;
13703 break;
13704 }
13705 break;
13706 case DW_RLE_start_end:
13707 if (buffer + 2 * cu->header.addr_size > buf_end)
13708 {
13709 overflow = true;
13710 break;
13711 }
13712 range_beginning = cu->header.read_address (obfd, buffer,
13713 &bytes_read);
13714 buffer += bytes_read;
13715 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13716 buffer += bytes_read;
13717 break;
13718 case DW_RLE_startx_endx:
13719 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13720 buffer += bytes_read;
13721 range_beginning = read_addr_index (cu, addr_index);
13722 if (buffer > buf_end)
13723 {
13724 overflow = true;
13725 break;
13726 }
13727 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13728 buffer += bytes_read;
13729 range_end = read_addr_index (cu, addr_index);
13730 break;
13731 default:
13732 complaint (_("Invalid .debug_rnglists data (no base address)"));
13733 return false;
13734 }
13735 if (rlet == DW_RLE_end_of_list || overflow)
13736 break;
13737 if (rlet == DW_RLE_base_address)
13738 continue;
13739
13740 if (range_beginning > range_end)
13741 {
13742 /* Inverted range entries are invalid. */
13743 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13744 return false;
13745 }
13746
13747 /* Empty range entries have no effect. */
13748 if (range_beginning == range_end)
13749 continue;
13750
13751 /* Only DW_RLE_offset_pair needs the base address added. */
13752 if (rlet == DW_RLE_offset_pair)
13753 {
13754 if (!base.has_value ())
13755 {
13756 /* We have no valid base address for the DW_RLE_offset_pair. */
13757 complaint (_("Invalid .debug_rnglists data (no base address for "
13758 "DW_RLE_offset_pair)"));
13759 return false;
13760 }
13761
13762 range_beginning += *base;
13763 range_end += *base;
13764 }
13765
13766 /* A not-uncommon case of bad debug info.
13767 Don't pollute the addrmap with bad data. */
13768 if (range_beginning == 0
13769 && !per_objfile->per_bfd->has_section_at_zero)
13770 {
13771 complaint (_(".debug_rnglists entry has start address of zero"
13772 " [in module %s]"), objfile_name (objfile));
13773 continue;
13774 }
13775
13776 callback (range_beginning, range_end);
13777 }
13778
13779 if (overflow)
13780 {
13781 complaint (_("Offset %d is not terminated "
13782 "for DW_AT_ranges attribute"),
13783 offset);
13784 return false;
13785 }
13786
13787 return true;
13788 }
13789
13790 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13791 Callback's type should be:
13792 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13793 Return 1 if the attributes are present and valid, otherwise, return 0. */
13794
13795 template <typename Callback>
13796 static int
13797 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu, dwarf_tag tag,
13798 Callback &&callback)
13799 {
13800 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13801 struct objfile *objfile = per_objfile->objfile;
13802 struct comp_unit_head *cu_header = &cu->header;
13803 bfd *obfd = objfile->obfd;
13804 unsigned int addr_size = cu_header->addr_size;
13805 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13806 /* Base address selection entry. */
13807 gdb::optional<CORE_ADDR> base;
13808 unsigned int dummy;
13809 const gdb_byte *buffer;
13810
13811 if (cu_header->version >= 5)
13812 return dwarf2_rnglists_process (offset, cu, tag, callback);
13813
13814 base = cu->base_address;
13815
13816 per_objfile->per_bfd->ranges.read (objfile);
13817 if (offset >= per_objfile->per_bfd->ranges.size)
13818 {
13819 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13820 offset);
13821 return 0;
13822 }
13823 buffer = per_objfile->per_bfd->ranges.buffer + offset;
13824
13825 while (1)
13826 {
13827 CORE_ADDR range_beginning, range_end;
13828
13829 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13830 buffer += addr_size;
13831 range_end = cu->header.read_address (obfd, buffer, &dummy);
13832 buffer += addr_size;
13833 offset += 2 * addr_size;
13834
13835 /* An end of list marker is a pair of zero addresses. */
13836 if (range_beginning == 0 && range_end == 0)
13837 /* Found the end of list entry. */
13838 break;
13839
13840 /* Each base address selection entry is a pair of 2 values.
13841 The first is the largest possible address, the second is
13842 the base address. Check for a base address here. */
13843 if ((range_beginning & mask) == mask)
13844 {
13845 /* If we found the largest possible address, then we already
13846 have the base address in range_end. */
13847 base = range_end;
13848 continue;
13849 }
13850
13851 if (!base.has_value ())
13852 {
13853 /* We have no valid base address for the ranges
13854 data. */
13855 complaint (_("Invalid .debug_ranges data (no base address)"));
13856 return 0;
13857 }
13858
13859 if (range_beginning > range_end)
13860 {
13861 /* Inverted range entries are invalid. */
13862 complaint (_("Invalid .debug_ranges data (inverted range)"));
13863 return 0;
13864 }
13865
13866 /* Empty range entries have no effect. */
13867 if (range_beginning == range_end)
13868 continue;
13869
13870 range_beginning += *base;
13871 range_end += *base;
13872
13873 /* A not-uncommon case of bad debug info.
13874 Don't pollute the addrmap with bad data. */
13875 if (range_beginning == 0
13876 && !per_objfile->per_bfd->has_section_at_zero)
13877 {
13878 complaint (_(".debug_ranges entry has start address of zero"
13879 " [in module %s]"), objfile_name (objfile));
13880 continue;
13881 }
13882
13883 callback (range_beginning, range_end);
13884 }
13885
13886 return 1;
13887 }
13888
13889 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13890 Return 1 if the attributes are present and valid, otherwise, return 0.
13891 If RANGES_PST is not NULL we should set up the `psymtabs_addrmap'. */
13892
13893 static int
13894 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13895 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13896 dwarf2_psymtab *ranges_pst, dwarf_tag tag)
13897 {
13898 struct objfile *objfile = cu->per_objfile->objfile;
13899 dwarf2_per_bfd *per_bfd = cu->per_objfile->per_bfd;
13900 struct gdbarch *gdbarch = objfile->arch ();
13901 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13902 int low_set = 0;
13903 CORE_ADDR low = 0;
13904 CORE_ADDR high = 0;
13905 int retval;
13906
13907 retval = dwarf2_ranges_process (offset, cu, tag,
13908 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13909 {
13910 if (ranges_pst != NULL)
13911 {
13912 CORE_ADDR lowpc;
13913 CORE_ADDR highpc;
13914
13915 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13916 range_beginning + baseaddr)
13917 - baseaddr);
13918 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13919 range_end + baseaddr)
13920 - baseaddr);
13921 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
13922 lowpc, highpc - 1, ranges_pst);
13923 }
13924
13925 /* FIXME: This is recording everything as a low-high
13926 segment of consecutive addresses. We should have a
13927 data structure for discontiguous block ranges
13928 instead. */
13929 if (! low_set)
13930 {
13931 low = range_beginning;
13932 high = range_end;
13933 low_set = 1;
13934 }
13935 else
13936 {
13937 if (range_beginning < low)
13938 low = range_beginning;
13939 if (range_end > high)
13940 high = range_end;
13941 }
13942 });
13943 if (!retval)
13944 return 0;
13945
13946 if (! low_set)
13947 /* If the first entry is an end-of-list marker, the range
13948 describes an empty scope, i.e. no instructions. */
13949 return 0;
13950
13951 if (low_return)
13952 *low_return = low;
13953 if (high_return)
13954 *high_return = high;
13955 return 1;
13956 }
13957
13958 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13959 definition for the return value. *LOWPC and *HIGHPC are set iff
13960 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13961
13962 static enum pc_bounds_kind
13963 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13964 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13965 dwarf2_psymtab *pst)
13966 {
13967 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13968 struct attribute *attr;
13969 struct attribute *attr_high;
13970 CORE_ADDR low = 0;
13971 CORE_ADDR high = 0;
13972 enum pc_bounds_kind ret;
13973
13974 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13975 if (attr_high)
13976 {
13977 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13978 if (attr != nullptr)
13979 {
13980 low = attr->as_address ();
13981 high = attr_high->as_address ();
13982 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13983 high += low;
13984 }
13985 else
13986 /* Found high w/o low attribute. */
13987 return PC_BOUNDS_INVALID;
13988
13989 /* Found consecutive range of addresses. */
13990 ret = PC_BOUNDS_HIGH_LOW;
13991 }
13992 else
13993 {
13994 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13995 if (attr != nullptr && attr->form_is_unsigned ())
13996 {
13997 /* Offset in the .debug_ranges or .debug_rnglist section (depending
13998 on DWARF version). */
13999 ULONGEST ranges_offset = attr->as_unsigned ();
14000
14001 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
14002 this value. */
14003 if (die->tag != DW_TAG_compile_unit)
14004 ranges_offset += cu->gnu_ranges_base;
14005
14006 /* Value of the DW_AT_ranges attribute is the offset in the
14007 .debug_ranges section. */
14008 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst,
14009 die->tag))
14010 return PC_BOUNDS_INVALID;
14011 /* Found discontinuous range of addresses. */
14012 ret = PC_BOUNDS_RANGES;
14013 }
14014 else
14015 return PC_BOUNDS_NOT_PRESENT;
14016 }
14017
14018 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14019 if (high <= low)
14020 return PC_BOUNDS_INVALID;
14021
14022 /* When using the GNU linker, .gnu.linkonce. sections are used to
14023 eliminate duplicate copies of functions and vtables and such.
14024 The linker will arbitrarily choose one and discard the others.
14025 The AT_*_pc values for such functions refer to local labels in
14026 these sections. If the section from that file was discarded, the
14027 labels are not in the output, so the relocs get a value of 0.
14028 If this is a discarded function, mark the pc bounds as invalid,
14029 so that GDB will ignore it. */
14030 if (low == 0 && !per_objfile->per_bfd->has_section_at_zero)
14031 return PC_BOUNDS_INVALID;
14032
14033 *lowpc = low;
14034 if (highpc)
14035 *highpc = high;
14036 return ret;
14037 }
14038
14039 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14040 its low and high PC addresses. Do nothing if these addresses could not
14041 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14042 and HIGHPC to the high address if greater than HIGHPC. */
14043
14044 static void
14045 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14046 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14047 struct dwarf2_cu *cu)
14048 {
14049 CORE_ADDR low, high;
14050 struct die_info *child = die->child;
14051
14052 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14053 {
14054 *lowpc = std::min (*lowpc, low);
14055 *highpc = std::max (*highpc, high);
14056 }
14057
14058 /* If the language does not allow nested subprograms (either inside
14059 subprograms or lexical blocks), we're done. */
14060 if (cu->per_cu->lang != language_ada)
14061 return;
14062
14063 /* Check all the children of the given DIE. If it contains nested
14064 subprograms, then check their pc bounds. Likewise, we need to
14065 check lexical blocks as well, as they may also contain subprogram
14066 definitions. */
14067 while (child && child->tag)
14068 {
14069 if (child->tag == DW_TAG_subprogram
14070 || child->tag == DW_TAG_lexical_block)
14071 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14072 child = child->sibling;
14073 }
14074 }
14075
14076 /* Get the low and high pc's represented by the scope DIE, and store
14077 them in *LOWPC and *HIGHPC. If the correct values can't be
14078 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14079
14080 static void
14081 get_scope_pc_bounds (struct die_info *die,
14082 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14083 struct dwarf2_cu *cu)
14084 {
14085 CORE_ADDR best_low = (CORE_ADDR) -1;
14086 CORE_ADDR best_high = (CORE_ADDR) 0;
14087 CORE_ADDR current_low, current_high;
14088
14089 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14090 >= PC_BOUNDS_RANGES)
14091 {
14092 best_low = current_low;
14093 best_high = current_high;
14094 }
14095 else
14096 {
14097 struct die_info *child = die->child;
14098
14099 while (child && child->tag)
14100 {
14101 switch (child->tag) {
14102 case DW_TAG_subprogram:
14103 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14104 break;
14105 case DW_TAG_namespace:
14106 case DW_TAG_module:
14107 /* FIXME: carlton/2004-01-16: Should we do this for
14108 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14109 that current GCC's always emit the DIEs corresponding
14110 to definitions of methods of classes as children of a
14111 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14112 the DIEs giving the declarations, which could be
14113 anywhere). But I don't see any reason why the
14114 standards says that they have to be there. */
14115 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14116
14117 if (current_low != ((CORE_ADDR) -1))
14118 {
14119 best_low = std::min (best_low, current_low);
14120 best_high = std::max (best_high, current_high);
14121 }
14122 break;
14123 default:
14124 /* Ignore. */
14125 break;
14126 }
14127
14128 child = child->sibling;
14129 }
14130 }
14131
14132 *lowpc = best_low;
14133 *highpc = best_high;
14134 }
14135
14136 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14137 in DIE. */
14138
14139 static void
14140 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14141 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14142 {
14143 struct objfile *objfile = cu->per_objfile->objfile;
14144 struct gdbarch *gdbarch = objfile->arch ();
14145 struct attribute *attr;
14146 struct attribute *attr_high;
14147
14148 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14149 if (attr_high)
14150 {
14151 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14152 if (attr != nullptr)
14153 {
14154 CORE_ADDR low = attr->as_address ();
14155 CORE_ADDR high = attr_high->as_address ();
14156
14157 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14158 high += low;
14159
14160 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14161 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14162 cu->get_builder ()->record_block_range (block, low, high - 1);
14163 }
14164 }
14165
14166 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14167 if (attr != nullptr && attr->form_is_unsigned ())
14168 {
14169 /* Offset in the .debug_ranges or .debug_rnglist section (depending
14170 on DWARF version). */
14171 ULONGEST ranges_offset = attr->as_unsigned ();
14172
14173 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
14174 this value. */
14175 if (die->tag != DW_TAG_compile_unit)
14176 ranges_offset += cu->gnu_ranges_base;
14177
14178 std::vector<blockrange> blockvec;
14179 dwarf2_ranges_process (ranges_offset, cu, die->tag,
14180 [&] (CORE_ADDR start, CORE_ADDR end)
14181 {
14182 start += baseaddr;
14183 end += baseaddr;
14184 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14185 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14186 cu->get_builder ()->record_block_range (block, start, end - 1);
14187 blockvec.emplace_back (start, end);
14188 });
14189
14190 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14191 }
14192 }
14193
14194 /* Check whether the producer field indicates either of GCC < 4.6, or the
14195 Intel C/C++ compiler, and cache the result in CU. */
14196
14197 static void
14198 check_producer (struct dwarf2_cu *cu)
14199 {
14200 int major, minor;
14201
14202 if (cu->producer == NULL)
14203 {
14204 /* For unknown compilers expect their behavior is DWARF version
14205 compliant.
14206
14207 GCC started to support .debug_types sections by -gdwarf-4 since
14208 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14209 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14210 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14211 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14212 }
14213 else if (producer_is_gcc (cu->producer, &major, &minor))
14214 {
14215 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14216 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14217 }
14218 else if (producer_is_icc (cu->producer, &major, &minor))
14219 {
14220 cu->producer_is_icc = true;
14221 cu->producer_is_icc_lt_14 = major < 14;
14222 }
14223 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14224 cu->producer_is_codewarrior = true;
14225 else
14226 {
14227 /* For other non-GCC compilers, expect their behavior is DWARF version
14228 compliant. */
14229 }
14230
14231 cu->checked_producer = true;
14232 }
14233
14234 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14235 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14236 during 4.6.0 experimental. */
14237
14238 static bool
14239 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14240 {
14241 if (!cu->checked_producer)
14242 check_producer (cu);
14243
14244 return cu->producer_is_gxx_lt_4_6;
14245 }
14246
14247
14248 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14249 with incorrect is_stmt attributes. */
14250
14251 static bool
14252 producer_is_codewarrior (struct dwarf2_cu *cu)
14253 {
14254 if (!cu->checked_producer)
14255 check_producer (cu);
14256
14257 return cu->producer_is_codewarrior;
14258 }
14259
14260 /* Return the accessibility of DIE, as given by DW_AT_accessibility.
14261 If that attribute is not available, return the appropriate
14262 default. */
14263
14264 static enum dwarf_access_attribute
14265 dwarf2_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14266 {
14267 attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14268 if (attr != nullptr)
14269 {
14270 LONGEST value = attr->constant_value (-1);
14271 if (value == DW_ACCESS_public
14272 || value == DW_ACCESS_protected
14273 || value == DW_ACCESS_private)
14274 return (dwarf_access_attribute) value;
14275 complaint (_("Unhandled DW_AT_accessibility value (%s)"),
14276 plongest (value));
14277 }
14278
14279 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14280 {
14281 /* The default DWARF 2 accessibility for members is public, the default
14282 accessibility for inheritance is private. */
14283
14284 if (die->tag != DW_TAG_inheritance)
14285 return DW_ACCESS_public;
14286 else
14287 return DW_ACCESS_private;
14288 }
14289 else
14290 {
14291 /* DWARF 3+ defines the default accessibility a different way. The same
14292 rules apply now for DW_TAG_inheritance as for the members and it only
14293 depends on the container kind. */
14294
14295 if (die->parent->tag == DW_TAG_class_type)
14296 return DW_ACCESS_private;
14297 else
14298 return DW_ACCESS_public;
14299 }
14300 }
14301
14302 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14303 offset. If the attribute was not found return 0, otherwise return
14304 1. If it was found but could not properly be handled, set *OFFSET
14305 to 0. */
14306
14307 static int
14308 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14309 LONGEST *offset)
14310 {
14311 struct attribute *attr;
14312
14313 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14314 if (attr != NULL)
14315 {
14316 *offset = 0;
14317
14318 /* Note that we do not check for a section offset first here.
14319 This is because DW_AT_data_member_location is new in DWARF 4,
14320 so if we see it, we can assume that a constant form is really
14321 a constant and not a section offset. */
14322 if (attr->form_is_constant ())
14323 *offset = attr->constant_value (0);
14324 else if (attr->form_is_section_offset ())
14325 dwarf2_complex_location_expr_complaint ();
14326 else if (attr->form_is_block ())
14327 *offset = decode_locdesc (attr->as_block (), cu);
14328 else
14329 dwarf2_complex_location_expr_complaint ();
14330
14331 return 1;
14332 }
14333
14334 return 0;
14335 }
14336
14337 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14338
14339 static void
14340 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14341 struct field *field)
14342 {
14343 struct attribute *attr;
14344
14345 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14346 if (attr != NULL)
14347 {
14348 if (attr->form_is_constant ())
14349 {
14350 LONGEST offset = attr->constant_value (0);
14351 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14352 }
14353 else if (attr->form_is_section_offset ())
14354 dwarf2_complex_location_expr_complaint ();
14355 else if (attr->form_is_block ())
14356 {
14357 bool handled;
14358 CORE_ADDR offset = decode_locdesc (attr->as_block (), cu, &handled);
14359 if (handled)
14360 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14361 else
14362 {
14363 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14364 struct objfile *objfile = per_objfile->objfile;
14365 struct dwarf2_locexpr_baton *dlbaton
14366 = XOBNEW (&objfile->objfile_obstack,
14367 struct dwarf2_locexpr_baton);
14368 dlbaton->data = attr->as_block ()->data;
14369 dlbaton->size = attr->as_block ()->size;
14370 /* When using this baton, we want to compute the address
14371 of the field, not the value. This is why
14372 is_reference is set to false here. */
14373 dlbaton->is_reference = false;
14374 dlbaton->per_objfile = per_objfile;
14375 dlbaton->per_cu = cu->per_cu;
14376
14377 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14378 }
14379 }
14380 else
14381 dwarf2_complex_location_expr_complaint ();
14382 }
14383 }
14384
14385 /* Add an aggregate field to the field list. */
14386
14387 static void
14388 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14389 struct dwarf2_cu *cu)
14390 {
14391 struct objfile *objfile = cu->per_objfile->objfile;
14392 struct gdbarch *gdbarch = objfile->arch ();
14393 struct nextfield *new_field;
14394 struct attribute *attr;
14395 struct field *fp;
14396 const char *fieldname = "";
14397
14398 if (die->tag == DW_TAG_inheritance)
14399 {
14400 fip->baseclasses.emplace_back ();
14401 new_field = &fip->baseclasses.back ();
14402 }
14403 else
14404 {
14405 fip->fields.emplace_back ();
14406 new_field = &fip->fields.back ();
14407 }
14408
14409 new_field->offset = die->sect_off;
14410
14411 new_field->accessibility = dwarf2_access_attribute (die, cu);
14412 if (new_field->accessibility != DW_ACCESS_public)
14413 fip->non_public_fields = true;
14414
14415 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14416 if (attr != nullptr)
14417 new_field->virtuality = attr->as_virtuality ();
14418 else
14419 new_field->virtuality = DW_VIRTUALITY_none;
14420
14421 fp = &new_field->field;
14422
14423 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14424 {
14425 /* Data member other than a C++ static data member. */
14426
14427 /* Get type of field. */
14428 fp->set_type (die_type (die, cu));
14429
14430 SET_FIELD_BITPOS (*fp, 0);
14431
14432 /* Get bit size of field (zero if none). */
14433 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14434 if (attr != nullptr)
14435 {
14436 FIELD_BITSIZE (*fp) = attr->constant_value (0);
14437 }
14438 else
14439 {
14440 FIELD_BITSIZE (*fp) = 0;
14441 }
14442
14443 /* Get bit offset of field. */
14444 handle_data_member_location (die, cu, fp);
14445 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14446 if (attr != nullptr && attr->form_is_constant ())
14447 {
14448 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14449 {
14450 /* For big endian bits, the DW_AT_bit_offset gives the
14451 additional bit offset from the MSB of the containing
14452 anonymous object to the MSB of the field. We don't
14453 have to do anything special since we don't need to
14454 know the size of the anonymous object. */
14455 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14456 + attr->constant_value (0)));
14457 }
14458 else
14459 {
14460 /* For little endian bits, compute the bit offset to the
14461 MSB of the anonymous object, subtract off the number of
14462 bits from the MSB of the field to the MSB of the
14463 object, and then subtract off the number of bits of
14464 the field itself. The result is the bit offset of
14465 the LSB of the field. */
14466 int anonymous_size;
14467 int bit_offset = attr->constant_value (0);
14468
14469 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14470 if (attr != nullptr && attr->form_is_constant ())
14471 {
14472 /* The size of the anonymous object containing
14473 the bit field is explicit, so use the
14474 indicated size (in bytes). */
14475 anonymous_size = attr->constant_value (0);
14476 }
14477 else
14478 {
14479 /* The size of the anonymous object containing
14480 the bit field must be inferred from the type
14481 attribute of the data member containing the
14482 bit field. */
14483 anonymous_size = TYPE_LENGTH (fp->type ());
14484 }
14485 SET_FIELD_BITPOS (*fp,
14486 (FIELD_BITPOS (*fp)
14487 + anonymous_size * bits_per_byte
14488 - bit_offset - FIELD_BITSIZE (*fp)));
14489 }
14490 }
14491 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14492 if (attr != NULL)
14493 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14494 + attr->constant_value (0)));
14495
14496 /* Get name of field. */
14497 fieldname = dwarf2_name (die, cu);
14498 if (fieldname == NULL)
14499 fieldname = "";
14500
14501 /* The name is already allocated along with this objfile, so we don't
14502 need to duplicate it for the type. */
14503 fp->name = fieldname;
14504
14505 /* Change accessibility for artificial fields (e.g. virtual table
14506 pointer or virtual base class pointer) to private. */
14507 if (dwarf2_attr (die, DW_AT_artificial, cu))
14508 {
14509 FIELD_ARTIFICIAL (*fp) = 1;
14510 new_field->accessibility = DW_ACCESS_private;
14511 fip->non_public_fields = true;
14512 }
14513 }
14514 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14515 {
14516 /* C++ static member. */
14517
14518 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14519 is a declaration, but all versions of G++ as of this writing
14520 (so through at least 3.2.1) incorrectly generate
14521 DW_TAG_variable tags. */
14522
14523 const char *physname;
14524
14525 /* Get name of field. */
14526 fieldname = dwarf2_name (die, cu);
14527 if (fieldname == NULL)
14528 return;
14529
14530 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14531 if (attr
14532 /* Only create a symbol if this is an external value.
14533 new_symbol checks this and puts the value in the global symbol
14534 table, which we want. If it is not external, new_symbol
14535 will try to put the value in cu->list_in_scope which is wrong. */
14536 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14537 {
14538 /* A static const member, not much different than an enum as far as
14539 we're concerned, except that we can support more types. */
14540 new_symbol (die, NULL, cu);
14541 }
14542
14543 /* Get physical name. */
14544 physname = dwarf2_physname (fieldname, die, cu);
14545
14546 /* The name is already allocated along with this objfile, so we don't
14547 need to duplicate it for the type. */
14548 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14549 fp->set_type (die_type (die, cu));
14550 FIELD_NAME (*fp) = fieldname;
14551 }
14552 else if (die->tag == DW_TAG_inheritance)
14553 {
14554 /* C++ base class field. */
14555 handle_data_member_location (die, cu, fp);
14556 FIELD_BITSIZE (*fp) = 0;
14557 fp->set_type (die_type (die, cu));
14558 FIELD_NAME (*fp) = fp->type ()->name ();
14559 }
14560 else
14561 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14562 }
14563
14564 /* Can the type given by DIE define another type? */
14565
14566 static bool
14567 type_can_define_types (const struct die_info *die)
14568 {
14569 switch (die->tag)
14570 {
14571 case DW_TAG_typedef:
14572 case DW_TAG_class_type:
14573 case DW_TAG_structure_type:
14574 case DW_TAG_union_type:
14575 case DW_TAG_enumeration_type:
14576 return true;
14577
14578 default:
14579 return false;
14580 }
14581 }
14582
14583 /* Add a type definition defined in the scope of the FIP's class. */
14584
14585 static void
14586 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14587 struct dwarf2_cu *cu)
14588 {
14589 struct decl_field fp;
14590 memset (&fp, 0, sizeof (fp));
14591
14592 gdb_assert (type_can_define_types (die));
14593
14594 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14595 fp.name = dwarf2_name (die, cu);
14596 fp.type = read_type_die (die, cu);
14597
14598 /* Save accessibility. */
14599 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
14600 switch (accessibility)
14601 {
14602 case DW_ACCESS_public:
14603 /* The assumed value if neither private nor protected. */
14604 break;
14605 case DW_ACCESS_private:
14606 fp.is_private = 1;
14607 break;
14608 case DW_ACCESS_protected:
14609 fp.is_protected = 1;
14610 break;
14611 }
14612
14613 if (die->tag == DW_TAG_typedef)
14614 fip->typedef_field_list.push_back (fp);
14615 else
14616 fip->nested_types_list.push_back (fp);
14617 }
14618
14619 /* A convenience typedef that's used when finding the discriminant
14620 field for a variant part. */
14621 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14622 offset_map_type;
14623
14624 /* Compute the discriminant range for a given variant. OBSTACK is
14625 where the results will be stored. VARIANT is the variant to
14626 process. IS_UNSIGNED indicates whether the discriminant is signed
14627 or unsigned. */
14628
14629 static const gdb::array_view<discriminant_range>
14630 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14631 bool is_unsigned)
14632 {
14633 std::vector<discriminant_range> ranges;
14634
14635 if (variant.default_branch)
14636 return {};
14637
14638 if (variant.discr_list_data == nullptr)
14639 {
14640 discriminant_range r
14641 = {variant.discriminant_value, variant.discriminant_value};
14642 ranges.push_back (r);
14643 }
14644 else
14645 {
14646 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14647 variant.discr_list_data->size);
14648 while (!data.empty ())
14649 {
14650 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14651 {
14652 complaint (_("invalid discriminant marker: %d"), data[0]);
14653 break;
14654 }
14655 bool is_range = data[0] == DW_DSC_range;
14656 data = data.slice (1);
14657
14658 ULONGEST low, high;
14659 unsigned int bytes_read;
14660
14661 if (data.empty ())
14662 {
14663 complaint (_("DW_AT_discr_list missing low value"));
14664 break;
14665 }
14666 if (is_unsigned)
14667 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14668 else
14669 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14670 &bytes_read);
14671 data = data.slice (bytes_read);
14672
14673 if (is_range)
14674 {
14675 if (data.empty ())
14676 {
14677 complaint (_("DW_AT_discr_list missing high value"));
14678 break;
14679 }
14680 if (is_unsigned)
14681 high = read_unsigned_leb128 (nullptr, data.data (),
14682 &bytes_read);
14683 else
14684 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14685 &bytes_read);
14686 data = data.slice (bytes_read);
14687 }
14688 else
14689 high = low;
14690
14691 ranges.push_back ({ low, high });
14692 }
14693 }
14694
14695 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14696 ranges.size ());
14697 std::copy (ranges.begin (), ranges.end (), result);
14698 return gdb::array_view<discriminant_range> (result, ranges.size ());
14699 }
14700
14701 static const gdb::array_view<variant_part> create_variant_parts
14702 (struct obstack *obstack,
14703 const offset_map_type &offset_map,
14704 struct field_info *fi,
14705 const std::vector<variant_part_builder> &variant_parts);
14706
14707 /* Fill in a "struct variant" for a given variant field. RESULT is
14708 the variant to fill in. OBSTACK is where any needed allocations
14709 will be done. OFFSET_MAP holds the mapping from section offsets to
14710 fields for the type. FI describes the fields of the type we're
14711 processing. FIELD is the variant field we're converting. */
14712
14713 static void
14714 create_one_variant (variant &result, struct obstack *obstack,
14715 const offset_map_type &offset_map,
14716 struct field_info *fi, const variant_field &field)
14717 {
14718 result.discriminants = convert_variant_range (obstack, field, false);
14719 result.first_field = field.first_field + fi->baseclasses.size ();
14720 result.last_field = field.last_field + fi->baseclasses.size ();
14721 result.parts = create_variant_parts (obstack, offset_map, fi,
14722 field.variant_parts);
14723 }
14724
14725 /* Fill in a "struct variant_part" for a given variant part. RESULT
14726 is the variant part to fill in. OBSTACK is where any needed
14727 allocations will be done. OFFSET_MAP holds the mapping from
14728 section offsets to fields for the type. FI describes the fields of
14729 the type we're processing. BUILDER is the variant part to be
14730 converted. */
14731
14732 static void
14733 create_one_variant_part (variant_part &result,
14734 struct obstack *obstack,
14735 const offset_map_type &offset_map,
14736 struct field_info *fi,
14737 const variant_part_builder &builder)
14738 {
14739 auto iter = offset_map.find (builder.discriminant_offset);
14740 if (iter == offset_map.end ())
14741 {
14742 result.discriminant_index = -1;
14743 /* Doesn't matter. */
14744 result.is_unsigned = false;
14745 }
14746 else
14747 {
14748 result.discriminant_index = iter->second;
14749 result.is_unsigned
14750 = fi->fields[result.discriminant_index].field.type ()->is_unsigned ();
14751 }
14752
14753 size_t n = builder.variants.size ();
14754 variant *output = new (obstack) variant[n];
14755 for (size_t i = 0; i < n; ++i)
14756 create_one_variant (output[i], obstack, offset_map, fi,
14757 builder.variants[i]);
14758
14759 result.variants = gdb::array_view<variant> (output, n);
14760 }
14761
14762 /* Create a vector of variant parts that can be attached to a type.
14763 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14764 holds the mapping from section offsets to fields for the type. FI
14765 describes the fields of the type we're processing. VARIANT_PARTS
14766 is the vector to convert. */
14767
14768 static const gdb::array_view<variant_part>
14769 create_variant_parts (struct obstack *obstack,
14770 const offset_map_type &offset_map,
14771 struct field_info *fi,
14772 const std::vector<variant_part_builder> &variant_parts)
14773 {
14774 if (variant_parts.empty ())
14775 return {};
14776
14777 size_t n = variant_parts.size ();
14778 variant_part *result = new (obstack) variant_part[n];
14779 for (size_t i = 0; i < n; ++i)
14780 create_one_variant_part (result[i], obstack, offset_map, fi,
14781 variant_parts[i]);
14782
14783 return gdb::array_view<variant_part> (result, n);
14784 }
14785
14786 /* Compute the variant part vector for FIP, attaching it to TYPE when
14787 done. */
14788
14789 static void
14790 add_variant_property (struct field_info *fip, struct type *type,
14791 struct dwarf2_cu *cu)
14792 {
14793 /* Map section offsets of fields to their field index. Note the
14794 field index here does not take the number of baseclasses into
14795 account. */
14796 offset_map_type offset_map;
14797 for (int i = 0; i < fip->fields.size (); ++i)
14798 offset_map[fip->fields[i].offset] = i;
14799
14800 struct objfile *objfile = cu->per_objfile->objfile;
14801 gdb::array_view<variant_part> parts
14802 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14803 fip->variant_parts);
14804
14805 struct dynamic_prop prop;
14806 prop.set_variant_parts ((gdb::array_view<variant_part> *)
14807 obstack_copy (&objfile->objfile_obstack, &parts,
14808 sizeof (parts)));
14809
14810 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
14811 }
14812
14813 /* Create the vector of fields, and attach it to the type. */
14814
14815 static void
14816 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14817 struct dwarf2_cu *cu)
14818 {
14819 int nfields = fip->nfields ();
14820
14821 /* Record the field count, allocate space for the array of fields,
14822 and create blank accessibility bitfields if necessary. */
14823 type->set_num_fields (nfields);
14824 type->set_fields
14825 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
14826
14827 if (fip->non_public_fields && cu->per_cu->lang != language_ada)
14828 {
14829 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14830
14831 TYPE_FIELD_PRIVATE_BITS (type) =
14832 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14833 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14834
14835 TYPE_FIELD_PROTECTED_BITS (type) =
14836 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14837 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14838
14839 TYPE_FIELD_IGNORE_BITS (type) =
14840 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14841 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14842 }
14843
14844 /* If the type has baseclasses, allocate and clear a bit vector for
14845 TYPE_FIELD_VIRTUAL_BITS. */
14846 if (!fip->baseclasses.empty () && cu->per_cu->lang != language_ada)
14847 {
14848 int num_bytes = B_BYTES (fip->baseclasses.size ());
14849 unsigned char *pointer;
14850
14851 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14852 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14853 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14854 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14855 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14856 }
14857
14858 if (!fip->variant_parts.empty ())
14859 add_variant_property (fip, type, cu);
14860
14861 /* Copy the saved-up fields into the field vector. */
14862 for (int i = 0; i < nfields; ++i)
14863 {
14864 struct nextfield &field
14865 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14866 : fip->fields[i - fip->baseclasses.size ()]);
14867
14868 type->field (i) = field.field;
14869 switch (field.accessibility)
14870 {
14871 case DW_ACCESS_private:
14872 if (cu->per_cu->lang != language_ada)
14873 SET_TYPE_FIELD_PRIVATE (type, i);
14874 break;
14875
14876 case DW_ACCESS_protected:
14877 if (cu->per_cu->lang != language_ada)
14878 SET_TYPE_FIELD_PROTECTED (type, i);
14879 break;
14880
14881 case DW_ACCESS_public:
14882 break;
14883
14884 default:
14885 /* Unknown accessibility. Complain and treat it as public. */
14886 {
14887 complaint (_("unsupported accessibility %d"),
14888 field.accessibility);
14889 }
14890 break;
14891 }
14892 if (i < fip->baseclasses.size ())
14893 {
14894 switch (field.virtuality)
14895 {
14896 case DW_VIRTUALITY_virtual:
14897 case DW_VIRTUALITY_pure_virtual:
14898 if (cu->per_cu->lang == language_ada)
14899 error (_("unexpected virtuality in component of Ada type"));
14900 SET_TYPE_FIELD_VIRTUAL (type, i);
14901 break;
14902 }
14903 }
14904 }
14905 }
14906
14907 /* Return true if this member function is a constructor, false
14908 otherwise. */
14909
14910 static int
14911 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14912 {
14913 const char *fieldname;
14914 const char *type_name;
14915 int len;
14916
14917 if (die->parent == NULL)
14918 return 0;
14919
14920 if (die->parent->tag != DW_TAG_structure_type
14921 && die->parent->tag != DW_TAG_union_type
14922 && die->parent->tag != DW_TAG_class_type)
14923 return 0;
14924
14925 fieldname = dwarf2_name (die, cu);
14926 type_name = dwarf2_name (die->parent, cu);
14927 if (fieldname == NULL || type_name == NULL)
14928 return 0;
14929
14930 len = strlen (fieldname);
14931 return (strncmp (fieldname, type_name, len) == 0
14932 && (type_name[len] == '\0' || type_name[len] == '<'));
14933 }
14934
14935 /* Add a member function to the proper fieldlist. */
14936
14937 static void
14938 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14939 struct type *type, struct dwarf2_cu *cu)
14940 {
14941 struct objfile *objfile = cu->per_objfile->objfile;
14942 struct attribute *attr;
14943 int i;
14944 struct fnfieldlist *flp = nullptr;
14945 struct fn_field *fnp;
14946 const char *fieldname;
14947 struct type *this_type;
14948
14949 if (cu->per_cu->lang == language_ada)
14950 error (_("unexpected member function in Ada type"));
14951
14952 /* Get name of member function. */
14953 fieldname = dwarf2_name (die, cu);
14954 if (fieldname == NULL)
14955 return;
14956
14957 /* Look up member function name in fieldlist. */
14958 for (i = 0; i < fip->fnfieldlists.size (); i++)
14959 {
14960 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14961 {
14962 flp = &fip->fnfieldlists[i];
14963 break;
14964 }
14965 }
14966
14967 /* Create a new fnfieldlist if necessary. */
14968 if (flp == nullptr)
14969 {
14970 fip->fnfieldlists.emplace_back ();
14971 flp = &fip->fnfieldlists.back ();
14972 flp->name = fieldname;
14973 i = fip->fnfieldlists.size () - 1;
14974 }
14975
14976 /* Create a new member function field and add it to the vector of
14977 fnfieldlists. */
14978 flp->fnfields.emplace_back ();
14979 fnp = &flp->fnfields.back ();
14980
14981 /* Delay processing of the physname until later. */
14982 if (cu->per_cu->lang == language_cplus)
14983 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14984 die, cu);
14985 else
14986 {
14987 const char *physname = dwarf2_physname (fieldname, die, cu);
14988 fnp->physname = physname ? physname : "";
14989 }
14990
14991 fnp->type = alloc_type (objfile);
14992 this_type = read_type_die (die, cu);
14993 if (this_type && this_type->code () == TYPE_CODE_FUNC)
14994 {
14995 int nparams = this_type->num_fields ();
14996
14997 /* TYPE is the domain of this method, and THIS_TYPE is the type
14998 of the method itself (TYPE_CODE_METHOD). */
14999 smash_to_method_type (fnp->type, type,
15000 TYPE_TARGET_TYPE (this_type),
15001 this_type->fields (),
15002 this_type->num_fields (),
15003 this_type->has_varargs ());
15004
15005 /* Handle static member functions.
15006 Dwarf2 has no clean way to discern C++ static and non-static
15007 member functions. G++ helps GDB by marking the first
15008 parameter for non-static member functions (which is the this
15009 pointer) as artificial. We obtain this information from
15010 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15011 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15012 fnp->voffset = VOFFSET_STATIC;
15013 }
15014 else
15015 complaint (_("member function type missing for '%s'"),
15016 dwarf2_full_name (fieldname, die, cu));
15017
15018 /* Get fcontext from DW_AT_containing_type if present. */
15019 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15020 fnp->fcontext = die_containing_type (die, cu);
15021
15022 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15023 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15024
15025 /* Get accessibility. */
15026 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15027 switch (accessibility)
15028 {
15029 case DW_ACCESS_private:
15030 fnp->is_private = 1;
15031 break;
15032 case DW_ACCESS_protected:
15033 fnp->is_protected = 1;
15034 break;
15035 }
15036
15037 /* Check for artificial methods. */
15038 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15039 if (attr && attr->as_boolean ())
15040 fnp->is_artificial = 1;
15041
15042 /* Check for defaulted methods. */
15043 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15044 if (attr != nullptr)
15045 fnp->defaulted = attr->defaulted ();
15046
15047 /* Check for deleted methods. */
15048 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15049 if (attr != nullptr && attr->as_boolean ())
15050 fnp->is_deleted = 1;
15051
15052 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15053
15054 /* Get index in virtual function table if it is a virtual member
15055 function. For older versions of GCC, this is an offset in the
15056 appropriate virtual table, as specified by DW_AT_containing_type.
15057 For everyone else, it is an expression to be evaluated relative
15058 to the object address. */
15059
15060 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15061 if (attr != nullptr)
15062 {
15063 if (attr->form_is_block () && attr->as_block ()->size > 0)
15064 {
15065 struct dwarf_block *block = attr->as_block ();
15066
15067 if (block->data[0] == DW_OP_constu)
15068 {
15069 /* Old-style GCC. */
15070 fnp->voffset = decode_locdesc (block, cu) + 2;
15071 }
15072 else if (block->data[0] == DW_OP_deref
15073 || (block->size > 1
15074 && block->data[0] == DW_OP_deref_size
15075 && block->data[1] == cu->header.addr_size))
15076 {
15077 fnp->voffset = decode_locdesc (block, cu);
15078 if ((fnp->voffset % cu->header.addr_size) != 0)
15079 dwarf2_complex_location_expr_complaint ();
15080 else
15081 fnp->voffset /= cu->header.addr_size;
15082 fnp->voffset += 2;
15083 }
15084 else
15085 dwarf2_complex_location_expr_complaint ();
15086
15087 if (!fnp->fcontext)
15088 {
15089 /* If there is no `this' field and no DW_AT_containing_type,
15090 we cannot actually find a base class context for the
15091 vtable! */
15092 if (this_type->num_fields () == 0
15093 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15094 {
15095 complaint (_("cannot determine context for virtual member "
15096 "function \"%s\" (offset %s)"),
15097 fieldname, sect_offset_str (die->sect_off));
15098 }
15099 else
15100 {
15101 fnp->fcontext
15102 = TYPE_TARGET_TYPE (this_type->field (0).type ());
15103 }
15104 }
15105 }
15106 else if (attr->form_is_section_offset ())
15107 {
15108 dwarf2_complex_location_expr_complaint ();
15109 }
15110 else
15111 {
15112 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15113 fieldname);
15114 }
15115 }
15116 else
15117 {
15118 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15119 if (attr != nullptr && attr->as_virtuality () != DW_VIRTUALITY_none)
15120 {
15121 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15122 complaint (_("Member function \"%s\" (offset %s) is virtual "
15123 "but the vtable offset is not specified"),
15124 fieldname, sect_offset_str (die->sect_off));
15125 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15126 TYPE_CPLUS_DYNAMIC (type) = 1;
15127 }
15128 }
15129 }
15130
15131 /* Create the vector of member function fields, and attach it to the type. */
15132
15133 static void
15134 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15135 struct dwarf2_cu *cu)
15136 {
15137 if (cu->per_cu->lang == language_ada)
15138 error (_("unexpected member functions in Ada type"));
15139
15140 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15141 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15142 TYPE_ALLOC (type,
15143 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15144
15145 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15146 {
15147 struct fnfieldlist &nf = fip->fnfieldlists[i];
15148 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15149
15150 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15151 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15152 fn_flp->fn_fields = (struct fn_field *)
15153 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15154
15155 for (int k = 0; k < nf.fnfields.size (); ++k)
15156 fn_flp->fn_fields[k] = nf.fnfields[k];
15157 }
15158
15159 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15160 }
15161
15162 /* Returns non-zero if NAME is the name of a vtable member in CU's
15163 language, zero otherwise. */
15164 static int
15165 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15166 {
15167 static const char vptr[] = "_vptr";
15168
15169 /* Look for the C++ form of the vtable. */
15170 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15171 return 1;
15172
15173 return 0;
15174 }
15175
15176 /* GCC outputs unnamed structures that are really pointers to member
15177 functions, with the ABI-specified layout. If TYPE describes
15178 such a structure, smash it into a member function type.
15179
15180 GCC shouldn't do this; it should just output pointer to member DIEs.
15181 This is GCC PR debug/28767. */
15182
15183 static void
15184 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15185 {
15186 struct type *pfn_type, *self_type, *new_type;
15187
15188 /* Check for a structure with no name and two children. */
15189 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15190 return;
15191
15192 /* Check for __pfn and __delta members. */
15193 if (TYPE_FIELD_NAME (type, 0) == NULL
15194 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15195 || TYPE_FIELD_NAME (type, 1) == NULL
15196 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15197 return;
15198
15199 /* Find the type of the method. */
15200 pfn_type = type->field (0).type ();
15201 if (pfn_type == NULL
15202 || pfn_type->code () != TYPE_CODE_PTR
15203 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15204 return;
15205
15206 /* Look for the "this" argument. */
15207 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15208 if (pfn_type->num_fields () == 0
15209 /* || pfn_type->field (0).type () == NULL */
15210 || pfn_type->field (0).type ()->code () != TYPE_CODE_PTR)
15211 return;
15212
15213 self_type = TYPE_TARGET_TYPE (pfn_type->field (0).type ());
15214 new_type = alloc_type (objfile);
15215 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15216 pfn_type->fields (), pfn_type->num_fields (),
15217 pfn_type->has_varargs ());
15218 smash_to_methodptr_type (type, new_type);
15219 }
15220
15221 /* Helper for quirk_ada_thick_pointer. If TYPE is an array type that
15222 requires rewriting, then copy it and return the updated copy.
15223 Otherwise return nullptr. */
15224
15225 static struct type *
15226 rewrite_array_type (struct type *type)
15227 {
15228 if (type->code () != TYPE_CODE_ARRAY)
15229 return nullptr;
15230
15231 struct type *index_type = type->index_type ();
15232 range_bounds *current_bounds = index_type->bounds ();
15233
15234 /* Handle multi-dimensional arrays. */
15235 struct type *new_target = rewrite_array_type (TYPE_TARGET_TYPE (type));
15236 if (new_target == nullptr)
15237 {
15238 /* Maybe we don't need to rewrite this array. */
15239 if (current_bounds->low.kind () == PROP_CONST
15240 && current_bounds->high.kind () == PROP_CONST)
15241 return nullptr;
15242 }
15243
15244 /* Either the target type was rewritten, or the bounds have to be
15245 updated. Either way we want to copy the type and update
15246 everything. */
15247 struct type *copy = copy_type (type);
15248 int nfields = copy->num_fields ();
15249 field *new_fields
15250 = ((struct field *) TYPE_ZALLOC (copy,
15251 nfields * sizeof (struct field)));
15252 memcpy (new_fields, copy->fields (), nfields * sizeof (struct field));
15253 copy->set_fields (new_fields);
15254 if (new_target != nullptr)
15255 TYPE_TARGET_TYPE (copy) = new_target;
15256
15257 struct type *index_copy = copy_type (index_type);
15258 range_bounds *bounds
15259 = (struct range_bounds *) TYPE_ZALLOC (index_copy,
15260 sizeof (range_bounds));
15261 *bounds = *current_bounds;
15262 bounds->low.set_const_val (1);
15263 bounds->high.set_const_val (0);
15264 index_copy->set_bounds (bounds);
15265 copy->set_index_type (index_copy);
15266
15267 return copy;
15268 }
15269
15270 /* While some versions of GCC will generate complicated DWARF for an
15271 array (see quirk_ada_thick_pointer), more recent versions were
15272 modified to emit an explicit thick pointer structure. However, in
15273 this case, the array still has DWARF expressions for its ranges,
15274 and these must be ignored. */
15275
15276 static void
15277 quirk_ada_thick_pointer_struct (struct die_info *die, struct dwarf2_cu *cu,
15278 struct type *type)
15279 {
15280 gdb_assert (cu->per_cu->lang == language_ada);
15281
15282 /* Check for a structure with two children. */
15283 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15284 return;
15285
15286 /* Check for P_ARRAY and P_BOUNDS members. */
15287 if (TYPE_FIELD_NAME (type, 0) == NULL
15288 || strcmp (TYPE_FIELD_NAME (type, 0), "P_ARRAY") != 0
15289 || TYPE_FIELD_NAME (type, 1) == NULL
15290 || strcmp (TYPE_FIELD_NAME (type, 1), "P_BOUNDS") != 0)
15291 return;
15292
15293 /* Make sure we're looking at a pointer to an array. */
15294 if (type->field (0).type ()->code () != TYPE_CODE_PTR)
15295 return;
15296
15297 /* The Ada code already knows how to handle these types, so all that
15298 we need to do is turn the bounds into static bounds. However, we
15299 don't want to rewrite existing array or index types in-place,
15300 because those may be referenced in other contexts where this
15301 rewriting is undesirable. */
15302 struct type *new_ary_type
15303 = rewrite_array_type (TYPE_TARGET_TYPE (type->field (0).type ()));
15304 if (new_ary_type != nullptr)
15305 type->field (0).set_type (lookup_pointer_type (new_ary_type));
15306 }
15307
15308 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15309 appropriate error checking and issuing complaints if there is a
15310 problem. */
15311
15312 static ULONGEST
15313 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15314 {
15315 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15316
15317 if (attr == nullptr)
15318 return 0;
15319
15320 if (!attr->form_is_constant ())
15321 {
15322 complaint (_("DW_AT_alignment must have constant form"
15323 " - DIE at %s [in module %s]"),
15324 sect_offset_str (die->sect_off),
15325 objfile_name (cu->per_objfile->objfile));
15326 return 0;
15327 }
15328
15329 LONGEST val = attr->constant_value (0);
15330 if (val < 0)
15331 {
15332 complaint (_("DW_AT_alignment value must not be negative"
15333 " - DIE at %s [in module %s]"),
15334 sect_offset_str (die->sect_off),
15335 objfile_name (cu->per_objfile->objfile));
15336 return 0;
15337 }
15338 ULONGEST align = val;
15339
15340 if (align == 0)
15341 {
15342 complaint (_("DW_AT_alignment value must not be zero"
15343 " - DIE at %s [in module %s]"),
15344 sect_offset_str (die->sect_off),
15345 objfile_name (cu->per_objfile->objfile));
15346 return 0;
15347 }
15348 if ((align & (align - 1)) != 0)
15349 {
15350 complaint (_("DW_AT_alignment value must be a power of 2"
15351 " - DIE at %s [in module %s]"),
15352 sect_offset_str (die->sect_off),
15353 objfile_name (cu->per_objfile->objfile));
15354 return 0;
15355 }
15356
15357 return align;
15358 }
15359
15360 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15361 the alignment for TYPE. */
15362
15363 static void
15364 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15365 struct type *type)
15366 {
15367 if (!set_type_align (type, get_alignment (cu, die)))
15368 complaint (_("DW_AT_alignment value too large"
15369 " - DIE at %s [in module %s]"),
15370 sect_offset_str (die->sect_off),
15371 objfile_name (cu->per_objfile->objfile));
15372 }
15373
15374 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15375 constant for a type, according to DWARF5 spec, Table 5.5. */
15376
15377 static bool
15378 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15379 {
15380 switch (value)
15381 {
15382 case DW_CC_normal:
15383 case DW_CC_pass_by_reference:
15384 case DW_CC_pass_by_value:
15385 return true;
15386
15387 default:
15388 complaint (_("unrecognized DW_AT_calling_convention value "
15389 "(%s) for a type"), pulongest (value));
15390 return false;
15391 }
15392 }
15393
15394 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15395 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15396 also according to GNU-specific values (see include/dwarf2.h). */
15397
15398 static bool
15399 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15400 {
15401 switch (value)
15402 {
15403 case DW_CC_normal:
15404 case DW_CC_program:
15405 case DW_CC_nocall:
15406 return true;
15407
15408 case DW_CC_GNU_renesas_sh:
15409 case DW_CC_GNU_borland_fastcall_i386:
15410 case DW_CC_GDB_IBM_OpenCL:
15411 return true;
15412
15413 default:
15414 complaint (_("unrecognized DW_AT_calling_convention value "
15415 "(%s) for a subroutine"), pulongest (value));
15416 return false;
15417 }
15418 }
15419
15420 /* Called when we find the DIE that starts a structure or union scope
15421 (definition) to create a type for the structure or union. Fill in
15422 the type's name and general properties; the members will not be
15423 processed until process_structure_scope. A symbol table entry for
15424 the type will also not be done until process_structure_scope (assuming
15425 the type has a name).
15426
15427 NOTE: we need to call these functions regardless of whether or not the
15428 DIE has a DW_AT_name attribute, since it might be an anonymous
15429 structure or union. This gets the type entered into our set of
15430 user defined types. */
15431
15432 static struct type *
15433 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15434 {
15435 struct objfile *objfile = cu->per_objfile->objfile;
15436 struct type *type;
15437 struct attribute *attr;
15438 const char *name;
15439
15440 /* If the definition of this type lives in .debug_types, read that type.
15441 Don't follow DW_AT_specification though, that will take us back up
15442 the chain and we want to go down. */
15443 attr = die->attr (DW_AT_signature);
15444 if (attr != nullptr)
15445 {
15446 type = get_DW_AT_signature_type (die, attr, cu);
15447
15448 /* The type's CU may not be the same as CU.
15449 Ensure TYPE is recorded with CU in die_type_hash. */
15450 return set_die_type (die, type, cu);
15451 }
15452
15453 type = alloc_type (objfile);
15454 INIT_CPLUS_SPECIFIC (type);
15455
15456 name = dwarf2_name (die, cu);
15457 if (name != NULL)
15458 {
15459 if (cu->per_cu->lang == language_cplus
15460 || cu->per_cu->lang == language_d
15461 || cu->per_cu->lang == language_rust)
15462 {
15463 const char *full_name = dwarf2_full_name (name, die, cu);
15464
15465 /* dwarf2_full_name might have already finished building the DIE's
15466 type. If so, there is no need to continue. */
15467 if (get_die_type (die, cu) != NULL)
15468 return get_die_type (die, cu);
15469
15470 type->set_name (full_name);
15471 }
15472 else
15473 {
15474 /* The name is already allocated along with this objfile, so
15475 we don't need to duplicate it for the type. */
15476 type->set_name (name);
15477 }
15478 }
15479
15480 if (die->tag == DW_TAG_structure_type)
15481 {
15482 type->set_code (TYPE_CODE_STRUCT);
15483 }
15484 else if (die->tag == DW_TAG_union_type)
15485 {
15486 type->set_code (TYPE_CODE_UNION);
15487 }
15488 else
15489 {
15490 type->set_code (TYPE_CODE_STRUCT);
15491 }
15492
15493 if (cu->per_cu->lang == language_cplus && die->tag == DW_TAG_class_type)
15494 type->set_is_declared_class (true);
15495
15496 /* Store the calling convention in the type if it's available in
15497 the die. Otherwise the calling convention remains set to
15498 the default value DW_CC_normal. */
15499 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15500 if (attr != nullptr
15501 && is_valid_DW_AT_calling_convention_for_type (attr->constant_value (0)))
15502 {
15503 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15504 TYPE_CPLUS_CALLING_CONVENTION (type)
15505 = (enum dwarf_calling_convention) (attr->constant_value (0));
15506 }
15507
15508 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15509 if (attr != nullptr)
15510 {
15511 if (attr->form_is_constant ())
15512 TYPE_LENGTH (type) = attr->constant_value (0);
15513 else
15514 {
15515 struct dynamic_prop prop;
15516 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
15517 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
15518 TYPE_LENGTH (type) = 0;
15519 }
15520 }
15521 else
15522 {
15523 TYPE_LENGTH (type) = 0;
15524 }
15525
15526 maybe_set_alignment (cu, die, type);
15527
15528 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15529 {
15530 /* ICC<14 does not output the required DW_AT_declaration on
15531 incomplete types, but gives them a size of zero. */
15532 type->set_is_stub (true);
15533 }
15534 else
15535 type->set_stub_is_supported (true);
15536
15537 if (die_is_declaration (die, cu))
15538 type->set_is_stub (true);
15539 else if (attr == NULL && die->child == NULL
15540 && producer_is_realview (cu->producer))
15541 /* RealView does not output the required DW_AT_declaration
15542 on incomplete types. */
15543 type->set_is_stub (true);
15544
15545 /* We need to add the type field to the die immediately so we don't
15546 infinitely recurse when dealing with pointers to the structure
15547 type within the structure itself. */
15548 set_die_type (die, type, cu);
15549
15550 /* set_die_type should be already done. */
15551 set_descriptive_type (type, die, cu);
15552
15553 return type;
15554 }
15555
15556 static void handle_struct_member_die
15557 (struct die_info *child_die,
15558 struct type *type,
15559 struct field_info *fi,
15560 std::vector<struct symbol *> *template_args,
15561 struct dwarf2_cu *cu);
15562
15563 /* A helper for handle_struct_member_die that handles
15564 DW_TAG_variant_part. */
15565
15566 static void
15567 handle_variant_part (struct die_info *die, struct type *type,
15568 struct field_info *fi,
15569 std::vector<struct symbol *> *template_args,
15570 struct dwarf2_cu *cu)
15571 {
15572 variant_part_builder *new_part;
15573 if (fi->current_variant_part == nullptr)
15574 {
15575 fi->variant_parts.emplace_back ();
15576 new_part = &fi->variant_parts.back ();
15577 }
15578 else if (!fi->current_variant_part->processing_variant)
15579 {
15580 complaint (_("nested DW_TAG_variant_part seen "
15581 "- DIE at %s [in module %s]"),
15582 sect_offset_str (die->sect_off),
15583 objfile_name (cu->per_objfile->objfile));
15584 return;
15585 }
15586 else
15587 {
15588 variant_field &current = fi->current_variant_part->variants.back ();
15589 current.variant_parts.emplace_back ();
15590 new_part = &current.variant_parts.back ();
15591 }
15592
15593 /* When we recurse, we want callees to add to this new variant
15594 part. */
15595 scoped_restore save_current_variant_part
15596 = make_scoped_restore (&fi->current_variant_part, new_part);
15597
15598 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15599 if (discr == NULL)
15600 {
15601 /* It's a univariant form, an extension we support. */
15602 }
15603 else if (discr->form_is_ref ())
15604 {
15605 struct dwarf2_cu *target_cu = cu;
15606 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15607
15608 new_part->discriminant_offset = target_die->sect_off;
15609 }
15610 else
15611 {
15612 complaint (_("DW_AT_discr does not have DIE reference form"
15613 " - DIE at %s [in module %s]"),
15614 sect_offset_str (die->sect_off),
15615 objfile_name (cu->per_objfile->objfile));
15616 }
15617
15618 for (die_info *child_die = die->child;
15619 child_die != NULL;
15620 child_die = child_die->sibling)
15621 handle_struct_member_die (child_die, type, fi, template_args, cu);
15622 }
15623
15624 /* A helper for handle_struct_member_die that handles
15625 DW_TAG_variant. */
15626
15627 static void
15628 handle_variant (struct die_info *die, struct type *type,
15629 struct field_info *fi,
15630 std::vector<struct symbol *> *template_args,
15631 struct dwarf2_cu *cu)
15632 {
15633 if (fi->current_variant_part == nullptr)
15634 {
15635 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15636 "- DIE at %s [in module %s]"),
15637 sect_offset_str (die->sect_off),
15638 objfile_name (cu->per_objfile->objfile));
15639 return;
15640 }
15641 if (fi->current_variant_part->processing_variant)
15642 {
15643 complaint (_("nested DW_TAG_variant seen "
15644 "- DIE at %s [in module %s]"),
15645 sect_offset_str (die->sect_off),
15646 objfile_name (cu->per_objfile->objfile));
15647 return;
15648 }
15649
15650 scoped_restore save_processing_variant
15651 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15652 true);
15653
15654 fi->current_variant_part->variants.emplace_back ();
15655 variant_field &variant = fi->current_variant_part->variants.back ();
15656 variant.first_field = fi->fields.size ();
15657
15658 /* In a variant we want to get the discriminant and also add a
15659 field for our sole member child. */
15660 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15661 if (discr == nullptr || !discr->form_is_constant ())
15662 {
15663 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15664 if (discr == nullptr || discr->as_block ()->size == 0)
15665 variant.default_branch = true;
15666 else
15667 variant.discr_list_data = discr->as_block ();
15668 }
15669 else
15670 variant.discriminant_value = discr->constant_value (0);
15671
15672 for (die_info *variant_child = die->child;
15673 variant_child != NULL;
15674 variant_child = variant_child->sibling)
15675 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15676
15677 variant.last_field = fi->fields.size ();
15678 }
15679
15680 /* A helper for process_structure_scope that handles a single member
15681 DIE. */
15682
15683 static void
15684 handle_struct_member_die (struct die_info *child_die, struct type *type,
15685 struct field_info *fi,
15686 std::vector<struct symbol *> *template_args,
15687 struct dwarf2_cu *cu)
15688 {
15689 if (child_die->tag == DW_TAG_member
15690 || child_die->tag == DW_TAG_variable)
15691 {
15692 /* NOTE: carlton/2002-11-05: A C++ static data member
15693 should be a DW_TAG_member that is a declaration, but
15694 all versions of G++ as of this writing (so through at
15695 least 3.2.1) incorrectly generate DW_TAG_variable
15696 tags for them instead. */
15697 dwarf2_add_field (fi, child_die, cu);
15698 }
15699 else if (child_die->tag == DW_TAG_subprogram)
15700 {
15701 /* Rust doesn't have member functions in the C++ sense.
15702 However, it does emit ordinary functions as children
15703 of a struct DIE. */
15704 if (cu->per_cu->lang == language_rust)
15705 read_func_scope (child_die, cu);
15706 else
15707 {
15708 /* C++ member function. */
15709 dwarf2_add_member_fn (fi, child_die, type, cu);
15710 }
15711 }
15712 else if (child_die->tag == DW_TAG_inheritance)
15713 {
15714 /* C++ base class field. */
15715 dwarf2_add_field (fi, child_die, cu);
15716 }
15717 else if (type_can_define_types (child_die))
15718 dwarf2_add_type_defn (fi, child_die, cu);
15719 else if (child_die->tag == DW_TAG_template_type_param
15720 || child_die->tag == DW_TAG_template_value_param)
15721 {
15722 struct symbol *arg = new_symbol (child_die, NULL, cu);
15723
15724 if (arg != NULL)
15725 template_args->push_back (arg);
15726 }
15727 else if (child_die->tag == DW_TAG_variant_part)
15728 handle_variant_part (child_die, type, fi, template_args, cu);
15729 else if (child_die->tag == DW_TAG_variant)
15730 handle_variant (child_die, type, fi, template_args, cu);
15731 }
15732
15733 /* Finish creating a structure or union type, including filling in
15734 its members and creating a symbol for it. */
15735
15736 static void
15737 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15738 {
15739 struct objfile *objfile = cu->per_objfile->objfile;
15740 struct die_info *child_die;
15741 struct type *type;
15742
15743 type = get_die_type (die, cu);
15744 if (type == NULL)
15745 type = read_structure_type (die, cu);
15746
15747 bool has_template_parameters = false;
15748 if (die->child != NULL && ! die_is_declaration (die, cu))
15749 {
15750 struct field_info fi;
15751 std::vector<struct symbol *> template_args;
15752
15753 child_die = die->child;
15754
15755 while (child_die && child_die->tag)
15756 {
15757 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15758 child_die = child_die->sibling;
15759 }
15760
15761 /* Attach template arguments to type. */
15762 if (!template_args.empty ())
15763 {
15764 has_template_parameters = true;
15765 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15766 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15767 TYPE_TEMPLATE_ARGUMENTS (type)
15768 = XOBNEWVEC (&objfile->objfile_obstack,
15769 struct symbol *,
15770 TYPE_N_TEMPLATE_ARGUMENTS (type));
15771 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15772 template_args.data (),
15773 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15774 * sizeof (struct symbol *)));
15775 }
15776
15777 /* Attach fields and member functions to the type. */
15778 if (fi.nfields () > 0)
15779 dwarf2_attach_fields_to_type (&fi, type, cu);
15780 if (!fi.fnfieldlists.empty ())
15781 {
15782 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15783
15784 /* Get the type which refers to the base class (possibly this
15785 class itself) which contains the vtable pointer for the current
15786 class from the DW_AT_containing_type attribute. This use of
15787 DW_AT_containing_type is a GNU extension. */
15788
15789 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15790 {
15791 struct type *t = die_containing_type (die, cu);
15792
15793 set_type_vptr_basetype (type, t);
15794 if (type == t)
15795 {
15796 int i;
15797
15798 /* Our own class provides vtbl ptr. */
15799 for (i = t->num_fields () - 1;
15800 i >= TYPE_N_BASECLASSES (t);
15801 --i)
15802 {
15803 const char *fieldname = TYPE_FIELD_NAME (t, i);
15804
15805 if (is_vtable_name (fieldname, cu))
15806 {
15807 set_type_vptr_fieldno (type, i);
15808 break;
15809 }
15810 }
15811
15812 /* Complain if virtual function table field not found. */
15813 if (i < TYPE_N_BASECLASSES (t))
15814 complaint (_("virtual function table pointer "
15815 "not found when defining class '%s'"),
15816 type->name () ? type->name () : "");
15817 }
15818 else
15819 {
15820 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15821 }
15822 }
15823 else if (cu->producer
15824 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15825 {
15826 /* The IBM XLC compiler does not provide direct indication
15827 of the containing type, but the vtable pointer is
15828 always named __vfp. */
15829
15830 int i;
15831
15832 for (i = type->num_fields () - 1;
15833 i >= TYPE_N_BASECLASSES (type);
15834 --i)
15835 {
15836 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15837 {
15838 set_type_vptr_fieldno (type, i);
15839 set_type_vptr_basetype (type, type);
15840 break;
15841 }
15842 }
15843 }
15844 }
15845
15846 /* Copy fi.typedef_field_list linked list elements content into the
15847 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15848 if (!fi.typedef_field_list.empty ())
15849 {
15850 int count = fi.typedef_field_list.size ();
15851
15852 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15853 TYPE_TYPEDEF_FIELD_ARRAY (type)
15854 = ((struct decl_field *)
15855 TYPE_ALLOC (type,
15856 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15857 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15858
15859 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15860 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15861 }
15862
15863 /* Copy fi.nested_types_list linked list elements content into the
15864 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15865 if (!fi.nested_types_list.empty ()
15866 && cu->per_cu->lang != language_ada)
15867 {
15868 int count = fi.nested_types_list.size ();
15869
15870 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15871 TYPE_NESTED_TYPES_ARRAY (type)
15872 = ((struct decl_field *)
15873 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15874 TYPE_NESTED_TYPES_COUNT (type) = count;
15875
15876 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15877 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15878 }
15879 }
15880
15881 quirk_gcc_member_function_pointer (type, objfile);
15882 if (cu->per_cu->lang == language_rust && die->tag == DW_TAG_union_type)
15883 cu->rust_unions.push_back (type);
15884 else if (cu->per_cu->lang == language_ada)
15885 quirk_ada_thick_pointer_struct (die, cu, type);
15886
15887 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15888 snapshots) has been known to create a die giving a declaration
15889 for a class that has, as a child, a die giving a definition for a
15890 nested class. So we have to process our children even if the
15891 current die is a declaration. Normally, of course, a declaration
15892 won't have any children at all. */
15893
15894 child_die = die->child;
15895
15896 while (child_die != NULL && child_die->tag)
15897 {
15898 if (child_die->tag == DW_TAG_member
15899 || child_die->tag == DW_TAG_variable
15900 || child_die->tag == DW_TAG_inheritance
15901 || child_die->tag == DW_TAG_template_value_param
15902 || child_die->tag == DW_TAG_template_type_param)
15903 {
15904 /* Do nothing. */
15905 }
15906 else
15907 process_die (child_die, cu);
15908
15909 child_die = child_die->sibling;
15910 }
15911
15912 /* Do not consider external references. According to the DWARF standard,
15913 these DIEs are identified by the fact that they have no byte_size
15914 attribute, and a declaration attribute. */
15915 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15916 || !die_is_declaration (die, cu)
15917 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15918 {
15919 struct symbol *sym = new_symbol (die, type, cu);
15920
15921 if (has_template_parameters)
15922 {
15923 struct symtab *symtab;
15924 if (sym != nullptr)
15925 symtab = symbol_symtab (sym);
15926 else if (cu->line_header != nullptr)
15927 {
15928 /* Any related symtab will do. */
15929 symtab
15930 = cu->line_header->file_names ()[0].symtab;
15931 }
15932 else
15933 {
15934 symtab = nullptr;
15935 complaint (_("could not find suitable "
15936 "symtab for template parameter"
15937 " - DIE at %s [in module %s]"),
15938 sect_offset_str (die->sect_off),
15939 objfile_name (objfile));
15940 }
15941
15942 if (symtab != nullptr)
15943 {
15944 /* Make sure that the symtab is set on the new symbols.
15945 Even though they don't appear in this symtab directly,
15946 other parts of gdb assume that symbols do, and this is
15947 reasonably true. */
15948 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15949 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15950 }
15951 }
15952 }
15953 }
15954
15955 /* Assuming DIE is an enumeration type, and TYPE is its associated
15956 type, update TYPE using some information only available in DIE's
15957 children. In particular, the fields are computed. */
15958
15959 static void
15960 update_enumeration_type_from_children (struct die_info *die,
15961 struct type *type,
15962 struct dwarf2_cu *cu)
15963 {
15964 struct die_info *child_die;
15965 int unsigned_enum = 1;
15966 int flag_enum = 1;
15967
15968 auto_obstack obstack;
15969 std::vector<struct field> fields;
15970
15971 for (child_die = die->child;
15972 child_die != NULL && child_die->tag;
15973 child_die = child_die->sibling)
15974 {
15975 struct attribute *attr;
15976 LONGEST value;
15977 const gdb_byte *bytes;
15978 struct dwarf2_locexpr_baton *baton;
15979 const char *name;
15980
15981 if (child_die->tag != DW_TAG_enumerator)
15982 continue;
15983
15984 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15985 if (attr == NULL)
15986 continue;
15987
15988 name = dwarf2_name (child_die, cu);
15989 if (name == NULL)
15990 name = "<anonymous enumerator>";
15991
15992 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15993 &value, &bytes, &baton);
15994 if (value < 0)
15995 {
15996 unsigned_enum = 0;
15997 flag_enum = 0;
15998 }
15999 else
16000 {
16001 if (count_one_bits_ll (value) >= 2)
16002 flag_enum = 0;
16003 }
16004
16005 fields.emplace_back ();
16006 struct field &field = fields.back ();
16007 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
16008 SET_FIELD_ENUMVAL (field, value);
16009 }
16010
16011 if (!fields.empty ())
16012 {
16013 type->set_num_fields (fields.size ());
16014 type->set_fields
16015 ((struct field *)
16016 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
16017 memcpy (type->fields (), fields.data (),
16018 sizeof (struct field) * fields.size ());
16019 }
16020
16021 if (unsigned_enum)
16022 type->set_is_unsigned (true);
16023
16024 if (flag_enum)
16025 type->set_is_flag_enum (true);
16026 }
16027
16028 /* Given a DW_AT_enumeration_type die, set its type. We do not
16029 complete the type's fields yet, or create any symbols. */
16030
16031 static struct type *
16032 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16033 {
16034 struct objfile *objfile = cu->per_objfile->objfile;
16035 struct type *type;
16036 struct attribute *attr;
16037 const char *name;
16038
16039 /* If the definition of this type lives in .debug_types, read that type.
16040 Don't follow DW_AT_specification though, that will take us back up
16041 the chain and we want to go down. */
16042 attr = die->attr (DW_AT_signature);
16043 if (attr != nullptr)
16044 {
16045 type = get_DW_AT_signature_type (die, attr, cu);
16046
16047 /* The type's CU may not be the same as CU.
16048 Ensure TYPE is recorded with CU in die_type_hash. */
16049 return set_die_type (die, type, cu);
16050 }
16051
16052 type = alloc_type (objfile);
16053
16054 type->set_code (TYPE_CODE_ENUM);
16055 name = dwarf2_full_name (NULL, die, cu);
16056 if (name != NULL)
16057 type->set_name (name);
16058
16059 attr = dwarf2_attr (die, DW_AT_type, cu);
16060 if (attr != NULL)
16061 {
16062 struct type *underlying_type = die_type (die, cu);
16063
16064 TYPE_TARGET_TYPE (type) = underlying_type;
16065 }
16066
16067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16068 if (attr != nullptr)
16069 {
16070 TYPE_LENGTH (type) = attr->constant_value (0);
16071 }
16072 else
16073 {
16074 TYPE_LENGTH (type) = 0;
16075 }
16076
16077 maybe_set_alignment (cu, die, type);
16078
16079 /* The enumeration DIE can be incomplete. In Ada, any type can be
16080 declared as private in the package spec, and then defined only
16081 inside the package body. Such types are known as Taft Amendment
16082 Types. When another package uses such a type, an incomplete DIE
16083 may be generated by the compiler. */
16084 if (die_is_declaration (die, cu))
16085 type->set_is_stub (true);
16086
16087 /* If this type has an underlying type that is not a stub, then we
16088 may use its attributes. We always use the "unsigned" attribute
16089 in this situation, because ordinarily we guess whether the type
16090 is unsigned -- but the guess can be wrong and the underlying type
16091 can tell us the reality. However, we defer to a local size
16092 attribute if one exists, because this lets the compiler override
16093 the underlying type if needed. */
16094 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_TARGET_TYPE (type)->is_stub ())
16095 {
16096 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16097 underlying_type = check_typedef (underlying_type);
16098
16099 type->set_is_unsigned (underlying_type->is_unsigned ());
16100
16101 if (TYPE_LENGTH (type) == 0)
16102 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16103
16104 if (TYPE_RAW_ALIGN (type) == 0
16105 && TYPE_RAW_ALIGN (underlying_type) != 0)
16106 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16107 }
16108
16109 type->set_is_declared_class (dwarf2_flag_true_p (die, DW_AT_enum_class, cu));
16110
16111 set_die_type (die, type, cu);
16112
16113 /* Finish the creation of this type by using the enum's children.
16114 Note that, as usual, this must come after set_die_type to avoid
16115 infinite recursion when trying to compute the names of the
16116 enumerators. */
16117 update_enumeration_type_from_children (die, type, cu);
16118
16119 return type;
16120 }
16121
16122 /* Given a pointer to a die which begins an enumeration, process all
16123 the dies that define the members of the enumeration, and create the
16124 symbol for the enumeration type.
16125
16126 NOTE: We reverse the order of the element list. */
16127
16128 static void
16129 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16130 {
16131 struct type *this_type;
16132
16133 this_type = get_die_type (die, cu);
16134 if (this_type == NULL)
16135 this_type = read_enumeration_type (die, cu);
16136
16137 if (die->child != NULL)
16138 {
16139 struct die_info *child_die;
16140 const char *name;
16141
16142 child_die = die->child;
16143 while (child_die && child_die->tag)
16144 {
16145 if (child_die->tag != DW_TAG_enumerator)
16146 {
16147 process_die (child_die, cu);
16148 }
16149 else
16150 {
16151 name = dwarf2_name (child_die, cu);
16152 if (name)
16153 new_symbol (child_die, this_type, cu);
16154 }
16155
16156 child_die = child_die->sibling;
16157 }
16158 }
16159
16160 /* If we are reading an enum from a .debug_types unit, and the enum
16161 is a declaration, and the enum is not the signatured type in the
16162 unit, then we do not want to add a symbol for it. Adding a
16163 symbol would in some cases obscure the true definition of the
16164 enum, giving users an incomplete type when the definition is
16165 actually available. Note that we do not want to do this for all
16166 enums which are just declarations, because C++0x allows forward
16167 enum declarations. */
16168 if (cu->per_cu->is_debug_types
16169 && die_is_declaration (die, cu))
16170 {
16171 struct signatured_type *sig_type;
16172
16173 sig_type = (struct signatured_type *) cu->per_cu;
16174 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16175 if (sig_type->type_offset_in_section != die->sect_off)
16176 return;
16177 }
16178
16179 new_symbol (die, this_type, cu);
16180 }
16181
16182 /* Helper function for quirk_ada_thick_pointer that examines a bounds
16183 expression for an index type and finds the corresponding field
16184 offset in the hidden "P_BOUNDS" structure. Returns true on success
16185 and updates *FIELD, false if it fails to recognize an
16186 expression. */
16187
16188 static bool
16189 recognize_bound_expression (struct die_info *die, enum dwarf_attribute name,
16190 int *bounds_offset, struct field *field,
16191 struct dwarf2_cu *cu)
16192 {
16193 struct attribute *attr = dwarf2_attr (die, name, cu);
16194 if (attr == nullptr || !attr->form_is_block ())
16195 return false;
16196
16197 const struct dwarf_block *block = attr->as_block ();
16198 const gdb_byte *start = block->data;
16199 const gdb_byte *end = block->data + block->size;
16200
16201 /* The expression to recognize generally looks like:
16202
16203 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16204 DW_OP_plus_uconst: 4; DW_OP_deref_size: 4)
16205
16206 However, the second "plus_uconst" may be missing:
16207
16208 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16209 DW_OP_deref_size: 4)
16210
16211 This happens when the field is at the start of the structure.
16212
16213 Also, the final deref may not be sized:
16214
16215 (DW_OP_push_object_address; DW_OP_plus_uconst: 4; DW_OP_deref;
16216 DW_OP_deref)
16217
16218 This happens when the size of the index type happens to be the
16219 same as the architecture's word size. This can occur with or
16220 without the second plus_uconst. */
16221
16222 if (end - start < 2)
16223 return false;
16224 if (*start++ != DW_OP_push_object_address)
16225 return false;
16226 if (*start++ != DW_OP_plus_uconst)
16227 return false;
16228
16229 uint64_t this_bound_off;
16230 start = gdb_read_uleb128 (start, end, &this_bound_off);
16231 if (start == nullptr || (int) this_bound_off != this_bound_off)
16232 return false;
16233 /* Update *BOUNDS_OFFSET if needed, or alternatively verify that it
16234 is consistent among all bounds. */
16235 if (*bounds_offset == -1)
16236 *bounds_offset = this_bound_off;
16237 else if (*bounds_offset != this_bound_off)
16238 return false;
16239
16240 if (start == end || *start++ != DW_OP_deref)
16241 return false;
16242
16243 int offset = 0;
16244 if (start ==end)
16245 return false;
16246 else if (*start == DW_OP_deref_size || *start == DW_OP_deref)
16247 {
16248 /* This means an offset of 0. */
16249 }
16250 else if (*start++ != DW_OP_plus_uconst)
16251 return false;
16252 else
16253 {
16254 /* The size is the parameter to DW_OP_plus_uconst. */
16255 uint64_t val;
16256 start = gdb_read_uleb128 (start, end, &val);
16257 if (start == nullptr)
16258 return false;
16259 if ((int) val != val)
16260 return false;
16261 offset = val;
16262 }
16263
16264 if (start == end)
16265 return false;
16266
16267 uint64_t size;
16268 if (*start == DW_OP_deref_size)
16269 {
16270 start = gdb_read_uleb128 (start + 1, end, &size);
16271 if (start == nullptr)
16272 return false;
16273 }
16274 else if (*start == DW_OP_deref)
16275 {
16276 size = cu->header.addr_size;
16277 ++start;
16278 }
16279 else
16280 return false;
16281
16282 SET_FIELD_BITPOS (*field, 8 * offset);
16283 if (size != TYPE_LENGTH (field->type ()))
16284 FIELD_BITSIZE (*field) = 8 * size;
16285
16286 return true;
16287 }
16288
16289 /* With -fgnat-encodings=minimal, gcc will emit some unusual DWARF for
16290 some kinds of Ada arrays:
16291
16292 <1><11db>: Abbrev Number: 7 (DW_TAG_array_type)
16293 <11dc> DW_AT_name : (indirect string, offset: 0x1bb8): string
16294 <11e0> DW_AT_data_location: 2 byte block: 97 6
16295 (DW_OP_push_object_address; DW_OP_deref)
16296 <11e3> DW_AT_type : <0x1173>
16297 <11e7> DW_AT_sibling : <0x1201>
16298 <2><11eb>: Abbrev Number: 8 (DW_TAG_subrange_type)
16299 <11ec> DW_AT_type : <0x1206>
16300 <11f0> DW_AT_lower_bound : 6 byte block: 97 23 8 6 94 4
16301 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16302 DW_OP_deref_size: 4)
16303 <11f7> DW_AT_upper_bound : 8 byte block: 97 23 8 6 23 4 94 4
16304 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16305 DW_OP_plus_uconst: 4; DW_OP_deref_size: 4)
16306
16307 This actually represents a "thick pointer", which is a structure
16308 with two elements: one that is a pointer to the array data, and one
16309 that is a pointer to another structure; this second structure holds
16310 the array bounds.
16311
16312 This returns a new type on success, or nullptr if this didn't
16313 recognize the type. */
16314
16315 static struct type *
16316 quirk_ada_thick_pointer (struct die_info *die, struct dwarf2_cu *cu,
16317 struct type *type)
16318 {
16319 struct attribute *attr = dwarf2_attr (die, DW_AT_data_location, cu);
16320 /* So far we've only seen this with block form. */
16321 if (attr == nullptr || !attr->form_is_block ())
16322 return nullptr;
16323
16324 /* Note that this will fail if the structure layout is changed by
16325 the compiler. However, we have no good way to recognize some
16326 other layout, because we don't know what expression the compiler
16327 might choose to emit should this happen. */
16328 struct dwarf_block *blk = attr->as_block ();
16329 if (blk->size != 2
16330 || blk->data[0] != DW_OP_push_object_address
16331 || blk->data[1] != DW_OP_deref)
16332 return nullptr;
16333
16334 int bounds_offset = -1;
16335 int max_align = -1;
16336 std::vector<struct field> range_fields;
16337 for (struct die_info *child_die = die->child;
16338 child_die;
16339 child_die = child_die->sibling)
16340 {
16341 if (child_die->tag == DW_TAG_subrange_type)
16342 {
16343 struct type *underlying = read_subrange_index_type (child_die, cu);
16344
16345 int this_align = type_align (underlying);
16346 if (this_align > max_align)
16347 max_align = this_align;
16348
16349 range_fields.emplace_back ();
16350 range_fields.emplace_back ();
16351
16352 struct field &lower = range_fields[range_fields.size () - 2];
16353 struct field &upper = range_fields[range_fields.size () - 1];
16354
16355 lower.set_type (underlying);
16356 FIELD_ARTIFICIAL (lower) = 1;
16357
16358 upper.set_type (underlying);
16359 FIELD_ARTIFICIAL (upper) = 1;
16360
16361 if (!recognize_bound_expression (child_die, DW_AT_lower_bound,
16362 &bounds_offset, &lower, cu)
16363 || !recognize_bound_expression (child_die, DW_AT_upper_bound,
16364 &bounds_offset, &upper, cu))
16365 return nullptr;
16366 }
16367 }
16368
16369 /* This shouldn't really happen, but double-check that we found
16370 where the bounds are stored. */
16371 if (bounds_offset == -1)
16372 return nullptr;
16373
16374 struct objfile *objfile = cu->per_objfile->objfile;
16375 for (int i = 0; i < range_fields.size (); i += 2)
16376 {
16377 char name[20];
16378
16379 /* Set the name of each field in the bounds. */
16380 xsnprintf (name, sizeof (name), "LB%d", i / 2);
16381 FIELD_NAME (range_fields[i]) = objfile->intern (name);
16382 xsnprintf (name, sizeof (name), "UB%d", i / 2);
16383 FIELD_NAME (range_fields[i + 1]) = objfile->intern (name);
16384 }
16385
16386 struct type *bounds = alloc_type (objfile);
16387 bounds->set_code (TYPE_CODE_STRUCT);
16388
16389 bounds->set_num_fields (range_fields.size ());
16390 bounds->set_fields
16391 ((struct field *) TYPE_ALLOC (bounds, (bounds->num_fields ()
16392 * sizeof (struct field))));
16393 memcpy (bounds->fields (), range_fields.data (),
16394 bounds->num_fields () * sizeof (struct field));
16395
16396 int last_fieldno = range_fields.size () - 1;
16397 int bounds_size = (TYPE_FIELD_BITPOS (bounds, last_fieldno) / 8
16398 + TYPE_LENGTH (bounds->field (last_fieldno).type ()));
16399 TYPE_LENGTH (bounds) = align_up (bounds_size, max_align);
16400
16401 /* Rewrite the existing array type in place. Specifically, we
16402 remove any dynamic properties we might have read, and we replace
16403 the index types. */
16404 struct type *iter = type;
16405 for (int i = 0; i < range_fields.size (); i += 2)
16406 {
16407 gdb_assert (iter->code () == TYPE_CODE_ARRAY);
16408 iter->main_type->dyn_prop_list = nullptr;
16409 iter->set_index_type
16410 (create_static_range_type (NULL, bounds->field (i).type (), 1, 0));
16411 iter = TYPE_TARGET_TYPE (iter);
16412 }
16413
16414 struct type *result = alloc_type (objfile);
16415 result->set_code (TYPE_CODE_STRUCT);
16416
16417 result->set_num_fields (2);
16418 result->set_fields
16419 ((struct field *) TYPE_ZALLOC (result, (result->num_fields ()
16420 * sizeof (struct field))));
16421
16422 /* The names are chosen to coincide with what the compiler does with
16423 -fgnat-encodings=all, which the Ada code in gdb already
16424 understands. */
16425 TYPE_FIELD_NAME (result, 0) = "P_ARRAY";
16426 result->field (0).set_type (lookup_pointer_type (type));
16427
16428 TYPE_FIELD_NAME (result, 1) = "P_BOUNDS";
16429 result->field (1).set_type (lookup_pointer_type (bounds));
16430 SET_FIELD_BITPOS (result->field (1), 8 * bounds_offset);
16431
16432 result->set_name (type->name ());
16433 TYPE_LENGTH (result) = (TYPE_LENGTH (result->field (0).type ())
16434 + TYPE_LENGTH (result->field (1).type ()));
16435
16436 return result;
16437 }
16438
16439 /* Extract all information from a DW_TAG_array_type DIE and put it in
16440 the DIE's type field. For now, this only handles one dimensional
16441 arrays. */
16442
16443 static struct type *
16444 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16445 {
16446 struct objfile *objfile = cu->per_objfile->objfile;
16447 struct die_info *child_die;
16448 struct type *type;
16449 struct type *element_type, *range_type, *index_type;
16450 struct attribute *attr;
16451 const char *name;
16452 struct dynamic_prop *byte_stride_prop = NULL;
16453 unsigned int bit_stride = 0;
16454
16455 element_type = die_type (die, cu);
16456
16457 /* The die_type call above may have already set the type for this DIE. */
16458 type = get_die_type (die, cu);
16459 if (type)
16460 return type;
16461
16462 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16463 if (attr != NULL)
16464 {
16465 int stride_ok;
16466 struct type *prop_type = cu->addr_sized_int_type (false);
16467
16468 byte_stride_prop
16469 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16470 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16471 prop_type);
16472 if (!stride_ok)
16473 {
16474 complaint (_("unable to read array DW_AT_byte_stride "
16475 " - DIE at %s [in module %s]"),
16476 sect_offset_str (die->sect_off),
16477 objfile_name (cu->per_objfile->objfile));
16478 /* Ignore this attribute. We will likely not be able to print
16479 arrays of this type correctly, but there is little we can do
16480 to help if we cannot read the attribute's value. */
16481 byte_stride_prop = NULL;
16482 }
16483 }
16484
16485 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16486 if (attr != NULL)
16487 bit_stride = attr->constant_value (0);
16488
16489 /* Irix 6.2 native cc creates array types without children for
16490 arrays with unspecified length. */
16491 if (die->child == NULL)
16492 {
16493 index_type = objfile_type (objfile)->builtin_int;
16494 range_type = create_static_range_type (NULL, index_type, 0, -1);
16495 type = create_array_type_with_stride (NULL, element_type, range_type,
16496 byte_stride_prop, bit_stride);
16497 return set_die_type (die, type, cu);
16498 }
16499
16500 std::vector<struct type *> range_types;
16501 child_die = die->child;
16502 while (child_die && child_die->tag)
16503 {
16504 if (child_die->tag == DW_TAG_subrange_type)
16505 {
16506 struct type *child_type = read_type_die (child_die, cu);
16507
16508 if (child_type != NULL)
16509 {
16510 /* The range type was succesfully read. Save it for the
16511 array type creation. */
16512 range_types.push_back (child_type);
16513 }
16514 }
16515 child_die = child_die->sibling;
16516 }
16517
16518 if (range_types.empty ())
16519 {
16520 complaint (_("unable to find array range - DIE at %s [in module %s]"),
16521 sect_offset_str (die->sect_off),
16522 objfile_name (cu->per_objfile->objfile));
16523 return NULL;
16524 }
16525
16526 /* Dwarf2 dimensions are output from left to right, create the
16527 necessary array types in backwards order. */
16528
16529 type = element_type;
16530
16531 if (read_array_order (die, cu) == DW_ORD_col_major)
16532 {
16533 int i = 0;
16534
16535 while (i < range_types.size ())
16536 {
16537 type = create_array_type_with_stride (NULL, type, range_types[i++],
16538 byte_stride_prop, bit_stride);
16539 bit_stride = 0;
16540 byte_stride_prop = nullptr;
16541 }
16542 }
16543 else
16544 {
16545 size_t ndim = range_types.size ();
16546 while (ndim-- > 0)
16547 {
16548 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16549 byte_stride_prop, bit_stride);
16550 bit_stride = 0;
16551 byte_stride_prop = nullptr;
16552 }
16553 }
16554
16555 gdb_assert (type != element_type);
16556
16557 /* Understand Dwarf2 support for vector types (like they occur on
16558 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16559 array type. This is not part of the Dwarf2/3 standard yet, but a
16560 custom vendor extension. The main difference between a regular
16561 array and the vector variant is that vectors are passed by value
16562 to functions. */
16563 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16564 if (attr != nullptr)
16565 make_vector_type (type);
16566
16567 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16568 implementation may choose to implement triple vectors using this
16569 attribute. */
16570 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16571 if (attr != nullptr && attr->form_is_unsigned ())
16572 {
16573 if (attr->as_unsigned () >= TYPE_LENGTH (type))
16574 TYPE_LENGTH (type) = attr->as_unsigned ();
16575 else
16576 complaint (_("DW_AT_byte_size for array type smaller "
16577 "than the total size of elements"));
16578 }
16579
16580 name = dwarf2_name (die, cu);
16581 if (name)
16582 type->set_name (name);
16583
16584 maybe_set_alignment (cu, die, type);
16585
16586 struct type *replacement_type = nullptr;
16587 if (cu->per_cu->lang == language_ada)
16588 {
16589 replacement_type = quirk_ada_thick_pointer (die, cu, type);
16590 if (replacement_type != nullptr)
16591 type = replacement_type;
16592 }
16593
16594 /* Install the type in the die. */
16595 set_die_type (die, type, cu, replacement_type != nullptr);
16596
16597 /* set_die_type should be already done. */
16598 set_descriptive_type (type, die, cu);
16599
16600 return type;
16601 }
16602
16603 static enum dwarf_array_dim_ordering
16604 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16605 {
16606 struct attribute *attr;
16607
16608 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16609
16610 if (attr != nullptr)
16611 {
16612 LONGEST val = attr->constant_value (-1);
16613 if (val == DW_ORD_row_major || val == DW_ORD_col_major)
16614 return (enum dwarf_array_dim_ordering) val;
16615 }
16616
16617 /* GNU F77 is a special case, as at 08/2004 array type info is the
16618 opposite order to the dwarf2 specification, but data is still
16619 laid out as per normal fortran.
16620
16621 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16622 version checking. */
16623
16624 if (cu->per_cu->lang == language_fortran
16625 && cu->producer && strstr (cu->producer, "GNU F77"))
16626 {
16627 return DW_ORD_row_major;
16628 }
16629
16630 switch (cu->language_defn->array_ordering ())
16631 {
16632 case array_column_major:
16633 return DW_ORD_col_major;
16634 case array_row_major:
16635 default:
16636 return DW_ORD_row_major;
16637 };
16638 }
16639
16640 /* Extract all information from a DW_TAG_set_type DIE and put it in
16641 the DIE's type field. */
16642
16643 static struct type *
16644 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16645 {
16646 struct type *domain_type, *set_type;
16647 struct attribute *attr;
16648
16649 domain_type = die_type (die, cu);
16650
16651 /* The die_type call above may have already set the type for this DIE. */
16652 set_type = get_die_type (die, cu);
16653 if (set_type)
16654 return set_type;
16655
16656 set_type = create_set_type (NULL, domain_type);
16657
16658 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16659 if (attr != nullptr && attr->form_is_unsigned ())
16660 TYPE_LENGTH (set_type) = attr->as_unsigned ();
16661
16662 maybe_set_alignment (cu, die, set_type);
16663
16664 return set_die_type (die, set_type, cu);
16665 }
16666
16667 /* A helper for read_common_block that creates a locexpr baton.
16668 SYM is the symbol which we are marking as computed.
16669 COMMON_DIE is the DIE for the common block.
16670 COMMON_LOC is the location expression attribute for the common
16671 block itself.
16672 MEMBER_LOC is the location expression attribute for the particular
16673 member of the common block that we are processing.
16674 CU is the CU from which the above come. */
16675
16676 static void
16677 mark_common_block_symbol_computed (struct symbol *sym,
16678 struct die_info *common_die,
16679 struct attribute *common_loc,
16680 struct attribute *member_loc,
16681 struct dwarf2_cu *cu)
16682 {
16683 dwarf2_per_objfile *per_objfile = cu->per_objfile;
16684 struct objfile *objfile = per_objfile->objfile;
16685 struct dwarf2_locexpr_baton *baton;
16686 gdb_byte *ptr;
16687 unsigned int cu_off;
16688 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16689 LONGEST offset = 0;
16690
16691 gdb_assert (common_loc && member_loc);
16692 gdb_assert (common_loc->form_is_block ());
16693 gdb_assert (member_loc->form_is_block ()
16694 || member_loc->form_is_constant ());
16695
16696 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16697 baton->per_objfile = per_objfile;
16698 baton->per_cu = cu->per_cu;
16699 gdb_assert (baton->per_cu);
16700
16701 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16702
16703 if (member_loc->form_is_constant ())
16704 {
16705 offset = member_loc->constant_value (0);
16706 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16707 }
16708 else
16709 baton->size += member_loc->as_block ()->size;
16710
16711 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16712 baton->data = ptr;
16713
16714 *ptr++ = DW_OP_call4;
16715 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16716 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16717 ptr += 4;
16718
16719 if (member_loc->form_is_constant ())
16720 {
16721 *ptr++ = DW_OP_addr;
16722 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16723 ptr += cu->header.addr_size;
16724 }
16725 else
16726 {
16727 /* We have to copy the data here, because DW_OP_call4 will only
16728 use a DW_AT_location attribute. */
16729 struct dwarf_block *block = member_loc->as_block ();
16730 memcpy (ptr, block->data, block->size);
16731 ptr += block->size;
16732 }
16733
16734 *ptr++ = DW_OP_plus;
16735 gdb_assert (ptr - baton->data == baton->size);
16736
16737 SYMBOL_LOCATION_BATON (sym) = baton;
16738 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16739 }
16740
16741 /* Create appropriate locally-scoped variables for all the
16742 DW_TAG_common_block entries. Also create a struct common_block
16743 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16744 is used to separate the common blocks name namespace from regular
16745 variable names. */
16746
16747 static void
16748 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16749 {
16750 struct attribute *attr;
16751
16752 attr = dwarf2_attr (die, DW_AT_location, cu);
16753 if (attr != nullptr)
16754 {
16755 /* Support the .debug_loc offsets. */
16756 if (attr->form_is_block ())
16757 {
16758 /* Ok. */
16759 }
16760 else if (attr->form_is_section_offset ())
16761 {
16762 dwarf2_complex_location_expr_complaint ();
16763 attr = NULL;
16764 }
16765 else
16766 {
16767 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16768 "common block member");
16769 attr = NULL;
16770 }
16771 }
16772
16773 if (die->child != NULL)
16774 {
16775 struct objfile *objfile = cu->per_objfile->objfile;
16776 struct die_info *child_die;
16777 size_t n_entries = 0, size;
16778 struct common_block *common_block;
16779 struct symbol *sym;
16780
16781 for (child_die = die->child;
16782 child_die && child_die->tag;
16783 child_die = child_die->sibling)
16784 ++n_entries;
16785
16786 size = (sizeof (struct common_block)
16787 + (n_entries - 1) * sizeof (struct symbol *));
16788 common_block
16789 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16790 size);
16791 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16792 common_block->n_entries = 0;
16793
16794 for (child_die = die->child;
16795 child_die && child_die->tag;
16796 child_die = child_die->sibling)
16797 {
16798 /* Create the symbol in the DW_TAG_common_block block in the current
16799 symbol scope. */
16800 sym = new_symbol (child_die, NULL, cu);
16801 if (sym != NULL)
16802 {
16803 struct attribute *member_loc;
16804
16805 common_block->contents[common_block->n_entries++] = sym;
16806
16807 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16808 cu);
16809 if (member_loc)
16810 {
16811 /* GDB has handled this for a long time, but it is
16812 not specified by DWARF. It seems to have been
16813 emitted by gfortran at least as recently as:
16814 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16815 complaint (_("Variable in common block has "
16816 "DW_AT_data_member_location "
16817 "- DIE at %s [in module %s]"),
16818 sect_offset_str (child_die->sect_off),
16819 objfile_name (objfile));
16820
16821 if (member_loc->form_is_section_offset ())
16822 dwarf2_complex_location_expr_complaint ();
16823 else if (member_loc->form_is_constant ()
16824 || member_loc->form_is_block ())
16825 {
16826 if (attr != nullptr)
16827 mark_common_block_symbol_computed (sym, die, attr,
16828 member_loc, cu);
16829 }
16830 else
16831 dwarf2_complex_location_expr_complaint ();
16832 }
16833 }
16834 }
16835
16836 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16837 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16838 }
16839 }
16840
16841 /* Create a type for a C++ namespace. */
16842
16843 static struct type *
16844 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16845 {
16846 struct objfile *objfile = cu->per_objfile->objfile;
16847 const char *previous_prefix, *name;
16848 int is_anonymous;
16849 struct type *type;
16850
16851 /* For extensions, reuse the type of the original namespace. */
16852 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16853 {
16854 struct die_info *ext_die;
16855 struct dwarf2_cu *ext_cu = cu;
16856
16857 ext_die = dwarf2_extension (die, &ext_cu);
16858 type = read_type_die (ext_die, ext_cu);
16859
16860 /* EXT_CU may not be the same as CU.
16861 Ensure TYPE is recorded with CU in die_type_hash. */
16862 return set_die_type (die, type, cu);
16863 }
16864
16865 name = namespace_name (die, &is_anonymous, cu);
16866
16867 /* Now build the name of the current namespace. */
16868
16869 previous_prefix = determine_prefix (die, cu);
16870 if (previous_prefix[0] != '\0')
16871 name = typename_concat (&objfile->objfile_obstack,
16872 previous_prefix, name, 0, cu);
16873
16874 /* Create the type. */
16875 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16876
16877 return set_die_type (die, type, cu);
16878 }
16879
16880 /* Read a namespace scope. */
16881
16882 static void
16883 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16884 {
16885 struct objfile *objfile = cu->per_objfile->objfile;
16886 int is_anonymous;
16887
16888 /* Add a symbol associated to this if we haven't seen the namespace
16889 before. Also, add a using directive if it's an anonymous
16890 namespace. */
16891
16892 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16893 {
16894 struct type *type;
16895
16896 type = read_type_die (die, cu);
16897 new_symbol (die, type, cu);
16898
16899 namespace_name (die, &is_anonymous, cu);
16900 if (is_anonymous)
16901 {
16902 const char *previous_prefix = determine_prefix (die, cu);
16903
16904 std::vector<const char *> excludes;
16905 add_using_directive (using_directives (cu),
16906 previous_prefix, type->name (), NULL,
16907 NULL, excludes, 0, &objfile->objfile_obstack);
16908 }
16909 }
16910
16911 if (die->child != NULL)
16912 {
16913 struct die_info *child_die = die->child;
16914
16915 while (child_die && child_die->tag)
16916 {
16917 process_die (child_die, cu);
16918 child_die = child_die->sibling;
16919 }
16920 }
16921 }
16922
16923 /* Read a Fortran module as type. This DIE can be only a declaration used for
16924 imported module. Still we need that type as local Fortran "use ... only"
16925 declaration imports depend on the created type in determine_prefix. */
16926
16927 static struct type *
16928 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16929 {
16930 struct objfile *objfile = cu->per_objfile->objfile;
16931 const char *module_name;
16932 struct type *type;
16933
16934 module_name = dwarf2_name (die, cu);
16935 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16936
16937 return set_die_type (die, type, cu);
16938 }
16939
16940 /* Read a Fortran module. */
16941
16942 static void
16943 read_module (struct die_info *die, struct dwarf2_cu *cu)
16944 {
16945 struct die_info *child_die = die->child;
16946 struct type *type;
16947
16948 type = read_type_die (die, cu);
16949 new_symbol (die, type, cu);
16950
16951 while (child_die && child_die->tag)
16952 {
16953 process_die (child_die, cu);
16954 child_die = child_die->sibling;
16955 }
16956 }
16957
16958 /* Return the name of the namespace represented by DIE. Set
16959 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16960 namespace. */
16961
16962 static const char *
16963 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16964 {
16965 struct die_info *current_die;
16966 const char *name = NULL;
16967
16968 /* Loop through the extensions until we find a name. */
16969
16970 for (current_die = die;
16971 current_die != NULL;
16972 current_die = dwarf2_extension (die, &cu))
16973 {
16974 /* We don't use dwarf2_name here so that we can detect the absence
16975 of a name -> anonymous namespace. */
16976 name = dwarf2_string_attr (die, DW_AT_name, cu);
16977
16978 if (name != NULL)
16979 break;
16980 }
16981
16982 /* Is it an anonymous namespace? */
16983
16984 *is_anonymous = (name == NULL);
16985 if (*is_anonymous)
16986 name = CP_ANONYMOUS_NAMESPACE_STR;
16987
16988 return name;
16989 }
16990
16991 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16992 the user defined type vector. */
16993
16994 static struct type *
16995 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16996 {
16997 struct gdbarch *gdbarch = cu->per_objfile->objfile->arch ();
16998 struct comp_unit_head *cu_header = &cu->header;
16999 struct type *type;
17000 struct attribute *attr_byte_size;
17001 struct attribute *attr_address_class;
17002 int byte_size, addr_class;
17003 struct type *target_type;
17004
17005 target_type = die_type (die, cu);
17006
17007 /* The die_type call above may have already set the type for this DIE. */
17008 type = get_die_type (die, cu);
17009 if (type)
17010 return type;
17011
17012 type = lookup_pointer_type (target_type);
17013
17014 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17015 if (attr_byte_size)
17016 byte_size = attr_byte_size->constant_value (cu_header->addr_size);
17017 else
17018 byte_size = cu_header->addr_size;
17019
17020 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17021 if (attr_address_class)
17022 addr_class = attr_address_class->constant_value (DW_ADDR_none);
17023 else
17024 addr_class = DW_ADDR_none;
17025
17026 ULONGEST alignment = get_alignment (cu, die);
17027
17028 /* If the pointer size, alignment, or address class is different
17029 than the default, create a type variant marked as such and set
17030 the length accordingly. */
17031 if (TYPE_LENGTH (type) != byte_size
17032 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17033 && alignment != TYPE_RAW_ALIGN (type))
17034 || addr_class != DW_ADDR_none)
17035 {
17036 if (gdbarch_address_class_type_flags_p (gdbarch))
17037 {
17038 type_instance_flags type_flags
17039 = gdbarch_address_class_type_flags (gdbarch, byte_size,
17040 addr_class);
17041 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17042 == 0);
17043 type = make_type_with_address_space (type, type_flags);
17044 }
17045 else if (TYPE_LENGTH (type) != byte_size)
17046 {
17047 complaint (_("invalid pointer size %d"), byte_size);
17048 }
17049 else if (TYPE_RAW_ALIGN (type) != alignment)
17050 {
17051 complaint (_("Invalid DW_AT_alignment"
17052 " - DIE at %s [in module %s]"),
17053 sect_offset_str (die->sect_off),
17054 objfile_name (cu->per_objfile->objfile));
17055 }
17056 else
17057 {
17058 /* Should we also complain about unhandled address classes? */
17059 }
17060 }
17061
17062 TYPE_LENGTH (type) = byte_size;
17063 set_type_align (type, alignment);
17064 return set_die_type (die, type, cu);
17065 }
17066
17067 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17068 the user defined type vector. */
17069
17070 static struct type *
17071 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17072 {
17073 struct type *type;
17074 struct type *to_type;
17075 struct type *domain;
17076
17077 to_type = die_type (die, cu);
17078 domain = die_containing_type (die, cu);
17079
17080 /* The calls above may have already set the type for this DIE. */
17081 type = get_die_type (die, cu);
17082 if (type)
17083 return type;
17084
17085 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
17086 type = lookup_methodptr_type (to_type);
17087 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
17088 {
17089 struct type *new_type = alloc_type (cu->per_objfile->objfile);
17090
17091 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17092 to_type->fields (), to_type->num_fields (),
17093 to_type->has_varargs ());
17094 type = lookup_methodptr_type (new_type);
17095 }
17096 else
17097 type = lookup_memberptr_type (to_type, domain);
17098
17099 return set_die_type (die, type, cu);
17100 }
17101
17102 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17103 the user defined type vector. */
17104
17105 static struct type *
17106 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17107 enum type_code refcode)
17108 {
17109 struct comp_unit_head *cu_header = &cu->header;
17110 struct type *type, *target_type;
17111 struct attribute *attr;
17112
17113 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17114
17115 target_type = die_type (die, cu);
17116
17117 /* The die_type call above may have already set the type for this DIE. */
17118 type = get_die_type (die, cu);
17119 if (type)
17120 return type;
17121
17122 type = lookup_reference_type (target_type, refcode);
17123 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17124 if (attr != nullptr)
17125 {
17126 TYPE_LENGTH (type) = attr->constant_value (cu_header->addr_size);
17127 }
17128 else
17129 {
17130 TYPE_LENGTH (type) = cu_header->addr_size;
17131 }
17132 maybe_set_alignment (cu, die, type);
17133 return set_die_type (die, type, cu);
17134 }
17135
17136 /* Add the given cv-qualifiers to the element type of the array. GCC
17137 outputs DWARF type qualifiers that apply to an array, not the
17138 element type. But GDB relies on the array element type to carry
17139 the cv-qualifiers. This mimics section 6.7.3 of the C99
17140 specification. */
17141
17142 static struct type *
17143 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17144 struct type *base_type, int cnst, int voltl)
17145 {
17146 struct type *el_type, *inner_array;
17147
17148 base_type = copy_type (base_type);
17149 inner_array = base_type;
17150
17151 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
17152 {
17153 TYPE_TARGET_TYPE (inner_array) =
17154 copy_type (TYPE_TARGET_TYPE (inner_array));
17155 inner_array = TYPE_TARGET_TYPE (inner_array);
17156 }
17157
17158 el_type = TYPE_TARGET_TYPE (inner_array);
17159 cnst |= TYPE_CONST (el_type);
17160 voltl |= TYPE_VOLATILE (el_type);
17161 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17162
17163 return set_die_type (die, base_type, cu);
17164 }
17165
17166 static struct type *
17167 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17168 {
17169 struct type *base_type, *cv_type;
17170
17171 base_type = die_type (die, cu);
17172
17173 /* The die_type call above may have already set the type for this DIE. */
17174 cv_type = get_die_type (die, cu);
17175 if (cv_type)
17176 return cv_type;
17177
17178 /* In case the const qualifier is applied to an array type, the element type
17179 is so qualified, not the array type (section 6.7.3 of C99). */
17180 if (base_type->code () == TYPE_CODE_ARRAY)
17181 return add_array_cv_type (die, cu, base_type, 1, 0);
17182
17183 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17184 return set_die_type (die, cv_type, cu);
17185 }
17186
17187 static struct type *
17188 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17189 {
17190 struct type *base_type, *cv_type;
17191
17192 base_type = die_type (die, cu);
17193
17194 /* The die_type call above may have already set the type for this DIE. */
17195 cv_type = get_die_type (die, cu);
17196 if (cv_type)
17197 return cv_type;
17198
17199 /* In case the volatile qualifier is applied to an array type, the
17200 element type is so qualified, not the array type (section 6.7.3
17201 of C99). */
17202 if (base_type->code () == TYPE_CODE_ARRAY)
17203 return add_array_cv_type (die, cu, base_type, 0, 1);
17204
17205 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17206 return set_die_type (die, cv_type, cu);
17207 }
17208
17209 /* Handle DW_TAG_restrict_type. */
17210
17211 static struct type *
17212 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17213 {
17214 struct type *base_type, *cv_type;
17215
17216 base_type = die_type (die, cu);
17217
17218 /* The die_type call above may have already set the type for this DIE. */
17219 cv_type = get_die_type (die, cu);
17220 if (cv_type)
17221 return cv_type;
17222
17223 cv_type = make_restrict_type (base_type);
17224 return set_die_type (die, cv_type, cu);
17225 }
17226
17227 /* Handle DW_TAG_atomic_type. */
17228
17229 static struct type *
17230 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17231 {
17232 struct type *base_type, *cv_type;
17233
17234 base_type = die_type (die, cu);
17235
17236 /* The die_type call above may have already set the type for this DIE. */
17237 cv_type = get_die_type (die, cu);
17238 if (cv_type)
17239 return cv_type;
17240
17241 cv_type = make_atomic_type (base_type);
17242 return set_die_type (die, cv_type, cu);
17243 }
17244
17245 /* Extract all information from a DW_TAG_string_type DIE and add to
17246 the user defined type vector. It isn't really a user defined type,
17247 but it behaves like one, with other DIE's using an AT_user_def_type
17248 attribute to reference it. */
17249
17250 static struct type *
17251 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17252 {
17253 struct objfile *objfile = cu->per_objfile->objfile;
17254 struct gdbarch *gdbarch = objfile->arch ();
17255 struct type *type, *range_type, *index_type, *char_type;
17256 struct attribute *attr;
17257 struct dynamic_prop prop;
17258 bool length_is_constant = true;
17259 LONGEST length;
17260
17261 /* There are a couple of places where bit sizes might be made use of
17262 when parsing a DW_TAG_string_type, however, no producer that we know
17263 of make use of these. Handling bit sizes that are a multiple of the
17264 byte size is easy enough, but what about other bit sizes? Lets deal
17265 with that problem when we have to. Warn about these attributes being
17266 unsupported, then parse the type and ignore them like we always
17267 have. */
17268 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17269 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17270 {
17271 static bool warning_printed = false;
17272 if (!warning_printed)
17273 {
17274 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17275 "currently supported on DW_TAG_string_type."));
17276 warning_printed = true;
17277 }
17278 }
17279
17280 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17281 if (attr != nullptr && !attr->form_is_constant ())
17282 {
17283 /* The string length describes the location at which the length of
17284 the string can be found. The size of the length field can be
17285 specified with one of the attributes below. */
17286 struct type *prop_type;
17287 struct attribute *len
17288 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17289 if (len == nullptr)
17290 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17291 if (len != nullptr && len->form_is_constant ())
17292 {
17293 /* Pass 0 as the default as we know this attribute is constant
17294 and the default value will not be returned. */
17295 LONGEST sz = len->constant_value (0);
17296 prop_type = cu->per_objfile->int_type (sz, true);
17297 }
17298 else
17299 {
17300 /* If the size is not specified then we assume it is the size of
17301 an address on this target. */
17302 prop_type = cu->addr_sized_int_type (true);
17303 }
17304
17305 /* Convert the attribute into a dynamic property. */
17306 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17307 length = 1;
17308 else
17309 length_is_constant = false;
17310 }
17311 else if (attr != nullptr)
17312 {
17313 /* This DW_AT_string_length just contains the length with no
17314 indirection. There's no need to create a dynamic property in this
17315 case. Pass 0 for the default value as we know it will not be
17316 returned in this case. */
17317 length = attr->constant_value (0);
17318 }
17319 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17320 {
17321 /* We don't currently support non-constant byte sizes for strings. */
17322 length = attr->constant_value (1);
17323 }
17324 else
17325 {
17326 /* Use 1 as a fallback length if we have nothing else. */
17327 length = 1;
17328 }
17329
17330 index_type = objfile_type (objfile)->builtin_int;
17331 if (length_is_constant)
17332 range_type = create_static_range_type (NULL, index_type, 1, length);
17333 else
17334 {
17335 struct dynamic_prop low_bound;
17336
17337 low_bound.set_const_val (1);
17338 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17339 }
17340 char_type = language_string_char_type (cu->language_defn, gdbarch);
17341 type = create_string_type (NULL, char_type, range_type);
17342
17343 return set_die_type (die, type, cu);
17344 }
17345
17346 /* Assuming that DIE corresponds to a function, returns nonzero
17347 if the function is prototyped. */
17348
17349 static int
17350 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17351 {
17352 struct attribute *attr;
17353
17354 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17355 if (attr && attr->as_boolean ())
17356 return 1;
17357
17358 /* The DWARF standard implies that the DW_AT_prototyped attribute
17359 is only meaningful for C, but the concept also extends to other
17360 languages that allow unprototyped functions (Eg: Objective C).
17361 For all other languages, assume that functions are always
17362 prototyped. */
17363 if (cu->per_cu->lang != language_c
17364 && cu->per_cu->lang != language_objc
17365 && cu->per_cu->lang != language_opencl)
17366 return 1;
17367
17368 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17369 prototyped and unprototyped functions; default to prototyped,
17370 since that is more common in modern code (and RealView warns
17371 about unprototyped functions). */
17372 if (producer_is_realview (cu->producer))
17373 return 1;
17374
17375 return 0;
17376 }
17377
17378 /* Handle DIES due to C code like:
17379
17380 struct foo
17381 {
17382 int (*funcp)(int a, long l);
17383 int b;
17384 };
17385
17386 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17387
17388 static struct type *
17389 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17390 {
17391 struct objfile *objfile = cu->per_objfile->objfile;
17392 struct type *type; /* Type that this function returns. */
17393 struct type *ftype; /* Function that returns above type. */
17394 struct attribute *attr;
17395
17396 type = die_type (die, cu);
17397
17398 /* The die_type call above may have already set the type for this DIE. */
17399 ftype = get_die_type (die, cu);
17400 if (ftype)
17401 return ftype;
17402
17403 ftype = lookup_function_type (type);
17404
17405 if (prototyped_function_p (die, cu))
17406 ftype->set_is_prototyped (true);
17407
17408 /* Store the calling convention in the type if it's available in
17409 the subroutine die. Otherwise set the calling convention to
17410 the default value DW_CC_normal. */
17411 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17412 if (attr != nullptr
17413 && is_valid_DW_AT_calling_convention_for_subroutine (attr->constant_value (0)))
17414 TYPE_CALLING_CONVENTION (ftype)
17415 = (enum dwarf_calling_convention) attr->constant_value (0);
17416 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17417 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17418 else
17419 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17420
17421 /* Record whether the function returns normally to its caller or not
17422 if the DWARF producer set that information. */
17423 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17424 if (attr && attr->as_boolean ())
17425 TYPE_NO_RETURN (ftype) = 1;
17426
17427 /* We need to add the subroutine type to the die immediately so
17428 we don't infinitely recurse when dealing with parameters
17429 declared as the same subroutine type. */
17430 set_die_type (die, ftype, cu);
17431
17432 if (die->child != NULL)
17433 {
17434 struct type *void_type = objfile_type (objfile)->builtin_void;
17435 struct die_info *child_die;
17436 int nparams, iparams;
17437
17438 /* Count the number of parameters.
17439 FIXME: GDB currently ignores vararg functions, but knows about
17440 vararg member functions. */
17441 nparams = 0;
17442 child_die = die->child;
17443 while (child_die && child_die->tag)
17444 {
17445 if (child_die->tag == DW_TAG_formal_parameter)
17446 nparams++;
17447 else if (child_die->tag == DW_TAG_unspecified_parameters)
17448 ftype->set_has_varargs (true);
17449
17450 child_die = child_die->sibling;
17451 }
17452
17453 /* Allocate storage for parameters and fill them in. */
17454 ftype->set_num_fields (nparams);
17455 ftype->set_fields
17456 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17457
17458 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17459 even if we error out during the parameters reading below. */
17460 for (iparams = 0; iparams < nparams; iparams++)
17461 ftype->field (iparams).set_type (void_type);
17462
17463 iparams = 0;
17464 child_die = die->child;
17465 while (child_die && child_die->tag)
17466 {
17467 if (child_die->tag == DW_TAG_formal_parameter)
17468 {
17469 struct type *arg_type;
17470
17471 /* DWARF version 2 has no clean way to discern C++
17472 static and non-static member functions. G++ helps
17473 GDB by marking the first parameter for non-static
17474 member functions (which is the this pointer) as
17475 artificial. We pass this information to
17476 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17477
17478 DWARF version 3 added DW_AT_object_pointer, which GCC
17479 4.5 does not yet generate. */
17480 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17481 if (attr != nullptr)
17482 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = attr->as_boolean ();
17483 else
17484 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17485 arg_type = die_type (child_die, cu);
17486
17487 /* RealView does not mark THIS as const, which the testsuite
17488 expects. GCC marks THIS as const in method definitions,
17489 but not in the class specifications (GCC PR 43053). */
17490 if (cu->per_cu->lang == language_cplus
17491 && !TYPE_CONST (arg_type)
17492 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17493 {
17494 int is_this = 0;
17495 struct dwarf2_cu *arg_cu = cu;
17496 const char *name = dwarf2_name (child_die, cu);
17497
17498 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17499 if (attr != nullptr)
17500 {
17501 /* If the compiler emits this, use it. */
17502 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17503 is_this = 1;
17504 }
17505 else if (name && strcmp (name, "this") == 0)
17506 /* Function definitions will have the argument names. */
17507 is_this = 1;
17508 else if (name == NULL && iparams == 0)
17509 /* Declarations may not have the names, so like
17510 elsewhere in GDB, assume an artificial first
17511 argument is "this". */
17512 is_this = 1;
17513
17514 if (is_this)
17515 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17516 arg_type, 0);
17517 }
17518
17519 ftype->field (iparams).set_type (arg_type);
17520 iparams++;
17521 }
17522 child_die = child_die->sibling;
17523 }
17524 }
17525
17526 return ftype;
17527 }
17528
17529 static struct type *
17530 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17531 {
17532 struct objfile *objfile = cu->per_objfile->objfile;
17533 const char *name = NULL;
17534 struct type *this_type, *target_type;
17535
17536 name = dwarf2_full_name (NULL, die, cu);
17537 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17538 this_type->set_target_is_stub (true);
17539 set_die_type (die, this_type, cu);
17540 target_type = die_type (die, cu);
17541 if (target_type != this_type)
17542 TYPE_TARGET_TYPE (this_type) = target_type;
17543 else
17544 {
17545 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17546 spec and cause infinite loops in GDB. */
17547 complaint (_("Self-referential DW_TAG_typedef "
17548 "- DIE at %s [in module %s]"),
17549 sect_offset_str (die->sect_off), objfile_name (objfile));
17550 TYPE_TARGET_TYPE (this_type) = NULL;
17551 }
17552 if (name == NULL)
17553 {
17554 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17555 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17556 Handle these by just returning the target type, rather than
17557 constructing an anonymous typedef type and trying to handle this
17558 elsewhere. */
17559 set_die_type (die, target_type, cu);
17560 return target_type;
17561 }
17562 return this_type;
17563 }
17564
17565 /* Helper for get_dwarf2_rational_constant that computes the value of
17566 a given gmp_mpz given an attribute. */
17567
17568 static void
17569 get_mpz (struct dwarf2_cu *cu, gdb_mpz *value, struct attribute *attr)
17570 {
17571 /* GCC will sometimes emit a 16-byte constant value as a DWARF
17572 location expression that pushes an implicit value. */
17573 if (attr->form == DW_FORM_exprloc)
17574 {
17575 dwarf_block *blk = attr->as_block ();
17576 if (blk->size > 0 && blk->data[0] == DW_OP_implicit_value)
17577 {
17578 uint64_t len;
17579 const gdb_byte *ptr = safe_read_uleb128 (blk->data + 1,
17580 blk->data + blk->size,
17581 &len);
17582 if (ptr - blk->data + len <= blk->size)
17583 {
17584 mpz_import (value->val, len,
17585 bfd_big_endian (cu->per_objfile->objfile->obfd) ? 1 : -1,
17586 1, 0, 0, ptr);
17587 return;
17588 }
17589 }
17590
17591 /* On failure set it to 1. */
17592 *value = gdb_mpz (1);
17593 }
17594 else if (attr->form_is_block ())
17595 {
17596 dwarf_block *blk = attr->as_block ();
17597 mpz_import (value->val, blk->size,
17598 bfd_big_endian (cu->per_objfile->objfile->obfd) ? 1 : -1,
17599 1, 0, 0, blk->data);
17600 }
17601 else
17602 *value = gdb_mpz (attr->constant_value (1));
17603 }
17604
17605 /* Assuming DIE is a rational DW_TAG_constant, read the DIE's
17606 numerator and denominator into NUMERATOR and DENOMINATOR (resp).
17607
17608 If the numerator and/or numerator attribute is missing,
17609 a complaint is filed, and NUMERATOR and DENOMINATOR are left
17610 untouched. */
17611
17612 static void
17613 get_dwarf2_rational_constant (struct die_info *die, struct dwarf2_cu *cu,
17614 gdb_mpz *numerator, gdb_mpz *denominator)
17615 {
17616 struct attribute *num_attr, *denom_attr;
17617
17618 num_attr = dwarf2_attr (die, DW_AT_GNU_numerator, cu);
17619 if (num_attr == nullptr)
17620 complaint (_("DW_AT_GNU_numerator missing in %s DIE at %s"),
17621 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17622
17623 denom_attr = dwarf2_attr (die, DW_AT_GNU_denominator, cu);
17624 if (denom_attr == nullptr)
17625 complaint (_("DW_AT_GNU_denominator missing in %s DIE at %s"),
17626 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17627
17628 if (num_attr == nullptr || denom_attr == nullptr)
17629 return;
17630
17631 get_mpz (cu, numerator, num_attr);
17632 get_mpz (cu, denominator, denom_attr);
17633 }
17634
17635 /* Same as get_dwarf2_rational_constant, but extracting an unsigned
17636 rational constant, rather than a signed one.
17637
17638 If the rational constant has a negative value, a complaint
17639 is filed, and NUMERATOR and DENOMINATOR are left untouched. */
17640
17641 static void
17642 get_dwarf2_unsigned_rational_constant (struct die_info *die,
17643 struct dwarf2_cu *cu,
17644 gdb_mpz *numerator,
17645 gdb_mpz *denominator)
17646 {
17647 gdb_mpz num (1);
17648 gdb_mpz denom (1);
17649
17650 get_dwarf2_rational_constant (die, cu, &num, &denom);
17651 if (mpz_sgn (num.val) == -1 && mpz_sgn (denom.val) == -1)
17652 {
17653 mpz_neg (num.val, num.val);
17654 mpz_neg (denom.val, denom.val);
17655 }
17656 else if (mpz_sgn (num.val) == -1)
17657 {
17658 complaint (_("unexpected negative value for DW_AT_GNU_numerator"
17659 " in DIE at %s"),
17660 sect_offset_str (die->sect_off));
17661 return;
17662 }
17663 else if (mpz_sgn (denom.val) == -1)
17664 {
17665 complaint (_("unexpected negative value for DW_AT_GNU_denominator"
17666 " in DIE at %s"),
17667 sect_offset_str (die->sect_off));
17668 return;
17669 }
17670
17671 *numerator = std::move (num);
17672 *denominator = std::move (denom);
17673 }
17674
17675 /* Assuming that ENCODING is a string whose contents starting at the
17676 K'th character is "_nn" where "nn" is a decimal number, scan that
17677 number and set RESULT to the value. K is updated to point to the
17678 character immediately following the number.
17679
17680 If the string does not conform to the format described above, false
17681 is returned, and K may or may not be changed. */
17682
17683 static bool
17684 ada_get_gnat_encoded_number (const char *encoding, int &k, gdb_mpz *result)
17685 {
17686 /* The next character should be an underscore ('_') followed
17687 by a digit. */
17688 if (encoding[k] != '_' || !isdigit (encoding[k + 1]))
17689 return false;
17690
17691 /* Skip the underscore. */
17692 k++;
17693 int start = k;
17694
17695 /* Determine the number of digits for our number. */
17696 while (isdigit (encoding[k]))
17697 k++;
17698 if (k == start)
17699 return false;
17700
17701 std::string copy (&encoding[start], k - start);
17702 if (mpz_set_str (result->val, copy.c_str (), 10) == -1)
17703 return false;
17704
17705 return true;
17706 }
17707
17708 /* Scan two numbers from ENCODING at OFFSET, assuming the string is of
17709 the form _NN_DD, where NN and DD are decimal numbers. Set NUM and
17710 DENOM, update OFFSET, and return true on success. Return false on
17711 failure. */
17712
17713 static bool
17714 ada_get_gnat_encoded_ratio (const char *encoding, int &offset,
17715 gdb_mpz *num, gdb_mpz *denom)
17716 {
17717 if (!ada_get_gnat_encoded_number (encoding, offset, num))
17718 return false;
17719 return ada_get_gnat_encoded_number (encoding, offset, denom);
17720 }
17721
17722 /* Assuming DIE corresponds to a fixed point type, finish the creation
17723 of the corresponding TYPE by setting its type-specific data. CU is
17724 the DIE's CU. SUFFIX is the "XF" type name suffix coming from GNAT
17725 encodings. It is nullptr if the GNAT encoding should be
17726 ignored. */
17727
17728 static void
17729 finish_fixed_point_type (struct type *type, const char *suffix,
17730 struct die_info *die, struct dwarf2_cu *cu)
17731 {
17732 gdb_assert (type->code () == TYPE_CODE_FIXED_POINT
17733 && TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FIXED_POINT);
17734
17735 /* If GNAT encodings are preferred, don't examine the
17736 attributes. */
17737 struct attribute *attr = nullptr;
17738 if (suffix == nullptr)
17739 {
17740 attr = dwarf2_attr (die, DW_AT_binary_scale, cu);
17741 if (attr == nullptr)
17742 attr = dwarf2_attr (die, DW_AT_decimal_scale, cu);
17743 if (attr == nullptr)
17744 attr = dwarf2_attr (die, DW_AT_small, cu);
17745 }
17746
17747 /* Numerator and denominator of our fixed-point type's scaling factor.
17748 The default is a scaling factor of 1, which we use as a fallback
17749 when we are not able to decode it (problem with the debugging info,
17750 unsupported forms, bug in GDB, etc...). Using that as the default
17751 allows us to at least print the unscaled value, which might still
17752 be useful to a user. */
17753 gdb_mpz scale_num (1);
17754 gdb_mpz scale_denom (1);
17755
17756 if (attr == nullptr)
17757 {
17758 int offset = 0;
17759 if (suffix != nullptr
17760 && ada_get_gnat_encoded_ratio (suffix, offset, &scale_num,
17761 &scale_denom)
17762 /* The number might be encoded as _nn_dd_nn_dd, where the
17763 second ratio is the 'small value. In this situation, we
17764 want the second value. */
17765 && (suffix[offset] != '_'
17766 || ada_get_gnat_encoded_ratio (suffix, offset, &scale_num,
17767 &scale_denom)))
17768 {
17769 /* Found it. */
17770 }
17771 else
17772 {
17773 /* Scaling factor not found. Assume a scaling factor of 1,
17774 and hope for the best. At least the user will be able to
17775 see the encoded value. */
17776 scale_num = 1;
17777 scale_denom = 1;
17778 complaint (_("no scale found for fixed-point type (DIE at %s)"),
17779 sect_offset_str (die->sect_off));
17780 }
17781 }
17782 else if (attr->name == DW_AT_binary_scale)
17783 {
17784 LONGEST scale_exp = attr->constant_value (0);
17785 gdb_mpz *num_or_denom = scale_exp > 0 ? &scale_num : &scale_denom;
17786
17787 mpz_mul_2exp (num_or_denom->val, num_or_denom->val, std::abs (scale_exp));
17788 }
17789 else if (attr->name == DW_AT_decimal_scale)
17790 {
17791 LONGEST scale_exp = attr->constant_value (0);
17792 gdb_mpz *num_or_denom = scale_exp > 0 ? &scale_num : &scale_denom;
17793
17794 mpz_ui_pow_ui (num_or_denom->val, 10, std::abs (scale_exp));
17795 }
17796 else if (attr->name == DW_AT_small)
17797 {
17798 struct die_info *scale_die;
17799 struct dwarf2_cu *scale_cu = cu;
17800
17801 scale_die = follow_die_ref (die, attr, &scale_cu);
17802 if (scale_die->tag == DW_TAG_constant)
17803 get_dwarf2_unsigned_rational_constant (scale_die, scale_cu,
17804 &scale_num, &scale_denom);
17805 else
17806 complaint (_("%s DIE not supported as target of DW_AT_small attribute"
17807 " (DIE at %s)"),
17808 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17809 }
17810 else
17811 {
17812 complaint (_("unsupported scale attribute %s for fixed-point type"
17813 " (DIE at %s)"),
17814 dwarf_attr_name (attr->name),
17815 sect_offset_str (die->sect_off));
17816 }
17817
17818 gdb_mpq &scaling_factor = type->fixed_point_info ().scaling_factor;
17819 mpz_set (mpq_numref (scaling_factor.val), scale_num.val);
17820 mpz_set (mpq_denref (scaling_factor.val), scale_denom.val);
17821 mpq_canonicalize (scaling_factor.val);
17822 }
17823
17824 /* The gnat-encoding suffix for fixed point. */
17825
17826 #define GNAT_FIXED_POINT_SUFFIX "___XF_"
17827
17828 /* If NAME encodes an Ada fixed-point type, return a pointer to the
17829 "XF" suffix of the name. The text after this is what encodes the
17830 'small and 'delta information. Otherwise, return nullptr. */
17831
17832 static const char *
17833 gnat_encoded_fixed_point_type_info (const char *name)
17834 {
17835 return strstr (name, GNAT_FIXED_POINT_SUFFIX);
17836 }
17837
17838 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17839 (which may be different from NAME) to the architecture back-end to allow
17840 it to guess the correct format if necessary. */
17841
17842 static struct type *
17843 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17844 const char *name_hint, enum bfd_endian byte_order)
17845 {
17846 struct gdbarch *gdbarch = objfile->arch ();
17847 const struct floatformat **format;
17848 struct type *type;
17849
17850 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17851 if (format)
17852 type = init_float_type (objfile, bits, name, format, byte_order);
17853 else
17854 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17855
17856 return type;
17857 }
17858
17859 /* Allocate an integer type of size BITS and name NAME. */
17860
17861 static struct type *
17862 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17863 int bits, int unsigned_p, const char *name)
17864 {
17865 struct type *type;
17866
17867 /* Versions of Intel's C Compiler generate an integer type called "void"
17868 instead of using DW_TAG_unspecified_type. This has been seen on
17869 at least versions 14, 17, and 18. */
17870 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17871 && strcmp (name, "void") == 0)
17872 type = objfile_type (objfile)->builtin_void;
17873 else
17874 type = init_integer_type (objfile, bits, unsigned_p, name);
17875
17876 return type;
17877 }
17878
17879 /* Return true if DIE has a DW_AT_small attribute whose value is
17880 a constant rational, where both the numerator and denominator
17881 are equal to zero.
17882
17883 CU is the DIE's Compilation Unit. */
17884
17885 static bool
17886 has_zero_over_zero_small_attribute (struct die_info *die,
17887 struct dwarf2_cu *cu)
17888 {
17889 struct attribute *attr = dwarf2_attr (die, DW_AT_small, cu);
17890 if (attr == nullptr)
17891 return false;
17892
17893 struct dwarf2_cu *scale_cu = cu;
17894 struct die_info *scale_die
17895 = follow_die_ref (die, attr, &scale_cu);
17896
17897 if (scale_die->tag != DW_TAG_constant)
17898 return false;
17899
17900 gdb_mpz num (1), denom (1);
17901 get_dwarf2_rational_constant (scale_die, cu, &num, &denom);
17902 return mpz_sgn (num.val) == 0 && mpz_sgn (denom.val) == 0;
17903 }
17904
17905 /* Initialise and return a floating point type of size BITS suitable for
17906 use as a component of a complex number. The NAME_HINT is passed through
17907 when initialising the floating point type and is the name of the complex
17908 type.
17909
17910 As DWARF doesn't currently provide an explicit name for the components
17911 of a complex number, but it can be helpful to have these components
17912 named, we try to select a suitable name based on the size of the
17913 component. */
17914 static struct type *
17915 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17916 struct objfile *objfile,
17917 int bits, const char *name_hint,
17918 enum bfd_endian byte_order)
17919 {
17920 gdbarch *gdbarch = objfile->arch ();
17921 struct type *tt = nullptr;
17922
17923 /* Try to find a suitable floating point builtin type of size BITS.
17924 We're going to use the name of this type as the name for the complex
17925 target type that we are about to create. */
17926 switch (cu->per_cu->lang)
17927 {
17928 case language_fortran:
17929 switch (bits)
17930 {
17931 case 32:
17932 tt = builtin_f_type (gdbarch)->builtin_real;
17933 break;
17934 case 64:
17935 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17936 break;
17937 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17938 case 128:
17939 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17940 break;
17941 }
17942 break;
17943 default:
17944 switch (bits)
17945 {
17946 case 32:
17947 tt = builtin_type (gdbarch)->builtin_float;
17948 break;
17949 case 64:
17950 tt = builtin_type (gdbarch)->builtin_double;
17951 break;
17952 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17953 case 128:
17954 tt = builtin_type (gdbarch)->builtin_long_double;
17955 break;
17956 }
17957 break;
17958 }
17959
17960 /* If the type we found doesn't match the size we were looking for, then
17961 pretend we didn't find a type at all, the complex target type we
17962 create will then be nameless. */
17963 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17964 tt = nullptr;
17965
17966 const char *name = (tt == nullptr) ? nullptr : tt->name ();
17967 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17968 }
17969
17970 /* Find a representation of a given base type and install
17971 it in the TYPE field of the die. */
17972
17973 static struct type *
17974 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17975 {
17976 struct objfile *objfile = cu->per_objfile->objfile;
17977 struct type *type;
17978 struct attribute *attr;
17979 int encoding = 0, bits = 0;
17980 const char *name;
17981 gdbarch *arch;
17982
17983 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17984 if (attr != nullptr && attr->form_is_constant ())
17985 encoding = attr->constant_value (0);
17986 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17987 if (attr != nullptr)
17988 bits = attr->constant_value (0) * TARGET_CHAR_BIT;
17989 name = dwarf2_name (die, cu);
17990 if (!name)
17991 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17992
17993 arch = objfile->arch ();
17994 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17995
17996 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17997 if (attr != nullptr && attr->form_is_constant ())
17998 {
17999 int endianity = attr->constant_value (0);
18000
18001 switch (endianity)
18002 {
18003 case DW_END_big:
18004 byte_order = BFD_ENDIAN_BIG;
18005 break;
18006 case DW_END_little:
18007 byte_order = BFD_ENDIAN_LITTLE;
18008 break;
18009 default:
18010 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
18011 break;
18012 }
18013 }
18014
18015 if ((encoding == DW_ATE_signed_fixed || encoding == DW_ATE_unsigned_fixed)
18016 && cu->per_cu->lang == language_ada
18017 && has_zero_over_zero_small_attribute (die, cu))
18018 {
18019 /* brobecker/2018-02-24: This is a fixed point type for which
18020 the scaling factor is represented as fraction whose value
18021 does not make sense (zero divided by zero), so we should
18022 normally never see these. However, there is a small category
18023 of fixed point types for which GNAT is unable to provide
18024 the scaling factor via the standard DWARF mechanisms, and
18025 for which the info is provided via the GNAT encodings instead.
18026 This is likely what this DIE is about. */
18027 encoding = (encoding == DW_ATE_signed_fixed
18028 ? DW_ATE_signed
18029 : DW_ATE_unsigned);
18030 }
18031
18032 /* With GNAT encodings, fixed-point information will be encoded in
18033 the type name. Note that this can also occur with the above
18034 zero-over-zero case, which is why this is a separate "if" rather
18035 than an "else if". */
18036 const char *gnat_encoding_suffix = nullptr;
18037 if ((encoding == DW_ATE_signed || encoding == DW_ATE_unsigned)
18038 && cu->per_cu->lang == language_ada
18039 && name != nullptr)
18040 {
18041 gnat_encoding_suffix = gnat_encoded_fixed_point_type_info (name);
18042 if (gnat_encoding_suffix != nullptr)
18043 {
18044 gdb_assert (startswith (gnat_encoding_suffix,
18045 GNAT_FIXED_POINT_SUFFIX));
18046 name = obstack_strndup (&cu->per_objfile->objfile->objfile_obstack,
18047 name, gnat_encoding_suffix - name);
18048 /* Use -1 here so that SUFFIX points at the "_" after the
18049 "XF". */
18050 gnat_encoding_suffix += strlen (GNAT_FIXED_POINT_SUFFIX) - 1;
18051
18052 encoding = (encoding == DW_ATE_signed
18053 ? DW_ATE_signed_fixed
18054 : DW_ATE_unsigned_fixed);
18055 }
18056 }
18057
18058 switch (encoding)
18059 {
18060 case DW_ATE_address:
18061 /* Turn DW_ATE_address into a void * pointer. */
18062 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
18063 type = init_pointer_type (objfile, bits, name, type);
18064 break;
18065 case DW_ATE_boolean:
18066 type = init_boolean_type (objfile, bits, 1, name);
18067 break;
18068 case DW_ATE_complex_float:
18069 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
18070 byte_order);
18071 if (type->code () == TYPE_CODE_ERROR)
18072 {
18073 if (name == nullptr)
18074 {
18075 struct obstack *obstack
18076 = &cu->per_objfile->objfile->objfile_obstack;
18077 name = obconcat (obstack, "_Complex ", type->name (),
18078 nullptr);
18079 }
18080 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18081 }
18082 else
18083 type = init_complex_type (name, type);
18084 break;
18085 case DW_ATE_decimal_float:
18086 type = init_decfloat_type (objfile, bits, name);
18087 break;
18088 case DW_ATE_float:
18089 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
18090 break;
18091 case DW_ATE_signed:
18092 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18093 break;
18094 case DW_ATE_unsigned:
18095 if (cu->per_cu->lang == language_fortran
18096 && name
18097 && startswith (name, "character("))
18098 type = init_character_type (objfile, bits, 1, name);
18099 else
18100 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18101 break;
18102 case DW_ATE_signed_char:
18103 if (cu->per_cu->lang == language_ada
18104 || cu->per_cu->lang == language_m2
18105 || cu->per_cu->lang == language_pascal
18106 || cu->per_cu->lang == language_fortran)
18107 type = init_character_type (objfile, bits, 0, name);
18108 else
18109 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18110 break;
18111 case DW_ATE_unsigned_char:
18112 if (cu->per_cu->lang == language_ada
18113 || cu->per_cu->lang == language_m2
18114 || cu->per_cu->lang == language_pascal
18115 || cu->per_cu->lang == language_fortran
18116 || cu->per_cu->lang == language_rust)
18117 type = init_character_type (objfile, bits, 1, name);
18118 else
18119 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18120 break;
18121 case DW_ATE_UTF:
18122 {
18123 if (bits == 16)
18124 type = builtin_type (arch)->builtin_char16;
18125 else if (bits == 32)
18126 type = builtin_type (arch)->builtin_char32;
18127 else
18128 {
18129 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
18130 bits);
18131 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18132 }
18133 return set_die_type (die, type, cu);
18134 }
18135 break;
18136 case DW_ATE_signed_fixed:
18137 type = init_fixed_point_type (objfile, bits, 0, name);
18138 finish_fixed_point_type (type, gnat_encoding_suffix, die, cu);
18139 break;
18140 case DW_ATE_unsigned_fixed:
18141 type = init_fixed_point_type (objfile, bits, 1, name);
18142 finish_fixed_point_type (type, gnat_encoding_suffix, die, cu);
18143 break;
18144
18145 default:
18146 complaint (_("unsupported DW_AT_encoding: '%s'"),
18147 dwarf_type_encoding_name (encoding));
18148 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18149 break;
18150 }
18151
18152 if (name && strcmp (name, "char") == 0)
18153 type->set_has_no_signedness (true);
18154
18155 maybe_set_alignment (cu, die, type);
18156
18157 type->set_endianity_is_not_default (gdbarch_byte_order (arch) != byte_order);
18158
18159 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_INT)
18160 {
18161 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
18162 if (attr != nullptr && attr->as_unsigned () <= 8 * TYPE_LENGTH (type))
18163 {
18164 unsigned real_bit_size = attr->as_unsigned ();
18165 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
18166 /* Only use the attributes if they make sense together. */
18167 if (attr == nullptr
18168 || (attr->as_unsigned () + real_bit_size
18169 <= 8 * TYPE_LENGTH (type)))
18170 {
18171 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_size
18172 = real_bit_size;
18173 if (attr != nullptr)
18174 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_offset
18175 = attr->as_unsigned ();
18176 }
18177 }
18178 }
18179
18180 return set_die_type (die, type, cu);
18181 }
18182
18183 /* A helper function that returns the name of DIE, if it refers to a
18184 variable declaration. */
18185
18186 static const char *
18187 var_decl_name (struct die_info *die, struct dwarf2_cu *cu)
18188 {
18189 if (die->tag != DW_TAG_variable)
18190 return nullptr;
18191
18192 attribute *attr = dwarf2_attr (die, DW_AT_declaration, cu);
18193 if (attr == nullptr || !attr->as_boolean ())
18194 return nullptr;
18195
18196 attr = dwarf2_attr (die, DW_AT_name, cu);
18197 if (attr == nullptr)
18198 return nullptr;
18199 return attr->as_string ();
18200 }
18201
18202 /* Parse dwarf attribute if it's a block, reference or constant and put the
18203 resulting value of the attribute into struct bound_prop.
18204 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
18205
18206 static int
18207 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
18208 struct dwarf2_cu *cu, struct dynamic_prop *prop,
18209 struct type *default_type)
18210 {
18211 struct dwarf2_property_baton *baton;
18212 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18213 struct objfile *objfile = per_objfile->objfile;
18214 struct obstack *obstack = &objfile->objfile_obstack;
18215
18216 gdb_assert (default_type != NULL);
18217
18218 if (attr == NULL || prop == NULL)
18219 return 0;
18220
18221 if (attr->form_is_block ())
18222 {
18223 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18224 baton->property_type = default_type;
18225 baton->locexpr.per_cu = cu->per_cu;
18226 baton->locexpr.per_objfile = per_objfile;
18227
18228 struct dwarf_block *block;
18229 if (attr->form == DW_FORM_data16)
18230 {
18231 size_t data_size = 16;
18232 block = XOBNEW (obstack, struct dwarf_block);
18233 block->size = (data_size
18234 + 2 /* Extra bytes for DW_OP and arg. */);
18235 gdb_byte *data = XOBNEWVEC (obstack, gdb_byte, block->size);
18236 data[0] = DW_OP_implicit_value;
18237 data[1] = data_size;
18238 memcpy (&data[2], attr->as_block ()->data, data_size);
18239 block->data = data;
18240 }
18241 else
18242 block = attr->as_block ();
18243
18244 baton->locexpr.size = block->size;
18245 baton->locexpr.data = block->data;
18246 switch (attr->name)
18247 {
18248 case DW_AT_string_length:
18249 baton->locexpr.is_reference = true;
18250 break;
18251 default:
18252 baton->locexpr.is_reference = false;
18253 break;
18254 }
18255
18256 prop->set_locexpr (baton);
18257 gdb_assert (prop->baton () != NULL);
18258 }
18259 else if (attr->form_is_ref ())
18260 {
18261 struct dwarf2_cu *target_cu = cu;
18262 struct die_info *target_die;
18263 struct attribute *target_attr;
18264
18265 target_die = follow_die_ref (die, attr, &target_cu);
18266 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
18267 if (target_attr == NULL)
18268 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
18269 target_cu);
18270 if (target_attr == NULL)
18271 {
18272 const char *name = var_decl_name (target_die, target_cu);
18273 if (name != nullptr)
18274 {
18275 prop->set_variable_name (name);
18276 return 1;
18277 }
18278 return 0;
18279 }
18280
18281 switch (target_attr->name)
18282 {
18283 case DW_AT_location:
18284 if (target_attr->form_is_section_offset ())
18285 {
18286 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18287 baton->property_type = die_type (target_die, target_cu);
18288 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18289 prop->set_loclist (baton);
18290 gdb_assert (prop->baton () != NULL);
18291 }
18292 else if (target_attr->form_is_block ())
18293 {
18294 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18295 baton->property_type = die_type (target_die, target_cu);
18296 baton->locexpr.per_cu = cu->per_cu;
18297 baton->locexpr.per_objfile = per_objfile;
18298 struct dwarf_block *block = target_attr->as_block ();
18299 baton->locexpr.size = block->size;
18300 baton->locexpr.data = block->data;
18301 baton->locexpr.is_reference = true;
18302 prop->set_locexpr (baton);
18303 gdb_assert (prop->baton () != NULL);
18304 }
18305 else
18306 {
18307 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18308 "dynamic property");
18309 return 0;
18310 }
18311 break;
18312 case DW_AT_data_member_location:
18313 {
18314 LONGEST offset;
18315
18316 if (!handle_data_member_location (target_die, target_cu,
18317 &offset))
18318 return 0;
18319
18320 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18321 baton->property_type = read_type_die (target_die->parent,
18322 target_cu);
18323 baton->offset_info.offset = offset;
18324 baton->offset_info.type = die_type (target_die, target_cu);
18325 prop->set_addr_offset (baton);
18326 break;
18327 }
18328 }
18329 }
18330 else if (attr->form_is_constant ())
18331 prop->set_const_val (attr->constant_value (0));
18332 else
18333 {
18334 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18335 dwarf2_name (die, cu));
18336 return 0;
18337 }
18338
18339 return 1;
18340 }
18341
18342 /* See read.h. */
18343
18344 struct type *
18345 dwarf2_per_objfile::int_type (int size_in_bytes, bool unsigned_p) const
18346 {
18347 struct type *int_type;
18348
18349 /* Helper macro to examine the various builtin types. */
18350 #define TRY_TYPE(F) \
18351 int_type = (unsigned_p \
18352 ? objfile_type (objfile)->builtin_unsigned_ ## F \
18353 : objfile_type (objfile)->builtin_ ## F); \
18354 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
18355 return int_type
18356
18357 TRY_TYPE (char);
18358 TRY_TYPE (short);
18359 TRY_TYPE (int);
18360 TRY_TYPE (long);
18361 TRY_TYPE (long_long);
18362
18363 #undef TRY_TYPE
18364
18365 gdb_assert_not_reached ("unable to find suitable integer type");
18366 }
18367
18368 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
18369 present (which is valid) then compute the default type based on the
18370 compilation units address size. */
18371
18372 static struct type *
18373 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
18374 {
18375 struct type *index_type = die_type (die, cu);
18376
18377 /* Dwarf-2 specifications explicitly allows to create subrange types
18378 without specifying a base type.
18379 In that case, the base type must be set to the type of
18380 the lower bound, upper bound or count, in that order, if any of these
18381 three attributes references an object that has a type.
18382 If no base type is found, the Dwarf-2 specifications say that
18383 a signed integer type of size equal to the size of an address should
18384 be used.
18385 For the following C code: `extern char gdb_int [];'
18386 GCC produces an empty range DIE.
18387 FIXME: muller/2010-05-28: Possible references to object for low bound,
18388 high bound or count are not yet handled by this code. */
18389 if (index_type->code () == TYPE_CODE_VOID)
18390 index_type = cu->addr_sized_int_type (false);
18391
18392 return index_type;
18393 }
18394
18395 /* Read the given DW_AT_subrange DIE. */
18396
18397 static struct type *
18398 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18399 {
18400 struct type *base_type, *orig_base_type;
18401 struct type *range_type;
18402 struct attribute *attr;
18403 struct dynamic_prop low, high;
18404 int low_default_is_valid;
18405 int high_bound_is_count = 0;
18406 const char *name;
18407 ULONGEST negative_mask;
18408
18409 orig_base_type = read_subrange_index_type (die, cu);
18410
18411 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18412 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18413 creating the range type, but we use the result of check_typedef
18414 when examining properties of the type. */
18415 base_type = check_typedef (orig_base_type);
18416
18417 /* The die_type call above may have already set the type for this DIE. */
18418 range_type = get_die_type (die, cu);
18419 if (range_type)
18420 return range_type;
18421
18422 high.set_const_val (0);
18423
18424 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18425 omitting DW_AT_lower_bound. */
18426 switch (cu->per_cu->lang)
18427 {
18428 case language_c:
18429 case language_cplus:
18430 low.set_const_val (0);
18431 low_default_is_valid = 1;
18432 break;
18433 case language_fortran:
18434 low.set_const_val (1);
18435 low_default_is_valid = 1;
18436 break;
18437 case language_d:
18438 case language_objc:
18439 case language_rust:
18440 low.set_const_val (0);
18441 low_default_is_valid = (cu->header.version >= 4);
18442 break;
18443 case language_ada:
18444 case language_m2:
18445 case language_pascal:
18446 low.set_const_val (1);
18447 low_default_is_valid = (cu->header.version >= 4);
18448 break;
18449 default:
18450 low.set_const_val (0);
18451 low_default_is_valid = 0;
18452 break;
18453 }
18454
18455 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18456 if (attr != nullptr)
18457 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
18458 else if (!low_default_is_valid)
18459 complaint (_("Missing DW_AT_lower_bound "
18460 "- DIE at %s [in module %s]"),
18461 sect_offset_str (die->sect_off),
18462 objfile_name (cu->per_objfile->objfile));
18463
18464 struct attribute *attr_ub, *attr_count;
18465 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18466 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18467 {
18468 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18469 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18470 {
18471 /* If bounds are constant do the final calculation here. */
18472 if (low.kind () == PROP_CONST && high.kind () == PROP_CONST)
18473 high.set_const_val (low.const_val () + high.const_val () - 1);
18474 else
18475 high_bound_is_count = 1;
18476 }
18477 else
18478 {
18479 if (attr_ub != NULL)
18480 complaint (_("Unresolved DW_AT_upper_bound "
18481 "- DIE at %s [in module %s]"),
18482 sect_offset_str (die->sect_off),
18483 objfile_name (cu->per_objfile->objfile));
18484 if (attr_count != NULL)
18485 complaint (_("Unresolved DW_AT_count "
18486 "- DIE at %s [in module %s]"),
18487 sect_offset_str (die->sect_off),
18488 objfile_name (cu->per_objfile->objfile));
18489 }
18490 }
18491
18492 LONGEST bias = 0;
18493 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18494 if (bias_attr != nullptr && bias_attr->form_is_constant ())
18495 bias = bias_attr->constant_value (0);
18496
18497 /* Normally, the DWARF producers are expected to use a signed
18498 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18499 But this is unfortunately not always the case, as witnessed
18500 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18501 is used instead. To work around that ambiguity, we treat
18502 the bounds as signed, and thus sign-extend their values, when
18503 the base type is signed. */
18504 negative_mask =
18505 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18506 if (low.kind () == PROP_CONST
18507 && !base_type->is_unsigned () && (low.const_val () & negative_mask))
18508 low.set_const_val (low.const_val () | negative_mask);
18509 if (high.kind () == PROP_CONST
18510 && !base_type->is_unsigned () && (high.const_val () & negative_mask))
18511 high.set_const_val (high.const_val () | negative_mask);
18512
18513 /* Check for bit and byte strides. */
18514 struct dynamic_prop byte_stride_prop;
18515 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
18516 if (attr_byte_stride != nullptr)
18517 {
18518 struct type *prop_type = cu->addr_sized_int_type (false);
18519 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
18520 prop_type);
18521 }
18522
18523 struct dynamic_prop bit_stride_prop;
18524 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
18525 if (attr_bit_stride != nullptr)
18526 {
18527 /* It only makes sense to have either a bit or byte stride. */
18528 if (attr_byte_stride != nullptr)
18529 {
18530 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
18531 "- DIE at %s [in module %s]"),
18532 sect_offset_str (die->sect_off),
18533 objfile_name (cu->per_objfile->objfile));
18534 attr_bit_stride = nullptr;
18535 }
18536 else
18537 {
18538 struct type *prop_type = cu->addr_sized_int_type (false);
18539 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
18540 prop_type);
18541 }
18542 }
18543
18544 if (attr_byte_stride != nullptr
18545 || attr_bit_stride != nullptr)
18546 {
18547 bool byte_stride_p = (attr_byte_stride != nullptr);
18548 struct dynamic_prop *stride
18549 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
18550
18551 range_type
18552 = create_range_type_with_stride (NULL, orig_base_type, &low,
18553 &high, bias, stride, byte_stride_p);
18554 }
18555 else
18556 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18557
18558 if (high_bound_is_count)
18559 range_type->bounds ()->flag_upper_bound_is_count = 1;
18560
18561 /* Ada expects an empty array on no boundary attributes. */
18562 if (attr == NULL && cu->per_cu->lang != language_ada)
18563 range_type->bounds ()->high.set_undefined ();
18564
18565 name = dwarf2_name (die, cu);
18566 if (name)
18567 range_type->set_name (name);
18568
18569 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18570 if (attr != nullptr)
18571 TYPE_LENGTH (range_type) = attr->constant_value (0);
18572
18573 maybe_set_alignment (cu, die, range_type);
18574
18575 set_die_type (die, range_type, cu);
18576
18577 /* set_die_type should be already done. */
18578 set_descriptive_type (range_type, die, cu);
18579
18580 return range_type;
18581 }
18582
18583 static struct type *
18584 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18585 {
18586 struct type *type;
18587
18588 type = init_type (cu->per_objfile->objfile, TYPE_CODE_VOID, 0, NULL);
18589 type->set_name (dwarf2_name (die, cu));
18590
18591 /* In Ada, an unspecified type is typically used when the description
18592 of the type is deferred to a different unit. When encountering
18593 such a type, we treat it as a stub, and try to resolve it later on,
18594 when needed. */
18595 if (cu->per_cu->lang == language_ada)
18596 type->set_is_stub (true);
18597
18598 return set_die_type (die, type, cu);
18599 }
18600
18601 /* Read a single die and all its descendents. Set the die's sibling
18602 field to NULL; set other fields in the die correctly, and set all
18603 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18604 location of the info_ptr after reading all of those dies. PARENT
18605 is the parent of the die in question. */
18606
18607 static struct die_info *
18608 read_die_and_children (const struct die_reader_specs *reader,
18609 const gdb_byte *info_ptr,
18610 const gdb_byte **new_info_ptr,
18611 struct die_info *parent)
18612 {
18613 struct die_info *die;
18614 const gdb_byte *cur_ptr;
18615
18616 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
18617 if (die == NULL)
18618 {
18619 *new_info_ptr = cur_ptr;
18620 return NULL;
18621 }
18622 store_in_ref_table (die, reader->cu);
18623
18624 if (die->has_children)
18625 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18626 else
18627 {
18628 die->child = NULL;
18629 *new_info_ptr = cur_ptr;
18630 }
18631
18632 die->sibling = NULL;
18633 die->parent = parent;
18634 return die;
18635 }
18636
18637 /* Read a die, all of its descendents, and all of its siblings; set
18638 all of the fields of all of the dies correctly. Arguments are as
18639 in read_die_and_children. */
18640
18641 static struct die_info *
18642 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18643 const gdb_byte *info_ptr,
18644 const gdb_byte **new_info_ptr,
18645 struct die_info *parent)
18646 {
18647 struct die_info *first_die, *last_sibling;
18648 const gdb_byte *cur_ptr;
18649
18650 cur_ptr = info_ptr;
18651 first_die = last_sibling = NULL;
18652
18653 while (1)
18654 {
18655 struct die_info *die
18656 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18657
18658 if (die == NULL)
18659 {
18660 *new_info_ptr = cur_ptr;
18661 return first_die;
18662 }
18663
18664 if (!first_die)
18665 first_die = die;
18666 else
18667 last_sibling->sibling = die;
18668
18669 last_sibling = die;
18670 }
18671 }
18672
18673 /* Read a die, all of its descendents, and all of its siblings; set
18674 all of the fields of all of the dies correctly. Arguments are as
18675 in read_die_and_children.
18676 This the main entry point for reading a DIE and all its children. */
18677
18678 static struct die_info *
18679 read_die_and_siblings (const struct die_reader_specs *reader,
18680 const gdb_byte *info_ptr,
18681 const gdb_byte **new_info_ptr,
18682 struct die_info *parent)
18683 {
18684 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18685 new_info_ptr, parent);
18686
18687 if (dwarf_die_debug)
18688 {
18689 fprintf_unfiltered (gdb_stdlog,
18690 "Read die from %s@0x%x of %s:\n",
18691 reader->die_section->get_name (),
18692 (unsigned) (info_ptr - reader->die_section->buffer),
18693 bfd_get_filename (reader->abfd));
18694 dump_die (die, dwarf_die_debug);
18695 }
18696
18697 return die;
18698 }
18699
18700 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18701 attributes.
18702 The caller is responsible for filling in the extra attributes
18703 and updating (*DIEP)->num_attrs.
18704 Set DIEP to point to a newly allocated die with its information,
18705 except for its child, sibling, and parent fields. */
18706
18707 static const gdb_byte *
18708 read_full_die_1 (const struct die_reader_specs *reader,
18709 struct die_info **diep, const gdb_byte *info_ptr,
18710 int num_extra_attrs)
18711 {
18712 unsigned int abbrev_number, bytes_read, i;
18713 const struct abbrev_info *abbrev;
18714 struct die_info *die;
18715 struct dwarf2_cu *cu = reader->cu;
18716 bfd *abfd = reader->abfd;
18717
18718 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18719 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18720 info_ptr += bytes_read;
18721 if (!abbrev_number)
18722 {
18723 *diep = NULL;
18724 return info_ptr;
18725 }
18726
18727 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18728 if (!abbrev)
18729 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18730 abbrev_number,
18731 bfd_get_filename (abfd));
18732
18733 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18734 die->sect_off = sect_off;
18735 die->tag = abbrev->tag;
18736 die->abbrev = abbrev_number;
18737 die->has_children = abbrev->has_children;
18738
18739 /* Make the result usable.
18740 The caller needs to update num_attrs after adding the extra
18741 attributes. */
18742 die->num_attrs = abbrev->num_attrs;
18743
18744 bool any_need_reprocess = false;
18745 for (i = 0; i < abbrev->num_attrs; ++i)
18746 {
18747 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18748 info_ptr);
18749 if (die->attrs[i].requires_reprocessing_p ())
18750 any_need_reprocess = true;
18751 }
18752
18753 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
18754 if (attr != nullptr && attr->form_is_unsigned ())
18755 cu->str_offsets_base = attr->as_unsigned ();
18756
18757 attr = die->attr (DW_AT_loclists_base);
18758 if (attr != nullptr)
18759 cu->loclist_base = attr->as_unsigned ();
18760
18761 auto maybe_addr_base = die->addr_base ();
18762 if (maybe_addr_base.has_value ())
18763 cu->addr_base = *maybe_addr_base;
18764
18765 attr = die->attr (DW_AT_rnglists_base);
18766 if (attr != nullptr)
18767 cu->rnglists_base = attr->as_unsigned ();
18768
18769 if (any_need_reprocess)
18770 {
18771 for (i = 0; i < abbrev->num_attrs; ++i)
18772 {
18773 if (die->attrs[i].requires_reprocessing_p ())
18774 read_attribute_reprocess (reader, &die->attrs[i], die->tag);
18775 }
18776 }
18777 *diep = die;
18778 return info_ptr;
18779 }
18780
18781 /* Read a die and all its attributes.
18782 Set DIEP to point to a newly allocated die with its information,
18783 except for its child, sibling, and parent fields. */
18784
18785 static const gdb_byte *
18786 read_full_die (const struct die_reader_specs *reader,
18787 struct die_info **diep, const gdb_byte *info_ptr)
18788 {
18789 const gdb_byte *result;
18790
18791 result = read_full_die_1 (reader, diep, info_ptr, 0);
18792
18793 if (dwarf_die_debug)
18794 {
18795 fprintf_unfiltered (gdb_stdlog,
18796 "Read die from %s@0x%x of %s:\n",
18797 reader->die_section->get_name (),
18798 (unsigned) (info_ptr - reader->die_section->buffer),
18799 bfd_get_filename (reader->abfd));
18800 dump_die (*diep, dwarf_die_debug);
18801 }
18802
18803 return result;
18804 }
18805 \f
18806
18807 /* Returns nonzero if TAG represents a type that we might generate a partial
18808 symbol for. */
18809
18810 static int
18811 is_type_tag_for_partial (int tag, enum language lang)
18812 {
18813 switch (tag)
18814 {
18815 #if 0
18816 /* Some types that would be reasonable to generate partial symbols for,
18817 that we don't at present. Note that normally this does not
18818 matter, mainly because C compilers don't give names to these
18819 types, but instead emit DW_TAG_typedef. */
18820 case DW_TAG_file_type:
18821 case DW_TAG_ptr_to_member_type:
18822 case DW_TAG_set_type:
18823 case DW_TAG_string_type:
18824 case DW_TAG_subroutine_type:
18825 #endif
18826
18827 /* GNAT may emit an array with a name, but no typedef, so we
18828 need to make a symbol in this case. */
18829 case DW_TAG_array_type:
18830 return lang == language_ada;
18831
18832 case DW_TAG_base_type:
18833 case DW_TAG_class_type:
18834 case DW_TAG_interface_type:
18835 case DW_TAG_enumeration_type:
18836 case DW_TAG_structure_type:
18837 case DW_TAG_subrange_type:
18838 case DW_TAG_typedef:
18839 case DW_TAG_union_type:
18840 return 1;
18841 default:
18842 return 0;
18843 }
18844 }
18845
18846 /* Load all DIEs that are interesting for partial symbols into memory. */
18847
18848 static struct partial_die_info *
18849 load_partial_dies (const struct die_reader_specs *reader,
18850 const gdb_byte *info_ptr, int building_psymtab)
18851 {
18852 struct dwarf2_cu *cu = reader->cu;
18853 struct objfile *objfile = cu->per_objfile->objfile;
18854 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18855 unsigned int bytes_read;
18856 unsigned int load_all = 0;
18857 int nesting_level = 1;
18858
18859 parent_die = NULL;
18860 last_die = NULL;
18861
18862 gdb_assert (cu->per_cu != NULL);
18863 if (cu->load_all_dies)
18864 load_all = 1;
18865
18866 cu->partial_dies
18867 = htab_create_alloc_ex (cu->header.length / 12,
18868 partial_die_hash,
18869 partial_die_eq,
18870 NULL,
18871 &cu->comp_unit_obstack,
18872 hashtab_obstack_allocate,
18873 dummy_obstack_deallocate);
18874
18875 while (1)
18876 {
18877 const abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr,
18878 &bytes_read);
18879
18880 /* A NULL abbrev means the end of a series of children. */
18881 if (abbrev == NULL)
18882 {
18883 if (--nesting_level == 0)
18884 return first_die;
18885
18886 info_ptr += bytes_read;
18887 last_die = parent_die;
18888 parent_die = parent_die->die_parent;
18889 continue;
18890 }
18891
18892 /* Check for template arguments. We never save these; if
18893 they're seen, we just mark the parent, and go on our way. */
18894 if (parent_die != NULL
18895 && cu->per_cu->lang == language_cplus
18896 && (abbrev->tag == DW_TAG_template_type_param
18897 || abbrev->tag == DW_TAG_template_value_param))
18898 {
18899 parent_die->has_template_arguments = 1;
18900
18901 if (!load_all)
18902 {
18903 /* We don't need a partial DIE for the template argument. */
18904 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18905 continue;
18906 }
18907 }
18908
18909 /* We only recurse into c++ subprograms looking for template arguments.
18910 Skip their other children. */
18911 if (!load_all
18912 && cu->per_cu->lang == language_cplus
18913 && parent_die != NULL
18914 && parent_die->tag == DW_TAG_subprogram
18915 && abbrev->tag != DW_TAG_inlined_subroutine)
18916 {
18917 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18918 continue;
18919 }
18920
18921 /* Check whether this DIE is interesting enough to save. Normally
18922 we would not be interested in members here, but there may be
18923 later variables referencing them via DW_AT_specification (for
18924 static members). */
18925 if (!load_all
18926 && !is_type_tag_for_partial (abbrev->tag, cu->per_cu->lang)
18927 && abbrev->tag != DW_TAG_constant
18928 && abbrev->tag != DW_TAG_enumerator
18929 && abbrev->tag != DW_TAG_subprogram
18930 && abbrev->tag != DW_TAG_inlined_subroutine
18931 && abbrev->tag != DW_TAG_lexical_block
18932 && abbrev->tag != DW_TAG_variable
18933 && abbrev->tag != DW_TAG_namespace
18934 && abbrev->tag != DW_TAG_module
18935 && abbrev->tag != DW_TAG_member
18936 && abbrev->tag != DW_TAG_imported_unit
18937 && abbrev->tag != DW_TAG_imported_declaration)
18938 {
18939 /* Otherwise we skip to the next sibling, if any. */
18940 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18941 continue;
18942 }
18943
18944 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18945 abbrev);
18946
18947 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18948
18949 /* This two-pass algorithm for processing partial symbols has a
18950 high cost in cache pressure. Thus, handle some simple cases
18951 here which cover the majority of C partial symbols. DIEs
18952 which neither have specification tags in them, nor could have
18953 specification tags elsewhere pointing at them, can simply be
18954 processed and discarded.
18955
18956 This segment is also optional; scan_partial_symbols and
18957 add_partial_symbol will handle these DIEs if we chain
18958 them in normally. When compilers which do not emit large
18959 quantities of duplicate debug information are more common,
18960 this code can probably be removed. */
18961
18962 /* Any complete simple types at the top level (pretty much all
18963 of them, for a language without namespaces), can be processed
18964 directly. */
18965 if (parent_die == NULL
18966 && pdi.has_specification == 0
18967 && pdi.is_declaration == 0
18968 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18969 || pdi.tag == DW_TAG_base_type
18970 || pdi.tag == DW_TAG_array_type
18971 || pdi.tag == DW_TAG_subrange_type))
18972 {
18973 if (building_psymtab && pdi.raw_name != NULL)
18974 add_partial_symbol (&pdi, cu);
18975
18976 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18977 continue;
18978 }
18979
18980 /* The exception for DW_TAG_typedef with has_children above is
18981 a workaround of GCC PR debug/47510. In the case of this complaint
18982 type_name_or_error will error on such types later.
18983
18984 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18985 it could not find the child DIEs referenced later, this is checked
18986 above. In correct DWARF DW_TAG_typedef should have no children. */
18987
18988 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18989 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18990 "- DIE at %s [in module %s]"),
18991 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18992
18993 /* If we're at the second level, and we're an enumerator, and
18994 our parent has no specification (meaning possibly lives in a
18995 namespace elsewhere), then we can add the partial symbol now
18996 instead of queueing it. */
18997 if (pdi.tag == DW_TAG_enumerator
18998 && parent_die != NULL
18999 && parent_die->die_parent == NULL
19000 && parent_die->tag == DW_TAG_enumeration_type
19001 && parent_die->has_specification == 0)
19002 {
19003 if (pdi.raw_name == NULL)
19004 complaint (_("malformed enumerator DIE ignored"));
19005 else if (building_psymtab)
19006 add_partial_symbol (&pdi, cu);
19007
19008 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
19009 continue;
19010 }
19011
19012 struct partial_die_info *part_die
19013 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
19014
19015 /* We'll save this DIE so link it in. */
19016 part_die->die_parent = parent_die;
19017 part_die->die_sibling = NULL;
19018 part_die->die_child = NULL;
19019
19020 if (last_die && last_die == parent_die)
19021 last_die->die_child = part_die;
19022 else if (last_die)
19023 last_die->die_sibling = part_die;
19024
19025 last_die = part_die;
19026
19027 if (first_die == NULL)
19028 first_die = part_die;
19029
19030 /* Maybe add the DIE to the hash table. Not all DIEs that we
19031 find interesting need to be in the hash table, because we
19032 also have the parent/sibling/child chains; only those that we
19033 might refer to by offset later during partial symbol reading.
19034
19035 For now this means things that might have be the target of a
19036 DW_AT_specification, DW_AT_abstract_origin, or
19037 DW_AT_extension. DW_AT_extension will refer only to
19038 namespaces; DW_AT_abstract_origin refers to functions (and
19039 many things under the function DIE, but we do not recurse
19040 into function DIEs during partial symbol reading) and
19041 possibly variables as well; DW_AT_specification refers to
19042 declarations. Declarations ought to have the DW_AT_declaration
19043 flag. It happens that GCC forgets to put it in sometimes, but
19044 only for functions, not for types.
19045
19046 Adding more things than necessary to the hash table is harmless
19047 except for the performance cost. Adding too few will result in
19048 wasted time in find_partial_die, when we reread the compilation
19049 unit with load_all_dies set. */
19050
19051 if (load_all
19052 || abbrev->tag == DW_TAG_constant
19053 || abbrev->tag == DW_TAG_subprogram
19054 || abbrev->tag == DW_TAG_variable
19055 || abbrev->tag == DW_TAG_namespace
19056 || part_die->is_declaration)
19057 {
19058 void **slot;
19059
19060 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
19061 to_underlying (part_die->sect_off),
19062 INSERT);
19063 *slot = part_die;
19064 }
19065
19066 /* For some DIEs we want to follow their children (if any). For C
19067 we have no reason to follow the children of structures; for other
19068 languages we have to, so that we can get at method physnames
19069 to infer fully qualified class names, for DW_AT_specification,
19070 and for C++ template arguments. For C++, we also look one level
19071 inside functions to find template arguments (if the name of the
19072 function does not already contain the template arguments).
19073
19074 For Ada and Fortran, we need to scan the children of subprograms
19075 and lexical blocks as well because these languages allow the
19076 definition of nested entities that could be interesting for the
19077 debugger, such as nested subprograms for instance. */
19078 if (last_die->has_children
19079 && (load_all
19080 || last_die->tag == DW_TAG_namespace
19081 || last_die->tag == DW_TAG_module
19082 || last_die->tag == DW_TAG_enumeration_type
19083 || (cu->per_cu->lang == language_cplus
19084 && last_die->tag == DW_TAG_subprogram
19085 && (last_die->raw_name == NULL
19086 || strchr (last_die->raw_name, '<') == NULL))
19087 || (cu->per_cu->lang != language_c
19088 && (last_die->tag == DW_TAG_class_type
19089 || last_die->tag == DW_TAG_interface_type
19090 || last_die->tag == DW_TAG_structure_type
19091 || last_die->tag == DW_TAG_union_type))
19092 || ((cu->per_cu->lang == language_ada
19093 || cu->per_cu->lang == language_fortran)
19094 && (last_die->tag == DW_TAG_subprogram
19095 || last_die->tag == DW_TAG_lexical_block))))
19096 {
19097 nesting_level++;
19098 parent_die = last_die;
19099 continue;
19100 }
19101
19102 /* Otherwise we skip to the next sibling, if any. */
19103 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
19104
19105 /* Back to the top, do it again. */
19106 }
19107 }
19108
19109 partial_die_info::partial_die_info (sect_offset sect_off_,
19110 const struct abbrev_info *abbrev)
19111 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
19112 {
19113 }
19114
19115 /* See class definition. */
19116
19117 const char *
19118 partial_die_info::name (dwarf2_cu *cu)
19119 {
19120 if (!canonical_name && raw_name != nullptr)
19121 {
19122 struct objfile *objfile = cu->per_objfile->objfile;
19123 raw_name = dwarf2_canonicalize_name (raw_name, cu, objfile);
19124 canonical_name = 1;
19125 }
19126
19127 return raw_name;
19128 }
19129
19130 /* Read a minimal amount of information into the minimal die structure.
19131 INFO_PTR should point just after the initial uleb128 of a DIE. */
19132
19133 const gdb_byte *
19134 partial_die_info::read (const struct die_reader_specs *reader,
19135 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
19136 {
19137 struct dwarf2_cu *cu = reader->cu;
19138 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19139 unsigned int i;
19140 int has_low_pc_attr = 0;
19141 int has_high_pc_attr = 0;
19142 int high_pc_relative = 0;
19143
19144 for (i = 0; i < abbrev.num_attrs; ++i)
19145 {
19146 attribute attr;
19147 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
19148 /* String and address offsets that need to do the reprocessing have
19149 already been read at this point, so there is no need to wait until
19150 the loop terminates to do the reprocessing. */
19151 if (attr.requires_reprocessing_p ())
19152 read_attribute_reprocess (reader, &attr, tag);
19153 /* Store the data if it is of an attribute we want to keep in a
19154 partial symbol table. */
19155 switch (attr.name)
19156 {
19157 case DW_AT_name:
19158 switch (tag)
19159 {
19160 case DW_TAG_compile_unit:
19161 case DW_TAG_partial_unit:
19162 case DW_TAG_type_unit:
19163 /* Compilation units have a DW_AT_name that is a filename, not
19164 a source language identifier. */
19165 case DW_TAG_enumeration_type:
19166 case DW_TAG_enumerator:
19167 /* These tags always have simple identifiers already; no need
19168 to canonicalize them. */
19169 canonical_name = 1;
19170 raw_name = attr.as_string ();
19171 break;
19172 default:
19173 canonical_name = 0;
19174 raw_name = attr.as_string ();
19175 break;
19176 }
19177 break;
19178 case DW_AT_linkage_name:
19179 case DW_AT_MIPS_linkage_name:
19180 /* Note that both forms of linkage name might appear. We
19181 assume they will be the same, and we only store the last
19182 one we see. */
19183 linkage_name = attr.as_string ();
19184 break;
19185 case DW_AT_low_pc:
19186 has_low_pc_attr = 1;
19187 lowpc = attr.as_address ();
19188 break;
19189 case DW_AT_high_pc:
19190 has_high_pc_attr = 1;
19191 highpc = attr.as_address ();
19192 if (cu->header.version >= 4 && attr.form_is_constant ())
19193 high_pc_relative = 1;
19194 break;
19195 case DW_AT_location:
19196 /* Support the .debug_loc offsets. */
19197 if (attr.form_is_block ())
19198 {
19199 d.locdesc = attr.as_block ();
19200 }
19201 else if (attr.form_is_section_offset ())
19202 {
19203 dwarf2_complex_location_expr_complaint ();
19204 }
19205 else
19206 {
19207 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19208 "partial symbol information");
19209 }
19210 break;
19211 case DW_AT_external:
19212 is_external = attr.as_boolean ();
19213 break;
19214 case DW_AT_declaration:
19215 is_declaration = attr.as_boolean ();
19216 break;
19217 case DW_AT_type:
19218 has_type = 1;
19219 break;
19220 case DW_AT_abstract_origin:
19221 case DW_AT_specification:
19222 case DW_AT_extension:
19223 has_specification = 1;
19224 spec_offset = attr.get_ref_die_offset ();
19225 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19226 || cu->per_cu->is_dwz);
19227 break;
19228 case DW_AT_sibling:
19229 /* Ignore absolute siblings, they might point outside of
19230 the current compile unit. */
19231 if (attr.form == DW_FORM_ref_addr)
19232 complaint (_("ignoring absolute DW_AT_sibling"));
19233 else
19234 {
19235 const gdb_byte *buffer = reader->buffer;
19236 sect_offset off = attr.get_ref_die_offset ();
19237 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19238
19239 if (sibling_ptr < info_ptr)
19240 complaint (_("DW_AT_sibling points backwards"));
19241 else if (sibling_ptr > reader->buffer_end)
19242 reader->die_section->overflow_complaint ();
19243 else
19244 sibling = sibling_ptr;
19245 }
19246 break;
19247 case DW_AT_byte_size:
19248 has_byte_size = 1;
19249 break;
19250 case DW_AT_const_value:
19251 has_const_value = 1;
19252 break;
19253 case DW_AT_calling_convention:
19254 /* DWARF doesn't provide a way to identify a program's source-level
19255 entry point. DW_AT_calling_convention attributes are only meant
19256 to describe functions' calling conventions.
19257
19258 However, because it's a necessary piece of information in
19259 Fortran, and before DWARF 4 DW_CC_program was the only
19260 piece of debugging information whose definition refers to
19261 a 'main program' at all, several compilers marked Fortran
19262 main programs with DW_CC_program --- even when those
19263 functions use the standard calling conventions.
19264
19265 Although DWARF now specifies a way to provide this
19266 information, we support this practice for backward
19267 compatibility. */
19268 if (attr.constant_value (0) == DW_CC_program
19269 && cu->per_cu->lang == language_fortran)
19270 main_subprogram = 1;
19271 break;
19272 case DW_AT_inline:
19273 {
19274 LONGEST value = attr.constant_value (-1);
19275 if (value == DW_INL_inlined
19276 || value == DW_INL_declared_inlined)
19277 may_be_inlined = 1;
19278 }
19279 break;
19280
19281 case DW_AT_import:
19282 if (tag == DW_TAG_imported_unit)
19283 {
19284 d.sect_off = attr.get_ref_die_offset ();
19285 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19286 || cu->per_cu->is_dwz);
19287 }
19288 break;
19289
19290 case DW_AT_main_subprogram:
19291 main_subprogram = attr.as_boolean ();
19292 break;
19293
19294 case DW_AT_ranges:
19295 {
19296 /* Offset in the .debug_ranges or .debug_rnglist section (depending
19297 on DWARF version). */
19298 ULONGEST ranges_offset = attr.as_unsigned ();
19299
19300 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
19301 this value. */
19302 if (tag != DW_TAG_compile_unit)
19303 ranges_offset += cu->gnu_ranges_base;
19304
19305 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
19306 nullptr, tag))
19307 has_pc_info = 1;
19308 }
19309 break;
19310
19311 default:
19312 break;
19313 }
19314 }
19315
19316 /* For Ada, if both the name and the linkage name appear, we prefer
19317 the latter. This lets "catch exception" work better, regardless
19318 of the order in which the name and linkage name were emitted.
19319 Really, though, this is just a workaround for the fact that gdb
19320 doesn't store both the name and the linkage name. */
19321 if (cu->per_cu->lang == language_ada && linkage_name != nullptr)
19322 raw_name = linkage_name;
19323
19324 if (high_pc_relative)
19325 highpc += lowpc;
19326
19327 if (has_low_pc_attr && has_high_pc_attr)
19328 {
19329 /* When using the GNU linker, .gnu.linkonce. sections are used to
19330 eliminate duplicate copies of functions and vtables and such.
19331 The linker will arbitrarily choose one and discard the others.
19332 The AT_*_pc values for such functions refer to local labels in
19333 these sections. If the section from that file was discarded, the
19334 labels are not in the output, so the relocs get a value of 0.
19335 If this is a discarded function, mark the pc bounds as invalid,
19336 so that GDB will ignore it. */
19337 if (lowpc == 0 && !per_objfile->per_bfd->has_section_at_zero)
19338 {
19339 struct objfile *objfile = per_objfile->objfile;
19340 struct gdbarch *gdbarch = objfile->arch ();
19341
19342 complaint (_("DW_AT_low_pc %s is zero "
19343 "for DIE at %s [in module %s]"),
19344 paddress (gdbarch, lowpc),
19345 sect_offset_str (sect_off),
19346 objfile_name (objfile));
19347 }
19348 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19349 else if (lowpc >= highpc)
19350 {
19351 struct objfile *objfile = per_objfile->objfile;
19352 struct gdbarch *gdbarch = objfile->arch ();
19353
19354 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19355 "for DIE at %s [in module %s]"),
19356 paddress (gdbarch, lowpc),
19357 paddress (gdbarch, highpc),
19358 sect_offset_str (sect_off),
19359 objfile_name (objfile));
19360 }
19361 else
19362 has_pc_info = 1;
19363 }
19364
19365 return info_ptr;
19366 }
19367
19368 /* Find a cached partial DIE at OFFSET in CU. */
19369
19370 struct partial_die_info *
19371 dwarf2_cu::find_partial_die (sect_offset sect_off)
19372 {
19373 struct partial_die_info *lookup_die = NULL;
19374 struct partial_die_info part_die (sect_off);
19375
19376 lookup_die = ((struct partial_die_info *)
19377 htab_find_with_hash (partial_dies, &part_die,
19378 to_underlying (sect_off)));
19379
19380 return lookup_die;
19381 }
19382
19383 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19384 except in the case of .debug_types DIEs which do not reference
19385 outside their CU (they do however referencing other types via
19386 DW_FORM_ref_sig8). */
19387
19388 static const struct cu_partial_die_info
19389 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19390 {
19391 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19392 struct objfile *objfile = per_objfile->objfile;
19393 struct partial_die_info *pd = NULL;
19394
19395 if (offset_in_dwz == cu->per_cu->is_dwz
19396 && cu->header.offset_in_cu_p (sect_off))
19397 {
19398 pd = cu->find_partial_die (sect_off);
19399 if (pd != NULL)
19400 return { cu, pd };
19401 /* We missed recording what we needed.
19402 Load all dies and try again. */
19403 }
19404 else
19405 {
19406 /* TUs don't reference other CUs/TUs (except via type signatures). */
19407 if (cu->per_cu->is_debug_types)
19408 {
19409 error (_("Dwarf Error: Type Unit at offset %s contains"
19410 " external reference to offset %s [in module %s].\n"),
19411 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19412 bfd_get_filename (objfile->obfd));
19413 }
19414 dwarf2_per_cu_data *per_cu
19415 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19416 per_objfile);
19417
19418 cu = per_objfile->get_cu (per_cu);
19419 if (cu == NULL || cu->partial_dies == NULL)
19420 load_partial_comp_unit (per_cu, per_objfile, nullptr);
19421
19422 cu = per_objfile->get_cu (per_cu);
19423
19424 cu->last_used = 0;
19425 pd = cu->find_partial_die (sect_off);
19426 }
19427
19428 /* If we didn't find it, and not all dies have been loaded,
19429 load them all and try again. */
19430
19431 if (pd == NULL && cu->load_all_dies == 0)
19432 {
19433 cu->load_all_dies = 1;
19434
19435 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19436 THIS_CU->cu may already be in use. So we can't just free it and
19437 replace its DIEs with the ones we read in. Instead, we leave those
19438 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19439 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19440 set. */
19441 load_partial_comp_unit (cu->per_cu, per_objfile, cu);
19442
19443 pd = cu->find_partial_die (sect_off);
19444 }
19445
19446 if (pd == NULL)
19447 error (_("Dwarf Error: Cannot find DIE at %s [from module %s]\n"),
19448 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19449 return { cu, pd };
19450 }
19451
19452 /* See if we can figure out if the class lives in a namespace. We do
19453 this by looking for a member function; its demangled name will
19454 contain namespace info, if there is any. */
19455
19456 static void
19457 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19458 struct dwarf2_cu *cu)
19459 {
19460 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19461 what template types look like, because the demangler
19462 frequently doesn't give the same name as the debug info. We
19463 could fix this by only using the demangled name to get the
19464 prefix (but see comment in read_structure_type). */
19465
19466 struct partial_die_info *real_pdi;
19467 struct partial_die_info *child_pdi;
19468
19469 /* If this DIE (this DIE's specification, if any) has a parent, then
19470 we should not do this. We'll prepend the parent's fully qualified
19471 name when we create the partial symbol. */
19472
19473 real_pdi = struct_pdi;
19474 while (real_pdi->has_specification)
19475 {
19476 auto res = find_partial_die (real_pdi->spec_offset,
19477 real_pdi->spec_is_dwz, cu);
19478 real_pdi = res.pdi;
19479 cu = res.cu;
19480 }
19481
19482 if (real_pdi->die_parent != NULL)
19483 return;
19484
19485 for (child_pdi = struct_pdi->die_child;
19486 child_pdi != NULL;
19487 child_pdi = child_pdi->die_sibling)
19488 {
19489 if (child_pdi->tag == DW_TAG_subprogram
19490 && child_pdi->linkage_name != NULL)
19491 {
19492 gdb::unique_xmalloc_ptr<char> actual_class_name
19493 (cu->language_defn->class_name_from_physname
19494 (child_pdi->linkage_name));
19495 if (actual_class_name != NULL)
19496 {
19497 struct objfile *objfile = cu->per_objfile->objfile;
19498 struct_pdi->raw_name = objfile->intern (actual_class_name.get ());
19499 struct_pdi->canonical_name = 1;
19500 }
19501 break;
19502 }
19503 }
19504 }
19505
19506 /* Return true if a DIE with TAG may have the DW_AT_const_value
19507 attribute. */
19508
19509 static bool
19510 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
19511 {
19512 switch (tag)
19513 {
19514 case DW_TAG_constant:
19515 case DW_TAG_enumerator:
19516 case DW_TAG_formal_parameter:
19517 case DW_TAG_template_value_param:
19518 case DW_TAG_variable:
19519 return true;
19520 }
19521
19522 return false;
19523 }
19524
19525 void
19526 partial_die_info::fixup (struct dwarf2_cu *cu)
19527 {
19528 /* Once we've fixed up a die, there's no point in doing so again.
19529 This also avoids a memory leak if we were to call
19530 guess_partial_die_structure_name multiple times. */
19531 if (fixup_called)
19532 return;
19533
19534 /* If we found a reference attribute and the DIE has no name, try
19535 to find a name in the referred to DIE. */
19536
19537 if (raw_name == NULL && has_specification)
19538 {
19539 struct partial_die_info *spec_die;
19540
19541 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19542 spec_die = res.pdi;
19543 cu = res.cu;
19544
19545 spec_die->fixup (cu);
19546
19547 if (spec_die->raw_name)
19548 {
19549 raw_name = spec_die->raw_name;
19550 canonical_name = spec_die->canonical_name;
19551
19552 /* Copy DW_AT_external attribute if it is set. */
19553 if (spec_die->is_external)
19554 is_external = spec_die->is_external;
19555 }
19556 }
19557
19558 if (!has_const_value && has_specification
19559 && can_have_DW_AT_const_value_p (tag))
19560 {
19561 struct partial_die_info *spec_die;
19562
19563 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19564 spec_die = res.pdi;
19565 cu = res.cu;
19566
19567 spec_die->fixup (cu);
19568
19569 if (spec_die->has_const_value)
19570 {
19571 /* Copy DW_AT_const_value attribute if it is set. */
19572 has_const_value = spec_die->has_const_value;
19573 }
19574 }
19575
19576 /* Set default names for some unnamed DIEs. */
19577
19578 if (raw_name == NULL && tag == DW_TAG_namespace)
19579 {
19580 raw_name = CP_ANONYMOUS_NAMESPACE_STR;
19581 canonical_name = 1;
19582 }
19583
19584 /* If there is no parent die to provide a namespace, and there are
19585 children, see if we can determine the namespace from their linkage
19586 name. */
19587 if (cu->per_cu->lang == language_cplus
19588 && !cu->per_objfile->per_bfd->types.empty ()
19589 && die_parent == NULL
19590 && has_children
19591 && (tag == DW_TAG_class_type
19592 || tag == DW_TAG_structure_type
19593 || tag == DW_TAG_union_type))
19594 guess_partial_die_structure_name (this, cu);
19595
19596 /* GCC might emit a nameless struct or union that has a linkage
19597 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19598 if (raw_name == NULL
19599 && (tag == DW_TAG_class_type
19600 || tag == DW_TAG_interface_type
19601 || tag == DW_TAG_structure_type
19602 || tag == DW_TAG_union_type)
19603 && linkage_name != NULL)
19604 {
19605 gdb::unique_xmalloc_ptr<char> demangled
19606 (gdb_demangle (linkage_name, DMGL_TYPES));
19607 if (demangled != nullptr)
19608 {
19609 const char *base;
19610
19611 /* Strip any leading namespaces/classes, keep only the base name.
19612 DW_AT_name for named DIEs does not contain the prefixes. */
19613 base = strrchr (demangled.get (), ':');
19614 if (base && base > demangled.get () && base[-1] == ':')
19615 base++;
19616 else
19617 base = demangled.get ();
19618
19619 struct objfile *objfile = cu->per_objfile->objfile;
19620 raw_name = objfile->intern (base);
19621 canonical_name = 1;
19622 }
19623 }
19624
19625 fixup_called = 1;
19626 }
19627
19628 /* Read the .debug_loclists or .debug_rnglists header (they are the same format)
19629 contents from the given SECTION in the HEADER.
19630
19631 HEADER_OFFSET is the offset of the header in the section. */
19632 static void
19633 read_loclists_rnglists_header (struct loclists_rnglists_header *header,
19634 struct dwarf2_section_info *section,
19635 sect_offset header_offset)
19636 {
19637 unsigned int bytes_read;
19638 bfd *abfd = section->get_bfd_owner ();
19639 const gdb_byte *info_ptr = section->buffer + to_underlying (header_offset);
19640
19641 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
19642 info_ptr += bytes_read;
19643
19644 header->version = read_2_bytes (abfd, info_ptr);
19645 info_ptr += 2;
19646
19647 header->addr_size = read_1_byte (abfd, info_ptr);
19648 info_ptr += 1;
19649
19650 header->segment_collector_size = read_1_byte (abfd, info_ptr);
19651 info_ptr += 1;
19652
19653 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
19654 }
19655
19656 /* Return the DW_AT_loclists_base value for the CU. */
19657 static ULONGEST
19658 lookup_loclist_base (struct dwarf2_cu *cu)
19659 {
19660 /* For the .dwo unit, the loclist_base points to the first offset following
19661 the header. The header consists of the following entities-
19662 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
19663 bit format)
19664 2. version (2 bytes)
19665 3. address size (1 byte)
19666 4. segment selector size (1 byte)
19667 5. offset entry count (4 bytes)
19668 These sizes are derived as per the DWARFv5 standard. */
19669 if (cu->dwo_unit != nullptr)
19670 {
19671 if (cu->header.initial_length_size == 4)
19672 return LOCLIST_HEADER_SIZE32;
19673 return LOCLIST_HEADER_SIZE64;
19674 }
19675 return cu->loclist_base;
19676 }
19677
19678 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
19679 array of offsets in the .debug_loclists section. */
19680
19681 static sect_offset
19682 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
19683 {
19684 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19685 struct objfile *objfile = per_objfile->objfile;
19686 bfd *abfd = objfile->obfd;
19687 ULONGEST loclist_header_size =
19688 (cu->header.initial_length_size == 4 ? LOCLIST_HEADER_SIZE32
19689 : LOCLIST_HEADER_SIZE64);
19690 ULONGEST loclist_base = lookup_loclist_base (cu);
19691
19692 /* Offset in .debug_loclists of the offset for LOCLIST_INDEX. */
19693 ULONGEST start_offset =
19694 loclist_base + loclist_index * cu->header.offset_size;
19695
19696 /* Get loclists section. */
19697 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19698
19699 /* Read the loclists section content. */
19700 section->read (objfile);
19701 if (section->buffer == NULL)
19702 error (_("DW_FORM_loclistx used without .debug_loclists "
19703 "section [in module %s]"), objfile_name (objfile));
19704
19705 /* DW_AT_loclists_base points after the .debug_loclists contribution header,
19706 so if loclist_base is smaller than the header size, we have a problem. */
19707 if (loclist_base < loclist_header_size)
19708 error (_("DW_AT_loclists_base is smaller than header size [in module %s]"),
19709 objfile_name (objfile));
19710
19711 /* Read the header of the loclists contribution. */
19712 struct loclists_rnglists_header header;
19713 read_loclists_rnglists_header (&header, section,
19714 (sect_offset) (loclist_base - loclist_header_size));
19715
19716 /* Verify the loclist index is valid. */
19717 if (loclist_index >= header.offset_entry_count)
19718 error (_("DW_FORM_loclistx pointing outside of "
19719 ".debug_loclists offset array [in module %s]"),
19720 objfile_name (objfile));
19721
19722 /* Validate that reading won't go beyond the end of the section. */
19723 if (start_offset + cu->header.offset_size > section->size)
19724 error (_("Reading DW_FORM_loclistx index beyond end of"
19725 ".debug_loclists section [in module %s]"),
19726 objfile_name (objfile));
19727
19728 const gdb_byte *info_ptr = section->buffer + start_offset;
19729
19730 if (cu->header.offset_size == 4)
19731 return (sect_offset) (bfd_get_32 (abfd, info_ptr) + loclist_base);
19732 else
19733 return (sect_offset) (bfd_get_64 (abfd, info_ptr) + loclist_base);
19734 }
19735
19736 /* Given a DW_FORM_rnglistx value RNGLIST_INDEX, fetch the offset from the
19737 array of offsets in the .debug_rnglists section. */
19738
19739 static sect_offset
19740 read_rnglist_index (struct dwarf2_cu *cu, ULONGEST rnglist_index,
19741 dwarf_tag tag)
19742 {
19743 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19744 struct objfile *objfile = dwarf2_per_objfile->objfile;
19745 bfd *abfd = objfile->obfd;
19746 ULONGEST rnglist_header_size =
19747 (cu->header.initial_length_size == 4 ? RNGLIST_HEADER_SIZE32
19748 : RNGLIST_HEADER_SIZE64);
19749
19750 /* When reading a DW_FORM_rnglistx from a DWO, we read from the DWO's
19751 .debug_rnglists.dwo section. The rnglists base given in the skeleton
19752 doesn't apply. */
19753 ULONGEST rnglist_base =
19754 (cu->dwo_unit != nullptr) ? rnglist_header_size : cu->rnglists_base;
19755
19756 /* Offset in .debug_rnglists of the offset for RNGLIST_INDEX. */
19757 ULONGEST start_offset =
19758 rnglist_base + rnglist_index * cu->header.offset_size;
19759
19760 /* Get rnglists section. */
19761 struct dwarf2_section_info *section = cu_debug_rnglists_section (cu, tag);
19762
19763 /* Read the rnglists section content. */
19764 section->read (objfile);
19765 if (section->buffer == nullptr)
19766 error (_("DW_FORM_rnglistx used without .debug_rnglists section "
19767 "[in module %s]"),
19768 objfile_name (objfile));
19769
19770 /* DW_AT_rnglists_base points after the .debug_rnglists contribution header,
19771 so if rnglist_base is smaller than the header size, we have a problem. */
19772 if (rnglist_base < rnglist_header_size)
19773 error (_("DW_AT_rnglists_base is smaller than header size [in module %s]"),
19774 objfile_name (objfile));
19775
19776 /* Read the header of the rnglists contribution. */
19777 struct loclists_rnglists_header header;
19778 read_loclists_rnglists_header (&header, section,
19779 (sect_offset) (rnglist_base - rnglist_header_size));
19780
19781 /* Verify the rnglist index is valid. */
19782 if (rnglist_index >= header.offset_entry_count)
19783 error (_("DW_FORM_rnglistx index pointing outside of "
19784 ".debug_rnglists offset array [in module %s]"),
19785 objfile_name (objfile));
19786
19787 /* Validate that reading won't go beyond the end of the section. */
19788 if (start_offset + cu->header.offset_size > section->size)
19789 error (_("Reading DW_FORM_rnglistx index beyond end of"
19790 ".debug_rnglists section [in module %s]"),
19791 objfile_name (objfile));
19792
19793 const gdb_byte *info_ptr = section->buffer + start_offset;
19794
19795 if (cu->header.offset_size == 4)
19796 return (sect_offset) (read_4_bytes (abfd, info_ptr) + rnglist_base);
19797 else
19798 return (sect_offset) (read_8_bytes (abfd, info_ptr) + rnglist_base);
19799 }
19800
19801 /* Process the attributes that had to be skipped in the first round. These
19802 attributes are the ones that need str_offsets_base or addr_base attributes.
19803 They could not have been processed in the first round, because at the time
19804 the values of str_offsets_base or addr_base may not have been known. */
19805 static void
19806 read_attribute_reprocess (const struct die_reader_specs *reader,
19807 struct attribute *attr, dwarf_tag tag)
19808 {
19809 struct dwarf2_cu *cu = reader->cu;
19810 switch (attr->form)
19811 {
19812 case DW_FORM_addrx:
19813 case DW_FORM_GNU_addr_index:
19814 attr->set_address (read_addr_index (cu,
19815 attr->as_unsigned_reprocess ()));
19816 break;
19817 case DW_FORM_loclistx:
19818 {
19819 sect_offset loclists_sect_off
19820 = read_loclist_index (cu, attr->as_unsigned_reprocess ());
19821
19822 attr->set_unsigned (to_underlying (loclists_sect_off));
19823 }
19824 break;
19825 case DW_FORM_rnglistx:
19826 {
19827 sect_offset rnglists_sect_off
19828 = read_rnglist_index (cu, attr->as_unsigned_reprocess (), tag);
19829
19830 attr->set_unsigned (to_underlying (rnglists_sect_off));
19831 }
19832 break;
19833 case DW_FORM_strx:
19834 case DW_FORM_strx1:
19835 case DW_FORM_strx2:
19836 case DW_FORM_strx3:
19837 case DW_FORM_strx4:
19838 case DW_FORM_GNU_str_index:
19839 {
19840 unsigned int str_index = attr->as_unsigned_reprocess ();
19841 gdb_assert (!attr->canonical_string_p ());
19842 if (reader->dwo_file != NULL)
19843 attr->set_string_noncanonical (read_dwo_str_index (reader,
19844 str_index));
19845 else
19846 attr->set_string_noncanonical (read_stub_str_index (cu,
19847 str_index));
19848 break;
19849 }
19850 default:
19851 gdb_assert_not_reached (_("Unexpected DWARF form."));
19852 }
19853 }
19854
19855 /* Read an attribute value described by an attribute form. */
19856
19857 static const gdb_byte *
19858 read_attribute_value (const struct die_reader_specs *reader,
19859 struct attribute *attr, unsigned form,
19860 LONGEST implicit_const, const gdb_byte *info_ptr)
19861 {
19862 struct dwarf2_cu *cu = reader->cu;
19863 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19864 struct objfile *objfile = per_objfile->objfile;
19865 bfd *abfd = reader->abfd;
19866 struct comp_unit_head *cu_header = &cu->header;
19867 unsigned int bytes_read;
19868 struct dwarf_block *blk;
19869
19870 attr->form = (enum dwarf_form) form;
19871 switch (form)
19872 {
19873 case DW_FORM_ref_addr:
19874 if (cu_header->version == 2)
19875 attr->set_unsigned (cu_header->read_address (abfd, info_ptr,
19876 &bytes_read));
19877 else
19878 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
19879 &bytes_read));
19880 info_ptr += bytes_read;
19881 break;
19882 case DW_FORM_GNU_ref_alt:
19883 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
19884 &bytes_read));
19885 info_ptr += bytes_read;
19886 break;
19887 case DW_FORM_addr:
19888 {
19889 struct gdbarch *gdbarch = objfile->arch ();
19890 CORE_ADDR addr = cu_header->read_address (abfd, info_ptr, &bytes_read);
19891 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
19892 attr->set_address (addr);
19893 info_ptr += bytes_read;
19894 }
19895 break;
19896 case DW_FORM_block2:
19897 blk = dwarf_alloc_block (cu);
19898 blk->size = read_2_bytes (abfd, info_ptr);
19899 info_ptr += 2;
19900 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19901 info_ptr += blk->size;
19902 attr->set_block (blk);
19903 break;
19904 case DW_FORM_block4:
19905 blk = dwarf_alloc_block (cu);
19906 blk->size = read_4_bytes (abfd, info_ptr);
19907 info_ptr += 4;
19908 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19909 info_ptr += blk->size;
19910 attr->set_block (blk);
19911 break;
19912 case DW_FORM_data2:
19913 attr->set_unsigned (read_2_bytes (abfd, info_ptr));
19914 info_ptr += 2;
19915 break;
19916 case DW_FORM_data4:
19917 attr->set_unsigned (read_4_bytes (abfd, info_ptr));
19918 info_ptr += 4;
19919 break;
19920 case DW_FORM_data8:
19921 attr->set_unsigned (read_8_bytes (abfd, info_ptr));
19922 info_ptr += 8;
19923 break;
19924 case DW_FORM_data16:
19925 blk = dwarf_alloc_block (cu);
19926 blk->size = 16;
19927 blk->data = read_n_bytes (abfd, info_ptr, 16);
19928 info_ptr += 16;
19929 attr->set_block (blk);
19930 break;
19931 case DW_FORM_sec_offset:
19932 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
19933 &bytes_read));
19934 info_ptr += bytes_read;
19935 break;
19936 case DW_FORM_loclistx:
19937 {
19938 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19939 &bytes_read));
19940 info_ptr += bytes_read;
19941 }
19942 break;
19943 case DW_FORM_string:
19944 attr->set_string_noncanonical (read_direct_string (abfd, info_ptr,
19945 &bytes_read));
19946 info_ptr += bytes_read;
19947 break;
19948 case DW_FORM_strp:
19949 if (!cu->per_cu->is_dwz)
19950 {
19951 attr->set_string_noncanonical
19952 (read_indirect_string (per_objfile,
19953 abfd, info_ptr, cu_header,
19954 &bytes_read));
19955 info_ptr += bytes_read;
19956 break;
19957 }
19958 /* FALLTHROUGH */
19959 case DW_FORM_line_strp:
19960 if (!cu->per_cu->is_dwz)
19961 {
19962 attr->set_string_noncanonical
19963 (per_objfile->read_line_string (info_ptr, cu_header,
19964 &bytes_read));
19965 info_ptr += bytes_read;
19966 break;
19967 }
19968 /* FALLTHROUGH */
19969 case DW_FORM_GNU_strp_alt:
19970 {
19971 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd, true);
19972 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19973 &bytes_read);
19974
19975 attr->set_string_noncanonical
19976 (dwz->read_string (objfile, str_offset));
19977 info_ptr += bytes_read;
19978 }
19979 break;
19980 case DW_FORM_exprloc:
19981 case DW_FORM_block:
19982 blk = dwarf_alloc_block (cu);
19983 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19984 info_ptr += bytes_read;
19985 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19986 info_ptr += blk->size;
19987 attr->set_block (blk);
19988 break;
19989 case DW_FORM_block1:
19990 blk = dwarf_alloc_block (cu);
19991 blk->size = read_1_byte (abfd, info_ptr);
19992 info_ptr += 1;
19993 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19994 info_ptr += blk->size;
19995 attr->set_block (blk);
19996 break;
19997 case DW_FORM_data1:
19998 case DW_FORM_flag:
19999 attr->set_unsigned (read_1_byte (abfd, info_ptr));
20000 info_ptr += 1;
20001 break;
20002 case DW_FORM_flag_present:
20003 attr->set_unsigned (1);
20004 break;
20005 case DW_FORM_sdata:
20006 attr->set_signed (read_signed_leb128 (abfd, info_ptr, &bytes_read));
20007 info_ptr += bytes_read;
20008 break;
20009 case DW_FORM_rnglistx:
20010 {
20011 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
20012 &bytes_read));
20013 info_ptr += bytes_read;
20014 }
20015 break;
20016 case DW_FORM_udata:
20017 attr->set_unsigned (read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
20018 info_ptr += bytes_read;
20019 break;
20020 case DW_FORM_ref1:
20021 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20022 + read_1_byte (abfd, info_ptr)));
20023 info_ptr += 1;
20024 break;
20025 case DW_FORM_ref2:
20026 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20027 + read_2_bytes (abfd, info_ptr)));
20028 info_ptr += 2;
20029 break;
20030 case DW_FORM_ref4:
20031 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20032 + read_4_bytes (abfd, info_ptr)));
20033 info_ptr += 4;
20034 break;
20035 case DW_FORM_ref8:
20036 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20037 + read_8_bytes (abfd, info_ptr)));
20038 info_ptr += 8;
20039 break;
20040 case DW_FORM_ref_sig8:
20041 attr->set_signature (read_8_bytes (abfd, info_ptr));
20042 info_ptr += 8;
20043 break;
20044 case DW_FORM_ref_udata:
20045 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20046 + read_unsigned_leb128 (abfd, info_ptr,
20047 &bytes_read)));
20048 info_ptr += bytes_read;
20049 break;
20050 case DW_FORM_indirect:
20051 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
20052 info_ptr += bytes_read;
20053 if (form == DW_FORM_implicit_const)
20054 {
20055 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
20056 info_ptr += bytes_read;
20057 }
20058 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
20059 info_ptr);
20060 break;
20061 case DW_FORM_implicit_const:
20062 attr->set_signed (implicit_const);
20063 break;
20064 case DW_FORM_addrx:
20065 case DW_FORM_GNU_addr_index:
20066 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
20067 &bytes_read));
20068 info_ptr += bytes_read;
20069 break;
20070 case DW_FORM_strx:
20071 case DW_FORM_strx1:
20072 case DW_FORM_strx2:
20073 case DW_FORM_strx3:
20074 case DW_FORM_strx4:
20075 case DW_FORM_GNU_str_index:
20076 {
20077 ULONGEST str_index;
20078 if (form == DW_FORM_strx1)
20079 {
20080 str_index = read_1_byte (abfd, info_ptr);
20081 info_ptr += 1;
20082 }
20083 else if (form == DW_FORM_strx2)
20084 {
20085 str_index = read_2_bytes (abfd, info_ptr);
20086 info_ptr += 2;
20087 }
20088 else if (form == DW_FORM_strx3)
20089 {
20090 str_index = read_3_bytes (abfd, info_ptr);
20091 info_ptr += 3;
20092 }
20093 else if (form == DW_FORM_strx4)
20094 {
20095 str_index = read_4_bytes (abfd, info_ptr);
20096 info_ptr += 4;
20097 }
20098 else
20099 {
20100 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
20101 info_ptr += bytes_read;
20102 }
20103 attr->set_unsigned_reprocess (str_index);
20104 }
20105 break;
20106 default:
20107 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
20108 dwarf_form_name (form),
20109 bfd_get_filename (abfd));
20110 }
20111
20112 /* Super hack. */
20113 if (cu->per_cu->is_dwz && attr->form_is_ref ())
20114 attr->form = DW_FORM_GNU_ref_alt;
20115
20116 /* We have seen instances where the compiler tried to emit a byte
20117 size attribute of -1 which ended up being encoded as an unsigned
20118 0xffffffff. Although 0xffffffff is technically a valid size value,
20119 an object of this size seems pretty unlikely so we can relatively
20120 safely treat these cases as if the size attribute was invalid and
20121 treat them as zero by default. */
20122 if (attr->name == DW_AT_byte_size
20123 && form == DW_FORM_data4
20124 && attr->as_unsigned () >= 0xffffffff)
20125 {
20126 complaint
20127 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
20128 hex_string (attr->as_unsigned ()));
20129 attr->set_unsigned (0);
20130 }
20131
20132 return info_ptr;
20133 }
20134
20135 /* Read an attribute described by an abbreviated attribute. */
20136
20137 static const gdb_byte *
20138 read_attribute (const struct die_reader_specs *reader,
20139 struct attribute *attr, const struct attr_abbrev *abbrev,
20140 const gdb_byte *info_ptr)
20141 {
20142 attr->name = abbrev->name;
20143 attr->string_is_canonical = 0;
20144 attr->requires_reprocessing = 0;
20145 return read_attribute_value (reader, attr, abbrev->form,
20146 abbrev->implicit_const, info_ptr);
20147 }
20148
20149 /* Return pointer to string at .debug_str offset STR_OFFSET. */
20150
20151 static const char *
20152 read_indirect_string_at_offset (dwarf2_per_objfile *per_objfile,
20153 LONGEST str_offset)
20154 {
20155 return per_objfile->per_bfd->str.read_string (per_objfile->objfile,
20156 str_offset, "DW_FORM_strp");
20157 }
20158
20159 /* Return pointer to string at .debug_str offset as read from BUF.
20160 BUF is assumed to be in a compilation unit described by CU_HEADER.
20161 Return *BYTES_READ_PTR count of bytes read from BUF. */
20162
20163 static const char *
20164 read_indirect_string (dwarf2_per_objfile *per_objfile, bfd *abfd,
20165 const gdb_byte *buf,
20166 const struct comp_unit_head *cu_header,
20167 unsigned int *bytes_read_ptr)
20168 {
20169 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
20170
20171 return read_indirect_string_at_offset (per_objfile, str_offset);
20172 }
20173
20174 /* See read.h. */
20175
20176 const char *
20177 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
20178 const struct comp_unit_head *cu_header,
20179 unsigned int *bytes_read_ptr)
20180 {
20181 bfd *abfd = objfile->obfd;
20182 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
20183
20184 return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
20185 }
20186
20187 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
20188 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
20189 ADDR_SIZE is the size of addresses from the CU header. */
20190
20191 static CORE_ADDR
20192 read_addr_index_1 (dwarf2_per_objfile *per_objfile, unsigned int addr_index,
20193 gdb::optional<ULONGEST> addr_base, int addr_size)
20194 {
20195 struct objfile *objfile = per_objfile->objfile;
20196 bfd *abfd = objfile->obfd;
20197 const gdb_byte *info_ptr;
20198 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
20199
20200 per_objfile->per_bfd->addr.read (objfile);
20201 if (per_objfile->per_bfd->addr.buffer == NULL)
20202 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20203 objfile_name (objfile));
20204 if (addr_base_or_zero + addr_index * addr_size
20205 >= per_objfile->per_bfd->addr.size)
20206 error (_("DW_FORM_addr_index pointing outside of "
20207 ".debug_addr section [in module %s]"),
20208 objfile_name (objfile));
20209 info_ptr = (per_objfile->per_bfd->addr.buffer + addr_base_or_zero
20210 + addr_index * addr_size);
20211 if (addr_size == 4)
20212 return bfd_get_32 (abfd, info_ptr);
20213 else
20214 return bfd_get_64 (abfd, info_ptr);
20215 }
20216
20217 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20218
20219 static CORE_ADDR
20220 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20221 {
20222 return read_addr_index_1 (cu->per_objfile, addr_index,
20223 cu->addr_base, cu->header.addr_size);
20224 }
20225
20226 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20227
20228 static CORE_ADDR
20229 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20230 unsigned int *bytes_read)
20231 {
20232 bfd *abfd = cu->per_objfile->objfile->obfd;
20233 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20234
20235 return read_addr_index (cu, addr_index);
20236 }
20237
20238 /* See read.h. */
20239
20240 CORE_ADDR
20241 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu,
20242 dwarf2_per_objfile *per_objfile,
20243 unsigned int addr_index)
20244 {
20245 struct dwarf2_cu *cu = per_objfile->get_cu (per_cu);
20246 gdb::optional<ULONGEST> addr_base;
20247 int addr_size;
20248
20249 /* We need addr_base and addr_size.
20250 If we don't have PER_CU->cu, we have to get it.
20251 Nasty, but the alternative is storing the needed info in PER_CU,
20252 which at this point doesn't seem justified: it's not clear how frequently
20253 it would get used and it would increase the size of every PER_CU.
20254 Entry points like dwarf2_per_cu_addr_size do a similar thing
20255 so we're not in uncharted territory here.
20256 Alas we need to be a bit more complicated as addr_base is contained
20257 in the DIE.
20258
20259 We don't need to read the entire CU(/TU).
20260 We just need the header and top level die.
20261
20262 IWBN to use the aging mechanism to let us lazily later discard the CU.
20263 For now we skip this optimization. */
20264
20265 if (cu != NULL)
20266 {
20267 addr_base = cu->addr_base;
20268 addr_size = cu->header.addr_size;
20269 }
20270 else
20271 {
20272 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
20273 addr_base = reader.cu->addr_base;
20274 addr_size = reader.cu->header.addr_size;
20275 }
20276
20277 return read_addr_index_1 (per_objfile, addr_index, addr_base, addr_size);
20278 }
20279
20280 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
20281 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
20282 DWO file. */
20283
20284 static const char *
20285 read_str_index (struct dwarf2_cu *cu,
20286 struct dwarf2_section_info *str_section,
20287 struct dwarf2_section_info *str_offsets_section,
20288 ULONGEST str_offsets_base, ULONGEST str_index)
20289 {
20290 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20291 struct objfile *objfile = per_objfile->objfile;
20292 const char *objf_name = objfile_name (objfile);
20293 bfd *abfd = objfile->obfd;
20294 const gdb_byte *info_ptr;
20295 ULONGEST str_offset;
20296 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20297
20298 str_section->read (objfile);
20299 str_offsets_section->read (objfile);
20300 if (str_section->buffer == NULL)
20301 error (_("%s used without %s section"
20302 " in CU at offset %s [in module %s]"),
20303 form_name, str_section->get_name (),
20304 sect_offset_str (cu->header.sect_off), objf_name);
20305 if (str_offsets_section->buffer == NULL)
20306 error (_("%s used without %s section"
20307 " in CU at offset %s [in module %s]"),
20308 form_name, str_section->get_name (),
20309 sect_offset_str (cu->header.sect_off), objf_name);
20310 info_ptr = (str_offsets_section->buffer
20311 + str_offsets_base
20312 + str_index * cu->header.offset_size);
20313 if (cu->header.offset_size == 4)
20314 str_offset = bfd_get_32 (abfd, info_ptr);
20315 else
20316 str_offset = bfd_get_64 (abfd, info_ptr);
20317 if (str_offset >= str_section->size)
20318 error (_("Offset from %s pointing outside of"
20319 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20320 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20321 return (const char *) (str_section->buffer + str_offset);
20322 }
20323
20324 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
20325
20326 static const char *
20327 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20328 {
20329 ULONGEST str_offsets_base = reader->cu->header.version >= 5
20330 ? reader->cu->header.addr_size : 0;
20331 return read_str_index (reader->cu,
20332 &reader->dwo_file->sections.str,
20333 &reader->dwo_file->sections.str_offsets,
20334 str_offsets_base, str_index);
20335 }
20336
20337 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
20338
20339 static const char *
20340 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
20341 {
20342 struct objfile *objfile = cu->per_objfile->objfile;
20343 const char *objf_name = objfile_name (objfile);
20344 static const char form_name[] = "DW_FORM_GNU_str_index";
20345 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
20346
20347 if (!cu->str_offsets_base.has_value ())
20348 error (_("%s used in Fission stub without %s"
20349 " in CU at offset 0x%lx [in module %s]"),
20350 form_name, str_offsets_attr_name,
20351 (long) cu->header.offset_size, objf_name);
20352
20353 return read_str_index (cu,
20354 &cu->per_objfile->per_bfd->str,
20355 &cu->per_objfile->per_bfd->str_offsets,
20356 *cu->str_offsets_base, str_index);
20357 }
20358
20359 /* Return the length of an LEB128 number in BUF. */
20360
20361 static int
20362 leb128_size (const gdb_byte *buf)
20363 {
20364 const gdb_byte *begin = buf;
20365 gdb_byte byte;
20366
20367 while (1)
20368 {
20369 byte = *buf++;
20370 if ((byte & 128) == 0)
20371 return buf - begin;
20372 }
20373 }
20374
20375 static enum language
20376 dwarf_lang_to_enum_language (unsigned int lang)
20377 {
20378 enum language language;
20379
20380 switch (lang)
20381 {
20382 case DW_LANG_C89:
20383 case DW_LANG_C99:
20384 case DW_LANG_C11:
20385 case DW_LANG_C:
20386 case DW_LANG_UPC:
20387 language = language_c;
20388 break;
20389 case DW_LANG_Java:
20390 case DW_LANG_C_plus_plus:
20391 case DW_LANG_C_plus_plus_11:
20392 case DW_LANG_C_plus_plus_14:
20393 language = language_cplus;
20394 break;
20395 case DW_LANG_D:
20396 language = language_d;
20397 break;
20398 case DW_LANG_Fortran77:
20399 case DW_LANG_Fortran90:
20400 case DW_LANG_Fortran95:
20401 case DW_LANG_Fortran03:
20402 case DW_LANG_Fortran08:
20403 language = language_fortran;
20404 break;
20405 case DW_LANG_Go:
20406 language = language_go;
20407 break;
20408 case DW_LANG_Mips_Assembler:
20409 language = language_asm;
20410 break;
20411 case DW_LANG_Ada83:
20412 case DW_LANG_Ada95:
20413 language = language_ada;
20414 break;
20415 case DW_LANG_Modula2:
20416 language = language_m2;
20417 break;
20418 case DW_LANG_Pascal83:
20419 language = language_pascal;
20420 break;
20421 case DW_LANG_ObjC:
20422 language = language_objc;
20423 break;
20424 case DW_LANG_Rust:
20425 case DW_LANG_Rust_old:
20426 language = language_rust;
20427 break;
20428 case DW_LANG_OpenCL:
20429 language = language_opencl;
20430 break;
20431 case DW_LANG_Cobol74:
20432 case DW_LANG_Cobol85:
20433 default:
20434 language = language_minimal;
20435 break;
20436 }
20437
20438 return language;
20439 }
20440
20441 /* Return the named attribute or NULL if not there. */
20442
20443 static struct attribute *
20444 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20445 {
20446 for (;;)
20447 {
20448 unsigned int i;
20449 struct attribute *spec = NULL;
20450
20451 for (i = 0; i < die->num_attrs; ++i)
20452 {
20453 if (die->attrs[i].name == name)
20454 return &die->attrs[i];
20455 if (die->attrs[i].name == DW_AT_specification
20456 || die->attrs[i].name == DW_AT_abstract_origin)
20457 spec = &die->attrs[i];
20458 }
20459
20460 if (!spec)
20461 break;
20462
20463 die = follow_die_ref (die, spec, &cu);
20464 }
20465
20466 return NULL;
20467 }
20468
20469 /* Return the string associated with a string-typed attribute, or NULL if it
20470 is either not found or is of an incorrect type. */
20471
20472 static const char *
20473 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20474 {
20475 struct attribute *attr;
20476 const char *str = NULL;
20477
20478 attr = dwarf2_attr (die, name, cu);
20479
20480 if (attr != NULL)
20481 {
20482 str = attr->as_string ();
20483 if (str == nullptr)
20484 complaint (_("string type expected for attribute %s for "
20485 "DIE at %s in module %s"),
20486 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20487 objfile_name (cu->per_objfile->objfile));
20488 }
20489
20490 return str;
20491 }
20492
20493 /* Return the dwo name or NULL if not present. If present, it is in either
20494 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20495 static const char *
20496 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20497 {
20498 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20499 if (dwo_name == nullptr)
20500 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20501 return dwo_name;
20502 }
20503
20504 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20505 and holds a non-zero value. This function should only be used for
20506 DW_FORM_flag or DW_FORM_flag_present attributes. */
20507
20508 static int
20509 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20510 {
20511 struct attribute *attr = dwarf2_attr (die, name, cu);
20512
20513 return attr != nullptr && attr->as_boolean ();
20514 }
20515
20516 static int
20517 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20518 {
20519 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20520 which value is non-zero. However, we have to be careful with
20521 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20522 (via dwarf2_flag_true_p) follows this attribute. So we may
20523 end up accidently finding a declaration attribute that belongs
20524 to a different DIE referenced by the specification attribute,
20525 even though the given DIE does not have a declaration attribute. */
20526 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20527 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20528 }
20529
20530 /* Return the die giving the specification for DIE, if there is
20531 one. *SPEC_CU is the CU containing DIE on input, and the CU
20532 containing the return value on output. If there is no
20533 specification, but there is an abstract origin, that is
20534 returned. */
20535
20536 static struct die_info *
20537 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20538 {
20539 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20540 *spec_cu);
20541
20542 if (spec_attr == NULL)
20543 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20544
20545 if (spec_attr == NULL)
20546 return NULL;
20547 else
20548 return follow_die_ref (die, spec_attr, spec_cu);
20549 }
20550
20551 /* A convenience function to find the proper .debug_line section for a CU. */
20552
20553 static struct dwarf2_section_info *
20554 get_debug_line_section (struct dwarf2_cu *cu)
20555 {
20556 struct dwarf2_section_info *section;
20557 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20558
20559 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20560 DWO file. */
20561 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20562 section = &cu->dwo_unit->dwo_file->sections.line;
20563 else if (cu->per_cu->is_dwz)
20564 {
20565 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd, true);
20566
20567 section = &dwz->line;
20568 }
20569 else
20570 section = &per_objfile->per_bfd->line;
20571
20572 return section;
20573 }
20574
20575 /* Read the statement program header starting at OFFSET in
20576 .debug_line, or .debug_line.dwo. Return a pointer
20577 to a struct line_header, allocated using xmalloc.
20578 Returns NULL if there is a problem reading the header, e.g., if it
20579 has a version we don't understand.
20580
20581 NOTE: the strings in the include directory and file name tables of
20582 the returned object point into the dwarf line section buffer,
20583 and must not be freed. */
20584
20585 static line_header_up
20586 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20587 {
20588 struct dwarf2_section_info *section;
20589 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20590
20591 section = get_debug_line_section (cu);
20592 section->read (per_objfile->objfile);
20593 if (section->buffer == NULL)
20594 {
20595 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20596 complaint (_("missing .debug_line.dwo section"));
20597 else
20598 complaint (_("missing .debug_line section"));
20599 return 0;
20600 }
20601
20602 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
20603 per_objfile, section, &cu->header);
20604 }
20605
20606 /* Subroutine of dwarf_decode_lines to simplify it.
20607 Return the file name of the psymtab for the given file_entry.
20608 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20609 If space for the result is malloc'd, *NAME_HOLDER will be set.
20610 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20611
20612 static const char *
20613 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20614 const dwarf2_psymtab *pst,
20615 const char *comp_dir,
20616 gdb::unique_xmalloc_ptr<char> *name_holder)
20617 {
20618 const char *include_name = fe.name;
20619 const char *include_name_to_compare = include_name;
20620 const char *pst_filename;
20621 int file_is_pst;
20622
20623 const char *dir_name = fe.include_dir (lh);
20624
20625 gdb::unique_xmalloc_ptr<char> hold_compare;
20626 if (!IS_ABSOLUTE_PATH (include_name)
20627 && (dir_name != NULL || comp_dir != NULL))
20628 {
20629 /* Avoid creating a duplicate psymtab for PST.
20630 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20631 Before we do the comparison, however, we need to account
20632 for DIR_NAME and COMP_DIR.
20633 First prepend dir_name (if non-NULL). If we still don't
20634 have an absolute path prepend comp_dir (if non-NULL).
20635 However, the directory we record in the include-file's
20636 psymtab does not contain COMP_DIR (to match the
20637 corresponding symtab(s)).
20638
20639 Example:
20640
20641 bash$ cd /tmp
20642 bash$ gcc -g ./hello.c
20643 include_name = "hello.c"
20644 dir_name = "."
20645 DW_AT_comp_dir = comp_dir = "/tmp"
20646 DW_AT_name = "./hello.c"
20647
20648 */
20649
20650 if (dir_name != NULL)
20651 {
20652 name_holder->reset (concat (dir_name, SLASH_STRING,
20653 include_name, (char *) NULL));
20654 include_name = name_holder->get ();
20655 include_name_to_compare = include_name;
20656 }
20657 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20658 {
20659 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20660 include_name, (char *) NULL));
20661 include_name_to_compare = hold_compare.get ();
20662 }
20663 }
20664
20665 pst_filename = pst->filename;
20666 gdb::unique_xmalloc_ptr<char> copied_name;
20667 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20668 {
20669 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20670 pst_filename, (char *) NULL));
20671 pst_filename = copied_name.get ();
20672 }
20673
20674 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20675
20676 if (file_is_pst)
20677 return NULL;
20678 return include_name;
20679 }
20680
20681 /* State machine to track the state of the line number program. */
20682
20683 class lnp_state_machine
20684 {
20685 public:
20686 /* Initialize a machine state for the start of a line number
20687 program. */
20688 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20689 bool record_lines_p);
20690
20691 file_entry *current_file ()
20692 {
20693 /* lh->file_names is 0-based, but the file name numbers in the
20694 statement program are 1-based. */
20695 return m_line_header->file_name_at (m_file);
20696 }
20697
20698 /* Record the line in the state machine. END_SEQUENCE is true if
20699 we're processing the end of a sequence. */
20700 void record_line (bool end_sequence);
20701
20702 /* Check ADDRESS is -1, or zero and less than UNRELOCATED_LOWPC, and if true
20703 nop-out rest of the lines in this sequence. */
20704 void check_line_address (struct dwarf2_cu *cu,
20705 const gdb_byte *line_ptr,
20706 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20707
20708 void handle_set_discriminator (unsigned int discriminator)
20709 {
20710 m_discriminator = discriminator;
20711 m_line_has_non_zero_discriminator |= discriminator != 0;
20712 }
20713
20714 /* Handle DW_LNE_set_address. */
20715 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20716 {
20717 m_op_index = 0;
20718 address += baseaddr;
20719 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20720 }
20721
20722 /* Handle DW_LNS_advance_pc. */
20723 void handle_advance_pc (CORE_ADDR adjust);
20724
20725 /* Handle a special opcode. */
20726 void handle_special_opcode (unsigned char op_code);
20727
20728 /* Handle DW_LNS_advance_line. */
20729 void handle_advance_line (int line_delta)
20730 {
20731 advance_line (line_delta);
20732 }
20733
20734 /* Handle DW_LNS_set_file. */
20735 void handle_set_file (file_name_index file);
20736
20737 /* Handle DW_LNS_negate_stmt. */
20738 void handle_negate_stmt ()
20739 {
20740 m_is_stmt = !m_is_stmt;
20741 }
20742
20743 /* Handle DW_LNS_const_add_pc. */
20744 void handle_const_add_pc ();
20745
20746 /* Handle DW_LNS_fixed_advance_pc. */
20747 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20748 {
20749 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20750 m_op_index = 0;
20751 }
20752
20753 /* Handle DW_LNS_copy. */
20754 void handle_copy ()
20755 {
20756 record_line (false);
20757 m_discriminator = 0;
20758 }
20759
20760 /* Handle DW_LNE_end_sequence. */
20761 void handle_end_sequence ()
20762 {
20763 m_currently_recording_lines = true;
20764 }
20765
20766 private:
20767 /* Advance the line by LINE_DELTA. */
20768 void advance_line (int line_delta)
20769 {
20770 m_line += line_delta;
20771
20772 if (line_delta != 0)
20773 m_line_has_non_zero_discriminator = m_discriminator != 0;
20774 }
20775
20776 struct dwarf2_cu *m_cu;
20777
20778 gdbarch *m_gdbarch;
20779
20780 /* True if we're recording lines.
20781 Otherwise we're building partial symtabs and are just interested in
20782 finding include files mentioned by the line number program. */
20783 bool m_record_lines_p;
20784
20785 /* The line number header. */
20786 line_header *m_line_header;
20787
20788 /* These are part of the standard DWARF line number state machine,
20789 and initialized according to the DWARF spec. */
20790
20791 unsigned char m_op_index = 0;
20792 /* The line table index of the current file. */
20793 file_name_index m_file = 1;
20794 unsigned int m_line = 1;
20795
20796 /* These are initialized in the constructor. */
20797
20798 CORE_ADDR m_address;
20799 bool m_is_stmt;
20800 unsigned int m_discriminator;
20801
20802 /* Additional bits of state we need to track. */
20803
20804 /* The last file that we called dwarf2_start_subfile for.
20805 This is only used for TLLs. */
20806 unsigned int m_last_file = 0;
20807 /* The last file a line number was recorded for. */
20808 struct subfile *m_last_subfile = NULL;
20809
20810 /* The address of the last line entry. */
20811 CORE_ADDR m_last_address;
20812
20813 /* Set to true when a previous line at the same address (using
20814 m_last_address) had m_is_stmt true. This is reset to false when a
20815 line entry at a new address (m_address different to m_last_address) is
20816 processed. */
20817 bool m_stmt_at_address = false;
20818
20819 /* When true, record the lines we decode. */
20820 bool m_currently_recording_lines = false;
20821
20822 /* The last line number that was recorded, used to coalesce
20823 consecutive entries for the same line. This can happen, for
20824 example, when discriminators are present. PR 17276. */
20825 unsigned int m_last_line = 0;
20826 bool m_line_has_non_zero_discriminator = false;
20827 };
20828
20829 void
20830 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20831 {
20832 CORE_ADDR addr_adj = (((m_op_index + adjust)
20833 / m_line_header->maximum_ops_per_instruction)
20834 * m_line_header->minimum_instruction_length);
20835 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20836 m_op_index = ((m_op_index + adjust)
20837 % m_line_header->maximum_ops_per_instruction);
20838 }
20839
20840 void
20841 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20842 {
20843 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20844 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
20845 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
20846 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
20847 / m_line_header->maximum_ops_per_instruction)
20848 * m_line_header->minimum_instruction_length);
20849 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20850 m_op_index = ((m_op_index + adj_opcode_d)
20851 % m_line_header->maximum_ops_per_instruction);
20852
20853 int line_delta = m_line_header->line_base + adj_opcode_r;
20854 advance_line (line_delta);
20855 record_line (false);
20856 m_discriminator = 0;
20857 }
20858
20859 void
20860 lnp_state_machine::handle_set_file (file_name_index file)
20861 {
20862 m_file = file;
20863
20864 const file_entry *fe = current_file ();
20865 if (fe == NULL)
20866 dwarf2_debug_line_missing_file_complaint ();
20867 else if (m_record_lines_p)
20868 {
20869 const char *dir = fe->include_dir (m_line_header);
20870
20871 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20872 m_line_has_non_zero_discriminator = m_discriminator != 0;
20873 dwarf2_start_subfile (m_cu, fe->name, dir);
20874 }
20875 }
20876
20877 void
20878 lnp_state_machine::handle_const_add_pc ()
20879 {
20880 CORE_ADDR adjust
20881 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20882
20883 CORE_ADDR addr_adj
20884 = (((m_op_index + adjust)
20885 / m_line_header->maximum_ops_per_instruction)
20886 * m_line_header->minimum_instruction_length);
20887
20888 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20889 m_op_index = ((m_op_index + adjust)
20890 % m_line_header->maximum_ops_per_instruction);
20891 }
20892
20893 /* Return non-zero if we should add LINE to the line number table.
20894 LINE is the line to add, LAST_LINE is the last line that was added,
20895 LAST_SUBFILE is the subfile for LAST_LINE.
20896 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20897 had a non-zero discriminator.
20898
20899 We have to be careful in the presence of discriminators.
20900 E.g., for this line:
20901
20902 for (i = 0; i < 100000; i++);
20903
20904 clang can emit four line number entries for that one line,
20905 each with a different discriminator.
20906 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20907
20908 However, we want gdb to coalesce all four entries into one.
20909 Otherwise the user could stepi into the middle of the line and
20910 gdb would get confused about whether the pc really was in the
20911 middle of the line.
20912
20913 Things are further complicated by the fact that two consecutive
20914 line number entries for the same line is a heuristic used by gcc
20915 to denote the end of the prologue. So we can't just discard duplicate
20916 entries, we have to be selective about it. The heuristic we use is
20917 that we only collapse consecutive entries for the same line if at least
20918 one of those entries has a non-zero discriminator. PR 17276.
20919
20920 Note: Addresses in the line number state machine can never go backwards
20921 within one sequence, thus this coalescing is ok. */
20922
20923 static int
20924 dwarf_record_line_p (struct dwarf2_cu *cu,
20925 unsigned int line, unsigned int last_line,
20926 int line_has_non_zero_discriminator,
20927 struct subfile *last_subfile)
20928 {
20929 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20930 return 1;
20931 if (line != last_line)
20932 return 1;
20933 /* Same line for the same file that we've seen already.
20934 As a last check, for pr 17276, only record the line if the line
20935 has never had a non-zero discriminator. */
20936 if (!line_has_non_zero_discriminator)
20937 return 1;
20938 return 0;
20939 }
20940
20941 /* Use the CU's builder to record line number LINE beginning at
20942 address ADDRESS in the line table of subfile SUBFILE. */
20943
20944 static void
20945 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20946 unsigned int line, CORE_ADDR address, bool is_stmt,
20947 struct dwarf2_cu *cu)
20948 {
20949 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20950
20951 if (dwarf_line_debug)
20952 {
20953 fprintf_unfiltered (gdb_stdlog,
20954 "Recording line %u, file %s, address %s\n",
20955 line, lbasename (subfile->name),
20956 paddress (gdbarch, address));
20957 }
20958
20959 if (cu != nullptr)
20960 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
20961 }
20962
20963 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20964 Mark the end of a set of line number records.
20965 The arguments are the same as for dwarf_record_line_1.
20966 If SUBFILE is NULL the request is ignored. */
20967
20968 static void
20969 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20970 CORE_ADDR address, struct dwarf2_cu *cu)
20971 {
20972 if (subfile == NULL)
20973 return;
20974
20975 if (dwarf_line_debug)
20976 {
20977 fprintf_unfiltered (gdb_stdlog,
20978 "Finishing current line, file %s, address %s\n",
20979 lbasename (subfile->name),
20980 paddress (gdbarch, address));
20981 }
20982
20983 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20984 }
20985
20986 void
20987 lnp_state_machine::record_line (bool end_sequence)
20988 {
20989 if (dwarf_line_debug)
20990 {
20991 fprintf_unfiltered (gdb_stdlog,
20992 "Processing actual line %u: file %u,"
20993 " address %s, is_stmt %u, discrim %u%s\n",
20994 m_line, m_file,
20995 paddress (m_gdbarch, m_address),
20996 m_is_stmt, m_discriminator,
20997 (end_sequence ? "\t(end sequence)" : ""));
20998 }
20999
21000 file_entry *fe = current_file ();
21001
21002 if (fe == NULL)
21003 dwarf2_debug_line_missing_file_complaint ();
21004 /* For now we ignore lines not starting on an instruction boundary.
21005 But not when processing end_sequence for compatibility with the
21006 previous version of the code. */
21007 else if (m_op_index == 0 || end_sequence)
21008 {
21009 fe->included_p = 1;
21010 if (m_record_lines_p)
21011 {
21012 /* When we switch files we insert an end maker in the first file,
21013 switch to the second file and add a new line entry. The
21014 problem is that the end marker inserted in the first file will
21015 discard any previous line entries at the same address. If the
21016 line entries in the first file are marked as is-stmt, while
21017 the new line in the second file is non-stmt, then this means
21018 the end marker will discard is-stmt lines so we can have a
21019 non-stmt line. This means that there are less addresses at
21020 which the user can insert a breakpoint.
21021
21022 To improve this we track the last address in m_last_address,
21023 and whether we have seen an is-stmt at this address. Then
21024 when switching files, if we have seen a stmt at the current
21025 address, and we are switching to create a non-stmt line, then
21026 discard the new line. */
21027 bool file_changed
21028 = m_last_subfile != m_cu->get_builder ()->get_current_subfile ();
21029 bool ignore_this_line
21030 = ((file_changed && !end_sequence && m_last_address == m_address
21031 && !m_is_stmt && m_stmt_at_address)
21032 || (!end_sequence && m_line == 0));
21033
21034 if ((file_changed && !ignore_this_line) || end_sequence)
21035 {
21036 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21037 m_currently_recording_lines ? m_cu : nullptr);
21038 }
21039
21040 if (!end_sequence && !ignore_this_line)
21041 {
21042 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
21043
21044 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21045 m_line_has_non_zero_discriminator,
21046 m_last_subfile))
21047 {
21048 buildsym_compunit *builder = m_cu->get_builder ();
21049 dwarf_record_line_1 (m_gdbarch,
21050 builder->get_current_subfile (),
21051 m_line, m_address, is_stmt,
21052 m_currently_recording_lines ? m_cu : nullptr);
21053 }
21054 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21055 m_last_line = m_line;
21056 }
21057 }
21058 }
21059
21060 /* Track whether we have seen any m_is_stmt true at m_address in case we
21061 have multiple line table entries all at m_address. */
21062 if (m_last_address != m_address)
21063 {
21064 m_stmt_at_address = false;
21065 m_last_address = m_address;
21066 }
21067 m_stmt_at_address |= m_is_stmt;
21068 }
21069
21070 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21071 line_header *lh, bool record_lines_p)
21072 {
21073 m_cu = cu;
21074 m_gdbarch = arch;
21075 m_record_lines_p = record_lines_p;
21076 m_line_header = lh;
21077
21078 m_currently_recording_lines = true;
21079
21080 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21081 was a line entry for it so that the backend has a chance to adjust it
21082 and also record it in case it needs it. This is currently used by MIPS
21083 code, cf. `mips_adjust_dwarf2_line'. */
21084 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21085 m_is_stmt = lh->default_is_stmt;
21086 m_discriminator = 0;
21087
21088 m_last_address = m_address;
21089 m_stmt_at_address = false;
21090 }
21091
21092 void
21093 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21094 const gdb_byte *line_ptr,
21095 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21096 {
21097 /* Linkers resolve a symbolic relocation referencing a GC'd function to 0 or
21098 -1. If ADDRESS is 0, ignoring the opcode will err if the text section is
21099 located at 0x0. In this case, additionally check that if
21100 ADDRESS < UNRELOCATED_LOWPC. */
21101
21102 if ((address == 0 && address < unrelocated_lowpc)
21103 || address == (CORE_ADDR) -1)
21104 {
21105 /* This line table is for a function which has been
21106 GCd by the linker. Ignore it. PR gdb/12528 */
21107
21108 struct objfile *objfile = cu->per_objfile->objfile;
21109 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21110
21111 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21112 line_offset, objfile_name (objfile));
21113 m_currently_recording_lines = false;
21114 /* Note: m_currently_recording_lines is left as false until we see
21115 DW_LNE_end_sequence. */
21116 }
21117 }
21118
21119 /* Subroutine of dwarf_decode_lines to simplify it.
21120 Process the line number information in LH.
21121 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21122 program in order to set included_p for every referenced header. */
21123
21124 static void
21125 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21126 const int decode_for_pst_p, CORE_ADDR lowpc)
21127 {
21128 const gdb_byte *line_ptr, *extended_end;
21129 const gdb_byte *line_end;
21130 unsigned int bytes_read, extended_len;
21131 unsigned char op_code, extended_op;
21132 CORE_ADDR baseaddr;
21133 struct objfile *objfile = cu->per_objfile->objfile;
21134 bfd *abfd = objfile->obfd;
21135 struct gdbarch *gdbarch = objfile->arch ();
21136 /* True if we're recording line info (as opposed to building partial
21137 symtabs and just interested in finding include files mentioned by
21138 the line number program). */
21139 bool record_lines_p = !decode_for_pst_p;
21140
21141 baseaddr = objfile->text_section_offset ();
21142
21143 line_ptr = lh->statement_program_start;
21144 line_end = lh->statement_program_end;
21145
21146 /* Read the statement sequences until there's nothing left. */
21147 while (line_ptr < line_end)
21148 {
21149 /* The DWARF line number program state machine. Reset the state
21150 machine at the start of each sequence. */
21151 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21152 bool end_sequence = false;
21153
21154 if (record_lines_p)
21155 {
21156 /* Start a subfile for the current file of the state
21157 machine. */
21158 const file_entry *fe = state_machine.current_file ();
21159
21160 if (fe != NULL)
21161 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21162 }
21163
21164 /* Decode the table. */
21165 while (line_ptr < line_end && !end_sequence)
21166 {
21167 op_code = read_1_byte (abfd, line_ptr);
21168 line_ptr += 1;
21169
21170 if (op_code >= lh->opcode_base)
21171 {
21172 /* Special opcode. */
21173 state_machine.handle_special_opcode (op_code);
21174 }
21175 else switch (op_code)
21176 {
21177 case DW_LNS_extended_op:
21178 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21179 &bytes_read);
21180 line_ptr += bytes_read;
21181 extended_end = line_ptr + extended_len;
21182 extended_op = read_1_byte (abfd, line_ptr);
21183 line_ptr += 1;
21184 if (DW_LNE_lo_user <= extended_op
21185 && extended_op <= DW_LNE_hi_user)
21186 {
21187 /* Vendor extension, ignore. */
21188 line_ptr = extended_end;
21189 break;
21190 }
21191 switch (extended_op)
21192 {
21193 case DW_LNE_end_sequence:
21194 state_machine.handle_end_sequence ();
21195 end_sequence = true;
21196 break;
21197 case DW_LNE_set_address:
21198 {
21199 CORE_ADDR address
21200 = cu->header.read_address (abfd, line_ptr, &bytes_read);
21201 line_ptr += bytes_read;
21202
21203 state_machine.check_line_address (cu, line_ptr,
21204 lowpc - baseaddr, address);
21205 state_machine.handle_set_address (baseaddr, address);
21206 }
21207 break;
21208 case DW_LNE_define_file:
21209 {
21210 const char *cur_file;
21211 unsigned int mod_time, length;
21212 dir_index dindex;
21213
21214 cur_file = read_direct_string (abfd, line_ptr,
21215 &bytes_read);
21216 line_ptr += bytes_read;
21217 dindex = (dir_index)
21218 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21219 line_ptr += bytes_read;
21220 mod_time =
21221 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21222 line_ptr += bytes_read;
21223 length =
21224 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21225 line_ptr += bytes_read;
21226 lh->add_file_name (cur_file, dindex, mod_time, length);
21227 }
21228 break;
21229 case DW_LNE_set_discriminator:
21230 {
21231 /* The discriminator is not interesting to the
21232 debugger; just ignore it. We still need to
21233 check its value though:
21234 if there are consecutive entries for the same
21235 (non-prologue) line we want to coalesce them.
21236 PR 17276. */
21237 unsigned int discr
21238 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21239 line_ptr += bytes_read;
21240
21241 state_machine.handle_set_discriminator (discr);
21242 }
21243 break;
21244 default:
21245 complaint (_("mangled .debug_line section"));
21246 return;
21247 }
21248 /* Make sure that we parsed the extended op correctly. If e.g.
21249 we expected a different address size than the producer used,
21250 we may have read the wrong number of bytes. */
21251 if (line_ptr != extended_end)
21252 {
21253 complaint (_("mangled .debug_line section"));
21254 return;
21255 }
21256 break;
21257 case DW_LNS_copy:
21258 state_machine.handle_copy ();
21259 break;
21260 case DW_LNS_advance_pc:
21261 {
21262 CORE_ADDR adjust
21263 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21264 line_ptr += bytes_read;
21265
21266 state_machine.handle_advance_pc (adjust);
21267 }
21268 break;
21269 case DW_LNS_advance_line:
21270 {
21271 int line_delta
21272 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21273 line_ptr += bytes_read;
21274
21275 state_machine.handle_advance_line (line_delta);
21276 }
21277 break;
21278 case DW_LNS_set_file:
21279 {
21280 file_name_index file
21281 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21282 &bytes_read);
21283 line_ptr += bytes_read;
21284
21285 state_machine.handle_set_file (file);
21286 }
21287 break;
21288 case DW_LNS_set_column:
21289 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21290 line_ptr += bytes_read;
21291 break;
21292 case DW_LNS_negate_stmt:
21293 state_machine.handle_negate_stmt ();
21294 break;
21295 case DW_LNS_set_basic_block:
21296 break;
21297 /* Add to the address register of the state machine the
21298 address increment value corresponding to special opcode
21299 255. I.e., this value is scaled by the minimum
21300 instruction length since special opcode 255 would have
21301 scaled the increment. */
21302 case DW_LNS_const_add_pc:
21303 state_machine.handle_const_add_pc ();
21304 break;
21305 case DW_LNS_fixed_advance_pc:
21306 {
21307 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21308 line_ptr += 2;
21309
21310 state_machine.handle_fixed_advance_pc (addr_adj);
21311 }
21312 break;
21313 default:
21314 {
21315 /* Unknown standard opcode, ignore it. */
21316 int i;
21317
21318 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21319 {
21320 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21321 line_ptr += bytes_read;
21322 }
21323 }
21324 }
21325 }
21326
21327 if (!end_sequence)
21328 dwarf2_debug_line_missing_end_sequence_complaint ();
21329
21330 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21331 in which case we still finish recording the last line). */
21332 state_machine.record_line (true);
21333 }
21334 }
21335
21336 /* Decode the Line Number Program (LNP) for the given line_header
21337 structure and CU. The actual information extracted and the type
21338 of structures created from the LNP depends on the value of PST.
21339
21340 1. If PST is NULL, then this procedure uses the data from the program
21341 to create all necessary symbol tables, and their linetables.
21342
21343 2. If PST is not NULL, this procedure reads the program to determine
21344 the list of files included by the unit represented by PST, and
21345 builds all the associated partial symbol tables.
21346
21347 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21348 It is used for relative paths in the line table.
21349 NOTE: When processing partial symtabs (pst != NULL),
21350 comp_dir == pst->dirname.
21351
21352 NOTE: It is important that psymtabs have the same file name (via strcmp)
21353 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21354 symtab we don't use it in the name of the psymtabs we create.
21355 E.g. expand_line_sal requires this when finding psymtabs to expand.
21356 A good testcase for this is mb-inline.exp.
21357
21358 LOWPC is the lowest address in CU (or 0 if not known).
21359
21360 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21361 for its PC<->lines mapping information. Otherwise only the filename
21362 table is read in. */
21363
21364 static void
21365 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21366 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
21367 CORE_ADDR lowpc, int decode_mapping)
21368 {
21369 struct objfile *objfile = cu->per_objfile->objfile;
21370 const int decode_for_pst_p = (pst != NULL);
21371
21372 if (decode_mapping)
21373 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21374
21375 if (decode_for_pst_p)
21376 {
21377 /* Now that we're done scanning the Line Header Program, we can
21378 create the psymtab of each included file. */
21379 for (auto &file_entry : lh->file_names ())
21380 if (file_entry.included_p == 1)
21381 {
21382 gdb::unique_xmalloc_ptr<char> name_holder;
21383 const char *include_name =
21384 psymtab_include_file_name (lh, file_entry, pst,
21385 comp_dir, &name_holder);
21386 if (include_name != NULL)
21387 dwarf2_create_include_psymtab
21388 (cu->per_objfile->per_bfd, include_name, pst,
21389 cu->per_objfile->per_bfd->partial_symtabs.get (),
21390 objfile->per_bfd);
21391 }
21392 }
21393 else
21394 {
21395 /* Make sure a symtab is created for every file, even files
21396 which contain only variables (i.e. no code with associated
21397 line numbers). */
21398 buildsym_compunit *builder = cu->get_builder ();
21399 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21400
21401 for (auto &fe : lh->file_names ())
21402 {
21403 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21404 if (builder->get_current_subfile ()->symtab == NULL)
21405 {
21406 builder->get_current_subfile ()->symtab
21407 = allocate_symtab (cust,
21408 builder->get_current_subfile ()->name);
21409 }
21410 fe.symtab = builder->get_current_subfile ()->symtab;
21411 }
21412 }
21413 }
21414
21415 /* Start a subfile for DWARF. FILENAME is the name of the file and
21416 DIRNAME the name of the source directory which contains FILENAME
21417 or NULL if not known.
21418 This routine tries to keep line numbers from identical absolute and
21419 relative file names in a common subfile.
21420
21421 Using the `list' example from the GDB testsuite, which resides in
21422 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21423 of /srcdir/list0.c yields the following debugging information for list0.c:
21424
21425 DW_AT_name: /srcdir/list0.c
21426 DW_AT_comp_dir: /compdir
21427 files.files[0].name: list0.h
21428 files.files[0].dir: /srcdir
21429 files.files[1].name: list0.c
21430 files.files[1].dir: /srcdir
21431
21432 The line number information for list0.c has to end up in a single
21433 subfile, so that `break /srcdir/list0.c:1' works as expected.
21434 start_subfile will ensure that this happens provided that we pass the
21435 concatenation of files.files[1].dir and files.files[1].name as the
21436 subfile's name. */
21437
21438 static void
21439 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21440 const char *dirname)
21441 {
21442 gdb::unique_xmalloc_ptr<char> copy;
21443
21444 /* In order not to lose the line information directory,
21445 we concatenate it to the filename when it makes sense.
21446 Note that the Dwarf3 standard says (speaking of filenames in line
21447 information): ``The directory index is ignored for file names
21448 that represent full path names''. Thus ignoring dirname in the
21449 `else' branch below isn't an issue. */
21450
21451 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21452 {
21453 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21454 filename = copy.get ();
21455 }
21456
21457 cu->get_builder ()->start_subfile (filename);
21458 }
21459
21460 static void
21461 var_decode_location (struct attribute *attr, struct symbol *sym,
21462 struct dwarf2_cu *cu)
21463 {
21464 struct objfile *objfile = cu->per_objfile->objfile;
21465 struct comp_unit_head *cu_header = &cu->header;
21466
21467 /* NOTE drow/2003-01-30: There used to be a comment and some special
21468 code here to turn a symbol with DW_AT_external and a
21469 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21470 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21471 with some versions of binutils) where shared libraries could have
21472 relocations against symbols in their debug information - the
21473 minimal symbol would have the right address, but the debug info
21474 would not. It's no longer necessary, because we will explicitly
21475 apply relocations when we read in the debug information now. */
21476
21477 /* A DW_AT_location attribute with no contents indicates that a
21478 variable has been optimized away. */
21479 if (attr->form_is_block () && attr->as_block ()->size == 0)
21480 {
21481 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21482 return;
21483 }
21484
21485 /* Handle one degenerate form of location expression specially, to
21486 preserve GDB's previous behavior when section offsets are
21487 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21488 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21489
21490 if (attr->form_is_block ())
21491 {
21492 struct dwarf_block *block = attr->as_block ();
21493
21494 if ((block->data[0] == DW_OP_addr
21495 && block->size == 1 + cu_header->addr_size)
21496 || ((block->data[0] == DW_OP_GNU_addr_index
21497 || block->data[0] == DW_OP_addrx)
21498 && (block->size
21499 == 1 + leb128_size (&block->data[1]))))
21500 {
21501 unsigned int dummy;
21502
21503 if (block->data[0] == DW_OP_addr)
21504 SET_SYMBOL_VALUE_ADDRESS
21505 (sym, cu->header.read_address (objfile->obfd,
21506 block->data + 1,
21507 &dummy));
21508 else
21509 SET_SYMBOL_VALUE_ADDRESS
21510 (sym, read_addr_index_from_leb128 (cu, block->data + 1,
21511 &dummy));
21512 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21513 fixup_symbol_section (sym, objfile);
21514 SET_SYMBOL_VALUE_ADDRESS
21515 (sym,
21516 SYMBOL_VALUE_ADDRESS (sym)
21517 + objfile->section_offsets[sym->section_index ()]);
21518 return;
21519 }
21520 }
21521
21522 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21523 expression evaluator, and use LOC_COMPUTED only when necessary
21524 (i.e. when the value of a register or memory location is
21525 referenced, or a thread-local block, etc.). Then again, it might
21526 not be worthwhile. I'm assuming that it isn't unless performance
21527 or memory numbers show me otherwise. */
21528
21529 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21530
21531 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21532 cu->has_loclist = true;
21533 }
21534
21535 /* Given a pointer to a DWARF information entry, figure out if we need
21536 to make a symbol table entry for it, and if so, create a new entry
21537 and return a pointer to it.
21538 If TYPE is NULL, determine symbol type from the die, otherwise
21539 used the passed type.
21540 If SPACE is not NULL, use it to hold the new symbol. If it is
21541 NULL, allocate a new symbol on the objfile's obstack. */
21542
21543 static struct symbol *
21544 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21545 struct symbol *space)
21546 {
21547 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21548 struct objfile *objfile = per_objfile->objfile;
21549 struct gdbarch *gdbarch = objfile->arch ();
21550 struct symbol *sym = NULL;
21551 const char *name;
21552 struct attribute *attr = NULL;
21553 struct attribute *attr2 = NULL;
21554 CORE_ADDR baseaddr;
21555 struct pending **list_to_add = NULL;
21556
21557 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21558
21559 baseaddr = objfile->text_section_offset ();
21560
21561 name = dwarf2_name (die, cu);
21562 if (name)
21563 {
21564 int suppress_add = 0;
21565
21566 if (space)
21567 sym = space;
21568 else
21569 sym = new (&objfile->objfile_obstack) symbol;
21570 OBJSTAT (objfile, n_syms++);
21571
21572 /* Cache this symbol's name and the name's demangled form (if any). */
21573 sym->set_language (cu->per_cu->lang, &objfile->objfile_obstack);
21574 /* Fortran does not have mangling standard and the mangling does differ
21575 between gfortran, iFort etc. */
21576 const char *physname
21577 = (cu->per_cu->lang == language_fortran
21578 ? dwarf2_full_name (name, die, cu)
21579 : dwarf2_physname (name, die, cu));
21580 const char *linkagename = dw2_linkage_name (die, cu);
21581
21582 if (linkagename == nullptr || cu->per_cu->lang == language_ada)
21583 sym->set_linkage_name (physname);
21584 else
21585 {
21586 sym->set_demangled_name (physname, &objfile->objfile_obstack);
21587 sym->set_linkage_name (linkagename);
21588 }
21589
21590 /* Default assumptions.
21591 Use the passed type or decode it from the die. */
21592 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21593 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21594 if (type != NULL)
21595 SYMBOL_TYPE (sym) = type;
21596 else
21597 SYMBOL_TYPE (sym) = die_type (die, cu);
21598 attr = dwarf2_attr (die,
21599 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21600 cu);
21601 if (attr != nullptr)
21602 SYMBOL_LINE (sym) = attr->constant_value (0);
21603
21604 attr = dwarf2_attr (die,
21605 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21606 cu);
21607 if (attr != nullptr && attr->is_nonnegative ())
21608 {
21609 file_name_index file_index
21610 = (file_name_index) attr->as_nonnegative ();
21611 struct file_entry *fe;
21612
21613 if (cu->line_header != NULL)
21614 fe = cu->line_header->file_name_at (file_index);
21615 else
21616 fe = NULL;
21617
21618 if (fe == NULL)
21619 complaint (_("file index out of range"));
21620 else
21621 symbol_set_symtab (sym, fe->symtab);
21622 }
21623
21624 switch (die->tag)
21625 {
21626 case DW_TAG_label:
21627 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21628 if (attr != nullptr)
21629 {
21630 CORE_ADDR addr;
21631
21632 addr = attr->as_address ();
21633 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21634 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21635 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21636 }
21637 else
21638 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21639 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21640 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21641 add_symbol_to_list (sym, cu->list_in_scope);
21642 break;
21643 case DW_TAG_subprogram:
21644 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21645 finish_block. */
21646 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21647 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21648 if ((attr2 != nullptr && attr2->as_boolean ())
21649 || cu->per_cu->lang == language_ada
21650 || cu->per_cu->lang == language_fortran)
21651 {
21652 /* Subprograms marked external are stored as a global symbol.
21653 Ada and Fortran subprograms, whether marked external or
21654 not, are always stored as a global symbol, because we want
21655 to be able to access them globally. For instance, we want
21656 to be able to break on a nested subprogram without having
21657 to specify the context. */
21658 list_to_add = cu->get_builder ()->get_global_symbols ();
21659 }
21660 else
21661 {
21662 list_to_add = cu->list_in_scope;
21663 }
21664 break;
21665 case DW_TAG_inlined_subroutine:
21666 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21667 finish_block. */
21668 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21669 SYMBOL_INLINED (sym) = 1;
21670 list_to_add = cu->list_in_scope;
21671 break;
21672 case DW_TAG_template_value_param:
21673 suppress_add = 1;
21674 /* Fall through. */
21675 case DW_TAG_constant:
21676 case DW_TAG_variable:
21677 case DW_TAG_member:
21678 /* Compilation with minimal debug info may result in
21679 variables with missing type entries. Change the
21680 misleading `void' type to something sensible. */
21681 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
21682 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21683
21684 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21685 /* In the case of DW_TAG_member, we should only be called for
21686 static const members. */
21687 if (die->tag == DW_TAG_member)
21688 {
21689 /* dwarf2_add_field uses die_is_declaration,
21690 so we do the same. */
21691 gdb_assert (die_is_declaration (die, cu));
21692 gdb_assert (attr);
21693 }
21694 if (attr != nullptr)
21695 {
21696 dwarf2_const_value (attr, sym, cu);
21697 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21698 if (!suppress_add)
21699 {
21700 if (attr2 != nullptr && attr2->as_boolean ())
21701 list_to_add = cu->get_builder ()->get_global_symbols ();
21702 else
21703 list_to_add = cu->list_in_scope;
21704 }
21705 break;
21706 }
21707 attr = dwarf2_attr (die, DW_AT_location, cu);
21708 if (attr != nullptr)
21709 {
21710 var_decode_location (attr, sym, cu);
21711 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21712
21713 /* Fortran explicitly imports any global symbols to the local
21714 scope by DW_TAG_common_block. */
21715 if (cu->per_cu->lang == language_fortran && die->parent
21716 && die->parent->tag == DW_TAG_common_block)
21717 attr2 = NULL;
21718
21719 if (SYMBOL_CLASS (sym) == LOC_STATIC
21720 && SYMBOL_VALUE_ADDRESS (sym) == 0
21721 && !per_objfile->per_bfd->has_section_at_zero)
21722 {
21723 /* When a static variable is eliminated by the linker,
21724 the corresponding debug information is not stripped
21725 out, but the variable address is set to null;
21726 do not add such variables into symbol table. */
21727 }
21728 else if (attr2 != nullptr && attr2->as_boolean ())
21729 {
21730 if (SYMBOL_CLASS (sym) == LOC_STATIC
21731 && (objfile->flags & OBJF_MAINLINE) == 0
21732 && per_objfile->per_bfd->can_copy)
21733 {
21734 /* A global static variable might be subject to
21735 copy relocation. We first check for a local
21736 minsym, though, because maybe the symbol was
21737 marked hidden, in which case this would not
21738 apply. */
21739 bound_minimal_symbol found
21740 = (lookup_minimal_symbol_linkage
21741 (sym->linkage_name (), objfile));
21742 if (found.minsym != nullptr)
21743 sym->maybe_copied = 1;
21744 }
21745
21746 /* A variable with DW_AT_external is never static,
21747 but it may be block-scoped. */
21748 list_to_add
21749 = ((cu->list_in_scope
21750 == cu->get_builder ()->get_file_symbols ())
21751 ? cu->get_builder ()->get_global_symbols ()
21752 : cu->list_in_scope);
21753 }
21754 else
21755 list_to_add = cu->list_in_scope;
21756 }
21757 else
21758 {
21759 /* We do not know the address of this symbol.
21760 If it is an external symbol and we have type information
21761 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21762 The address of the variable will then be determined from
21763 the minimal symbol table whenever the variable is
21764 referenced. */
21765 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21766
21767 /* Fortran explicitly imports any global symbols to the local
21768 scope by DW_TAG_common_block. */
21769 if (cu->per_cu->lang == language_fortran && die->parent
21770 && die->parent->tag == DW_TAG_common_block)
21771 {
21772 /* SYMBOL_CLASS doesn't matter here because
21773 read_common_block is going to reset it. */
21774 if (!suppress_add)
21775 list_to_add = cu->list_in_scope;
21776 }
21777 else if (attr2 != nullptr && attr2->as_boolean ()
21778 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21779 {
21780 /* A variable with DW_AT_external is never static, but it
21781 may be block-scoped. */
21782 list_to_add
21783 = ((cu->list_in_scope
21784 == cu->get_builder ()->get_file_symbols ())
21785 ? cu->get_builder ()->get_global_symbols ()
21786 : cu->list_in_scope);
21787
21788 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21789 }
21790 else if (!die_is_declaration (die, cu))
21791 {
21792 /* Use the default LOC_OPTIMIZED_OUT class. */
21793 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21794 if (!suppress_add)
21795 list_to_add = cu->list_in_scope;
21796 }
21797 }
21798 break;
21799 case DW_TAG_formal_parameter:
21800 {
21801 /* If we are inside a function, mark this as an argument. If
21802 not, we might be looking at an argument to an inlined function
21803 when we do not have enough information to show inlined frames;
21804 pretend it's a local variable in that case so that the user can
21805 still see it. */
21806 struct context_stack *curr
21807 = cu->get_builder ()->get_current_context_stack ();
21808 if (curr != nullptr && curr->name != nullptr)
21809 SYMBOL_IS_ARGUMENT (sym) = 1;
21810 attr = dwarf2_attr (die, DW_AT_location, cu);
21811 if (attr != nullptr)
21812 {
21813 var_decode_location (attr, sym, cu);
21814 }
21815 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21816 if (attr != nullptr)
21817 {
21818 dwarf2_const_value (attr, sym, cu);
21819 }
21820
21821 list_to_add = cu->list_in_scope;
21822 }
21823 break;
21824 case DW_TAG_unspecified_parameters:
21825 /* From varargs functions; gdb doesn't seem to have any
21826 interest in this information, so just ignore it for now.
21827 (FIXME?) */
21828 break;
21829 case DW_TAG_template_type_param:
21830 suppress_add = 1;
21831 /* Fall through. */
21832 case DW_TAG_class_type:
21833 case DW_TAG_interface_type:
21834 case DW_TAG_structure_type:
21835 case DW_TAG_union_type:
21836 case DW_TAG_set_type:
21837 case DW_TAG_enumeration_type:
21838 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21839 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21840
21841 {
21842 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21843 really ever be static objects: otherwise, if you try
21844 to, say, break of a class's method and you're in a file
21845 which doesn't mention that class, it won't work unless
21846 the check for all static symbols in lookup_symbol_aux
21847 saves you. See the OtherFileClass tests in
21848 gdb.c++/namespace.exp. */
21849
21850 if (!suppress_add)
21851 {
21852 buildsym_compunit *builder = cu->get_builder ();
21853 list_to_add
21854 = (cu->list_in_scope == builder->get_file_symbols ()
21855 && cu->per_cu->lang == language_cplus
21856 ? builder->get_global_symbols ()
21857 : cu->list_in_scope);
21858
21859 /* The semantics of C++ state that "struct foo {
21860 ... }" also defines a typedef for "foo". */
21861 if (cu->per_cu->lang == language_cplus
21862 || cu->per_cu->lang == language_ada
21863 || cu->per_cu->lang == language_d
21864 || cu->per_cu->lang == language_rust)
21865 {
21866 /* The symbol's name is already allocated along
21867 with this objfile, so we don't need to
21868 duplicate it for the type. */
21869 if (SYMBOL_TYPE (sym)->name () == 0)
21870 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
21871 }
21872 }
21873 }
21874 break;
21875 case DW_TAG_typedef:
21876 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21877 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21878 list_to_add = cu->list_in_scope;
21879 break;
21880 case DW_TAG_array_type:
21881 case DW_TAG_base_type:
21882 case DW_TAG_subrange_type:
21883 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21884 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21885 list_to_add = cu->list_in_scope;
21886 break;
21887 case DW_TAG_enumerator:
21888 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21889 if (attr != nullptr)
21890 {
21891 dwarf2_const_value (attr, sym, cu);
21892 }
21893 {
21894 /* NOTE: carlton/2003-11-10: See comment above in the
21895 DW_TAG_class_type, etc. block. */
21896
21897 list_to_add
21898 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21899 && cu->per_cu->lang == language_cplus
21900 ? cu->get_builder ()->get_global_symbols ()
21901 : cu->list_in_scope);
21902 }
21903 break;
21904 case DW_TAG_imported_declaration:
21905 case DW_TAG_namespace:
21906 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21907 list_to_add = cu->get_builder ()->get_global_symbols ();
21908 break;
21909 case DW_TAG_module:
21910 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21911 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21912 list_to_add = cu->get_builder ()->get_global_symbols ();
21913 break;
21914 case DW_TAG_common_block:
21915 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21916 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21917 add_symbol_to_list (sym, cu->list_in_scope);
21918 break;
21919 default:
21920 /* Not a tag we recognize. Hopefully we aren't processing
21921 trash data, but since we must specifically ignore things
21922 we don't recognize, there is nothing else we should do at
21923 this point. */
21924 complaint (_("unsupported tag: '%s'"),
21925 dwarf_tag_name (die->tag));
21926 break;
21927 }
21928
21929 if (suppress_add)
21930 {
21931 sym->hash_next = objfile->template_symbols;
21932 objfile->template_symbols = sym;
21933 list_to_add = NULL;
21934 }
21935
21936 if (list_to_add != NULL)
21937 add_symbol_to_list (sym, list_to_add);
21938
21939 /* For the benefit of old versions of GCC, check for anonymous
21940 namespaces based on the demangled name. */
21941 if (!cu->processing_has_namespace_info
21942 && cu->per_cu->lang == language_cplus)
21943 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21944 }
21945 return (sym);
21946 }
21947
21948 /* Given an attr with a DW_FORM_dataN value in host byte order,
21949 zero-extend it as appropriate for the symbol's type. The DWARF
21950 standard (v4) is not entirely clear about the meaning of using
21951 DW_FORM_dataN for a constant with a signed type, where the type is
21952 wider than the data. The conclusion of a discussion on the DWARF
21953 list was that this is unspecified. We choose to always zero-extend
21954 because that is the interpretation long in use by GCC. */
21955
21956 static gdb_byte *
21957 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21958 struct dwarf2_cu *cu, LONGEST *value, int bits)
21959 {
21960 struct objfile *objfile = cu->per_objfile->objfile;
21961 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21962 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21963 LONGEST l = attr->constant_value (0);
21964
21965 if (bits < sizeof (*value) * 8)
21966 {
21967 l &= ((LONGEST) 1 << bits) - 1;
21968 *value = l;
21969 }
21970 else if (bits == sizeof (*value) * 8)
21971 *value = l;
21972 else
21973 {
21974 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21975 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21976 return bytes;
21977 }
21978
21979 return NULL;
21980 }
21981
21982 /* Read a constant value from an attribute. Either set *VALUE, or if
21983 the value does not fit in *VALUE, set *BYTES - either already
21984 allocated on the objfile obstack, or newly allocated on OBSTACK,
21985 or, set *BATON, if we translated the constant to a location
21986 expression. */
21987
21988 static void
21989 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21990 const char *name, struct obstack *obstack,
21991 struct dwarf2_cu *cu,
21992 LONGEST *value, const gdb_byte **bytes,
21993 struct dwarf2_locexpr_baton **baton)
21994 {
21995 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21996 struct objfile *objfile = per_objfile->objfile;
21997 struct comp_unit_head *cu_header = &cu->header;
21998 struct dwarf_block *blk;
21999 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22000 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22001
22002 *value = 0;
22003 *bytes = NULL;
22004 *baton = NULL;
22005
22006 switch (attr->form)
22007 {
22008 case DW_FORM_addr:
22009 case DW_FORM_addrx:
22010 case DW_FORM_GNU_addr_index:
22011 {
22012 gdb_byte *data;
22013
22014 if (TYPE_LENGTH (type) != cu_header->addr_size)
22015 dwarf2_const_value_length_mismatch_complaint (name,
22016 cu_header->addr_size,
22017 TYPE_LENGTH (type));
22018 /* Symbols of this form are reasonably rare, so we just
22019 piggyback on the existing location code rather than writing
22020 a new implementation of symbol_computed_ops. */
22021 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22022 (*baton)->per_objfile = per_objfile;
22023 (*baton)->per_cu = cu->per_cu;
22024 gdb_assert ((*baton)->per_cu);
22025
22026 (*baton)->size = 2 + cu_header->addr_size;
22027 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22028 (*baton)->data = data;
22029
22030 data[0] = DW_OP_addr;
22031 store_unsigned_integer (&data[1], cu_header->addr_size,
22032 byte_order, attr->as_address ());
22033 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22034 }
22035 break;
22036 case DW_FORM_string:
22037 case DW_FORM_strp:
22038 case DW_FORM_strx:
22039 case DW_FORM_GNU_str_index:
22040 case DW_FORM_GNU_strp_alt:
22041 /* The string is already allocated on the objfile obstack, point
22042 directly to it. */
22043 *bytes = (const gdb_byte *) attr->as_string ();
22044 break;
22045 case DW_FORM_block1:
22046 case DW_FORM_block2:
22047 case DW_FORM_block4:
22048 case DW_FORM_block:
22049 case DW_FORM_exprloc:
22050 case DW_FORM_data16:
22051 blk = attr->as_block ();
22052 if (TYPE_LENGTH (type) != blk->size)
22053 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22054 TYPE_LENGTH (type));
22055 *bytes = blk->data;
22056 break;
22057
22058 /* The DW_AT_const_value attributes are supposed to carry the
22059 symbol's value "represented as it would be on the target
22060 architecture." By the time we get here, it's already been
22061 converted to host endianness, so we just need to sign- or
22062 zero-extend it as appropriate. */
22063 case DW_FORM_data1:
22064 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22065 break;
22066 case DW_FORM_data2:
22067 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22068 break;
22069 case DW_FORM_data4:
22070 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22071 break;
22072 case DW_FORM_data8:
22073 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22074 break;
22075
22076 case DW_FORM_sdata:
22077 case DW_FORM_implicit_const:
22078 *value = attr->as_signed ();
22079 break;
22080
22081 case DW_FORM_udata:
22082 *value = attr->as_unsigned ();
22083 break;
22084
22085 default:
22086 complaint (_("unsupported const value attribute form: '%s'"),
22087 dwarf_form_name (attr->form));
22088 *value = 0;
22089 break;
22090 }
22091 }
22092
22093
22094 /* Copy constant value from an attribute to a symbol. */
22095
22096 static void
22097 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22098 struct dwarf2_cu *cu)
22099 {
22100 struct objfile *objfile = cu->per_objfile->objfile;
22101 LONGEST value;
22102 const gdb_byte *bytes;
22103 struct dwarf2_locexpr_baton *baton;
22104
22105 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22106 sym->print_name (),
22107 &objfile->objfile_obstack, cu,
22108 &value, &bytes, &baton);
22109
22110 if (baton != NULL)
22111 {
22112 SYMBOL_LOCATION_BATON (sym) = baton;
22113 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22114 }
22115 else if (bytes != NULL)
22116 {
22117 SYMBOL_VALUE_BYTES (sym) = bytes;
22118 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22119 }
22120 else
22121 {
22122 SYMBOL_VALUE (sym) = value;
22123 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22124 }
22125 }
22126
22127 /* Return the type of the die in question using its DW_AT_type attribute. */
22128
22129 static struct type *
22130 die_type (struct die_info *die, struct dwarf2_cu *cu)
22131 {
22132 struct attribute *type_attr;
22133
22134 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22135 if (!type_attr)
22136 {
22137 struct objfile *objfile = cu->per_objfile->objfile;
22138 /* A missing DW_AT_type represents a void type. */
22139 return objfile_type (objfile)->builtin_void;
22140 }
22141
22142 return lookup_die_type (die, type_attr, cu);
22143 }
22144
22145 /* True iff CU's producer generates GNAT Ada auxiliary information
22146 that allows to find parallel types through that information instead
22147 of having to do expensive parallel lookups by type name. */
22148
22149 static int
22150 need_gnat_info (struct dwarf2_cu *cu)
22151 {
22152 /* Assume that the Ada compiler was GNAT, which always produces
22153 the auxiliary information. */
22154 return (cu->per_cu->lang == language_ada);
22155 }
22156
22157 /* Return the auxiliary type of the die in question using its
22158 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22159 attribute is not present. */
22160
22161 static struct type *
22162 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22163 {
22164 struct attribute *type_attr;
22165
22166 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22167 if (!type_attr)
22168 return NULL;
22169
22170 return lookup_die_type (die, type_attr, cu);
22171 }
22172
22173 /* If DIE has a descriptive_type attribute, then set the TYPE's
22174 descriptive type accordingly. */
22175
22176 static void
22177 set_descriptive_type (struct type *type, struct die_info *die,
22178 struct dwarf2_cu *cu)
22179 {
22180 struct type *descriptive_type = die_descriptive_type (die, cu);
22181
22182 if (descriptive_type)
22183 {
22184 ALLOCATE_GNAT_AUX_TYPE (type);
22185 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22186 }
22187 }
22188
22189 /* Return the containing type of the die in question using its
22190 DW_AT_containing_type attribute. */
22191
22192 static struct type *
22193 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22194 {
22195 struct attribute *type_attr;
22196 struct objfile *objfile = cu->per_objfile->objfile;
22197
22198 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22199 if (!type_attr)
22200 error (_("Dwarf Error: Problem turning containing type into gdb type "
22201 "[in module %s]"), objfile_name (objfile));
22202
22203 return lookup_die_type (die, type_attr, cu);
22204 }
22205
22206 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22207
22208 static struct type *
22209 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22210 {
22211 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22212 struct objfile *objfile = per_objfile->objfile;
22213 char *saved;
22214
22215 std::string message
22216 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22217 objfile_name (objfile),
22218 sect_offset_str (cu->header.sect_off),
22219 sect_offset_str (die->sect_off));
22220 saved = obstack_strdup (&objfile->objfile_obstack, message);
22221
22222 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22223 }
22224
22225 /* Look up the type of DIE in CU using its type attribute ATTR.
22226 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22227 DW_AT_containing_type.
22228 If there is no type substitute an error marker. */
22229
22230 static struct type *
22231 lookup_die_type (struct die_info *die, const struct attribute *attr,
22232 struct dwarf2_cu *cu)
22233 {
22234 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22235 struct objfile *objfile = per_objfile->objfile;
22236 struct type *this_type;
22237
22238 gdb_assert (attr->name == DW_AT_type
22239 || attr->name == DW_AT_GNAT_descriptive_type
22240 || attr->name == DW_AT_containing_type);
22241
22242 /* First see if we have it cached. */
22243
22244 if (attr->form == DW_FORM_GNU_ref_alt)
22245 {
22246 struct dwarf2_per_cu_data *per_cu;
22247 sect_offset sect_off = attr->get_ref_die_offset ();
22248
22249 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, per_objfile);
22250 this_type = get_die_type_at_offset (sect_off, per_cu, per_objfile);
22251 }
22252 else if (attr->form_is_ref ())
22253 {
22254 sect_offset sect_off = attr->get_ref_die_offset ();
22255
22256 this_type = get_die_type_at_offset (sect_off, cu->per_cu, per_objfile);
22257 }
22258 else if (attr->form == DW_FORM_ref_sig8)
22259 {
22260 ULONGEST signature = attr->as_signature ();
22261
22262 return get_signatured_type (die, signature, cu);
22263 }
22264 else
22265 {
22266 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22267 " at %s [in module %s]"),
22268 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22269 objfile_name (objfile));
22270 return build_error_marker_type (cu, die);
22271 }
22272
22273 /* If not cached we need to read it in. */
22274
22275 if (this_type == NULL)
22276 {
22277 struct die_info *type_die = NULL;
22278 struct dwarf2_cu *type_cu = cu;
22279
22280 if (attr->form_is_ref ())
22281 type_die = follow_die_ref (die, attr, &type_cu);
22282 if (type_die == NULL)
22283 return build_error_marker_type (cu, die);
22284 /* If we find the type now, it's probably because the type came
22285 from an inter-CU reference and the type's CU got expanded before
22286 ours. */
22287 this_type = read_type_die (type_die, type_cu);
22288 }
22289
22290 /* If we still don't have a type use an error marker. */
22291
22292 if (this_type == NULL)
22293 return build_error_marker_type (cu, die);
22294
22295 return this_type;
22296 }
22297
22298 /* Return the type in DIE, CU.
22299 Returns NULL for invalid types.
22300
22301 This first does a lookup in die_type_hash,
22302 and only reads the die in if necessary.
22303
22304 NOTE: This can be called when reading in partial or full symbols. */
22305
22306 static struct type *
22307 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22308 {
22309 struct type *this_type;
22310
22311 this_type = get_die_type (die, cu);
22312 if (this_type)
22313 return this_type;
22314
22315 return read_type_die_1 (die, cu);
22316 }
22317
22318 /* Read the type in DIE, CU.
22319 Returns NULL for invalid types. */
22320
22321 static struct type *
22322 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22323 {
22324 struct type *this_type = NULL;
22325
22326 switch (die->tag)
22327 {
22328 case DW_TAG_class_type:
22329 case DW_TAG_interface_type:
22330 case DW_TAG_structure_type:
22331 case DW_TAG_union_type:
22332 this_type = read_structure_type (die, cu);
22333 break;
22334 case DW_TAG_enumeration_type:
22335 this_type = read_enumeration_type (die, cu);
22336 break;
22337 case DW_TAG_subprogram:
22338 case DW_TAG_subroutine_type:
22339 case DW_TAG_inlined_subroutine:
22340 this_type = read_subroutine_type (die, cu);
22341 break;
22342 case DW_TAG_array_type:
22343 this_type = read_array_type (die, cu);
22344 break;
22345 case DW_TAG_set_type:
22346 this_type = read_set_type (die, cu);
22347 break;
22348 case DW_TAG_pointer_type:
22349 this_type = read_tag_pointer_type (die, cu);
22350 break;
22351 case DW_TAG_ptr_to_member_type:
22352 this_type = read_tag_ptr_to_member_type (die, cu);
22353 break;
22354 case DW_TAG_reference_type:
22355 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22356 break;
22357 case DW_TAG_rvalue_reference_type:
22358 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22359 break;
22360 case DW_TAG_const_type:
22361 this_type = read_tag_const_type (die, cu);
22362 break;
22363 case DW_TAG_volatile_type:
22364 this_type = read_tag_volatile_type (die, cu);
22365 break;
22366 case DW_TAG_restrict_type:
22367 this_type = read_tag_restrict_type (die, cu);
22368 break;
22369 case DW_TAG_string_type:
22370 this_type = read_tag_string_type (die, cu);
22371 break;
22372 case DW_TAG_typedef:
22373 this_type = read_typedef (die, cu);
22374 break;
22375 case DW_TAG_subrange_type:
22376 this_type = read_subrange_type (die, cu);
22377 break;
22378 case DW_TAG_base_type:
22379 this_type = read_base_type (die, cu);
22380 break;
22381 case DW_TAG_unspecified_type:
22382 this_type = read_unspecified_type (die, cu);
22383 break;
22384 case DW_TAG_namespace:
22385 this_type = read_namespace_type (die, cu);
22386 break;
22387 case DW_TAG_module:
22388 this_type = read_module_type (die, cu);
22389 break;
22390 case DW_TAG_atomic_type:
22391 this_type = read_tag_atomic_type (die, cu);
22392 break;
22393 default:
22394 complaint (_("unexpected tag in read_type_die: '%s'"),
22395 dwarf_tag_name (die->tag));
22396 break;
22397 }
22398
22399 return this_type;
22400 }
22401
22402 /* See if we can figure out if the class lives in a namespace. We do
22403 this by looking for a member function; its demangled name will
22404 contain namespace info, if there is any.
22405 Return the computed name or NULL.
22406 Space for the result is allocated on the objfile's obstack.
22407 This is the full-die version of guess_partial_die_structure_name.
22408 In this case we know DIE has no useful parent. */
22409
22410 static const char *
22411 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22412 {
22413 struct die_info *spec_die;
22414 struct dwarf2_cu *spec_cu;
22415 struct die_info *child;
22416 struct objfile *objfile = cu->per_objfile->objfile;
22417
22418 spec_cu = cu;
22419 spec_die = die_specification (die, &spec_cu);
22420 if (spec_die != NULL)
22421 {
22422 die = spec_die;
22423 cu = spec_cu;
22424 }
22425
22426 for (child = die->child;
22427 child != NULL;
22428 child = child->sibling)
22429 {
22430 if (child->tag == DW_TAG_subprogram)
22431 {
22432 const char *linkage_name = dw2_linkage_name (child, cu);
22433
22434 if (linkage_name != NULL)
22435 {
22436 gdb::unique_xmalloc_ptr<char> actual_name
22437 (cu->language_defn->class_name_from_physname (linkage_name));
22438 const char *name = NULL;
22439
22440 if (actual_name != NULL)
22441 {
22442 const char *die_name = dwarf2_name (die, cu);
22443
22444 if (die_name != NULL
22445 && strcmp (die_name, actual_name.get ()) != 0)
22446 {
22447 /* Strip off the class name from the full name.
22448 We want the prefix. */
22449 int die_name_len = strlen (die_name);
22450 int actual_name_len = strlen (actual_name.get ());
22451 const char *ptr = actual_name.get ();
22452
22453 /* Test for '::' as a sanity check. */
22454 if (actual_name_len > die_name_len + 2
22455 && ptr[actual_name_len - die_name_len - 1] == ':')
22456 name = obstack_strndup (
22457 &objfile->per_bfd->storage_obstack,
22458 ptr, actual_name_len - die_name_len - 2);
22459 }
22460 }
22461 return name;
22462 }
22463 }
22464 }
22465
22466 return NULL;
22467 }
22468
22469 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22470 prefix part in such case. See
22471 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22472
22473 static const char *
22474 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22475 {
22476 struct attribute *attr;
22477 const char *base;
22478
22479 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22480 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22481 return NULL;
22482
22483 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22484 return NULL;
22485
22486 attr = dw2_linkage_name_attr (die, cu);
22487 const char *attr_name = attr->as_string ();
22488 if (attr == NULL || attr_name == NULL)
22489 return NULL;
22490
22491 /* dwarf2_name had to be already called. */
22492 gdb_assert (attr->canonical_string_p ());
22493
22494 /* Strip the base name, keep any leading namespaces/classes. */
22495 base = strrchr (attr_name, ':');
22496 if (base == NULL || base == attr_name || base[-1] != ':')
22497 return "";
22498
22499 struct objfile *objfile = cu->per_objfile->objfile;
22500 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22501 attr_name,
22502 &base[-1] - attr_name);
22503 }
22504
22505 /* Return the name of the namespace/class that DIE is defined within,
22506 or "" if we can't tell. The caller should not xfree the result.
22507
22508 For example, if we're within the method foo() in the following
22509 code:
22510
22511 namespace N {
22512 class C {
22513 void foo () {
22514 }
22515 };
22516 }
22517
22518 then determine_prefix on foo's die will return "N::C". */
22519
22520 static const char *
22521 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22522 {
22523 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22524 struct die_info *parent, *spec_die;
22525 struct dwarf2_cu *spec_cu;
22526 struct type *parent_type;
22527 const char *retval;
22528
22529 if (cu->per_cu->lang != language_cplus
22530 && cu->per_cu->lang != language_fortran
22531 && cu->per_cu->lang != language_d
22532 && cu->per_cu->lang != language_rust)
22533 return "";
22534
22535 retval = anonymous_struct_prefix (die, cu);
22536 if (retval)
22537 return retval;
22538
22539 /* We have to be careful in the presence of DW_AT_specification.
22540 For example, with GCC 3.4, given the code
22541
22542 namespace N {
22543 void foo() {
22544 // Definition of N::foo.
22545 }
22546 }
22547
22548 then we'll have a tree of DIEs like this:
22549
22550 1: DW_TAG_compile_unit
22551 2: DW_TAG_namespace // N
22552 3: DW_TAG_subprogram // declaration of N::foo
22553 4: DW_TAG_subprogram // definition of N::foo
22554 DW_AT_specification // refers to die #3
22555
22556 Thus, when processing die #4, we have to pretend that we're in
22557 the context of its DW_AT_specification, namely the contex of die
22558 #3. */
22559 spec_cu = cu;
22560 spec_die = die_specification (die, &spec_cu);
22561 if (spec_die == NULL)
22562 parent = die->parent;
22563 else
22564 {
22565 parent = spec_die->parent;
22566 cu = spec_cu;
22567 }
22568
22569 if (parent == NULL)
22570 return "";
22571 else if (parent->building_fullname)
22572 {
22573 const char *name;
22574 const char *parent_name;
22575
22576 /* It has been seen on RealView 2.2 built binaries,
22577 DW_TAG_template_type_param types actually _defined_ as
22578 children of the parent class:
22579
22580 enum E {};
22581 template class <class Enum> Class{};
22582 Class<enum E> class_e;
22583
22584 1: DW_TAG_class_type (Class)
22585 2: DW_TAG_enumeration_type (E)
22586 3: DW_TAG_enumerator (enum1:0)
22587 3: DW_TAG_enumerator (enum2:1)
22588 ...
22589 2: DW_TAG_template_type_param
22590 DW_AT_type DW_FORM_ref_udata (E)
22591
22592 Besides being broken debug info, it can put GDB into an
22593 infinite loop. Consider:
22594
22595 When we're building the full name for Class<E>, we'll start
22596 at Class, and go look over its template type parameters,
22597 finding E. We'll then try to build the full name of E, and
22598 reach here. We're now trying to build the full name of E,
22599 and look over the parent DIE for containing scope. In the
22600 broken case, if we followed the parent DIE of E, we'd again
22601 find Class, and once again go look at its template type
22602 arguments, etc., etc. Simply don't consider such parent die
22603 as source-level parent of this die (it can't be, the language
22604 doesn't allow it), and break the loop here. */
22605 name = dwarf2_name (die, cu);
22606 parent_name = dwarf2_name (parent, cu);
22607 complaint (_("template param type '%s' defined within parent '%s'"),
22608 name ? name : "<unknown>",
22609 parent_name ? parent_name : "<unknown>");
22610 return "";
22611 }
22612 else
22613 switch (parent->tag)
22614 {
22615 case DW_TAG_namespace:
22616 parent_type = read_type_die (parent, cu);
22617 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22618 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22619 Work around this problem here. */
22620 if (cu->per_cu->lang == language_cplus
22621 && strcmp (parent_type->name (), "::") == 0)
22622 return "";
22623 /* We give a name to even anonymous namespaces. */
22624 return parent_type->name ();
22625 case DW_TAG_class_type:
22626 case DW_TAG_interface_type:
22627 case DW_TAG_structure_type:
22628 case DW_TAG_union_type:
22629 case DW_TAG_module:
22630 parent_type = read_type_die (parent, cu);
22631 if (parent_type->name () != NULL)
22632 return parent_type->name ();
22633 else
22634 /* An anonymous structure is only allowed non-static data
22635 members; no typedefs, no member functions, et cetera.
22636 So it does not need a prefix. */
22637 return "";
22638 case DW_TAG_compile_unit:
22639 case DW_TAG_partial_unit:
22640 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22641 if (cu->per_cu->lang == language_cplus
22642 && !per_objfile->per_bfd->types.empty ()
22643 && die->child != NULL
22644 && (die->tag == DW_TAG_class_type
22645 || die->tag == DW_TAG_structure_type
22646 || die->tag == DW_TAG_union_type))
22647 {
22648 const char *name = guess_full_die_structure_name (die, cu);
22649 if (name != NULL)
22650 return name;
22651 }
22652 return "";
22653 case DW_TAG_subprogram:
22654 /* Nested subroutines in Fortran get a prefix with the name
22655 of the parent's subroutine. */
22656 if (cu->per_cu->lang == language_fortran)
22657 {
22658 if ((die->tag == DW_TAG_subprogram)
22659 && (dwarf2_name (parent, cu) != NULL))
22660 return dwarf2_name (parent, cu);
22661 }
22662 return determine_prefix (parent, cu);
22663 case DW_TAG_enumeration_type:
22664 parent_type = read_type_die (parent, cu);
22665 if (parent_type->is_declared_class ())
22666 {
22667 if (parent_type->name () != NULL)
22668 return parent_type->name ();
22669 return "";
22670 }
22671 /* Fall through. */
22672 default:
22673 return determine_prefix (parent, cu);
22674 }
22675 }
22676
22677 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22678 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22679 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22680 an obconcat, otherwise allocate storage for the result. The CU argument is
22681 used to determine the language and hence, the appropriate separator. */
22682
22683 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22684
22685 static char *
22686 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22687 int physname, struct dwarf2_cu *cu)
22688 {
22689 const char *lead = "";
22690 const char *sep;
22691
22692 if (suffix == NULL || suffix[0] == '\0'
22693 || prefix == NULL || prefix[0] == '\0')
22694 sep = "";
22695 else if (cu->per_cu->lang == language_d)
22696 {
22697 /* For D, the 'main' function could be defined in any module, but it
22698 should never be prefixed. */
22699 if (strcmp (suffix, "D main") == 0)
22700 {
22701 prefix = "";
22702 sep = "";
22703 }
22704 else
22705 sep = ".";
22706 }
22707 else if (cu->per_cu->lang == language_fortran && physname)
22708 {
22709 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22710 DW_AT_MIPS_linkage_name is preferred and used instead. */
22711
22712 lead = "__";
22713 sep = "_MOD_";
22714 }
22715 else
22716 sep = "::";
22717
22718 if (prefix == NULL)
22719 prefix = "";
22720 if (suffix == NULL)
22721 suffix = "";
22722
22723 if (obs == NULL)
22724 {
22725 char *retval
22726 = ((char *)
22727 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22728
22729 strcpy (retval, lead);
22730 strcat (retval, prefix);
22731 strcat (retval, sep);
22732 strcat (retval, suffix);
22733 return retval;
22734 }
22735 else
22736 {
22737 /* We have an obstack. */
22738 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22739 }
22740 }
22741
22742 /* Get name of a die, return NULL if not found. */
22743
22744 static const char *
22745 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22746 struct objfile *objfile)
22747 {
22748 if (name && cu->per_cu->lang == language_cplus)
22749 {
22750 gdb::unique_xmalloc_ptr<char> canon_name
22751 = cp_canonicalize_string (name);
22752
22753 if (canon_name != nullptr)
22754 name = objfile->intern (canon_name.get ());
22755 }
22756
22757 return name;
22758 }
22759
22760 /* Get name of a die, return NULL if not found.
22761 Anonymous namespaces are converted to their magic string. */
22762
22763 static const char *
22764 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22765 {
22766 struct attribute *attr;
22767 struct objfile *objfile = cu->per_objfile->objfile;
22768
22769 attr = dwarf2_attr (die, DW_AT_name, cu);
22770 const char *attr_name = attr == nullptr ? nullptr : attr->as_string ();
22771 if (attr_name == nullptr
22772 && die->tag != DW_TAG_namespace
22773 && die->tag != DW_TAG_class_type
22774 && die->tag != DW_TAG_interface_type
22775 && die->tag != DW_TAG_structure_type
22776 && die->tag != DW_TAG_union_type)
22777 return NULL;
22778
22779 switch (die->tag)
22780 {
22781 case DW_TAG_compile_unit:
22782 case DW_TAG_partial_unit:
22783 /* Compilation units have a DW_AT_name that is a filename, not
22784 a source language identifier. */
22785 case DW_TAG_enumeration_type:
22786 case DW_TAG_enumerator:
22787 /* These tags always have simple identifiers already; no need
22788 to canonicalize them. */
22789 return attr_name;
22790
22791 case DW_TAG_namespace:
22792 if (attr_name != nullptr)
22793 return attr_name;
22794 return CP_ANONYMOUS_NAMESPACE_STR;
22795
22796 case DW_TAG_class_type:
22797 case DW_TAG_interface_type:
22798 case DW_TAG_structure_type:
22799 case DW_TAG_union_type:
22800 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22801 structures or unions. These were of the form "._%d" in GCC 4.1,
22802 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22803 and GCC 4.4. We work around this problem by ignoring these. */
22804 if (attr_name != nullptr
22805 && (startswith (attr_name, "._")
22806 || startswith (attr_name, "<anonymous")))
22807 return NULL;
22808
22809 /* GCC might emit a nameless typedef that has a linkage name. See
22810 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22811 if (!attr || attr_name == NULL)
22812 {
22813 attr = dw2_linkage_name_attr (die, cu);
22814 attr_name = attr == nullptr ? nullptr : attr->as_string ();
22815 if (attr == NULL || attr_name == NULL)
22816 return NULL;
22817
22818 /* Avoid demangling attr_name the second time on a second
22819 call for the same DIE. */
22820 if (!attr->canonical_string_p ())
22821 {
22822 gdb::unique_xmalloc_ptr<char> demangled
22823 (gdb_demangle (attr_name, DMGL_TYPES));
22824 if (demangled == nullptr)
22825 return nullptr;
22826
22827 attr->set_string_canonical (objfile->intern (demangled.get ()));
22828 attr_name = attr->as_string ();
22829 }
22830
22831 /* Strip any leading namespaces/classes, keep only the
22832 base name. DW_AT_name for named DIEs does not
22833 contain the prefixes. */
22834 const char *base = strrchr (attr_name, ':');
22835 if (base && base > attr_name && base[-1] == ':')
22836 return &base[1];
22837 else
22838 return attr_name;
22839 }
22840 break;
22841
22842 default:
22843 break;
22844 }
22845
22846 if (!attr->canonical_string_p ())
22847 attr->set_string_canonical (dwarf2_canonicalize_name (attr_name, cu,
22848 objfile));
22849 return attr->as_string ();
22850 }
22851
22852 /* Return the die that this die in an extension of, or NULL if there
22853 is none. *EXT_CU is the CU containing DIE on input, and the CU
22854 containing the return value on output. */
22855
22856 static struct die_info *
22857 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22858 {
22859 struct attribute *attr;
22860
22861 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22862 if (attr == NULL)
22863 return NULL;
22864
22865 return follow_die_ref (die, attr, ext_cu);
22866 }
22867
22868 static void
22869 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22870 {
22871 unsigned int i;
22872
22873 print_spaces (indent, f);
22874 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22875 dwarf_tag_name (die->tag), die->abbrev,
22876 sect_offset_str (die->sect_off));
22877
22878 if (die->parent != NULL)
22879 {
22880 print_spaces (indent, f);
22881 fprintf_unfiltered (f, " parent at offset: %s\n",
22882 sect_offset_str (die->parent->sect_off));
22883 }
22884
22885 print_spaces (indent, f);
22886 fprintf_unfiltered (f, " has children: %s\n",
22887 dwarf_bool_name (die->child != NULL));
22888
22889 print_spaces (indent, f);
22890 fprintf_unfiltered (f, " attributes:\n");
22891
22892 for (i = 0; i < die->num_attrs; ++i)
22893 {
22894 print_spaces (indent, f);
22895 fprintf_unfiltered (f, " %s (%s) ",
22896 dwarf_attr_name (die->attrs[i].name),
22897 dwarf_form_name (die->attrs[i].form));
22898
22899 switch (die->attrs[i].form)
22900 {
22901 case DW_FORM_addr:
22902 case DW_FORM_addrx:
22903 case DW_FORM_GNU_addr_index:
22904 fprintf_unfiltered (f, "address: ");
22905 fputs_filtered (hex_string (die->attrs[i].as_address ()), f);
22906 break;
22907 case DW_FORM_block2:
22908 case DW_FORM_block4:
22909 case DW_FORM_block:
22910 case DW_FORM_block1:
22911 fprintf_unfiltered (f, "block: size %s",
22912 pulongest (die->attrs[i].as_block ()->size));
22913 break;
22914 case DW_FORM_exprloc:
22915 fprintf_unfiltered (f, "expression: size %s",
22916 pulongest (die->attrs[i].as_block ()->size));
22917 break;
22918 case DW_FORM_data16:
22919 fprintf_unfiltered (f, "constant of 16 bytes");
22920 break;
22921 case DW_FORM_ref_addr:
22922 fprintf_unfiltered (f, "ref address: ");
22923 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
22924 break;
22925 case DW_FORM_GNU_ref_alt:
22926 fprintf_unfiltered (f, "alt ref address: ");
22927 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
22928 break;
22929 case DW_FORM_ref1:
22930 case DW_FORM_ref2:
22931 case DW_FORM_ref4:
22932 case DW_FORM_ref8:
22933 case DW_FORM_ref_udata:
22934 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22935 (long) (die->attrs[i].as_unsigned ()));
22936 break;
22937 case DW_FORM_data1:
22938 case DW_FORM_data2:
22939 case DW_FORM_data4:
22940 case DW_FORM_data8:
22941 case DW_FORM_udata:
22942 fprintf_unfiltered (f, "constant: %s",
22943 pulongest (die->attrs[i].as_unsigned ()));
22944 break;
22945 case DW_FORM_sec_offset:
22946 fprintf_unfiltered (f, "section offset: %s",
22947 pulongest (die->attrs[i].as_unsigned ()));
22948 break;
22949 case DW_FORM_ref_sig8:
22950 fprintf_unfiltered (f, "signature: %s",
22951 hex_string (die->attrs[i].as_signature ()));
22952 break;
22953 case DW_FORM_string:
22954 case DW_FORM_strp:
22955 case DW_FORM_line_strp:
22956 case DW_FORM_strx:
22957 case DW_FORM_GNU_str_index:
22958 case DW_FORM_GNU_strp_alt:
22959 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22960 die->attrs[i].as_string ()
22961 ? die->attrs[i].as_string () : "",
22962 die->attrs[i].canonical_string_p () ? "is" : "not");
22963 break;
22964 case DW_FORM_flag:
22965 if (die->attrs[i].as_boolean ())
22966 fprintf_unfiltered (f, "flag: TRUE");
22967 else
22968 fprintf_unfiltered (f, "flag: FALSE");
22969 break;
22970 case DW_FORM_flag_present:
22971 fprintf_unfiltered (f, "flag: TRUE");
22972 break;
22973 case DW_FORM_indirect:
22974 /* The reader will have reduced the indirect form to
22975 the "base form" so this form should not occur. */
22976 fprintf_unfiltered (f,
22977 "unexpected attribute form: DW_FORM_indirect");
22978 break;
22979 case DW_FORM_sdata:
22980 case DW_FORM_implicit_const:
22981 fprintf_unfiltered (f, "constant: %s",
22982 plongest (die->attrs[i].as_signed ()));
22983 break;
22984 default:
22985 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22986 die->attrs[i].form);
22987 break;
22988 }
22989 fprintf_unfiltered (f, "\n");
22990 }
22991 }
22992
22993 static void
22994 dump_die_for_error (struct die_info *die)
22995 {
22996 dump_die_shallow (gdb_stderr, 0, die);
22997 }
22998
22999 static void
23000 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23001 {
23002 int indent = level * 4;
23003
23004 gdb_assert (die != NULL);
23005
23006 if (level >= max_level)
23007 return;
23008
23009 dump_die_shallow (f, indent, die);
23010
23011 if (die->child != NULL)
23012 {
23013 print_spaces (indent, f);
23014 fprintf_unfiltered (f, " Children:");
23015 if (level + 1 < max_level)
23016 {
23017 fprintf_unfiltered (f, "\n");
23018 dump_die_1 (f, level + 1, max_level, die->child);
23019 }
23020 else
23021 {
23022 fprintf_unfiltered (f,
23023 " [not printed, max nesting level reached]\n");
23024 }
23025 }
23026
23027 if (die->sibling != NULL && level > 0)
23028 {
23029 dump_die_1 (f, level, max_level, die->sibling);
23030 }
23031 }
23032
23033 /* This is called from the pdie macro in gdbinit.in.
23034 It's not static so gcc will keep a copy callable from gdb. */
23035
23036 void
23037 dump_die (struct die_info *die, int max_level)
23038 {
23039 dump_die_1 (gdb_stdlog, 0, max_level, die);
23040 }
23041
23042 static void
23043 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23044 {
23045 void **slot;
23046
23047 slot = htab_find_slot_with_hash (cu->die_hash, die,
23048 to_underlying (die->sect_off),
23049 INSERT);
23050
23051 *slot = die;
23052 }
23053
23054 /* Follow reference or signature attribute ATTR of SRC_DIE.
23055 On entry *REF_CU is the CU of SRC_DIE.
23056 On exit *REF_CU is the CU of the result. */
23057
23058 static struct die_info *
23059 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23060 struct dwarf2_cu **ref_cu)
23061 {
23062 struct die_info *die;
23063
23064 if (attr->form_is_ref ())
23065 die = follow_die_ref (src_die, attr, ref_cu);
23066 else if (attr->form == DW_FORM_ref_sig8)
23067 die = follow_die_sig (src_die, attr, ref_cu);
23068 else
23069 {
23070 dump_die_for_error (src_die);
23071 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23072 objfile_name ((*ref_cu)->per_objfile->objfile));
23073 }
23074
23075 return die;
23076 }
23077
23078 /* Follow reference OFFSET.
23079 On entry *REF_CU is the CU of the source die referencing OFFSET.
23080 On exit *REF_CU is the CU of the result.
23081 Returns NULL if OFFSET is invalid. */
23082
23083 static struct die_info *
23084 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23085 struct dwarf2_cu **ref_cu)
23086 {
23087 struct die_info temp_die;
23088 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23089 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23090
23091 gdb_assert (cu->per_cu != NULL);
23092
23093 target_cu = cu;
23094
23095 dwarf_read_debug_printf_v ("source CU offset: %s, target offset: %s, "
23096 "source CU contains target offset: %d",
23097 sect_offset_str (cu->per_cu->sect_off),
23098 sect_offset_str (sect_off),
23099 cu->header.offset_in_cu_p (sect_off));
23100
23101 if (cu->per_cu->is_debug_types)
23102 {
23103 /* .debug_types CUs cannot reference anything outside their CU.
23104 If they need to, they have to reference a signatured type via
23105 DW_FORM_ref_sig8. */
23106 if (!cu->header.offset_in_cu_p (sect_off))
23107 return NULL;
23108 }
23109 else if (offset_in_dwz != cu->per_cu->is_dwz
23110 || !cu->header.offset_in_cu_p (sect_off))
23111 {
23112 struct dwarf2_per_cu_data *per_cu;
23113
23114 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23115 per_objfile);
23116
23117 dwarf_read_debug_printf_v ("target CU offset: %s, "
23118 "target CU DIEs loaded: %d",
23119 sect_offset_str (per_cu->sect_off),
23120 per_objfile->get_cu (per_cu) != nullptr);
23121
23122 /* If necessary, add it to the queue and load its DIEs.
23123
23124 Even if maybe_queue_comp_unit doesn't require us to load the CU's DIEs,
23125 it doesn't mean they are currently loaded. Since we require them
23126 to be loaded, we must check for ourselves. */
23127 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->per_cu->lang)
23128 || per_objfile->get_cu (per_cu) == nullptr)
23129 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
23130 false, cu->per_cu->lang);
23131
23132 target_cu = per_objfile->get_cu (per_cu);
23133 gdb_assert (target_cu != nullptr);
23134 }
23135 else if (cu->dies == NULL)
23136 {
23137 /* We're loading full DIEs during partial symbol reading. */
23138 gdb_assert (per_objfile->per_bfd->reading_partial_symbols);
23139 load_full_comp_unit (cu->per_cu, per_objfile, cu, false,
23140 language_minimal);
23141 }
23142
23143 *ref_cu = target_cu;
23144 temp_die.sect_off = sect_off;
23145
23146 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23147 &temp_die,
23148 to_underlying (sect_off));
23149 }
23150
23151 /* Follow reference attribute ATTR of SRC_DIE.
23152 On entry *REF_CU is the CU of SRC_DIE.
23153 On exit *REF_CU is the CU of the result. */
23154
23155 static struct die_info *
23156 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23157 struct dwarf2_cu **ref_cu)
23158 {
23159 sect_offset sect_off = attr->get_ref_die_offset ();
23160 struct dwarf2_cu *cu = *ref_cu;
23161 struct die_info *die;
23162
23163 die = follow_die_offset (sect_off,
23164 (attr->form == DW_FORM_GNU_ref_alt
23165 || cu->per_cu->is_dwz),
23166 ref_cu);
23167 if (!die)
23168 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23169 "at %s [in module %s]"),
23170 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23171 objfile_name (cu->per_objfile->objfile));
23172
23173 return die;
23174 }
23175
23176 /* See read.h. */
23177
23178 struct dwarf2_locexpr_baton
23179 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23180 dwarf2_per_cu_data *per_cu,
23181 dwarf2_per_objfile *per_objfile,
23182 gdb::function_view<CORE_ADDR ()> get_frame_pc,
23183 bool resolve_abstract_p)
23184 {
23185 struct die_info *die;
23186 struct attribute *attr;
23187 struct dwarf2_locexpr_baton retval;
23188 struct objfile *objfile = per_objfile->objfile;
23189
23190 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23191 if (cu == nullptr)
23192 cu = load_cu (per_cu, per_objfile, false);
23193
23194 if (cu == nullptr)
23195 {
23196 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23197 Instead just throw an error, not much else we can do. */
23198 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23199 sect_offset_str (sect_off), objfile_name (objfile));
23200 }
23201
23202 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23203 if (!die)
23204 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23205 sect_offset_str (sect_off), objfile_name (objfile));
23206
23207 attr = dwarf2_attr (die, DW_AT_location, cu);
23208 if (!attr && resolve_abstract_p
23209 && (per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off)
23210 != per_objfile->per_bfd->abstract_to_concrete.end ()))
23211 {
23212 CORE_ADDR pc = get_frame_pc ();
23213 CORE_ADDR baseaddr = objfile->text_section_offset ();
23214 struct gdbarch *gdbarch = objfile->arch ();
23215
23216 for (const auto &cand_off
23217 : per_objfile->per_bfd->abstract_to_concrete[die->sect_off])
23218 {
23219 struct dwarf2_cu *cand_cu = cu;
23220 struct die_info *cand
23221 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23222 if (!cand
23223 || !cand->parent
23224 || cand->parent->tag != DW_TAG_subprogram)
23225 continue;
23226
23227 CORE_ADDR pc_low, pc_high;
23228 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23229 if (pc_low == ((CORE_ADDR) -1))
23230 continue;
23231 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23232 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23233 if (!(pc_low <= pc && pc < pc_high))
23234 continue;
23235
23236 die = cand;
23237 attr = dwarf2_attr (die, DW_AT_location, cu);
23238 break;
23239 }
23240 }
23241
23242 if (!attr)
23243 {
23244 /* DWARF: "If there is no such attribute, then there is no effect.".
23245 DATA is ignored if SIZE is 0. */
23246
23247 retval.data = NULL;
23248 retval.size = 0;
23249 }
23250 else if (attr->form_is_section_offset ())
23251 {
23252 struct dwarf2_loclist_baton loclist_baton;
23253 CORE_ADDR pc = get_frame_pc ();
23254 size_t size;
23255
23256 fill_in_loclist_baton (cu, &loclist_baton, attr);
23257
23258 retval.data = dwarf2_find_location_expression (&loclist_baton,
23259 &size, pc);
23260 retval.size = size;
23261 }
23262 else
23263 {
23264 if (!attr->form_is_block ())
23265 error (_("Dwarf Error: DIE at %s referenced in module %s "
23266 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23267 sect_offset_str (sect_off), objfile_name (objfile));
23268
23269 struct dwarf_block *block = attr->as_block ();
23270 retval.data = block->data;
23271 retval.size = block->size;
23272 }
23273 retval.per_objfile = per_objfile;
23274 retval.per_cu = cu->per_cu;
23275
23276 per_objfile->age_comp_units ();
23277
23278 return retval;
23279 }
23280
23281 /* See read.h. */
23282
23283 struct dwarf2_locexpr_baton
23284 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23285 dwarf2_per_cu_data *per_cu,
23286 dwarf2_per_objfile *per_objfile,
23287 gdb::function_view<CORE_ADDR ()> get_frame_pc)
23288 {
23289 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23290
23291 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, per_objfile,
23292 get_frame_pc);
23293 }
23294
23295 /* Write a constant of a given type as target-ordered bytes into
23296 OBSTACK. */
23297
23298 static const gdb_byte *
23299 write_constant_as_bytes (struct obstack *obstack,
23300 enum bfd_endian byte_order,
23301 struct type *type,
23302 ULONGEST value,
23303 LONGEST *len)
23304 {
23305 gdb_byte *result;
23306
23307 *len = TYPE_LENGTH (type);
23308 result = (gdb_byte *) obstack_alloc (obstack, *len);
23309 store_unsigned_integer (result, *len, byte_order, value);
23310
23311 return result;
23312 }
23313
23314 /* See read.h. */
23315
23316 const gdb_byte *
23317 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23318 dwarf2_per_cu_data *per_cu,
23319 dwarf2_per_objfile *per_objfile,
23320 obstack *obstack,
23321 LONGEST *len)
23322 {
23323 struct die_info *die;
23324 struct attribute *attr;
23325 const gdb_byte *result = NULL;
23326 struct type *type;
23327 LONGEST value;
23328 enum bfd_endian byte_order;
23329 struct objfile *objfile = per_objfile->objfile;
23330
23331 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23332 if (cu == nullptr)
23333 cu = load_cu (per_cu, per_objfile, false);
23334
23335 if (cu == nullptr)
23336 {
23337 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23338 Instead just throw an error, not much else we can do. */
23339 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23340 sect_offset_str (sect_off), objfile_name (objfile));
23341 }
23342
23343 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23344 if (!die)
23345 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23346 sect_offset_str (sect_off), objfile_name (objfile));
23347
23348 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23349 if (attr == NULL)
23350 return NULL;
23351
23352 byte_order = (bfd_big_endian (objfile->obfd)
23353 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23354
23355 switch (attr->form)
23356 {
23357 case DW_FORM_addr:
23358 case DW_FORM_addrx:
23359 case DW_FORM_GNU_addr_index:
23360 {
23361 gdb_byte *tem;
23362
23363 *len = cu->header.addr_size;
23364 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23365 store_unsigned_integer (tem, *len, byte_order, attr->as_address ());
23366 result = tem;
23367 }
23368 break;
23369 case DW_FORM_string:
23370 case DW_FORM_strp:
23371 case DW_FORM_strx:
23372 case DW_FORM_GNU_str_index:
23373 case DW_FORM_GNU_strp_alt:
23374 /* The string is already allocated on the objfile obstack, point
23375 directly to it. */
23376 {
23377 const char *attr_name = attr->as_string ();
23378 result = (const gdb_byte *) attr_name;
23379 *len = strlen (attr_name);
23380 }
23381 break;
23382 case DW_FORM_block1:
23383 case DW_FORM_block2:
23384 case DW_FORM_block4:
23385 case DW_FORM_block:
23386 case DW_FORM_exprloc:
23387 case DW_FORM_data16:
23388 {
23389 struct dwarf_block *block = attr->as_block ();
23390 result = block->data;
23391 *len = block->size;
23392 }
23393 break;
23394
23395 /* The DW_AT_const_value attributes are supposed to carry the
23396 symbol's value "represented as it would be on the target
23397 architecture." By the time we get here, it's already been
23398 converted to host endianness, so we just need to sign- or
23399 zero-extend it as appropriate. */
23400 case DW_FORM_data1:
23401 type = die_type (die, cu);
23402 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23403 if (result == NULL)
23404 result = write_constant_as_bytes (obstack, byte_order,
23405 type, value, len);
23406 break;
23407 case DW_FORM_data2:
23408 type = die_type (die, cu);
23409 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23410 if (result == NULL)
23411 result = write_constant_as_bytes (obstack, byte_order,
23412 type, value, len);
23413 break;
23414 case DW_FORM_data4:
23415 type = die_type (die, cu);
23416 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23417 if (result == NULL)
23418 result = write_constant_as_bytes (obstack, byte_order,
23419 type, value, len);
23420 break;
23421 case DW_FORM_data8:
23422 type = die_type (die, cu);
23423 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23424 if (result == NULL)
23425 result = write_constant_as_bytes (obstack, byte_order,
23426 type, value, len);
23427 break;
23428
23429 case DW_FORM_sdata:
23430 case DW_FORM_implicit_const:
23431 type = die_type (die, cu);
23432 result = write_constant_as_bytes (obstack, byte_order,
23433 type, attr->as_signed (), len);
23434 break;
23435
23436 case DW_FORM_udata:
23437 type = die_type (die, cu);
23438 result = write_constant_as_bytes (obstack, byte_order,
23439 type, attr->as_unsigned (), len);
23440 break;
23441
23442 default:
23443 complaint (_("unsupported const value attribute form: '%s'"),
23444 dwarf_form_name (attr->form));
23445 break;
23446 }
23447
23448 return result;
23449 }
23450
23451 /* See read.h. */
23452
23453 struct type *
23454 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23455 dwarf2_per_cu_data *per_cu,
23456 dwarf2_per_objfile *per_objfile,
23457 const char **var_name)
23458 {
23459 struct die_info *die;
23460
23461 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23462 if (cu == nullptr)
23463 cu = load_cu (per_cu, per_objfile, false);
23464
23465 if (cu == nullptr)
23466 return nullptr;
23467
23468 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23469 if (!die)
23470 return NULL;
23471
23472 if (var_name != nullptr)
23473 *var_name = var_decl_name (die, cu);
23474 return die_type (die, cu);
23475 }
23476
23477 /* See read.h. */
23478
23479 struct type *
23480 dwarf2_get_die_type (cu_offset die_offset,
23481 dwarf2_per_cu_data *per_cu,
23482 dwarf2_per_objfile *per_objfile)
23483 {
23484 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23485 return get_die_type_at_offset (die_offset_sect, per_cu, per_objfile);
23486 }
23487
23488 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23489 On entry *REF_CU is the CU of SRC_DIE.
23490 On exit *REF_CU is the CU of the result.
23491 Returns NULL if the referenced DIE isn't found. */
23492
23493 static struct die_info *
23494 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23495 struct dwarf2_cu **ref_cu)
23496 {
23497 struct die_info temp_die;
23498 struct dwarf2_cu *sig_cu;
23499 struct die_info *die;
23500 dwarf2_per_objfile *per_objfile = (*ref_cu)->per_objfile;
23501
23502
23503 /* While it might be nice to assert sig_type->type == NULL here,
23504 we can get here for DW_AT_imported_declaration where we need
23505 the DIE not the type. */
23506
23507 /* If necessary, add it to the queue and load its DIEs.
23508
23509 Even if maybe_queue_comp_unit doesn't require us to load the CU's DIEs,
23510 it doesn't mean they are currently loaded. Since we require them
23511 to be loaded, we must check for ourselves. */
23512 if (maybe_queue_comp_unit (*ref_cu, sig_type, per_objfile,
23513 language_minimal)
23514 || per_objfile->get_cu (sig_type) == nullptr)
23515 read_signatured_type (sig_type, per_objfile);
23516
23517 sig_cu = per_objfile->get_cu (sig_type);
23518 gdb_assert (sig_cu != NULL);
23519 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23520 temp_die.sect_off = sig_type->type_offset_in_section;
23521 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23522 to_underlying (temp_die.sect_off));
23523 if (die)
23524 {
23525 /* For .gdb_index version 7 keep track of included TUs.
23526 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23527 if (per_objfile->per_bfd->index_table != NULL
23528 && per_objfile->per_bfd->index_table->version <= 7)
23529 {
23530 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23531 }
23532
23533 *ref_cu = sig_cu;
23534 return die;
23535 }
23536
23537 return NULL;
23538 }
23539
23540 /* Follow signatured type referenced by ATTR in SRC_DIE.
23541 On entry *REF_CU is the CU of SRC_DIE.
23542 On exit *REF_CU is the CU of the result.
23543 The result is the DIE of the type.
23544 If the referenced type cannot be found an error is thrown. */
23545
23546 static struct die_info *
23547 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23548 struct dwarf2_cu **ref_cu)
23549 {
23550 ULONGEST signature = attr->as_signature ();
23551 struct signatured_type *sig_type;
23552 struct die_info *die;
23553
23554 gdb_assert (attr->form == DW_FORM_ref_sig8);
23555
23556 sig_type = lookup_signatured_type (*ref_cu, signature);
23557 /* sig_type will be NULL if the signatured type is missing from
23558 the debug info. */
23559 if (sig_type == NULL)
23560 {
23561 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23562 " from DIE at %s [in module %s]"),
23563 hex_string (signature), sect_offset_str (src_die->sect_off),
23564 objfile_name ((*ref_cu)->per_objfile->objfile));
23565 }
23566
23567 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23568 if (die == NULL)
23569 {
23570 dump_die_for_error (src_die);
23571 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23572 " from DIE at %s [in module %s]"),
23573 hex_string (signature), sect_offset_str (src_die->sect_off),
23574 objfile_name ((*ref_cu)->per_objfile->objfile));
23575 }
23576
23577 return die;
23578 }
23579
23580 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23581 reading in and processing the type unit if necessary. */
23582
23583 static struct type *
23584 get_signatured_type (struct die_info *die, ULONGEST signature,
23585 struct dwarf2_cu *cu)
23586 {
23587 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23588 struct signatured_type *sig_type;
23589 struct dwarf2_cu *type_cu;
23590 struct die_info *type_die;
23591 struct type *type;
23592
23593 sig_type = lookup_signatured_type (cu, signature);
23594 /* sig_type will be NULL if the signatured type is missing from
23595 the debug info. */
23596 if (sig_type == NULL)
23597 {
23598 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23599 " from DIE at %s [in module %s]"),
23600 hex_string (signature), sect_offset_str (die->sect_off),
23601 objfile_name (per_objfile->objfile));
23602 return build_error_marker_type (cu, die);
23603 }
23604
23605 /* If we already know the type we're done. */
23606 type = per_objfile->get_type_for_signatured_type (sig_type);
23607 if (type != nullptr)
23608 return type;
23609
23610 type_cu = cu;
23611 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23612 if (type_die != NULL)
23613 {
23614 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23615 is created. This is important, for example, because for c++ classes
23616 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23617 type = read_type_die (type_die, type_cu);
23618 if (type == NULL)
23619 {
23620 complaint (_("Dwarf Error: Cannot build signatured type %s"
23621 " referenced from DIE at %s [in module %s]"),
23622 hex_string (signature), sect_offset_str (die->sect_off),
23623 objfile_name (per_objfile->objfile));
23624 type = build_error_marker_type (cu, die);
23625 }
23626 }
23627 else
23628 {
23629 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23630 " from DIE at %s [in module %s]"),
23631 hex_string (signature), sect_offset_str (die->sect_off),
23632 objfile_name (per_objfile->objfile));
23633 type = build_error_marker_type (cu, die);
23634 }
23635
23636 per_objfile->set_type_for_signatured_type (sig_type, type);
23637
23638 return type;
23639 }
23640
23641 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23642 reading in and processing the type unit if necessary. */
23643
23644 static struct type *
23645 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23646 struct dwarf2_cu *cu) /* ARI: editCase function */
23647 {
23648 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23649 if (attr->form_is_ref ())
23650 {
23651 struct dwarf2_cu *type_cu = cu;
23652 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23653
23654 return read_type_die (type_die, type_cu);
23655 }
23656 else if (attr->form == DW_FORM_ref_sig8)
23657 {
23658 return get_signatured_type (die, attr->as_signature (), cu);
23659 }
23660 else
23661 {
23662 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23663
23664 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23665 " at %s [in module %s]"),
23666 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23667 objfile_name (per_objfile->objfile));
23668 return build_error_marker_type (cu, die);
23669 }
23670 }
23671
23672 /* Load the DIEs associated with type unit PER_CU into memory. */
23673
23674 static void
23675 load_full_type_unit (dwarf2_per_cu_data *per_cu,
23676 dwarf2_per_objfile *per_objfile)
23677 {
23678 struct signatured_type *sig_type;
23679
23680 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23681 gdb_assert (! per_cu->type_unit_group_p ());
23682
23683 /* We have the per_cu, but we need the signatured_type.
23684 Fortunately this is an easy translation. */
23685 gdb_assert (per_cu->is_debug_types);
23686 sig_type = (struct signatured_type *) per_cu;
23687
23688 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23689
23690 read_signatured_type (sig_type, per_objfile);
23691
23692 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
23693 }
23694
23695 /* Read in a signatured type and build its CU and DIEs.
23696 If the type is a stub for the real type in a DWO file,
23697 read in the real type from the DWO file as well. */
23698
23699 static void
23700 read_signatured_type (signatured_type *sig_type,
23701 dwarf2_per_objfile *per_objfile)
23702 {
23703 gdb_assert (sig_type->is_debug_types);
23704 gdb_assert (per_objfile->get_cu (sig_type) == nullptr);
23705
23706 cutu_reader reader (sig_type, per_objfile, nullptr, nullptr, false);
23707
23708 if (!reader.dummy_p)
23709 {
23710 struct dwarf2_cu *cu = reader.cu;
23711 const gdb_byte *info_ptr = reader.info_ptr;
23712
23713 gdb_assert (cu->die_hash == NULL);
23714 cu->die_hash =
23715 htab_create_alloc_ex (cu->header.length / 12,
23716 die_hash,
23717 die_eq,
23718 NULL,
23719 &cu->comp_unit_obstack,
23720 hashtab_obstack_allocate,
23721 dummy_obstack_deallocate);
23722
23723 if (reader.comp_unit_die->has_children)
23724 reader.comp_unit_die->child
23725 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23726 reader.comp_unit_die);
23727 cu->dies = reader.comp_unit_die;
23728 /* comp_unit_die is not stored in die_hash, no need. */
23729
23730 /* We try not to read any attributes in this function, because
23731 not all CUs needed for references have been loaded yet, and
23732 symbol table processing isn't initialized. But we have to
23733 set the CU language, or we won't be able to build types
23734 correctly. Similarly, if we do not read the producer, we can
23735 not apply producer-specific interpretation. */
23736 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23737
23738 reader.keep ();
23739 }
23740
23741 sig_type->tu_read = 1;
23742 }
23743
23744 /* Decode simple location descriptions.
23745 Given a pointer to a dwarf block that defines a location, compute
23746 the location and return the value. If COMPUTED is non-null, it is
23747 set to true to indicate that decoding was successful, and false
23748 otherwise. If COMPUTED is null, then this function may emit a
23749 complaint. */
23750
23751 static CORE_ADDR
23752 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
23753 {
23754 struct objfile *objfile = cu->per_objfile->objfile;
23755 size_t i;
23756 size_t size = blk->size;
23757 const gdb_byte *data = blk->data;
23758 CORE_ADDR stack[64];
23759 int stacki;
23760 unsigned int bytes_read, unsnd;
23761 gdb_byte op;
23762
23763 if (computed != nullptr)
23764 *computed = false;
23765
23766 i = 0;
23767 stacki = 0;
23768 stack[stacki] = 0;
23769 stack[++stacki] = 0;
23770
23771 while (i < size)
23772 {
23773 op = data[i++];
23774 switch (op)
23775 {
23776 case DW_OP_lit0:
23777 case DW_OP_lit1:
23778 case DW_OP_lit2:
23779 case DW_OP_lit3:
23780 case DW_OP_lit4:
23781 case DW_OP_lit5:
23782 case DW_OP_lit6:
23783 case DW_OP_lit7:
23784 case DW_OP_lit8:
23785 case DW_OP_lit9:
23786 case DW_OP_lit10:
23787 case DW_OP_lit11:
23788 case DW_OP_lit12:
23789 case DW_OP_lit13:
23790 case DW_OP_lit14:
23791 case DW_OP_lit15:
23792 case DW_OP_lit16:
23793 case DW_OP_lit17:
23794 case DW_OP_lit18:
23795 case DW_OP_lit19:
23796 case DW_OP_lit20:
23797 case DW_OP_lit21:
23798 case DW_OP_lit22:
23799 case DW_OP_lit23:
23800 case DW_OP_lit24:
23801 case DW_OP_lit25:
23802 case DW_OP_lit26:
23803 case DW_OP_lit27:
23804 case DW_OP_lit28:
23805 case DW_OP_lit29:
23806 case DW_OP_lit30:
23807 case DW_OP_lit31:
23808 stack[++stacki] = op - DW_OP_lit0;
23809 break;
23810
23811 case DW_OP_reg0:
23812 case DW_OP_reg1:
23813 case DW_OP_reg2:
23814 case DW_OP_reg3:
23815 case DW_OP_reg4:
23816 case DW_OP_reg5:
23817 case DW_OP_reg6:
23818 case DW_OP_reg7:
23819 case DW_OP_reg8:
23820 case DW_OP_reg9:
23821 case DW_OP_reg10:
23822 case DW_OP_reg11:
23823 case DW_OP_reg12:
23824 case DW_OP_reg13:
23825 case DW_OP_reg14:
23826 case DW_OP_reg15:
23827 case DW_OP_reg16:
23828 case DW_OP_reg17:
23829 case DW_OP_reg18:
23830 case DW_OP_reg19:
23831 case DW_OP_reg20:
23832 case DW_OP_reg21:
23833 case DW_OP_reg22:
23834 case DW_OP_reg23:
23835 case DW_OP_reg24:
23836 case DW_OP_reg25:
23837 case DW_OP_reg26:
23838 case DW_OP_reg27:
23839 case DW_OP_reg28:
23840 case DW_OP_reg29:
23841 case DW_OP_reg30:
23842 case DW_OP_reg31:
23843 stack[++stacki] = op - DW_OP_reg0;
23844 if (i < size)
23845 {
23846 if (computed == nullptr)
23847 dwarf2_complex_location_expr_complaint ();
23848 else
23849 return 0;
23850 }
23851 break;
23852
23853 case DW_OP_regx:
23854 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23855 i += bytes_read;
23856 stack[++stacki] = unsnd;
23857 if (i < size)
23858 {
23859 if (computed == nullptr)
23860 dwarf2_complex_location_expr_complaint ();
23861 else
23862 return 0;
23863 }
23864 break;
23865
23866 case DW_OP_addr:
23867 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
23868 &bytes_read);
23869 i += bytes_read;
23870 break;
23871
23872 case DW_OP_const1u:
23873 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23874 i += 1;
23875 break;
23876
23877 case DW_OP_const1s:
23878 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23879 i += 1;
23880 break;
23881
23882 case DW_OP_const2u:
23883 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23884 i += 2;
23885 break;
23886
23887 case DW_OP_const2s:
23888 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23889 i += 2;
23890 break;
23891
23892 case DW_OP_const4u:
23893 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23894 i += 4;
23895 break;
23896
23897 case DW_OP_const4s:
23898 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23899 i += 4;
23900 break;
23901
23902 case DW_OP_const8u:
23903 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23904 i += 8;
23905 break;
23906
23907 case DW_OP_constu:
23908 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23909 &bytes_read);
23910 i += bytes_read;
23911 break;
23912
23913 case DW_OP_consts:
23914 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23915 i += bytes_read;
23916 break;
23917
23918 case DW_OP_dup:
23919 stack[stacki + 1] = stack[stacki];
23920 stacki++;
23921 break;
23922
23923 case DW_OP_plus:
23924 stack[stacki - 1] += stack[stacki];
23925 stacki--;
23926 break;
23927
23928 case DW_OP_plus_uconst:
23929 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23930 &bytes_read);
23931 i += bytes_read;
23932 break;
23933
23934 case DW_OP_minus:
23935 stack[stacki - 1] -= stack[stacki];
23936 stacki--;
23937 break;
23938
23939 case DW_OP_deref:
23940 /* If we're not the last op, then we definitely can't encode
23941 this using GDB's address_class enum. This is valid for partial
23942 global symbols, although the variable's address will be bogus
23943 in the psymtab. */
23944 if (i < size)
23945 {
23946 if (computed == nullptr)
23947 dwarf2_complex_location_expr_complaint ();
23948 else
23949 return 0;
23950 }
23951 break;
23952
23953 case DW_OP_GNU_push_tls_address:
23954 case DW_OP_form_tls_address:
23955 /* The top of the stack has the offset from the beginning
23956 of the thread control block at which the variable is located. */
23957 /* Nothing should follow this operator, so the top of stack would
23958 be returned. */
23959 /* This is valid for partial global symbols, but the variable's
23960 address will be bogus in the psymtab. Make it always at least
23961 non-zero to not look as a variable garbage collected by linker
23962 which have DW_OP_addr 0. */
23963 if (i < size)
23964 {
23965 if (computed == nullptr)
23966 dwarf2_complex_location_expr_complaint ();
23967 else
23968 return 0;
23969 }
23970 stack[stacki]++;
23971 break;
23972
23973 case DW_OP_GNU_uninit:
23974 if (computed != nullptr)
23975 return 0;
23976 break;
23977
23978 case DW_OP_addrx:
23979 case DW_OP_GNU_addr_index:
23980 case DW_OP_GNU_const_index:
23981 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23982 &bytes_read);
23983 i += bytes_read;
23984 break;
23985
23986 default:
23987 if (computed == nullptr)
23988 {
23989 const char *name = get_DW_OP_name (op);
23990
23991 if (name)
23992 complaint (_("unsupported stack op: '%s'"),
23993 name);
23994 else
23995 complaint (_("unsupported stack op: '%02x'"),
23996 op);
23997 }
23998
23999 return (stack[stacki]);
24000 }
24001
24002 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24003 outside of the allocated space. Also enforce minimum>0. */
24004 if (stacki >= ARRAY_SIZE (stack) - 1)
24005 {
24006 if (computed == nullptr)
24007 complaint (_("location description stack overflow"));
24008 return 0;
24009 }
24010
24011 if (stacki <= 0)
24012 {
24013 if (computed == nullptr)
24014 complaint (_("location description stack underflow"));
24015 return 0;
24016 }
24017 }
24018
24019 if (computed != nullptr)
24020 *computed = true;
24021 return (stack[stacki]);
24022 }
24023
24024 /* memory allocation interface */
24025
24026 static struct dwarf_block *
24027 dwarf_alloc_block (struct dwarf2_cu *cu)
24028 {
24029 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24030 }
24031
24032 static struct die_info *
24033 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24034 {
24035 struct die_info *die;
24036 size_t size = sizeof (struct die_info);
24037
24038 if (num_attrs > 1)
24039 size += (num_attrs - 1) * sizeof (struct attribute);
24040
24041 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24042 memset (die, 0, sizeof (struct die_info));
24043 return (die);
24044 }
24045
24046 \f
24047
24048 /* Macro support. */
24049
24050 /* An overload of dwarf_decode_macros that finds the correct section
24051 and ensures it is read in before calling the other overload. */
24052
24053 static void
24054 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24055 int section_is_gnu)
24056 {
24057 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24058 struct objfile *objfile = per_objfile->objfile;
24059 const struct line_header *lh = cu->line_header;
24060 unsigned int offset_size = cu->header.offset_size;
24061 struct dwarf2_section_info *section;
24062 const char *section_name;
24063
24064 if (cu->dwo_unit != nullptr)
24065 {
24066 if (section_is_gnu)
24067 {
24068 section = &cu->dwo_unit->dwo_file->sections.macro;
24069 section_name = ".debug_macro.dwo";
24070 }
24071 else
24072 {
24073 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24074 section_name = ".debug_macinfo.dwo";
24075 }
24076 }
24077 else
24078 {
24079 if (section_is_gnu)
24080 {
24081 section = &per_objfile->per_bfd->macro;
24082 section_name = ".debug_macro";
24083 }
24084 else
24085 {
24086 section = &per_objfile->per_bfd->macinfo;
24087 section_name = ".debug_macinfo";
24088 }
24089 }
24090
24091 section->read (objfile);
24092 if (section->buffer == nullptr)
24093 {
24094 complaint (_("missing %s section"), section_name);
24095 return;
24096 }
24097
24098 buildsym_compunit *builder = cu->get_builder ();
24099
24100 struct dwarf2_section_info *str_offsets_section;
24101 struct dwarf2_section_info *str_section;
24102 ULONGEST str_offsets_base;
24103
24104 if (cu->dwo_unit != nullptr)
24105 {
24106 str_offsets_section = &cu->dwo_unit->dwo_file
24107 ->sections.str_offsets;
24108 str_section = &cu->dwo_unit->dwo_file->sections.str;
24109 str_offsets_base = cu->header.addr_size;
24110 }
24111 else
24112 {
24113 str_offsets_section = &per_objfile->per_bfd->str_offsets;
24114 str_section = &per_objfile->per_bfd->str;
24115 str_offsets_base = *cu->str_offsets_base;
24116 }
24117
24118 dwarf_decode_macros (per_objfile, builder, section, lh,
24119 offset_size, offset, str_section, str_offsets_section,
24120 str_offsets_base, section_is_gnu);
24121 }
24122
24123 /* Return the .debug_loc section to use for CU.
24124 For DWO files use .debug_loc.dwo. */
24125
24126 static struct dwarf2_section_info *
24127 cu_debug_loc_section (struct dwarf2_cu *cu)
24128 {
24129 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24130
24131 if (cu->dwo_unit)
24132 {
24133 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24134
24135 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24136 }
24137 return (cu->header.version >= 5 ? &per_objfile->per_bfd->loclists
24138 : &per_objfile->per_bfd->loc);
24139 }
24140
24141 /* Return the .debug_rnglists section to use for CU. */
24142 static struct dwarf2_section_info *
24143 cu_debug_rnglists_section (struct dwarf2_cu *cu, dwarf_tag tag)
24144 {
24145 if (cu->header.version < 5)
24146 error (_(".debug_rnglists section cannot be used in DWARF %d"),
24147 cu->header.version);
24148 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
24149
24150 /* Make sure we read the .debug_rnglists section from the file that
24151 contains the DW_AT_ranges attribute we are reading. Normally that
24152 would be the .dwo file, if there is one. However for DW_TAG_compile_unit
24153 or DW_TAG_skeleton unit, we always want to read from objfile/linked
24154 program. */
24155 if (cu->dwo_unit != nullptr
24156 && tag != DW_TAG_compile_unit
24157 && tag != DW_TAG_skeleton_unit)
24158 {
24159 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24160
24161 if (sections->rnglists.size > 0)
24162 return &sections->rnglists;
24163 else
24164 error (_(".debug_rnglists section is missing from .dwo file."));
24165 }
24166 return &dwarf2_per_objfile->per_bfd->rnglists;
24167 }
24168
24169 /* A helper function that fills in a dwarf2_loclist_baton. */
24170
24171 static void
24172 fill_in_loclist_baton (struct dwarf2_cu *cu,
24173 struct dwarf2_loclist_baton *baton,
24174 const struct attribute *attr)
24175 {
24176 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24177 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24178
24179 section->read (per_objfile->objfile);
24180
24181 baton->per_objfile = per_objfile;
24182 baton->per_cu = cu->per_cu;
24183 gdb_assert (baton->per_cu);
24184 /* We don't know how long the location list is, but make sure we
24185 don't run off the edge of the section. */
24186 baton->size = section->size - attr->as_unsigned ();
24187 baton->data = section->buffer + attr->as_unsigned ();
24188 if (cu->base_address.has_value ())
24189 baton->base_address = *cu->base_address;
24190 else
24191 baton->base_address = 0;
24192 baton->from_dwo = cu->dwo_unit != NULL;
24193 }
24194
24195 static void
24196 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24197 struct dwarf2_cu *cu, int is_block)
24198 {
24199 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24200 struct objfile *objfile = per_objfile->objfile;
24201 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24202
24203 if (attr->form_is_section_offset ()
24204 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24205 the section. If so, fall through to the complaint in the
24206 other branch. */
24207 && attr->as_unsigned () < section->get_size (objfile))
24208 {
24209 struct dwarf2_loclist_baton *baton;
24210
24211 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24212
24213 fill_in_loclist_baton (cu, baton, attr);
24214
24215 if (!cu->base_address.has_value ())
24216 complaint (_("Location list used without "
24217 "specifying the CU base address."));
24218
24219 SYMBOL_ACLASS_INDEX (sym) = (is_block
24220 ? dwarf2_loclist_block_index
24221 : dwarf2_loclist_index);
24222 SYMBOL_LOCATION_BATON (sym) = baton;
24223 }
24224 else
24225 {
24226 struct dwarf2_locexpr_baton *baton;
24227
24228 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24229 baton->per_objfile = per_objfile;
24230 baton->per_cu = cu->per_cu;
24231 gdb_assert (baton->per_cu);
24232
24233 if (attr->form_is_block ())
24234 {
24235 /* Note that we're just copying the block's data pointer
24236 here, not the actual data. We're still pointing into the
24237 info_buffer for SYM's objfile; right now we never release
24238 that buffer, but when we do clean up properly this may
24239 need to change. */
24240 struct dwarf_block *block = attr->as_block ();
24241 baton->size = block->size;
24242 baton->data = block->data;
24243 }
24244 else
24245 {
24246 dwarf2_invalid_attrib_class_complaint ("location description",
24247 sym->natural_name ());
24248 baton->size = 0;
24249 }
24250
24251 SYMBOL_ACLASS_INDEX (sym) = (is_block
24252 ? dwarf2_locexpr_block_index
24253 : dwarf2_locexpr_index);
24254 SYMBOL_LOCATION_BATON (sym) = baton;
24255 }
24256 }
24257
24258 /* See read.h. */
24259
24260 const comp_unit_head *
24261 dwarf2_per_cu_data::get_header () const
24262 {
24263 if (!m_header_read_in)
24264 {
24265 const gdb_byte *info_ptr
24266 = this->section->buffer + to_underlying (this->sect_off);
24267
24268 memset (&m_header, 0, sizeof (m_header));
24269
24270 read_comp_unit_head (&m_header, info_ptr, this->section,
24271 rcuh_kind::COMPILE);
24272
24273 m_header_read_in = true;
24274 }
24275
24276 return &m_header;
24277 }
24278
24279 /* See read.h. */
24280
24281 int
24282 dwarf2_per_cu_data::addr_size () const
24283 {
24284 return this->get_header ()->addr_size;
24285 }
24286
24287 /* See read.h. */
24288
24289 int
24290 dwarf2_per_cu_data::offset_size () const
24291 {
24292 return this->get_header ()->offset_size;
24293 }
24294
24295 /* See read.h. */
24296
24297 int
24298 dwarf2_per_cu_data::ref_addr_size () const
24299 {
24300 const comp_unit_head *header = this->get_header ();
24301
24302 if (header->version == 2)
24303 return header->addr_size;
24304 else
24305 return header->offset_size;
24306 }
24307
24308 /* A helper function for dwarf2_find_containing_comp_unit that returns
24309 the index of the result, and that searches a vector. It will
24310 return a result even if the offset in question does not actually
24311 occur in any CU. This is separate so that it can be unit
24312 tested. */
24313
24314 static int
24315 dwarf2_find_containing_comp_unit
24316 (sect_offset sect_off,
24317 unsigned int offset_in_dwz,
24318 const std::vector<dwarf2_per_cu_data_up> &all_comp_units)
24319 {
24320 int low, high;
24321
24322 low = 0;
24323 high = all_comp_units.size () - 1;
24324 while (high > low)
24325 {
24326 struct dwarf2_per_cu_data *mid_cu;
24327 int mid = low + (high - low) / 2;
24328
24329 mid_cu = all_comp_units[mid].get ();
24330 if (mid_cu->is_dwz > offset_in_dwz
24331 || (mid_cu->is_dwz == offset_in_dwz
24332 && mid_cu->sect_off + mid_cu->length > sect_off))
24333 high = mid;
24334 else
24335 low = mid + 1;
24336 }
24337 gdb_assert (low == high);
24338 return low;
24339 }
24340
24341 /* Locate the .debug_info compilation unit from CU's objfile which contains
24342 the DIE at OFFSET. Raises an error on failure. */
24343
24344 static struct dwarf2_per_cu_data *
24345 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24346 unsigned int offset_in_dwz,
24347 dwarf2_per_objfile *per_objfile)
24348 {
24349 int low = dwarf2_find_containing_comp_unit
24350 (sect_off, offset_in_dwz, per_objfile->per_bfd->all_comp_units);
24351 dwarf2_per_cu_data *this_cu
24352 = per_objfile->per_bfd->all_comp_units[low].get ();
24353
24354 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24355 {
24356 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24357 error (_("Dwarf Error: could not find partial DIE containing "
24358 "offset %s [in module %s]"),
24359 sect_offset_str (sect_off),
24360 bfd_get_filename (per_objfile->objfile->obfd));
24361
24362 gdb_assert (per_objfile->per_bfd->all_comp_units[low-1]->sect_off
24363 <= sect_off);
24364 return per_objfile->per_bfd->all_comp_units[low - 1].get ();
24365 }
24366 else
24367 {
24368 if (low == per_objfile->per_bfd->all_comp_units.size () - 1
24369 && sect_off >= this_cu->sect_off + this_cu->length)
24370 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24371 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24372 return this_cu;
24373 }
24374 }
24375
24376 #if GDB_SELF_TEST
24377
24378 namespace selftests {
24379 namespace find_containing_comp_unit {
24380
24381 static void
24382 run_test ()
24383 {
24384 dwarf2_per_cu_data_up one (new dwarf2_per_cu_data);
24385 dwarf2_per_cu_data *one_ptr = one.get ();
24386 dwarf2_per_cu_data_up two (new dwarf2_per_cu_data);
24387 dwarf2_per_cu_data *two_ptr = two.get ();
24388 dwarf2_per_cu_data_up three (new dwarf2_per_cu_data);
24389 dwarf2_per_cu_data *three_ptr = three.get ();
24390 dwarf2_per_cu_data_up four (new dwarf2_per_cu_data);
24391 dwarf2_per_cu_data *four_ptr = four.get ();
24392
24393 one->length = 5;
24394 two->sect_off = sect_offset (one->length);
24395 two->length = 7;
24396
24397 three->length = 5;
24398 three->is_dwz = 1;
24399 four->sect_off = sect_offset (three->length);
24400 four->length = 7;
24401 four->is_dwz = 1;
24402
24403 std::vector<dwarf2_per_cu_data_up> units;
24404 units.push_back (std::move (one));
24405 units.push_back (std::move (two));
24406 units.push_back (std::move (three));
24407 units.push_back (std::move (four));
24408
24409 int result;
24410
24411 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24412 SELF_CHECK (units[result].get () == one_ptr);
24413 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24414 SELF_CHECK (units[result].get () == one_ptr);
24415 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24416 SELF_CHECK (units[result].get () == two_ptr);
24417
24418 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24419 SELF_CHECK (units[result].get () == three_ptr);
24420 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24421 SELF_CHECK (units[result].get () == three_ptr);
24422 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24423 SELF_CHECK (units[result].get () == four_ptr);
24424 }
24425
24426 }
24427 }
24428
24429 #endif /* GDB_SELF_TEST */
24430
24431 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24432
24433 static void
24434 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24435 enum language pretend_language)
24436 {
24437 struct attribute *attr;
24438
24439 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24440
24441 /* Set the language we're debugging. */
24442 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24443 if (cu->producer != nullptr
24444 && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
24445 {
24446 /* The XLCL doesn't generate DW_LANG_OpenCL because this
24447 attribute is not standardised yet. As a workaround for the
24448 language detection we fall back to the DW_AT_producer
24449 string. */
24450 cu->per_cu->lang = language_opencl;
24451 }
24452 else if (cu->producer != nullptr
24453 && strstr (cu->producer, "GNU Go ") != NULL)
24454 {
24455 /* Similar hack for Go. */
24456 cu->per_cu->lang = language_go;
24457 }
24458 else if (attr != nullptr)
24459 cu->per_cu->lang = dwarf_lang_to_enum_language (attr->constant_value (0));
24460 else
24461 cu->per_cu->lang = pretend_language;
24462 cu->language_defn = language_def (cu->per_cu->lang);
24463 }
24464
24465 /* See read.h. */
24466
24467 dwarf2_cu *
24468 dwarf2_per_objfile::get_cu (dwarf2_per_cu_data *per_cu)
24469 {
24470 auto it = m_dwarf2_cus.find (per_cu);
24471 if (it == m_dwarf2_cus.end ())
24472 return nullptr;
24473
24474 return it->second;
24475 }
24476
24477 /* See read.h. */
24478
24479 void
24480 dwarf2_per_objfile::set_cu (dwarf2_per_cu_data *per_cu, dwarf2_cu *cu)
24481 {
24482 gdb_assert (this->get_cu (per_cu) == nullptr);
24483
24484 m_dwarf2_cus[per_cu] = cu;
24485 }
24486
24487 /* See read.h. */
24488
24489 void
24490 dwarf2_per_objfile::age_comp_units ()
24491 {
24492 dwarf_read_debug_printf_v ("running");
24493
24494 /* This is not expected to be called in the middle of CU expansion. There is
24495 an invariant that if a CU is in the CUs-to-expand queue, its DIEs are
24496 loaded in memory. Calling age_comp_units while the queue is in use could
24497 make us free the DIEs for a CU that is in the queue and therefore break
24498 that invariant. */
24499 gdb_assert (!this->per_bfd->queue.has_value ());
24500
24501 /* Start by clearing all marks. */
24502 for (auto pair : m_dwarf2_cus)
24503 pair.second->clear_mark ();
24504
24505 /* Traverse all CUs, mark them and their dependencies if used recently
24506 enough. */
24507 for (auto pair : m_dwarf2_cus)
24508 {
24509 dwarf2_cu *cu = pair.second;
24510
24511 cu->last_used++;
24512 if (cu->last_used <= dwarf_max_cache_age)
24513 cu->mark ();
24514 }
24515
24516 /* Delete all CUs still not marked. */
24517 for (auto it = m_dwarf2_cus.begin (); it != m_dwarf2_cus.end ();)
24518 {
24519 dwarf2_cu *cu = it->second;
24520
24521 if (!cu->is_marked ())
24522 {
24523 dwarf_read_debug_printf_v ("deleting old CU %s",
24524 sect_offset_str (cu->per_cu->sect_off));
24525 delete cu;
24526 it = m_dwarf2_cus.erase (it);
24527 }
24528 else
24529 it++;
24530 }
24531 }
24532
24533 /* See read.h. */
24534
24535 void
24536 dwarf2_per_objfile::remove_cu (dwarf2_per_cu_data *per_cu)
24537 {
24538 auto it = m_dwarf2_cus.find (per_cu);
24539 if (it == m_dwarf2_cus.end ())
24540 return;
24541
24542 delete it->second;
24543
24544 m_dwarf2_cus.erase (it);
24545 }
24546
24547 dwarf2_per_objfile::~dwarf2_per_objfile ()
24548 {
24549 remove_all_cus ();
24550 }
24551
24552 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24553 We store these in a hash table separate from the DIEs, and preserve them
24554 when the DIEs are flushed out of cache.
24555
24556 The CU "per_cu" pointer is needed because offset alone is not enough to
24557 uniquely identify the type. A file may have multiple .debug_types sections,
24558 or the type may come from a DWO file. Furthermore, while it's more logical
24559 to use per_cu->section+offset, with Fission the section with the data is in
24560 the DWO file but we don't know that section at the point we need it.
24561 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24562 because we can enter the lookup routine, get_die_type_at_offset, from
24563 outside this file, and thus won't necessarily have PER_CU->cu.
24564 Fortunately, PER_CU is stable for the life of the objfile. */
24565
24566 struct dwarf2_per_cu_offset_and_type
24567 {
24568 const struct dwarf2_per_cu_data *per_cu;
24569 sect_offset sect_off;
24570 struct type *type;
24571 };
24572
24573 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24574
24575 static hashval_t
24576 per_cu_offset_and_type_hash (const void *item)
24577 {
24578 const struct dwarf2_per_cu_offset_and_type *ofs
24579 = (const struct dwarf2_per_cu_offset_and_type *) item;
24580
24581 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24582 }
24583
24584 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24585
24586 static int
24587 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24588 {
24589 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24590 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24591 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24592 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24593
24594 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24595 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24596 }
24597
24598 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24599 table if necessary. For convenience, return TYPE.
24600
24601 The DIEs reading must have careful ordering to:
24602 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24603 reading current DIE.
24604 * Not trying to dereference contents of still incompletely read in types
24605 while reading in other DIEs.
24606 * Enable referencing still incompletely read in types just by a pointer to
24607 the type without accessing its fields.
24608
24609 Therefore caller should follow these rules:
24610 * Try to fetch any prerequisite types we may need to build this DIE type
24611 before building the type and calling set_die_type.
24612 * After building type call set_die_type for current DIE as soon as
24613 possible before fetching more types to complete the current type.
24614 * Make the type as complete as possible before fetching more types. */
24615
24616 static struct type *
24617 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
24618 bool skip_data_location)
24619 {
24620 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24621 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24622 struct objfile *objfile = per_objfile->objfile;
24623 struct attribute *attr;
24624 struct dynamic_prop prop;
24625
24626 /* For Ada types, make sure that the gnat-specific data is always
24627 initialized (if not already set). There are a few types where
24628 we should not be doing so, because the type-specific area is
24629 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24630 where the type-specific area is used to store the floatformat).
24631 But this is not a problem, because the gnat-specific information
24632 is actually not needed for these types. */
24633 if (need_gnat_info (cu)
24634 && type->code () != TYPE_CODE_FUNC
24635 && type->code () != TYPE_CODE_FLT
24636 && type->code () != TYPE_CODE_METHODPTR
24637 && type->code () != TYPE_CODE_MEMBERPTR
24638 && type->code () != TYPE_CODE_METHOD
24639 && type->code () != TYPE_CODE_FIXED_POINT
24640 && !HAVE_GNAT_AUX_INFO (type))
24641 INIT_GNAT_SPECIFIC (type);
24642
24643 /* Read DW_AT_allocated and set in type. */
24644 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24645 if (attr != NULL)
24646 {
24647 struct type *prop_type = cu->addr_sized_int_type (false);
24648 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24649 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
24650 }
24651
24652 /* Read DW_AT_associated and set in type. */
24653 attr = dwarf2_attr (die, DW_AT_associated, cu);
24654 if (attr != NULL)
24655 {
24656 struct type *prop_type = cu->addr_sized_int_type (false);
24657 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24658 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
24659 }
24660
24661 /* Read DW_AT_data_location and set in type. */
24662 if (!skip_data_location)
24663 {
24664 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24665 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
24666 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
24667 }
24668
24669 if (per_objfile->die_type_hash == NULL)
24670 per_objfile->die_type_hash
24671 = htab_up (htab_create_alloc (127,
24672 per_cu_offset_and_type_hash,
24673 per_cu_offset_and_type_eq,
24674 NULL, xcalloc, xfree));
24675
24676 ofs.per_cu = cu->per_cu;
24677 ofs.sect_off = die->sect_off;
24678 ofs.type = type;
24679 slot = (struct dwarf2_per_cu_offset_and_type **)
24680 htab_find_slot (per_objfile->die_type_hash.get (), &ofs, INSERT);
24681 if (*slot)
24682 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24683 sect_offset_str (die->sect_off));
24684 *slot = XOBNEW (&objfile->objfile_obstack,
24685 struct dwarf2_per_cu_offset_and_type);
24686 **slot = ofs;
24687 return type;
24688 }
24689
24690 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24691 or return NULL if the die does not have a saved type. */
24692
24693 static struct type *
24694 get_die_type_at_offset (sect_offset sect_off,
24695 dwarf2_per_cu_data *per_cu,
24696 dwarf2_per_objfile *per_objfile)
24697 {
24698 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24699
24700 if (per_objfile->die_type_hash == NULL)
24701 return NULL;
24702
24703 ofs.per_cu = per_cu;
24704 ofs.sect_off = sect_off;
24705 slot = ((struct dwarf2_per_cu_offset_and_type *)
24706 htab_find (per_objfile->die_type_hash.get (), &ofs));
24707 if (slot)
24708 return slot->type;
24709 else
24710 return NULL;
24711 }
24712
24713 /* Look up the type for DIE in CU in die_type_hash,
24714 or return NULL if DIE does not have a saved type. */
24715
24716 static struct type *
24717 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24718 {
24719 return get_die_type_at_offset (die->sect_off, cu->per_cu, cu->per_objfile);
24720 }
24721
24722 /* Trivial hash function for partial_die_info: the hash value of a DIE
24723 is its offset in .debug_info for this objfile. */
24724
24725 static hashval_t
24726 partial_die_hash (const void *item)
24727 {
24728 const struct partial_die_info *part_die
24729 = (const struct partial_die_info *) item;
24730
24731 return to_underlying (part_die->sect_off);
24732 }
24733
24734 /* Trivial comparison function for partial_die_info structures: two DIEs
24735 are equal if they have the same offset. */
24736
24737 static int
24738 partial_die_eq (const void *item_lhs, const void *item_rhs)
24739 {
24740 const struct partial_die_info *part_die_lhs
24741 = (const struct partial_die_info *) item_lhs;
24742 const struct partial_die_info *part_die_rhs
24743 = (const struct partial_die_info *) item_rhs;
24744
24745 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24746 }
24747
24748 struct cmd_list_element *set_dwarf_cmdlist;
24749 struct cmd_list_element *show_dwarf_cmdlist;
24750
24751 static void
24752 show_check_physname (struct ui_file *file, int from_tty,
24753 struct cmd_list_element *c, const char *value)
24754 {
24755 fprintf_filtered (file,
24756 _("Whether to check \"physname\" is %s.\n"),
24757 value);
24758 }
24759
24760 void _initialize_dwarf2_read ();
24761 void
24762 _initialize_dwarf2_read ()
24763 {
24764 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
24765 Set DWARF specific variables.\n\
24766 Configure DWARF variables such as the cache size."),
24767 &set_dwarf_cmdlist,
24768 0/*allow-unknown*/, &maintenance_set_cmdlist);
24769
24770 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
24771 Show DWARF specific variables.\n\
24772 Show DWARF variables such as the cache size."),
24773 &show_dwarf_cmdlist,
24774 0/*allow-unknown*/, &maintenance_show_cmdlist);
24775
24776 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24777 &dwarf_max_cache_age, _("\
24778 Set the upper bound on the age of cached DWARF compilation units."), _("\
24779 Show the upper bound on the age of cached DWARF compilation units."), _("\
24780 A higher limit means that cached compilation units will be stored\n\
24781 in memory longer, and more total memory will be used. Zero disables\n\
24782 caching, which can slow down startup."),
24783 NULL,
24784 show_dwarf_max_cache_age,
24785 &set_dwarf_cmdlist,
24786 &show_dwarf_cmdlist);
24787
24788 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24789 Set debugging of the DWARF reader."), _("\
24790 Show debugging of the DWARF reader."), _("\
24791 When enabled (non-zero), debugging messages are printed during DWARF\n\
24792 reading and symtab expansion. A value of 1 (one) provides basic\n\
24793 information. A value greater than 1 provides more verbose information."),
24794 NULL,
24795 NULL,
24796 &setdebuglist, &showdebuglist);
24797
24798 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24799 Set debugging of the DWARF DIE reader."), _("\
24800 Show debugging of the DWARF DIE reader."), _("\
24801 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24802 The value is the maximum depth to print."),
24803 NULL,
24804 NULL,
24805 &setdebuglist, &showdebuglist);
24806
24807 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24808 Set debugging of the dwarf line reader."), _("\
24809 Show debugging of the dwarf line reader."), _("\
24810 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24811 A value of 1 (one) provides basic information.\n\
24812 A value greater than 1 provides more verbose information."),
24813 NULL,
24814 NULL,
24815 &setdebuglist, &showdebuglist);
24816
24817 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24818 Set cross-checking of \"physname\" code against demangler."), _("\
24819 Show cross-checking of \"physname\" code against demangler."), _("\
24820 When enabled, GDB's internal \"physname\" code is checked against\n\
24821 the demangler."),
24822 NULL, show_check_physname,
24823 &setdebuglist, &showdebuglist);
24824
24825 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24826 no_class, &use_deprecated_index_sections, _("\
24827 Set whether to use deprecated gdb_index sections."), _("\
24828 Show whether to use deprecated gdb_index sections."), _("\
24829 When enabled, deprecated .gdb_index sections are used anyway.\n\
24830 Normally they are ignored either because of a missing feature or\n\
24831 performance issue.\n\
24832 Warning: This option must be enabled before gdb reads the file."),
24833 NULL,
24834 NULL,
24835 &setlist, &showlist);
24836
24837 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24838 &dwarf2_locexpr_funcs);
24839 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24840 &dwarf2_loclist_funcs);
24841
24842 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24843 &dwarf2_block_frame_base_locexpr_funcs);
24844 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24845 &dwarf2_block_frame_base_loclist_funcs);
24846
24847 #if GDB_SELF_TEST
24848 selftests::register_test ("dw2_expand_symtabs_matching",
24849 selftests::dw2_expand_symtabs_matching::run_test);
24850 selftests::register_test ("dwarf2_find_containing_comp_unit",
24851 selftests::find_containing_comp_unit::run_test);
24852 #endif
24853 }
This page took 0.579764 seconds and 3 git commands to generate.