gdb: tweak format of infrun debug log
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbsupport/common-defs.h"
23 #include "gdbsupport/common-utils.h"
24 #include "infrun.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "breakpoint.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "target-connection.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "block.h"
46 #include "mi/mi-common.h"
47 #include "event-top.h"
48 #include "record.h"
49 #include "record-full.h"
50 #include "inline-frame.h"
51 #include "jit.h"
52 #include "tracepoint.h"
53 #include "skip.h"
54 #include "probe.h"
55 #include "objfiles.h"
56 #include "completer.h"
57 #include "target-descriptions.h"
58 #include "target-dcache.h"
59 #include "terminal.h"
60 #include "solist.h"
61 #include "gdbsupport/event-loop.h"
62 #include "thread-fsm.h"
63 #include "gdbsupport/enum-flags.h"
64 #include "progspace-and-thread.h"
65 #include "gdbsupport/gdb_optional.h"
66 #include "arch-utils.h"
67 #include "gdbsupport/scope-exit.h"
68 #include "gdbsupport/forward-scope-exit.h"
69 #include "gdbsupport/gdb_select.h"
70 #include <unordered_map>
71 #include "async-event.h"
72
73 /* Prototypes for local functions */
74
75 static void sig_print_info (enum gdb_signal);
76
77 static void sig_print_header (void);
78
79 static void follow_inferior_reset_breakpoints (void);
80
81 static int currently_stepping (struct thread_info *tp);
82
83 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
84
85 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
87 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
89 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
91 static void resume (gdb_signal sig);
92
93 static void wait_for_inferior (inferior *inf);
94
95 /* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97 static struct async_event_handler *infrun_async_inferior_event_token;
98
99 /* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101 static int infrun_is_async = -1;
102
103 #define infrun_log_debug(fmt, args...) \
104 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
105
106 static void ATTRIBUTE_PRINTF(3, 4)
107 infrun_log_debug_1 (int line, const char *func,
108 const char *fmt, ...)
109 {
110 if (debug_infrun)
111 {
112 va_list args;
113 va_start (args, fmt);
114 std::string msg = string_vprintf (fmt, args);
115 va_end (args);
116
117 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
118 }
119 }
120
121 /* See infrun.h. */
122
123 void
124 infrun_async (int enable)
125 {
126 if (infrun_is_async != enable)
127 {
128 infrun_is_async = enable;
129
130 infrun_log_debug ("enable=%d", enable);
131
132 if (enable)
133 mark_async_event_handler (infrun_async_inferior_event_token);
134 else
135 clear_async_event_handler (infrun_async_inferior_event_token);
136 }
137 }
138
139 /* See infrun.h. */
140
141 void
142 mark_infrun_async_event_handler (void)
143 {
144 mark_async_event_handler (infrun_async_inferior_event_token);
145 }
146
147 /* When set, stop the 'step' command if we enter a function which has
148 no line number information. The normal behavior is that we step
149 over such function. */
150 bool step_stop_if_no_debug = false;
151 static void
152 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
156 }
157
158 /* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
161
162 static ptid_t previous_inferior_ptid;
163
164 /* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169 static bool detach_fork = true;
170
171 bool debug_displaced = false;
172 static void
173 show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177 }
178
179 unsigned int debug_infrun = 0;
180 static void
181 show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185 }
186
187
188 /* Support for disabling address space randomization. */
189
190 bool disable_randomization = true;
191
192 static void
193 show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205 }
206
207 static void
208 set_disable_randomization (const char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215 }
216
217 /* User interface for non-stop mode. */
218
219 bool non_stop = false;
220 static bool non_stop_1 = false;
221
222 static void
223 set_non_stop (const char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233 }
234
235 static void
236 show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242 }
243
244 /* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
248 bool observer_mode = false;
249 static bool observer_mode_1 = false;
250
251 static void
252 set_observer_mode (const char *args, int from_tty,
253 struct cmd_list_element *c)
254 {
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = true;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = true;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285 }
286
287 static void
288 show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292 }
293
294 /* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300 void
301 update_observer_mode (void)
302 {
303 bool newval = (!may_insert_breakpoints
304 && !may_insert_tracepoints
305 && may_insert_fast_tracepoints
306 && !may_stop
307 && non_stop);
308
309 /* Let the user know if things change. */
310 if (newval != observer_mode)
311 printf_filtered (_("Observer mode is now %s.\n"),
312 (newval ? "on" : "off"));
313
314 observer_mode = observer_mode_1 = newval;
315 }
316
317 /* Tables of how to react to signals; the user sets them. */
318
319 static unsigned char signal_stop[GDB_SIGNAL_LAST];
320 static unsigned char signal_print[GDB_SIGNAL_LAST];
321 static unsigned char signal_program[GDB_SIGNAL_LAST];
322
323 /* Table of signals that are registered with "catch signal". A
324 non-zero entry indicates that the signal is caught by some "catch
325 signal" command. */
326 static unsigned char signal_catch[GDB_SIGNAL_LAST];
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char signal_pass[GDB_SIGNAL_LAST];
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals (signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (const char *args,
375 int from_tty, struct cmd_list_element *c)
376 {
377 update_solib_breakpoints ();
378 }
379
380 static void
381 show_stop_on_solib_events (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
385 value);
386 }
387
388 /* Nonzero after stop if current stack frame should be printed. */
389
390 static int stop_print_frame;
391
392 /* This is a cached copy of the target/ptid/waitstatus of the last
393 event returned by target_wait()/deprecated_target_wait_hook().
394 This information is returned by get_last_target_status(). */
395 static process_stratum_target *target_last_proc_target;
396 static ptid_t target_last_wait_ptid;
397 static struct target_waitstatus target_last_waitstatus;
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static bool
429 follow_fork_inferior (bool follow_child, bool detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 return 1;
454 }
455
456 if (!follow_child)
457 {
458 /* Detach new forked process? */
459 if (detach_fork)
460 {
461 /* Before detaching from the child, remove all breakpoints
462 from it. If we forked, then this has already been taken
463 care of by infrun.c. If we vforked however, any
464 breakpoint inserted in the parent is visible in the
465 child, even those added while stopped in a vfork
466 catchpoint. This will remove the breakpoints from the
467 parent also, but they'll be reinserted below. */
468 if (has_vforked)
469 {
470 /* Keep breakpoints list in sync. */
471 remove_breakpoints_inf (current_inferior ());
472 }
473
474 if (print_inferior_events)
475 {
476 /* Ensure that we have a process ptid. */
477 ptid_t process_ptid = ptid_t (child_ptid.pid ());
478
479 target_terminal::ours_for_output ();
480 fprintf_filtered (gdb_stdlog,
481 _("[Detaching after %s from child %s]\n"),
482 has_vforked ? "vfork" : "fork",
483 target_pid_to_str (process_ptid).c_str ());
484 }
485 }
486 else
487 {
488 struct inferior *parent_inf, *child_inf;
489
490 /* Add process to GDB's tables. */
491 child_inf = add_inferior (child_ptid.pid ());
492
493 parent_inf = current_inferior ();
494 child_inf->attach_flag = parent_inf->attach_flag;
495 copy_terminal_info (child_inf, parent_inf);
496 child_inf->gdbarch = parent_inf->gdbarch;
497 copy_inferior_target_desc_info (child_inf, parent_inf);
498
499 scoped_restore_current_pspace_and_thread restore_pspace_thread;
500
501 set_current_inferior (child_inf);
502 switch_to_no_thread ();
503 child_inf->symfile_flags = SYMFILE_NO_READ;
504 push_target (parent_inf->process_target ());
505 thread_info *child_thr
506 = add_thread_silent (child_inf->process_target (), child_ptid);
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 exec_on_vfork ();
516
517 /* The parent will be frozen until the child is done
518 with the shared region. Keep track of the
519 parent. */
520 child_inf->vfork_parent = parent_inf;
521 child_inf->pending_detach = 0;
522 parent_inf->vfork_child = child_inf;
523 parent_inf->pending_detach = 0;
524
525 /* Now that the inferiors and program spaces are all
526 wired up, we can switch to the child thread (which
527 switches inferior and program space too). */
528 switch_to_thread (child_thr);
529 }
530 else
531 {
532 child_inf->aspace = new_address_space ();
533 child_inf->pspace = new program_space (child_inf->aspace);
534 child_inf->removable = 1;
535 set_current_program_space (child_inf->pspace);
536 clone_program_space (child_inf->pspace, parent_inf->pspace);
537
538 /* solib_create_inferior_hook relies on the current
539 thread. */
540 switch_to_thread (child_thr);
541
542 /* Let the shared library layer (e.g., solib-svr4) learn
543 about this new process, relocate the cloned exec, pull
544 in shared libraries, and install the solib event
545 breakpoint. If a "cloned-VM" event was propagated
546 better throughout the core, this wouldn't be
547 required. */
548 solib_create_inferior_hook (0);
549 }
550 }
551
552 if (has_vforked)
553 {
554 struct inferior *parent_inf;
555
556 parent_inf = current_inferior ();
557
558 /* If we detached from the child, then we have to be careful
559 to not insert breakpoints in the parent until the child
560 is done with the shared memory region. However, if we're
561 staying attached to the child, then we can and should
562 insert breakpoints, so that we can debug it. A
563 subsequent child exec or exit is enough to know when does
564 the child stops using the parent's address space. */
565 parent_inf->waiting_for_vfork_done = detach_fork;
566 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
567 }
568 }
569 else
570 {
571 /* Follow the child. */
572 struct inferior *parent_inf, *child_inf;
573 struct program_space *parent_pspace;
574
575 if (print_inferior_events)
576 {
577 std::string parent_pid = target_pid_to_str (parent_ptid);
578 std::string child_pid = target_pid_to_str (child_ptid);
579
580 target_terminal::ours_for_output ();
581 fprintf_filtered (gdb_stdlog,
582 _("[Attaching after %s %s to child %s]\n"),
583 parent_pid.c_str (),
584 has_vforked ? "vfork" : "fork",
585 child_pid.c_str ());
586 }
587
588 /* Add the new inferior first, so that the target_detach below
589 doesn't unpush the target. */
590
591 child_inf = add_inferior (child_ptid.pid ());
592
593 parent_inf = current_inferior ();
594 child_inf->attach_flag = parent_inf->attach_flag;
595 copy_terminal_info (child_inf, parent_inf);
596 child_inf->gdbarch = parent_inf->gdbarch;
597 copy_inferior_target_desc_info (child_inf, parent_inf);
598
599 parent_pspace = parent_inf->pspace;
600
601 process_stratum_target *target = parent_inf->process_target ();
602
603 {
604 /* Hold a strong reference to the target while (maybe)
605 detaching the parent. Otherwise detaching could close the
606 target. */
607 auto target_ref = target_ops_ref::new_reference (target);
608
609 /* If we're vforking, we want to hold on to the parent until
610 the child exits or execs. At child exec or exit time we
611 can remove the old breakpoints from the parent and detach
612 or resume debugging it. Otherwise, detach the parent now;
613 we'll want to reuse it's program/address spaces, but we
614 can't set them to the child before removing breakpoints
615 from the parent, otherwise, the breakpoints module could
616 decide to remove breakpoints from the wrong process (since
617 they'd be assigned to the same address space). */
618
619 if (has_vforked)
620 {
621 gdb_assert (child_inf->vfork_parent == NULL);
622 gdb_assert (parent_inf->vfork_child == NULL);
623 child_inf->vfork_parent = parent_inf;
624 child_inf->pending_detach = 0;
625 parent_inf->vfork_child = child_inf;
626 parent_inf->pending_detach = detach_fork;
627 parent_inf->waiting_for_vfork_done = 0;
628 }
629 else if (detach_fork)
630 {
631 if (print_inferior_events)
632 {
633 /* Ensure that we have a process ptid. */
634 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
635
636 target_terminal::ours_for_output ();
637 fprintf_filtered (gdb_stdlog,
638 _("[Detaching after fork from "
639 "parent %s]\n"),
640 target_pid_to_str (process_ptid).c_str ());
641 }
642
643 target_detach (parent_inf, 0);
644 parent_inf = NULL;
645 }
646
647 /* Note that the detach above makes PARENT_INF dangling. */
648
649 /* Add the child thread to the appropriate lists, and switch
650 to this new thread, before cloning the program space, and
651 informing the solib layer about this new process. */
652
653 set_current_inferior (child_inf);
654 push_target (target);
655 }
656
657 thread_info *child_thr = add_thread_silent (target, child_ptid);
658
659 /* If this is a vfork child, then the address-space is shared
660 with the parent. If we detached from the parent, then we can
661 reuse the parent's program/address spaces. */
662 if (has_vforked || detach_fork)
663 {
664 child_inf->pspace = parent_pspace;
665 child_inf->aspace = child_inf->pspace->aspace;
666
667 exec_on_vfork ();
668 }
669 else
670 {
671 child_inf->aspace = new_address_space ();
672 child_inf->pspace = new program_space (child_inf->aspace);
673 child_inf->removable = 1;
674 child_inf->symfile_flags = SYMFILE_NO_READ;
675 set_current_program_space (child_inf->pspace);
676 clone_program_space (child_inf->pspace, parent_pspace);
677
678 /* Let the shared library layer (e.g., solib-svr4) learn
679 about this new process, relocate the cloned exec, pull in
680 shared libraries, and install the solib event breakpoint.
681 If a "cloned-VM" event was propagated better throughout
682 the core, this wouldn't be required. */
683 solib_create_inferior_hook (0);
684 }
685
686 switch_to_thread (child_thr);
687 }
688
689 return target_follow_fork (follow_child, detach_fork);
690 }
691
692 /* Tell the target to follow the fork we're stopped at. Returns true
693 if the inferior should be resumed; false, if the target for some
694 reason decided it's best not to resume. */
695
696 static bool
697 follow_fork ()
698 {
699 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
700 bool should_resume = true;
701 struct thread_info *tp;
702
703 /* Copy user stepping state to the new inferior thread. FIXME: the
704 followed fork child thread should have a copy of most of the
705 parent thread structure's run control related fields, not just these.
706 Initialized to avoid "may be used uninitialized" warnings from gcc. */
707 struct breakpoint *step_resume_breakpoint = NULL;
708 struct breakpoint *exception_resume_breakpoint = NULL;
709 CORE_ADDR step_range_start = 0;
710 CORE_ADDR step_range_end = 0;
711 int current_line = 0;
712 symtab *current_symtab = NULL;
713 struct frame_id step_frame_id = { 0 };
714 struct thread_fsm *thread_fsm = NULL;
715
716 if (!non_stop)
717 {
718 process_stratum_target *wait_target;
719 ptid_t wait_ptid;
720 struct target_waitstatus wait_status;
721
722 /* Get the last target status returned by target_wait(). */
723 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
724
725 /* If not stopped at a fork event, then there's nothing else to
726 do. */
727 if (wait_status.kind != TARGET_WAITKIND_FORKED
728 && wait_status.kind != TARGET_WAITKIND_VFORKED)
729 return 1;
730
731 /* Check if we switched over from WAIT_PTID, since the event was
732 reported. */
733 if (wait_ptid != minus_one_ptid
734 && (current_inferior ()->process_target () != wait_target
735 || inferior_ptid != wait_ptid))
736 {
737 /* We did. Switch back to WAIT_PTID thread, to tell the
738 target to follow it (in either direction). We'll
739 afterwards refuse to resume, and inform the user what
740 happened. */
741 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
742 switch_to_thread (wait_thread);
743 should_resume = false;
744 }
745 }
746
747 tp = inferior_thread ();
748
749 /* If there were any forks/vforks that were caught and are now to be
750 followed, then do so now. */
751 switch (tp->pending_follow.kind)
752 {
753 case TARGET_WAITKIND_FORKED:
754 case TARGET_WAITKIND_VFORKED:
755 {
756 ptid_t parent, child;
757
758 /* If the user did a next/step, etc, over a fork call,
759 preserve the stepping state in the fork child. */
760 if (follow_child && should_resume)
761 {
762 step_resume_breakpoint = clone_momentary_breakpoint
763 (tp->control.step_resume_breakpoint);
764 step_range_start = tp->control.step_range_start;
765 step_range_end = tp->control.step_range_end;
766 current_line = tp->current_line;
767 current_symtab = tp->current_symtab;
768 step_frame_id = tp->control.step_frame_id;
769 exception_resume_breakpoint
770 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
771 thread_fsm = tp->thread_fsm;
772
773 /* For now, delete the parent's sr breakpoint, otherwise,
774 parent/child sr breakpoints are considered duplicates,
775 and the child version will not be installed. Remove
776 this when the breakpoints module becomes aware of
777 inferiors and address spaces. */
778 delete_step_resume_breakpoint (tp);
779 tp->control.step_range_start = 0;
780 tp->control.step_range_end = 0;
781 tp->control.step_frame_id = null_frame_id;
782 delete_exception_resume_breakpoint (tp);
783 tp->thread_fsm = NULL;
784 }
785
786 parent = inferior_ptid;
787 child = tp->pending_follow.value.related_pid;
788
789 process_stratum_target *parent_targ = tp->inf->process_target ();
790 /* Set up inferior(s) as specified by the caller, and tell the
791 target to do whatever is necessary to follow either parent
792 or child. */
793 if (follow_fork_inferior (follow_child, detach_fork))
794 {
795 /* Target refused to follow, or there's some other reason
796 we shouldn't resume. */
797 should_resume = 0;
798 }
799 else
800 {
801 /* This pending follow fork event is now handled, one way
802 or another. The previous selected thread may be gone
803 from the lists by now, but if it is still around, need
804 to clear the pending follow request. */
805 tp = find_thread_ptid (parent_targ, parent);
806 if (tp)
807 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
808
809 /* This makes sure we don't try to apply the "Switched
810 over from WAIT_PID" logic above. */
811 nullify_last_target_wait_ptid ();
812
813 /* If we followed the child, switch to it... */
814 if (follow_child)
815 {
816 thread_info *child_thr = find_thread_ptid (parent_targ, child);
817 switch_to_thread (child_thr);
818
819 /* ... and preserve the stepping state, in case the
820 user was stepping over the fork call. */
821 if (should_resume)
822 {
823 tp = inferior_thread ();
824 tp->control.step_resume_breakpoint
825 = step_resume_breakpoint;
826 tp->control.step_range_start = step_range_start;
827 tp->control.step_range_end = step_range_end;
828 tp->current_line = current_line;
829 tp->current_symtab = current_symtab;
830 tp->control.step_frame_id = step_frame_id;
831 tp->control.exception_resume_breakpoint
832 = exception_resume_breakpoint;
833 tp->thread_fsm = thread_fsm;
834 }
835 else
836 {
837 /* If we get here, it was because we're trying to
838 resume from a fork catchpoint, but, the user
839 has switched threads away from the thread that
840 forked. In that case, the resume command
841 issued is most likely not applicable to the
842 child, so just warn, and refuse to resume. */
843 warning (_("Not resuming: switched threads "
844 "before following fork child."));
845 }
846
847 /* Reset breakpoints in the child as appropriate. */
848 follow_inferior_reset_breakpoints ();
849 }
850 }
851 }
852 break;
853 case TARGET_WAITKIND_SPURIOUS:
854 /* Nothing to follow. */
855 break;
856 default:
857 internal_error (__FILE__, __LINE__,
858 "Unexpected pending_follow.kind %d\n",
859 tp->pending_follow.kind);
860 break;
861 }
862
863 return should_resume;
864 }
865
866 static void
867 follow_inferior_reset_breakpoints (void)
868 {
869 struct thread_info *tp = inferior_thread ();
870
871 /* Was there a step_resume breakpoint? (There was if the user
872 did a "next" at the fork() call.) If so, explicitly reset its
873 thread number. Cloned step_resume breakpoints are disabled on
874 creation, so enable it here now that it is associated with the
875 correct thread.
876
877 step_resumes are a form of bp that are made to be per-thread.
878 Since we created the step_resume bp when the parent process
879 was being debugged, and now are switching to the child process,
880 from the breakpoint package's viewpoint, that's a switch of
881 "threads". We must update the bp's notion of which thread
882 it is for, or it'll be ignored when it triggers. */
883
884 if (tp->control.step_resume_breakpoint)
885 {
886 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
887 tp->control.step_resume_breakpoint->loc->enabled = 1;
888 }
889
890 /* Treat exception_resume breakpoints like step_resume breakpoints. */
891 if (tp->control.exception_resume_breakpoint)
892 {
893 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
894 tp->control.exception_resume_breakpoint->loc->enabled = 1;
895 }
896
897 /* Reinsert all breakpoints in the child. The user may have set
898 breakpoints after catching the fork, in which case those
899 were never set in the child, but only in the parent. This makes
900 sure the inserted breakpoints match the breakpoint list. */
901
902 breakpoint_re_set ();
903 insert_breakpoints ();
904 }
905
906 /* The child has exited or execed: resume threads of the parent the
907 user wanted to be executing. */
908
909 static int
910 proceed_after_vfork_done (struct thread_info *thread,
911 void *arg)
912 {
913 int pid = * (int *) arg;
914
915 if (thread->ptid.pid () == pid
916 && thread->state == THREAD_RUNNING
917 && !thread->executing
918 && !thread->stop_requested
919 && thread->suspend.stop_signal == GDB_SIGNAL_0)
920 {
921 infrun_log_debug ("resuming vfork parent thread %s",
922 target_pid_to_str (thread->ptid).c_str ());
923
924 switch_to_thread (thread);
925 clear_proceed_status (0);
926 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
927 }
928
929 return 0;
930 }
931
932 /* Called whenever we notice an exec or exit event, to handle
933 detaching or resuming a vfork parent. */
934
935 static void
936 handle_vfork_child_exec_or_exit (int exec)
937 {
938 struct inferior *inf = current_inferior ();
939
940 if (inf->vfork_parent)
941 {
942 int resume_parent = -1;
943
944 /* This exec or exit marks the end of the shared memory region
945 between the parent and the child. Break the bonds. */
946 inferior *vfork_parent = inf->vfork_parent;
947 inf->vfork_parent->vfork_child = NULL;
948 inf->vfork_parent = NULL;
949
950 /* If the user wanted to detach from the parent, now is the
951 time. */
952 if (vfork_parent->pending_detach)
953 {
954 struct program_space *pspace;
955 struct address_space *aspace;
956
957 /* follow-fork child, detach-on-fork on. */
958
959 vfork_parent->pending_detach = 0;
960
961 scoped_restore_current_pspace_and_thread restore_thread;
962
963 /* We're letting loose of the parent. */
964 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
965 switch_to_thread (tp);
966
967 /* We're about to detach from the parent, which implicitly
968 removes breakpoints from its address space. There's a
969 catch here: we want to reuse the spaces for the child,
970 but, parent/child are still sharing the pspace at this
971 point, although the exec in reality makes the kernel give
972 the child a fresh set of new pages. The problem here is
973 that the breakpoints module being unaware of this, would
974 likely chose the child process to write to the parent
975 address space. Swapping the child temporarily away from
976 the spaces has the desired effect. Yes, this is "sort
977 of" a hack. */
978
979 pspace = inf->pspace;
980 aspace = inf->aspace;
981 inf->aspace = NULL;
982 inf->pspace = NULL;
983
984 if (print_inferior_events)
985 {
986 std::string pidstr
987 = target_pid_to_str (ptid_t (vfork_parent->pid));
988
989 target_terminal::ours_for_output ();
990
991 if (exec)
992 {
993 fprintf_filtered (gdb_stdlog,
994 _("[Detaching vfork parent %s "
995 "after child exec]\n"), pidstr.c_str ());
996 }
997 else
998 {
999 fprintf_filtered (gdb_stdlog,
1000 _("[Detaching vfork parent %s "
1001 "after child exit]\n"), pidstr.c_str ());
1002 }
1003 }
1004
1005 target_detach (vfork_parent, 0);
1006
1007 /* Put it back. */
1008 inf->pspace = pspace;
1009 inf->aspace = aspace;
1010 }
1011 else if (exec)
1012 {
1013 /* We're staying attached to the parent, so, really give the
1014 child a new address space. */
1015 inf->pspace = new program_space (maybe_new_address_space ());
1016 inf->aspace = inf->pspace->aspace;
1017 inf->removable = 1;
1018 set_current_program_space (inf->pspace);
1019
1020 resume_parent = vfork_parent->pid;
1021 }
1022 else
1023 {
1024 /* If this is a vfork child exiting, then the pspace and
1025 aspaces were shared with the parent. Since we're
1026 reporting the process exit, we'll be mourning all that is
1027 found in the address space, and switching to null_ptid,
1028 preparing to start a new inferior. But, since we don't
1029 want to clobber the parent's address/program spaces, we
1030 go ahead and create a new one for this exiting
1031 inferior. */
1032
1033 /* Switch to no-thread while running clone_program_space, so
1034 that clone_program_space doesn't want to read the
1035 selected frame of a dead process. */
1036 scoped_restore_current_thread restore_thread;
1037 switch_to_no_thread ();
1038
1039 inf->pspace = new program_space (maybe_new_address_space ());
1040 inf->aspace = inf->pspace->aspace;
1041 set_current_program_space (inf->pspace);
1042 inf->removable = 1;
1043 inf->symfile_flags = SYMFILE_NO_READ;
1044 clone_program_space (inf->pspace, vfork_parent->pspace);
1045
1046 resume_parent = vfork_parent->pid;
1047 }
1048
1049 gdb_assert (current_program_space == inf->pspace);
1050
1051 if (non_stop && resume_parent != -1)
1052 {
1053 /* If the user wanted the parent to be running, let it go
1054 free now. */
1055 scoped_restore_current_thread restore_thread;
1056
1057 infrun_log_debug ("resuming vfork parent process %d",
1058 resume_parent);
1059
1060 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1061 }
1062 }
1063 }
1064
1065 /* Enum strings for "set|show follow-exec-mode". */
1066
1067 static const char follow_exec_mode_new[] = "new";
1068 static const char follow_exec_mode_same[] = "same";
1069 static const char *const follow_exec_mode_names[] =
1070 {
1071 follow_exec_mode_new,
1072 follow_exec_mode_same,
1073 NULL,
1074 };
1075
1076 static const char *follow_exec_mode_string = follow_exec_mode_same;
1077 static void
1078 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1079 struct cmd_list_element *c, const char *value)
1080 {
1081 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1082 }
1083
1084 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1085
1086 static void
1087 follow_exec (ptid_t ptid, const char *exec_file_target)
1088 {
1089 struct inferior *inf = current_inferior ();
1090 int pid = ptid.pid ();
1091 ptid_t process_ptid;
1092
1093 /* Switch terminal for any messages produced e.g. by
1094 breakpoint_re_set. */
1095 target_terminal::ours_for_output ();
1096
1097 /* This is an exec event that we actually wish to pay attention to.
1098 Refresh our symbol table to the newly exec'd program, remove any
1099 momentary bp's, etc.
1100
1101 If there are breakpoints, they aren't really inserted now,
1102 since the exec() transformed our inferior into a fresh set
1103 of instructions.
1104
1105 We want to preserve symbolic breakpoints on the list, since
1106 we have hopes that they can be reset after the new a.out's
1107 symbol table is read.
1108
1109 However, any "raw" breakpoints must be removed from the list
1110 (e.g., the solib bp's), since their address is probably invalid
1111 now.
1112
1113 And, we DON'T want to call delete_breakpoints() here, since
1114 that may write the bp's "shadow contents" (the instruction
1115 value that was overwritten with a TRAP instruction). Since
1116 we now have a new a.out, those shadow contents aren't valid. */
1117
1118 mark_breakpoints_out ();
1119
1120 /* The target reports the exec event to the main thread, even if
1121 some other thread does the exec, and even if the main thread was
1122 stopped or already gone. We may still have non-leader threads of
1123 the process on our list. E.g., on targets that don't have thread
1124 exit events (like remote); or on native Linux in non-stop mode if
1125 there were only two threads in the inferior and the non-leader
1126 one is the one that execs (and nothing forces an update of the
1127 thread list up to here). When debugging remotely, it's best to
1128 avoid extra traffic, when possible, so avoid syncing the thread
1129 list with the target, and instead go ahead and delete all threads
1130 of the process but one that reported the event. Note this must
1131 be done before calling update_breakpoints_after_exec, as
1132 otherwise clearing the threads' resources would reference stale
1133 thread breakpoints -- it may have been one of these threads that
1134 stepped across the exec. We could just clear their stepping
1135 states, but as long as we're iterating, might as well delete
1136 them. Deleting them now rather than at the next user-visible
1137 stop provides a nicer sequence of events for user and MI
1138 notifications. */
1139 for (thread_info *th : all_threads_safe ())
1140 if (th->ptid.pid () == pid && th->ptid != ptid)
1141 delete_thread (th);
1142
1143 /* We also need to clear any left over stale state for the
1144 leader/event thread. E.g., if there was any step-resume
1145 breakpoint or similar, it's gone now. We cannot truly
1146 step-to-next statement through an exec(). */
1147 thread_info *th = inferior_thread ();
1148 th->control.step_resume_breakpoint = NULL;
1149 th->control.exception_resume_breakpoint = NULL;
1150 th->control.single_step_breakpoints = NULL;
1151 th->control.step_range_start = 0;
1152 th->control.step_range_end = 0;
1153
1154 /* The user may have had the main thread held stopped in the
1155 previous image (e.g., schedlock on, or non-stop). Release
1156 it now. */
1157 th->stop_requested = 0;
1158
1159 update_breakpoints_after_exec ();
1160
1161 /* What is this a.out's name? */
1162 process_ptid = ptid_t (pid);
1163 printf_unfiltered (_("%s is executing new program: %s\n"),
1164 target_pid_to_str (process_ptid).c_str (),
1165 exec_file_target);
1166
1167 /* We've followed the inferior through an exec. Therefore, the
1168 inferior has essentially been killed & reborn. */
1169
1170 breakpoint_init_inferior (inf_execd);
1171
1172 gdb::unique_xmalloc_ptr<char> exec_file_host
1173 = exec_file_find (exec_file_target, NULL);
1174
1175 /* If we were unable to map the executable target pathname onto a host
1176 pathname, tell the user that. Otherwise GDB's subsequent behavior
1177 is confusing. Maybe it would even be better to stop at this point
1178 so that the user can specify a file manually before continuing. */
1179 if (exec_file_host == NULL)
1180 warning (_("Could not load symbols for executable %s.\n"
1181 "Do you need \"set sysroot\"?"),
1182 exec_file_target);
1183
1184 /* Reset the shared library package. This ensures that we get a
1185 shlib event when the child reaches "_start", at which point the
1186 dld will have had a chance to initialize the child. */
1187 /* Also, loading a symbol file below may trigger symbol lookups, and
1188 we don't want those to be satisfied by the libraries of the
1189 previous incarnation of this process. */
1190 no_shared_libraries (NULL, 0);
1191
1192 if (follow_exec_mode_string == follow_exec_mode_new)
1193 {
1194 /* The user wants to keep the old inferior and program spaces
1195 around. Create a new fresh one, and switch to it. */
1196
1197 /* Do exit processing for the original inferior before setting the new
1198 inferior's pid. Having two inferiors with the same pid would confuse
1199 find_inferior_p(t)id. Transfer the terminal state and info from the
1200 old to the new inferior. */
1201 inf = add_inferior_with_spaces ();
1202 swap_terminal_info (inf, current_inferior ());
1203 exit_inferior_silent (current_inferior ());
1204
1205 inf->pid = pid;
1206 target_follow_exec (inf, exec_file_target);
1207
1208 inferior *org_inferior = current_inferior ();
1209 switch_to_inferior_no_thread (inf);
1210 push_target (org_inferior->process_target ());
1211 thread_info *thr = add_thread (inf->process_target (), ptid);
1212 switch_to_thread (thr);
1213 }
1214 else
1215 {
1216 /* The old description may no longer be fit for the new image.
1217 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1218 old description; we'll read a new one below. No need to do
1219 this on "follow-exec-mode new", as the old inferior stays
1220 around (its description is later cleared/refetched on
1221 restart). */
1222 target_clear_description ();
1223 }
1224
1225 gdb_assert (current_program_space == inf->pspace);
1226
1227 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1228 because the proper displacement for a PIE (Position Independent
1229 Executable) main symbol file will only be computed by
1230 solib_create_inferior_hook below. breakpoint_re_set would fail
1231 to insert the breakpoints with the zero displacement. */
1232 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1233
1234 /* If the target can specify a description, read it. Must do this
1235 after flipping to the new executable (because the target supplied
1236 description must be compatible with the executable's
1237 architecture, and the old executable may e.g., be 32-bit, while
1238 the new one 64-bit), and before anything involving memory or
1239 registers. */
1240 target_find_description ();
1241
1242 solib_create_inferior_hook (0);
1243
1244 jit_inferior_created_hook ();
1245
1246 breakpoint_re_set ();
1247
1248 /* Reinsert all breakpoints. (Those which were symbolic have
1249 been reset to the proper address in the new a.out, thanks
1250 to symbol_file_command...). */
1251 insert_breakpoints ();
1252
1253 /* The next resume of this inferior should bring it to the shlib
1254 startup breakpoints. (If the user had also set bp's on
1255 "main" from the old (parent) process, then they'll auto-
1256 matically get reset there in the new process.). */
1257 }
1258
1259 /* The queue of threads that need to do a step-over operation to get
1260 past e.g., a breakpoint. What technique is used to step over the
1261 breakpoint/watchpoint does not matter -- all threads end up in the
1262 same queue, to maintain rough temporal order of execution, in order
1263 to avoid starvation, otherwise, we could e.g., find ourselves
1264 constantly stepping the same couple threads past their breakpoints
1265 over and over, if the single-step finish fast enough. */
1266 struct thread_info *step_over_queue_head;
1267
1268 /* Bit flags indicating what the thread needs to step over. */
1269
1270 enum step_over_what_flag
1271 {
1272 /* Step over a breakpoint. */
1273 STEP_OVER_BREAKPOINT = 1,
1274
1275 /* Step past a non-continuable watchpoint, in order to let the
1276 instruction execute so we can evaluate the watchpoint
1277 expression. */
1278 STEP_OVER_WATCHPOINT = 2
1279 };
1280 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1281
1282 /* Info about an instruction that is being stepped over. */
1283
1284 struct step_over_info
1285 {
1286 /* If we're stepping past a breakpoint, this is the address space
1287 and address of the instruction the breakpoint is set at. We'll
1288 skip inserting all breakpoints here. Valid iff ASPACE is
1289 non-NULL. */
1290 const address_space *aspace;
1291 CORE_ADDR address;
1292
1293 /* The instruction being stepped over triggers a nonsteppable
1294 watchpoint. If true, we'll skip inserting watchpoints. */
1295 int nonsteppable_watchpoint_p;
1296
1297 /* The thread's global number. */
1298 int thread;
1299 };
1300
1301 /* The step-over info of the location that is being stepped over.
1302
1303 Note that with async/breakpoint always-inserted mode, a user might
1304 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1305 being stepped over. As setting a new breakpoint inserts all
1306 breakpoints, we need to make sure the breakpoint being stepped over
1307 isn't inserted then. We do that by only clearing the step-over
1308 info when the step-over is actually finished (or aborted).
1309
1310 Presently GDB can only step over one breakpoint at any given time.
1311 Given threads that can't run code in the same address space as the
1312 breakpoint's can't really miss the breakpoint, GDB could be taught
1313 to step-over at most one breakpoint per address space (so this info
1314 could move to the address space object if/when GDB is extended).
1315 The set of breakpoints being stepped over will normally be much
1316 smaller than the set of all breakpoints, so a flag in the
1317 breakpoint location structure would be wasteful. A separate list
1318 also saves complexity and run-time, as otherwise we'd have to go
1319 through all breakpoint locations clearing their flag whenever we
1320 start a new sequence. Similar considerations weigh against storing
1321 this info in the thread object. Plus, not all step overs actually
1322 have breakpoint locations -- e.g., stepping past a single-step
1323 breakpoint, or stepping to complete a non-continuable
1324 watchpoint. */
1325 static struct step_over_info step_over_info;
1326
1327 /* Record the address of the breakpoint/instruction we're currently
1328 stepping over.
1329 N.B. We record the aspace and address now, instead of say just the thread,
1330 because when we need the info later the thread may be running. */
1331
1332 static void
1333 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1334 int nonsteppable_watchpoint_p,
1335 int thread)
1336 {
1337 step_over_info.aspace = aspace;
1338 step_over_info.address = address;
1339 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1340 step_over_info.thread = thread;
1341 }
1342
1343 /* Called when we're not longer stepping over a breakpoint / an
1344 instruction, so all breakpoints are free to be (re)inserted. */
1345
1346 static void
1347 clear_step_over_info (void)
1348 {
1349 infrun_log_debug ("clearing step over info");
1350 step_over_info.aspace = NULL;
1351 step_over_info.address = 0;
1352 step_over_info.nonsteppable_watchpoint_p = 0;
1353 step_over_info.thread = -1;
1354 }
1355
1356 /* See infrun.h. */
1357
1358 int
1359 stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361 {
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366 }
1367
1368 /* See infrun.h. */
1369
1370 int
1371 thread_is_stepping_over_breakpoint (int thread)
1372 {
1373 return (step_over_info.thread != -1
1374 && thread == step_over_info.thread);
1375 }
1376
1377 /* See infrun.h. */
1378
1379 int
1380 stepping_past_nonsteppable_watchpoint (void)
1381 {
1382 return step_over_info.nonsteppable_watchpoint_p;
1383 }
1384
1385 /* Returns true if step-over info is valid. */
1386
1387 static int
1388 step_over_info_valid_p (void)
1389 {
1390 return (step_over_info.aspace != NULL
1391 || stepping_past_nonsteppable_watchpoint ());
1392 }
1393
1394 \f
1395 /* Displaced stepping. */
1396
1397 /* In non-stop debugging mode, we must take special care to manage
1398 breakpoints properly; in particular, the traditional strategy for
1399 stepping a thread past a breakpoint it has hit is unsuitable.
1400 'Displaced stepping' is a tactic for stepping one thread past a
1401 breakpoint it has hit while ensuring that other threads running
1402 concurrently will hit the breakpoint as they should.
1403
1404 The traditional way to step a thread T off a breakpoint in a
1405 multi-threaded program in all-stop mode is as follows:
1406
1407 a0) Initially, all threads are stopped, and breakpoints are not
1408 inserted.
1409 a1) We single-step T, leaving breakpoints uninserted.
1410 a2) We insert breakpoints, and resume all threads.
1411
1412 In non-stop debugging, however, this strategy is unsuitable: we
1413 don't want to have to stop all threads in the system in order to
1414 continue or step T past a breakpoint. Instead, we use displaced
1415 stepping:
1416
1417 n0) Initially, T is stopped, other threads are running, and
1418 breakpoints are inserted.
1419 n1) We copy the instruction "under" the breakpoint to a separate
1420 location, outside the main code stream, making any adjustments
1421 to the instruction, register, and memory state as directed by
1422 T's architecture.
1423 n2) We single-step T over the instruction at its new location.
1424 n3) We adjust the resulting register and memory state as directed
1425 by T's architecture. This includes resetting T's PC to point
1426 back into the main instruction stream.
1427 n4) We resume T.
1428
1429 This approach depends on the following gdbarch methods:
1430
1431 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1432 indicate where to copy the instruction, and how much space must
1433 be reserved there. We use these in step n1.
1434
1435 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1436 address, and makes any necessary adjustments to the instruction,
1437 register contents, and memory. We use this in step n1.
1438
1439 - gdbarch_displaced_step_fixup adjusts registers and memory after
1440 we have successfully single-stepped the instruction, to yield the
1441 same effect the instruction would have had if we had executed it
1442 at its original address. We use this in step n3.
1443
1444 The gdbarch_displaced_step_copy_insn and
1445 gdbarch_displaced_step_fixup functions must be written so that
1446 copying an instruction with gdbarch_displaced_step_copy_insn,
1447 single-stepping across the copied instruction, and then applying
1448 gdbarch_displaced_insn_fixup should have the same effects on the
1449 thread's memory and registers as stepping the instruction in place
1450 would have. Exactly which responsibilities fall to the copy and
1451 which fall to the fixup is up to the author of those functions.
1452
1453 See the comments in gdbarch.sh for details.
1454
1455 Note that displaced stepping and software single-step cannot
1456 currently be used in combination, although with some care I think
1457 they could be made to. Software single-step works by placing
1458 breakpoints on all possible subsequent instructions; if the
1459 displaced instruction is a PC-relative jump, those breakpoints
1460 could fall in very strange places --- on pages that aren't
1461 executable, or at addresses that are not proper instruction
1462 boundaries. (We do generally let other threads run while we wait
1463 to hit the software single-step breakpoint, and they might
1464 encounter such a corrupted instruction.) One way to work around
1465 this would be to have gdbarch_displaced_step_copy_insn fully
1466 simulate the effect of PC-relative instructions (and return NULL)
1467 on architectures that use software single-stepping.
1468
1469 In non-stop mode, we can have independent and simultaneous step
1470 requests, so more than one thread may need to simultaneously step
1471 over a breakpoint. The current implementation assumes there is
1472 only one scratch space per process. In this case, we have to
1473 serialize access to the scratch space. If thread A wants to step
1474 over a breakpoint, but we are currently waiting for some other
1475 thread to complete a displaced step, we leave thread A stopped and
1476 place it in the displaced_step_request_queue. Whenever a displaced
1477 step finishes, we pick the next thread in the queue and start a new
1478 displaced step operation on it. See displaced_step_prepare and
1479 displaced_step_fixup for details. */
1480
1481 /* Default destructor for displaced_step_closure. */
1482
1483 displaced_step_closure::~displaced_step_closure () = default;
1484
1485 /* Get the displaced stepping state of process PID. */
1486
1487 static displaced_step_inferior_state *
1488 get_displaced_stepping_state (inferior *inf)
1489 {
1490 return &inf->displaced_step_state;
1491 }
1492
1493 /* Returns true if any inferior has a thread doing a displaced
1494 step. */
1495
1496 static bool
1497 displaced_step_in_progress_any_inferior ()
1498 {
1499 for (inferior *i : all_inferiors ())
1500 {
1501 if (i->displaced_step_state.step_thread != nullptr)
1502 return true;
1503 }
1504
1505 return false;
1506 }
1507
1508 /* Return true if thread represented by PTID is doing a displaced
1509 step. */
1510
1511 static int
1512 displaced_step_in_progress_thread (thread_info *thread)
1513 {
1514 gdb_assert (thread != NULL);
1515
1516 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1517 }
1518
1519 /* Return true if process PID has a thread doing a displaced step. */
1520
1521 static int
1522 displaced_step_in_progress (inferior *inf)
1523 {
1524 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1525 }
1526
1527 /* If inferior is in displaced stepping, and ADDR equals to starting address
1528 of copy area, return corresponding displaced_step_closure. Otherwise,
1529 return NULL. */
1530
1531 struct displaced_step_closure*
1532 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1533 {
1534 displaced_step_inferior_state *displaced
1535 = get_displaced_stepping_state (current_inferior ());
1536
1537 /* If checking the mode of displaced instruction in copy area. */
1538 if (displaced->step_thread != nullptr
1539 && displaced->step_copy == addr)
1540 return displaced->step_closure.get ();
1541
1542 return NULL;
1543 }
1544
1545 static void
1546 infrun_inferior_exit (struct inferior *inf)
1547 {
1548 inf->displaced_step_state.reset ();
1549 }
1550
1551 /* If ON, and the architecture supports it, GDB will use displaced
1552 stepping to step over breakpoints. If OFF, or if the architecture
1553 doesn't support it, GDB will instead use the traditional
1554 hold-and-step approach. If AUTO (which is the default), GDB will
1555 decide which technique to use to step over breakpoints depending on
1556 whether the target works in a non-stop way (see use_displaced_stepping). */
1557
1558 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1559
1560 static void
1561 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1562 struct cmd_list_element *c,
1563 const char *value)
1564 {
1565 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s (currently %s).\n"),
1569 value, target_is_non_stop_p () ? "on" : "off");
1570 else
1571 fprintf_filtered (file,
1572 _("Debugger's willingness to use displaced stepping "
1573 "to step over breakpoints is %s.\n"), value);
1574 }
1575
1576 /* Return true if the gdbarch implements the required methods to use
1577 displaced stepping. */
1578
1579 static bool
1580 gdbarch_supports_displaced_stepping (gdbarch *arch)
1581 {
1582 /* Only check for the presence of step_copy_insn. Other required methods
1583 are checked by the gdbarch validation. */
1584 return gdbarch_displaced_step_copy_insn_p (arch);
1585 }
1586
1587 /* Return non-zero if displaced stepping can/should be used to step
1588 over breakpoints of thread TP. */
1589
1590 static bool
1591 use_displaced_stepping (thread_info *tp)
1592 {
1593 /* If the user disabled it explicitly, don't use displaced stepping. */
1594 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1595 return false;
1596
1597 /* If "auto", only use displaced stepping if the target operates in a non-stop
1598 way. */
1599 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1600 && !target_is_non_stop_p ())
1601 return false;
1602
1603 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1604
1605 /* If the architecture doesn't implement displaced stepping, don't use
1606 it. */
1607 if (!gdbarch_supports_displaced_stepping (gdbarch))
1608 return false;
1609
1610 /* If recording, don't use displaced stepping. */
1611 if (find_record_target () != nullptr)
1612 return false;
1613
1614 displaced_step_inferior_state *displaced_state
1615 = get_displaced_stepping_state (tp->inf);
1616
1617 /* If displaced stepping failed before for this inferior, don't bother trying
1618 again. */
1619 if (displaced_state->failed_before)
1620 return false;
1621
1622 return true;
1623 }
1624
1625 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1626
1627 static void
1628 displaced_step_reset (displaced_step_inferior_state *displaced)
1629 {
1630 displaced->reset ();
1631 }
1632
1633 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1634 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1635
1636 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1637
1638 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1639 void
1640 displaced_step_dump_bytes (struct ui_file *file,
1641 const gdb_byte *buf,
1642 size_t len)
1643 {
1644 int i;
1645
1646 for (i = 0; i < len; i++)
1647 fprintf_unfiltered (file, "%02x ", buf[i]);
1648 fputs_unfiltered ("\n", file);
1649 }
1650
1651 /* Prepare to single-step, using displaced stepping.
1652
1653 Note that we cannot use displaced stepping when we have a signal to
1654 deliver. If we have a signal to deliver and an instruction to step
1655 over, then after the step, there will be no indication from the
1656 target whether the thread entered a signal handler or ignored the
1657 signal and stepped over the instruction successfully --- both cases
1658 result in a simple SIGTRAP. In the first case we mustn't do a
1659 fixup, and in the second case we must --- but we can't tell which.
1660 Comments in the code for 'random signals' in handle_inferior_event
1661 explain how we handle this case instead.
1662
1663 Returns 1 if preparing was successful -- this thread is going to be
1664 stepped now; 0 if displaced stepping this thread got queued; or -1
1665 if this instruction can't be displaced stepped. */
1666
1667 static int
1668 displaced_step_prepare_throw (thread_info *tp)
1669 {
1670 regcache *regcache = get_thread_regcache (tp);
1671 struct gdbarch *gdbarch = regcache->arch ();
1672 const address_space *aspace = regcache->aspace ();
1673 CORE_ADDR original, copy;
1674 ULONGEST len;
1675 int status;
1676
1677 /* We should never reach this function if the architecture does not
1678 support displaced stepping. */
1679 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1680
1681 /* Nor if the thread isn't meant to step over a breakpoint. */
1682 gdb_assert (tp->control.trap_expected);
1683
1684 /* Disable range stepping while executing in the scratch pad. We
1685 want a single-step even if executing the displaced instruction in
1686 the scratch buffer lands within the stepping range (e.g., a
1687 jump/branch). */
1688 tp->control.may_range_step = 0;
1689
1690 /* We have to displaced step one thread at a time, as we only have
1691 access to a single scratch space per inferior. */
1692
1693 displaced_step_inferior_state *displaced
1694 = get_displaced_stepping_state (tp->inf);
1695
1696 if (displaced->step_thread != nullptr)
1697 {
1698 /* Already waiting for a displaced step to finish. Defer this
1699 request and place in queue. */
1700
1701 if (debug_displaced)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "displaced: deferring step of %s\n",
1704 target_pid_to_str (tp->ptid).c_str ());
1705
1706 thread_step_over_chain_enqueue (tp);
1707 return 0;
1708 }
1709 else
1710 {
1711 if (debug_displaced)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "displaced: stepping %s now\n",
1714 target_pid_to_str (tp->ptid).c_str ());
1715 }
1716
1717 displaced_step_reset (displaced);
1718
1719 scoped_restore_current_thread restore_thread;
1720
1721 switch_to_thread (tp);
1722
1723 original = regcache_read_pc (regcache);
1724
1725 copy = gdbarch_displaced_step_location (gdbarch);
1726 len = gdbarch_max_insn_length (gdbarch);
1727
1728 if (breakpoint_in_range_p (aspace, copy, len))
1729 {
1730 /* There's a breakpoint set in the scratch pad location range
1731 (which is usually around the entry point). We'd either
1732 install it before resuming, which would overwrite/corrupt the
1733 scratch pad, or if it was already inserted, this displaced
1734 step would overwrite it. The latter is OK in the sense that
1735 we already assume that no thread is going to execute the code
1736 in the scratch pad range (after initial startup) anyway, but
1737 the former is unacceptable. Simply punt and fallback to
1738 stepping over this breakpoint in-line. */
1739 if (debug_displaced)
1740 {
1741 fprintf_unfiltered (gdb_stdlog,
1742 "displaced: breakpoint set in scratch pad. "
1743 "Stepping over breakpoint in-line instead.\n");
1744 }
1745
1746 return -1;
1747 }
1748
1749 /* Save the original contents of the copy area. */
1750 displaced->step_saved_copy.resize (len);
1751 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1752 if (status != 0)
1753 throw_error (MEMORY_ERROR,
1754 _("Error accessing memory address %s (%s) for "
1755 "displaced-stepping scratch space."),
1756 paddress (gdbarch, copy), safe_strerror (status));
1757 if (debug_displaced)
1758 {
1759 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1760 paddress (gdbarch, copy));
1761 displaced_step_dump_bytes (gdb_stdlog,
1762 displaced->step_saved_copy.data (),
1763 len);
1764 };
1765
1766 displaced->step_closure
1767 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1768 if (displaced->step_closure == NULL)
1769 {
1770 /* The architecture doesn't know how or want to displaced step
1771 this instruction or instruction sequence. Fallback to
1772 stepping over the breakpoint in-line. */
1773 return -1;
1774 }
1775
1776 /* Save the information we need to fix things up if the step
1777 succeeds. */
1778 displaced->step_thread = tp;
1779 displaced->step_gdbarch = gdbarch;
1780 displaced->step_original = original;
1781 displaced->step_copy = copy;
1782
1783 {
1784 displaced_step_reset_cleanup cleanup (displaced);
1785
1786 /* Resume execution at the copy. */
1787 regcache_write_pc (regcache, copy);
1788
1789 cleanup.release ();
1790 }
1791
1792 if (debug_displaced)
1793 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1794 paddress (gdbarch, copy));
1795
1796 return 1;
1797 }
1798
1799 /* Wrapper for displaced_step_prepare_throw that disabled further
1800 attempts at displaced stepping if we get a memory error. */
1801
1802 static int
1803 displaced_step_prepare (thread_info *thread)
1804 {
1805 int prepared = -1;
1806
1807 try
1808 {
1809 prepared = displaced_step_prepare_throw (thread);
1810 }
1811 catch (const gdb_exception_error &ex)
1812 {
1813 struct displaced_step_inferior_state *displaced_state;
1814
1815 if (ex.error != MEMORY_ERROR
1816 && ex.error != NOT_SUPPORTED_ERROR)
1817 throw;
1818
1819 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1820 ex.what ());
1821
1822 /* Be verbose if "set displaced-stepping" is "on", silent if
1823 "auto". */
1824 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1825 {
1826 warning (_("disabling displaced stepping: %s"),
1827 ex.what ());
1828 }
1829
1830 /* Disable further displaced stepping attempts. */
1831 displaced_state
1832 = get_displaced_stepping_state (thread->inf);
1833 displaced_state->failed_before = 1;
1834 }
1835
1836 return prepared;
1837 }
1838
1839 static void
1840 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1841 const gdb_byte *myaddr, int len)
1842 {
1843 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1844
1845 inferior_ptid = ptid;
1846 write_memory (memaddr, myaddr, len);
1847 }
1848
1849 /* Restore the contents of the copy area for thread PTID. */
1850
1851 static void
1852 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1853 ptid_t ptid)
1854 {
1855 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1856
1857 write_memory_ptid (ptid, displaced->step_copy,
1858 displaced->step_saved_copy.data (), len);
1859 if (debug_displaced)
1860 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1861 target_pid_to_str (ptid).c_str (),
1862 paddress (displaced->step_gdbarch,
1863 displaced->step_copy));
1864 }
1865
1866 /* If we displaced stepped an instruction successfully, adjust
1867 registers and memory to yield the same effect the instruction would
1868 have had if we had executed it at its original address, and return
1869 1. If the instruction didn't complete, relocate the PC and return
1870 -1. If the thread wasn't displaced stepping, return 0. */
1871
1872 static int
1873 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1874 {
1875 struct displaced_step_inferior_state *displaced
1876 = get_displaced_stepping_state (event_thread->inf);
1877 int ret;
1878
1879 /* Was this event for the thread we displaced? */
1880 if (displaced->step_thread != event_thread)
1881 return 0;
1882
1883 /* Fixup may need to read memory/registers. Switch to the thread
1884 that we're fixing up. Also, target_stopped_by_watchpoint checks
1885 the current thread, and displaced_step_restore performs ptid-dependent
1886 memory accesses using current_inferior() and current_top_target(). */
1887 switch_to_thread (event_thread);
1888
1889 displaced_step_reset_cleanup cleanup (displaced);
1890
1891 displaced_step_restore (displaced, displaced->step_thread->ptid);
1892
1893 /* Did the instruction complete successfully? */
1894 if (signal == GDB_SIGNAL_TRAP
1895 && !(target_stopped_by_watchpoint ()
1896 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1897 || target_have_steppable_watchpoint)))
1898 {
1899 /* Fix up the resulting state. */
1900 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1901 displaced->step_closure.get (),
1902 displaced->step_original,
1903 displaced->step_copy,
1904 get_thread_regcache (displaced->step_thread));
1905 ret = 1;
1906 }
1907 else
1908 {
1909 /* Since the instruction didn't complete, all we can do is
1910 relocate the PC. */
1911 struct regcache *regcache = get_thread_regcache (event_thread);
1912 CORE_ADDR pc = regcache_read_pc (regcache);
1913
1914 pc = displaced->step_original + (pc - displaced->step_copy);
1915 regcache_write_pc (regcache, pc);
1916 ret = -1;
1917 }
1918
1919 return ret;
1920 }
1921
1922 /* Data to be passed around while handling an event. This data is
1923 discarded between events. */
1924 struct execution_control_state
1925 {
1926 process_stratum_target *target;
1927 ptid_t ptid;
1928 /* The thread that got the event, if this was a thread event; NULL
1929 otherwise. */
1930 struct thread_info *event_thread;
1931
1932 struct target_waitstatus ws;
1933 int stop_func_filled_in;
1934 CORE_ADDR stop_func_start;
1935 CORE_ADDR stop_func_end;
1936 const char *stop_func_name;
1937 int wait_some_more;
1938
1939 /* True if the event thread hit the single-step breakpoint of
1940 another thread. Thus the event doesn't cause a stop, the thread
1941 needs to be single-stepped past the single-step breakpoint before
1942 we can switch back to the original stepping thread. */
1943 int hit_singlestep_breakpoint;
1944 };
1945
1946 /* Clear ECS and set it to point at TP. */
1947
1948 static void
1949 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1950 {
1951 memset (ecs, 0, sizeof (*ecs));
1952 ecs->event_thread = tp;
1953 ecs->ptid = tp->ptid;
1954 }
1955
1956 static void keep_going_pass_signal (struct execution_control_state *ecs);
1957 static void prepare_to_wait (struct execution_control_state *ecs);
1958 static int keep_going_stepped_thread (struct thread_info *tp);
1959 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1960
1961 /* Are there any pending step-over requests? If so, run all we can
1962 now and return true. Otherwise, return false. */
1963
1964 static int
1965 start_step_over (void)
1966 {
1967 struct thread_info *tp, *next;
1968
1969 /* Don't start a new step-over if we already have an in-line
1970 step-over operation ongoing. */
1971 if (step_over_info_valid_p ())
1972 return 0;
1973
1974 for (tp = step_over_queue_head; tp != NULL; tp = next)
1975 {
1976 struct execution_control_state ecss;
1977 struct execution_control_state *ecs = &ecss;
1978 step_over_what step_what;
1979 int must_be_in_line;
1980
1981 gdb_assert (!tp->stop_requested);
1982
1983 next = thread_step_over_chain_next (tp);
1984
1985 /* If this inferior already has a displaced step in process,
1986 don't start a new one. */
1987 if (displaced_step_in_progress (tp->inf))
1988 continue;
1989
1990 step_what = thread_still_needs_step_over (tp);
1991 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1992 || ((step_what & STEP_OVER_BREAKPOINT)
1993 && !use_displaced_stepping (tp)));
1994
1995 /* We currently stop all threads of all processes to step-over
1996 in-line. If we need to start a new in-line step-over, let
1997 any pending displaced steps finish first. */
1998 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1999 return 0;
2000
2001 thread_step_over_chain_remove (tp);
2002
2003 if (step_over_queue_head == NULL)
2004 infrun_log_debug ("step-over queue now empty");
2005
2006 if (tp->control.trap_expected
2007 || tp->resumed
2008 || tp->executing)
2009 {
2010 internal_error (__FILE__, __LINE__,
2011 "[%s] has inconsistent state: "
2012 "trap_expected=%d, resumed=%d, executing=%d\n",
2013 target_pid_to_str (tp->ptid).c_str (),
2014 tp->control.trap_expected,
2015 tp->resumed,
2016 tp->executing);
2017 }
2018
2019 infrun_log_debug ("resuming [%s] for step-over",
2020 target_pid_to_str (tp->ptid).c_str ());
2021
2022 /* keep_going_pass_signal skips the step-over if the breakpoint
2023 is no longer inserted. In all-stop, we want to keep looking
2024 for a thread that needs a step-over instead of resuming TP,
2025 because we wouldn't be able to resume anything else until the
2026 target stops again. In non-stop, the resume always resumes
2027 only TP, so it's OK to let the thread resume freely. */
2028 if (!target_is_non_stop_p () && !step_what)
2029 continue;
2030
2031 switch_to_thread (tp);
2032 reset_ecs (ecs, tp);
2033 keep_going_pass_signal (ecs);
2034
2035 if (!ecs->wait_some_more)
2036 error (_("Command aborted."));
2037
2038 gdb_assert (tp->resumed);
2039
2040 /* If we started a new in-line step-over, we're done. */
2041 if (step_over_info_valid_p ())
2042 {
2043 gdb_assert (tp->control.trap_expected);
2044 return 1;
2045 }
2046
2047 if (!target_is_non_stop_p ())
2048 {
2049 /* On all-stop, shouldn't have resumed unless we needed a
2050 step over. */
2051 gdb_assert (tp->control.trap_expected
2052 || tp->step_after_step_resume_breakpoint);
2053
2054 /* With remote targets (at least), in all-stop, we can't
2055 issue any further remote commands until the program stops
2056 again. */
2057 return 1;
2058 }
2059
2060 /* Either the thread no longer needed a step-over, or a new
2061 displaced stepping sequence started. Even in the latter
2062 case, continue looking. Maybe we can also start another
2063 displaced step on a thread of other process. */
2064 }
2065
2066 return 0;
2067 }
2068
2069 /* Update global variables holding ptids to hold NEW_PTID if they were
2070 holding OLD_PTID. */
2071 static void
2072 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2073 {
2074 if (inferior_ptid == old_ptid)
2075 inferior_ptid = new_ptid;
2076 }
2077
2078 \f
2079
2080 static const char schedlock_off[] = "off";
2081 static const char schedlock_on[] = "on";
2082 static const char schedlock_step[] = "step";
2083 static const char schedlock_replay[] = "replay";
2084 static const char *const scheduler_enums[] = {
2085 schedlock_off,
2086 schedlock_on,
2087 schedlock_step,
2088 schedlock_replay,
2089 NULL
2090 };
2091 static const char *scheduler_mode = schedlock_replay;
2092 static void
2093 show_scheduler_mode (struct ui_file *file, int from_tty,
2094 struct cmd_list_element *c, const char *value)
2095 {
2096 fprintf_filtered (file,
2097 _("Mode for locking scheduler "
2098 "during execution is \"%s\".\n"),
2099 value);
2100 }
2101
2102 static void
2103 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2104 {
2105 if (!target_can_lock_scheduler)
2106 {
2107 scheduler_mode = schedlock_off;
2108 error (_("Target '%s' cannot support this command."), target_shortname);
2109 }
2110 }
2111
2112 /* True if execution commands resume all threads of all processes by
2113 default; otherwise, resume only threads of the current inferior
2114 process. */
2115 bool sched_multi = false;
2116
2117 /* Try to setup for software single stepping over the specified location.
2118 Return 1 if target_resume() should use hardware single step.
2119
2120 GDBARCH the current gdbarch.
2121 PC the location to step over. */
2122
2123 static int
2124 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2125 {
2126 int hw_step = 1;
2127
2128 if (execution_direction == EXEC_FORWARD
2129 && gdbarch_software_single_step_p (gdbarch))
2130 hw_step = !insert_single_step_breakpoints (gdbarch);
2131
2132 return hw_step;
2133 }
2134
2135 /* See infrun.h. */
2136
2137 ptid_t
2138 user_visible_resume_ptid (int step)
2139 {
2140 ptid_t resume_ptid;
2141
2142 if (non_stop)
2143 {
2144 /* With non-stop mode on, threads are always handled
2145 individually. */
2146 resume_ptid = inferior_ptid;
2147 }
2148 else if ((scheduler_mode == schedlock_on)
2149 || (scheduler_mode == schedlock_step && step))
2150 {
2151 /* User-settable 'scheduler' mode requires solo thread
2152 resume. */
2153 resume_ptid = inferior_ptid;
2154 }
2155 else if ((scheduler_mode == schedlock_replay)
2156 && target_record_will_replay (minus_one_ptid, execution_direction))
2157 {
2158 /* User-settable 'scheduler' mode requires solo thread resume in replay
2159 mode. */
2160 resume_ptid = inferior_ptid;
2161 }
2162 else if (!sched_multi && target_supports_multi_process ())
2163 {
2164 /* Resume all threads of the current process (and none of other
2165 processes). */
2166 resume_ptid = ptid_t (inferior_ptid.pid ());
2167 }
2168 else
2169 {
2170 /* Resume all threads of all processes. */
2171 resume_ptid = RESUME_ALL;
2172 }
2173
2174 return resume_ptid;
2175 }
2176
2177 /* See infrun.h. */
2178
2179 process_stratum_target *
2180 user_visible_resume_target (ptid_t resume_ptid)
2181 {
2182 return (resume_ptid == minus_one_ptid && sched_multi
2183 ? NULL
2184 : current_inferior ()->process_target ());
2185 }
2186
2187 /* Return a ptid representing the set of threads that we will resume,
2188 in the perspective of the target, assuming run control handling
2189 does not require leaving some threads stopped (e.g., stepping past
2190 breakpoint). USER_STEP indicates whether we're about to start the
2191 target for a stepping command. */
2192
2193 static ptid_t
2194 internal_resume_ptid (int user_step)
2195 {
2196 /* In non-stop, we always control threads individually. Note that
2197 the target may always work in non-stop mode even with "set
2198 non-stop off", in which case user_visible_resume_ptid could
2199 return a wildcard ptid. */
2200 if (target_is_non_stop_p ())
2201 return inferior_ptid;
2202 else
2203 return user_visible_resume_ptid (user_step);
2204 }
2205
2206 /* Wrapper for target_resume, that handles infrun-specific
2207 bookkeeping. */
2208
2209 static void
2210 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2211 {
2212 struct thread_info *tp = inferior_thread ();
2213
2214 gdb_assert (!tp->stop_requested);
2215
2216 /* Install inferior's terminal modes. */
2217 target_terminal::inferior ();
2218
2219 /* Avoid confusing the next resume, if the next stop/resume
2220 happens to apply to another thread. */
2221 tp->suspend.stop_signal = GDB_SIGNAL_0;
2222
2223 /* Advise target which signals may be handled silently.
2224
2225 If we have removed breakpoints because we are stepping over one
2226 in-line (in any thread), we need to receive all signals to avoid
2227 accidentally skipping a breakpoint during execution of a signal
2228 handler.
2229
2230 Likewise if we're displaced stepping, otherwise a trap for a
2231 breakpoint in a signal handler might be confused with the
2232 displaced step finishing. We don't make the displaced_step_fixup
2233 step distinguish the cases instead, because:
2234
2235 - a backtrace while stopped in the signal handler would show the
2236 scratch pad as frame older than the signal handler, instead of
2237 the real mainline code.
2238
2239 - when the thread is later resumed, the signal handler would
2240 return to the scratch pad area, which would no longer be
2241 valid. */
2242 if (step_over_info_valid_p ()
2243 || displaced_step_in_progress (tp->inf))
2244 target_pass_signals ({});
2245 else
2246 target_pass_signals (signal_pass);
2247
2248 target_resume (resume_ptid, step, sig);
2249
2250 target_commit_resume ();
2251
2252 if (target_can_async_p ())
2253 target_async (1);
2254 }
2255
2256 /* Resume the inferior. SIG is the signal to give the inferior
2257 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2258 call 'resume', which handles exceptions. */
2259
2260 static void
2261 resume_1 (enum gdb_signal sig)
2262 {
2263 struct regcache *regcache = get_current_regcache ();
2264 struct gdbarch *gdbarch = regcache->arch ();
2265 struct thread_info *tp = inferior_thread ();
2266 const address_space *aspace = regcache->aspace ();
2267 ptid_t resume_ptid;
2268 /* This represents the user's step vs continue request. When
2269 deciding whether "set scheduler-locking step" applies, it's the
2270 user's intention that counts. */
2271 const int user_step = tp->control.stepping_command;
2272 /* This represents what we'll actually request the target to do.
2273 This can decay from a step to a continue, if e.g., we need to
2274 implement single-stepping with breakpoints (software
2275 single-step). */
2276 int step;
2277
2278 gdb_assert (!tp->stop_requested);
2279 gdb_assert (!thread_is_in_step_over_chain (tp));
2280
2281 if (tp->suspend.waitstatus_pending_p)
2282 {
2283 infrun_log_debug
2284 ("thread %s has pending wait "
2285 "status %s (currently_stepping=%d).",
2286 target_pid_to_str (tp->ptid).c_str (),
2287 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2288 currently_stepping (tp));
2289
2290 tp->inf->process_target ()->threads_executing = true;
2291 tp->resumed = true;
2292
2293 /* FIXME: What should we do if we are supposed to resume this
2294 thread with a signal? Maybe we should maintain a queue of
2295 pending signals to deliver. */
2296 if (sig != GDB_SIGNAL_0)
2297 {
2298 warning (_("Couldn't deliver signal %s to %s."),
2299 gdb_signal_to_name (sig),
2300 target_pid_to_str (tp->ptid).c_str ());
2301 }
2302
2303 tp->suspend.stop_signal = GDB_SIGNAL_0;
2304
2305 if (target_can_async_p ())
2306 {
2307 target_async (1);
2308 /* Tell the event loop we have an event to process. */
2309 mark_async_event_handler (infrun_async_inferior_event_token);
2310 }
2311 return;
2312 }
2313
2314 tp->stepped_breakpoint = 0;
2315
2316 /* Depends on stepped_breakpoint. */
2317 step = currently_stepping (tp);
2318
2319 if (current_inferior ()->waiting_for_vfork_done)
2320 {
2321 /* Don't try to single-step a vfork parent that is waiting for
2322 the child to get out of the shared memory region (by exec'ing
2323 or exiting). This is particularly important on software
2324 single-step archs, as the child process would trip on the
2325 software single step breakpoint inserted for the parent
2326 process. Since the parent will not actually execute any
2327 instruction until the child is out of the shared region (such
2328 are vfork's semantics), it is safe to simply continue it.
2329 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2330 the parent, and tell it to `keep_going', which automatically
2331 re-sets it stepping. */
2332 infrun_log_debug ("resume : clear step");
2333 step = 0;
2334 }
2335
2336 CORE_ADDR pc = regcache_read_pc (regcache);
2337
2338 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2339 "current thread [%s] at %s",
2340 step, gdb_signal_to_symbol_string (sig),
2341 tp->control.trap_expected,
2342 target_pid_to_str (inferior_ptid).c_str (),
2343 paddress (gdbarch, pc));
2344
2345 /* Normally, by the time we reach `resume', the breakpoints are either
2346 removed or inserted, as appropriate. The exception is if we're sitting
2347 at a permanent breakpoint; we need to step over it, but permanent
2348 breakpoints can't be removed. So we have to test for it here. */
2349 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2350 {
2351 if (sig != GDB_SIGNAL_0)
2352 {
2353 /* We have a signal to pass to the inferior. The resume
2354 may, or may not take us to the signal handler. If this
2355 is a step, we'll need to stop in the signal handler, if
2356 there's one, (if the target supports stepping into
2357 handlers), or in the next mainline instruction, if
2358 there's no handler. If this is a continue, we need to be
2359 sure to run the handler with all breakpoints inserted.
2360 In all cases, set a breakpoint at the current address
2361 (where the handler returns to), and once that breakpoint
2362 is hit, resume skipping the permanent breakpoint. If
2363 that breakpoint isn't hit, then we've stepped into the
2364 signal handler (or hit some other event). We'll delete
2365 the step-resume breakpoint then. */
2366
2367 infrun_log_debug ("resume: skipping permanent breakpoint, "
2368 "deliver signal first");
2369
2370 clear_step_over_info ();
2371 tp->control.trap_expected = 0;
2372
2373 if (tp->control.step_resume_breakpoint == NULL)
2374 {
2375 /* Set a "high-priority" step-resume, as we don't want
2376 user breakpoints at PC to trigger (again) when this
2377 hits. */
2378 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2379 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2380
2381 tp->step_after_step_resume_breakpoint = step;
2382 }
2383
2384 insert_breakpoints ();
2385 }
2386 else
2387 {
2388 /* There's no signal to pass, we can go ahead and skip the
2389 permanent breakpoint manually. */
2390 infrun_log_debug ("skipping permanent breakpoint");
2391 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2392 /* Update pc to reflect the new address from which we will
2393 execute instructions. */
2394 pc = regcache_read_pc (regcache);
2395
2396 if (step)
2397 {
2398 /* We've already advanced the PC, so the stepping part
2399 is done. Now we need to arrange for a trap to be
2400 reported to handle_inferior_event. Set a breakpoint
2401 at the current PC, and run to it. Don't update
2402 prev_pc, because if we end in
2403 switch_back_to_stepped_thread, we want the "expected
2404 thread advanced also" branch to be taken. IOW, we
2405 don't want this thread to step further from PC
2406 (overstep). */
2407 gdb_assert (!step_over_info_valid_p ());
2408 insert_single_step_breakpoint (gdbarch, aspace, pc);
2409 insert_breakpoints ();
2410
2411 resume_ptid = internal_resume_ptid (user_step);
2412 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2413 tp->resumed = true;
2414 return;
2415 }
2416 }
2417 }
2418
2419 /* If we have a breakpoint to step over, make sure to do a single
2420 step only. Same if we have software watchpoints. */
2421 if (tp->control.trap_expected || bpstat_should_step ())
2422 tp->control.may_range_step = 0;
2423
2424 /* If displaced stepping is enabled, step over breakpoints by executing a
2425 copy of the instruction at a different address.
2426
2427 We can't use displaced stepping when we have a signal to deliver;
2428 the comments for displaced_step_prepare explain why. The
2429 comments in the handle_inferior event for dealing with 'random
2430 signals' explain what we do instead.
2431
2432 We can't use displaced stepping when we are waiting for vfork_done
2433 event, displaced stepping breaks the vfork child similarly as single
2434 step software breakpoint. */
2435 if (tp->control.trap_expected
2436 && use_displaced_stepping (tp)
2437 && !step_over_info_valid_p ()
2438 && sig == GDB_SIGNAL_0
2439 && !current_inferior ()->waiting_for_vfork_done)
2440 {
2441 int prepared = displaced_step_prepare (tp);
2442
2443 if (prepared == 0)
2444 {
2445 infrun_log_debug ("Got placed in step-over queue");
2446
2447 tp->control.trap_expected = 0;
2448 return;
2449 }
2450 else if (prepared < 0)
2451 {
2452 /* Fallback to stepping over the breakpoint in-line. */
2453
2454 if (target_is_non_stop_p ())
2455 stop_all_threads ();
2456
2457 set_step_over_info (regcache->aspace (),
2458 regcache_read_pc (regcache), 0, tp->global_num);
2459
2460 step = maybe_software_singlestep (gdbarch, pc);
2461
2462 insert_breakpoints ();
2463 }
2464 else if (prepared > 0)
2465 {
2466 struct displaced_step_inferior_state *displaced;
2467
2468 /* Update pc to reflect the new address from which we will
2469 execute instructions due to displaced stepping. */
2470 pc = regcache_read_pc (get_thread_regcache (tp));
2471
2472 displaced = get_displaced_stepping_state (tp->inf);
2473 step = gdbarch_displaced_step_hw_singlestep
2474 (gdbarch, displaced->step_closure.get ());
2475 }
2476 }
2477
2478 /* Do we need to do it the hard way, w/temp breakpoints? */
2479 else if (step)
2480 step = maybe_software_singlestep (gdbarch, pc);
2481
2482 /* Currently, our software single-step implementation leads to different
2483 results than hardware single-stepping in one situation: when stepping
2484 into delivering a signal which has an associated signal handler,
2485 hardware single-step will stop at the first instruction of the handler,
2486 while software single-step will simply skip execution of the handler.
2487
2488 For now, this difference in behavior is accepted since there is no
2489 easy way to actually implement single-stepping into a signal handler
2490 without kernel support.
2491
2492 However, there is one scenario where this difference leads to follow-on
2493 problems: if we're stepping off a breakpoint by removing all breakpoints
2494 and then single-stepping. In this case, the software single-step
2495 behavior means that even if there is a *breakpoint* in the signal
2496 handler, GDB still would not stop.
2497
2498 Fortunately, we can at least fix this particular issue. We detect
2499 here the case where we are about to deliver a signal while software
2500 single-stepping with breakpoints removed. In this situation, we
2501 revert the decisions to remove all breakpoints and insert single-
2502 step breakpoints, and instead we install a step-resume breakpoint
2503 at the current address, deliver the signal without stepping, and
2504 once we arrive back at the step-resume breakpoint, actually step
2505 over the breakpoint we originally wanted to step over. */
2506 if (thread_has_single_step_breakpoints_set (tp)
2507 && sig != GDB_SIGNAL_0
2508 && step_over_info_valid_p ())
2509 {
2510 /* If we have nested signals or a pending signal is delivered
2511 immediately after a handler returns, might already have
2512 a step-resume breakpoint set on the earlier handler. We cannot
2513 set another step-resume breakpoint; just continue on until the
2514 original breakpoint is hit. */
2515 if (tp->control.step_resume_breakpoint == NULL)
2516 {
2517 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2518 tp->step_after_step_resume_breakpoint = 1;
2519 }
2520
2521 delete_single_step_breakpoints (tp);
2522
2523 clear_step_over_info ();
2524 tp->control.trap_expected = 0;
2525
2526 insert_breakpoints ();
2527 }
2528
2529 /* If STEP is set, it's a request to use hardware stepping
2530 facilities. But in that case, we should never
2531 use singlestep breakpoint. */
2532 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2533
2534 /* Decide the set of threads to ask the target to resume. */
2535 if (tp->control.trap_expected)
2536 {
2537 /* We're allowing a thread to run past a breakpoint it has
2538 hit, either by single-stepping the thread with the breakpoint
2539 removed, or by displaced stepping, with the breakpoint inserted.
2540 In the former case, we need to single-step only this thread,
2541 and keep others stopped, as they can miss this breakpoint if
2542 allowed to run. That's not really a problem for displaced
2543 stepping, but, we still keep other threads stopped, in case
2544 another thread is also stopped for a breakpoint waiting for
2545 its turn in the displaced stepping queue. */
2546 resume_ptid = inferior_ptid;
2547 }
2548 else
2549 resume_ptid = internal_resume_ptid (user_step);
2550
2551 if (execution_direction != EXEC_REVERSE
2552 && step && breakpoint_inserted_here_p (aspace, pc))
2553 {
2554 /* There are two cases where we currently need to step a
2555 breakpoint instruction when we have a signal to deliver:
2556
2557 - See handle_signal_stop where we handle random signals that
2558 could take out us out of the stepping range. Normally, in
2559 that case we end up continuing (instead of stepping) over the
2560 signal handler with a breakpoint at PC, but there are cases
2561 where we should _always_ single-step, even if we have a
2562 step-resume breakpoint, like when a software watchpoint is
2563 set. Assuming single-stepping and delivering a signal at the
2564 same time would takes us to the signal handler, then we could
2565 have removed the breakpoint at PC to step over it. However,
2566 some hardware step targets (like e.g., Mac OS) can't step
2567 into signal handlers, and for those, we need to leave the
2568 breakpoint at PC inserted, as otherwise if the handler
2569 recurses and executes PC again, it'll miss the breakpoint.
2570 So we leave the breakpoint inserted anyway, but we need to
2571 record that we tried to step a breakpoint instruction, so
2572 that adjust_pc_after_break doesn't end up confused.
2573
2574 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2575 in one thread after another thread that was stepping had been
2576 momentarily paused for a step-over. When we re-resume the
2577 stepping thread, it may be resumed from that address with a
2578 breakpoint that hasn't trapped yet. Seen with
2579 gdb.threads/non-stop-fair-events.exp, on targets that don't
2580 do displaced stepping. */
2581
2582 infrun_log_debug ("resume: [%s] stepped breakpoint",
2583 target_pid_to_str (tp->ptid).c_str ());
2584
2585 tp->stepped_breakpoint = 1;
2586
2587 /* Most targets can step a breakpoint instruction, thus
2588 executing it normally. But if this one cannot, just
2589 continue and we will hit it anyway. */
2590 if (gdbarch_cannot_step_breakpoint (gdbarch))
2591 step = 0;
2592 }
2593
2594 if (debug_displaced
2595 && tp->control.trap_expected
2596 && use_displaced_stepping (tp)
2597 && !step_over_info_valid_p ())
2598 {
2599 struct regcache *resume_regcache = get_thread_regcache (tp);
2600 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2601 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2602 gdb_byte buf[4];
2603
2604 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2605 paddress (resume_gdbarch, actual_pc));
2606 read_memory (actual_pc, buf, sizeof (buf));
2607 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2608 }
2609
2610 if (tp->control.may_range_step)
2611 {
2612 /* If we're resuming a thread with the PC out of the step
2613 range, then we're doing some nested/finer run control
2614 operation, like stepping the thread out of the dynamic
2615 linker or the displaced stepping scratch pad. We
2616 shouldn't have allowed a range step then. */
2617 gdb_assert (pc_in_thread_step_range (pc, tp));
2618 }
2619
2620 do_target_resume (resume_ptid, step, sig);
2621 tp->resumed = true;
2622 }
2623
2624 /* Resume the inferior. SIG is the signal to give the inferior
2625 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2626 rolls back state on error. */
2627
2628 static void
2629 resume (gdb_signal sig)
2630 {
2631 try
2632 {
2633 resume_1 (sig);
2634 }
2635 catch (const gdb_exception &ex)
2636 {
2637 /* If resuming is being aborted for any reason, delete any
2638 single-step breakpoint resume_1 may have created, to avoid
2639 confusing the following resumption, and to avoid leaving
2640 single-step breakpoints perturbing other threads, in case
2641 we're running in non-stop mode. */
2642 if (inferior_ptid != null_ptid)
2643 delete_single_step_breakpoints (inferior_thread ());
2644 throw;
2645 }
2646 }
2647
2648 \f
2649 /* Proceeding. */
2650
2651 /* See infrun.h. */
2652
2653 /* Counter that tracks number of user visible stops. This can be used
2654 to tell whether a command has proceeded the inferior past the
2655 current location. This allows e.g., inferior function calls in
2656 breakpoint commands to not interrupt the command list. When the
2657 call finishes successfully, the inferior is standing at the same
2658 breakpoint as if nothing happened (and so we don't call
2659 normal_stop). */
2660 static ULONGEST current_stop_id;
2661
2662 /* See infrun.h. */
2663
2664 ULONGEST
2665 get_stop_id (void)
2666 {
2667 return current_stop_id;
2668 }
2669
2670 /* Called when we report a user visible stop. */
2671
2672 static void
2673 new_stop_id (void)
2674 {
2675 current_stop_id++;
2676 }
2677
2678 /* Clear out all variables saying what to do when inferior is continued.
2679 First do this, then set the ones you want, then call `proceed'. */
2680
2681 static void
2682 clear_proceed_status_thread (struct thread_info *tp)
2683 {
2684 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
2685
2686 /* If we're starting a new sequence, then the previous finished
2687 single-step is no longer relevant. */
2688 if (tp->suspend.waitstatus_pending_p)
2689 {
2690 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2691 {
2692 infrun_log_debug ("pending event of %s was a finished step. "
2693 "Discarding.",
2694 target_pid_to_str (tp->ptid).c_str ());
2695
2696 tp->suspend.waitstatus_pending_p = 0;
2697 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2698 }
2699 else
2700 {
2701 infrun_log_debug
2702 ("thread %s has pending wait status %s (currently_stepping=%d).",
2703 target_pid_to_str (tp->ptid).c_str (),
2704 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2705 currently_stepping (tp));
2706 }
2707 }
2708
2709 /* If this signal should not be seen by program, give it zero.
2710 Used for debugging signals. */
2711 if (!signal_pass_state (tp->suspend.stop_signal))
2712 tp->suspend.stop_signal = GDB_SIGNAL_0;
2713
2714 delete tp->thread_fsm;
2715 tp->thread_fsm = NULL;
2716
2717 tp->control.trap_expected = 0;
2718 tp->control.step_range_start = 0;
2719 tp->control.step_range_end = 0;
2720 tp->control.may_range_step = 0;
2721 tp->control.step_frame_id = null_frame_id;
2722 tp->control.step_stack_frame_id = null_frame_id;
2723 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2724 tp->control.step_start_function = NULL;
2725 tp->stop_requested = 0;
2726
2727 tp->control.stop_step = 0;
2728
2729 tp->control.proceed_to_finish = 0;
2730
2731 tp->control.stepping_command = 0;
2732
2733 /* Discard any remaining commands or status from previous stop. */
2734 bpstat_clear (&tp->control.stop_bpstat);
2735 }
2736
2737 void
2738 clear_proceed_status (int step)
2739 {
2740 /* With scheduler-locking replay, stop replaying other threads if we're
2741 not replaying the user-visible resume ptid.
2742
2743 This is a convenience feature to not require the user to explicitly
2744 stop replaying the other threads. We're assuming that the user's
2745 intent is to resume tracing the recorded process. */
2746 if (!non_stop && scheduler_mode == schedlock_replay
2747 && target_record_is_replaying (minus_one_ptid)
2748 && !target_record_will_replay (user_visible_resume_ptid (step),
2749 execution_direction))
2750 target_record_stop_replaying ();
2751
2752 if (!non_stop && inferior_ptid != null_ptid)
2753 {
2754 ptid_t resume_ptid = user_visible_resume_ptid (step);
2755 process_stratum_target *resume_target
2756 = user_visible_resume_target (resume_ptid);
2757
2758 /* In all-stop mode, delete the per-thread status of all threads
2759 we're about to resume, implicitly and explicitly. */
2760 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2761 clear_proceed_status_thread (tp);
2762 }
2763
2764 if (inferior_ptid != null_ptid)
2765 {
2766 struct inferior *inferior;
2767
2768 if (non_stop)
2769 {
2770 /* If in non-stop mode, only delete the per-thread status of
2771 the current thread. */
2772 clear_proceed_status_thread (inferior_thread ());
2773 }
2774
2775 inferior = current_inferior ();
2776 inferior->control.stop_soon = NO_STOP_QUIETLY;
2777 }
2778
2779 gdb::observers::about_to_proceed.notify ();
2780 }
2781
2782 /* Returns true if TP is still stopped at a breakpoint that needs
2783 stepping-over in order to make progress. If the breakpoint is gone
2784 meanwhile, we can skip the whole step-over dance. */
2785
2786 static int
2787 thread_still_needs_step_over_bp (struct thread_info *tp)
2788 {
2789 if (tp->stepping_over_breakpoint)
2790 {
2791 struct regcache *regcache = get_thread_regcache (tp);
2792
2793 if (breakpoint_here_p (regcache->aspace (),
2794 regcache_read_pc (regcache))
2795 == ordinary_breakpoint_here)
2796 return 1;
2797
2798 tp->stepping_over_breakpoint = 0;
2799 }
2800
2801 return 0;
2802 }
2803
2804 /* Check whether thread TP still needs to start a step-over in order
2805 to make progress when resumed. Returns an bitwise or of enum
2806 step_over_what bits, indicating what needs to be stepped over. */
2807
2808 static step_over_what
2809 thread_still_needs_step_over (struct thread_info *tp)
2810 {
2811 step_over_what what = 0;
2812
2813 if (thread_still_needs_step_over_bp (tp))
2814 what |= STEP_OVER_BREAKPOINT;
2815
2816 if (tp->stepping_over_watchpoint
2817 && !target_have_steppable_watchpoint)
2818 what |= STEP_OVER_WATCHPOINT;
2819
2820 return what;
2821 }
2822
2823 /* Returns true if scheduler locking applies. STEP indicates whether
2824 we're about to do a step/next-like command to a thread. */
2825
2826 static int
2827 schedlock_applies (struct thread_info *tp)
2828 {
2829 return (scheduler_mode == schedlock_on
2830 || (scheduler_mode == schedlock_step
2831 && tp->control.stepping_command)
2832 || (scheduler_mode == schedlock_replay
2833 && target_record_will_replay (minus_one_ptid,
2834 execution_direction)));
2835 }
2836
2837 /* Calls target_commit_resume on all targets. */
2838
2839 static void
2840 commit_resume_all_targets ()
2841 {
2842 scoped_restore_current_thread restore_thread;
2843
2844 /* Map between process_target and a representative inferior. This
2845 is to avoid committing a resume in the same target more than
2846 once. Resumptions must be idempotent, so this is an
2847 optimization. */
2848 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2849
2850 for (inferior *inf : all_non_exited_inferiors ())
2851 if (inf->has_execution ())
2852 conn_inf[inf->process_target ()] = inf;
2853
2854 for (const auto &ci : conn_inf)
2855 {
2856 inferior *inf = ci.second;
2857 switch_to_inferior_no_thread (inf);
2858 target_commit_resume ();
2859 }
2860 }
2861
2862 /* Check that all the targets we're about to resume are in non-stop
2863 mode. Ideally, we'd only care whether all targets support
2864 target-async, but we're not there yet. E.g., stop_all_threads
2865 doesn't know how to handle all-stop targets. Also, the remote
2866 protocol in all-stop mode is synchronous, irrespective of
2867 target-async, which means that things like a breakpoint re-set
2868 triggered by one target would try to read memory from all targets
2869 and fail. */
2870
2871 static void
2872 check_multi_target_resumption (process_stratum_target *resume_target)
2873 {
2874 if (!non_stop && resume_target == nullptr)
2875 {
2876 scoped_restore_current_thread restore_thread;
2877
2878 /* This is used to track whether we're resuming more than one
2879 target. */
2880 process_stratum_target *first_connection = nullptr;
2881
2882 /* The first inferior we see with a target that does not work in
2883 always-non-stop mode. */
2884 inferior *first_not_non_stop = nullptr;
2885
2886 for (inferior *inf : all_non_exited_inferiors (resume_target))
2887 {
2888 switch_to_inferior_no_thread (inf);
2889
2890 if (!target_has_execution)
2891 continue;
2892
2893 process_stratum_target *proc_target
2894 = current_inferior ()->process_target();
2895
2896 if (!target_is_non_stop_p ())
2897 first_not_non_stop = inf;
2898
2899 if (first_connection == nullptr)
2900 first_connection = proc_target;
2901 else if (first_connection != proc_target
2902 && first_not_non_stop != nullptr)
2903 {
2904 switch_to_inferior_no_thread (first_not_non_stop);
2905
2906 proc_target = current_inferior ()->process_target();
2907
2908 error (_("Connection %d (%s) does not support "
2909 "multi-target resumption."),
2910 proc_target->connection_number,
2911 make_target_connection_string (proc_target).c_str ());
2912 }
2913 }
2914 }
2915 }
2916
2917 /* Basic routine for continuing the program in various fashions.
2918
2919 ADDR is the address to resume at, or -1 for resume where stopped.
2920 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2921 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2922
2923 You should call clear_proceed_status before calling proceed. */
2924
2925 void
2926 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2927 {
2928 struct regcache *regcache;
2929 struct gdbarch *gdbarch;
2930 CORE_ADDR pc;
2931 struct execution_control_state ecss;
2932 struct execution_control_state *ecs = &ecss;
2933 int started;
2934
2935 /* If we're stopped at a fork/vfork, follow the branch set by the
2936 "set follow-fork-mode" command; otherwise, we'll just proceed
2937 resuming the current thread. */
2938 if (!follow_fork ())
2939 {
2940 /* The target for some reason decided not to resume. */
2941 normal_stop ();
2942 if (target_can_async_p ())
2943 inferior_event_handler (INF_EXEC_COMPLETE);
2944 return;
2945 }
2946
2947 /* We'll update this if & when we switch to a new thread. */
2948 previous_inferior_ptid = inferior_ptid;
2949
2950 regcache = get_current_regcache ();
2951 gdbarch = regcache->arch ();
2952 const address_space *aspace = regcache->aspace ();
2953
2954 pc = regcache_read_pc_protected (regcache);
2955
2956 thread_info *cur_thr = inferior_thread ();
2957
2958 /* Fill in with reasonable starting values. */
2959 init_thread_stepping_state (cur_thr);
2960
2961 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2962
2963 ptid_t resume_ptid
2964 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2965 process_stratum_target *resume_target
2966 = user_visible_resume_target (resume_ptid);
2967
2968 check_multi_target_resumption (resume_target);
2969
2970 if (addr == (CORE_ADDR) -1)
2971 {
2972 if (pc == cur_thr->suspend.stop_pc
2973 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2974 && execution_direction != EXEC_REVERSE)
2975 /* There is a breakpoint at the address we will resume at,
2976 step one instruction before inserting breakpoints so that
2977 we do not stop right away (and report a second hit at this
2978 breakpoint).
2979
2980 Note, we don't do this in reverse, because we won't
2981 actually be executing the breakpoint insn anyway.
2982 We'll be (un-)executing the previous instruction. */
2983 cur_thr->stepping_over_breakpoint = 1;
2984 else if (gdbarch_single_step_through_delay_p (gdbarch)
2985 && gdbarch_single_step_through_delay (gdbarch,
2986 get_current_frame ()))
2987 /* We stepped onto an instruction that needs to be stepped
2988 again before re-inserting the breakpoint, do so. */
2989 cur_thr->stepping_over_breakpoint = 1;
2990 }
2991 else
2992 {
2993 regcache_write_pc (regcache, addr);
2994 }
2995
2996 if (siggnal != GDB_SIGNAL_DEFAULT)
2997 cur_thr->suspend.stop_signal = siggnal;
2998
2999 /* If an exception is thrown from this point on, make sure to
3000 propagate GDB's knowledge of the executing state to the
3001 frontend/user running state. */
3002 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3003
3004 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3005 threads (e.g., we might need to set threads stepping over
3006 breakpoints first), from the user/frontend's point of view, all
3007 threads in RESUME_PTID are now running. Unless we're calling an
3008 inferior function, as in that case we pretend the inferior
3009 doesn't run at all. */
3010 if (!cur_thr->control.in_infcall)
3011 set_running (resume_target, resume_ptid, true);
3012
3013 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3014 gdb_signal_to_symbol_string (siggnal));
3015
3016 annotate_starting ();
3017
3018 /* Make sure that output from GDB appears before output from the
3019 inferior. */
3020 gdb_flush (gdb_stdout);
3021
3022 /* Since we've marked the inferior running, give it the terminal. A
3023 QUIT/Ctrl-C from here on is forwarded to the target (which can
3024 still detect attempts to unblock a stuck connection with repeated
3025 Ctrl-C from within target_pass_ctrlc). */
3026 target_terminal::inferior ();
3027
3028 /* In a multi-threaded task we may select another thread and
3029 then continue or step.
3030
3031 But if a thread that we're resuming had stopped at a breakpoint,
3032 it will immediately cause another breakpoint stop without any
3033 execution (i.e. it will report a breakpoint hit incorrectly). So
3034 we must step over it first.
3035
3036 Look for threads other than the current (TP) that reported a
3037 breakpoint hit and haven't been resumed yet since. */
3038
3039 /* If scheduler locking applies, we can avoid iterating over all
3040 threads. */
3041 if (!non_stop && !schedlock_applies (cur_thr))
3042 {
3043 for (thread_info *tp : all_non_exited_threads (resume_target,
3044 resume_ptid))
3045 {
3046 switch_to_thread_no_regs (tp);
3047
3048 /* Ignore the current thread here. It's handled
3049 afterwards. */
3050 if (tp == cur_thr)
3051 continue;
3052
3053 if (!thread_still_needs_step_over (tp))
3054 continue;
3055
3056 gdb_assert (!thread_is_in_step_over_chain (tp));
3057
3058 infrun_log_debug ("need to step-over [%s] first",
3059 target_pid_to_str (tp->ptid).c_str ());
3060
3061 thread_step_over_chain_enqueue (tp);
3062 }
3063
3064 switch_to_thread (cur_thr);
3065 }
3066
3067 /* Enqueue the current thread last, so that we move all other
3068 threads over their breakpoints first. */
3069 if (cur_thr->stepping_over_breakpoint)
3070 thread_step_over_chain_enqueue (cur_thr);
3071
3072 /* If the thread isn't started, we'll still need to set its prev_pc,
3073 so that switch_back_to_stepped_thread knows the thread hasn't
3074 advanced. Must do this before resuming any thread, as in
3075 all-stop/remote, once we resume we can't send any other packet
3076 until the target stops again. */
3077 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3078
3079 {
3080 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3081
3082 started = start_step_over ();
3083
3084 if (step_over_info_valid_p ())
3085 {
3086 /* Either this thread started a new in-line step over, or some
3087 other thread was already doing one. In either case, don't
3088 resume anything else until the step-over is finished. */
3089 }
3090 else if (started && !target_is_non_stop_p ())
3091 {
3092 /* A new displaced stepping sequence was started. In all-stop,
3093 we can't talk to the target anymore until it next stops. */
3094 }
3095 else if (!non_stop && target_is_non_stop_p ())
3096 {
3097 /* In all-stop, but the target is always in non-stop mode.
3098 Start all other threads that are implicitly resumed too. */
3099 for (thread_info *tp : all_non_exited_threads (resume_target,
3100 resume_ptid))
3101 {
3102 switch_to_thread_no_regs (tp);
3103
3104 if (!tp->inf->has_execution ())
3105 {
3106 infrun_log_debug ("[%s] target has no execution",
3107 target_pid_to_str (tp->ptid).c_str ());
3108 continue;
3109 }
3110
3111 if (tp->resumed)
3112 {
3113 infrun_log_debug ("[%s] resumed",
3114 target_pid_to_str (tp->ptid).c_str ());
3115 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3116 continue;
3117 }
3118
3119 if (thread_is_in_step_over_chain (tp))
3120 {
3121 infrun_log_debug ("[%s] needs step-over",
3122 target_pid_to_str (tp->ptid).c_str ());
3123 continue;
3124 }
3125
3126 infrun_log_debug ("resuming %s",
3127 target_pid_to_str (tp->ptid).c_str ());
3128
3129 reset_ecs (ecs, tp);
3130 switch_to_thread (tp);
3131 keep_going_pass_signal (ecs);
3132 if (!ecs->wait_some_more)
3133 error (_("Command aborted."));
3134 }
3135 }
3136 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3137 {
3138 /* The thread wasn't started, and isn't queued, run it now. */
3139 reset_ecs (ecs, cur_thr);
3140 switch_to_thread (cur_thr);
3141 keep_going_pass_signal (ecs);
3142 if (!ecs->wait_some_more)
3143 error (_("Command aborted."));
3144 }
3145 }
3146
3147 commit_resume_all_targets ();
3148
3149 finish_state.release ();
3150
3151 /* If we've switched threads above, switch back to the previously
3152 current thread. We don't want the user to see a different
3153 selected thread. */
3154 switch_to_thread (cur_thr);
3155
3156 /* Tell the event loop to wait for it to stop. If the target
3157 supports asynchronous execution, it'll do this from within
3158 target_resume. */
3159 if (!target_can_async_p ())
3160 mark_async_event_handler (infrun_async_inferior_event_token);
3161 }
3162 \f
3163
3164 /* Start remote-debugging of a machine over a serial link. */
3165
3166 void
3167 start_remote (int from_tty)
3168 {
3169 inferior *inf = current_inferior ();
3170 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3171
3172 /* Always go on waiting for the target, regardless of the mode. */
3173 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3174 indicate to wait_for_inferior that a target should timeout if
3175 nothing is returned (instead of just blocking). Because of this,
3176 targets expecting an immediate response need to, internally, set
3177 things up so that the target_wait() is forced to eventually
3178 timeout. */
3179 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3180 differentiate to its caller what the state of the target is after
3181 the initial open has been performed. Here we're assuming that
3182 the target has stopped. It should be possible to eventually have
3183 target_open() return to the caller an indication that the target
3184 is currently running and GDB state should be set to the same as
3185 for an async run. */
3186 wait_for_inferior (inf);
3187
3188 /* Now that the inferior has stopped, do any bookkeeping like
3189 loading shared libraries. We want to do this before normal_stop,
3190 so that the displayed frame is up to date. */
3191 post_create_inferior (current_top_target (), from_tty);
3192
3193 normal_stop ();
3194 }
3195
3196 /* Initialize static vars when a new inferior begins. */
3197
3198 void
3199 init_wait_for_inferior (void)
3200 {
3201 /* These are meaningless until the first time through wait_for_inferior. */
3202
3203 breakpoint_init_inferior (inf_starting);
3204
3205 clear_proceed_status (0);
3206
3207 nullify_last_target_wait_ptid ();
3208
3209 previous_inferior_ptid = inferior_ptid;
3210 }
3211
3212 \f
3213
3214 static void handle_inferior_event (struct execution_control_state *ecs);
3215
3216 static void handle_step_into_function (struct gdbarch *gdbarch,
3217 struct execution_control_state *ecs);
3218 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3219 struct execution_control_state *ecs);
3220 static void handle_signal_stop (struct execution_control_state *ecs);
3221 static void check_exception_resume (struct execution_control_state *,
3222 struct frame_info *);
3223
3224 static void end_stepping_range (struct execution_control_state *ecs);
3225 static void stop_waiting (struct execution_control_state *ecs);
3226 static void keep_going (struct execution_control_state *ecs);
3227 static void process_event_stop_test (struct execution_control_state *ecs);
3228 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3229
3230 /* This function is attached as a "thread_stop_requested" observer.
3231 Cleanup local state that assumed the PTID was to be resumed, and
3232 report the stop to the frontend. */
3233
3234 static void
3235 infrun_thread_stop_requested (ptid_t ptid)
3236 {
3237 process_stratum_target *curr_target = current_inferior ()->process_target ();
3238
3239 /* PTID was requested to stop. If the thread was already stopped,
3240 but the user/frontend doesn't know about that yet (e.g., the
3241 thread had been temporarily paused for some step-over), set up
3242 for reporting the stop now. */
3243 for (thread_info *tp : all_threads (curr_target, ptid))
3244 {
3245 if (tp->state != THREAD_RUNNING)
3246 continue;
3247 if (tp->executing)
3248 continue;
3249
3250 /* Remove matching threads from the step-over queue, so
3251 start_step_over doesn't try to resume them
3252 automatically. */
3253 if (thread_is_in_step_over_chain (tp))
3254 thread_step_over_chain_remove (tp);
3255
3256 /* If the thread is stopped, but the user/frontend doesn't
3257 know about that yet, queue a pending event, as if the
3258 thread had just stopped now. Unless the thread already had
3259 a pending event. */
3260 if (!tp->suspend.waitstatus_pending_p)
3261 {
3262 tp->suspend.waitstatus_pending_p = 1;
3263 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3264 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3265 }
3266
3267 /* Clear the inline-frame state, since we're re-processing the
3268 stop. */
3269 clear_inline_frame_state (tp);
3270
3271 /* If this thread was paused because some other thread was
3272 doing an inline-step over, let that finish first. Once
3273 that happens, we'll restart all threads and consume pending
3274 stop events then. */
3275 if (step_over_info_valid_p ())
3276 continue;
3277
3278 /* Otherwise we can process the (new) pending event now. Set
3279 it so this pending event is considered by
3280 do_target_wait. */
3281 tp->resumed = true;
3282 }
3283 }
3284
3285 static void
3286 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3287 {
3288 if (target_last_proc_target == tp->inf->process_target ()
3289 && target_last_wait_ptid == tp->ptid)
3290 nullify_last_target_wait_ptid ();
3291 }
3292
3293 /* Delete the step resume, single-step and longjmp/exception resume
3294 breakpoints of TP. */
3295
3296 static void
3297 delete_thread_infrun_breakpoints (struct thread_info *tp)
3298 {
3299 delete_step_resume_breakpoint (tp);
3300 delete_exception_resume_breakpoint (tp);
3301 delete_single_step_breakpoints (tp);
3302 }
3303
3304 /* If the target still has execution, call FUNC for each thread that
3305 just stopped. In all-stop, that's all the non-exited threads; in
3306 non-stop, that's the current thread, only. */
3307
3308 typedef void (*for_each_just_stopped_thread_callback_func)
3309 (struct thread_info *tp);
3310
3311 static void
3312 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3313 {
3314 if (!target_has_execution || inferior_ptid == null_ptid)
3315 return;
3316
3317 if (target_is_non_stop_p ())
3318 {
3319 /* If in non-stop mode, only the current thread stopped. */
3320 func (inferior_thread ());
3321 }
3322 else
3323 {
3324 /* In all-stop mode, all threads have stopped. */
3325 for (thread_info *tp : all_non_exited_threads ())
3326 func (tp);
3327 }
3328 }
3329
3330 /* Delete the step resume and longjmp/exception resume breakpoints of
3331 the threads that just stopped. */
3332
3333 static void
3334 delete_just_stopped_threads_infrun_breakpoints (void)
3335 {
3336 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3337 }
3338
3339 /* Delete the single-step breakpoints of the threads that just
3340 stopped. */
3341
3342 static void
3343 delete_just_stopped_threads_single_step_breakpoints (void)
3344 {
3345 for_each_just_stopped_thread (delete_single_step_breakpoints);
3346 }
3347
3348 /* See infrun.h. */
3349
3350 void
3351 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3352 const struct target_waitstatus *ws)
3353 {
3354 std::string status_string = target_waitstatus_to_string (ws);
3355 string_file stb;
3356
3357 /* The text is split over several lines because it was getting too long.
3358 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3359 output as a unit; we want only one timestamp printed if debug_timestamp
3360 is set. */
3361
3362 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3363 waiton_ptid.pid (),
3364 waiton_ptid.lwp (),
3365 waiton_ptid.tid ());
3366 if (waiton_ptid.pid () != -1)
3367 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3368 stb.printf (", status) =\n");
3369 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3370 result_ptid.pid (),
3371 result_ptid.lwp (),
3372 result_ptid.tid (),
3373 target_pid_to_str (result_ptid).c_str ());
3374 stb.printf ("infrun: %s\n", status_string.c_str ());
3375
3376 /* This uses %s in part to handle %'s in the text, but also to avoid
3377 a gcc error: the format attribute requires a string literal. */
3378 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3379 }
3380
3381 /* Select a thread at random, out of those which are resumed and have
3382 had events. */
3383
3384 static struct thread_info *
3385 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3386 {
3387 int num_events = 0;
3388
3389 auto has_event = [&] (thread_info *tp)
3390 {
3391 return (tp->ptid.matches (waiton_ptid)
3392 && tp->resumed
3393 && tp->suspend.waitstatus_pending_p);
3394 };
3395
3396 /* First see how many events we have. Count only resumed threads
3397 that have an event pending. */
3398 for (thread_info *tp : inf->non_exited_threads ())
3399 if (has_event (tp))
3400 num_events++;
3401
3402 if (num_events == 0)
3403 return NULL;
3404
3405 /* Now randomly pick a thread out of those that have had events. */
3406 int random_selector = (int) ((num_events * (double) rand ())
3407 / (RAND_MAX + 1.0));
3408
3409 if (num_events > 1)
3410 infrun_log_debug ("Found %d events, selecting #%d",
3411 num_events, random_selector);
3412
3413 /* Select the Nth thread that has had an event. */
3414 for (thread_info *tp : inf->non_exited_threads ())
3415 if (has_event (tp))
3416 if (random_selector-- == 0)
3417 return tp;
3418
3419 gdb_assert_not_reached ("event thread not found");
3420 }
3421
3422 /* Wrapper for target_wait that first checks whether threads have
3423 pending statuses to report before actually asking the target for
3424 more events. INF is the inferior we're using to call target_wait
3425 on. */
3426
3427 static ptid_t
3428 do_target_wait_1 (inferior *inf, ptid_t ptid,
3429 target_waitstatus *status, int options)
3430 {
3431 ptid_t event_ptid;
3432 struct thread_info *tp;
3433
3434 /* We know that we are looking for an event in the target of inferior
3435 INF, but we don't know which thread the event might come from. As
3436 such we want to make sure that INFERIOR_PTID is reset so that none of
3437 the wait code relies on it - doing so is always a mistake. */
3438 switch_to_inferior_no_thread (inf);
3439
3440 /* First check if there is a resumed thread with a wait status
3441 pending. */
3442 if (ptid == minus_one_ptid || ptid.is_pid ())
3443 {
3444 tp = random_pending_event_thread (inf, ptid);
3445 }
3446 else
3447 {
3448 infrun_log_debug ("Waiting for specific thread %s.",
3449 target_pid_to_str (ptid).c_str ());
3450
3451 /* We have a specific thread to check. */
3452 tp = find_thread_ptid (inf, ptid);
3453 gdb_assert (tp != NULL);
3454 if (!tp->suspend.waitstatus_pending_p)
3455 tp = NULL;
3456 }
3457
3458 if (tp != NULL
3459 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3460 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3461 {
3462 struct regcache *regcache = get_thread_regcache (tp);
3463 struct gdbarch *gdbarch = regcache->arch ();
3464 CORE_ADDR pc;
3465 int discard = 0;
3466
3467 pc = regcache_read_pc (regcache);
3468
3469 if (pc != tp->suspend.stop_pc)
3470 {
3471 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3472 target_pid_to_str (tp->ptid).c_str (),
3473 paddress (gdbarch, tp->suspend.stop_pc),
3474 paddress (gdbarch, pc));
3475 discard = 1;
3476 }
3477 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3478 {
3479 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3480 target_pid_to_str (tp->ptid).c_str (),
3481 paddress (gdbarch, pc));
3482
3483 discard = 1;
3484 }
3485
3486 if (discard)
3487 {
3488 infrun_log_debug ("pending event of %s cancelled.",
3489 target_pid_to_str (tp->ptid).c_str ());
3490
3491 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3492 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3493 }
3494 }
3495
3496 if (tp != NULL)
3497 {
3498 infrun_log_debug ("Using pending wait status %s for %s.",
3499 target_waitstatus_to_string
3500 (&tp->suspend.waitstatus).c_str (),
3501 target_pid_to_str (tp->ptid).c_str ());
3502
3503 /* Now that we've selected our final event LWP, un-adjust its PC
3504 if it was a software breakpoint (and the target doesn't
3505 always adjust the PC itself). */
3506 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3507 && !target_supports_stopped_by_sw_breakpoint ())
3508 {
3509 struct regcache *regcache;
3510 struct gdbarch *gdbarch;
3511 int decr_pc;
3512
3513 regcache = get_thread_regcache (tp);
3514 gdbarch = regcache->arch ();
3515
3516 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3517 if (decr_pc != 0)
3518 {
3519 CORE_ADDR pc;
3520
3521 pc = regcache_read_pc (regcache);
3522 regcache_write_pc (regcache, pc + decr_pc);
3523 }
3524 }
3525
3526 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3527 *status = tp->suspend.waitstatus;
3528 tp->suspend.waitstatus_pending_p = 0;
3529
3530 /* Wake up the event loop again, until all pending events are
3531 processed. */
3532 if (target_is_async_p ())
3533 mark_async_event_handler (infrun_async_inferior_event_token);
3534 return tp->ptid;
3535 }
3536
3537 /* But if we don't find one, we'll have to wait. */
3538
3539 if (deprecated_target_wait_hook)
3540 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3541 else
3542 event_ptid = target_wait (ptid, status, options);
3543
3544 return event_ptid;
3545 }
3546
3547 /* Wrapper for target_wait that first checks whether threads have
3548 pending statuses to report before actually asking the target for
3549 more events. Polls for events from all inferiors/targets. */
3550
3551 static bool
3552 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3553 {
3554 int num_inferiors = 0;
3555 int random_selector;
3556
3557 /* For fairness, we pick the first inferior/target to poll at random
3558 out of all inferiors that may report events, and then continue
3559 polling the rest of the inferior list starting from that one in a
3560 circular fashion until the whole list is polled once. */
3561
3562 auto inferior_matches = [&wait_ptid] (inferior *inf)
3563 {
3564 return (inf->process_target () != NULL
3565 && ptid_t (inf->pid).matches (wait_ptid));
3566 };
3567
3568 /* First see how many matching inferiors we have. */
3569 for (inferior *inf : all_inferiors ())
3570 if (inferior_matches (inf))
3571 num_inferiors++;
3572
3573 if (num_inferiors == 0)
3574 {
3575 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3576 return false;
3577 }
3578
3579 /* Now randomly pick an inferior out of those that matched. */
3580 random_selector = (int)
3581 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3582
3583 if (num_inferiors > 1)
3584 infrun_log_debug ("Found %d inferiors, starting at #%d",
3585 num_inferiors, random_selector);
3586
3587 /* Select the Nth inferior that matched. */
3588
3589 inferior *selected = nullptr;
3590
3591 for (inferior *inf : all_inferiors ())
3592 if (inferior_matches (inf))
3593 if (random_selector-- == 0)
3594 {
3595 selected = inf;
3596 break;
3597 }
3598
3599 /* Now poll for events out of each of the matching inferior's
3600 targets, starting from the selected one. */
3601
3602 auto do_wait = [&] (inferior *inf)
3603 {
3604 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3605 ecs->target = inf->process_target ();
3606 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3607 };
3608
3609 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3610 here spuriously after the target is all stopped and we've already
3611 reported the stop to the user, polling for events. */
3612 scoped_restore_current_thread restore_thread;
3613
3614 int inf_num = selected->num;
3615 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3616 if (inferior_matches (inf))
3617 if (do_wait (inf))
3618 return true;
3619
3620 for (inferior *inf = inferior_list;
3621 inf != NULL && inf->num < inf_num;
3622 inf = inf->next)
3623 if (inferior_matches (inf))
3624 if (do_wait (inf))
3625 return true;
3626
3627 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3628 return false;
3629 }
3630
3631 /* Prepare and stabilize the inferior for detaching it. E.g.,
3632 detaching while a thread is displaced stepping is a recipe for
3633 crashing it, as nothing would readjust the PC out of the scratch
3634 pad. */
3635
3636 void
3637 prepare_for_detach (void)
3638 {
3639 struct inferior *inf = current_inferior ();
3640 ptid_t pid_ptid = ptid_t (inf->pid);
3641
3642 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3643
3644 /* Is any thread of this process displaced stepping? If not,
3645 there's nothing else to do. */
3646 if (displaced->step_thread == nullptr)
3647 return;
3648
3649 infrun_log_debug ("displaced-stepping in-process while detaching");
3650
3651 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3652
3653 while (displaced->step_thread != nullptr)
3654 {
3655 struct execution_control_state ecss;
3656 struct execution_control_state *ecs;
3657
3658 ecs = &ecss;
3659 memset (ecs, 0, sizeof (*ecs));
3660
3661 overlay_cache_invalid = 1;
3662 /* Flush target cache before starting to handle each event.
3663 Target was running and cache could be stale. This is just a
3664 heuristic. Running threads may modify target memory, but we
3665 don't get any event. */
3666 target_dcache_invalidate ();
3667
3668 do_target_wait (pid_ptid, ecs, 0);
3669
3670 if (debug_infrun)
3671 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3672
3673 /* If an error happens while handling the event, propagate GDB's
3674 knowledge of the executing state to the frontend/user running
3675 state. */
3676 scoped_finish_thread_state finish_state (inf->process_target (),
3677 minus_one_ptid);
3678
3679 /* Now figure out what to do with the result of the result. */
3680 handle_inferior_event (ecs);
3681
3682 /* No error, don't finish the state yet. */
3683 finish_state.release ();
3684
3685 /* Breakpoints and watchpoints are not installed on the target
3686 at this point, and signals are passed directly to the
3687 inferior, so this must mean the process is gone. */
3688 if (!ecs->wait_some_more)
3689 {
3690 restore_detaching.release ();
3691 error (_("Program exited while detaching"));
3692 }
3693 }
3694
3695 restore_detaching.release ();
3696 }
3697
3698 /* Wait for control to return from inferior to debugger.
3699
3700 If inferior gets a signal, we may decide to start it up again
3701 instead of returning. That is why there is a loop in this function.
3702 When this function actually returns it means the inferior
3703 should be left stopped and GDB should read more commands. */
3704
3705 static void
3706 wait_for_inferior (inferior *inf)
3707 {
3708 infrun_log_debug ("wait_for_inferior ()");
3709
3710 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3711
3712 /* If an error happens while handling the event, propagate GDB's
3713 knowledge of the executing state to the frontend/user running
3714 state. */
3715 scoped_finish_thread_state finish_state
3716 (inf->process_target (), minus_one_ptid);
3717
3718 while (1)
3719 {
3720 struct execution_control_state ecss;
3721 struct execution_control_state *ecs = &ecss;
3722
3723 memset (ecs, 0, sizeof (*ecs));
3724
3725 overlay_cache_invalid = 1;
3726
3727 /* Flush target cache before starting to handle each event.
3728 Target was running and cache could be stale. This is just a
3729 heuristic. Running threads may modify target memory, but we
3730 don't get any event. */
3731 target_dcache_invalidate ();
3732
3733 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3734 ecs->target = inf->process_target ();
3735
3736 if (debug_infrun)
3737 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3738
3739 /* Now figure out what to do with the result of the result. */
3740 handle_inferior_event (ecs);
3741
3742 if (!ecs->wait_some_more)
3743 break;
3744 }
3745
3746 /* No error, don't finish the state yet. */
3747 finish_state.release ();
3748 }
3749
3750 /* Cleanup that reinstalls the readline callback handler, if the
3751 target is running in the background. If while handling the target
3752 event something triggered a secondary prompt, like e.g., a
3753 pagination prompt, we'll have removed the callback handler (see
3754 gdb_readline_wrapper_line). Need to do this as we go back to the
3755 event loop, ready to process further input. Note this has no
3756 effect if the handler hasn't actually been removed, because calling
3757 rl_callback_handler_install resets the line buffer, thus losing
3758 input. */
3759
3760 static void
3761 reinstall_readline_callback_handler_cleanup ()
3762 {
3763 struct ui *ui = current_ui;
3764
3765 if (!ui->async)
3766 {
3767 /* We're not going back to the top level event loop yet. Don't
3768 install the readline callback, as it'd prep the terminal,
3769 readline-style (raw, noecho) (e.g., --batch). We'll install
3770 it the next time the prompt is displayed, when we're ready
3771 for input. */
3772 return;
3773 }
3774
3775 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3776 gdb_rl_callback_handler_reinstall ();
3777 }
3778
3779 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3780 that's just the event thread. In all-stop, that's all threads. */
3781
3782 static void
3783 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3784 {
3785 if (ecs->event_thread != NULL
3786 && ecs->event_thread->thread_fsm != NULL)
3787 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3788
3789 if (!non_stop)
3790 {
3791 for (thread_info *thr : all_non_exited_threads ())
3792 {
3793 if (thr->thread_fsm == NULL)
3794 continue;
3795 if (thr == ecs->event_thread)
3796 continue;
3797
3798 switch_to_thread (thr);
3799 thr->thread_fsm->clean_up (thr);
3800 }
3801
3802 if (ecs->event_thread != NULL)
3803 switch_to_thread (ecs->event_thread);
3804 }
3805 }
3806
3807 /* Helper for all_uis_check_sync_execution_done that works on the
3808 current UI. */
3809
3810 static void
3811 check_curr_ui_sync_execution_done (void)
3812 {
3813 struct ui *ui = current_ui;
3814
3815 if (ui->prompt_state == PROMPT_NEEDED
3816 && ui->async
3817 && !gdb_in_secondary_prompt_p (ui))
3818 {
3819 target_terminal::ours ();
3820 gdb::observers::sync_execution_done.notify ();
3821 ui_register_input_event_handler (ui);
3822 }
3823 }
3824
3825 /* See infrun.h. */
3826
3827 void
3828 all_uis_check_sync_execution_done (void)
3829 {
3830 SWITCH_THRU_ALL_UIS ()
3831 {
3832 check_curr_ui_sync_execution_done ();
3833 }
3834 }
3835
3836 /* See infrun.h. */
3837
3838 void
3839 all_uis_on_sync_execution_starting (void)
3840 {
3841 SWITCH_THRU_ALL_UIS ()
3842 {
3843 if (current_ui->prompt_state == PROMPT_NEEDED)
3844 async_disable_stdin ();
3845 }
3846 }
3847
3848 /* Asynchronous version of wait_for_inferior. It is called by the
3849 event loop whenever a change of state is detected on the file
3850 descriptor corresponding to the target. It can be called more than
3851 once to complete a single execution command. In such cases we need
3852 to keep the state in a global variable ECSS. If it is the last time
3853 that this function is called for a single execution command, then
3854 report to the user that the inferior has stopped, and do the
3855 necessary cleanups. */
3856
3857 void
3858 fetch_inferior_event ()
3859 {
3860 struct execution_control_state ecss;
3861 struct execution_control_state *ecs = &ecss;
3862 int cmd_done = 0;
3863
3864 memset (ecs, 0, sizeof (*ecs));
3865
3866 /* Events are always processed with the main UI as current UI. This
3867 way, warnings, debug output, etc. are always consistently sent to
3868 the main console. */
3869 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3870
3871 /* End up with readline processing input, if necessary. */
3872 {
3873 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3874
3875 /* We're handling a live event, so make sure we're doing live
3876 debugging. If we're looking at traceframes while the target is
3877 running, we're going to need to get back to that mode after
3878 handling the event. */
3879 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3880 if (non_stop)
3881 {
3882 maybe_restore_traceframe.emplace ();
3883 set_current_traceframe (-1);
3884 }
3885
3886 /* The user/frontend should not notice a thread switch due to
3887 internal events. Make sure we revert to the user selected
3888 thread and frame after handling the event and running any
3889 breakpoint commands. */
3890 scoped_restore_current_thread restore_thread;
3891
3892 overlay_cache_invalid = 1;
3893 /* Flush target cache before starting to handle each event. Target
3894 was running and cache could be stale. This is just a heuristic.
3895 Running threads may modify target memory, but we don't get any
3896 event. */
3897 target_dcache_invalidate ();
3898
3899 scoped_restore save_exec_dir
3900 = make_scoped_restore (&execution_direction,
3901 target_execution_direction ());
3902
3903 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3904 return;
3905
3906 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3907
3908 /* Switch to the target that generated the event, so we can do
3909 target calls. Any inferior bound to the target will do, so we
3910 just switch to the first we find. */
3911 for (inferior *inf : all_inferiors (ecs->target))
3912 {
3913 switch_to_inferior_no_thread (inf);
3914 break;
3915 }
3916
3917 if (debug_infrun)
3918 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3919
3920 /* If an error happens while handling the event, propagate GDB's
3921 knowledge of the executing state to the frontend/user running
3922 state. */
3923 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3924 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3925
3926 /* Get executed before scoped_restore_current_thread above to apply
3927 still for the thread which has thrown the exception. */
3928 auto defer_bpstat_clear
3929 = make_scope_exit (bpstat_clear_actions);
3930 auto defer_delete_threads
3931 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3932
3933 /* Now figure out what to do with the result of the result. */
3934 handle_inferior_event (ecs);
3935
3936 if (!ecs->wait_some_more)
3937 {
3938 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3939 int should_stop = 1;
3940 struct thread_info *thr = ecs->event_thread;
3941
3942 delete_just_stopped_threads_infrun_breakpoints ();
3943
3944 if (thr != NULL)
3945 {
3946 struct thread_fsm *thread_fsm = thr->thread_fsm;
3947
3948 if (thread_fsm != NULL)
3949 should_stop = thread_fsm->should_stop (thr);
3950 }
3951
3952 if (!should_stop)
3953 {
3954 keep_going (ecs);
3955 }
3956 else
3957 {
3958 bool should_notify_stop = true;
3959 int proceeded = 0;
3960
3961 clean_up_just_stopped_threads_fsms (ecs);
3962
3963 if (thr != NULL && thr->thread_fsm != NULL)
3964 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3965
3966 if (should_notify_stop)
3967 {
3968 /* We may not find an inferior if this was a process exit. */
3969 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3970 proceeded = normal_stop ();
3971 }
3972
3973 if (!proceeded)
3974 {
3975 inferior_event_handler (INF_EXEC_COMPLETE);
3976 cmd_done = 1;
3977 }
3978
3979 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3980 previously selected thread is gone. We have two
3981 choices - switch to no thread selected, or restore the
3982 previously selected thread (now exited). We chose the
3983 later, just because that's what GDB used to do. After
3984 this, "info threads" says "The current thread <Thread
3985 ID 2> has terminated." instead of "No thread
3986 selected.". */
3987 if (!non_stop
3988 && cmd_done
3989 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3990 restore_thread.dont_restore ();
3991 }
3992 }
3993
3994 defer_delete_threads.release ();
3995 defer_bpstat_clear.release ();
3996
3997 /* No error, don't finish the thread states yet. */
3998 finish_state.release ();
3999
4000 /* This scope is used to ensure that readline callbacks are
4001 reinstalled here. */
4002 }
4003
4004 /* If a UI was in sync execution mode, and now isn't, restore its
4005 prompt (a synchronous execution command has finished, and we're
4006 ready for input). */
4007 all_uis_check_sync_execution_done ();
4008
4009 if (cmd_done
4010 && exec_done_display_p
4011 && (inferior_ptid == null_ptid
4012 || inferior_thread ()->state != THREAD_RUNNING))
4013 printf_unfiltered (_("completed.\n"));
4014 }
4015
4016 /* See infrun.h. */
4017
4018 void
4019 set_step_info (thread_info *tp, struct frame_info *frame,
4020 struct symtab_and_line sal)
4021 {
4022 /* This can be removed once this function no longer implicitly relies on the
4023 inferior_ptid value. */
4024 gdb_assert (inferior_ptid == tp->ptid);
4025
4026 tp->control.step_frame_id = get_frame_id (frame);
4027 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4028
4029 tp->current_symtab = sal.symtab;
4030 tp->current_line = sal.line;
4031 }
4032
4033 /* Clear context switchable stepping state. */
4034
4035 void
4036 init_thread_stepping_state (struct thread_info *tss)
4037 {
4038 tss->stepped_breakpoint = 0;
4039 tss->stepping_over_breakpoint = 0;
4040 tss->stepping_over_watchpoint = 0;
4041 tss->step_after_step_resume_breakpoint = 0;
4042 }
4043
4044 /* See infrun.h. */
4045
4046 void
4047 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4048 target_waitstatus status)
4049 {
4050 target_last_proc_target = target;
4051 target_last_wait_ptid = ptid;
4052 target_last_waitstatus = status;
4053 }
4054
4055 /* See infrun.h. */
4056
4057 void
4058 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4059 target_waitstatus *status)
4060 {
4061 if (target != nullptr)
4062 *target = target_last_proc_target;
4063 if (ptid != nullptr)
4064 *ptid = target_last_wait_ptid;
4065 if (status != nullptr)
4066 *status = target_last_waitstatus;
4067 }
4068
4069 /* See infrun.h. */
4070
4071 void
4072 nullify_last_target_wait_ptid (void)
4073 {
4074 target_last_proc_target = nullptr;
4075 target_last_wait_ptid = minus_one_ptid;
4076 target_last_waitstatus = {};
4077 }
4078
4079 /* Switch thread contexts. */
4080
4081 static void
4082 context_switch (execution_control_state *ecs)
4083 {
4084 if (ecs->ptid != inferior_ptid
4085 && (inferior_ptid == null_ptid
4086 || ecs->event_thread != inferior_thread ()))
4087 {
4088 infrun_log_debug ("Switching context from %s to %s",
4089 target_pid_to_str (inferior_ptid).c_str (),
4090 target_pid_to_str (ecs->ptid).c_str ());
4091 }
4092
4093 switch_to_thread (ecs->event_thread);
4094 }
4095
4096 /* If the target can't tell whether we've hit breakpoints
4097 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4098 check whether that could have been caused by a breakpoint. If so,
4099 adjust the PC, per gdbarch_decr_pc_after_break. */
4100
4101 static void
4102 adjust_pc_after_break (struct thread_info *thread,
4103 struct target_waitstatus *ws)
4104 {
4105 struct regcache *regcache;
4106 struct gdbarch *gdbarch;
4107 CORE_ADDR breakpoint_pc, decr_pc;
4108
4109 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4110 we aren't, just return.
4111
4112 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4113 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4114 implemented by software breakpoints should be handled through the normal
4115 breakpoint layer.
4116
4117 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4118 different signals (SIGILL or SIGEMT for instance), but it is less
4119 clear where the PC is pointing afterwards. It may not match
4120 gdbarch_decr_pc_after_break. I don't know any specific target that
4121 generates these signals at breakpoints (the code has been in GDB since at
4122 least 1992) so I can not guess how to handle them here.
4123
4124 In earlier versions of GDB, a target with
4125 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4126 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4127 target with both of these set in GDB history, and it seems unlikely to be
4128 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4129
4130 if (ws->kind != TARGET_WAITKIND_STOPPED)
4131 return;
4132
4133 if (ws->value.sig != GDB_SIGNAL_TRAP)
4134 return;
4135
4136 /* In reverse execution, when a breakpoint is hit, the instruction
4137 under it has already been de-executed. The reported PC always
4138 points at the breakpoint address, so adjusting it further would
4139 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4140 architecture:
4141
4142 B1 0x08000000 : INSN1
4143 B2 0x08000001 : INSN2
4144 0x08000002 : INSN3
4145 PC -> 0x08000003 : INSN4
4146
4147 Say you're stopped at 0x08000003 as above. Reverse continuing
4148 from that point should hit B2 as below. Reading the PC when the
4149 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4150 been de-executed already.
4151
4152 B1 0x08000000 : INSN1
4153 B2 PC -> 0x08000001 : INSN2
4154 0x08000002 : INSN3
4155 0x08000003 : INSN4
4156
4157 We can't apply the same logic as for forward execution, because
4158 we would wrongly adjust the PC to 0x08000000, since there's a
4159 breakpoint at PC - 1. We'd then report a hit on B1, although
4160 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4161 behaviour. */
4162 if (execution_direction == EXEC_REVERSE)
4163 return;
4164
4165 /* If the target can tell whether the thread hit a SW breakpoint,
4166 trust it. Targets that can tell also adjust the PC
4167 themselves. */
4168 if (target_supports_stopped_by_sw_breakpoint ())
4169 return;
4170
4171 /* Note that relying on whether a breakpoint is planted in memory to
4172 determine this can fail. E.g,. the breakpoint could have been
4173 removed since. Or the thread could have been told to step an
4174 instruction the size of a breakpoint instruction, and only
4175 _after_ was a breakpoint inserted at its address. */
4176
4177 /* If this target does not decrement the PC after breakpoints, then
4178 we have nothing to do. */
4179 regcache = get_thread_regcache (thread);
4180 gdbarch = regcache->arch ();
4181
4182 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4183 if (decr_pc == 0)
4184 return;
4185
4186 const address_space *aspace = regcache->aspace ();
4187
4188 /* Find the location where (if we've hit a breakpoint) the
4189 breakpoint would be. */
4190 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4191
4192 /* If the target can't tell whether a software breakpoint triggered,
4193 fallback to figuring it out based on breakpoints we think were
4194 inserted in the target, and on whether the thread was stepped or
4195 continued. */
4196
4197 /* Check whether there actually is a software breakpoint inserted at
4198 that location.
4199
4200 If in non-stop mode, a race condition is possible where we've
4201 removed a breakpoint, but stop events for that breakpoint were
4202 already queued and arrive later. To suppress those spurious
4203 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4204 and retire them after a number of stop events are reported. Note
4205 this is an heuristic and can thus get confused. The real fix is
4206 to get the "stopped by SW BP and needs adjustment" info out of
4207 the target/kernel (and thus never reach here; see above). */
4208 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4209 || (target_is_non_stop_p ()
4210 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4211 {
4212 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4213
4214 if (record_full_is_used ())
4215 restore_operation_disable.emplace
4216 (record_full_gdb_operation_disable_set ());
4217
4218 /* When using hardware single-step, a SIGTRAP is reported for both
4219 a completed single-step and a software breakpoint. Need to
4220 differentiate between the two, as the latter needs adjusting
4221 but the former does not.
4222
4223 The SIGTRAP can be due to a completed hardware single-step only if
4224 - we didn't insert software single-step breakpoints
4225 - this thread is currently being stepped
4226
4227 If any of these events did not occur, we must have stopped due
4228 to hitting a software breakpoint, and have to back up to the
4229 breakpoint address.
4230
4231 As a special case, we could have hardware single-stepped a
4232 software breakpoint. In this case (prev_pc == breakpoint_pc),
4233 we also need to back up to the breakpoint address. */
4234
4235 if (thread_has_single_step_breakpoints_set (thread)
4236 || !currently_stepping (thread)
4237 || (thread->stepped_breakpoint
4238 && thread->prev_pc == breakpoint_pc))
4239 regcache_write_pc (regcache, breakpoint_pc);
4240 }
4241 }
4242
4243 static int
4244 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4245 {
4246 for (frame = get_prev_frame (frame);
4247 frame != NULL;
4248 frame = get_prev_frame (frame))
4249 {
4250 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4251 return 1;
4252 if (get_frame_type (frame) != INLINE_FRAME)
4253 break;
4254 }
4255
4256 return 0;
4257 }
4258
4259 /* Look for an inline frame that is marked for skip.
4260 If PREV_FRAME is TRUE start at the previous frame,
4261 otherwise start at the current frame. Stop at the
4262 first non-inline frame, or at the frame where the
4263 step started. */
4264
4265 static bool
4266 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4267 {
4268 struct frame_info *frame = get_current_frame ();
4269
4270 if (prev_frame)
4271 frame = get_prev_frame (frame);
4272
4273 for (; frame != NULL; frame = get_prev_frame (frame))
4274 {
4275 const char *fn = NULL;
4276 symtab_and_line sal;
4277 struct symbol *sym;
4278
4279 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4280 break;
4281 if (get_frame_type (frame) != INLINE_FRAME)
4282 break;
4283
4284 sal = find_frame_sal (frame);
4285 sym = get_frame_function (frame);
4286
4287 if (sym != NULL)
4288 fn = sym->print_name ();
4289
4290 if (sal.line != 0
4291 && function_name_is_marked_for_skip (fn, sal))
4292 return true;
4293 }
4294
4295 return false;
4296 }
4297
4298 /* If the event thread has the stop requested flag set, pretend it
4299 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4300 target_stop). */
4301
4302 static bool
4303 handle_stop_requested (struct execution_control_state *ecs)
4304 {
4305 if (ecs->event_thread->stop_requested)
4306 {
4307 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4308 ecs->ws.value.sig = GDB_SIGNAL_0;
4309 handle_signal_stop (ecs);
4310 return true;
4311 }
4312 return false;
4313 }
4314
4315 /* Auxiliary function that handles syscall entry/return events.
4316 It returns 1 if the inferior should keep going (and GDB
4317 should ignore the event), or 0 if the event deserves to be
4318 processed. */
4319
4320 static int
4321 handle_syscall_event (struct execution_control_state *ecs)
4322 {
4323 struct regcache *regcache;
4324 int syscall_number;
4325
4326 context_switch (ecs);
4327
4328 regcache = get_thread_regcache (ecs->event_thread);
4329 syscall_number = ecs->ws.value.syscall_number;
4330 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4331
4332 if (catch_syscall_enabled () > 0
4333 && catching_syscall_number (syscall_number) > 0)
4334 {
4335 infrun_log_debug ("syscall number=%d", syscall_number);
4336
4337 ecs->event_thread->control.stop_bpstat
4338 = bpstat_stop_status (regcache->aspace (),
4339 ecs->event_thread->suspend.stop_pc,
4340 ecs->event_thread, &ecs->ws);
4341
4342 if (handle_stop_requested (ecs))
4343 return 0;
4344
4345 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4346 {
4347 /* Catchpoint hit. */
4348 return 0;
4349 }
4350 }
4351
4352 if (handle_stop_requested (ecs))
4353 return 0;
4354
4355 /* If no catchpoint triggered for this, then keep going. */
4356 keep_going (ecs);
4357 return 1;
4358 }
4359
4360 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4361
4362 static void
4363 fill_in_stop_func (struct gdbarch *gdbarch,
4364 struct execution_control_state *ecs)
4365 {
4366 if (!ecs->stop_func_filled_in)
4367 {
4368 const block *block;
4369
4370 /* Don't care about return value; stop_func_start and stop_func_name
4371 will both be 0 if it doesn't work. */
4372 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4373 &ecs->stop_func_name,
4374 &ecs->stop_func_start,
4375 &ecs->stop_func_end,
4376 &block);
4377
4378 /* The call to find_pc_partial_function, above, will set
4379 stop_func_start and stop_func_end to the start and end
4380 of the range containing the stop pc. If this range
4381 contains the entry pc for the block (which is always the
4382 case for contiguous blocks), advance stop_func_start past
4383 the function's start offset and entrypoint. Note that
4384 stop_func_start is NOT advanced when in a range of a
4385 non-contiguous block that does not contain the entry pc. */
4386 if (block != nullptr
4387 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4388 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4389 {
4390 ecs->stop_func_start
4391 += gdbarch_deprecated_function_start_offset (gdbarch);
4392
4393 if (gdbarch_skip_entrypoint_p (gdbarch))
4394 ecs->stop_func_start
4395 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4396 }
4397
4398 ecs->stop_func_filled_in = 1;
4399 }
4400 }
4401
4402
4403 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4404
4405 static enum stop_kind
4406 get_inferior_stop_soon (execution_control_state *ecs)
4407 {
4408 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4409
4410 gdb_assert (inf != NULL);
4411 return inf->control.stop_soon;
4412 }
4413
4414 /* Poll for one event out of the current target. Store the resulting
4415 waitstatus in WS, and return the event ptid. Does not block. */
4416
4417 static ptid_t
4418 poll_one_curr_target (struct target_waitstatus *ws)
4419 {
4420 ptid_t event_ptid;
4421
4422 overlay_cache_invalid = 1;
4423
4424 /* Flush target cache before starting to handle each event.
4425 Target was running and cache could be stale. This is just a
4426 heuristic. Running threads may modify target memory, but we
4427 don't get any event. */
4428 target_dcache_invalidate ();
4429
4430 if (deprecated_target_wait_hook)
4431 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4432 else
4433 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4434
4435 if (debug_infrun)
4436 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4437
4438 return event_ptid;
4439 }
4440
4441 /* An event reported by wait_one. */
4442
4443 struct wait_one_event
4444 {
4445 /* The target the event came out of. */
4446 process_stratum_target *target;
4447
4448 /* The PTID the event was for. */
4449 ptid_t ptid;
4450
4451 /* The waitstatus. */
4452 target_waitstatus ws;
4453 };
4454
4455 /* Wait for one event out of any target. */
4456
4457 static wait_one_event
4458 wait_one ()
4459 {
4460 while (1)
4461 {
4462 for (inferior *inf : all_inferiors ())
4463 {
4464 process_stratum_target *target = inf->process_target ();
4465 if (target == NULL
4466 || !target->is_async_p ()
4467 || !target->threads_executing)
4468 continue;
4469
4470 switch_to_inferior_no_thread (inf);
4471
4472 wait_one_event event;
4473 event.target = target;
4474 event.ptid = poll_one_curr_target (&event.ws);
4475
4476 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4477 {
4478 /* If nothing is resumed, remove the target from the
4479 event loop. */
4480 target_async (0);
4481 }
4482 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4483 return event;
4484 }
4485
4486 /* Block waiting for some event. */
4487
4488 fd_set readfds;
4489 int nfds = 0;
4490
4491 FD_ZERO (&readfds);
4492
4493 for (inferior *inf : all_inferiors ())
4494 {
4495 process_stratum_target *target = inf->process_target ();
4496 if (target == NULL
4497 || !target->is_async_p ()
4498 || !target->threads_executing)
4499 continue;
4500
4501 int fd = target->async_wait_fd ();
4502 FD_SET (fd, &readfds);
4503 if (nfds <= fd)
4504 nfds = fd + 1;
4505 }
4506
4507 if (nfds == 0)
4508 {
4509 /* No waitable targets left. All must be stopped. */
4510 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4511 }
4512
4513 QUIT;
4514
4515 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4516 if (numfds < 0)
4517 {
4518 if (errno == EINTR)
4519 continue;
4520 else
4521 perror_with_name ("interruptible_select");
4522 }
4523 }
4524 }
4525
4526 /* Save the thread's event and stop reason to process it later. */
4527
4528 static void
4529 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4530 {
4531 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4532 target_waitstatus_to_string (ws).c_str (),
4533 tp->ptid.pid (),
4534 tp->ptid.lwp (),
4535 tp->ptid.tid ());
4536
4537 /* Record for later. */
4538 tp->suspend.waitstatus = *ws;
4539 tp->suspend.waitstatus_pending_p = 1;
4540
4541 struct regcache *regcache = get_thread_regcache (tp);
4542 const address_space *aspace = regcache->aspace ();
4543
4544 if (ws->kind == TARGET_WAITKIND_STOPPED
4545 && ws->value.sig == GDB_SIGNAL_TRAP)
4546 {
4547 CORE_ADDR pc = regcache_read_pc (regcache);
4548
4549 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4550
4551 scoped_restore_current_thread restore_thread;
4552 switch_to_thread (tp);
4553
4554 if (target_stopped_by_watchpoint ())
4555 {
4556 tp->suspend.stop_reason
4557 = TARGET_STOPPED_BY_WATCHPOINT;
4558 }
4559 else if (target_supports_stopped_by_sw_breakpoint ()
4560 && target_stopped_by_sw_breakpoint ())
4561 {
4562 tp->suspend.stop_reason
4563 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4564 }
4565 else if (target_supports_stopped_by_hw_breakpoint ()
4566 && target_stopped_by_hw_breakpoint ())
4567 {
4568 tp->suspend.stop_reason
4569 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4570 }
4571 else if (!target_supports_stopped_by_hw_breakpoint ()
4572 && hardware_breakpoint_inserted_here_p (aspace,
4573 pc))
4574 {
4575 tp->suspend.stop_reason
4576 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4577 }
4578 else if (!target_supports_stopped_by_sw_breakpoint ()
4579 && software_breakpoint_inserted_here_p (aspace,
4580 pc))
4581 {
4582 tp->suspend.stop_reason
4583 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4584 }
4585 else if (!thread_has_single_step_breakpoints_set (tp)
4586 && currently_stepping (tp))
4587 {
4588 tp->suspend.stop_reason
4589 = TARGET_STOPPED_BY_SINGLE_STEP;
4590 }
4591 }
4592 }
4593
4594 /* Mark the non-executing threads accordingly. In all-stop, all
4595 threads of all processes are stopped when we get any event
4596 reported. In non-stop mode, only the event thread stops. */
4597
4598 static void
4599 mark_non_executing_threads (process_stratum_target *target,
4600 ptid_t event_ptid,
4601 struct target_waitstatus ws)
4602 {
4603 ptid_t mark_ptid;
4604
4605 if (!target_is_non_stop_p ())
4606 mark_ptid = minus_one_ptid;
4607 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4608 || ws.kind == TARGET_WAITKIND_EXITED)
4609 {
4610 /* If we're handling a process exit in non-stop mode, even
4611 though threads haven't been deleted yet, one would think
4612 that there is nothing to do, as threads of the dead process
4613 will be soon deleted, and threads of any other process were
4614 left running. However, on some targets, threads survive a
4615 process exit event. E.g., for the "checkpoint" command,
4616 when the current checkpoint/fork exits, linux-fork.c
4617 automatically switches to another fork from within
4618 target_mourn_inferior, by associating the same
4619 inferior/thread to another fork. We haven't mourned yet at
4620 this point, but we must mark any threads left in the
4621 process as not-executing so that finish_thread_state marks
4622 them stopped (in the user's perspective) if/when we present
4623 the stop to the user. */
4624 mark_ptid = ptid_t (event_ptid.pid ());
4625 }
4626 else
4627 mark_ptid = event_ptid;
4628
4629 set_executing (target, mark_ptid, false);
4630
4631 /* Likewise the resumed flag. */
4632 set_resumed (target, mark_ptid, false);
4633 }
4634
4635 /* See infrun.h. */
4636
4637 void
4638 stop_all_threads (void)
4639 {
4640 /* We may need multiple passes to discover all threads. */
4641 int pass;
4642 int iterations = 0;
4643
4644 gdb_assert (exists_non_stop_target ());
4645
4646 infrun_log_debug ("stop_all_threads");
4647
4648 scoped_restore_current_thread restore_thread;
4649
4650 /* Enable thread events of all targets. */
4651 for (auto *target : all_non_exited_process_targets ())
4652 {
4653 switch_to_target_no_thread (target);
4654 target_thread_events (true);
4655 }
4656
4657 SCOPE_EXIT
4658 {
4659 /* Disable thread events of all targets. */
4660 for (auto *target : all_non_exited_process_targets ())
4661 {
4662 switch_to_target_no_thread (target);
4663 target_thread_events (false);
4664 }
4665
4666
4667 infrun_log_debug ("stop_all_threads done");
4668 };
4669
4670 /* Request threads to stop, and then wait for the stops. Because
4671 threads we already know about can spawn more threads while we're
4672 trying to stop them, and we only learn about new threads when we
4673 update the thread list, do this in a loop, and keep iterating
4674 until two passes find no threads that need to be stopped. */
4675 for (pass = 0; pass < 2; pass++, iterations++)
4676 {
4677 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4678 pass, iterations);
4679 while (1)
4680 {
4681 int waits_needed = 0;
4682
4683 for (auto *target : all_non_exited_process_targets ())
4684 {
4685 switch_to_target_no_thread (target);
4686 update_thread_list ();
4687 }
4688
4689 /* Go through all threads looking for threads that we need
4690 to tell the target to stop. */
4691 for (thread_info *t : all_non_exited_threads ())
4692 {
4693 /* For a single-target setting with an all-stop target,
4694 we would not even arrive here. For a multi-target
4695 setting, until GDB is able to handle a mixture of
4696 all-stop and non-stop targets, simply skip all-stop
4697 targets' threads. This should be fine due to the
4698 protection of 'check_multi_target_resumption'. */
4699
4700 switch_to_thread_no_regs (t);
4701 if (!target_is_non_stop_p ())
4702 continue;
4703
4704 if (t->executing)
4705 {
4706 /* If already stopping, don't request a stop again.
4707 We just haven't seen the notification yet. */
4708 if (!t->stop_requested)
4709 {
4710 infrun_log_debug (" %s executing, need stop",
4711 target_pid_to_str (t->ptid).c_str ());
4712 target_stop (t->ptid);
4713 t->stop_requested = 1;
4714 }
4715 else
4716 {
4717 infrun_log_debug (" %s executing, already stopping",
4718 target_pid_to_str (t->ptid).c_str ());
4719 }
4720
4721 if (t->stop_requested)
4722 waits_needed++;
4723 }
4724 else
4725 {
4726 infrun_log_debug (" %s not executing",
4727 target_pid_to_str (t->ptid).c_str ());
4728
4729 /* The thread may be not executing, but still be
4730 resumed with a pending status to process. */
4731 t->resumed = false;
4732 }
4733 }
4734
4735 if (waits_needed == 0)
4736 break;
4737
4738 /* If we find new threads on the second iteration, restart
4739 over. We want to see two iterations in a row with all
4740 threads stopped. */
4741 if (pass > 0)
4742 pass = -1;
4743
4744 for (int i = 0; i < waits_needed; i++)
4745 {
4746 wait_one_event event = wait_one ();
4747
4748 infrun_log_debug ("%s %s\n",
4749 target_waitstatus_to_string (&event.ws).c_str (),
4750 target_pid_to_str (event.ptid).c_str ());
4751
4752 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4753 {
4754 /* All resumed threads exited. */
4755 break;
4756 }
4757 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4758 || event.ws.kind == TARGET_WAITKIND_EXITED
4759 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4760 {
4761 /* One thread/process exited/signalled. */
4762
4763 thread_info *t = nullptr;
4764
4765 /* The target may have reported just a pid. If so, try
4766 the first non-exited thread. */
4767 if (event.ptid.is_pid ())
4768 {
4769 int pid = event.ptid.pid ();
4770 inferior *inf = find_inferior_pid (event.target, pid);
4771 for (thread_info *tp : inf->non_exited_threads ())
4772 {
4773 t = tp;
4774 break;
4775 }
4776
4777 /* If there is no available thread, the event would
4778 have to be appended to a per-inferior event list,
4779 which does not exist (and if it did, we'd have
4780 to adjust run control command to be able to
4781 resume such an inferior). We assert here instead
4782 of going into an infinite loop. */
4783 gdb_assert (t != nullptr);
4784
4785 infrun_log_debug ("using %s\n",
4786 target_pid_to_str (t->ptid).c_str ());
4787 }
4788 else
4789 {
4790 t = find_thread_ptid (event.target, event.ptid);
4791 /* Check if this is the first time we see this thread.
4792 Don't bother adding if it individually exited. */
4793 if (t == nullptr
4794 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4795 t = add_thread (event.target, event.ptid);
4796 }
4797
4798 if (t != nullptr)
4799 {
4800 /* Set the threads as non-executing to avoid
4801 another stop attempt on them. */
4802 switch_to_thread_no_regs (t);
4803 mark_non_executing_threads (event.target, event.ptid,
4804 event.ws);
4805 save_waitstatus (t, &event.ws);
4806 t->stop_requested = false;
4807 }
4808 }
4809 else
4810 {
4811 thread_info *t = find_thread_ptid (event.target, event.ptid);
4812 if (t == NULL)
4813 t = add_thread (event.target, event.ptid);
4814
4815 t->stop_requested = 0;
4816 t->executing = 0;
4817 t->resumed = false;
4818 t->control.may_range_step = 0;
4819
4820 /* This may be the first time we see the inferior report
4821 a stop. */
4822 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4823 if (inf->needs_setup)
4824 {
4825 switch_to_thread_no_regs (t);
4826 setup_inferior (0);
4827 }
4828
4829 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4830 && event.ws.value.sig == GDB_SIGNAL_0)
4831 {
4832 /* We caught the event that we intended to catch, so
4833 there's no event pending. */
4834 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4835 t->suspend.waitstatus_pending_p = 0;
4836
4837 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4838 {
4839 /* Add it back to the step-over queue. */
4840 infrun_log_debug ("displaced-step of %s "
4841 "canceled: adding back to the "
4842 "step-over queue\n",
4843 target_pid_to_str (t->ptid).c_str ());
4844
4845 t->control.trap_expected = 0;
4846 thread_step_over_chain_enqueue (t);
4847 }
4848 }
4849 else
4850 {
4851 enum gdb_signal sig;
4852 struct regcache *regcache;
4853
4854 if (debug_infrun)
4855 {
4856 std::string statstr = target_waitstatus_to_string (&event.ws);
4857
4858 infrun_log_debug ("target_wait %s, saving "
4859 "status for %d.%ld.%ld\n",
4860 statstr.c_str (),
4861 t->ptid.pid (),
4862 t->ptid.lwp (),
4863 t->ptid.tid ());
4864 }
4865
4866 /* Record for later. */
4867 save_waitstatus (t, &event.ws);
4868
4869 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4870 ? event.ws.value.sig : GDB_SIGNAL_0);
4871
4872 if (displaced_step_fixup (t, sig) < 0)
4873 {
4874 /* Add it back to the step-over queue. */
4875 t->control.trap_expected = 0;
4876 thread_step_over_chain_enqueue (t);
4877 }
4878
4879 regcache = get_thread_regcache (t);
4880 t->suspend.stop_pc = regcache_read_pc (regcache);
4881
4882 infrun_log_debug ("saved stop_pc=%s for %s "
4883 "(currently_stepping=%d)\n",
4884 paddress (target_gdbarch (),
4885 t->suspend.stop_pc),
4886 target_pid_to_str (t->ptid).c_str (),
4887 currently_stepping (t));
4888 }
4889 }
4890 }
4891 }
4892 }
4893 }
4894
4895 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4896
4897 static int
4898 handle_no_resumed (struct execution_control_state *ecs)
4899 {
4900 if (target_can_async_p ())
4901 {
4902 int any_sync = 0;
4903
4904 for (ui *ui : all_uis ())
4905 {
4906 if (ui->prompt_state == PROMPT_BLOCKED)
4907 {
4908 any_sync = 1;
4909 break;
4910 }
4911 }
4912 if (!any_sync)
4913 {
4914 /* There were no unwaited-for children left in the target, but,
4915 we're not synchronously waiting for events either. Just
4916 ignore. */
4917
4918 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4919 prepare_to_wait (ecs);
4920 return 1;
4921 }
4922 }
4923
4924 /* Otherwise, if we were running a synchronous execution command, we
4925 may need to cancel it and give the user back the terminal.
4926
4927 In non-stop mode, the target can't tell whether we've already
4928 consumed previous stop events, so it can end up sending us a
4929 no-resumed event like so:
4930
4931 #0 - thread 1 is left stopped
4932
4933 #1 - thread 2 is resumed and hits breakpoint
4934 -> TARGET_WAITKIND_STOPPED
4935
4936 #2 - thread 3 is resumed and exits
4937 this is the last resumed thread, so
4938 -> TARGET_WAITKIND_NO_RESUMED
4939
4940 #3 - gdb processes stop for thread 2 and decides to re-resume
4941 it.
4942
4943 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4944 thread 2 is now resumed, so the event should be ignored.
4945
4946 IOW, if the stop for thread 2 doesn't end a foreground command,
4947 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4948 event. But it could be that the event meant that thread 2 itself
4949 (or whatever other thread was the last resumed thread) exited.
4950
4951 To address this we refresh the thread list and check whether we
4952 have resumed threads _now_. In the example above, this removes
4953 thread 3 from the thread list. If thread 2 was re-resumed, we
4954 ignore this event. If we find no thread resumed, then we cancel
4955 the synchronous command and show "no unwaited-for " to the
4956 user. */
4957
4958 inferior *curr_inf = current_inferior ();
4959
4960 scoped_restore_current_thread restore_thread;
4961
4962 for (auto *target : all_non_exited_process_targets ())
4963 {
4964 switch_to_target_no_thread (target);
4965 update_thread_list ();
4966 }
4967
4968 /* If:
4969
4970 - the current target has no thread executing, and
4971 - the current inferior is native, and
4972 - the current inferior is the one which has the terminal, and
4973 - we did nothing,
4974
4975 then a Ctrl-C from this point on would remain stuck in the
4976 kernel, until a thread resumes and dequeues it. That would
4977 result in the GDB CLI not reacting to Ctrl-C, not able to
4978 interrupt the program. To address this, if the current inferior
4979 no longer has any thread executing, we give the terminal to some
4980 other inferior that has at least one thread executing. */
4981 bool swap_terminal = true;
4982
4983 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4984 whether to report it to the user. */
4985 bool ignore_event = false;
4986
4987 for (thread_info *thread : all_non_exited_threads ())
4988 {
4989 if (swap_terminal && thread->executing)
4990 {
4991 if (thread->inf != curr_inf)
4992 {
4993 target_terminal::ours ();
4994
4995 switch_to_thread (thread);
4996 target_terminal::inferior ();
4997 }
4998 swap_terminal = false;
4999 }
5000
5001 if (!ignore_event
5002 && (thread->executing
5003 || thread->suspend.waitstatus_pending_p))
5004 {
5005 /* Either there were no unwaited-for children left in the
5006 target at some point, but there are now, or some target
5007 other than the eventing one has unwaited-for children
5008 left. Just ignore. */
5009 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5010 "(ignoring: found resumed)\n");
5011
5012 ignore_event = true;
5013 }
5014
5015 if (ignore_event && !swap_terminal)
5016 break;
5017 }
5018
5019 if (ignore_event)
5020 {
5021 switch_to_inferior_no_thread (curr_inf);
5022 prepare_to_wait (ecs);
5023 return 1;
5024 }
5025
5026 /* Go ahead and report the event. */
5027 return 0;
5028 }
5029
5030 /* Given an execution control state that has been freshly filled in by
5031 an event from the inferior, figure out what it means and take
5032 appropriate action.
5033
5034 The alternatives are:
5035
5036 1) stop_waiting and return; to really stop and return to the
5037 debugger.
5038
5039 2) keep_going and return; to wait for the next event (set
5040 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5041 once). */
5042
5043 static void
5044 handle_inferior_event (struct execution_control_state *ecs)
5045 {
5046 /* Make sure that all temporary struct value objects that were
5047 created during the handling of the event get deleted at the
5048 end. */
5049 scoped_value_mark free_values;
5050
5051 enum stop_kind stop_soon;
5052
5053 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5054
5055 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5056 {
5057 /* We had an event in the inferior, but we are not interested in
5058 handling it at this level. The lower layers have already
5059 done what needs to be done, if anything.
5060
5061 One of the possible circumstances for this is when the
5062 inferior produces output for the console. The inferior has
5063 not stopped, and we are ignoring the event. Another possible
5064 circumstance is any event which the lower level knows will be
5065 reported multiple times without an intervening resume. */
5066 prepare_to_wait (ecs);
5067 return;
5068 }
5069
5070 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5071 {
5072 prepare_to_wait (ecs);
5073 return;
5074 }
5075
5076 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5077 && handle_no_resumed (ecs))
5078 return;
5079
5080 /* Cache the last target/ptid/waitstatus. */
5081 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5082
5083 /* Always clear state belonging to the previous time we stopped. */
5084 stop_stack_dummy = STOP_NONE;
5085
5086 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5087 {
5088 /* No unwaited-for children left. IOW, all resumed children
5089 have exited. */
5090 stop_print_frame = 0;
5091 stop_waiting (ecs);
5092 return;
5093 }
5094
5095 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5096 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5097 {
5098 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5099 /* If it's a new thread, add it to the thread database. */
5100 if (ecs->event_thread == NULL)
5101 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5102
5103 /* Disable range stepping. If the next step request could use a
5104 range, this will be end up re-enabled then. */
5105 ecs->event_thread->control.may_range_step = 0;
5106 }
5107
5108 /* Dependent on valid ECS->EVENT_THREAD. */
5109 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5110
5111 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5112 reinit_frame_cache ();
5113
5114 breakpoint_retire_moribund ();
5115
5116 /* First, distinguish signals caused by the debugger from signals
5117 that have to do with the program's own actions. Note that
5118 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5119 on the operating system version. Here we detect when a SIGILL or
5120 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5121 something similar for SIGSEGV, since a SIGSEGV will be generated
5122 when we're trying to execute a breakpoint instruction on a
5123 non-executable stack. This happens for call dummy breakpoints
5124 for architectures like SPARC that place call dummies on the
5125 stack. */
5126 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5127 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5128 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5129 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5130 {
5131 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5132
5133 if (breakpoint_inserted_here_p (regcache->aspace (),
5134 regcache_read_pc (regcache)))
5135 {
5136 infrun_log_debug ("Treating signal as SIGTRAP");
5137 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5138 }
5139 }
5140
5141 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5142
5143 switch (ecs->ws.kind)
5144 {
5145 case TARGET_WAITKIND_LOADED:
5146 context_switch (ecs);
5147 /* Ignore gracefully during startup of the inferior, as it might
5148 be the shell which has just loaded some objects, otherwise
5149 add the symbols for the newly loaded objects. Also ignore at
5150 the beginning of an attach or remote session; we will query
5151 the full list of libraries once the connection is
5152 established. */
5153
5154 stop_soon = get_inferior_stop_soon (ecs);
5155 if (stop_soon == NO_STOP_QUIETLY)
5156 {
5157 struct regcache *regcache;
5158
5159 regcache = get_thread_regcache (ecs->event_thread);
5160
5161 handle_solib_event ();
5162
5163 ecs->event_thread->control.stop_bpstat
5164 = bpstat_stop_status (regcache->aspace (),
5165 ecs->event_thread->suspend.stop_pc,
5166 ecs->event_thread, &ecs->ws);
5167
5168 if (handle_stop_requested (ecs))
5169 return;
5170
5171 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5172 {
5173 /* A catchpoint triggered. */
5174 process_event_stop_test (ecs);
5175 return;
5176 }
5177
5178 /* If requested, stop when the dynamic linker notifies
5179 gdb of events. This allows the user to get control
5180 and place breakpoints in initializer routines for
5181 dynamically loaded objects (among other things). */
5182 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5183 if (stop_on_solib_events)
5184 {
5185 /* Make sure we print "Stopped due to solib-event" in
5186 normal_stop. */
5187 stop_print_frame = 1;
5188
5189 stop_waiting (ecs);
5190 return;
5191 }
5192 }
5193
5194 /* If we are skipping through a shell, or through shared library
5195 loading that we aren't interested in, resume the program. If
5196 we're running the program normally, also resume. */
5197 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5198 {
5199 /* Loading of shared libraries might have changed breakpoint
5200 addresses. Make sure new breakpoints are inserted. */
5201 if (stop_soon == NO_STOP_QUIETLY)
5202 insert_breakpoints ();
5203 resume (GDB_SIGNAL_0);
5204 prepare_to_wait (ecs);
5205 return;
5206 }
5207
5208 /* But stop if we're attaching or setting up a remote
5209 connection. */
5210 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5211 || stop_soon == STOP_QUIETLY_REMOTE)
5212 {
5213 infrun_log_debug ("quietly stopped");
5214 stop_waiting (ecs);
5215 return;
5216 }
5217
5218 internal_error (__FILE__, __LINE__,
5219 _("unhandled stop_soon: %d"), (int) stop_soon);
5220
5221 case TARGET_WAITKIND_SPURIOUS:
5222 if (handle_stop_requested (ecs))
5223 return;
5224 context_switch (ecs);
5225 resume (GDB_SIGNAL_0);
5226 prepare_to_wait (ecs);
5227 return;
5228
5229 case TARGET_WAITKIND_THREAD_CREATED:
5230 if (handle_stop_requested (ecs))
5231 return;
5232 context_switch (ecs);
5233 if (!switch_back_to_stepped_thread (ecs))
5234 keep_going (ecs);
5235 return;
5236
5237 case TARGET_WAITKIND_EXITED:
5238 case TARGET_WAITKIND_SIGNALLED:
5239 {
5240 /* Depending on the system, ecs->ptid may point to a thread or
5241 to a process. On some targets, target_mourn_inferior may
5242 need to have access to the just-exited thread. That is the
5243 case of GNU/Linux's "checkpoint" support, for example.
5244 Call the switch_to_xxx routine as appropriate. */
5245 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5246 if (thr != nullptr)
5247 switch_to_thread (thr);
5248 else
5249 {
5250 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5251 switch_to_inferior_no_thread (inf);
5252 }
5253 }
5254 handle_vfork_child_exec_or_exit (0);
5255 target_terminal::ours (); /* Must do this before mourn anyway. */
5256
5257 /* Clearing any previous state of convenience variables. */
5258 clear_exit_convenience_vars ();
5259
5260 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5261 {
5262 /* Record the exit code in the convenience variable $_exitcode, so
5263 that the user can inspect this again later. */
5264 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5265 (LONGEST) ecs->ws.value.integer);
5266
5267 /* Also record this in the inferior itself. */
5268 current_inferior ()->has_exit_code = 1;
5269 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5270
5271 /* Support the --return-child-result option. */
5272 return_child_result_value = ecs->ws.value.integer;
5273
5274 gdb::observers::exited.notify (ecs->ws.value.integer);
5275 }
5276 else
5277 {
5278 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5279
5280 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5281 {
5282 /* Set the value of the internal variable $_exitsignal,
5283 which holds the signal uncaught by the inferior. */
5284 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5285 gdbarch_gdb_signal_to_target (gdbarch,
5286 ecs->ws.value.sig));
5287 }
5288 else
5289 {
5290 /* We don't have access to the target's method used for
5291 converting between signal numbers (GDB's internal
5292 representation <-> target's representation).
5293 Therefore, we cannot do a good job at displaying this
5294 information to the user. It's better to just warn
5295 her about it (if infrun debugging is enabled), and
5296 give up. */
5297 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5298 "signal number.");
5299 }
5300
5301 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5302 }
5303
5304 gdb_flush (gdb_stdout);
5305 target_mourn_inferior (inferior_ptid);
5306 stop_print_frame = 0;
5307 stop_waiting (ecs);
5308 return;
5309
5310 case TARGET_WAITKIND_FORKED:
5311 case TARGET_WAITKIND_VFORKED:
5312 /* Check whether the inferior is displaced stepping. */
5313 {
5314 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5315 struct gdbarch *gdbarch = regcache->arch ();
5316
5317 /* If checking displaced stepping is supported, and thread
5318 ecs->ptid is displaced stepping. */
5319 if (displaced_step_in_progress_thread (ecs->event_thread))
5320 {
5321 struct inferior *parent_inf
5322 = find_inferior_ptid (ecs->target, ecs->ptid);
5323 struct regcache *child_regcache;
5324 CORE_ADDR parent_pc;
5325
5326 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5327 {
5328 struct displaced_step_inferior_state *displaced
5329 = get_displaced_stepping_state (parent_inf);
5330
5331 /* Restore scratch pad for child process. */
5332 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5333 }
5334
5335 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5336 indicating that the displaced stepping of syscall instruction
5337 has been done. Perform cleanup for parent process here. Note
5338 that this operation also cleans up the child process for vfork,
5339 because their pages are shared. */
5340 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5341 /* Start a new step-over in another thread if there's one
5342 that needs it. */
5343 start_step_over ();
5344
5345 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5346 the child's PC is also within the scratchpad. Set the child's PC
5347 to the parent's PC value, which has already been fixed up.
5348 FIXME: we use the parent's aspace here, although we're touching
5349 the child, because the child hasn't been added to the inferior
5350 list yet at this point. */
5351
5352 child_regcache
5353 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5354 ecs->ws.value.related_pid,
5355 gdbarch,
5356 parent_inf->aspace);
5357 /* Read PC value of parent process. */
5358 parent_pc = regcache_read_pc (regcache);
5359
5360 if (debug_displaced)
5361 fprintf_unfiltered (gdb_stdlog,
5362 "displaced: write child pc from %s to %s\n",
5363 paddress (gdbarch,
5364 regcache_read_pc (child_regcache)),
5365 paddress (gdbarch, parent_pc));
5366
5367 regcache_write_pc (child_regcache, parent_pc);
5368 }
5369 }
5370
5371 context_switch (ecs);
5372
5373 /* Immediately detach breakpoints from the child before there's
5374 any chance of letting the user delete breakpoints from the
5375 breakpoint lists. If we don't do this early, it's easy to
5376 leave left over traps in the child, vis: "break foo; catch
5377 fork; c; <fork>; del; c; <child calls foo>". We only follow
5378 the fork on the last `continue', and by that time the
5379 breakpoint at "foo" is long gone from the breakpoint table.
5380 If we vforked, then we don't need to unpatch here, since both
5381 parent and child are sharing the same memory pages; we'll
5382 need to unpatch at follow/detach time instead to be certain
5383 that new breakpoints added between catchpoint hit time and
5384 vfork follow are detached. */
5385 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5386 {
5387 /* This won't actually modify the breakpoint list, but will
5388 physically remove the breakpoints from the child. */
5389 detach_breakpoints (ecs->ws.value.related_pid);
5390 }
5391
5392 delete_just_stopped_threads_single_step_breakpoints ();
5393
5394 /* In case the event is caught by a catchpoint, remember that
5395 the event is to be followed at the next resume of the thread,
5396 and not immediately. */
5397 ecs->event_thread->pending_follow = ecs->ws;
5398
5399 ecs->event_thread->suspend.stop_pc
5400 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5401
5402 ecs->event_thread->control.stop_bpstat
5403 = bpstat_stop_status (get_current_regcache ()->aspace (),
5404 ecs->event_thread->suspend.stop_pc,
5405 ecs->event_thread, &ecs->ws);
5406
5407 if (handle_stop_requested (ecs))
5408 return;
5409
5410 /* If no catchpoint triggered for this, then keep going. Note
5411 that we're interested in knowing the bpstat actually causes a
5412 stop, not just if it may explain the signal. Software
5413 watchpoints, for example, always appear in the bpstat. */
5414 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5415 {
5416 bool follow_child
5417 = (follow_fork_mode_string == follow_fork_mode_child);
5418
5419 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5420
5421 process_stratum_target *targ
5422 = ecs->event_thread->inf->process_target ();
5423
5424 bool should_resume = follow_fork ();
5425
5426 /* Note that one of these may be an invalid pointer,
5427 depending on detach_fork. */
5428 thread_info *parent = ecs->event_thread;
5429 thread_info *child
5430 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5431
5432 /* At this point, the parent is marked running, and the
5433 child is marked stopped. */
5434
5435 /* If not resuming the parent, mark it stopped. */
5436 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5437 parent->set_running (false);
5438
5439 /* If resuming the child, mark it running. */
5440 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5441 child->set_running (true);
5442
5443 /* In non-stop mode, also resume the other branch. */
5444 if (!detach_fork && (non_stop
5445 || (sched_multi && target_is_non_stop_p ())))
5446 {
5447 if (follow_child)
5448 switch_to_thread (parent);
5449 else
5450 switch_to_thread (child);
5451
5452 ecs->event_thread = inferior_thread ();
5453 ecs->ptid = inferior_ptid;
5454 keep_going (ecs);
5455 }
5456
5457 if (follow_child)
5458 switch_to_thread (child);
5459 else
5460 switch_to_thread (parent);
5461
5462 ecs->event_thread = inferior_thread ();
5463 ecs->ptid = inferior_ptid;
5464
5465 if (should_resume)
5466 keep_going (ecs);
5467 else
5468 stop_waiting (ecs);
5469 return;
5470 }
5471 process_event_stop_test (ecs);
5472 return;
5473
5474 case TARGET_WAITKIND_VFORK_DONE:
5475 /* Done with the shared memory region. Re-insert breakpoints in
5476 the parent, and keep going. */
5477
5478 context_switch (ecs);
5479
5480 current_inferior ()->waiting_for_vfork_done = 0;
5481 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5482
5483 if (handle_stop_requested (ecs))
5484 return;
5485
5486 /* This also takes care of reinserting breakpoints in the
5487 previously locked inferior. */
5488 keep_going (ecs);
5489 return;
5490
5491 case TARGET_WAITKIND_EXECD:
5492
5493 /* Note we can't read registers yet (the stop_pc), because we
5494 don't yet know the inferior's post-exec architecture.
5495 'stop_pc' is explicitly read below instead. */
5496 switch_to_thread_no_regs (ecs->event_thread);
5497
5498 /* Do whatever is necessary to the parent branch of the vfork. */
5499 handle_vfork_child_exec_or_exit (1);
5500
5501 /* This causes the eventpoints and symbol table to be reset.
5502 Must do this now, before trying to determine whether to
5503 stop. */
5504 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5505
5506 /* In follow_exec we may have deleted the original thread and
5507 created a new one. Make sure that the event thread is the
5508 execd thread for that case (this is a nop otherwise). */
5509 ecs->event_thread = inferior_thread ();
5510
5511 ecs->event_thread->suspend.stop_pc
5512 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5513
5514 ecs->event_thread->control.stop_bpstat
5515 = bpstat_stop_status (get_current_regcache ()->aspace (),
5516 ecs->event_thread->suspend.stop_pc,
5517 ecs->event_thread, &ecs->ws);
5518
5519 /* Note that this may be referenced from inside
5520 bpstat_stop_status above, through inferior_has_execd. */
5521 xfree (ecs->ws.value.execd_pathname);
5522 ecs->ws.value.execd_pathname = NULL;
5523
5524 if (handle_stop_requested (ecs))
5525 return;
5526
5527 /* If no catchpoint triggered for this, then keep going. */
5528 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5529 {
5530 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5531 keep_going (ecs);
5532 return;
5533 }
5534 process_event_stop_test (ecs);
5535 return;
5536
5537 /* Be careful not to try to gather much state about a thread
5538 that's in a syscall. It's frequently a losing proposition. */
5539 case TARGET_WAITKIND_SYSCALL_ENTRY:
5540 /* Getting the current syscall number. */
5541 if (handle_syscall_event (ecs) == 0)
5542 process_event_stop_test (ecs);
5543 return;
5544
5545 /* Before examining the threads further, step this thread to
5546 get it entirely out of the syscall. (We get notice of the
5547 event when the thread is just on the verge of exiting a
5548 syscall. Stepping one instruction seems to get it back
5549 into user code.) */
5550 case TARGET_WAITKIND_SYSCALL_RETURN:
5551 if (handle_syscall_event (ecs) == 0)
5552 process_event_stop_test (ecs);
5553 return;
5554
5555 case TARGET_WAITKIND_STOPPED:
5556 handle_signal_stop (ecs);
5557 return;
5558
5559 case TARGET_WAITKIND_NO_HISTORY:
5560 /* Reverse execution: target ran out of history info. */
5561
5562 /* Switch to the stopped thread. */
5563 context_switch (ecs);
5564 infrun_log_debug ("stopped");
5565
5566 delete_just_stopped_threads_single_step_breakpoints ();
5567 ecs->event_thread->suspend.stop_pc
5568 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5569
5570 if (handle_stop_requested (ecs))
5571 return;
5572
5573 gdb::observers::no_history.notify ();
5574 stop_waiting (ecs);
5575 return;
5576 }
5577 }
5578
5579 /* Restart threads back to what they were trying to do back when we
5580 paused them for an in-line step-over. The EVENT_THREAD thread is
5581 ignored. */
5582
5583 static void
5584 restart_threads (struct thread_info *event_thread)
5585 {
5586 /* In case the instruction just stepped spawned a new thread. */
5587 update_thread_list ();
5588
5589 for (thread_info *tp : all_non_exited_threads ())
5590 {
5591 switch_to_thread_no_regs (tp);
5592
5593 if (tp == event_thread)
5594 {
5595 infrun_log_debug ("restart threads: [%s] is event thread",
5596 target_pid_to_str (tp->ptid).c_str ());
5597 continue;
5598 }
5599
5600 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5601 {
5602 infrun_log_debug ("restart threads: [%s] not meant to be running",
5603 target_pid_to_str (tp->ptid).c_str ());
5604 continue;
5605 }
5606
5607 if (tp->resumed)
5608 {
5609 infrun_log_debug ("restart threads: [%s] resumed",
5610 target_pid_to_str (tp->ptid).c_str ());
5611 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5612 continue;
5613 }
5614
5615 if (thread_is_in_step_over_chain (tp))
5616 {
5617 infrun_log_debug ("restart threads: [%s] needs step-over",
5618 target_pid_to_str (tp->ptid).c_str ());
5619 gdb_assert (!tp->resumed);
5620 continue;
5621 }
5622
5623
5624 if (tp->suspend.waitstatus_pending_p)
5625 {
5626 infrun_log_debug ("restart threads: [%s] has pending status",
5627 target_pid_to_str (tp->ptid).c_str ());
5628 tp->resumed = true;
5629 continue;
5630 }
5631
5632 gdb_assert (!tp->stop_requested);
5633
5634 /* If some thread needs to start a step-over at this point, it
5635 should still be in the step-over queue, and thus skipped
5636 above. */
5637 if (thread_still_needs_step_over (tp))
5638 {
5639 internal_error (__FILE__, __LINE__,
5640 "thread [%s] needs a step-over, but not in "
5641 "step-over queue\n",
5642 target_pid_to_str (tp->ptid).c_str ());
5643 }
5644
5645 if (currently_stepping (tp))
5646 {
5647 infrun_log_debug ("restart threads: [%s] was stepping",
5648 target_pid_to_str (tp->ptid).c_str ());
5649 keep_going_stepped_thread (tp);
5650 }
5651 else
5652 {
5653 struct execution_control_state ecss;
5654 struct execution_control_state *ecs = &ecss;
5655
5656 infrun_log_debug ("restart threads: [%s] continuing",
5657 target_pid_to_str (tp->ptid).c_str ());
5658 reset_ecs (ecs, tp);
5659 switch_to_thread (tp);
5660 keep_going_pass_signal (ecs);
5661 }
5662 }
5663 }
5664
5665 /* Callback for iterate_over_threads. Find a resumed thread that has
5666 a pending waitstatus. */
5667
5668 static int
5669 resumed_thread_with_pending_status (struct thread_info *tp,
5670 void *arg)
5671 {
5672 return (tp->resumed
5673 && tp->suspend.waitstatus_pending_p);
5674 }
5675
5676 /* Called when we get an event that may finish an in-line or
5677 out-of-line (displaced stepping) step-over started previously.
5678 Return true if the event is processed and we should go back to the
5679 event loop; false if the caller should continue processing the
5680 event. */
5681
5682 static int
5683 finish_step_over (struct execution_control_state *ecs)
5684 {
5685 int had_step_over_info;
5686
5687 displaced_step_fixup (ecs->event_thread,
5688 ecs->event_thread->suspend.stop_signal);
5689
5690 had_step_over_info = step_over_info_valid_p ();
5691
5692 if (had_step_over_info)
5693 {
5694 /* If we're stepping over a breakpoint with all threads locked,
5695 then only the thread that was stepped should be reporting
5696 back an event. */
5697 gdb_assert (ecs->event_thread->control.trap_expected);
5698
5699 clear_step_over_info ();
5700 }
5701
5702 if (!target_is_non_stop_p ())
5703 return 0;
5704
5705 /* Start a new step-over in another thread if there's one that
5706 needs it. */
5707 start_step_over ();
5708
5709 /* If we were stepping over a breakpoint before, and haven't started
5710 a new in-line step-over sequence, then restart all other threads
5711 (except the event thread). We can't do this in all-stop, as then
5712 e.g., we wouldn't be able to issue any other remote packet until
5713 these other threads stop. */
5714 if (had_step_over_info && !step_over_info_valid_p ())
5715 {
5716 struct thread_info *pending;
5717
5718 /* If we only have threads with pending statuses, the restart
5719 below won't restart any thread and so nothing re-inserts the
5720 breakpoint we just stepped over. But we need it inserted
5721 when we later process the pending events, otherwise if
5722 another thread has a pending event for this breakpoint too,
5723 we'd discard its event (because the breakpoint that
5724 originally caused the event was no longer inserted). */
5725 context_switch (ecs);
5726 insert_breakpoints ();
5727
5728 restart_threads (ecs->event_thread);
5729
5730 /* If we have events pending, go through handle_inferior_event
5731 again, picking up a pending event at random. This avoids
5732 thread starvation. */
5733
5734 /* But not if we just stepped over a watchpoint in order to let
5735 the instruction execute so we can evaluate its expression.
5736 The set of watchpoints that triggered is recorded in the
5737 breakpoint objects themselves (see bp->watchpoint_triggered).
5738 If we processed another event first, that other event could
5739 clobber this info. */
5740 if (ecs->event_thread->stepping_over_watchpoint)
5741 return 0;
5742
5743 pending = iterate_over_threads (resumed_thread_with_pending_status,
5744 NULL);
5745 if (pending != NULL)
5746 {
5747 struct thread_info *tp = ecs->event_thread;
5748 struct regcache *regcache;
5749
5750 infrun_log_debug ("found resumed threads with "
5751 "pending events, saving status");
5752
5753 gdb_assert (pending != tp);
5754
5755 /* Record the event thread's event for later. */
5756 save_waitstatus (tp, &ecs->ws);
5757 /* This was cleared early, by handle_inferior_event. Set it
5758 so this pending event is considered by
5759 do_target_wait. */
5760 tp->resumed = true;
5761
5762 gdb_assert (!tp->executing);
5763
5764 regcache = get_thread_regcache (tp);
5765 tp->suspend.stop_pc = regcache_read_pc (regcache);
5766
5767 infrun_log_debug ("saved stop_pc=%s for %s "
5768 "(currently_stepping=%d)\n",
5769 paddress (target_gdbarch (),
5770 tp->suspend.stop_pc),
5771 target_pid_to_str (tp->ptid).c_str (),
5772 currently_stepping (tp));
5773
5774 /* This in-line step-over finished; clear this so we won't
5775 start a new one. This is what handle_signal_stop would
5776 do, if we returned false. */
5777 tp->stepping_over_breakpoint = 0;
5778
5779 /* Wake up the event loop again. */
5780 mark_async_event_handler (infrun_async_inferior_event_token);
5781
5782 prepare_to_wait (ecs);
5783 return 1;
5784 }
5785 }
5786
5787 return 0;
5788 }
5789
5790 /* Come here when the program has stopped with a signal. */
5791
5792 static void
5793 handle_signal_stop (struct execution_control_state *ecs)
5794 {
5795 struct frame_info *frame;
5796 struct gdbarch *gdbarch;
5797 int stopped_by_watchpoint;
5798 enum stop_kind stop_soon;
5799 int random_signal;
5800
5801 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5802
5803 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5804
5805 /* Do we need to clean up the state of a thread that has
5806 completed a displaced single-step? (Doing so usually affects
5807 the PC, so do it here, before we set stop_pc.) */
5808 if (finish_step_over (ecs))
5809 return;
5810
5811 /* If we either finished a single-step or hit a breakpoint, but
5812 the user wanted this thread to be stopped, pretend we got a
5813 SIG0 (generic unsignaled stop). */
5814 if (ecs->event_thread->stop_requested
5815 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5816 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5817
5818 ecs->event_thread->suspend.stop_pc
5819 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5820
5821 if (debug_infrun)
5822 {
5823 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5824 struct gdbarch *reg_gdbarch = regcache->arch ();
5825
5826 switch_to_thread (ecs->event_thread);
5827
5828 infrun_log_debug ("stop_pc=%s",
5829 paddress (reg_gdbarch,
5830 ecs->event_thread->suspend.stop_pc));
5831 if (target_stopped_by_watchpoint ())
5832 {
5833 CORE_ADDR addr;
5834
5835 infrun_log_debug ("stopped by watchpoint");
5836
5837 if (target_stopped_data_address (current_top_target (), &addr))
5838 infrun_log_debug ("stopped data address=%s",
5839 paddress (reg_gdbarch, addr));
5840 else
5841 infrun_log_debug ("(no data address available)");
5842 }
5843 }
5844
5845 /* This is originated from start_remote(), start_inferior() and
5846 shared libraries hook functions. */
5847 stop_soon = get_inferior_stop_soon (ecs);
5848 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5849 {
5850 context_switch (ecs);
5851 infrun_log_debug ("quietly stopped");
5852 stop_print_frame = 1;
5853 stop_waiting (ecs);
5854 return;
5855 }
5856
5857 /* This originates from attach_command(). We need to overwrite
5858 the stop_signal here, because some kernels don't ignore a
5859 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5860 See more comments in inferior.h. On the other hand, if we
5861 get a non-SIGSTOP, report it to the user - assume the backend
5862 will handle the SIGSTOP if it should show up later.
5863
5864 Also consider that the attach is complete when we see a
5865 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5866 target extended-remote report it instead of a SIGSTOP
5867 (e.g. gdbserver). We already rely on SIGTRAP being our
5868 signal, so this is no exception.
5869
5870 Also consider that the attach is complete when we see a
5871 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5872 the target to stop all threads of the inferior, in case the
5873 low level attach operation doesn't stop them implicitly. If
5874 they weren't stopped implicitly, then the stub will report a
5875 GDB_SIGNAL_0, meaning: stopped for no particular reason
5876 other than GDB's request. */
5877 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5878 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5879 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5880 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5881 {
5882 stop_print_frame = 1;
5883 stop_waiting (ecs);
5884 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5885 return;
5886 }
5887
5888 /* See if something interesting happened to the non-current thread. If
5889 so, then switch to that thread. */
5890 if (ecs->ptid != inferior_ptid)
5891 {
5892 infrun_log_debug ("context switch");
5893
5894 context_switch (ecs);
5895
5896 if (deprecated_context_hook)
5897 deprecated_context_hook (ecs->event_thread->global_num);
5898 }
5899
5900 /* At this point, get hold of the now-current thread's frame. */
5901 frame = get_current_frame ();
5902 gdbarch = get_frame_arch (frame);
5903
5904 /* Pull the single step breakpoints out of the target. */
5905 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5906 {
5907 struct regcache *regcache;
5908 CORE_ADDR pc;
5909
5910 regcache = get_thread_regcache (ecs->event_thread);
5911 const address_space *aspace = regcache->aspace ();
5912
5913 pc = regcache_read_pc (regcache);
5914
5915 /* However, before doing so, if this single-step breakpoint was
5916 actually for another thread, set this thread up for moving
5917 past it. */
5918 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5919 aspace, pc))
5920 {
5921 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5922 {
5923 infrun_log_debug ("[%s] hit another thread's single-step "
5924 "breakpoint",
5925 target_pid_to_str (ecs->ptid).c_str ());
5926 ecs->hit_singlestep_breakpoint = 1;
5927 }
5928 }
5929 else
5930 {
5931 infrun_log_debug ("[%s] hit its single-step breakpoint",
5932 target_pid_to_str (ecs->ptid).c_str ());
5933 }
5934 }
5935 delete_just_stopped_threads_single_step_breakpoints ();
5936
5937 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5938 && ecs->event_thread->control.trap_expected
5939 && ecs->event_thread->stepping_over_watchpoint)
5940 stopped_by_watchpoint = 0;
5941 else
5942 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5943
5944 /* If necessary, step over this watchpoint. We'll be back to display
5945 it in a moment. */
5946 if (stopped_by_watchpoint
5947 && (target_have_steppable_watchpoint
5948 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5949 {
5950 /* At this point, we are stopped at an instruction which has
5951 attempted to write to a piece of memory under control of
5952 a watchpoint. The instruction hasn't actually executed
5953 yet. If we were to evaluate the watchpoint expression
5954 now, we would get the old value, and therefore no change
5955 would seem to have occurred.
5956
5957 In order to make watchpoints work `right', we really need
5958 to complete the memory write, and then evaluate the
5959 watchpoint expression. We do this by single-stepping the
5960 target.
5961
5962 It may not be necessary to disable the watchpoint to step over
5963 it. For example, the PA can (with some kernel cooperation)
5964 single step over a watchpoint without disabling the watchpoint.
5965
5966 It is far more common to need to disable a watchpoint to step
5967 the inferior over it. If we have non-steppable watchpoints,
5968 we must disable the current watchpoint; it's simplest to
5969 disable all watchpoints.
5970
5971 Any breakpoint at PC must also be stepped over -- if there's
5972 one, it will have already triggered before the watchpoint
5973 triggered, and we either already reported it to the user, or
5974 it didn't cause a stop and we called keep_going. In either
5975 case, if there was a breakpoint at PC, we must be trying to
5976 step past it. */
5977 ecs->event_thread->stepping_over_watchpoint = 1;
5978 keep_going (ecs);
5979 return;
5980 }
5981
5982 ecs->event_thread->stepping_over_breakpoint = 0;
5983 ecs->event_thread->stepping_over_watchpoint = 0;
5984 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5985 ecs->event_thread->control.stop_step = 0;
5986 stop_print_frame = 1;
5987 stopped_by_random_signal = 0;
5988 bpstat stop_chain = NULL;
5989
5990 /* Hide inlined functions starting here, unless we just performed stepi or
5991 nexti. After stepi and nexti, always show the innermost frame (not any
5992 inline function call sites). */
5993 if (ecs->event_thread->control.step_range_end != 1)
5994 {
5995 const address_space *aspace
5996 = get_thread_regcache (ecs->event_thread)->aspace ();
5997
5998 /* skip_inline_frames is expensive, so we avoid it if we can
5999 determine that the address is one where functions cannot have
6000 been inlined. This improves performance with inferiors that
6001 load a lot of shared libraries, because the solib event
6002 breakpoint is defined as the address of a function (i.e. not
6003 inline). Note that we have to check the previous PC as well
6004 as the current one to catch cases when we have just
6005 single-stepped off a breakpoint prior to reinstating it.
6006 Note that we're assuming that the code we single-step to is
6007 not inline, but that's not definitive: there's nothing
6008 preventing the event breakpoint function from containing
6009 inlined code, and the single-step ending up there. If the
6010 user had set a breakpoint on that inlined code, the missing
6011 skip_inline_frames call would break things. Fortunately
6012 that's an extremely unlikely scenario. */
6013 if (!pc_at_non_inline_function (aspace,
6014 ecs->event_thread->suspend.stop_pc,
6015 &ecs->ws)
6016 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6017 && ecs->event_thread->control.trap_expected
6018 && pc_at_non_inline_function (aspace,
6019 ecs->event_thread->prev_pc,
6020 &ecs->ws)))
6021 {
6022 stop_chain = build_bpstat_chain (aspace,
6023 ecs->event_thread->suspend.stop_pc,
6024 &ecs->ws);
6025 skip_inline_frames (ecs->event_thread, stop_chain);
6026
6027 /* Re-fetch current thread's frame in case that invalidated
6028 the frame cache. */
6029 frame = get_current_frame ();
6030 gdbarch = get_frame_arch (frame);
6031 }
6032 }
6033
6034 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6035 && ecs->event_thread->control.trap_expected
6036 && gdbarch_single_step_through_delay_p (gdbarch)
6037 && currently_stepping (ecs->event_thread))
6038 {
6039 /* We're trying to step off a breakpoint. Turns out that we're
6040 also on an instruction that needs to be stepped multiple
6041 times before it's been fully executing. E.g., architectures
6042 with a delay slot. It needs to be stepped twice, once for
6043 the instruction and once for the delay slot. */
6044 int step_through_delay
6045 = gdbarch_single_step_through_delay (gdbarch, frame);
6046
6047 if (step_through_delay)
6048 infrun_log_debug ("step through delay");
6049
6050 if (ecs->event_thread->control.step_range_end == 0
6051 && step_through_delay)
6052 {
6053 /* The user issued a continue when stopped at a breakpoint.
6054 Set up for another trap and get out of here. */
6055 ecs->event_thread->stepping_over_breakpoint = 1;
6056 keep_going (ecs);
6057 return;
6058 }
6059 else if (step_through_delay)
6060 {
6061 /* The user issued a step when stopped at a breakpoint.
6062 Maybe we should stop, maybe we should not - the delay
6063 slot *might* correspond to a line of source. In any
6064 case, don't decide that here, just set
6065 ecs->stepping_over_breakpoint, making sure we
6066 single-step again before breakpoints are re-inserted. */
6067 ecs->event_thread->stepping_over_breakpoint = 1;
6068 }
6069 }
6070
6071 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6072 handles this event. */
6073 ecs->event_thread->control.stop_bpstat
6074 = bpstat_stop_status (get_current_regcache ()->aspace (),
6075 ecs->event_thread->suspend.stop_pc,
6076 ecs->event_thread, &ecs->ws, stop_chain);
6077
6078 /* Following in case break condition called a
6079 function. */
6080 stop_print_frame = 1;
6081
6082 /* This is where we handle "moribund" watchpoints. Unlike
6083 software breakpoints traps, hardware watchpoint traps are
6084 always distinguishable from random traps. If no high-level
6085 watchpoint is associated with the reported stop data address
6086 anymore, then the bpstat does not explain the signal ---
6087 simply make sure to ignore it if `stopped_by_watchpoint' is
6088 set. */
6089
6090 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6091 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6092 GDB_SIGNAL_TRAP)
6093 && stopped_by_watchpoint)
6094 {
6095 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6096 "ignoring");
6097 }
6098
6099 /* NOTE: cagney/2003-03-29: These checks for a random signal
6100 at one stage in the past included checks for an inferior
6101 function call's call dummy's return breakpoint. The original
6102 comment, that went with the test, read:
6103
6104 ``End of a stack dummy. Some systems (e.g. Sony news) give
6105 another signal besides SIGTRAP, so check here as well as
6106 above.''
6107
6108 If someone ever tries to get call dummys on a
6109 non-executable stack to work (where the target would stop
6110 with something like a SIGSEGV), then those tests might need
6111 to be re-instated. Given, however, that the tests were only
6112 enabled when momentary breakpoints were not being used, I
6113 suspect that it won't be the case.
6114
6115 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6116 be necessary for call dummies on a non-executable stack on
6117 SPARC. */
6118
6119 /* See if the breakpoints module can explain the signal. */
6120 random_signal
6121 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6122 ecs->event_thread->suspend.stop_signal);
6123
6124 /* Maybe this was a trap for a software breakpoint that has since
6125 been removed. */
6126 if (random_signal && target_stopped_by_sw_breakpoint ())
6127 {
6128 if (gdbarch_program_breakpoint_here_p (gdbarch,
6129 ecs->event_thread->suspend.stop_pc))
6130 {
6131 struct regcache *regcache;
6132 int decr_pc;
6133
6134 /* Re-adjust PC to what the program would see if GDB was not
6135 debugging it. */
6136 regcache = get_thread_regcache (ecs->event_thread);
6137 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6138 if (decr_pc != 0)
6139 {
6140 gdb::optional<scoped_restore_tmpl<int>>
6141 restore_operation_disable;
6142
6143 if (record_full_is_used ())
6144 restore_operation_disable.emplace
6145 (record_full_gdb_operation_disable_set ());
6146
6147 regcache_write_pc (regcache,
6148 ecs->event_thread->suspend.stop_pc + decr_pc);
6149 }
6150 }
6151 else
6152 {
6153 /* A delayed software breakpoint event. Ignore the trap. */
6154 infrun_log_debug ("delayed software breakpoint trap, ignoring");
6155 random_signal = 0;
6156 }
6157 }
6158
6159 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6160 has since been removed. */
6161 if (random_signal && target_stopped_by_hw_breakpoint ())
6162 {
6163 /* A delayed hardware breakpoint event. Ignore the trap. */
6164 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6165 "trap, ignoring");
6166 random_signal = 0;
6167 }
6168
6169 /* If not, perhaps stepping/nexting can. */
6170 if (random_signal)
6171 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6172 && currently_stepping (ecs->event_thread));
6173
6174 /* Perhaps the thread hit a single-step breakpoint of _another_
6175 thread. Single-step breakpoints are transparent to the
6176 breakpoints module. */
6177 if (random_signal)
6178 random_signal = !ecs->hit_singlestep_breakpoint;
6179
6180 /* No? Perhaps we got a moribund watchpoint. */
6181 if (random_signal)
6182 random_signal = !stopped_by_watchpoint;
6183
6184 /* Always stop if the user explicitly requested this thread to
6185 remain stopped. */
6186 if (ecs->event_thread->stop_requested)
6187 {
6188 random_signal = 1;
6189 infrun_log_debug ("user-requested stop");
6190 }
6191
6192 /* For the program's own signals, act according to
6193 the signal handling tables. */
6194
6195 if (random_signal)
6196 {
6197 /* Signal not for debugging purposes. */
6198 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6199 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6200
6201 infrun_log_debug ("random signal (%s)",
6202 gdb_signal_to_symbol_string (stop_signal));
6203
6204 stopped_by_random_signal = 1;
6205
6206 /* Always stop on signals if we're either just gaining control
6207 of the program, or the user explicitly requested this thread
6208 to remain stopped. */
6209 if (stop_soon != NO_STOP_QUIETLY
6210 || ecs->event_thread->stop_requested
6211 || (!inf->detaching
6212 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6213 {
6214 stop_waiting (ecs);
6215 return;
6216 }
6217
6218 /* Notify observers the signal has "handle print" set. Note we
6219 returned early above if stopping; normal_stop handles the
6220 printing in that case. */
6221 if (signal_print[ecs->event_thread->suspend.stop_signal])
6222 {
6223 /* The signal table tells us to print about this signal. */
6224 target_terminal::ours_for_output ();
6225 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6226 target_terminal::inferior ();
6227 }
6228
6229 /* Clear the signal if it should not be passed. */
6230 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6231 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6232
6233 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6234 && ecs->event_thread->control.trap_expected
6235 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6236 {
6237 /* We were just starting a new sequence, attempting to
6238 single-step off of a breakpoint and expecting a SIGTRAP.
6239 Instead this signal arrives. This signal will take us out
6240 of the stepping range so GDB needs to remember to, when
6241 the signal handler returns, resume stepping off that
6242 breakpoint. */
6243 /* To simplify things, "continue" is forced to use the same
6244 code paths as single-step - set a breakpoint at the
6245 signal return address and then, once hit, step off that
6246 breakpoint. */
6247 infrun_log_debug ("signal arrived while stepping over breakpoint");
6248
6249 insert_hp_step_resume_breakpoint_at_frame (frame);
6250 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6251 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6252 ecs->event_thread->control.trap_expected = 0;
6253
6254 /* If we were nexting/stepping some other thread, switch to
6255 it, so that we don't continue it, losing control. */
6256 if (!switch_back_to_stepped_thread (ecs))
6257 keep_going (ecs);
6258 return;
6259 }
6260
6261 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6262 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6263 ecs->event_thread)
6264 || ecs->event_thread->control.step_range_end == 1)
6265 && frame_id_eq (get_stack_frame_id (frame),
6266 ecs->event_thread->control.step_stack_frame_id)
6267 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6268 {
6269 /* The inferior is about to take a signal that will take it
6270 out of the single step range. Set a breakpoint at the
6271 current PC (which is presumably where the signal handler
6272 will eventually return) and then allow the inferior to
6273 run free.
6274
6275 Note that this is only needed for a signal delivered
6276 while in the single-step range. Nested signals aren't a
6277 problem as they eventually all return. */
6278 infrun_log_debug ("signal may take us out of single-step range");
6279
6280 clear_step_over_info ();
6281 insert_hp_step_resume_breakpoint_at_frame (frame);
6282 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6283 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6284 ecs->event_thread->control.trap_expected = 0;
6285 keep_going (ecs);
6286 return;
6287 }
6288
6289 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6290 when either there's a nested signal, or when there's a
6291 pending signal enabled just as the signal handler returns
6292 (leaving the inferior at the step-resume-breakpoint without
6293 actually executing it). Either way continue until the
6294 breakpoint is really hit. */
6295
6296 if (!switch_back_to_stepped_thread (ecs))
6297 {
6298 infrun_log_debug ("random signal, keep going");
6299
6300 keep_going (ecs);
6301 }
6302 return;
6303 }
6304
6305 process_event_stop_test (ecs);
6306 }
6307
6308 /* Come here when we've got some debug event / signal we can explain
6309 (IOW, not a random signal), and test whether it should cause a
6310 stop, or whether we should resume the inferior (transparently).
6311 E.g., could be a breakpoint whose condition evaluates false; we
6312 could be still stepping within the line; etc. */
6313
6314 static void
6315 process_event_stop_test (struct execution_control_state *ecs)
6316 {
6317 struct symtab_and_line stop_pc_sal;
6318 struct frame_info *frame;
6319 struct gdbarch *gdbarch;
6320 CORE_ADDR jmp_buf_pc;
6321 struct bpstat_what what;
6322
6323 /* Handle cases caused by hitting a breakpoint. */
6324
6325 frame = get_current_frame ();
6326 gdbarch = get_frame_arch (frame);
6327
6328 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6329
6330 if (what.call_dummy)
6331 {
6332 stop_stack_dummy = what.call_dummy;
6333 }
6334
6335 /* A few breakpoint types have callbacks associated (e.g.,
6336 bp_jit_event). Run them now. */
6337 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6338
6339 /* If we hit an internal event that triggers symbol changes, the
6340 current frame will be invalidated within bpstat_what (e.g., if we
6341 hit an internal solib event). Re-fetch it. */
6342 frame = get_current_frame ();
6343 gdbarch = get_frame_arch (frame);
6344
6345 switch (what.main_action)
6346 {
6347 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6348 /* If we hit the breakpoint at longjmp while stepping, we
6349 install a momentary breakpoint at the target of the
6350 jmp_buf. */
6351
6352 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6353
6354 ecs->event_thread->stepping_over_breakpoint = 1;
6355
6356 if (what.is_longjmp)
6357 {
6358 struct value *arg_value;
6359
6360 /* If we set the longjmp breakpoint via a SystemTap probe,
6361 then use it to extract the arguments. The destination PC
6362 is the third argument to the probe. */
6363 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6364 if (arg_value)
6365 {
6366 jmp_buf_pc = value_as_address (arg_value);
6367 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6368 }
6369 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6370 || !gdbarch_get_longjmp_target (gdbarch,
6371 frame, &jmp_buf_pc))
6372 {
6373 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6374 "(!gdbarch_get_longjmp_target)");
6375 keep_going (ecs);
6376 return;
6377 }
6378
6379 /* Insert a breakpoint at resume address. */
6380 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6381 }
6382 else
6383 check_exception_resume (ecs, frame);
6384 keep_going (ecs);
6385 return;
6386
6387 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6388 {
6389 struct frame_info *init_frame;
6390
6391 /* There are several cases to consider.
6392
6393 1. The initiating frame no longer exists. In this case we
6394 must stop, because the exception or longjmp has gone too
6395 far.
6396
6397 2. The initiating frame exists, and is the same as the
6398 current frame. We stop, because the exception or longjmp
6399 has been caught.
6400
6401 3. The initiating frame exists and is different from the
6402 current frame. This means the exception or longjmp has
6403 been caught beneath the initiating frame, so keep going.
6404
6405 4. longjmp breakpoint has been placed just to protect
6406 against stale dummy frames and user is not interested in
6407 stopping around longjmps. */
6408
6409 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6410
6411 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6412 != NULL);
6413 delete_exception_resume_breakpoint (ecs->event_thread);
6414
6415 if (what.is_longjmp)
6416 {
6417 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6418
6419 if (!frame_id_p (ecs->event_thread->initiating_frame))
6420 {
6421 /* Case 4. */
6422 keep_going (ecs);
6423 return;
6424 }
6425 }
6426
6427 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6428
6429 if (init_frame)
6430 {
6431 struct frame_id current_id
6432 = get_frame_id (get_current_frame ());
6433 if (frame_id_eq (current_id,
6434 ecs->event_thread->initiating_frame))
6435 {
6436 /* Case 2. Fall through. */
6437 }
6438 else
6439 {
6440 /* Case 3. */
6441 keep_going (ecs);
6442 return;
6443 }
6444 }
6445
6446 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6447 exists. */
6448 delete_step_resume_breakpoint (ecs->event_thread);
6449
6450 end_stepping_range (ecs);
6451 }
6452 return;
6453
6454 case BPSTAT_WHAT_SINGLE:
6455 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
6456 ecs->event_thread->stepping_over_breakpoint = 1;
6457 /* Still need to check other stuff, at least the case where we
6458 are stepping and step out of the right range. */
6459 break;
6460
6461 case BPSTAT_WHAT_STEP_RESUME:
6462 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
6463
6464 delete_step_resume_breakpoint (ecs->event_thread);
6465 if (ecs->event_thread->control.proceed_to_finish
6466 && execution_direction == EXEC_REVERSE)
6467 {
6468 struct thread_info *tp = ecs->event_thread;
6469
6470 /* We are finishing a function in reverse, and just hit the
6471 step-resume breakpoint at the start address of the
6472 function, and we're almost there -- just need to back up
6473 by one more single-step, which should take us back to the
6474 function call. */
6475 tp->control.step_range_start = tp->control.step_range_end = 1;
6476 keep_going (ecs);
6477 return;
6478 }
6479 fill_in_stop_func (gdbarch, ecs);
6480 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6481 && execution_direction == EXEC_REVERSE)
6482 {
6483 /* We are stepping over a function call in reverse, and just
6484 hit the step-resume breakpoint at the start address of
6485 the function. Go back to single-stepping, which should
6486 take us back to the function call. */
6487 ecs->event_thread->stepping_over_breakpoint = 1;
6488 keep_going (ecs);
6489 return;
6490 }
6491 break;
6492
6493 case BPSTAT_WHAT_STOP_NOISY:
6494 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
6495 stop_print_frame = 1;
6496
6497 /* Assume the thread stopped for a breapoint. We'll still check
6498 whether a/the breakpoint is there when the thread is next
6499 resumed. */
6500 ecs->event_thread->stepping_over_breakpoint = 1;
6501
6502 stop_waiting (ecs);
6503 return;
6504
6505 case BPSTAT_WHAT_STOP_SILENT:
6506 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
6507 stop_print_frame = 0;
6508
6509 /* Assume the thread stopped for a breapoint. We'll still check
6510 whether a/the breakpoint is there when the thread is next
6511 resumed. */
6512 ecs->event_thread->stepping_over_breakpoint = 1;
6513 stop_waiting (ecs);
6514 return;
6515
6516 case BPSTAT_WHAT_HP_STEP_RESUME:
6517 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
6518
6519 delete_step_resume_breakpoint (ecs->event_thread);
6520 if (ecs->event_thread->step_after_step_resume_breakpoint)
6521 {
6522 /* Back when the step-resume breakpoint was inserted, we
6523 were trying to single-step off a breakpoint. Go back to
6524 doing that. */
6525 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6526 ecs->event_thread->stepping_over_breakpoint = 1;
6527 keep_going (ecs);
6528 return;
6529 }
6530 break;
6531
6532 case BPSTAT_WHAT_KEEP_CHECKING:
6533 break;
6534 }
6535
6536 /* If we stepped a permanent breakpoint and we had a high priority
6537 step-resume breakpoint for the address we stepped, but we didn't
6538 hit it, then we must have stepped into the signal handler. The
6539 step-resume was only necessary to catch the case of _not_
6540 stepping into the handler, so delete it, and fall through to
6541 checking whether the step finished. */
6542 if (ecs->event_thread->stepped_breakpoint)
6543 {
6544 struct breakpoint *sr_bp
6545 = ecs->event_thread->control.step_resume_breakpoint;
6546
6547 if (sr_bp != NULL
6548 && sr_bp->loc->permanent
6549 && sr_bp->type == bp_hp_step_resume
6550 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6551 {
6552 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
6553 delete_step_resume_breakpoint (ecs->event_thread);
6554 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6555 }
6556 }
6557
6558 /* We come here if we hit a breakpoint but should not stop for it.
6559 Possibly we also were stepping and should stop for that. So fall
6560 through and test for stepping. But, if not stepping, do not
6561 stop. */
6562
6563 /* In all-stop mode, if we're currently stepping but have stopped in
6564 some other thread, we need to switch back to the stepped thread. */
6565 if (switch_back_to_stepped_thread (ecs))
6566 return;
6567
6568 if (ecs->event_thread->control.step_resume_breakpoint)
6569 {
6570 infrun_log_debug ("step-resume breakpoint is inserted");
6571
6572 /* Having a step-resume breakpoint overrides anything
6573 else having to do with stepping commands until
6574 that breakpoint is reached. */
6575 keep_going (ecs);
6576 return;
6577 }
6578
6579 if (ecs->event_thread->control.step_range_end == 0)
6580 {
6581 infrun_log_debug ("no stepping, continue");
6582 /* Likewise if we aren't even stepping. */
6583 keep_going (ecs);
6584 return;
6585 }
6586
6587 /* Re-fetch current thread's frame in case the code above caused
6588 the frame cache to be re-initialized, making our FRAME variable
6589 a dangling pointer. */
6590 frame = get_current_frame ();
6591 gdbarch = get_frame_arch (frame);
6592 fill_in_stop_func (gdbarch, ecs);
6593
6594 /* If stepping through a line, keep going if still within it.
6595
6596 Note that step_range_end is the address of the first instruction
6597 beyond the step range, and NOT the address of the last instruction
6598 within it!
6599
6600 Note also that during reverse execution, we may be stepping
6601 through a function epilogue and therefore must detect when
6602 the current-frame changes in the middle of a line. */
6603
6604 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6605 ecs->event_thread)
6606 && (execution_direction != EXEC_REVERSE
6607 || frame_id_eq (get_frame_id (frame),
6608 ecs->event_thread->control.step_frame_id)))
6609 {
6610 infrun_log_debug
6611 ("stepping inside range [%s-%s]",
6612 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6613 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6614
6615 /* Tentatively re-enable range stepping; `resume' disables it if
6616 necessary (e.g., if we're stepping over a breakpoint or we
6617 have software watchpoints). */
6618 ecs->event_thread->control.may_range_step = 1;
6619
6620 /* When stepping backward, stop at beginning of line range
6621 (unless it's the function entry point, in which case
6622 keep going back to the call point). */
6623 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6624 if (stop_pc == ecs->event_thread->control.step_range_start
6625 && stop_pc != ecs->stop_func_start
6626 && execution_direction == EXEC_REVERSE)
6627 end_stepping_range (ecs);
6628 else
6629 keep_going (ecs);
6630
6631 return;
6632 }
6633
6634 /* We stepped out of the stepping range. */
6635
6636 /* If we are stepping at the source level and entered the runtime
6637 loader dynamic symbol resolution code...
6638
6639 EXEC_FORWARD: we keep on single stepping until we exit the run
6640 time loader code and reach the callee's address.
6641
6642 EXEC_REVERSE: we've already executed the callee (backward), and
6643 the runtime loader code is handled just like any other
6644 undebuggable function call. Now we need only keep stepping
6645 backward through the trampoline code, and that's handled further
6646 down, so there is nothing for us to do here. */
6647
6648 if (execution_direction != EXEC_REVERSE
6649 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6650 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6651 {
6652 CORE_ADDR pc_after_resolver =
6653 gdbarch_skip_solib_resolver (gdbarch,
6654 ecs->event_thread->suspend.stop_pc);
6655
6656 infrun_log_debug ("stepped into dynsym resolve code");
6657
6658 if (pc_after_resolver)
6659 {
6660 /* Set up a step-resume breakpoint at the address
6661 indicated by SKIP_SOLIB_RESOLVER. */
6662 symtab_and_line sr_sal;
6663 sr_sal.pc = pc_after_resolver;
6664 sr_sal.pspace = get_frame_program_space (frame);
6665
6666 insert_step_resume_breakpoint_at_sal (gdbarch,
6667 sr_sal, null_frame_id);
6668 }
6669
6670 keep_going (ecs);
6671 return;
6672 }
6673
6674 /* Step through an indirect branch thunk. */
6675 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6676 && gdbarch_in_indirect_branch_thunk (gdbarch,
6677 ecs->event_thread->suspend.stop_pc))
6678 {
6679 infrun_log_debug ("stepped into indirect branch thunk");
6680 keep_going (ecs);
6681 return;
6682 }
6683
6684 if (ecs->event_thread->control.step_range_end != 1
6685 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6686 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6687 && get_frame_type (frame) == SIGTRAMP_FRAME)
6688 {
6689 infrun_log_debug ("stepped into signal trampoline");
6690 /* The inferior, while doing a "step" or "next", has ended up in
6691 a signal trampoline (either by a signal being delivered or by
6692 the signal handler returning). Just single-step until the
6693 inferior leaves the trampoline (either by calling the handler
6694 or returning). */
6695 keep_going (ecs);
6696 return;
6697 }
6698
6699 /* If we're in the return path from a shared library trampoline,
6700 we want to proceed through the trampoline when stepping. */
6701 /* macro/2012-04-25: This needs to come before the subroutine
6702 call check below as on some targets return trampolines look
6703 like subroutine calls (MIPS16 return thunks). */
6704 if (gdbarch_in_solib_return_trampoline (gdbarch,
6705 ecs->event_thread->suspend.stop_pc,
6706 ecs->stop_func_name)
6707 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6708 {
6709 /* Determine where this trampoline returns. */
6710 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6711 CORE_ADDR real_stop_pc
6712 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6713
6714 infrun_log_debug ("stepped into solib return tramp");
6715
6716 /* Only proceed through if we know where it's going. */
6717 if (real_stop_pc)
6718 {
6719 /* And put the step-breakpoint there and go until there. */
6720 symtab_and_line sr_sal;
6721 sr_sal.pc = real_stop_pc;
6722 sr_sal.section = find_pc_overlay (sr_sal.pc);
6723 sr_sal.pspace = get_frame_program_space (frame);
6724
6725 /* Do not specify what the fp should be when we stop since
6726 on some machines the prologue is where the new fp value
6727 is established. */
6728 insert_step_resume_breakpoint_at_sal (gdbarch,
6729 sr_sal, null_frame_id);
6730
6731 /* Restart without fiddling with the step ranges or
6732 other state. */
6733 keep_going (ecs);
6734 return;
6735 }
6736 }
6737
6738 /* Check for subroutine calls. The check for the current frame
6739 equalling the step ID is not necessary - the check of the
6740 previous frame's ID is sufficient - but it is a common case and
6741 cheaper than checking the previous frame's ID.
6742
6743 NOTE: frame_id_eq will never report two invalid frame IDs as
6744 being equal, so to get into this block, both the current and
6745 previous frame must have valid frame IDs. */
6746 /* The outer_frame_id check is a heuristic to detect stepping
6747 through startup code. If we step over an instruction which
6748 sets the stack pointer from an invalid value to a valid value,
6749 we may detect that as a subroutine call from the mythical
6750 "outermost" function. This could be fixed by marking
6751 outermost frames as !stack_p,code_p,special_p. Then the
6752 initial outermost frame, before sp was valid, would
6753 have code_addr == &_start. See the comment in frame_id_eq
6754 for more. */
6755 if (!frame_id_eq (get_stack_frame_id (frame),
6756 ecs->event_thread->control.step_stack_frame_id)
6757 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6758 ecs->event_thread->control.step_stack_frame_id)
6759 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6760 outer_frame_id)
6761 || (ecs->event_thread->control.step_start_function
6762 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6763 {
6764 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6765 CORE_ADDR real_stop_pc;
6766
6767 infrun_log_debug ("stepped into subroutine");
6768
6769 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6770 {
6771 /* I presume that step_over_calls is only 0 when we're
6772 supposed to be stepping at the assembly language level
6773 ("stepi"). Just stop. */
6774 /* And this works the same backward as frontward. MVS */
6775 end_stepping_range (ecs);
6776 return;
6777 }
6778
6779 /* Reverse stepping through solib trampolines. */
6780
6781 if (execution_direction == EXEC_REVERSE
6782 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6783 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6784 || (ecs->stop_func_start == 0
6785 && in_solib_dynsym_resolve_code (stop_pc))))
6786 {
6787 /* Any solib trampoline code can be handled in reverse
6788 by simply continuing to single-step. We have already
6789 executed the solib function (backwards), and a few
6790 steps will take us back through the trampoline to the
6791 caller. */
6792 keep_going (ecs);
6793 return;
6794 }
6795
6796 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6797 {
6798 /* We're doing a "next".
6799
6800 Normal (forward) execution: set a breakpoint at the
6801 callee's return address (the address at which the caller
6802 will resume).
6803
6804 Reverse (backward) execution. set the step-resume
6805 breakpoint at the start of the function that we just
6806 stepped into (backwards), and continue to there. When we
6807 get there, we'll need to single-step back to the caller. */
6808
6809 if (execution_direction == EXEC_REVERSE)
6810 {
6811 /* If we're already at the start of the function, we've either
6812 just stepped backward into a single instruction function,
6813 or stepped back out of a signal handler to the first instruction
6814 of the function. Just keep going, which will single-step back
6815 to the caller. */
6816 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6817 {
6818 /* Normal function call return (static or dynamic). */
6819 symtab_and_line sr_sal;
6820 sr_sal.pc = ecs->stop_func_start;
6821 sr_sal.pspace = get_frame_program_space (frame);
6822 insert_step_resume_breakpoint_at_sal (gdbarch,
6823 sr_sal, null_frame_id);
6824 }
6825 }
6826 else
6827 insert_step_resume_breakpoint_at_caller (frame);
6828
6829 keep_going (ecs);
6830 return;
6831 }
6832
6833 /* If we are in a function call trampoline (a stub between the
6834 calling routine and the real function), locate the real
6835 function. That's what tells us (a) whether we want to step
6836 into it at all, and (b) what prologue we want to run to the
6837 end of, if we do step into it. */
6838 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6839 if (real_stop_pc == 0)
6840 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6841 if (real_stop_pc != 0)
6842 ecs->stop_func_start = real_stop_pc;
6843
6844 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6845 {
6846 symtab_and_line sr_sal;
6847 sr_sal.pc = ecs->stop_func_start;
6848 sr_sal.pspace = get_frame_program_space (frame);
6849
6850 insert_step_resume_breakpoint_at_sal (gdbarch,
6851 sr_sal, null_frame_id);
6852 keep_going (ecs);
6853 return;
6854 }
6855
6856 /* If we have line number information for the function we are
6857 thinking of stepping into and the function isn't on the skip
6858 list, step into it.
6859
6860 If there are several symtabs at that PC (e.g. with include
6861 files), just want to know whether *any* of them have line
6862 numbers. find_pc_line handles this. */
6863 {
6864 struct symtab_and_line tmp_sal;
6865
6866 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6867 if (tmp_sal.line != 0
6868 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6869 tmp_sal)
6870 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6871 {
6872 if (execution_direction == EXEC_REVERSE)
6873 handle_step_into_function_backward (gdbarch, ecs);
6874 else
6875 handle_step_into_function (gdbarch, ecs);
6876 return;
6877 }
6878 }
6879
6880 /* If we have no line number and the step-stop-if-no-debug is
6881 set, we stop the step so that the user has a chance to switch
6882 in assembly mode. */
6883 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6884 && step_stop_if_no_debug)
6885 {
6886 end_stepping_range (ecs);
6887 return;
6888 }
6889
6890 if (execution_direction == EXEC_REVERSE)
6891 {
6892 /* If we're already at the start of the function, we've either just
6893 stepped backward into a single instruction function without line
6894 number info, or stepped back out of a signal handler to the first
6895 instruction of the function without line number info. Just keep
6896 going, which will single-step back to the caller. */
6897 if (ecs->stop_func_start != stop_pc)
6898 {
6899 /* Set a breakpoint at callee's start address.
6900 From there we can step once and be back in the caller. */
6901 symtab_and_line sr_sal;
6902 sr_sal.pc = ecs->stop_func_start;
6903 sr_sal.pspace = get_frame_program_space (frame);
6904 insert_step_resume_breakpoint_at_sal (gdbarch,
6905 sr_sal, null_frame_id);
6906 }
6907 }
6908 else
6909 /* Set a breakpoint at callee's return address (the address
6910 at which the caller will resume). */
6911 insert_step_resume_breakpoint_at_caller (frame);
6912
6913 keep_going (ecs);
6914 return;
6915 }
6916
6917 /* Reverse stepping through solib trampolines. */
6918
6919 if (execution_direction == EXEC_REVERSE
6920 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6921 {
6922 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6923
6924 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6925 || (ecs->stop_func_start == 0
6926 && in_solib_dynsym_resolve_code (stop_pc)))
6927 {
6928 /* Any solib trampoline code can be handled in reverse
6929 by simply continuing to single-step. We have already
6930 executed the solib function (backwards), and a few
6931 steps will take us back through the trampoline to the
6932 caller. */
6933 keep_going (ecs);
6934 return;
6935 }
6936 else if (in_solib_dynsym_resolve_code (stop_pc))
6937 {
6938 /* Stepped backward into the solib dynsym resolver.
6939 Set a breakpoint at its start and continue, then
6940 one more step will take us out. */
6941 symtab_and_line sr_sal;
6942 sr_sal.pc = ecs->stop_func_start;
6943 sr_sal.pspace = get_frame_program_space (frame);
6944 insert_step_resume_breakpoint_at_sal (gdbarch,
6945 sr_sal, null_frame_id);
6946 keep_going (ecs);
6947 return;
6948 }
6949 }
6950
6951 /* This always returns the sal for the inner-most frame when we are in a
6952 stack of inlined frames, even if GDB actually believes that it is in a
6953 more outer frame. This is checked for below by calls to
6954 inline_skipped_frames. */
6955 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6956
6957 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6958 the trampoline processing logic, however, there are some trampolines
6959 that have no names, so we should do trampoline handling first. */
6960 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6961 && ecs->stop_func_name == NULL
6962 && stop_pc_sal.line == 0)
6963 {
6964 infrun_log_debug ("stepped into undebuggable function");
6965
6966 /* The inferior just stepped into, or returned to, an
6967 undebuggable function (where there is no debugging information
6968 and no line number corresponding to the address where the
6969 inferior stopped). Since we want to skip this kind of code,
6970 we keep going until the inferior returns from this
6971 function - unless the user has asked us not to (via
6972 set step-mode) or we no longer know how to get back
6973 to the call site. */
6974 if (step_stop_if_no_debug
6975 || !frame_id_p (frame_unwind_caller_id (frame)))
6976 {
6977 /* If we have no line number and the step-stop-if-no-debug
6978 is set, we stop the step so that the user has a chance to
6979 switch in assembly mode. */
6980 end_stepping_range (ecs);
6981 return;
6982 }
6983 else
6984 {
6985 /* Set a breakpoint at callee's return address (the address
6986 at which the caller will resume). */
6987 insert_step_resume_breakpoint_at_caller (frame);
6988 keep_going (ecs);
6989 return;
6990 }
6991 }
6992
6993 if (ecs->event_thread->control.step_range_end == 1)
6994 {
6995 /* It is stepi or nexti. We always want to stop stepping after
6996 one instruction. */
6997 infrun_log_debug ("stepi/nexti");
6998 end_stepping_range (ecs);
6999 return;
7000 }
7001
7002 if (stop_pc_sal.line == 0)
7003 {
7004 /* We have no line number information. That means to stop
7005 stepping (does this always happen right after one instruction,
7006 when we do "s" in a function with no line numbers,
7007 or can this happen as a result of a return or longjmp?). */
7008 infrun_log_debug ("line number info");
7009 end_stepping_range (ecs);
7010 return;
7011 }
7012
7013 /* Look for "calls" to inlined functions, part one. If the inline
7014 frame machinery detected some skipped call sites, we have entered
7015 a new inline function. */
7016
7017 if (frame_id_eq (get_frame_id (get_current_frame ()),
7018 ecs->event_thread->control.step_frame_id)
7019 && inline_skipped_frames (ecs->event_thread))
7020 {
7021 infrun_log_debug ("stepped into inlined function");
7022
7023 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7024
7025 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7026 {
7027 /* For "step", we're going to stop. But if the call site
7028 for this inlined function is on the same source line as
7029 we were previously stepping, go down into the function
7030 first. Otherwise stop at the call site. */
7031
7032 if (call_sal.line == ecs->event_thread->current_line
7033 && call_sal.symtab == ecs->event_thread->current_symtab)
7034 {
7035 step_into_inline_frame (ecs->event_thread);
7036 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7037 {
7038 keep_going (ecs);
7039 return;
7040 }
7041 }
7042
7043 end_stepping_range (ecs);
7044 return;
7045 }
7046 else
7047 {
7048 /* For "next", we should stop at the call site if it is on a
7049 different source line. Otherwise continue through the
7050 inlined function. */
7051 if (call_sal.line == ecs->event_thread->current_line
7052 && call_sal.symtab == ecs->event_thread->current_symtab)
7053 keep_going (ecs);
7054 else
7055 end_stepping_range (ecs);
7056 return;
7057 }
7058 }
7059
7060 /* Look for "calls" to inlined functions, part two. If we are still
7061 in the same real function we were stepping through, but we have
7062 to go further up to find the exact frame ID, we are stepping
7063 through a more inlined call beyond its call site. */
7064
7065 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7066 && !frame_id_eq (get_frame_id (get_current_frame ()),
7067 ecs->event_thread->control.step_frame_id)
7068 && stepped_in_from (get_current_frame (),
7069 ecs->event_thread->control.step_frame_id))
7070 {
7071 infrun_log_debug ("stepping through inlined function");
7072
7073 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7074 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7075 keep_going (ecs);
7076 else
7077 end_stepping_range (ecs);
7078 return;
7079 }
7080
7081 bool refresh_step_info = true;
7082 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7083 && (ecs->event_thread->current_line != stop_pc_sal.line
7084 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7085 {
7086 if (stop_pc_sal.is_stmt)
7087 {
7088 /* We are at the start of a different line. So stop. Note that
7089 we don't stop if we step into the middle of a different line.
7090 That is said to make things like for (;;) statements work
7091 better. */
7092 infrun_log_debug ("infrun: stepped to a different line\n");
7093 end_stepping_range (ecs);
7094 return;
7095 }
7096 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7097 ecs->event_thread->control.step_frame_id))
7098 {
7099 /* We are at the start of a different line, however, this line is
7100 not marked as a statement, and we have not changed frame. We
7101 ignore this line table entry, and continue stepping forward,
7102 looking for a better place to stop. */
7103 refresh_step_info = false;
7104 infrun_log_debug ("infrun: stepped to a different line, but "
7105 "it's not the start of a statement\n");
7106 }
7107 }
7108
7109 /* We aren't done stepping.
7110
7111 Optimize by setting the stepping range to the line.
7112 (We might not be in the original line, but if we entered a
7113 new line in mid-statement, we continue stepping. This makes
7114 things like for(;;) statements work better.)
7115
7116 If we entered a SAL that indicates a non-statement line table entry,
7117 then we update the stepping range, but we don't update the step info,
7118 which includes things like the line number we are stepping away from.
7119 This means we will stop when we find a line table entry that is marked
7120 as is-statement, even if it matches the non-statement one we just
7121 stepped into. */
7122
7123 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7124 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7125 ecs->event_thread->control.may_range_step = 1;
7126 if (refresh_step_info)
7127 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7128
7129 infrun_log_debug ("keep going");
7130 keep_going (ecs);
7131 }
7132
7133 /* In all-stop mode, if we're currently stepping but have stopped in
7134 some other thread, we may need to switch back to the stepped
7135 thread. Returns true we set the inferior running, false if we left
7136 it stopped (and the event needs further processing). */
7137
7138 static int
7139 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7140 {
7141 if (!target_is_non_stop_p ())
7142 {
7143 struct thread_info *stepping_thread;
7144
7145 /* If any thread is blocked on some internal breakpoint, and we
7146 simply need to step over that breakpoint to get it going
7147 again, do that first. */
7148
7149 /* However, if we see an event for the stepping thread, then we
7150 know all other threads have been moved past their breakpoints
7151 already. Let the caller check whether the step is finished,
7152 etc., before deciding to move it past a breakpoint. */
7153 if (ecs->event_thread->control.step_range_end != 0)
7154 return 0;
7155
7156 /* Check if the current thread is blocked on an incomplete
7157 step-over, interrupted by a random signal. */
7158 if (ecs->event_thread->control.trap_expected
7159 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7160 {
7161 infrun_log_debug ("need to finish step-over of [%s]",
7162 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7163 keep_going (ecs);
7164 return 1;
7165 }
7166
7167 /* Check if the current thread is blocked by a single-step
7168 breakpoint of another thread. */
7169 if (ecs->hit_singlestep_breakpoint)
7170 {
7171 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7172 target_pid_to_str (ecs->ptid).c_str ());
7173 keep_going (ecs);
7174 return 1;
7175 }
7176
7177 /* If this thread needs yet another step-over (e.g., stepping
7178 through a delay slot), do it first before moving on to
7179 another thread. */
7180 if (thread_still_needs_step_over (ecs->event_thread))
7181 {
7182 infrun_log_debug
7183 ("thread [%s] still needs step-over",
7184 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7185 keep_going (ecs);
7186 return 1;
7187 }
7188
7189 /* If scheduler locking applies even if not stepping, there's no
7190 need to walk over threads. Above we've checked whether the
7191 current thread is stepping. If some other thread not the
7192 event thread is stepping, then it must be that scheduler
7193 locking is not in effect. */
7194 if (schedlock_applies (ecs->event_thread))
7195 return 0;
7196
7197 /* Otherwise, we no longer expect a trap in the current thread.
7198 Clear the trap_expected flag before switching back -- this is
7199 what keep_going does as well, if we call it. */
7200 ecs->event_thread->control.trap_expected = 0;
7201
7202 /* Likewise, clear the signal if it should not be passed. */
7203 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7204 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7205
7206 /* Do all pending step-overs before actually proceeding with
7207 step/next/etc. */
7208 if (start_step_over ())
7209 {
7210 prepare_to_wait (ecs);
7211 return 1;
7212 }
7213
7214 /* Look for the stepping/nexting thread. */
7215 stepping_thread = NULL;
7216
7217 for (thread_info *tp : all_non_exited_threads ())
7218 {
7219 switch_to_thread_no_regs (tp);
7220
7221 /* Ignore threads of processes the caller is not
7222 resuming. */
7223 if (!sched_multi
7224 && (tp->inf->process_target () != ecs->target
7225 || tp->inf->pid != ecs->ptid.pid ()))
7226 continue;
7227
7228 /* When stepping over a breakpoint, we lock all threads
7229 except the one that needs to move past the breakpoint.
7230 If a non-event thread has this set, the "incomplete
7231 step-over" check above should have caught it earlier. */
7232 if (tp->control.trap_expected)
7233 {
7234 internal_error (__FILE__, __LINE__,
7235 "[%s] has inconsistent state: "
7236 "trap_expected=%d\n",
7237 target_pid_to_str (tp->ptid).c_str (),
7238 tp->control.trap_expected);
7239 }
7240
7241 /* Did we find the stepping thread? */
7242 if (tp->control.step_range_end)
7243 {
7244 /* Yep. There should only one though. */
7245 gdb_assert (stepping_thread == NULL);
7246
7247 /* The event thread is handled at the top, before we
7248 enter this loop. */
7249 gdb_assert (tp != ecs->event_thread);
7250
7251 /* If some thread other than the event thread is
7252 stepping, then scheduler locking can't be in effect,
7253 otherwise we wouldn't have resumed the current event
7254 thread in the first place. */
7255 gdb_assert (!schedlock_applies (tp));
7256
7257 stepping_thread = tp;
7258 }
7259 }
7260
7261 if (stepping_thread != NULL)
7262 {
7263 infrun_log_debug ("switching back to stepped thread");
7264
7265 if (keep_going_stepped_thread (stepping_thread))
7266 {
7267 prepare_to_wait (ecs);
7268 return 1;
7269 }
7270 }
7271
7272 switch_to_thread (ecs->event_thread);
7273 }
7274
7275 return 0;
7276 }
7277
7278 /* Set a previously stepped thread back to stepping. Returns true on
7279 success, false if the resume is not possible (e.g., the thread
7280 vanished). */
7281
7282 static int
7283 keep_going_stepped_thread (struct thread_info *tp)
7284 {
7285 struct frame_info *frame;
7286 struct execution_control_state ecss;
7287 struct execution_control_state *ecs = &ecss;
7288
7289 /* If the stepping thread exited, then don't try to switch back and
7290 resume it, which could fail in several different ways depending
7291 on the target. Instead, just keep going.
7292
7293 We can find a stepping dead thread in the thread list in two
7294 cases:
7295
7296 - The target supports thread exit events, and when the target
7297 tries to delete the thread from the thread list, inferior_ptid
7298 pointed at the exiting thread. In such case, calling
7299 delete_thread does not really remove the thread from the list;
7300 instead, the thread is left listed, with 'exited' state.
7301
7302 - The target's debug interface does not support thread exit
7303 events, and so we have no idea whatsoever if the previously
7304 stepping thread is still alive. For that reason, we need to
7305 synchronously query the target now. */
7306
7307 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7308 {
7309 infrun_log_debug ("not resuming previously stepped thread, it has "
7310 "vanished");
7311
7312 delete_thread (tp);
7313 return 0;
7314 }
7315
7316 infrun_log_debug ("resuming previously stepped thread");
7317
7318 reset_ecs (ecs, tp);
7319 switch_to_thread (tp);
7320
7321 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7322 frame = get_current_frame ();
7323
7324 /* If the PC of the thread we were trying to single-step has
7325 changed, then that thread has trapped or been signaled, but the
7326 event has not been reported to GDB yet. Re-poll the target
7327 looking for this particular thread's event (i.e. temporarily
7328 enable schedlock) by:
7329
7330 - setting a break at the current PC
7331 - resuming that particular thread, only (by setting trap
7332 expected)
7333
7334 This prevents us continuously moving the single-step breakpoint
7335 forward, one instruction at a time, overstepping. */
7336
7337 if (tp->suspend.stop_pc != tp->prev_pc)
7338 {
7339 ptid_t resume_ptid;
7340
7341 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7342 paddress (target_gdbarch (), tp->prev_pc),
7343 paddress (target_gdbarch (), tp->suspend.stop_pc));
7344
7345 /* Clear the info of the previous step-over, as it's no longer
7346 valid (if the thread was trying to step over a breakpoint, it
7347 has already succeeded). It's what keep_going would do too,
7348 if we called it. Do this before trying to insert the sss
7349 breakpoint, otherwise if we were previously trying to step
7350 over this exact address in another thread, the breakpoint is
7351 skipped. */
7352 clear_step_over_info ();
7353 tp->control.trap_expected = 0;
7354
7355 insert_single_step_breakpoint (get_frame_arch (frame),
7356 get_frame_address_space (frame),
7357 tp->suspend.stop_pc);
7358
7359 tp->resumed = true;
7360 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7361 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7362 }
7363 else
7364 {
7365 infrun_log_debug ("expected thread still hasn't advanced");
7366
7367 keep_going_pass_signal (ecs);
7368 }
7369 return 1;
7370 }
7371
7372 /* Is thread TP in the middle of (software or hardware)
7373 single-stepping? (Note the result of this function must never be
7374 passed directly as target_resume's STEP parameter.) */
7375
7376 static int
7377 currently_stepping (struct thread_info *tp)
7378 {
7379 return ((tp->control.step_range_end
7380 && tp->control.step_resume_breakpoint == NULL)
7381 || tp->control.trap_expected
7382 || tp->stepped_breakpoint
7383 || bpstat_should_step ());
7384 }
7385
7386 /* Inferior has stepped into a subroutine call with source code that
7387 we should not step over. Do step to the first line of code in
7388 it. */
7389
7390 static void
7391 handle_step_into_function (struct gdbarch *gdbarch,
7392 struct execution_control_state *ecs)
7393 {
7394 fill_in_stop_func (gdbarch, ecs);
7395
7396 compunit_symtab *cust
7397 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7398 if (cust != NULL && compunit_language (cust) != language_asm)
7399 ecs->stop_func_start
7400 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7401
7402 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7403 /* Use the step_resume_break to step until the end of the prologue,
7404 even if that involves jumps (as it seems to on the vax under
7405 4.2). */
7406 /* If the prologue ends in the middle of a source line, continue to
7407 the end of that source line (if it is still within the function).
7408 Otherwise, just go to end of prologue. */
7409 if (stop_func_sal.end
7410 && stop_func_sal.pc != ecs->stop_func_start
7411 && stop_func_sal.end < ecs->stop_func_end)
7412 ecs->stop_func_start = stop_func_sal.end;
7413
7414 /* Architectures which require breakpoint adjustment might not be able
7415 to place a breakpoint at the computed address. If so, the test
7416 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7417 ecs->stop_func_start to an address at which a breakpoint may be
7418 legitimately placed.
7419
7420 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7421 made, GDB will enter an infinite loop when stepping through
7422 optimized code consisting of VLIW instructions which contain
7423 subinstructions corresponding to different source lines. On
7424 FR-V, it's not permitted to place a breakpoint on any but the
7425 first subinstruction of a VLIW instruction. When a breakpoint is
7426 set, GDB will adjust the breakpoint address to the beginning of
7427 the VLIW instruction. Thus, we need to make the corresponding
7428 adjustment here when computing the stop address. */
7429
7430 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7431 {
7432 ecs->stop_func_start
7433 = gdbarch_adjust_breakpoint_address (gdbarch,
7434 ecs->stop_func_start);
7435 }
7436
7437 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7438 {
7439 /* We are already there: stop now. */
7440 end_stepping_range (ecs);
7441 return;
7442 }
7443 else
7444 {
7445 /* Put the step-breakpoint there and go until there. */
7446 symtab_and_line sr_sal;
7447 sr_sal.pc = ecs->stop_func_start;
7448 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7449 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7450
7451 /* Do not specify what the fp should be when we stop since on
7452 some machines the prologue is where the new fp value is
7453 established. */
7454 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7455
7456 /* And make sure stepping stops right away then. */
7457 ecs->event_thread->control.step_range_end
7458 = ecs->event_thread->control.step_range_start;
7459 }
7460 keep_going (ecs);
7461 }
7462
7463 /* Inferior has stepped backward into a subroutine call with source
7464 code that we should not step over. Do step to the beginning of the
7465 last line of code in it. */
7466
7467 static void
7468 handle_step_into_function_backward (struct gdbarch *gdbarch,
7469 struct execution_control_state *ecs)
7470 {
7471 struct compunit_symtab *cust;
7472 struct symtab_and_line stop_func_sal;
7473
7474 fill_in_stop_func (gdbarch, ecs);
7475
7476 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7477 if (cust != NULL && compunit_language (cust) != language_asm)
7478 ecs->stop_func_start
7479 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7480
7481 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7482
7483 /* OK, we're just going to keep stepping here. */
7484 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7485 {
7486 /* We're there already. Just stop stepping now. */
7487 end_stepping_range (ecs);
7488 }
7489 else
7490 {
7491 /* Else just reset the step range and keep going.
7492 No step-resume breakpoint, they don't work for
7493 epilogues, which can have multiple entry paths. */
7494 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7495 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7496 keep_going (ecs);
7497 }
7498 return;
7499 }
7500
7501 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7502 This is used to both functions and to skip over code. */
7503
7504 static void
7505 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7506 struct symtab_and_line sr_sal,
7507 struct frame_id sr_id,
7508 enum bptype sr_type)
7509 {
7510 /* There should never be more than one step-resume or longjmp-resume
7511 breakpoint per thread, so we should never be setting a new
7512 step_resume_breakpoint when one is already active. */
7513 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7514 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7515
7516 infrun_log_debug ("inserting step-resume breakpoint at %s",
7517 paddress (gdbarch, sr_sal.pc));
7518
7519 inferior_thread ()->control.step_resume_breakpoint
7520 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7521 }
7522
7523 void
7524 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7525 struct symtab_and_line sr_sal,
7526 struct frame_id sr_id)
7527 {
7528 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7529 sr_sal, sr_id,
7530 bp_step_resume);
7531 }
7532
7533 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7534 This is used to skip a potential signal handler.
7535
7536 This is called with the interrupted function's frame. The signal
7537 handler, when it returns, will resume the interrupted function at
7538 RETURN_FRAME.pc. */
7539
7540 static void
7541 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7542 {
7543 gdb_assert (return_frame != NULL);
7544
7545 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7546
7547 symtab_and_line sr_sal;
7548 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7549 sr_sal.section = find_pc_overlay (sr_sal.pc);
7550 sr_sal.pspace = get_frame_program_space (return_frame);
7551
7552 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7553 get_stack_frame_id (return_frame),
7554 bp_hp_step_resume);
7555 }
7556
7557 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7558 is used to skip a function after stepping into it (for "next" or if
7559 the called function has no debugging information).
7560
7561 The current function has almost always been reached by single
7562 stepping a call or return instruction. NEXT_FRAME belongs to the
7563 current function, and the breakpoint will be set at the caller's
7564 resume address.
7565
7566 This is a separate function rather than reusing
7567 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7568 get_prev_frame, which may stop prematurely (see the implementation
7569 of frame_unwind_caller_id for an example). */
7570
7571 static void
7572 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7573 {
7574 /* We shouldn't have gotten here if we don't know where the call site
7575 is. */
7576 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7577
7578 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7579
7580 symtab_and_line sr_sal;
7581 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7582 frame_unwind_caller_pc (next_frame));
7583 sr_sal.section = find_pc_overlay (sr_sal.pc);
7584 sr_sal.pspace = frame_unwind_program_space (next_frame);
7585
7586 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7587 frame_unwind_caller_id (next_frame));
7588 }
7589
7590 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7591 new breakpoint at the target of a jmp_buf. The handling of
7592 longjmp-resume uses the same mechanisms used for handling
7593 "step-resume" breakpoints. */
7594
7595 static void
7596 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7597 {
7598 /* There should never be more than one longjmp-resume breakpoint per
7599 thread, so we should never be setting a new
7600 longjmp_resume_breakpoint when one is already active. */
7601 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7602
7603 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7604 paddress (gdbarch, pc));
7605
7606 inferior_thread ()->control.exception_resume_breakpoint =
7607 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7608 }
7609
7610 /* Insert an exception resume breakpoint. TP is the thread throwing
7611 the exception. The block B is the block of the unwinder debug hook
7612 function. FRAME is the frame corresponding to the call to this
7613 function. SYM is the symbol of the function argument holding the
7614 target PC of the exception. */
7615
7616 static void
7617 insert_exception_resume_breakpoint (struct thread_info *tp,
7618 const struct block *b,
7619 struct frame_info *frame,
7620 struct symbol *sym)
7621 {
7622 try
7623 {
7624 struct block_symbol vsym;
7625 struct value *value;
7626 CORE_ADDR handler;
7627 struct breakpoint *bp;
7628
7629 vsym = lookup_symbol_search_name (sym->search_name (),
7630 b, VAR_DOMAIN);
7631 value = read_var_value (vsym.symbol, vsym.block, frame);
7632 /* If the value was optimized out, revert to the old behavior. */
7633 if (! value_optimized_out (value))
7634 {
7635 handler = value_as_address (value);
7636
7637 infrun_log_debug ("exception resume at %lx",
7638 (unsigned long) handler);
7639
7640 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7641 handler,
7642 bp_exception_resume).release ();
7643
7644 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7645 frame = NULL;
7646
7647 bp->thread = tp->global_num;
7648 inferior_thread ()->control.exception_resume_breakpoint = bp;
7649 }
7650 }
7651 catch (const gdb_exception_error &e)
7652 {
7653 /* We want to ignore errors here. */
7654 }
7655 }
7656
7657 /* A helper for check_exception_resume that sets an
7658 exception-breakpoint based on a SystemTap probe. */
7659
7660 static void
7661 insert_exception_resume_from_probe (struct thread_info *tp,
7662 const struct bound_probe *probe,
7663 struct frame_info *frame)
7664 {
7665 struct value *arg_value;
7666 CORE_ADDR handler;
7667 struct breakpoint *bp;
7668
7669 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7670 if (!arg_value)
7671 return;
7672
7673 handler = value_as_address (arg_value);
7674
7675 infrun_log_debug ("exception resume at %s",
7676 paddress (probe->objfile->arch (), handler));
7677
7678 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7679 handler, bp_exception_resume).release ();
7680 bp->thread = tp->global_num;
7681 inferior_thread ()->control.exception_resume_breakpoint = bp;
7682 }
7683
7684 /* This is called when an exception has been intercepted. Check to
7685 see whether the exception's destination is of interest, and if so,
7686 set an exception resume breakpoint there. */
7687
7688 static void
7689 check_exception_resume (struct execution_control_state *ecs,
7690 struct frame_info *frame)
7691 {
7692 struct bound_probe probe;
7693 struct symbol *func;
7694
7695 /* First see if this exception unwinding breakpoint was set via a
7696 SystemTap probe point. If so, the probe has two arguments: the
7697 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7698 set a breakpoint there. */
7699 probe = find_probe_by_pc (get_frame_pc (frame));
7700 if (probe.prob)
7701 {
7702 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7703 return;
7704 }
7705
7706 func = get_frame_function (frame);
7707 if (!func)
7708 return;
7709
7710 try
7711 {
7712 const struct block *b;
7713 struct block_iterator iter;
7714 struct symbol *sym;
7715 int argno = 0;
7716
7717 /* The exception breakpoint is a thread-specific breakpoint on
7718 the unwinder's debug hook, declared as:
7719
7720 void _Unwind_DebugHook (void *cfa, void *handler);
7721
7722 The CFA argument indicates the frame to which control is
7723 about to be transferred. HANDLER is the destination PC.
7724
7725 We ignore the CFA and set a temporary breakpoint at HANDLER.
7726 This is not extremely efficient but it avoids issues in gdb
7727 with computing the DWARF CFA, and it also works even in weird
7728 cases such as throwing an exception from inside a signal
7729 handler. */
7730
7731 b = SYMBOL_BLOCK_VALUE (func);
7732 ALL_BLOCK_SYMBOLS (b, iter, sym)
7733 {
7734 if (!SYMBOL_IS_ARGUMENT (sym))
7735 continue;
7736
7737 if (argno == 0)
7738 ++argno;
7739 else
7740 {
7741 insert_exception_resume_breakpoint (ecs->event_thread,
7742 b, frame, sym);
7743 break;
7744 }
7745 }
7746 }
7747 catch (const gdb_exception_error &e)
7748 {
7749 }
7750 }
7751
7752 static void
7753 stop_waiting (struct execution_control_state *ecs)
7754 {
7755 infrun_log_debug ("stop_waiting");
7756
7757 /* Let callers know we don't want to wait for the inferior anymore. */
7758 ecs->wait_some_more = 0;
7759
7760 /* If all-stop, but there exists a non-stop target, stop all
7761 threads now that we're presenting the stop to the user. */
7762 if (!non_stop && exists_non_stop_target ())
7763 stop_all_threads ();
7764 }
7765
7766 /* Like keep_going, but passes the signal to the inferior, even if the
7767 signal is set to nopass. */
7768
7769 static void
7770 keep_going_pass_signal (struct execution_control_state *ecs)
7771 {
7772 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7773 gdb_assert (!ecs->event_thread->resumed);
7774
7775 /* Save the pc before execution, to compare with pc after stop. */
7776 ecs->event_thread->prev_pc
7777 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7778
7779 if (ecs->event_thread->control.trap_expected)
7780 {
7781 struct thread_info *tp = ecs->event_thread;
7782
7783 infrun_log_debug ("%s has trap_expected set, "
7784 "resuming to collect trap",
7785 target_pid_to_str (tp->ptid).c_str ());
7786
7787 /* We haven't yet gotten our trap, and either: intercepted a
7788 non-signal event (e.g., a fork); or took a signal which we
7789 are supposed to pass through to the inferior. Simply
7790 continue. */
7791 resume (ecs->event_thread->suspend.stop_signal);
7792 }
7793 else if (step_over_info_valid_p ())
7794 {
7795 /* Another thread is stepping over a breakpoint in-line. If
7796 this thread needs a step-over too, queue the request. In
7797 either case, this resume must be deferred for later. */
7798 struct thread_info *tp = ecs->event_thread;
7799
7800 if (ecs->hit_singlestep_breakpoint
7801 || thread_still_needs_step_over (tp))
7802 {
7803 infrun_log_debug ("step-over already in progress: "
7804 "step-over for %s deferred",
7805 target_pid_to_str (tp->ptid).c_str ());
7806 thread_step_over_chain_enqueue (tp);
7807 }
7808 else
7809 {
7810 infrun_log_debug ("step-over in progress: resume of %s deferred",
7811 target_pid_to_str (tp->ptid).c_str ());
7812 }
7813 }
7814 else
7815 {
7816 struct regcache *regcache = get_current_regcache ();
7817 int remove_bp;
7818 int remove_wps;
7819 step_over_what step_what;
7820
7821 /* Either the trap was not expected, but we are continuing
7822 anyway (if we got a signal, the user asked it be passed to
7823 the child)
7824 -- or --
7825 We got our expected trap, but decided we should resume from
7826 it.
7827
7828 We're going to run this baby now!
7829
7830 Note that insert_breakpoints won't try to re-insert
7831 already inserted breakpoints. Therefore, we don't
7832 care if breakpoints were already inserted, or not. */
7833
7834 /* If we need to step over a breakpoint, and we're not using
7835 displaced stepping to do so, insert all breakpoints
7836 (watchpoints, etc.) but the one we're stepping over, step one
7837 instruction, and then re-insert the breakpoint when that step
7838 is finished. */
7839
7840 step_what = thread_still_needs_step_over (ecs->event_thread);
7841
7842 remove_bp = (ecs->hit_singlestep_breakpoint
7843 || (step_what & STEP_OVER_BREAKPOINT));
7844 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7845
7846 /* We can't use displaced stepping if we need to step past a
7847 watchpoint. The instruction copied to the scratch pad would
7848 still trigger the watchpoint. */
7849 if (remove_bp
7850 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7851 {
7852 set_step_over_info (regcache->aspace (),
7853 regcache_read_pc (regcache), remove_wps,
7854 ecs->event_thread->global_num);
7855 }
7856 else if (remove_wps)
7857 set_step_over_info (NULL, 0, remove_wps, -1);
7858
7859 /* If we now need to do an in-line step-over, we need to stop
7860 all other threads. Note this must be done before
7861 insert_breakpoints below, because that removes the breakpoint
7862 we're about to step over, otherwise other threads could miss
7863 it. */
7864 if (step_over_info_valid_p () && target_is_non_stop_p ())
7865 stop_all_threads ();
7866
7867 /* Stop stepping if inserting breakpoints fails. */
7868 try
7869 {
7870 insert_breakpoints ();
7871 }
7872 catch (const gdb_exception_error &e)
7873 {
7874 exception_print (gdb_stderr, e);
7875 stop_waiting (ecs);
7876 clear_step_over_info ();
7877 return;
7878 }
7879
7880 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7881
7882 resume (ecs->event_thread->suspend.stop_signal);
7883 }
7884
7885 prepare_to_wait (ecs);
7886 }
7887
7888 /* Called when we should continue running the inferior, because the
7889 current event doesn't cause a user visible stop. This does the
7890 resuming part; waiting for the next event is done elsewhere. */
7891
7892 static void
7893 keep_going (struct execution_control_state *ecs)
7894 {
7895 if (ecs->event_thread->control.trap_expected
7896 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7897 ecs->event_thread->control.trap_expected = 0;
7898
7899 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7900 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7901 keep_going_pass_signal (ecs);
7902 }
7903
7904 /* This function normally comes after a resume, before
7905 handle_inferior_event exits. It takes care of any last bits of
7906 housekeeping, and sets the all-important wait_some_more flag. */
7907
7908 static void
7909 prepare_to_wait (struct execution_control_state *ecs)
7910 {
7911 infrun_log_debug ("prepare_to_wait");
7912
7913 ecs->wait_some_more = 1;
7914
7915 /* If the target can't async, emulate it by marking the infrun event
7916 handler such that as soon as we get back to the event-loop, we
7917 immediately end up in fetch_inferior_event again calling
7918 target_wait. */
7919 if (!target_can_async_p ())
7920 mark_infrun_async_event_handler ();
7921 }
7922
7923 /* We are done with the step range of a step/next/si/ni command.
7924 Called once for each n of a "step n" operation. */
7925
7926 static void
7927 end_stepping_range (struct execution_control_state *ecs)
7928 {
7929 ecs->event_thread->control.stop_step = 1;
7930 stop_waiting (ecs);
7931 }
7932
7933 /* Several print_*_reason functions to print why the inferior has stopped.
7934 We always print something when the inferior exits, or receives a signal.
7935 The rest of the cases are dealt with later on in normal_stop and
7936 print_it_typical. Ideally there should be a call to one of these
7937 print_*_reason functions functions from handle_inferior_event each time
7938 stop_waiting is called.
7939
7940 Note that we don't call these directly, instead we delegate that to
7941 the interpreters, through observers. Interpreters then call these
7942 with whatever uiout is right. */
7943
7944 void
7945 print_end_stepping_range_reason (struct ui_out *uiout)
7946 {
7947 /* For CLI-like interpreters, print nothing. */
7948
7949 if (uiout->is_mi_like_p ())
7950 {
7951 uiout->field_string ("reason",
7952 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7953 }
7954 }
7955
7956 void
7957 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7958 {
7959 annotate_signalled ();
7960 if (uiout->is_mi_like_p ())
7961 uiout->field_string
7962 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7963 uiout->text ("\nProgram terminated with signal ");
7964 annotate_signal_name ();
7965 uiout->field_string ("signal-name",
7966 gdb_signal_to_name (siggnal));
7967 annotate_signal_name_end ();
7968 uiout->text (", ");
7969 annotate_signal_string ();
7970 uiout->field_string ("signal-meaning",
7971 gdb_signal_to_string (siggnal));
7972 annotate_signal_string_end ();
7973 uiout->text (".\n");
7974 uiout->text ("The program no longer exists.\n");
7975 }
7976
7977 void
7978 print_exited_reason (struct ui_out *uiout, int exitstatus)
7979 {
7980 struct inferior *inf = current_inferior ();
7981 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7982
7983 annotate_exited (exitstatus);
7984 if (exitstatus)
7985 {
7986 if (uiout->is_mi_like_p ())
7987 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7988 std::string exit_code_str
7989 = string_printf ("0%o", (unsigned int) exitstatus);
7990 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7991 plongest (inf->num), pidstr.c_str (),
7992 string_field ("exit-code", exit_code_str.c_str ()));
7993 }
7994 else
7995 {
7996 if (uiout->is_mi_like_p ())
7997 uiout->field_string
7998 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7999 uiout->message ("[Inferior %s (%s) exited normally]\n",
8000 plongest (inf->num), pidstr.c_str ());
8001 }
8002 }
8003
8004 /* Some targets/architectures can do extra processing/display of
8005 segmentation faults. E.g., Intel MPX boundary faults.
8006 Call the architecture dependent function to handle the fault. */
8007
8008 static void
8009 handle_segmentation_fault (struct ui_out *uiout)
8010 {
8011 struct regcache *regcache = get_current_regcache ();
8012 struct gdbarch *gdbarch = regcache->arch ();
8013
8014 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8015 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8016 }
8017
8018 void
8019 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8020 {
8021 struct thread_info *thr = inferior_thread ();
8022
8023 annotate_signal ();
8024
8025 if (uiout->is_mi_like_p ())
8026 ;
8027 else if (show_thread_that_caused_stop ())
8028 {
8029 const char *name;
8030
8031 uiout->text ("\nThread ");
8032 uiout->field_string ("thread-id", print_thread_id (thr));
8033
8034 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8035 if (name != NULL)
8036 {
8037 uiout->text (" \"");
8038 uiout->field_string ("name", name);
8039 uiout->text ("\"");
8040 }
8041 }
8042 else
8043 uiout->text ("\nProgram");
8044
8045 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8046 uiout->text (" stopped");
8047 else
8048 {
8049 uiout->text (" received signal ");
8050 annotate_signal_name ();
8051 if (uiout->is_mi_like_p ())
8052 uiout->field_string
8053 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8054 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8055 annotate_signal_name_end ();
8056 uiout->text (", ");
8057 annotate_signal_string ();
8058 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8059
8060 if (siggnal == GDB_SIGNAL_SEGV)
8061 handle_segmentation_fault (uiout);
8062
8063 annotate_signal_string_end ();
8064 }
8065 uiout->text (".\n");
8066 }
8067
8068 void
8069 print_no_history_reason (struct ui_out *uiout)
8070 {
8071 uiout->text ("\nNo more reverse-execution history.\n");
8072 }
8073
8074 /* Print current location without a level number, if we have changed
8075 functions or hit a breakpoint. Print source line if we have one.
8076 bpstat_print contains the logic deciding in detail what to print,
8077 based on the event(s) that just occurred. */
8078
8079 static void
8080 print_stop_location (struct target_waitstatus *ws)
8081 {
8082 int bpstat_ret;
8083 enum print_what source_flag;
8084 int do_frame_printing = 1;
8085 struct thread_info *tp = inferior_thread ();
8086
8087 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8088 switch (bpstat_ret)
8089 {
8090 case PRINT_UNKNOWN:
8091 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8092 should) carry around the function and does (or should) use
8093 that when doing a frame comparison. */
8094 if (tp->control.stop_step
8095 && frame_id_eq (tp->control.step_frame_id,
8096 get_frame_id (get_current_frame ()))
8097 && (tp->control.step_start_function
8098 == find_pc_function (tp->suspend.stop_pc)))
8099 {
8100 /* Finished step, just print source line. */
8101 source_flag = SRC_LINE;
8102 }
8103 else
8104 {
8105 /* Print location and source line. */
8106 source_flag = SRC_AND_LOC;
8107 }
8108 break;
8109 case PRINT_SRC_AND_LOC:
8110 /* Print location and source line. */
8111 source_flag = SRC_AND_LOC;
8112 break;
8113 case PRINT_SRC_ONLY:
8114 source_flag = SRC_LINE;
8115 break;
8116 case PRINT_NOTHING:
8117 /* Something bogus. */
8118 source_flag = SRC_LINE;
8119 do_frame_printing = 0;
8120 break;
8121 default:
8122 internal_error (__FILE__, __LINE__, _("Unknown value."));
8123 }
8124
8125 /* The behavior of this routine with respect to the source
8126 flag is:
8127 SRC_LINE: Print only source line
8128 LOCATION: Print only location
8129 SRC_AND_LOC: Print location and source line. */
8130 if (do_frame_printing)
8131 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8132 }
8133
8134 /* See infrun.h. */
8135
8136 void
8137 print_stop_event (struct ui_out *uiout, bool displays)
8138 {
8139 struct target_waitstatus last;
8140 struct thread_info *tp;
8141
8142 get_last_target_status (nullptr, nullptr, &last);
8143
8144 {
8145 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8146
8147 print_stop_location (&last);
8148
8149 /* Display the auto-display expressions. */
8150 if (displays)
8151 do_displays ();
8152 }
8153
8154 tp = inferior_thread ();
8155 if (tp->thread_fsm != NULL
8156 && tp->thread_fsm->finished_p ())
8157 {
8158 struct return_value_info *rv;
8159
8160 rv = tp->thread_fsm->return_value ();
8161 if (rv != NULL)
8162 print_return_value (uiout, rv);
8163 }
8164 }
8165
8166 /* See infrun.h. */
8167
8168 void
8169 maybe_remove_breakpoints (void)
8170 {
8171 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8172 {
8173 if (remove_breakpoints ())
8174 {
8175 target_terminal::ours_for_output ();
8176 printf_filtered (_("Cannot remove breakpoints because "
8177 "program is no longer writable.\nFurther "
8178 "execution is probably impossible.\n"));
8179 }
8180 }
8181 }
8182
8183 /* The execution context that just caused a normal stop. */
8184
8185 struct stop_context
8186 {
8187 stop_context ();
8188 ~stop_context ();
8189
8190 DISABLE_COPY_AND_ASSIGN (stop_context);
8191
8192 bool changed () const;
8193
8194 /* The stop ID. */
8195 ULONGEST stop_id;
8196
8197 /* The event PTID. */
8198
8199 ptid_t ptid;
8200
8201 /* If stopp for a thread event, this is the thread that caused the
8202 stop. */
8203 struct thread_info *thread;
8204
8205 /* The inferior that caused the stop. */
8206 int inf_num;
8207 };
8208
8209 /* Initializes a new stop context. If stopped for a thread event, this
8210 takes a strong reference to the thread. */
8211
8212 stop_context::stop_context ()
8213 {
8214 stop_id = get_stop_id ();
8215 ptid = inferior_ptid;
8216 inf_num = current_inferior ()->num;
8217
8218 if (inferior_ptid != null_ptid)
8219 {
8220 /* Take a strong reference so that the thread can't be deleted
8221 yet. */
8222 thread = inferior_thread ();
8223 thread->incref ();
8224 }
8225 else
8226 thread = NULL;
8227 }
8228
8229 /* Release a stop context previously created with save_stop_context.
8230 Releases the strong reference to the thread as well. */
8231
8232 stop_context::~stop_context ()
8233 {
8234 if (thread != NULL)
8235 thread->decref ();
8236 }
8237
8238 /* Return true if the current context no longer matches the saved stop
8239 context. */
8240
8241 bool
8242 stop_context::changed () const
8243 {
8244 if (ptid != inferior_ptid)
8245 return true;
8246 if (inf_num != current_inferior ()->num)
8247 return true;
8248 if (thread != NULL && thread->state != THREAD_STOPPED)
8249 return true;
8250 if (get_stop_id () != stop_id)
8251 return true;
8252 return false;
8253 }
8254
8255 /* See infrun.h. */
8256
8257 int
8258 normal_stop (void)
8259 {
8260 struct target_waitstatus last;
8261
8262 get_last_target_status (nullptr, nullptr, &last);
8263
8264 new_stop_id ();
8265
8266 /* If an exception is thrown from this point on, make sure to
8267 propagate GDB's knowledge of the executing state to the
8268 frontend/user running state. A QUIT is an easy exception to see
8269 here, so do this before any filtered output. */
8270
8271 ptid_t finish_ptid = null_ptid;
8272
8273 if (!non_stop)
8274 finish_ptid = minus_one_ptid;
8275 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8276 || last.kind == TARGET_WAITKIND_EXITED)
8277 {
8278 /* On some targets, we may still have live threads in the
8279 inferior when we get a process exit event. E.g., for
8280 "checkpoint", when the current checkpoint/fork exits,
8281 linux-fork.c automatically switches to another fork from
8282 within target_mourn_inferior. */
8283 if (inferior_ptid != null_ptid)
8284 finish_ptid = ptid_t (inferior_ptid.pid ());
8285 }
8286 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8287 finish_ptid = inferior_ptid;
8288
8289 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8290 if (finish_ptid != null_ptid)
8291 {
8292 maybe_finish_thread_state.emplace
8293 (user_visible_resume_target (finish_ptid), finish_ptid);
8294 }
8295
8296 /* As we're presenting a stop, and potentially removing breakpoints,
8297 update the thread list so we can tell whether there are threads
8298 running on the target. With target remote, for example, we can
8299 only learn about new threads when we explicitly update the thread
8300 list. Do this before notifying the interpreters about signal
8301 stops, end of stepping ranges, etc., so that the "new thread"
8302 output is emitted before e.g., "Program received signal FOO",
8303 instead of after. */
8304 update_thread_list ();
8305
8306 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8307 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8308
8309 /* As with the notification of thread events, we want to delay
8310 notifying the user that we've switched thread context until
8311 the inferior actually stops.
8312
8313 There's no point in saying anything if the inferior has exited.
8314 Note that SIGNALLED here means "exited with a signal", not
8315 "received a signal".
8316
8317 Also skip saying anything in non-stop mode. In that mode, as we
8318 don't want GDB to switch threads behind the user's back, to avoid
8319 races where the user is typing a command to apply to thread x,
8320 but GDB switches to thread y before the user finishes entering
8321 the command, fetch_inferior_event installs a cleanup to restore
8322 the current thread back to the thread the user had selected right
8323 after this event is handled, so we're not really switching, only
8324 informing of a stop. */
8325 if (!non_stop
8326 && previous_inferior_ptid != inferior_ptid
8327 && target_has_execution
8328 && last.kind != TARGET_WAITKIND_SIGNALLED
8329 && last.kind != TARGET_WAITKIND_EXITED
8330 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8331 {
8332 SWITCH_THRU_ALL_UIS ()
8333 {
8334 target_terminal::ours_for_output ();
8335 printf_filtered (_("[Switching to %s]\n"),
8336 target_pid_to_str (inferior_ptid).c_str ());
8337 annotate_thread_changed ();
8338 }
8339 previous_inferior_ptid = inferior_ptid;
8340 }
8341
8342 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8343 {
8344 SWITCH_THRU_ALL_UIS ()
8345 if (current_ui->prompt_state == PROMPT_BLOCKED)
8346 {
8347 target_terminal::ours_for_output ();
8348 printf_filtered (_("No unwaited-for children left.\n"));
8349 }
8350 }
8351
8352 /* Note: this depends on the update_thread_list call above. */
8353 maybe_remove_breakpoints ();
8354
8355 /* If an auto-display called a function and that got a signal,
8356 delete that auto-display to avoid an infinite recursion. */
8357
8358 if (stopped_by_random_signal)
8359 disable_current_display ();
8360
8361 SWITCH_THRU_ALL_UIS ()
8362 {
8363 async_enable_stdin ();
8364 }
8365
8366 /* Let the user/frontend see the threads as stopped. */
8367 maybe_finish_thread_state.reset ();
8368
8369 /* Select innermost stack frame - i.e., current frame is frame 0,
8370 and current location is based on that. Handle the case where the
8371 dummy call is returning after being stopped. E.g. the dummy call
8372 previously hit a breakpoint. (If the dummy call returns
8373 normally, we won't reach here.) Do this before the stop hook is
8374 run, so that it doesn't get to see the temporary dummy frame,
8375 which is not where we'll present the stop. */
8376 if (has_stack_frames ())
8377 {
8378 if (stop_stack_dummy == STOP_STACK_DUMMY)
8379 {
8380 /* Pop the empty frame that contains the stack dummy. This
8381 also restores inferior state prior to the call (struct
8382 infcall_suspend_state). */
8383 struct frame_info *frame = get_current_frame ();
8384
8385 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8386 frame_pop (frame);
8387 /* frame_pop calls reinit_frame_cache as the last thing it
8388 does which means there's now no selected frame. */
8389 }
8390
8391 select_frame (get_current_frame ());
8392
8393 /* Set the current source location. */
8394 set_current_sal_from_frame (get_current_frame ());
8395 }
8396
8397 /* Look up the hook_stop and run it (CLI internally handles problem
8398 of stop_command's pre-hook not existing). */
8399 if (stop_command != NULL)
8400 {
8401 stop_context saved_context;
8402
8403 try
8404 {
8405 execute_cmd_pre_hook (stop_command);
8406 }
8407 catch (const gdb_exception &ex)
8408 {
8409 exception_fprintf (gdb_stderr, ex,
8410 "Error while running hook_stop:\n");
8411 }
8412
8413 /* If the stop hook resumes the target, then there's no point in
8414 trying to notify about the previous stop; its context is
8415 gone. Likewise if the command switches thread or inferior --
8416 the observers would print a stop for the wrong
8417 thread/inferior. */
8418 if (saved_context.changed ())
8419 return 1;
8420 }
8421
8422 /* Notify observers about the stop. This is where the interpreters
8423 print the stop event. */
8424 if (inferior_ptid != null_ptid)
8425 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8426 stop_print_frame);
8427 else
8428 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8429
8430 annotate_stopped ();
8431
8432 if (target_has_execution)
8433 {
8434 if (last.kind != TARGET_WAITKIND_SIGNALLED
8435 && last.kind != TARGET_WAITKIND_EXITED
8436 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8437 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8438 Delete any breakpoint that is to be deleted at the next stop. */
8439 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8440 }
8441
8442 /* Try to get rid of automatically added inferiors that are no
8443 longer needed. Keeping those around slows down things linearly.
8444 Note that this never removes the current inferior. */
8445 prune_inferiors ();
8446
8447 return 0;
8448 }
8449 \f
8450 int
8451 signal_stop_state (int signo)
8452 {
8453 return signal_stop[signo];
8454 }
8455
8456 int
8457 signal_print_state (int signo)
8458 {
8459 return signal_print[signo];
8460 }
8461
8462 int
8463 signal_pass_state (int signo)
8464 {
8465 return signal_program[signo];
8466 }
8467
8468 static void
8469 signal_cache_update (int signo)
8470 {
8471 if (signo == -1)
8472 {
8473 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8474 signal_cache_update (signo);
8475
8476 return;
8477 }
8478
8479 signal_pass[signo] = (signal_stop[signo] == 0
8480 && signal_print[signo] == 0
8481 && signal_program[signo] == 1
8482 && signal_catch[signo] == 0);
8483 }
8484
8485 int
8486 signal_stop_update (int signo, int state)
8487 {
8488 int ret = signal_stop[signo];
8489
8490 signal_stop[signo] = state;
8491 signal_cache_update (signo);
8492 return ret;
8493 }
8494
8495 int
8496 signal_print_update (int signo, int state)
8497 {
8498 int ret = signal_print[signo];
8499
8500 signal_print[signo] = state;
8501 signal_cache_update (signo);
8502 return ret;
8503 }
8504
8505 int
8506 signal_pass_update (int signo, int state)
8507 {
8508 int ret = signal_program[signo];
8509
8510 signal_program[signo] = state;
8511 signal_cache_update (signo);
8512 return ret;
8513 }
8514
8515 /* Update the global 'signal_catch' from INFO and notify the
8516 target. */
8517
8518 void
8519 signal_catch_update (const unsigned int *info)
8520 {
8521 int i;
8522
8523 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8524 signal_catch[i] = info[i] > 0;
8525 signal_cache_update (-1);
8526 target_pass_signals (signal_pass);
8527 }
8528
8529 static void
8530 sig_print_header (void)
8531 {
8532 printf_filtered (_("Signal Stop\tPrint\tPass "
8533 "to program\tDescription\n"));
8534 }
8535
8536 static void
8537 sig_print_info (enum gdb_signal oursig)
8538 {
8539 const char *name = gdb_signal_to_name (oursig);
8540 int name_padding = 13 - strlen (name);
8541
8542 if (name_padding <= 0)
8543 name_padding = 0;
8544
8545 printf_filtered ("%s", name);
8546 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8547 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8548 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8549 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8550 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8551 }
8552
8553 /* Specify how various signals in the inferior should be handled. */
8554
8555 static void
8556 handle_command (const char *args, int from_tty)
8557 {
8558 int digits, wordlen;
8559 int sigfirst, siglast;
8560 enum gdb_signal oursig;
8561 int allsigs;
8562
8563 if (args == NULL)
8564 {
8565 error_no_arg (_("signal to handle"));
8566 }
8567
8568 /* Allocate and zero an array of flags for which signals to handle. */
8569
8570 const size_t nsigs = GDB_SIGNAL_LAST;
8571 unsigned char sigs[nsigs] {};
8572
8573 /* Break the command line up into args. */
8574
8575 gdb_argv built_argv (args);
8576
8577 /* Walk through the args, looking for signal oursigs, signal names, and
8578 actions. Signal numbers and signal names may be interspersed with
8579 actions, with the actions being performed for all signals cumulatively
8580 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8581
8582 for (char *arg : built_argv)
8583 {
8584 wordlen = strlen (arg);
8585 for (digits = 0; isdigit (arg[digits]); digits++)
8586 {;
8587 }
8588 allsigs = 0;
8589 sigfirst = siglast = -1;
8590
8591 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8592 {
8593 /* Apply action to all signals except those used by the
8594 debugger. Silently skip those. */
8595 allsigs = 1;
8596 sigfirst = 0;
8597 siglast = nsigs - 1;
8598 }
8599 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8600 {
8601 SET_SIGS (nsigs, sigs, signal_stop);
8602 SET_SIGS (nsigs, sigs, signal_print);
8603 }
8604 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8605 {
8606 UNSET_SIGS (nsigs, sigs, signal_program);
8607 }
8608 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8609 {
8610 SET_SIGS (nsigs, sigs, signal_print);
8611 }
8612 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8613 {
8614 SET_SIGS (nsigs, sigs, signal_program);
8615 }
8616 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8617 {
8618 UNSET_SIGS (nsigs, sigs, signal_stop);
8619 }
8620 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8621 {
8622 SET_SIGS (nsigs, sigs, signal_program);
8623 }
8624 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8625 {
8626 UNSET_SIGS (nsigs, sigs, signal_print);
8627 UNSET_SIGS (nsigs, sigs, signal_stop);
8628 }
8629 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8630 {
8631 UNSET_SIGS (nsigs, sigs, signal_program);
8632 }
8633 else if (digits > 0)
8634 {
8635 /* It is numeric. The numeric signal refers to our own
8636 internal signal numbering from target.h, not to host/target
8637 signal number. This is a feature; users really should be
8638 using symbolic names anyway, and the common ones like
8639 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8640
8641 sigfirst = siglast = (int)
8642 gdb_signal_from_command (atoi (arg));
8643 if (arg[digits] == '-')
8644 {
8645 siglast = (int)
8646 gdb_signal_from_command (atoi (arg + digits + 1));
8647 }
8648 if (sigfirst > siglast)
8649 {
8650 /* Bet he didn't figure we'd think of this case... */
8651 std::swap (sigfirst, siglast);
8652 }
8653 }
8654 else
8655 {
8656 oursig = gdb_signal_from_name (arg);
8657 if (oursig != GDB_SIGNAL_UNKNOWN)
8658 {
8659 sigfirst = siglast = (int) oursig;
8660 }
8661 else
8662 {
8663 /* Not a number and not a recognized flag word => complain. */
8664 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8665 }
8666 }
8667
8668 /* If any signal numbers or symbol names were found, set flags for
8669 which signals to apply actions to. */
8670
8671 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8672 {
8673 switch ((enum gdb_signal) signum)
8674 {
8675 case GDB_SIGNAL_TRAP:
8676 case GDB_SIGNAL_INT:
8677 if (!allsigs && !sigs[signum])
8678 {
8679 if (query (_("%s is used by the debugger.\n\
8680 Are you sure you want to change it? "),
8681 gdb_signal_to_name ((enum gdb_signal) signum)))
8682 {
8683 sigs[signum] = 1;
8684 }
8685 else
8686 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8687 }
8688 break;
8689 case GDB_SIGNAL_0:
8690 case GDB_SIGNAL_DEFAULT:
8691 case GDB_SIGNAL_UNKNOWN:
8692 /* Make sure that "all" doesn't print these. */
8693 break;
8694 default:
8695 sigs[signum] = 1;
8696 break;
8697 }
8698 }
8699 }
8700
8701 for (int signum = 0; signum < nsigs; signum++)
8702 if (sigs[signum])
8703 {
8704 signal_cache_update (-1);
8705 target_pass_signals (signal_pass);
8706 target_program_signals (signal_program);
8707
8708 if (from_tty)
8709 {
8710 /* Show the results. */
8711 sig_print_header ();
8712 for (; signum < nsigs; signum++)
8713 if (sigs[signum])
8714 sig_print_info ((enum gdb_signal) signum);
8715 }
8716
8717 break;
8718 }
8719 }
8720
8721 /* Complete the "handle" command. */
8722
8723 static void
8724 handle_completer (struct cmd_list_element *ignore,
8725 completion_tracker &tracker,
8726 const char *text, const char *word)
8727 {
8728 static const char * const keywords[] =
8729 {
8730 "all",
8731 "stop",
8732 "ignore",
8733 "print",
8734 "pass",
8735 "nostop",
8736 "noignore",
8737 "noprint",
8738 "nopass",
8739 NULL,
8740 };
8741
8742 signal_completer (ignore, tracker, text, word);
8743 complete_on_enum (tracker, keywords, word, word);
8744 }
8745
8746 enum gdb_signal
8747 gdb_signal_from_command (int num)
8748 {
8749 if (num >= 1 && num <= 15)
8750 return (enum gdb_signal) num;
8751 error (_("Only signals 1-15 are valid as numeric signals.\n\
8752 Use \"info signals\" for a list of symbolic signals."));
8753 }
8754
8755 /* Print current contents of the tables set by the handle command.
8756 It is possible we should just be printing signals actually used
8757 by the current target (but for things to work right when switching
8758 targets, all signals should be in the signal tables). */
8759
8760 static void
8761 info_signals_command (const char *signum_exp, int from_tty)
8762 {
8763 enum gdb_signal oursig;
8764
8765 sig_print_header ();
8766
8767 if (signum_exp)
8768 {
8769 /* First see if this is a symbol name. */
8770 oursig = gdb_signal_from_name (signum_exp);
8771 if (oursig == GDB_SIGNAL_UNKNOWN)
8772 {
8773 /* No, try numeric. */
8774 oursig =
8775 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8776 }
8777 sig_print_info (oursig);
8778 return;
8779 }
8780
8781 printf_filtered ("\n");
8782 /* These ugly casts brought to you by the native VAX compiler. */
8783 for (oursig = GDB_SIGNAL_FIRST;
8784 (int) oursig < (int) GDB_SIGNAL_LAST;
8785 oursig = (enum gdb_signal) ((int) oursig + 1))
8786 {
8787 QUIT;
8788
8789 if (oursig != GDB_SIGNAL_UNKNOWN
8790 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8791 sig_print_info (oursig);
8792 }
8793
8794 printf_filtered (_("\nUse the \"handle\" command "
8795 "to change these tables.\n"));
8796 }
8797
8798 /* The $_siginfo convenience variable is a bit special. We don't know
8799 for sure the type of the value until we actually have a chance to
8800 fetch the data. The type can change depending on gdbarch, so it is
8801 also dependent on which thread you have selected.
8802
8803 1. making $_siginfo be an internalvar that creates a new value on
8804 access.
8805
8806 2. making the value of $_siginfo be an lval_computed value. */
8807
8808 /* This function implements the lval_computed support for reading a
8809 $_siginfo value. */
8810
8811 static void
8812 siginfo_value_read (struct value *v)
8813 {
8814 LONGEST transferred;
8815
8816 /* If we can access registers, so can we access $_siginfo. Likewise
8817 vice versa. */
8818 validate_registers_access ();
8819
8820 transferred =
8821 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8822 NULL,
8823 value_contents_all_raw (v),
8824 value_offset (v),
8825 TYPE_LENGTH (value_type (v)));
8826
8827 if (transferred != TYPE_LENGTH (value_type (v)))
8828 error (_("Unable to read siginfo"));
8829 }
8830
8831 /* This function implements the lval_computed support for writing a
8832 $_siginfo value. */
8833
8834 static void
8835 siginfo_value_write (struct value *v, struct value *fromval)
8836 {
8837 LONGEST transferred;
8838
8839 /* If we can access registers, so can we access $_siginfo. Likewise
8840 vice versa. */
8841 validate_registers_access ();
8842
8843 transferred = target_write (current_top_target (),
8844 TARGET_OBJECT_SIGNAL_INFO,
8845 NULL,
8846 value_contents_all_raw (fromval),
8847 value_offset (v),
8848 TYPE_LENGTH (value_type (fromval)));
8849
8850 if (transferred != TYPE_LENGTH (value_type (fromval)))
8851 error (_("Unable to write siginfo"));
8852 }
8853
8854 static const struct lval_funcs siginfo_value_funcs =
8855 {
8856 siginfo_value_read,
8857 siginfo_value_write
8858 };
8859
8860 /* Return a new value with the correct type for the siginfo object of
8861 the current thread using architecture GDBARCH. Return a void value
8862 if there's no object available. */
8863
8864 static struct value *
8865 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8866 void *ignore)
8867 {
8868 if (target_has_stack
8869 && inferior_ptid != null_ptid
8870 && gdbarch_get_siginfo_type_p (gdbarch))
8871 {
8872 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8873
8874 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8875 }
8876
8877 return allocate_value (builtin_type (gdbarch)->builtin_void);
8878 }
8879
8880 \f
8881 /* infcall_suspend_state contains state about the program itself like its
8882 registers and any signal it received when it last stopped.
8883 This state must be restored regardless of how the inferior function call
8884 ends (either successfully, or after it hits a breakpoint or signal)
8885 if the program is to properly continue where it left off. */
8886
8887 class infcall_suspend_state
8888 {
8889 public:
8890 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8891 once the inferior function call has finished. */
8892 infcall_suspend_state (struct gdbarch *gdbarch,
8893 const struct thread_info *tp,
8894 struct regcache *regcache)
8895 : m_thread_suspend (tp->suspend),
8896 m_registers (new readonly_detached_regcache (*regcache))
8897 {
8898 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8899
8900 if (gdbarch_get_siginfo_type_p (gdbarch))
8901 {
8902 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8903 size_t len = TYPE_LENGTH (type);
8904
8905 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8906
8907 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8908 siginfo_data.get (), 0, len) != len)
8909 {
8910 /* Errors ignored. */
8911 siginfo_data.reset (nullptr);
8912 }
8913 }
8914
8915 if (siginfo_data)
8916 {
8917 m_siginfo_gdbarch = gdbarch;
8918 m_siginfo_data = std::move (siginfo_data);
8919 }
8920 }
8921
8922 /* Return a pointer to the stored register state. */
8923
8924 readonly_detached_regcache *registers () const
8925 {
8926 return m_registers.get ();
8927 }
8928
8929 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8930
8931 void restore (struct gdbarch *gdbarch,
8932 struct thread_info *tp,
8933 struct regcache *regcache) const
8934 {
8935 tp->suspend = m_thread_suspend;
8936
8937 if (m_siginfo_gdbarch == gdbarch)
8938 {
8939 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8940
8941 /* Errors ignored. */
8942 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8943 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8944 }
8945
8946 /* The inferior can be gone if the user types "print exit(0)"
8947 (and perhaps other times). */
8948 if (target_has_execution)
8949 /* NB: The register write goes through to the target. */
8950 regcache->restore (registers ());
8951 }
8952
8953 private:
8954 /* How the current thread stopped before the inferior function call was
8955 executed. */
8956 struct thread_suspend_state m_thread_suspend;
8957
8958 /* The registers before the inferior function call was executed. */
8959 std::unique_ptr<readonly_detached_regcache> m_registers;
8960
8961 /* Format of SIGINFO_DATA or NULL if it is not present. */
8962 struct gdbarch *m_siginfo_gdbarch = nullptr;
8963
8964 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8965 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8966 content would be invalid. */
8967 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8968 };
8969
8970 infcall_suspend_state_up
8971 save_infcall_suspend_state ()
8972 {
8973 struct thread_info *tp = inferior_thread ();
8974 struct regcache *regcache = get_current_regcache ();
8975 struct gdbarch *gdbarch = regcache->arch ();
8976
8977 infcall_suspend_state_up inf_state
8978 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8979
8980 /* Having saved the current state, adjust the thread state, discarding
8981 any stop signal information. The stop signal is not useful when
8982 starting an inferior function call, and run_inferior_call will not use
8983 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8984 tp->suspend.stop_signal = GDB_SIGNAL_0;
8985
8986 return inf_state;
8987 }
8988
8989 /* Restore inferior session state to INF_STATE. */
8990
8991 void
8992 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8993 {
8994 struct thread_info *tp = inferior_thread ();
8995 struct regcache *regcache = get_current_regcache ();
8996 struct gdbarch *gdbarch = regcache->arch ();
8997
8998 inf_state->restore (gdbarch, tp, regcache);
8999 discard_infcall_suspend_state (inf_state);
9000 }
9001
9002 void
9003 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9004 {
9005 delete inf_state;
9006 }
9007
9008 readonly_detached_regcache *
9009 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9010 {
9011 return inf_state->registers ();
9012 }
9013
9014 /* infcall_control_state contains state regarding gdb's control of the
9015 inferior itself like stepping control. It also contains session state like
9016 the user's currently selected frame. */
9017
9018 struct infcall_control_state
9019 {
9020 struct thread_control_state thread_control;
9021 struct inferior_control_state inferior_control;
9022
9023 /* Other fields: */
9024 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9025 int stopped_by_random_signal = 0;
9026
9027 /* ID if the selected frame when the inferior function call was made. */
9028 struct frame_id selected_frame_id {};
9029 };
9030
9031 /* Save all of the information associated with the inferior<==>gdb
9032 connection. */
9033
9034 infcall_control_state_up
9035 save_infcall_control_state ()
9036 {
9037 infcall_control_state_up inf_status (new struct infcall_control_state);
9038 struct thread_info *tp = inferior_thread ();
9039 struct inferior *inf = current_inferior ();
9040
9041 inf_status->thread_control = tp->control;
9042 inf_status->inferior_control = inf->control;
9043
9044 tp->control.step_resume_breakpoint = NULL;
9045 tp->control.exception_resume_breakpoint = NULL;
9046
9047 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9048 chain. If caller's caller is walking the chain, they'll be happier if we
9049 hand them back the original chain when restore_infcall_control_state is
9050 called. */
9051 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9052
9053 /* Other fields: */
9054 inf_status->stop_stack_dummy = stop_stack_dummy;
9055 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9056
9057 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9058
9059 return inf_status;
9060 }
9061
9062 static void
9063 restore_selected_frame (const frame_id &fid)
9064 {
9065 frame_info *frame = frame_find_by_id (fid);
9066
9067 /* If inf_status->selected_frame_id is NULL, there was no previously
9068 selected frame. */
9069 if (frame == NULL)
9070 {
9071 warning (_("Unable to restore previously selected frame."));
9072 return;
9073 }
9074
9075 select_frame (frame);
9076 }
9077
9078 /* Restore inferior session state to INF_STATUS. */
9079
9080 void
9081 restore_infcall_control_state (struct infcall_control_state *inf_status)
9082 {
9083 struct thread_info *tp = inferior_thread ();
9084 struct inferior *inf = current_inferior ();
9085
9086 if (tp->control.step_resume_breakpoint)
9087 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9088
9089 if (tp->control.exception_resume_breakpoint)
9090 tp->control.exception_resume_breakpoint->disposition
9091 = disp_del_at_next_stop;
9092
9093 /* Handle the bpstat_copy of the chain. */
9094 bpstat_clear (&tp->control.stop_bpstat);
9095
9096 tp->control = inf_status->thread_control;
9097 inf->control = inf_status->inferior_control;
9098
9099 /* Other fields: */
9100 stop_stack_dummy = inf_status->stop_stack_dummy;
9101 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9102
9103 if (target_has_stack)
9104 {
9105 /* The point of the try/catch is that if the stack is clobbered,
9106 walking the stack might encounter a garbage pointer and
9107 error() trying to dereference it. */
9108 try
9109 {
9110 restore_selected_frame (inf_status->selected_frame_id);
9111 }
9112 catch (const gdb_exception_error &ex)
9113 {
9114 exception_fprintf (gdb_stderr, ex,
9115 "Unable to restore previously selected frame:\n");
9116 /* Error in restoring the selected frame. Select the
9117 innermost frame. */
9118 select_frame (get_current_frame ());
9119 }
9120 }
9121
9122 delete inf_status;
9123 }
9124
9125 void
9126 discard_infcall_control_state (struct infcall_control_state *inf_status)
9127 {
9128 if (inf_status->thread_control.step_resume_breakpoint)
9129 inf_status->thread_control.step_resume_breakpoint->disposition
9130 = disp_del_at_next_stop;
9131
9132 if (inf_status->thread_control.exception_resume_breakpoint)
9133 inf_status->thread_control.exception_resume_breakpoint->disposition
9134 = disp_del_at_next_stop;
9135
9136 /* See save_infcall_control_state for info on stop_bpstat. */
9137 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9138
9139 delete inf_status;
9140 }
9141 \f
9142 /* See infrun.h. */
9143
9144 void
9145 clear_exit_convenience_vars (void)
9146 {
9147 clear_internalvar (lookup_internalvar ("_exitsignal"));
9148 clear_internalvar (lookup_internalvar ("_exitcode"));
9149 }
9150 \f
9151
9152 /* User interface for reverse debugging:
9153 Set exec-direction / show exec-direction commands
9154 (returns error unless target implements to_set_exec_direction method). */
9155
9156 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9157 static const char exec_forward[] = "forward";
9158 static const char exec_reverse[] = "reverse";
9159 static const char *exec_direction = exec_forward;
9160 static const char *const exec_direction_names[] = {
9161 exec_forward,
9162 exec_reverse,
9163 NULL
9164 };
9165
9166 static void
9167 set_exec_direction_func (const char *args, int from_tty,
9168 struct cmd_list_element *cmd)
9169 {
9170 if (target_can_execute_reverse)
9171 {
9172 if (!strcmp (exec_direction, exec_forward))
9173 execution_direction = EXEC_FORWARD;
9174 else if (!strcmp (exec_direction, exec_reverse))
9175 execution_direction = EXEC_REVERSE;
9176 }
9177 else
9178 {
9179 exec_direction = exec_forward;
9180 error (_("Target does not support this operation."));
9181 }
9182 }
9183
9184 static void
9185 show_exec_direction_func (struct ui_file *out, int from_tty,
9186 struct cmd_list_element *cmd, const char *value)
9187 {
9188 switch (execution_direction) {
9189 case EXEC_FORWARD:
9190 fprintf_filtered (out, _("Forward.\n"));
9191 break;
9192 case EXEC_REVERSE:
9193 fprintf_filtered (out, _("Reverse.\n"));
9194 break;
9195 default:
9196 internal_error (__FILE__, __LINE__,
9197 _("bogus execution_direction value: %d"),
9198 (int) execution_direction);
9199 }
9200 }
9201
9202 static void
9203 show_schedule_multiple (struct ui_file *file, int from_tty,
9204 struct cmd_list_element *c, const char *value)
9205 {
9206 fprintf_filtered (file, _("Resuming the execution of threads "
9207 "of all processes is %s.\n"), value);
9208 }
9209
9210 /* Implementation of `siginfo' variable. */
9211
9212 static const struct internalvar_funcs siginfo_funcs =
9213 {
9214 siginfo_make_value,
9215 NULL,
9216 NULL
9217 };
9218
9219 /* Callback for infrun's target events source. This is marked when a
9220 thread has a pending status to process. */
9221
9222 static void
9223 infrun_async_inferior_event_handler (gdb_client_data data)
9224 {
9225 inferior_event_handler (INF_REG_EVENT);
9226 }
9227
9228 void _initialize_infrun ();
9229 void
9230 _initialize_infrun ()
9231 {
9232 struct cmd_list_element *c;
9233
9234 /* Register extra event sources in the event loop. */
9235 infrun_async_inferior_event_token
9236 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9237
9238 add_info ("signals", info_signals_command, _("\
9239 What debugger does when program gets various signals.\n\
9240 Specify a signal as argument to print info on that signal only."));
9241 add_info_alias ("handle", "signals", 0);
9242
9243 c = add_com ("handle", class_run, handle_command, _("\
9244 Specify how to handle signals.\n\
9245 Usage: handle SIGNAL [ACTIONS]\n\
9246 Args are signals and actions to apply to those signals.\n\
9247 If no actions are specified, the current settings for the specified signals\n\
9248 will be displayed instead.\n\
9249 \n\
9250 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9251 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9252 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9253 The special arg \"all\" is recognized to mean all signals except those\n\
9254 used by the debugger, typically SIGTRAP and SIGINT.\n\
9255 \n\
9256 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9257 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9258 Stop means reenter debugger if this signal happens (implies print).\n\
9259 Print means print a message if this signal happens.\n\
9260 Pass means let program see this signal; otherwise program doesn't know.\n\
9261 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9262 Pass and Stop may be combined.\n\
9263 \n\
9264 Multiple signals may be specified. Signal numbers and signal names\n\
9265 may be interspersed with actions, with the actions being performed for\n\
9266 all signals cumulatively specified."));
9267 set_cmd_completer (c, handle_completer);
9268
9269 if (!dbx_commands)
9270 stop_command = add_cmd ("stop", class_obscure,
9271 not_just_help_class_command, _("\
9272 There is no `stop' command, but you can set a hook on `stop'.\n\
9273 This allows you to set a list of commands to be run each time execution\n\
9274 of the program stops."), &cmdlist);
9275
9276 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9277 Set inferior debugging."), _("\
9278 Show inferior debugging."), _("\
9279 When non-zero, inferior specific debugging is enabled."),
9280 NULL,
9281 show_debug_infrun,
9282 &setdebuglist, &showdebuglist);
9283
9284 add_setshow_boolean_cmd ("displaced", class_maintenance,
9285 &debug_displaced, _("\
9286 Set displaced stepping debugging."), _("\
9287 Show displaced stepping debugging."), _("\
9288 When non-zero, displaced stepping specific debugging is enabled."),
9289 NULL,
9290 show_debug_displaced,
9291 &setdebuglist, &showdebuglist);
9292
9293 add_setshow_boolean_cmd ("non-stop", no_class,
9294 &non_stop_1, _("\
9295 Set whether gdb controls the inferior in non-stop mode."), _("\
9296 Show whether gdb controls the inferior in non-stop mode."), _("\
9297 When debugging a multi-threaded program and this setting is\n\
9298 off (the default, also called all-stop mode), when one thread stops\n\
9299 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9300 all other threads in the program while you interact with the thread of\n\
9301 interest. When you continue or step a thread, you can allow the other\n\
9302 threads to run, or have them remain stopped, but while you inspect any\n\
9303 thread's state, all threads stop.\n\
9304 \n\
9305 In non-stop mode, when one thread stops, other threads can continue\n\
9306 to run freely. You'll be able to step each thread independently,\n\
9307 leave it stopped or free to run as needed."),
9308 set_non_stop,
9309 show_non_stop,
9310 &setlist,
9311 &showlist);
9312
9313 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9314 {
9315 signal_stop[i] = 1;
9316 signal_print[i] = 1;
9317 signal_program[i] = 1;
9318 signal_catch[i] = 0;
9319 }
9320
9321 /* Signals caused by debugger's own actions should not be given to
9322 the program afterwards.
9323
9324 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9325 explicitly specifies that it should be delivered to the target
9326 program. Typically, that would occur when a user is debugging a
9327 target monitor on a simulator: the target monitor sets a
9328 breakpoint; the simulator encounters this breakpoint and halts
9329 the simulation handing control to GDB; GDB, noting that the stop
9330 address doesn't map to any known breakpoint, returns control back
9331 to the simulator; the simulator then delivers the hardware
9332 equivalent of a GDB_SIGNAL_TRAP to the program being
9333 debugged. */
9334 signal_program[GDB_SIGNAL_TRAP] = 0;
9335 signal_program[GDB_SIGNAL_INT] = 0;
9336
9337 /* Signals that are not errors should not normally enter the debugger. */
9338 signal_stop[GDB_SIGNAL_ALRM] = 0;
9339 signal_print[GDB_SIGNAL_ALRM] = 0;
9340 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9341 signal_print[GDB_SIGNAL_VTALRM] = 0;
9342 signal_stop[GDB_SIGNAL_PROF] = 0;
9343 signal_print[GDB_SIGNAL_PROF] = 0;
9344 signal_stop[GDB_SIGNAL_CHLD] = 0;
9345 signal_print[GDB_SIGNAL_CHLD] = 0;
9346 signal_stop[GDB_SIGNAL_IO] = 0;
9347 signal_print[GDB_SIGNAL_IO] = 0;
9348 signal_stop[GDB_SIGNAL_POLL] = 0;
9349 signal_print[GDB_SIGNAL_POLL] = 0;
9350 signal_stop[GDB_SIGNAL_URG] = 0;
9351 signal_print[GDB_SIGNAL_URG] = 0;
9352 signal_stop[GDB_SIGNAL_WINCH] = 0;
9353 signal_print[GDB_SIGNAL_WINCH] = 0;
9354 signal_stop[GDB_SIGNAL_PRIO] = 0;
9355 signal_print[GDB_SIGNAL_PRIO] = 0;
9356
9357 /* These signals are used internally by user-level thread
9358 implementations. (See signal(5) on Solaris.) Like the above
9359 signals, a healthy program receives and handles them as part of
9360 its normal operation. */
9361 signal_stop[GDB_SIGNAL_LWP] = 0;
9362 signal_print[GDB_SIGNAL_LWP] = 0;
9363 signal_stop[GDB_SIGNAL_WAITING] = 0;
9364 signal_print[GDB_SIGNAL_WAITING] = 0;
9365 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9366 signal_print[GDB_SIGNAL_CANCEL] = 0;
9367 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9368 signal_print[GDB_SIGNAL_LIBRT] = 0;
9369
9370 /* Update cached state. */
9371 signal_cache_update (-1);
9372
9373 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9374 &stop_on_solib_events, _("\
9375 Set stopping for shared library events."), _("\
9376 Show stopping for shared library events."), _("\
9377 If nonzero, gdb will give control to the user when the dynamic linker\n\
9378 notifies gdb of shared library events. The most common event of interest\n\
9379 to the user would be loading/unloading of a new library."),
9380 set_stop_on_solib_events,
9381 show_stop_on_solib_events,
9382 &setlist, &showlist);
9383
9384 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9385 follow_fork_mode_kind_names,
9386 &follow_fork_mode_string, _("\
9387 Set debugger response to a program call of fork or vfork."), _("\
9388 Show debugger response to a program call of fork or vfork."), _("\
9389 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9390 parent - the original process is debugged after a fork\n\
9391 child - the new process is debugged after a fork\n\
9392 The unfollowed process will continue to run.\n\
9393 By default, the debugger will follow the parent process."),
9394 NULL,
9395 show_follow_fork_mode_string,
9396 &setlist, &showlist);
9397
9398 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9399 follow_exec_mode_names,
9400 &follow_exec_mode_string, _("\
9401 Set debugger response to a program call of exec."), _("\
9402 Show debugger response to a program call of exec."), _("\
9403 An exec call replaces the program image of a process.\n\
9404 \n\
9405 follow-exec-mode can be:\n\
9406 \n\
9407 new - the debugger creates a new inferior and rebinds the process\n\
9408 to this new inferior. The program the process was running before\n\
9409 the exec call can be restarted afterwards by restarting the original\n\
9410 inferior.\n\
9411 \n\
9412 same - the debugger keeps the process bound to the same inferior.\n\
9413 The new executable image replaces the previous executable loaded in\n\
9414 the inferior. Restarting the inferior after the exec call restarts\n\
9415 the executable the process was running after the exec call.\n\
9416 \n\
9417 By default, the debugger will use the same inferior."),
9418 NULL,
9419 show_follow_exec_mode_string,
9420 &setlist, &showlist);
9421
9422 add_setshow_enum_cmd ("scheduler-locking", class_run,
9423 scheduler_enums, &scheduler_mode, _("\
9424 Set mode for locking scheduler during execution."), _("\
9425 Show mode for locking scheduler during execution."), _("\
9426 off == no locking (threads may preempt at any time)\n\
9427 on == full locking (no thread except the current thread may run)\n\
9428 This applies to both normal execution and replay mode.\n\
9429 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9430 In this mode, other threads may run during other commands.\n\
9431 This applies to both normal execution and replay mode.\n\
9432 replay == scheduler locked in replay mode and unlocked during normal execution."),
9433 set_schedlock_func, /* traps on target vector */
9434 show_scheduler_mode,
9435 &setlist, &showlist);
9436
9437 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9438 Set mode for resuming threads of all processes."), _("\
9439 Show mode for resuming threads of all processes."), _("\
9440 When on, execution commands (such as 'continue' or 'next') resume all\n\
9441 threads of all processes. When off (which is the default), execution\n\
9442 commands only resume the threads of the current process. The set of\n\
9443 threads that are resumed is further refined by the scheduler-locking\n\
9444 mode (see help set scheduler-locking)."),
9445 NULL,
9446 show_schedule_multiple,
9447 &setlist, &showlist);
9448
9449 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9450 Set mode of the step operation."), _("\
9451 Show mode of the step operation."), _("\
9452 When set, doing a step over a function without debug line information\n\
9453 will stop at the first instruction of that function. Otherwise, the\n\
9454 function is skipped and the step command stops at a different source line."),
9455 NULL,
9456 show_step_stop_if_no_debug,
9457 &setlist, &showlist);
9458
9459 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9460 &can_use_displaced_stepping, _("\
9461 Set debugger's willingness to use displaced stepping."), _("\
9462 Show debugger's willingness to use displaced stepping."), _("\
9463 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9464 supported by the target architecture. If off, gdb will not use displaced\n\
9465 stepping to step over breakpoints, even if such is supported by the target\n\
9466 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9467 if the target architecture supports it and non-stop mode is active, but will not\n\
9468 use it in all-stop mode (see help set non-stop)."),
9469 NULL,
9470 show_can_use_displaced_stepping,
9471 &setlist, &showlist);
9472
9473 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9474 &exec_direction, _("Set direction of execution.\n\
9475 Options are 'forward' or 'reverse'."),
9476 _("Show direction of execution (forward/reverse)."),
9477 _("Tells gdb whether to execute forward or backward."),
9478 set_exec_direction_func, show_exec_direction_func,
9479 &setlist, &showlist);
9480
9481 /* Set/show detach-on-fork: user-settable mode. */
9482
9483 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9484 Set whether gdb will detach the child of a fork."), _("\
9485 Show whether gdb will detach the child of a fork."), _("\
9486 Tells gdb whether to detach the child of a fork."),
9487 NULL, NULL, &setlist, &showlist);
9488
9489 /* Set/show disable address space randomization mode. */
9490
9491 add_setshow_boolean_cmd ("disable-randomization", class_support,
9492 &disable_randomization, _("\
9493 Set disabling of debuggee's virtual address space randomization."), _("\
9494 Show disabling of debuggee's virtual address space randomization."), _("\
9495 When this mode is on (which is the default), randomization of the virtual\n\
9496 address space is disabled. Standalone programs run with the randomization\n\
9497 enabled by default on some platforms."),
9498 &set_disable_randomization,
9499 &show_disable_randomization,
9500 &setlist, &showlist);
9501
9502 /* ptid initializations */
9503 inferior_ptid = null_ptid;
9504 target_last_wait_ptid = minus_one_ptid;
9505
9506 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9507 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9508 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9509 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9510
9511 /* Explicitly create without lookup, since that tries to create a
9512 value with a void typed value, and when we get here, gdbarch
9513 isn't initialized yet. At this point, we're quite sure there
9514 isn't another convenience variable of the same name. */
9515 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9516
9517 add_setshow_boolean_cmd ("observer", no_class,
9518 &observer_mode_1, _("\
9519 Set whether gdb controls the inferior in observer mode."), _("\
9520 Show whether gdb controls the inferior in observer mode."), _("\
9521 In observer mode, GDB can get data from the inferior, but not\n\
9522 affect its execution. Registers and memory may not be changed,\n\
9523 breakpoints may not be set, and the program cannot be interrupted\n\
9524 or signalled."),
9525 set_observer_mode,
9526 show_observer_mode,
9527 &setlist,
9528 &showlist);
9529 }
This page took 0.242933 seconds and 4 git commands to generate.