gdb: add logging in fetch_inferior_event to see the result of do_target_wait
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "gdbsupport/common-defs.h"
24 #include "gdbsupport/common-utils.h"
25 #include "infrun.h"
26 #include <ctype.h>
27 #include "symtab.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "breakpoint.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "target-connection.h"
35 #include "gdbthread.h"
36 #include "annotate.h"
37 #include "symfile.h"
38 #include "top.h"
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "utils.h"
42 #include "value.h"
43 #include "observable.h"
44 #include "language.h"
45 #include "solib.h"
46 #include "main.h"
47 #include "block.h"
48 #include "mi/mi-common.h"
49 #include "event-top.h"
50 #include "record.h"
51 #include "record-full.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "skip.h"
56 #include "probe.h"
57 #include "objfiles.h"
58 #include "completer.h"
59 #include "target-descriptions.h"
60 #include "target-dcache.h"
61 #include "terminal.h"
62 #include "solist.h"
63 #include "gdbsupport/event-loop.h"
64 #include "thread-fsm.h"
65 #include "gdbsupport/enum-flags.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "arch-utils.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/forward-scope-exit.h"
71 #include "gdbsupport/gdb_select.h"
72 #include <unordered_map>
73 #include "async-event.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 #define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108 static void ATTRIBUTE_PRINTF(3, 4)
109 infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111 {
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 infrun_async (int enable)
127 {
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
132 infrun_log_debug ("enable=%d", enable);
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139 }
140
141 /* See infrun.h. */
142
143 void
144 mark_infrun_async_event_handler (void)
145 {
146 mark_async_event_handler (infrun_async_inferior_event_token);
147 }
148
149 /* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
152 bool step_stop_if_no_debug = false;
153 static void
154 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158 }
159
160 /* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
163
164 static ptid_t previous_inferior_ptid;
165
166 /* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
171 static bool detach_fork = true;
172
173 bool debug_displaced = false;
174 static void
175 show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179 }
180
181 unsigned int debug_infrun = 0;
182 static void
183 show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187 }
188
189
190 /* Support for disabling address space randomization. */
191
192 bool disable_randomization = true;
193
194 static void
195 show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207 }
208
209 static void
210 set_disable_randomization (const char *args, int from_tty,
211 struct cmd_list_element *c)
212 {
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217 }
218
219 /* User interface for non-stop mode. */
220
221 bool non_stop = false;
222 static bool non_stop_1 = false;
223
224 static void
225 set_non_stop (const char *args, int from_tty,
226 struct cmd_list_element *c)
227 {
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235 }
236
237 static void
238 show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244 }
245
246 /* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
250 bool observer_mode = false;
251 static bool observer_mode_1 = false;
252
253 static void
254 set_observer_mode (const char *args, int from_tty,
255 struct cmd_list_element *c)
256 {
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
272 may_insert_fast_tracepoints = true;
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
280 pagination_enabled = 0;
281 non_stop = non_stop_1 = true;
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287 }
288
289 static void
290 show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292 {
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294 }
295
296 /* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302 void
303 update_observer_mode (void)
304 {
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char signal_stop[GDB_SIGNAL_LAST];
322 static unsigned char signal_print[GDB_SIGNAL_LAST];
323 static unsigned char signal_program[GDB_SIGNAL_LAST];
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. */
328 static unsigned char signal_catch[GDB_SIGNAL_LAST];
329
330 /* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
333 static unsigned char signal_pass[GDB_SIGNAL_LAST];
334
335 #define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343 #define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
351 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354 void
355 update_signals_program_target (void)
356 {
357 target_program_signals (signal_program);
358 }
359
360 /* Value to pass to target_resume() to cause all threads to resume. */
361
362 #define RESUME_ALL minus_one_ptid
363
364 /* Command list pointer for the "stop" placeholder. */
365
366 static struct cmd_list_element *stop_command;
367
368 /* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
370 int stop_on_solib_events;
371
372 /* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375 static void
376 set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397 static process_stratum_target *target_last_proc_target;
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 void init_thread_stepping_state (struct thread_info *tss);
402
403 static const char follow_fork_mode_child[] = "child";
404 static const char follow_fork_mode_parent[] = "parent";
405
406 static const char *const follow_fork_mode_kind_names[] = {
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
410 };
411
412 static const char *follow_fork_mode_string = follow_fork_mode_parent;
413 static void
414 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416 {
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
420 value);
421 }
422 \f
423
424 /* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
430 static bool
431 follow_fork_inferior (bool follow_child, bool detach_fork)
432 {
433 int has_vforked;
434 ptid_t parent_ptid, child_ptid;
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
443 && current_ui->prompt_state == PROMPT_BLOCKED
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452 Can not resume the parent process over vfork in the foreground while\n\
453 holding the child stopped. Try \"set detach-on-fork\" or \
454 \"set schedule-multiple\".\n"));
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_inf (current_inferior ());
474 }
475
476 if (print_inferior_events)
477 {
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
480
481 target_terminal::ours_for_output ();
482 fprintf_filtered (gdb_stdlog,
483 _("[Detaching after %s from child %s]\n"),
484 has_vforked ? "vfork" : "fork",
485 target_pid_to_str (process_ptid).c_str ());
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (child_ptid.pid ());
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
502
503 set_current_inferior (child_inf);
504 switch_to_no_thread ();
505 child_inf->symfile_flags = SYMFILE_NO_READ;
506 push_target (parent_inf->process_target ());
507 thread_info *child_thr
508 = add_thread_silent (child_inf->process_target (), child_ptid);
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
517 exec_on_vfork ();
518
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
526
527 /* Now that the inferiors and program spaces are all
528 wired up, we can switch to the child thread (which
529 switches inferior and program space too). */
530 switch_to_thread (child_thr);
531 }
532 else
533 {
534 child_inf->aspace = new_address_space ();
535 child_inf->pspace = new program_space (child_inf->aspace);
536 child_inf->removable = 1;
537 set_current_program_space (child_inf->pspace);
538 clone_program_space (child_inf->pspace, parent_inf->pspace);
539
540 /* solib_create_inferior_hook relies on the current
541 thread. */
542 switch_to_thread (child_thr);
543
544 /* Let the shared library layer (e.g., solib-svr4) learn
545 about this new process, relocate the cloned exec, pull
546 in shared libraries, and install the solib event
547 breakpoint. If a "cloned-VM" event was propagated
548 better throughout the core, this wouldn't be
549 required. */
550 solib_create_inferior_hook (0);
551 }
552 }
553
554 if (has_vforked)
555 {
556 struct inferior *parent_inf;
557
558 parent_inf = current_inferior ();
559
560 /* If we detached from the child, then we have to be careful
561 to not insert breakpoints in the parent until the child
562 is done with the shared memory region. However, if we're
563 staying attached to the child, then we can and should
564 insert breakpoints, so that we can debug it. A
565 subsequent child exec or exit is enough to know when does
566 the child stops using the parent's address space. */
567 parent_inf->waiting_for_vfork_done = detach_fork;
568 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
569 }
570 }
571 else
572 {
573 /* Follow the child. */
574 struct inferior *parent_inf, *child_inf;
575 struct program_space *parent_pspace;
576
577 if (print_inferior_events)
578 {
579 std::string parent_pid = target_pid_to_str (parent_ptid);
580 std::string child_pid = target_pid_to_str (child_ptid);
581
582 target_terminal::ours_for_output ();
583 fprintf_filtered (gdb_stdlog,
584 _("[Attaching after %s %s to child %s]\n"),
585 parent_pid.c_str (),
586 has_vforked ? "vfork" : "fork",
587 child_pid.c_str ());
588 }
589
590 /* Add the new inferior first, so that the target_detach below
591 doesn't unpush the target. */
592
593 child_inf = add_inferior (child_ptid.pid ());
594
595 parent_inf = current_inferior ();
596 child_inf->attach_flag = parent_inf->attach_flag;
597 copy_terminal_info (child_inf, parent_inf);
598 child_inf->gdbarch = parent_inf->gdbarch;
599 copy_inferior_target_desc_info (child_inf, parent_inf);
600
601 parent_pspace = parent_inf->pspace;
602
603 process_stratum_target *target = parent_inf->process_target ();
604
605 {
606 /* Hold a strong reference to the target while (maybe)
607 detaching the parent. Otherwise detaching could close the
608 target. */
609 auto target_ref = target_ops_ref::new_reference (target);
610
611 /* If we're vforking, we want to hold on to the parent until
612 the child exits or execs. At child exec or exit time we
613 can remove the old breakpoints from the parent and detach
614 or resume debugging it. Otherwise, detach the parent now;
615 we'll want to reuse it's program/address spaces, but we
616 can't set them to the child before removing breakpoints
617 from the parent, otherwise, the breakpoints module could
618 decide to remove breakpoints from the wrong process (since
619 they'd be assigned to the same address space). */
620
621 if (has_vforked)
622 {
623 gdb_assert (child_inf->vfork_parent == NULL);
624 gdb_assert (parent_inf->vfork_child == NULL);
625 child_inf->vfork_parent = parent_inf;
626 child_inf->pending_detach = 0;
627 parent_inf->vfork_child = child_inf;
628 parent_inf->pending_detach = detach_fork;
629 parent_inf->waiting_for_vfork_done = 0;
630 }
631 else if (detach_fork)
632 {
633 if (print_inferior_events)
634 {
635 /* Ensure that we have a process ptid. */
636 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
637
638 target_terminal::ours_for_output ();
639 fprintf_filtered (gdb_stdlog,
640 _("[Detaching after fork from "
641 "parent %s]\n"),
642 target_pid_to_str (process_ptid).c_str ());
643 }
644
645 target_detach (parent_inf, 0);
646 parent_inf = NULL;
647 }
648
649 /* Note that the detach above makes PARENT_INF dangling. */
650
651 /* Add the child thread to the appropriate lists, and switch
652 to this new thread, before cloning the program space, and
653 informing the solib layer about this new process. */
654
655 set_current_inferior (child_inf);
656 push_target (target);
657 }
658
659 thread_info *child_thr = add_thread_silent (target, child_ptid);
660
661 /* If this is a vfork child, then the address-space is shared
662 with the parent. If we detached from the parent, then we can
663 reuse the parent's program/address spaces. */
664 if (has_vforked || detach_fork)
665 {
666 child_inf->pspace = parent_pspace;
667 child_inf->aspace = child_inf->pspace->aspace;
668
669 exec_on_vfork ();
670 }
671 else
672 {
673 child_inf->aspace = new_address_space ();
674 child_inf->pspace = new program_space (child_inf->aspace);
675 child_inf->removable = 1;
676 child_inf->symfile_flags = SYMFILE_NO_READ;
677 set_current_program_space (child_inf->pspace);
678 clone_program_space (child_inf->pspace, parent_pspace);
679
680 /* Let the shared library layer (e.g., solib-svr4) learn
681 about this new process, relocate the cloned exec, pull in
682 shared libraries, and install the solib event breakpoint.
683 If a "cloned-VM" event was propagated better throughout
684 the core, this wouldn't be required. */
685 solib_create_inferior_hook (0);
686 }
687
688 switch_to_thread (child_thr);
689 }
690
691 return target_follow_fork (follow_child, detach_fork);
692 }
693
694 /* Tell the target to follow the fork we're stopped at. Returns true
695 if the inferior should be resumed; false, if the target for some
696 reason decided it's best not to resume. */
697
698 static bool
699 follow_fork ()
700 {
701 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
702 bool should_resume = true;
703 struct thread_info *tp;
704
705 /* Copy user stepping state to the new inferior thread. FIXME: the
706 followed fork child thread should have a copy of most of the
707 parent thread structure's run control related fields, not just these.
708 Initialized to avoid "may be used uninitialized" warnings from gcc. */
709 struct breakpoint *step_resume_breakpoint = NULL;
710 struct breakpoint *exception_resume_breakpoint = NULL;
711 CORE_ADDR step_range_start = 0;
712 CORE_ADDR step_range_end = 0;
713 int current_line = 0;
714 symtab *current_symtab = NULL;
715 struct frame_id step_frame_id = { 0 };
716 struct thread_fsm *thread_fsm = NULL;
717
718 if (!non_stop)
719 {
720 process_stratum_target *wait_target;
721 ptid_t wait_ptid;
722 struct target_waitstatus wait_status;
723
724 /* Get the last target status returned by target_wait(). */
725 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
726
727 /* If not stopped at a fork event, then there's nothing else to
728 do. */
729 if (wait_status.kind != TARGET_WAITKIND_FORKED
730 && wait_status.kind != TARGET_WAITKIND_VFORKED)
731 return 1;
732
733 /* Check if we switched over from WAIT_PTID, since the event was
734 reported. */
735 if (wait_ptid != minus_one_ptid
736 && (current_inferior ()->process_target () != wait_target
737 || inferior_ptid != wait_ptid))
738 {
739 /* We did. Switch back to WAIT_PTID thread, to tell the
740 target to follow it (in either direction). We'll
741 afterwards refuse to resume, and inform the user what
742 happened. */
743 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
744 switch_to_thread (wait_thread);
745 should_resume = false;
746 }
747 }
748
749 tp = inferior_thread ();
750
751 /* If there were any forks/vforks that were caught and are now to be
752 followed, then do so now. */
753 switch (tp->pending_follow.kind)
754 {
755 case TARGET_WAITKIND_FORKED:
756 case TARGET_WAITKIND_VFORKED:
757 {
758 ptid_t parent, child;
759
760 /* If the user did a next/step, etc, over a fork call,
761 preserve the stepping state in the fork child. */
762 if (follow_child && should_resume)
763 {
764 step_resume_breakpoint = clone_momentary_breakpoint
765 (tp->control.step_resume_breakpoint);
766 step_range_start = tp->control.step_range_start;
767 step_range_end = tp->control.step_range_end;
768 current_line = tp->current_line;
769 current_symtab = tp->current_symtab;
770 step_frame_id = tp->control.step_frame_id;
771 exception_resume_breakpoint
772 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
773 thread_fsm = tp->thread_fsm;
774
775 /* For now, delete the parent's sr breakpoint, otherwise,
776 parent/child sr breakpoints are considered duplicates,
777 and the child version will not be installed. Remove
778 this when the breakpoints module becomes aware of
779 inferiors and address spaces. */
780 delete_step_resume_breakpoint (tp);
781 tp->control.step_range_start = 0;
782 tp->control.step_range_end = 0;
783 tp->control.step_frame_id = null_frame_id;
784 delete_exception_resume_breakpoint (tp);
785 tp->thread_fsm = NULL;
786 }
787
788 parent = inferior_ptid;
789 child = tp->pending_follow.value.related_pid;
790
791 process_stratum_target *parent_targ = tp->inf->process_target ();
792 /* Set up inferior(s) as specified by the caller, and tell the
793 target to do whatever is necessary to follow either parent
794 or child. */
795 if (follow_fork_inferior (follow_child, detach_fork))
796 {
797 /* Target refused to follow, or there's some other reason
798 we shouldn't resume. */
799 should_resume = 0;
800 }
801 else
802 {
803 /* This pending follow fork event is now handled, one way
804 or another. The previous selected thread may be gone
805 from the lists by now, but if it is still around, need
806 to clear the pending follow request. */
807 tp = find_thread_ptid (parent_targ, parent);
808 if (tp)
809 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
810
811 /* This makes sure we don't try to apply the "Switched
812 over from WAIT_PID" logic above. */
813 nullify_last_target_wait_ptid ();
814
815 /* If we followed the child, switch to it... */
816 if (follow_child)
817 {
818 thread_info *child_thr = find_thread_ptid (parent_targ, child);
819 switch_to_thread (child_thr);
820
821 /* ... and preserve the stepping state, in case the
822 user was stepping over the fork call. */
823 if (should_resume)
824 {
825 tp = inferior_thread ();
826 tp->control.step_resume_breakpoint
827 = step_resume_breakpoint;
828 tp->control.step_range_start = step_range_start;
829 tp->control.step_range_end = step_range_end;
830 tp->current_line = current_line;
831 tp->current_symtab = current_symtab;
832 tp->control.step_frame_id = step_frame_id;
833 tp->control.exception_resume_breakpoint
834 = exception_resume_breakpoint;
835 tp->thread_fsm = thread_fsm;
836 }
837 else
838 {
839 /* If we get here, it was because we're trying to
840 resume from a fork catchpoint, but, the user
841 has switched threads away from the thread that
842 forked. In that case, the resume command
843 issued is most likely not applicable to the
844 child, so just warn, and refuse to resume. */
845 warning (_("Not resuming: switched threads "
846 "before following fork child."));
847 }
848
849 /* Reset breakpoints in the child as appropriate. */
850 follow_inferior_reset_breakpoints ();
851 }
852 }
853 }
854 break;
855 case TARGET_WAITKIND_SPURIOUS:
856 /* Nothing to follow. */
857 break;
858 default:
859 internal_error (__FILE__, __LINE__,
860 "Unexpected pending_follow.kind %d\n",
861 tp->pending_follow.kind);
862 break;
863 }
864
865 return should_resume;
866 }
867
868 static void
869 follow_inferior_reset_breakpoints (void)
870 {
871 struct thread_info *tp = inferior_thread ();
872
873 /* Was there a step_resume breakpoint? (There was if the user
874 did a "next" at the fork() call.) If so, explicitly reset its
875 thread number. Cloned step_resume breakpoints are disabled on
876 creation, so enable it here now that it is associated with the
877 correct thread.
878
879 step_resumes are a form of bp that are made to be per-thread.
880 Since we created the step_resume bp when the parent process
881 was being debugged, and now are switching to the child process,
882 from the breakpoint package's viewpoint, that's a switch of
883 "threads". We must update the bp's notion of which thread
884 it is for, or it'll be ignored when it triggers. */
885
886 if (tp->control.step_resume_breakpoint)
887 {
888 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
889 tp->control.step_resume_breakpoint->loc->enabled = 1;
890 }
891
892 /* Treat exception_resume breakpoints like step_resume breakpoints. */
893 if (tp->control.exception_resume_breakpoint)
894 {
895 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
896 tp->control.exception_resume_breakpoint->loc->enabled = 1;
897 }
898
899 /* Reinsert all breakpoints in the child. The user may have set
900 breakpoints after catching the fork, in which case those
901 were never set in the child, but only in the parent. This makes
902 sure the inserted breakpoints match the breakpoint list. */
903
904 breakpoint_re_set ();
905 insert_breakpoints ();
906 }
907
908 /* The child has exited or execed: resume threads of the parent the
909 user wanted to be executing. */
910
911 static int
912 proceed_after_vfork_done (struct thread_info *thread,
913 void *arg)
914 {
915 int pid = * (int *) arg;
916
917 if (thread->ptid.pid () == pid
918 && thread->state == THREAD_RUNNING
919 && !thread->executing
920 && !thread->stop_requested
921 && thread->suspend.stop_signal == GDB_SIGNAL_0)
922 {
923 infrun_log_debug ("resuming vfork parent thread %s",
924 target_pid_to_str (thread->ptid).c_str ());
925
926 switch_to_thread (thread);
927 clear_proceed_status (0);
928 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
929 }
930
931 return 0;
932 }
933
934 /* Called whenever we notice an exec or exit event, to handle
935 detaching or resuming a vfork parent. */
936
937 static void
938 handle_vfork_child_exec_or_exit (int exec)
939 {
940 struct inferior *inf = current_inferior ();
941
942 if (inf->vfork_parent)
943 {
944 int resume_parent = -1;
945
946 /* This exec or exit marks the end of the shared memory region
947 between the parent and the child. Break the bonds. */
948 inferior *vfork_parent = inf->vfork_parent;
949 inf->vfork_parent->vfork_child = NULL;
950 inf->vfork_parent = NULL;
951
952 /* If the user wanted to detach from the parent, now is the
953 time. */
954 if (vfork_parent->pending_detach)
955 {
956 struct program_space *pspace;
957 struct address_space *aspace;
958
959 /* follow-fork child, detach-on-fork on. */
960
961 vfork_parent->pending_detach = 0;
962
963 scoped_restore_current_pspace_and_thread restore_thread;
964
965 /* We're letting loose of the parent. */
966 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
967 switch_to_thread (tp);
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
986 if (print_inferior_events)
987 {
988 std::string pidstr
989 = target_pid_to_str (ptid_t (vfork_parent->pid));
990
991 target_terminal::ours_for_output ();
992
993 if (exec)
994 {
995 fprintf_filtered (gdb_stdlog,
996 _("[Detaching vfork parent %s "
997 "after child exec]\n"), pidstr.c_str ());
998 }
999 else
1000 {
1001 fprintf_filtered (gdb_stdlog,
1002 _("[Detaching vfork parent %s "
1003 "after child exit]\n"), pidstr.c_str ());
1004 }
1005 }
1006
1007 target_detach (vfork_parent, 0);
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
1017 inf->pspace = new program_space (maybe_new_address_space ());
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
1022 resume_parent = vfork_parent->pid;
1023 }
1024 else
1025 {
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
1035 /* Switch to no-thread while running clone_program_space, so
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
1038 scoped_restore_current_thread restore_thread;
1039 switch_to_no_thread ();
1040
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
1044 inf->removable = 1;
1045 inf->symfile_flags = SYMFILE_NO_READ;
1046 clone_program_space (inf->pspace, vfork_parent->pspace);
1047
1048 resume_parent = vfork_parent->pid;
1049 }
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 scoped_restore_current_thread restore_thread;
1058
1059 infrun_log_debug ("resuming vfork parent process %d",
1060 resume_parent);
1061
1062 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1063 }
1064 }
1065 }
1066
1067 /* Enum strings for "set|show follow-exec-mode". */
1068
1069 static const char follow_exec_mode_new[] = "new";
1070 static const char follow_exec_mode_same[] = "same";
1071 static const char *const follow_exec_mode_names[] =
1072 {
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076 };
1077
1078 static const char *follow_exec_mode_string = follow_exec_mode_same;
1079 static void
1080 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082 {
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084 }
1085
1086 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1087
1088 static void
1089 follow_exec (ptid_t ptid, const char *exec_file_target)
1090 {
1091 struct inferior *inf = current_inferior ();
1092 int pid = ptid.pid ();
1093 ptid_t process_ptid;
1094
1095 /* Switch terminal for any messages produced e.g. by
1096 breakpoint_re_set. */
1097 target_terminal::ours_for_output ();
1098
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten with a TRAP instruction). Since
1118 we now have a new a.out, those shadow contents aren't valid. */
1119
1120 mark_breakpoints_out ();
1121
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
1141 for (thread_info *th : all_threads_safe ())
1142 if (th->ptid.pid () == pid && th->ptid != ptid)
1143 delete_thread (th);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 thread_info *th = inferior_thread ();
1150 th->control.step_resume_breakpoint = NULL;
1151 th->control.exception_resume_breakpoint = NULL;
1152 th->control.single_step_breakpoints = NULL;
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
1155
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
1159 th->stop_requested = 0;
1160
1161 update_breakpoints_after_exec ();
1162
1163 /* What is this a.out's name? */
1164 process_ptid = ptid_t (pid);
1165 printf_unfiltered (_("%s is executing new program: %s\n"),
1166 target_pid_to_str (process_ptid).c_str (),
1167 exec_file_target);
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1170 inferior has essentially been killed & reborn. */
1171
1172 breakpoint_init_inferior (inf_execd);
1173
1174 gdb::unique_xmalloc_ptr<char> exec_file_host
1175 = exec_file_find (exec_file_target, NULL);
1176
1177 /* If we were unable to map the executable target pathname onto a host
1178 pathname, tell the user that. Otherwise GDB's subsequent behavior
1179 is confusing. Maybe it would even be better to stop at this point
1180 so that the user can specify a file manually before continuing. */
1181 if (exec_file_host == NULL)
1182 warning (_("Could not load symbols for executable %s.\n"
1183 "Do you need \"set sysroot\"?"),
1184 exec_file_target);
1185
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
1199 /* Do exit processing for the original inferior before setting the new
1200 inferior's pid. Having two inferiors with the same pid would confuse
1201 find_inferior_p(t)id. Transfer the terminal state and info from the
1202 old to the new inferior. */
1203 inf = add_inferior_with_spaces ();
1204 swap_terminal_info (inf, current_inferior ());
1205 exit_inferior_silent (current_inferior ());
1206
1207 inf->pid = pid;
1208 target_follow_exec (inf, exec_file_target);
1209
1210 inferior *org_inferior = current_inferior ();
1211 switch_to_inferior_no_thread (inf);
1212 push_target (org_inferior->process_target ());
1213 thread_info *thr = add_thread (inf->process_target (), ptid);
1214 switch_to_thread (thr);
1215 }
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
1234 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1235
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
1244 solib_create_inferior_hook (0);
1245
1246 jit_inferior_created_hook ();
1247
1248 breakpoint_re_set ();
1249
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1252 to symbol_file_command...). */
1253 insert_breakpoints ();
1254
1255 gdb::observers::inferior_execd.notify (inf);
1256
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1260 matically get reset there in the new process.). */
1261 }
1262
1263 /* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
1270 struct thread_info *global_thread_step_over_chain_head;
1271
1272 /* Bit flags indicating what the thread needs to step over. */
1273
1274 enum step_over_what_flag
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
1284 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1285
1286 /* Info about an instruction that is being stepped over. */
1287
1288 struct step_over_info
1289 {
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
1294 const address_space *aspace;
1295 CORE_ADDR address;
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
1300
1301 /* The thread's global number. */
1302 int thread;
1303 };
1304
1305 /* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329 static struct step_over_info step_over_info;
1330
1331 /* Record the address of the breakpoint/instruction we're currently
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
1335
1336 static void
1337 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1338 int nonsteppable_watchpoint_p,
1339 int thread)
1340 {
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1344 step_over_info.thread = thread;
1345 }
1346
1347 /* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350 static void
1351 clear_step_over_info (void)
1352 {
1353 infrun_log_debug ("clearing step over info");
1354 step_over_info.aspace = NULL;
1355 step_over_info.address = 0;
1356 step_over_info.nonsteppable_watchpoint_p = 0;
1357 step_over_info.thread = -1;
1358 }
1359
1360 /* See infrun.h. */
1361
1362 int
1363 stepping_past_instruction_at (struct address_space *aspace,
1364 CORE_ADDR address)
1365 {
1366 return (step_over_info.aspace != NULL
1367 && breakpoint_address_match (aspace, address,
1368 step_over_info.aspace,
1369 step_over_info.address));
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 thread_is_stepping_over_breakpoint (int thread)
1376 {
1377 return (step_over_info.thread != -1
1378 && thread == step_over_info.thread);
1379 }
1380
1381 /* See infrun.h. */
1382
1383 int
1384 stepping_past_nonsteppable_watchpoint (void)
1385 {
1386 return step_over_info.nonsteppable_watchpoint_p;
1387 }
1388
1389 /* Returns true if step-over info is valid. */
1390
1391 static int
1392 step_over_info_valid_p (void)
1393 {
1394 return (step_over_info.aspace != NULL
1395 || stepping_past_nonsteppable_watchpoint ());
1396 }
1397
1398 \f
1399 /* Displaced stepping. */
1400
1401 /* In non-stop debugging mode, we must take special care to manage
1402 breakpoints properly; in particular, the traditional strategy for
1403 stepping a thread past a breakpoint it has hit is unsuitable.
1404 'Displaced stepping' is a tactic for stepping one thread past a
1405 breakpoint it has hit while ensuring that other threads running
1406 concurrently will hit the breakpoint as they should.
1407
1408 The traditional way to step a thread T off a breakpoint in a
1409 multi-threaded program in all-stop mode is as follows:
1410
1411 a0) Initially, all threads are stopped, and breakpoints are not
1412 inserted.
1413 a1) We single-step T, leaving breakpoints uninserted.
1414 a2) We insert breakpoints, and resume all threads.
1415
1416 In non-stop debugging, however, this strategy is unsuitable: we
1417 don't want to have to stop all threads in the system in order to
1418 continue or step T past a breakpoint. Instead, we use displaced
1419 stepping:
1420
1421 n0) Initially, T is stopped, other threads are running, and
1422 breakpoints are inserted.
1423 n1) We copy the instruction "under" the breakpoint to a separate
1424 location, outside the main code stream, making any adjustments
1425 to the instruction, register, and memory state as directed by
1426 T's architecture.
1427 n2) We single-step T over the instruction at its new location.
1428 n3) We adjust the resulting register and memory state as directed
1429 by T's architecture. This includes resetting T's PC to point
1430 back into the main instruction stream.
1431 n4) We resume T.
1432
1433 This approach depends on the following gdbarch methods:
1434
1435 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1436 indicate where to copy the instruction, and how much space must
1437 be reserved there. We use these in step n1.
1438
1439 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1440 address, and makes any necessary adjustments to the instruction,
1441 register contents, and memory. We use this in step n1.
1442
1443 - gdbarch_displaced_step_fixup adjusts registers and memory after
1444 we have successfully single-stepped the instruction, to yield the
1445 same effect the instruction would have had if we had executed it
1446 at its original address. We use this in step n3.
1447
1448 The gdbarch_displaced_step_copy_insn and
1449 gdbarch_displaced_step_fixup functions must be written so that
1450 copying an instruction with gdbarch_displaced_step_copy_insn,
1451 single-stepping across the copied instruction, and then applying
1452 gdbarch_displaced_insn_fixup should have the same effects on the
1453 thread's memory and registers as stepping the instruction in place
1454 would have. Exactly which responsibilities fall to the copy and
1455 which fall to the fixup is up to the author of those functions.
1456
1457 See the comments in gdbarch.sh for details.
1458
1459 Note that displaced stepping and software single-step cannot
1460 currently be used in combination, although with some care I think
1461 they could be made to. Software single-step works by placing
1462 breakpoints on all possible subsequent instructions; if the
1463 displaced instruction is a PC-relative jump, those breakpoints
1464 could fall in very strange places --- on pages that aren't
1465 executable, or at addresses that are not proper instruction
1466 boundaries. (We do generally let other threads run while we wait
1467 to hit the software single-step breakpoint, and they might
1468 encounter such a corrupted instruction.) One way to work around
1469 this would be to have gdbarch_displaced_step_copy_insn fully
1470 simulate the effect of PC-relative instructions (and return NULL)
1471 on architectures that use software single-stepping.
1472
1473 In non-stop mode, we can have independent and simultaneous step
1474 requests, so more than one thread may need to simultaneously step
1475 over a breakpoint. The current implementation assumes there is
1476 only one scratch space per process. In this case, we have to
1477 serialize access to the scratch space. If thread A wants to step
1478 over a breakpoint, but we are currently waiting for some other
1479 thread to complete a displaced step, we leave thread A stopped and
1480 place it in the displaced_step_request_queue. Whenever a displaced
1481 step finishes, we pick the next thread in the queue and start a new
1482 displaced step operation on it. See displaced_step_prepare and
1483 displaced_step_fixup for details. */
1484
1485 /* Get the displaced stepping state of inferior INF. */
1486
1487 static displaced_step_inferior_state *
1488 get_displaced_stepping_state (inferior *inf)
1489 {
1490 return &inf->displaced_step_state;
1491 }
1492
1493 /* Get the displaced stepping state of thread THREAD. */
1494
1495 static displaced_step_thread_state *
1496 get_displaced_stepping_state (thread_info *thread)
1497 {
1498 return &thread->displaced_step_state;
1499 }
1500
1501 /* Return true if the given thread is doing a displaced step. */
1502
1503 static bool
1504 displaced_step_in_progress (thread_info *thread)
1505 {
1506 gdb_assert (thread != NULL);
1507
1508 return get_displaced_stepping_state (thread)->in_progress ();
1509 }
1510
1511 /* Return true if any thread of this inferior is doing a displaced step. */
1512
1513 static bool
1514 displaced_step_in_progress (inferior *inf)
1515 {
1516 for (thread_info *thread : inf->non_exited_threads ())
1517 {
1518 if (displaced_step_in_progress (thread))
1519 return true;
1520 }
1521
1522 return false;
1523 }
1524
1525 /* Return true if any thread is doing a displaced step. */
1526
1527 static bool
1528 displaced_step_in_progress_any_thread ()
1529 {
1530 for (thread_info *thread : all_non_exited_threads ())
1531 {
1532 if (displaced_step_in_progress (thread))
1533 return true;
1534 }
1535
1536 return false;
1537 }
1538
1539 /* If inferior is in displaced stepping, and ADDR equals to starting address
1540 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
1541 return NULL. */
1542
1543 struct displaced_step_copy_insn_closure *
1544 get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
1545 {
1546 // FIXME: implement me (only needed on ARM).
1547 // displaced_step_inferior_state *displaced
1548 // = get_displaced_stepping_state (current_inferior ());
1549 //
1550 // /* If checking the mode of displaced instruction in copy area. */
1551 // if (displaced->step_thread != nullptr
1552 // && displaced->step_copy == addr)
1553 // return displaced->step_closure.get ();
1554 //
1555 return NULL;
1556 }
1557
1558 static void
1559 infrun_inferior_exit (struct inferior *inf)
1560 {
1561 inf->displaced_step_state.reset ();
1562 }
1563
1564 /* If ON, and the architecture supports it, GDB will use displaced
1565 stepping to step over breakpoints. If OFF, or if the architecture
1566 doesn't support it, GDB will instead use the traditional
1567 hold-and-step approach. If AUTO (which is the default), GDB will
1568 decide which technique to use to step over breakpoints depending on
1569 whether the target works in a non-stop way (see use_displaced_stepping). */
1570
1571 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1572
1573 static void
1574 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c,
1576 const char *value)
1577 {
1578 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1579 fprintf_filtered (file,
1580 _("Debugger's willingness to use displaced stepping "
1581 "to step over breakpoints is %s (currently %s).\n"),
1582 value, target_is_non_stop_p () ? "on" : "off");
1583 else
1584 fprintf_filtered (file,
1585 _("Debugger's willingness to use displaced stepping "
1586 "to step over breakpoints is %s.\n"), value);
1587 }
1588
1589 /* Return true if the target behing THREAD supports displaced stepping. */
1590
1591 static bool
1592 target_supports_displaced_stepping (thread_info *thread)
1593 {
1594 inferior *inf = thread->inf;
1595 target_ops *target = inf->top_target ();
1596
1597 return target->supports_displaced_step (thread);
1598 }
1599
1600 /* Return non-zero if displaced stepping can/should be used to step
1601 over breakpoints of thread TP. */
1602
1603 static bool
1604 use_displaced_stepping (thread_info *tp)
1605 {
1606 /* If the user disabled it explicitly, don't use displaced stepping. */
1607 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1608 return false;
1609
1610 /* If "auto", only use displaced stepping if the target operates in a non-stop
1611 way. */
1612 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1613 && !target_is_non_stop_p ())
1614 return false;
1615
1616 /* If the target doesn't support displaced stepping, don't use it. */
1617 if (!target_supports_displaced_stepping (tp))
1618 return false;
1619
1620 /* If recording, don't use displaced stepping. */
1621 if (find_record_target () != nullptr)
1622 return false;
1623
1624 displaced_step_inferior_state *displaced_state
1625 = get_displaced_stepping_state (tp->inf);
1626
1627 /* If displaced stepping failed before for this inferior, don't bother trying
1628 again. */
1629 if (displaced_state->failed_before)
1630 return false;
1631
1632 return true;
1633 }
1634
1635 /* Simple function wrapper around displaced_step_thread_state::reset. */
1636
1637 static void
1638 displaced_step_reset (displaced_step_thread_state *displaced)
1639 {
1640 displaced->reset ();
1641 }
1642
1643 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1644 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1645
1646 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1647
1648 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1649 void
1650 displaced_step_dump_bytes (struct ui_file *file,
1651 const gdb_byte *buf,
1652 size_t len)
1653 {
1654 int i;
1655
1656 for (i = 0; i < len; i++)
1657 fprintf_unfiltered (file, "%02x ", buf[i]);
1658 fputs_unfiltered ("\n", file);
1659 }
1660
1661 /* Prepare to single-step, using displaced stepping.
1662
1663 Note that we cannot use displaced stepping when we have a signal to
1664 deliver. If we have a signal to deliver and an instruction to step
1665 over, then after the step, there will be no indication from the
1666 target whether the thread entered a signal handler or ignored the
1667 signal and stepped over the instruction successfully --- both cases
1668 result in a simple SIGTRAP. In the first case we mustn't do a
1669 fixup, and in the second case we must --- but we can't tell which.
1670 Comments in the code for 'random signals' in handle_inferior_event
1671 explain how we handle this case instead.
1672
1673 Returns 1 if preparing was successful -- this thread is going to be
1674 stepped now; 0 if displaced stepping this thread got queued; or -1
1675 if this instruction can't be displaced stepped. */
1676
1677 static displaced_step_prepare_status
1678 displaced_step_prepare_throw (thread_info *tp)
1679 {
1680 regcache *regcache = get_thread_regcache (tp);
1681 struct gdbarch *gdbarch = regcache->arch ();
1682 displaced_step_thread_state *thread_disp_step_state
1683 = get_displaced_stepping_state (tp);
1684
1685 /* We should never reach this function if the target does not
1686 support displaced stepping. */
1687 gdb_assert (target_supports_displaced_stepping (tp));
1688
1689 /* Nor if the thread isn't meant to step over a breakpoint. */
1690 gdb_assert (tp->control.trap_expected);
1691
1692 /* Disable range stepping while executing in the scratch pad. We
1693 want a single-step even if executing the displaced instruction in
1694 the scratch buffer lands within the stepping range (e.g., a
1695 jump/branch). */
1696 tp->control.may_range_step = 0;
1697
1698 /* We are about to start a displaced step for this thread, if one is already
1699 in progress, we goofed up somewhere. */
1700 gdb_assert (!thread_disp_step_state->in_progress ());
1701
1702 scoped_restore_current_thread restore_thread;
1703
1704 switch_to_thread (tp);
1705
1706 CORE_ADDR original_pc = regcache_read_pc (regcache);
1707
1708 displaced_step_prepare_status status =
1709 tp->inf->top_target ()->displaced_step_prepare (tp);
1710
1711 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1712 {
1713 if (debug_displaced)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "displaced: failed to prepare (%s)",
1716 target_pid_to_str (tp->ptid).c_str ());
1717
1718 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
1719 }
1720 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1721 {
1722 /* Not enough displaced stepping resources available, defer this
1723 request by placing it the queue. */
1724
1725 if (debug_displaced)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "displaced: not enough resources available, "
1728 "deferring step of %s\n",
1729 target_pid_to_str (tp->ptid).c_str ());
1730
1731 global_thread_step_over_chain_enqueue (tp);
1732 tp->inf->displaced_step_state.unavailable = true;
1733
1734 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1735 }
1736
1737 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1738
1739 // FIXME: Should probably replicated in the arch implementation now.
1740 //
1741 // if (breakpoint_in_range_p (aspace, copy, len))
1742 // {
1743 // /* There's a breakpoint set in the scratch pad location range
1744 // (which is usually around the entry point). We'd either
1745 // install it before resuming, which would overwrite/corrupt the
1746 // scratch pad, or if it was already inserted, this displaced
1747 // step would overwrite it. The latter is OK in the sense that
1748 // we already assume that no thread is going to execute the code
1749 // in the scratch pad range (after initial startup) anyway, but
1750 // the former is unacceptable. Simply punt and fallback to
1751 // stepping over this breakpoint in-line. */
1752 // if (debug_displaced)
1753 // {
1754 // fprintf_unfiltered (gdb_stdlog,
1755 // "displaced: breakpoint set in scratch pad. "
1756 // "Stepping over breakpoint in-line instead.\n");
1757 // }
1758 //
1759 // gdb_assert (false);
1760 // gdbarch_displaced_step_release_location (gdbarch, copy);
1761 //
1762 // return -1;
1763 // }
1764
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
1767 thread_disp_step_state->set (gdbarch);
1768
1769 // FIXME: get it from _prepare?
1770 CORE_ADDR displaced_pc = 0;
1771
1772 if (debug_displaced)
1773 fprintf_unfiltered (gdb_stdlog,
1774 "displaced: prepared successfully thread=%s, "
1775 "original_pc=%s, displaced_pc=%s\n",
1776 target_pid_to_str (tp->ptid).c_str (),
1777 paddress (gdbarch, original_pc),
1778 paddress (gdbarch, displaced_pc));
1779
1780 return DISPLACED_STEP_PREPARE_STATUS_OK;
1781 }
1782
1783 /* Wrapper for displaced_step_prepare_throw that disabled further
1784 attempts at displaced stepping if we get a memory error. */
1785
1786 static displaced_step_prepare_status
1787 displaced_step_prepare (thread_info *thread)
1788 {
1789 displaced_step_prepare_status status
1790 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
1791
1792 try
1793 {
1794 status = displaced_step_prepare_throw (thread);
1795 }
1796 catch (const gdb_exception_error &ex)
1797 {
1798 struct displaced_step_inferior_state *displaced_state;
1799
1800 if (ex.error != MEMORY_ERROR
1801 && ex.error != NOT_SUPPORTED_ERROR)
1802 throw;
1803
1804 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1805 ex.what ());
1806
1807 /* Be verbose if "set displaced-stepping" is "on", silent if
1808 "auto". */
1809 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1810 {
1811 warning (_("disabling displaced stepping: %s"),
1812 ex.what ());
1813 }
1814
1815 /* Disable further displaced stepping attempts. */
1816 displaced_state
1817 = get_displaced_stepping_state (thread->inf);
1818 displaced_state->failed_before = 1;
1819 }
1820
1821 return status;
1822 }
1823
1824 /* If we displaced stepped an instruction successfully, adjust
1825 registers and memory to yield the same effect the instruction would
1826 have had if we had executed it at its original address, and return
1827 1. If the instruction didn't complete, relocate the PC and return
1828 -1. If the thread wasn't displaced stepping, return 0. */
1829
1830 static int
1831 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1832 {
1833 displaced_step_thread_state *displaced
1834 = get_displaced_stepping_state (event_thread);
1835
1836 /* Was this thread performing a displaced step? */
1837 if (!displaced->in_progress ())
1838 return 0;
1839
1840 displaced_step_reset_cleanup cleanup (displaced);
1841
1842 /* Fixup may need to read memory/registers. Switch to the thread
1843 that we're fixing up. Also, target_stopped_by_watchpoint checks
1844 the current thread, and displaced_step_restore performs ptid-dependent
1845 memory accesses using current_inferior() and current_top_target(). */
1846 switch_to_thread (event_thread);
1847
1848 /* Do the fixup, and release the resources acquired to do the displaced
1849 step. */
1850 displaced_step_finish_status finish_status =
1851 event_thread->inf->top_target ()->displaced_step_finish (event_thread,
1852 signal);
1853
1854 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1855 return 1;
1856 else
1857 return -1;
1858 }
1859
1860 /* Data to be passed around while handling an event. This data is
1861 discarded between events. */
1862 struct execution_control_state
1863 {
1864 process_stratum_target *target;
1865 ptid_t ptid;
1866 /* The thread that got the event, if this was a thread event; NULL
1867 otherwise. */
1868 struct thread_info *event_thread;
1869
1870 struct target_waitstatus ws;
1871 int stop_func_filled_in;
1872 CORE_ADDR stop_func_start;
1873 CORE_ADDR stop_func_end;
1874 const char *stop_func_name;
1875 int wait_some_more;
1876
1877 /* True if the event thread hit the single-step breakpoint of
1878 another thread. Thus the event doesn't cause a stop, the thread
1879 needs to be single-stepped past the single-step breakpoint before
1880 we can switch back to the original stepping thread. */
1881 int hit_singlestep_breakpoint;
1882 };
1883
1884 /* Clear ECS and set it to point at TP. */
1885
1886 static void
1887 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1888 {
1889 memset (ecs, 0, sizeof (*ecs));
1890 ecs->event_thread = tp;
1891 ecs->ptid = tp->ptid;
1892 }
1893
1894 static void keep_going_pass_signal (struct execution_control_state *ecs);
1895 static void prepare_to_wait (struct execution_control_state *ecs);
1896 static int keep_going_stepped_thread (struct thread_info *tp);
1897 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1898
1899 /* Are there any pending step-over requests? If so, run all we can
1900 now and return true. Otherwise, return false. */
1901
1902 static int
1903 start_step_over (void)
1904 {
1905 struct thread_info *tp, *next;
1906 int started = 0;
1907
1908 /* Don't start a new step-over if we already have an in-line
1909 step-over operation ongoing. */
1910 if (step_over_info_valid_p ())
1911 return started;
1912
1913 /* Steal the global thread step over chain. */
1914 thread_info *threads_to_step = global_thread_step_over_chain_head;
1915 global_thread_step_over_chain_head = NULL;
1916
1917 if (debug_infrun)
1918 fprintf_unfiltered (gdb_stdlog,
1919 "infrun: stealing list of %d threads to step from global queue\n",
1920 thread_step_over_chain_length (threads_to_step));
1921
1922 for (inferior *inf : all_inferiors ())
1923 inf->displaced_step_state.unavailable = false;
1924
1925 for (tp = threads_to_step; tp != NULL; tp = next)
1926 {
1927 struct execution_control_state ecss;
1928 struct execution_control_state *ecs = &ecss;
1929 step_over_what step_what;
1930 int must_be_in_line;
1931
1932 gdb_assert (!tp->stop_requested);
1933
1934 next = thread_step_over_chain_next (threads_to_step, tp);
1935
1936 step_what = thread_still_needs_step_over (tp);
1937 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1938 || ((step_what & STEP_OVER_BREAKPOINT)
1939 && !use_displaced_stepping (tp)));
1940
1941 /* We currently stop all threads of all processes to step-over
1942 in-line. If we need to start a new in-line step-over, let
1943 any pending displaced steps finish first. */
1944 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1945 continue;
1946
1947 thread_step_over_chain_remove (&threads_to_step, tp);
1948
1949 if (tp->control.trap_expected
1950 || tp->resumed
1951 || tp->executing)
1952 {
1953 internal_error (__FILE__, __LINE__,
1954 "[%s] has inconsistent state: "
1955 "trap_expected=%d, resumed=%d, executing=%d\n",
1956 target_pid_to_str (tp->ptid).c_str (),
1957 tp->control.trap_expected,
1958 tp->resumed,
1959 tp->executing);
1960 }
1961
1962 infrun_log_debug ("resuming [%s] for step-over",
1963 target_pid_to_str (tp->ptid).c_str ());
1964
1965 /* keep_going_pass_signal skips the step-over if the breakpoint
1966 is no longer inserted. In all-stop, we want to keep looking
1967 for a thread that needs a step-over instead of resuming TP,
1968 because we wouldn't be able to resume anything else until the
1969 target stops again. In non-stop, the resume always resumes
1970 only TP, so it's OK to let the thread resume freely. */
1971 if (!target_is_non_stop_p () && !step_what)
1972 continue;
1973
1974 if (tp->inf->displaced_step_state.unavailable)
1975 {
1976 global_thread_step_over_chain_enqueue (tp);
1977 continue;
1978 }
1979
1980 switch_to_thread (tp);
1981 reset_ecs (ecs, tp);
1982 keep_going_pass_signal (ecs);
1983
1984 if (!ecs->wait_some_more)
1985 error (_("Command aborted."));
1986
1987 /* If the thread's step over could not be initiated, it was re-added
1988 to the global step over chain. */
1989 if (tp->resumed)
1990 {
1991 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
1992 target_pid_to_str (tp->ptid).c_str ());
1993 gdb_assert (!thread_is_in_step_over_chain (tp));
1994 }
1995 else
1996 {
1997 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
1998 target_pid_to_str (tp->ptid).c_str ());
1999 gdb_assert (thread_is_in_step_over_chain (tp));
2000
2001 }
2002
2003 /* If we started a new in-line step-over, we're done. */
2004 if (step_over_info_valid_p ())
2005 {
2006 gdb_assert (tp->control.trap_expected);
2007 started = 1;
2008 break;
2009 }
2010
2011 if (!target_is_non_stop_p ())
2012 {
2013 /* On all-stop, shouldn't have resumed unless we needed a
2014 step over. */
2015 gdb_assert (tp->control.trap_expected
2016 || tp->step_after_step_resume_breakpoint);
2017
2018 /* With remote targets (at least), in all-stop, we can't
2019 issue any further remote commands until the program stops
2020 again. */
2021 started = 1;
2022 break;
2023 }
2024
2025 /* Either the thread no longer needed a step-over, or a new
2026 displaced stepping sequence started. Even in the latter
2027 case, continue looking. Maybe we can also start another
2028 displaced step on a thread of other process. */
2029 }
2030
2031 /* If there are threads left in the THREADS_TO_STEP list, but we have
2032 detected that we can't start anything more, put back these threads
2033 in the global list. */
2034 if (threads_to_step == NULL)
2035 {
2036 if (debug_infrun)
2037 fprintf_unfiltered (gdb_stdlog,
2038 "infrun: step-over queue now empty\n");
2039 }
2040 else
2041 {
2042 if (debug_infrun)
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: putting back %d threads to step in global queue\n",
2045 thread_step_over_chain_length (threads_to_step));
2046 while (threads_to_step != nullptr)
2047 {
2048 thread_info *thread = threads_to_step;
2049
2050 /* Remove from that list. */
2051 thread_step_over_chain_remove (&threads_to_step, thread);
2052
2053 /* Add to global list. */
2054 global_thread_step_over_chain_enqueue (thread);
2055
2056 }
2057 }
2058
2059 return started;
2060 }
2061
2062 /* Update global variables holding ptids to hold NEW_PTID if they were
2063 holding OLD_PTID. */
2064 static void
2065 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2066 {
2067 if (inferior_ptid == old_ptid)
2068 inferior_ptid = new_ptid;
2069 }
2070
2071 \f
2072
2073 static const char schedlock_off[] = "off";
2074 static const char schedlock_on[] = "on";
2075 static const char schedlock_step[] = "step";
2076 static const char schedlock_replay[] = "replay";
2077 static const char *const scheduler_enums[] = {
2078 schedlock_off,
2079 schedlock_on,
2080 schedlock_step,
2081 schedlock_replay,
2082 NULL
2083 };
2084 static const char *scheduler_mode = schedlock_replay;
2085 static void
2086 show_scheduler_mode (struct ui_file *file, int from_tty,
2087 struct cmd_list_element *c, const char *value)
2088 {
2089 fprintf_filtered (file,
2090 _("Mode for locking scheduler "
2091 "during execution is \"%s\".\n"),
2092 value);
2093 }
2094
2095 static void
2096 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2097 {
2098 if (!target_can_lock_scheduler)
2099 {
2100 scheduler_mode = schedlock_off;
2101 error (_("Target '%s' cannot support this command."), target_shortname);
2102 }
2103 }
2104
2105 /* True if execution commands resume all threads of all processes by
2106 default; otherwise, resume only threads of the current inferior
2107 process. */
2108 bool sched_multi = false;
2109
2110 /* Try to setup for software single stepping over the specified location.
2111 Return 1 if target_resume() should use hardware single step.
2112
2113 GDBARCH the current gdbarch.
2114 PC the location to step over. */
2115
2116 static int
2117 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2118 {
2119 int hw_step = 1;
2120
2121 if (execution_direction == EXEC_FORWARD
2122 && gdbarch_software_single_step_p (gdbarch))
2123 hw_step = !insert_single_step_breakpoints (gdbarch);
2124
2125 return hw_step;
2126 }
2127
2128 /* See infrun.h. */
2129
2130 ptid_t
2131 user_visible_resume_ptid (int step)
2132 {
2133 ptid_t resume_ptid;
2134
2135 if (non_stop)
2136 {
2137 /* With non-stop mode on, threads are always handled
2138 individually. */
2139 resume_ptid = inferior_ptid;
2140 }
2141 else if ((scheduler_mode == schedlock_on)
2142 || (scheduler_mode == schedlock_step && step))
2143 {
2144 /* User-settable 'scheduler' mode requires solo thread
2145 resume. */
2146 resume_ptid = inferior_ptid;
2147 }
2148 else if ((scheduler_mode == schedlock_replay)
2149 && target_record_will_replay (minus_one_ptid, execution_direction))
2150 {
2151 /* User-settable 'scheduler' mode requires solo thread resume in replay
2152 mode. */
2153 resume_ptid = inferior_ptid;
2154 }
2155 else if (!sched_multi && target_supports_multi_process ())
2156 {
2157 /* Resume all threads of the current process (and none of other
2158 processes). */
2159 resume_ptid = ptid_t (inferior_ptid.pid ());
2160 }
2161 else
2162 {
2163 /* Resume all threads of all processes. */
2164 resume_ptid = RESUME_ALL;
2165 }
2166
2167 return resume_ptid;
2168 }
2169
2170 /* See infrun.h. */
2171
2172 process_stratum_target *
2173 user_visible_resume_target (ptid_t resume_ptid)
2174 {
2175 return (resume_ptid == minus_one_ptid && sched_multi
2176 ? NULL
2177 : current_inferior ()->process_target ());
2178 }
2179
2180 /* Return a ptid representing the set of threads that we will resume,
2181 in the perspective of the target, assuming run control handling
2182 does not require leaving some threads stopped (e.g., stepping past
2183 breakpoint). USER_STEP indicates whether we're about to start the
2184 target for a stepping command. */
2185
2186 static ptid_t
2187 internal_resume_ptid (int user_step)
2188 {
2189 /* In non-stop, we always control threads individually. Note that
2190 the target may always work in non-stop mode even with "set
2191 non-stop off", in which case user_visible_resume_ptid could
2192 return a wildcard ptid. */
2193 if (target_is_non_stop_p ())
2194 return inferior_ptid;
2195 else
2196 return user_visible_resume_ptid (user_step);
2197 }
2198
2199 /* Wrapper for target_resume, that handles infrun-specific
2200 bookkeeping. */
2201
2202 static void
2203 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2204 {
2205 struct thread_info *tp = inferior_thread ();
2206
2207 gdb_assert (!tp->stop_requested);
2208
2209 /* Install inferior's terminal modes. */
2210 target_terminal::inferior ();
2211
2212 /* Avoid confusing the next resume, if the next stop/resume
2213 happens to apply to another thread. */
2214 tp->suspend.stop_signal = GDB_SIGNAL_0;
2215
2216 /* Advise target which signals may be handled silently.
2217
2218 If we have removed breakpoints because we are stepping over one
2219 in-line (in any thread), we need to receive all signals to avoid
2220 accidentally skipping a breakpoint during execution of a signal
2221 handler.
2222
2223 Likewise if we're displaced stepping, otherwise a trap for a
2224 breakpoint in a signal handler might be confused with the
2225 displaced step finishing. We don't make the displaced_step_fixup
2226 step distinguish the cases instead, because:
2227
2228 - a backtrace while stopped in the signal handler would show the
2229 scratch pad as frame older than the signal handler, instead of
2230 the real mainline code.
2231
2232 - when the thread is later resumed, the signal handler would
2233 return to the scratch pad area, which would no longer be
2234 valid. */
2235 if (step_over_info_valid_p ()
2236 || displaced_step_in_progress (tp->inf))
2237 target_pass_signals ({});
2238 else
2239 target_pass_signals (signal_pass);
2240
2241 target_resume (resume_ptid, step, sig);
2242
2243 target_commit_resume ();
2244
2245 if (target_can_async_p ())
2246 target_async (1);
2247 }
2248
2249 /* Resume the inferior. SIG is the signal to give the inferior
2250 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2251 call 'resume', which handles exceptions. */
2252
2253 static void
2254 resume_1 (enum gdb_signal sig)
2255 {
2256 struct regcache *regcache = get_current_regcache ();
2257 struct gdbarch *gdbarch = regcache->arch ();
2258 struct thread_info *tp = inferior_thread ();
2259 const address_space *aspace = regcache->aspace ();
2260 ptid_t resume_ptid;
2261 /* This represents the user's step vs continue request. When
2262 deciding whether "set scheduler-locking step" applies, it's the
2263 user's intention that counts. */
2264 const int user_step = tp->control.stepping_command;
2265 /* This represents what we'll actually request the target to do.
2266 This can decay from a step to a continue, if e.g., we need to
2267 implement single-stepping with breakpoints (software
2268 single-step). */
2269 int step;
2270
2271 gdb_assert (!tp->stop_requested);
2272 gdb_assert (!thread_is_in_step_over_chain (tp));
2273
2274 if (tp->suspend.waitstatus_pending_p)
2275 {
2276 infrun_log_debug
2277 ("thread %s has pending wait "
2278 "status %s (currently_stepping=%d).",
2279 target_pid_to_str (tp->ptid).c_str (),
2280 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2281 currently_stepping (tp));
2282
2283 tp->inf->process_target ()->threads_executing = true;
2284 tp->resumed = true;
2285
2286 /* FIXME: What should we do if we are supposed to resume this
2287 thread with a signal? Maybe we should maintain a queue of
2288 pending signals to deliver. */
2289 if (sig != GDB_SIGNAL_0)
2290 {
2291 warning (_("Couldn't deliver signal %s to %s."),
2292 gdb_signal_to_name (sig),
2293 target_pid_to_str (tp->ptid).c_str ());
2294 }
2295
2296 tp->suspend.stop_signal = GDB_SIGNAL_0;
2297
2298 if (target_can_async_p ())
2299 {
2300 target_async (1);
2301 /* Tell the event loop we have an event to process. */
2302 mark_async_event_handler (infrun_async_inferior_event_token);
2303 }
2304 return;
2305 }
2306
2307 tp->stepped_breakpoint = 0;
2308
2309 /* Depends on stepped_breakpoint. */
2310 step = currently_stepping (tp);
2311
2312 if (current_inferior ()->waiting_for_vfork_done)
2313 {
2314 /* Don't try to single-step a vfork parent that is waiting for
2315 the child to get out of the shared memory region (by exec'ing
2316 or exiting). This is particularly important on software
2317 single-step archs, as the child process would trip on the
2318 software single step breakpoint inserted for the parent
2319 process. Since the parent will not actually execute any
2320 instruction until the child is out of the shared region (such
2321 are vfork's semantics), it is safe to simply continue it.
2322 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2323 the parent, and tell it to `keep_going', which automatically
2324 re-sets it stepping. */
2325 infrun_log_debug ("resume : clear step");
2326 step = 0;
2327 }
2328
2329 CORE_ADDR pc = regcache_read_pc (regcache);
2330
2331 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2332 "current thread [%s] at %s",
2333 step, gdb_signal_to_symbol_string (sig),
2334 tp->control.trap_expected,
2335 target_pid_to_str (inferior_ptid).c_str (),
2336 paddress (gdbarch, pc));
2337
2338 /* Normally, by the time we reach `resume', the breakpoints are either
2339 removed or inserted, as appropriate. The exception is if we're sitting
2340 at a permanent breakpoint; we need to step over it, but permanent
2341 breakpoints can't be removed. So we have to test for it here. */
2342 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2343 {
2344 if (sig != GDB_SIGNAL_0)
2345 {
2346 /* We have a signal to pass to the inferior. The resume
2347 may, or may not take us to the signal handler. If this
2348 is a step, we'll need to stop in the signal handler, if
2349 there's one, (if the target supports stepping into
2350 handlers), or in the next mainline instruction, if
2351 there's no handler. If this is a continue, we need to be
2352 sure to run the handler with all breakpoints inserted.
2353 In all cases, set a breakpoint at the current address
2354 (where the handler returns to), and once that breakpoint
2355 is hit, resume skipping the permanent breakpoint. If
2356 that breakpoint isn't hit, then we've stepped into the
2357 signal handler (or hit some other event). We'll delete
2358 the step-resume breakpoint then. */
2359
2360 infrun_log_debug ("resume: skipping permanent breakpoint, "
2361 "deliver signal first");
2362
2363 clear_step_over_info ();
2364 tp->control.trap_expected = 0;
2365
2366 if (tp->control.step_resume_breakpoint == NULL)
2367 {
2368 /* Set a "high-priority" step-resume, as we don't want
2369 user breakpoints at PC to trigger (again) when this
2370 hits. */
2371 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2372 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2373
2374 tp->step_after_step_resume_breakpoint = step;
2375 }
2376
2377 insert_breakpoints ();
2378 }
2379 else
2380 {
2381 /* There's no signal to pass, we can go ahead and skip the
2382 permanent breakpoint manually. */
2383 infrun_log_debug ("skipping permanent breakpoint");
2384 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2385 /* Update pc to reflect the new address from which we will
2386 execute instructions. */
2387 pc = regcache_read_pc (regcache);
2388
2389 if (step)
2390 {
2391 /* We've already advanced the PC, so the stepping part
2392 is done. Now we need to arrange for a trap to be
2393 reported to handle_inferior_event. Set a breakpoint
2394 at the current PC, and run to it. Don't update
2395 prev_pc, because if we end in
2396 switch_back_to_stepped_thread, we want the "expected
2397 thread advanced also" branch to be taken. IOW, we
2398 don't want this thread to step further from PC
2399 (overstep). */
2400 gdb_assert (!step_over_info_valid_p ());
2401 insert_single_step_breakpoint (gdbarch, aspace, pc);
2402 insert_breakpoints ();
2403
2404 resume_ptid = internal_resume_ptid (user_step);
2405 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2406 tp->resumed = true;
2407 return;
2408 }
2409 }
2410 }
2411
2412 /* If we have a breakpoint to step over, make sure to do a single
2413 step only. Same if we have software watchpoints. */
2414 if (tp->control.trap_expected || bpstat_should_step ())
2415 tp->control.may_range_step = 0;
2416
2417 /* If displaced stepping is enabled, step over breakpoints by executing a
2418 copy of the instruction at a different address.
2419
2420 We can't use displaced stepping when we have a signal to deliver;
2421 the comments for displaced_step_prepare explain why. The
2422 comments in the handle_inferior event for dealing with 'random
2423 signals' explain what we do instead.
2424
2425 We can't use displaced stepping when we are waiting for vfork_done
2426 event, displaced stepping breaks the vfork child similarly as single
2427 step software breakpoint. */
2428 if (tp->control.trap_expected
2429 && use_displaced_stepping (tp)
2430 && !step_over_info_valid_p ()
2431 && sig == GDB_SIGNAL_0
2432 && !current_inferior ()->waiting_for_vfork_done)
2433 {
2434 displaced_step_prepare_status prepare_status
2435 = displaced_step_prepare (tp);
2436
2437 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2438 {
2439 infrun_log_debug ("Got placed in step-over queue");
2440
2441 tp->control.trap_expected = 0;
2442 return;
2443 }
2444 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
2445 {
2446 /* Fallback to stepping over the breakpoint in-line. */
2447
2448 if (target_is_non_stop_p ())
2449 stop_all_threads ();
2450
2451 set_step_over_info (regcache->aspace (),
2452 regcache_read_pc (regcache), 0, tp->global_num);
2453
2454 step = maybe_software_singlestep (gdbarch, pc);
2455
2456 insert_breakpoints ();
2457 }
2458 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2459 {
2460 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
2461 }
2462 else
2463 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
2464 }
2465
2466 /* Do we need to do it the hard way, w/temp breakpoints? */
2467 else if (step)
2468 step = maybe_software_singlestep (gdbarch, pc);
2469
2470 /* Currently, our software single-step implementation leads to different
2471 results than hardware single-stepping in one situation: when stepping
2472 into delivering a signal which has an associated signal handler,
2473 hardware single-step will stop at the first instruction of the handler,
2474 while software single-step will simply skip execution of the handler.
2475
2476 For now, this difference in behavior is accepted since there is no
2477 easy way to actually implement single-stepping into a signal handler
2478 without kernel support.
2479
2480 However, there is one scenario where this difference leads to follow-on
2481 problems: if we're stepping off a breakpoint by removing all breakpoints
2482 and then single-stepping. In this case, the software single-step
2483 behavior means that even if there is a *breakpoint* in the signal
2484 handler, GDB still would not stop.
2485
2486 Fortunately, we can at least fix this particular issue. We detect
2487 here the case where we are about to deliver a signal while software
2488 single-stepping with breakpoints removed. In this situation, we
2489 revert the decisions to remove all breakpoints and insert single-
2490 step breakpoints, and instead we install a step-resume breakpoint
2491 at the current address, deliver the signal without stepping, and
2492 once we arrive back at the step-resume breakpoint, actually step
2493 over the breakpoint we originally wanted to step over. */
2494 if (thread_has_single_step_breakpoints_set (tp)
2495 && sig != GDB_SIGNAL_0
2496 && step_over_info_valid_p ())
2497 {
2498 /* If we have nested signals or a pending signal is delivered
2499 immediately after a handler returns, might already have
2500 a step-resume breakpoint set on the earlier handler. We cannot
2501 set another step-resume breakpoint; just continue on until the
2502 original breakpoint is hit. */
2503 if (tp->control.step_resume_breakpoint == NULL)
2504 {
2505 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2506 tp->step_after_step_resume_breakpoint = 1;
2507 }
2508
2509 delete_single_step_breakpoints (tp);
2510
2511 clear_step_over_info ();
2512 tp->control.trap_expected = 0;
2513
2514 insert_breakpoints ();
2515 }
2516
2517 /* If STEP is set, it's a request to use hardware stepping
2518 facilities. But in that case, we should never
2519 use singlestep breakpoint. */
2520 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2521
2522 /* Decide the set of threads to ask the target to resume. */
2523 if (tp->control.trap_expected)
2524 {
2525 /* We're allowing a thread to run past a breakpoint it has
2526 hit, either by single-stepping the thread with the breakpoint
2527 removed, or by displaced stepping, with the breakpoint inserted.
2528 In the former case, we need to single-step only this thread,
2529 and keep others stopped, as they can miss this breakpoint if
2530 allowed to run. That's not really a problem for displaced
2531 stepping, but, we still keep other threads stopped, in case
2532 another thread is also stopped for a breakpoint waiting for
2533 its turn in the displaced stepping queue. */
2534 resume_ptid = inferior_ptid;
2535 }
2536 else
2537 resume_ptid = internal_resume_ptid (user_step);
2538
2539 if (execution_direction != EXEC_REVERSE
2540 && step && breakpoint_inserted_here_p (aspace, pc))
2541 {
2542 /* There are two cases where we currently need to step a
2543 breakpoint instruction when we have a signal to deliver:
2544
2545 - See handle_signal_stop where we handle random signals that
2546 could take out us out of the stepping range. Normally, in
2547 that case we end up continuing (instead of stepping) over the
2548 signal handler with a breakpoint at PC, but there are cases
2549 where we should _always_ single-step, even if we have a
2550 step-resume breakpoint, like when a software watchpoint is
2551 set. Assuming single-stepping and delivering a signal at the
2552 same time would takes us to the signal handler, then we could
2553 have removed the breakpoint at PC to step over it. However,
2554 some hardware step targets (like e.g., Mac OS) can't step
2555 into signal handlers, and for those, we need to leave the
2556 breakpoint at PC inserted, as otherwise if the handler
2557 recurses and executes PC again, it'll miss the breakpoint.
2558 So we leave the breakpoint inserted anyway, but we need to
2559 record that we tried to step a breakpoint instruction, so
2560 that adjust_pc_after_break doesn't end up confused.
2561
2562 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2563 in one thread after another thread that was stepping had been
2564 momentarily paused for a step-over. When we re-resume the
2565 stepping thread, it may be resumed from that address with a
2566 breakpoint that hasn't trapped yet. Seen with
2567 gdb.threads/non-stop-fair-events.exp, on targets that don't
2568 do displaced stepping. */
2569
2570 infrun_log_debug ("resume: [%s] stepped breakpoint",
2571 target_pid_to_str (tp->ptid).c_str ());
2572
2573 tp->stepped_breakpoint = 1;
2574
2575 /* Most targets can step a breakpoint instruction, thus
2576 executing it normally. But if this one cannot, just
2577 continue and we will hit it anyway. */
2578 if (gdbarch_cannot_step_breakpoint (gdbarch))
2579 step = 0;
2580 }
2581
2582 if (debug_displaced
2583 && tp->control.trap_expected
2584 && use_displaced_stepping (tp)
2585 && !step_over_info_valid_p ())
2586 {
2587 struct regcache *resume_regcache = get_thread_regcache (tp);
2588 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2589 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2590 gdb_byte buf[4];
2591
2592 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2593 paddress (resume_gdbarch, actual_pc));
2594 read_memory (actual_pc, buf, sizeof (buf));
2595 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2596 }
2597
2598 if (tp->control.may_range_step)
2599 {
2600 /* If we're resuming a thread with the PC out of the step
2601 range, then we're doing some nested/finer run control
2602 operation, like stepping the thread out of the dynamic
2603 linker or the displaced stepping scratch pad. We
2604 shouldn't have allowed a range step then. */
2605 gdb_assert (pc_in_thread_step_range (pc, tp));
2606 }
2607
2608 do_target_resume (resume_ptid, step, sig);
2609 tp->resumed = true;
2610 }
2611
2612 /* Resume the inferior. SIG is the signal to give the inferior
2613 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2614 rolls back state on error. */
2615
2616 static void
2617 resume (gdb_signal sig)
2618 {
2619 try
2620 {
2621 resume_1 (sig);
2622 }
2623 catch (const gdb_exception &ex)
2624 {
2625 /* If resuming is being aborted for any reason, delete any
2626 single-step breakpoint resume_1 may have created, to avoid
2627 confusing the following resumption, and to avoid leaving
2628 single-step breakpoints perturbing other threads, in case
2629 we're running in non-stop mode. */
2630 if (inferior_ptid != null_ptid)
2631 delete_single_step_breakpoints (inferior_thread ());
2632 throw;
2633 }
2634 }
2635
2636 \f
2637 /* Proceeding. */
2638
2639 /* See infrun.h. */
2640
2641 /* Counter that tracks number of user visible stops. This can be used
2642 to tell whether a command has proceeded the inferior past the
2643 current location. This allows e.g., inferior function calls in
2644 breakpoint commands to not interrupt the command list. When the
2645 call finishes successfully, the inferior is standing at the same
2646 breakpoint as if nothing happened (and so we don't call
2647 normal_stop). */
2648 static ULONGEST current_stop_id;
2649
2650 /* See infrun.h. */
2651
2652 ULONGEST
2653 get_stop_id (void)
2654 {
2655 return current_stop_id;
2656 }
2657
2658 /* Called when we report a user visible stop. */
2659
2660 static void
2661 new_stop_id (void)
2662 {
2663 current_stop_id++;
2664 }
2665
2666 /* Clear out all variables saying what to do when inferior is continued.
2667 First do this, then set the ones you want, then call `proceed'. */
2668
2669 static void
2670 clear_proceed_status_thread (struct thread_info *tp)
2671 {
2672 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
2673
2674 /* If we're starting a new sequence, then the previous finished
2675 single-step is no longer relevant. */
2676 if (tp->suspend.waitstatus_pending_p)
2677 {
2678 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2679 {
2680 infrun_log_debug ("pending event of %s was a finished step. "
2681 "Discarding.",
2682 target_pid_to_str (tp->ptid).c_str ());
2683
2684 tp->suspend.waitstatus_pending_p = 0;
2685 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2686 }
2687 else
2688 {
2689 infrun_log_debug
2690 ("thread %s has pending wait status %s (currently_stepping=%d).",
2691 target_pid_to_str (tp->ptid).c_str (),
2692 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2693 currently_stepping (tp));
2694 }
2695 }
2696
2697 /* If this signal should not be seen by program, give it zero.
2698 Used for debugging signals. */
2699 if (!signal_pass_state (tp->suspend.stop_signal))
2700 tp->suspend.stop_signal = GDB_SIGNAL_0;
2701
2702 delete tp->thread_fsm;
2703 tp->thread_fsm = NULL;
2704
2705 tp->control.trap_expected = 0;
2706 tp->control.step_range_start = 0;
2707 tp->control.step_range_end = 0;
2708 tp->control.may_range_step = 0;
2709 tp->control.step_frame_id = null_frame_id;
2710 tp->control.step_stack_frame_id = null_frame_id;
2711 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2712 tp->control.step_start_function = NULL;
2713 tp->stop_requested = 0;
2714
2715 tp->control.stop_step = 0;
2716
2717 tp->control.proceed_to_finish = 0;
2718
2719 tp->control.stepping_command = 0;
2720
2721 /* Discard any remaining commands or status from previous stop. */
2722 bpstat_clear (&tp->control.stop_bpstat);
2723 }
2724
2725 void
2726 clear_proceed_status (int step)
2727 {
2728 /* With scheduler-locking replay, stop replaying other threads if we're
2729 not replaying the user-visible resume ptid.
2730
2731 This is a convenience feature to not require the user to explicitly
2732 stop replaying the other threads. We're assuming that the user's
2733 intent is to resume tracing the recorded process. */
2734 if (!non_stop && scheduler_mode == schedlock_replay
2735 && target_record_is_replaying (minus_one_ptid)
2736 && !target_record_will_replay (user_visible_resume_ptid (step),
2737 execution_direction))
2738 target_record_stop_replaying ();
2739
2740 if (!non_stop && inferior_ptid != null_ptid)
2741 {
2742 ptid_t resume_ptid = user_visible_resume_ptid (step);
2743 process_stratum_target *resume_target
2744 = user_visible_resume_target (resume_ptid);
2745
2746 /* In all-stop mode, delete the per-thread status of all threads
2747 we're about to resume, implicitly and explicitly. */
2748 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2749 clear_proceed_status_thread (tp);
2750 }
2751
2752 if (inferior_ptid != null_ptid)
2753 {
2754 struct inferior *inferior;
2755
2756 if (non_stop)
2757 {
2758 /* If in non-stop mode, only delete the per-thread status of
2759 the current thread. */
2760 clear_proceed_status_thread (inferior_thread ());
2761 }
2762
2763 inferior = current_inferior ();
2764 inferior->control.stop_soon = NO_STOP_QUIETLY;
2765 }
2766
2767 gdb::observers::about_to_proceed.notify ();
2768 }
2769
2770 /* Returns true if TP is still stopped at a breakpoint that needs
2771 stepping-over in order to make progress. If the breakpoint is gone
2772 meanwhile, we can skip the whole step-over dance. */
2773
2774 static int
2775 thread_still_needs_step_over_bp (struct thread_info *tp)
2776 {
2777 if (tp->stepping_over_breakpoint)
2778 {
2779 struct regcache *regcache = get_thread_regcache (tp);
2780
2781 if (breakpoint_here_p (regcache->aspace (),
2782 regcache_read_pc (regcache))
2783 == ordinary_breakpoint_here)
2784 return 1;
2785
2786 tp->stepping_over_breakpoint = 0;
2787 }
2788
2789 return 0;
2790 }
2791
2792 /* Check whether thread TP still needs to start a step-over in order
2793 to make progress when resumed. Returns an bitwise or of enum
2794 step_over_what bits, indicating what needs to be stepped over. */
2795
2796 static step_over_what
2797 thread_still_needs_step_over (struct thread_info *tp)
2798 {
2799 step_over_what what = 0;
2800
2801 if (thread_still_needs_step_over_bp (tp))
2802 what |= STEP_OVER_BREAKPOINT;
2803
2804 if (tp->stepping_over_watchpoint
2805 && !target_have_steppable_watchpoint)
2806 what |= STEP_OVER_WATCHPOINT;
2807
2808 return what;
2809 }
2810
2811 /* Returns true if scheduler locking applies. STEP indicates whether
2812 we're about to do a step/next-like command to a thread. */
2813
2814 static int
2815 schedlock_applies (struct thread_info *tp)
2816 {
2817 return (scheduler_mode == schedlock_on
2818 || (scheduler_mode == schedlock_step
2819 && tp->control.stepping_command)
2820 || (scheduler_mode == schedlock_replay
2821 && target_record_will_replay (minus_one_ptid,
2822 execution_direction)));
2823 }
2824
2825 /* Calls target_commit_resume on all targets. */
2826
2827 static void
2828 commit_resume_all_targets ()
2829 {
2830 scoped_restore_current_thread restore_thread;
2831
2832 /* Map between process_target and a representative inferior. This
2833 is to avoid committing a resume in the same target more than
2834 once. Resumptions must be idempotent, so this is an
2835 optimization. */
2836 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2837
2838 for (inferior *inf : all_non_exited_inferiors ())
2839 if (inf->has_execution ())
2840 conn_inf[inf->process_target ()] = inf;
2841
2842 for (const auto &ci : conn_inf)
2843 {
2844 inferior *inf = ci.second;
2845 switch_to_inferior_no_thread (inf);
2846 target_commit_resume ();
2847 }
2848 }
2849
2850 /* Check that all the targets we're about to resume are in non-stop
2851 mode. Ideally, we'd only care whether all targets support
2852 target-async, but we're not there yet. E.g., stop_all_threads
2853 doesn't know how to handle all-stop targets. Also, the remote
2854 protocol in all-stop mode is synchronous, irrespective of
2855 target-async, which means that things like a breakpoint re-set
2856 triggered by one target would try to read memory from all targets
2857 and fail. */
2858
2859 static void
2860 check_multi_target_resumption (process_stratum_target *resume_target)
2861 {
2862 if (!non_stop && resume_target == nullptr)
2863 {
2864 scoped_restore_current_thread restore_thread;
2865
2866 /* This is used to track whether we're resuming more than one
2867 target. */
2868 process_stratum_target *first_connection = nullptr;
2869
2870 /* The first inferior we see with a target that does not work in
2871 always-non-stop mode. */
2872 inferior *first_not_non_stop = nullptr;
2873
2874 for (inferior *inf : all_non_exited_inferiors (resume_target))
2875 {
2876 switch_to_inferior_no_thread (inf);
2877
2878 if (!target_has_execution)
2879 continue;
2880
2881 process_stratum_target *proc_target
2882 = current_inferior ()->process_target();
2883
2884 if (!target_is_non_stop_p ())
2885 first_not_non_stop = inf;
2886
2887 if (first_connection == nullptr)
2888 first_connection = proc_target;
2889 else if (first_connection != proc_target
2890 && first_not_non_stop != nullptr)
2891 {
2892 switch_to_inferior_no_thread (first_not_non_stop);
2893
2894 proc_target = current_inferior ()->process_target();
2895
2896 error (_("Connection %d (%s) does not support "
2897 "multi-target resumption."),
2898 proc_target->connection_number,
2899 make_target_connection_string (proc_target).c_str ());
2900 }
2901 }
2902 }
2903 }
2904
2905 /* Basic routine for continuing the program in various fashions.
2906
2907 ADDR is the address to resume at, or -1 for resume where stopped.
2908 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2909 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2910
2911 You should call clear_proceed_status before calling proceed. */
2912
2913 void
2914 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2915 {
2916 struct regcache *regcache;
2917 struct gdbarch *gdbarch;
2918 CORE_ADDR pc;
2919 struct execution_control_state ecss;
2920 struct execution_control_state *ecs = &ecss;
2921 int started;
2922
2923 /* If we're stopped at a fork/vfork, follow the branch set by the
2924 "set follow-fork-mode" command; otherwise, we'll just proceed
2925 resuming the current thread. */
2926 if (!follow_fork ())
2927 {
2928 /* The target for some reason decided not to resume. */
2929 normal_stop ();
2930 if (target_can_async_p ())
2931 inferior_event_handler (INF_EXEC_COMPLETE);
2932 return;
2933 }
2934
2935 /* We'll update this if & when we switch to a new thread. */
2936 previous_inferior_ptid = inferior_ptid;
2937
2938 regcache = get_current_regcache ();
2939 gdbarch = regcache->arch ();
2940 const address_space *aspace = regcache->aspace ();
2941
2942 pc = regcache_read_pc_protected (regcache);
2943
2944 thread_info *cur_thr = inferior_thread ();
2945
2946 /* Fill in with reasonable starting values. */
2947 init_thread_stepping_state (cur_thr);
2948
2949 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2950
2951 ptid_t resume_ptid
2952 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2953 process_stratum_target *resume_target
2954 = user_visible_resume_target (resume_ptid);
2955
2956 check_multi_target_resumption (resume_target);
2957
2958 if (addr == (CORE_ADDR) -1)
2959 {
2960 if (pc == cur_thr->suspend.stop_pc
2961 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2962 && execution_direction != EXEC_REVERSE)
2963 /* There is a breakpoint at the address we will resume at,
2964 step one instruction before inserting breakpoints so that
2965 we do not stop right away (and report a second hit at this
2966 breakpoint).
2967
2968 Note, we don't do this in reverse, because we won't
2969 actually be executing the breakpoint insn anyway.
2970 We'll be (un-)executing the previous instruction. */
2971 cur_thr->stepping_over_breakpoint = 1;
2972 else if (gdbarch_single_step_through_delay_p (gdbarch)
2973 && gdbarch_single_step_through_delay (gdbarch,
2974 get_current_frame ()))
2975 /* We stepped onto an instruction that needs to be stepped
2976 again before re-inserting the breakpoint, do so. */
2977 cur_thr->stepping_over_breakpoint = 1;
2978 }
2979 else
2980 {
2981 regcache_write_pc (regcache, addr);
2982 }
2983
2984 if (siggnal != GDB_SIGNAL_DEFAULT)
2985 cur_thr->suspend.stop_signal = siggnal;
2986
2987 /* If an exception is thrown from this point on, make sure to
2988 propagate GDB's knowledge of the executing state to the
2989 frontend/user running state. */
2990 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2991
2992 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2993 threads (e.g., we might need to set threads stepping over
2994 breakpoints first), from the user/frontend's point of view, all
2995 threads in RESUME_PTID are now running. Unless we're calling an
2996 inferior function, as in that case we pretend the inferior
2997 doesn't run at all. */
2998 if (!cur_thr->control.in_infcall)
2999 set_running (resume_target, resume_ptid, true);
3000
3001 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3002 gdb_signal_to_symbol_string (siggnal));
3003
3004 annotate_starting ();
3005
3006 /* Make sure that output from GDB appears before output from the
3007 inferior. */
3008 gdb_flush (gdb_stdout);
3009
3010 /* Since we've marked the inferior running, give it the terminal. A
3011 QUIT/Ctrl-C from here on is forwarded to the target (which can
3012 still detect attempts to unblock a stuck connection with repeated
3013 Ctrl-C from within target_pass_ctrlc). */
3014 target_terminal::inferior ();
3015
3016 /* In a multi-threaded task we may select another thread and
3017 then continue or step.
3018
3019 But if a thread that we're resuming had stopped at a breakpoint,
3020 it will immediately cause another breakpoint stop without any
3021 execution (i.e. it will report a breakpoint hit incorrectly). So
3022 we must step over it first.
3023
3024 Look for threads other than the current (TP) that reported a
3025 breakpoint hit and haven't been resumed yet since. */
3026
3027 /* If scheduler locking applies, we can avoid iterating over all
3028 threads. */
3029 if (!non_stop && !schedlock_applies (cur_thr))
3030 {
3031 for (thread_info *tp : all_non_exited_threads (resume_target,
3032 resume_ptid))
3033 {
3034 switch_to_thread_no_regs (tp);
3035
3036 /* Ignore the current thread here. It's handled
3037 afterwards. */
3038 if (tp == cur_thr)
3039 continue;
3040
3041 if (!thread_still_needs_step_over (tp))
3042 continue;
3043
3044 gdb_assert (!thread_is_in_step_over_chain (tp));
3045
3046 infrun_log_debug ("need to step-over [%s] first",
3047 target_pid_to_str (tp->ptid).c_str ());
3048
3049 global_thread_step_over_chain_enqueue (tp);
3050 }
3051
3052 switch_to_thread (cur_thr);
3053 }
3054
3055 /* Enqueue the current thread last, so that we move all other
3056 threads over their breakpoints first. */
3057 if (cur_thr->stepping_over_breakpoint)
3058 global_thread_step_over_chain_enqueue (cur_thr);
3059
3060 /* If the thread isn't started, we'll still need to set its prev_pc,
3061 so that switch_back_to_stepped_thread knows the thread hasn't
3062 advanced. Must do this before resuming any thread, as in
3063 all-stop/remote, once we resume we can't send any other packet
3064 until the target stops again. */
3065 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3066
3067 {
3068 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3069
3070 started = start_step_over ();
3071
3072 if (step_over_info_valid_p ())
3073 {
3074 /* Either this thread started a new in-line step over, or some
3075 other thread was already doing one. In either case, don't
3076 resume anything else until the step-over is finished. */
3077 }
3078 else if (started && !target_is_non_stop_p ())
3079 {
3080 /* A new displaced stepping sequence was started. In all-stop,
3081 we can't talk to the target anymore until it next stops. */
3082 }
3083 else if (!non_stop && target_is_non_stop_p ())
3084 {
3085 /* In all-stop, but the target is always in non-stop mode.
3086 Start all other threads that are implicitly resumed too. */
3087 for (thread_info *tp : all_non_exited_threads (resume_target,
3088 resume_ptid))
3089 {
3090 switch_to_thread_no_regs (tp);
3091
3092 if (!tp->inf->has_execution ())
3093 {
3094 infrun_log_debug ("[%s] target has no execution",
3095 target_pid_to_str (tp->ptid).c_str ());
3096 continue;
3097 }
3098
3099 if (tp->resumed)
3100 {
3101 infrun_log_debug ("[%s] resumed",
3102 target_pid_to_str (tp->ptid).c_str ());
3103 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3104 continue;
3105 }
3106
3107 if (thread_is_in_step_over_chain (tp))
3108 {
3109 infrun_log_debug ("[%s] needs step-over",
3110 target_pid_to_str (tp->ptid).c_str ());
3111 continue;
3112 }
3113
3114 infrun_log_debug ("resuming %s",
3115 target_pid_to_str (tp->ptid).c_str ());
3116
3117 reset_ecs (ecs, tp);
3118 switch_to_thread (tp);
3119 keep_going_pass_signal (ecs);
3120 if (!ecs->wait_some_more)
3121 error (_("Command aborted."));
3122 }
3123 }
3124 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3125 {
3126 /* The thread wasn't started, and isn't queued, run it now. */
3127 reset_ecs (ecs, cur_thr);
3128 switch_to_thread (cur_thr);
3129 keep_going_pass_signal (ecs);
3130 if (!ecs->wait_some_more)
3131 error (_("Command aborted."));
3132 }
3133 }
3134
3135 commit_resume_all_targets ();
3136
3137 finish_state.release ();
3138
3139 /* If we've switched threads above, switch back to the previously
3140 current thread. We don't want the user to see a different
3141 selected thread. */
3142 switch_to_thread (cur_thr);
3143
3144 /* Tell the event loop to wait for it to stop. If the target
3145 supports asynchronous execution, it'll do this from within
3146 target_resume. */
3147 if (!target_can_async_p ())
3148 mark_async_event_handler (infrun_async_inferior_event_token);
3149 }
3150 \f
3151
3152 /* Start remote-debugging of a machine over a serial link. */
3153
3154 void
3155 start_remote (int from_tty)
3156 {
3157 inferior *inf = current_inferior ();
3158 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3159
3160 /* Always go on waiting for the target, regardless of the mode. */
3161 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3162 indicate to wait_for_inferior that a target should timeout if
3163 nothing is returned (instead of just blocking). Because of this,
3164 targets expecting an immediate response need to, internally, set
3165 things up so that the target_wait() is forced to eventually
3166 timeout. */
3167 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3168 differentiate to its caller what the state of the target is after
3169 the initial open has been performed. Here we're assuming that
3170 the target has stopped. It should be possible to eventually have
3171 target_open() return to the caller an indication that the target
3172 is currently running and GDB state should be set to the same as
3173 for an async run. */
3174 wait_for_inferior (inf);
3175
3176 /* Now that the inferior has stopped, do any bookkeeping like
3177 loading shared libraries. We want to do this before normal_stop,
3178 so that the displayed frame is up to date. */
3179 post_create_inferior (current_top_target (), from_tty);
3180
3181 normal_stop ();
3182 }
3183
3184 /* Initialize static vars when a new inferior begins. */
3185
3186 void
3187 init_wait_for_inferior (void)
3188 {
3189 /* These are meaningless until the first time through wait_for_inferior. */
3190
3191 breakpoint_init_inferior (inf_starting);
3192
3193 clear_proceed_status (0);
3194
3195 nullify_last_target_wait_ptid ();
3196
3197 previous_inferior_ptid = inferior_ptid;
3198 }
3199
3200 \f
3201
3202 static void handle_inferior_event (struct execution_control_state *ecs);
3203
3204 static void handle_step_into_function (struct gdbarch *gdbarch,
3205 struct execution_control_state *ecs);
3206 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3207 struct execution_control_state *ecs);
3208 static void handle_signal_stop (struct execution_control_state *ecs);
3209 static void check_exception_resume (struct execution_control_state *,
3210 struct frame_info *);
3211
3212 static void end_stepping_range (struct execution_control_state *ecs);
3213 static void stop_waiting (struct execution_control_state *ecs);
3214 static void keep_going (struct execution_control_state *ecs);
3215 static void process_event_stop_test (struct execution_control_state *ecs);
3216 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3217
3218 /* This function is attached as a "thread_stop_requested" observer.
3219 Cleanup local state that assumed the PTID was to be resumed, and
3220 report the stop to the frontend. */
3221
3222 static void
3223 infrun_thread_stop_requested (ptid_t ptid)
3224 {
3225 process_stratum_target *curr_target = current_inferior ()->process_target ();
3226
3227 /* PTID was requested to stop. If the thread was already stopped,
3228 but the user/frontend doesn't know about that yet (e.g., the
3229 thread had been temporarily paused for some step-over), set up
3230 for reporting the stop now. */
3231 for (thread_info *tp : all_threads (curr_target, ptid))
3232 {
3233 if (tp->state != THREAD_RUNNING)
3234 continue;
3235 if (tp->executing)
3236 continue;
3237
3238 /* Remove matching threads from the step-over queue, so
3239 start_step_over doesn't try to resume them
3240 automatically. */
3241 if (thread_is_in_step_over_chain (tp))
3242 global_thread_step_over_chain_remove (tp);
3243
3244 /* If the thread is stopped, but the user/frontend doesn't
3245 know about that yet, queue a pending event, as if the
3246 thread had just stopped now. Unless the thread already had
3247 a pending event. */
3248 if (!tp->suspend.waitstatus_pending_p)
3249 {
3250 tp->suspend.waitstatus_pending_p = 1;
3251 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3252 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3253 }
3254
3255 /* Clear the inline-frame state, since we're re-processing the
3256 stop. */
3257 clear_inline_frame_state (tp);
3258
3259 /* If this thread was paused because some other thread was
3260 doing an inline-step over, let that finish first. Once
3261 that happens, we'll restart all threads and consume pending
3262 stop events then. */
3263 if (step_over_info_valid_p ())
3264 continue;
3265
3266 /* Otherwise we can process the (new) pending event now. Set
3267 it so this pending event is considered by
3268 do_target_wait. */
3269 tp->resumed = true;
3270 }
3271 }
3272
3273 static void
3274 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3275 {
3276 if (target_last_proc_target == tp->inf->process_target ()
3277 && target_last_wait_ptid == tp->ptid)
3278 nullify_last_target_wait_ptid ();
3279 }
3280
3281 /* Delete the step resume, single-step and longjmp/exception resume
3282 breakpoints of TP. */
3283
3284 static void
3285 delete_thread_infrun_breakpoints (struct thread_info *tp)
3286 {
3287 delete_step_resume_breakpoint (tp);
3288 delete_exception_resume_breakpoint (tp);
3289 delete_single_step_breakpoints (tp);
3290 }
3291
3292 /* If the target still has execution, call FUNC for each thread that
3293 just stopped. In all-stop, that's all the non-exited threads; in
3294 non-stop, that's the current thread, only. */
3295
3296 typedef void (*for_each_just_stopped_thread_callback_func)
3297 (struct thread_info *tp);
3298
3299 static void
3300 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3301 {
3302 if (!target_has_execution || inferior_ptid == null_ptid)
3303 return;
3304
3305 if (target_is_non_stop_p ())
3306 {
3307 /* If in non-stop mode, only the current thread stopped. */
3308 func (inferior_thread ());
3309 }
3310 else
3311 {
3312 /* In all-stop mode, all threads have stopped. */
3313 for (thread_info *tp : all_non_exited_threads ())
3314 func (tp);
3315 }
3316 }
3317
3318 /* Delete the step resume and longjmp/exception resume breakpoints of
3319 the threads that just stopped. */
3320
3321 static void
3322 delete_just_stopped_threads_infrun_breakpoints (void)
3323 {
3324 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3325 }
3326
3327 /* Delete the single-step breakpoints of the threads that just
3328 stopped. */
3329
3330 static void
3331 delete_just_stopped_threads_single_step_breakpoints (void)
3332 {
3333 for_each_just_stopped_thread (delete_single_step_breakpoints);
3334 }
3335
3336 /* See infrun.h. */
3337
3338 void
3339 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3340 const struct target_waitstatus *ws)
3341 {
3342 std::string status_string = target_waitstatus_to_string (ws);
3343 string_file stb;
3344
3345 /* The text is split over several lines because it was getting too long.
3346 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3347 output as a unit; we want only one timestamp printed if debug_timestamp
3348 is set. */
3349
3350 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3351 waiton_ptid.pid (),
3352 waiton_ptid.lwp (),
3353 waiton_ptid.tid ());
3354 if (waiton_ptid.pid () != -1)
3355 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3356 stb.printf (", status) =\n");
3357 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3358 result_ptid.pid (),
3359 result_ptid.lwp (),
3360 result_ptid.tid (),
3361 target_pid_to_str (result_ptid).c_str ());
3362 stb.printf ("infrun: %s\n", status_string.c_str ());
3363
3364 /* This uses %s in part to handle %'s in the text, but also to avoid
3365 a gcc error: the format attribute requires a string literal. */
3366 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3367 }
3368
3369 /* Select a thread at random, out of those which are resumed and have
3370 had events. */
3371
3372 static struct thread_info *
3373 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3374 {
3375 int num_events = 0;
3376
3377 auto has_event = [&] (thread_info *tp)
3378 {
3379 return (tp->ptid.matches (waiton_ptid)
3380 && tp->resumed
3381 && tp->suspend.waitstatus_pending_p);
3382 };
3383
3384 /* First see how many events we have. Count only resumed threads
3385 that have an event pending. */
3386 for (thread_info *tp : inf->non_exited_threads ())
3387 if (has_event (tp))
3388 num_events++;
3389
3390 if (num_events == 0)
3391 return NULL;
3392
3393 /* Now randomly pick a thread out of those that have had events. */
3394 int random_selector = (int) ((num_events * (double) rand ())
3395 / (RAND_MAX + 1.0));
3396
3397 if (num_events > 1)
3398 infrun_log_debug ("Found %d events, selecting #%d",
3399 num_events, random_selector);
3400
3401 /* Select the Nth thread that has had an event. */
3402 for (thread_info *tp : inf->non_exited_threads ())
3403 if (has_event (tp))
3404 if (random_selector-- == 0)
3405 return tp;
3406
3407 gdb_assert_not_reached ("event thread not found");
3408 }
3409
3410 /* Wrapper for target_wait that first checks whether threads have
3411 pending statuses to report before actually asking the target for
3412 more events. INF is the inferior we're using to call target_wait
3413 on. */
3414
3415 static ptid_t
3416 do_target_wait_1 (inferior *inf, ptid_t ptid,
3417 target_waitstatus *status, int options)
3418 {
3419 ptid_t event_ptid;
3420 struct thread_info *tp;
3421
3422 /* We know that we are looking for an event in the target of inferior
3423 INF, but we don't know which thread the event might come from. As
3424 such we want to make sure that INFERIOR_PTID is reset so that none of
3425 the wait code relies on it - doing so is always a mistake. */
3426 switch_to_inferior_no_thread (inf);
3427
3428 /* First check if there is a resumed thread with a wait status
3429 pending. */
3430 if (ptid == minus_one_ptid || ptid.is_pid ())
3431 {
3432 tp = random_pending_event_thread (inf, ptid);
3433 }
3434 else
3435 {
3436 infrun_log_debug ("Waiting for specific thread %s.",
3437 target_pid_to_str (ptid).c_str ());
3438
3439 /* We have a specific thread to check. */
3440 tp = find_thread_ptid (inf, ptid);
3441 gdb_assert (tp != NULL);
3442 if (!tp->suspend.waitstatus_pending_p)
3443 tp = NULL;
3444 }
3445
3446 if (tp != NULL
3447 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3448 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3449 {
3450 struct regcache *regcache = get_thread_regcache (tp);
3451 struct gdbarch *gdbarch = regcache->arch ();
3452 CORE_ADDR pc;
3453 int discard = 0;
3454
3455 pc = regcache_read_pc (regcache);
3456
3457 if (pc != tp->suspend.stop_pc)
3458 {
3459 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3460 target_pid_to_str (tp->ptid).c_str (),
3461 paddress (gdbarch, tp->suspend.stop_pc),
3462 paddress (gdbarch, pc));
3463 discard = 1;
3464 }
3465 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3466 {
3467 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3468 target_pid_to_str (tp->ptid).c_str (),
3469 paddress (gdbarch, pc));
3470
3471 discard = 1;
3472 }
3473
3474 if (discard)
3475 {
3476 infrun_log_debug ("pending event of %s cancelled.",
3477 target_pid_to_str (tp->ptid).c_str ());
3478
3479 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3480 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3481 }
3482 }
3483
3484 if (tp != NULL)
3485 {
3486 infrun_log_debug ("Using pending wait status %s for %s.",
3487 target_waitstatus_to_string
3488 (&tp->suspend.waitstatus).c_str (),
3489 target_pid_to_str (tp->ptid).c_str ());
3490
3491 /* Now that we've selected our final event LWP, un-adjust its PC
3492 if it was a software breakpoint (and the target doesn't
3493 always adjust the PC itself). */
3494 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3495 && !target_supports_stopped_by_sw_breakpoint ())
3496 {
3497 struct regcache *regcache;
3498 struct gdbarch *gdbarch;
3499 int decr_pc;
3500
3501 regcache = get_thread_regcache (tp);
3502 gdbarch = regcache->arch ();
3503
3504 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3505 if (decr_pc != 0)
3506 {
3507 CORE_ADDR pc;
3508
3509 pc = regcache_read_pc (regcache);
3510 regcache_write_pc (regcache, pc + decr_pc);
3511 }
3512 }
3513
3514 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3515 *status = tp->suspend.waitstatus;
3516 tp->suspend.waitstatus_pending_p = 0;
3517
3518 /* Wake up the event loop again, until all pending events are
3519 processed. */
3520 if (target_is_async_p ())
3521 mark_async_event_handler (infrun_async_inferior_event_token);
3522 return tp->ptid;
3523 }
3524
3525 /* But if we don't find one, we'll have to wait. */
3526
3527 if (deprecated_target_wait_hook)
3528 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3529 else
3530 event_ptid = target_wait (ptid, status, options);
3531
3532 return event_ptid;
3533 }
3534
3535 /* Wrapper for target_wait that first checks whether threads have
3536 pending statuses to report before actually asking the target for
3537 more events. Polls for events from all inferiors/targets. */
3538
3539 static bool
3540 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3541 {
3542 int num_inferiors = 0;
3543 int random_selector;
3544
3545 /* For fairness, we pick the first inferior/target to poll at random
3546 out of all inferiors that may report events, and then continue
3547 polling the rest of the inferior list starting from that one in a
3548 circular fashion until the whole list is polled once. */
3549
3550 auto inferior_matches = [&wait_ptid] (inferior *inf)
3551 {
3552 return (inf->process_target () != NULL
3553 && ptid_t (inf->pid).matches (wait_ptid));
3554 };
3555
3556 /* First see how many matching inferiors we have. */
3557 for (inferior *inf : all_inferiors ())
3558 if (inferior_matches (inf))
3559 num_inferiors++;
3560
3561 if (num_inferiors == 0)
3562 {
3563 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3564 return false;
3565 }
3566
3567 /* Now randomly pick an inferior out of those that matched. */
3568 random_selector = (int)
3569 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3570
3571 if (num_inferiors > 1)
3572 infrun_log_debug ("Found %d inferiors, starting at #%d",
3573 num_inferiors, random_selector);
3574
3575 /* Select the Nth inferior that matched. */
3576
3577 inferior *selected = nullptr;
3578
3579 for (inferior *inf : all_inferiors ())
3580 if (inferior_matches (inf))
3581 if (random_selector-- == 0)
3582 {
3583 selected = inf;
3584 break;
3585 }
3586
3587 /* Now poll for events out of each of the matching inferior's
3588 targets, starting from the selected one. */
3589
3590 auto do_wait = [&] (inferior *inf)
3591 {
3592 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3593 ecs->target = inf->process_target ();
3594 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3595 };
3596
3597 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3598 here spuriously after the target is all stopped and we've already
3599 reported the stop to the user, polling for events. */
3600 scoped_restore_current_thread restore_thread;
3601
3602 int inf_num = selected->num;
3603 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3604 if (inferior_matches (inf))
3605 if (do_wait (inf))
3606 return true;
3607
3608 for (inferior *inf = inferior_list;
3609 inf != NULL && inf->num < inf_num;
3610 inf = inf->next)
3611 if (inferior_matches (inf))
3612 if (do_wait (inf))
3613 return true;
3614
3615 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3616 return false;
3617 }
3618
3619 /* Prepare and stabilize the inferior for detaching it. E.g.,
3620 detaching while a thread is displaced stepping is a recipe for
3621 crashing it, as nothing would readjust the PC out of the scratch
3622 pad. */
3623
3624 void
3625 prepare_for_detach (void)
3626 {
3627 struct inferior *inf = current_inferior ();
3628 ptid_t pid_ptid = ptid_t (inf->pid);
3629
3630 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3631
3632 /* Is any thread of this process displaced stepping? If not,
3633 there's nothing else to do. */
3634 if (displaced_step_in_progress (inf))
3635 return;
3636
3637 infrun_log_debug ("displaced-stepping in-process while detaching");
3638
3639 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3640
3641 // FIXME
3642 while (false)
3643 {
3644 struct execution_control_state ecss;
3645 struct execution_control_state *ecs;
3646
3647 ecs = &ecss;
3648 memset (ecs, 0, sizeof (*ecs));
3649
3650 overlay_cache_invalid = 1;
3651 /* Flush target cache before starting to handle each event.
3652 Target was running and cache could be stale. This is just a
3653 heuristic. Running threads may modify target memory, but we
3654 don't get any event. */
3655 target_dcache_invalidate ();
3656
3657 do_target_wait (pid_ptid, ecs, 0);
3658
3659 if (debug_infrun)
3660 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3661
3662 /* If an error happens while handling the event, propagate GDB's
3663 knowledge of the executing state to the frontend/user running
3664 state. */
3665 scoped_finish_thread_state finish_state (inf->process_target (),
3666 minus_one_ptid);
3667
3668 /* Now figure out what to do with the result of the result. */
3669 handle_inferior_event (ecs);
3670
3671 /* No error, don't finish the state yet. */
3672 finish_state.release ();
3673
3674 /* Breakpoints and watchpoints are not installed on the target
3675 at this point, and signals are passed directly to the
3676 inferior, so this must mean the process is gone. */
3677 if (!ecs->wait_some_more)
3678 {
3679 restore_detaching.release ();
3680 error (_("Program exited while detaching"));
3681 }
3682 }
3683
3684 restore_detaching.release ();
3685 }
3686
3687 /* Wait for control to return from inferior to debugger.
3688
3689 If inferior gets a signal, we may decide to start it up again
3690 instead of returning. That is why there is a loop in this function.
3691 When this function actually returns it means the inferior
3692 should be left stopped and GDB should read more commands. */
3693
3694 static void
3695 wait_for_inferior (inferior *inf)
3696 {
3697 infrun_log_debug ("wait_for_inferior ()");
3698
3699 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3700
3701 /* If an error happens while handling the event, propagate GDB's
3702 knowledge of the executing state to the frontend/user running
3703 state. */
3704 scoped_finish_thread_state finish_state
3705 (inf->process_target (), minus_one_ptid);
3706
3707 while (1)
3708 {
3709 struct execution_control_state ecss;
3710 struct execution_control_state *ecs = &ecss;
3711
3712 memset (ecs, 0, sizeof (*ecs));
3713
3714 overlay_cache_invalid = 1;
3715
3716 /* Flush target cache before starting to handle each event.
3717 Target was running and cache could be stale. This is just a
3718 heuristic. Running threads may modify target memory, but we
3719 don't get any event. */
3720 target_dcache_invalidate ();
3721
3722 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3723 ecs->target = inf->process_target ();
3724
3725 if (debug_infrun)
3726 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3727
3728 /* Now figure out what to do with the result of the result. */
3729 handle_inferior_event (ecs);
3730
3731 if (!ecs->wait_some_more)
3732 break;
3733 }
3734
3735 /* No error, don't finish the state yet. */
3736 finish_state.release ();
3737 }
3738
3739 /* Cleanup that reinstalls the readline callback handler, if the
3740 target is running in the background. If while handling the target
3741 event something triggered a secondary prompt, like e.g., a
3742 pagination prompt, we'll have removed the callback handler (see
3743 gdb_readline_wrapper_line). Need to do this as we go back to the
3744 event loop, ready to process further input. Note this has no
3745 effect if the handler hasn't actually been removed, because calling
3746 rl_callback_handler_install resets the line buffer, thus losing
3747 input. */
3748
3749 static void
3750 reinstall_readline_callback_handler_cleanup ()
3751 {
3752 struct ui *ui = current_ui;
3753
3754 if (!ui->async)
3755 {
3756 /* We're not going back to the top level event loop yet. Don't
3757 install the readline callback, as it'd prep the terminal,
3758 readline-style (raw, noecho) (e.g., --batch). We'll install
3759 it the next time the prompt is displayed, when we're ready
3760 for input. */
3761 return;
3762 }
3763
3764 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3765 gdb_rl_callback_handler_reinstall ();
3766 }
3767
3768 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3769 that's just the event thread. In all-stop, that's all threads. */
3770
3771 static void
3772 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3773 {
3774 if (ecs->event_thread != NULL
3775 && ecs->event_thread->thread_fsm != NULL)
3776 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3777
3778 if (!non_stop)
3779 {
3780 for (thread_info *thr : all_non_exited_threads ())
3781 {
3782 if (thr->thread_fsm == NULL)
3783 continue;
3784 if (thr == ecs->event_thread)
3785 continue;
3786
3787 switch_to_thread (thr);
3788 thr->thread_fsm->clean_up (thr);
3789 }
3790
3791 if (ecs->event_thread != NULL)
3792 switch_to_thread (ecs->event_thread);
3793 }
3794 }
3795
3796 /* Helper for all_uis_check_sync_execution_done that works on the
3797 current UI. */
3798
3799 static void
3800 check_curr_ui_sync_execution_done (void)
3801 {
3802 struct ui *ui = current_ui;
3803
3804 if (ui->prompt_state == PROMPT_NEEDED
3805 && ui->async
3806 && !gdb_in_secondary_prompt_p (ui))
3807 {
3808 target_terminal::ours ();
3809 gdb::observers::sync_execution_done.notify ();
3810 ui_register_input_event_handler (ui);
3811 }
3812 }
3813
3814 /* See infrun.h. */
3815
3816 void
3817 all_uis_check_sync_execution_done (void)
3818 {
3819 SWITCH_THRU_ALL_UIS ()
3820 {
3821 check_curr_ui_sync_execution_done ();
3822 }
3823 }
3824
3825 /* See infrun.h. */
3826
3827 void
3828 all_uis_on_sync_execution_starting (void)
3829 {
3830 SWITCH_THRU_ALL_UIS ()
3831 {
3832 if (current_ui->prompt_state == PROMPT_NEEDED)
3833 async_disable_stdin ();
3834 }
3835 }
3836
3837 /* Asynchronous version of wait_for_inferior. It is called by the
3838 event loop whenever a change of state is detected on the file
3839 descriptor corresponding to the target. It can be called more than
3840 once to complete a single execution command. In such cases we need
3841 to keep the state in a global variable ECSS. If it is the last time
3842 that this function is called for a single execution command, then
3843 report to the user that the inferior has stopped, and do the
3844 necessary cleanups. */
3845
3846 void
3847 fetch_inferior_event ()
3848 {
3849 struct execution_control_state ecss;
3850 struct execution_control_state *ecs = &ecss;
3851 int cmd_done = 0;
3852
3853 memset (ecs, 0, sizeof (*ecs));
3854
3855 /* Events are always processed with the main UI as current UI. This
3856 way, warnings, debug output, etc. are always consistently sent to
3857 the main console. */
3858 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3859
3860 /* End up with readline processing input, if necessary. */
3861 {
3862 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3863
3864 /* We're handling a live event, so make sure we're doing live
3865 debugging. If we're looking at traceframes while the target is
3866 running, we're going to need to get back to that mode after
3867 handling the event. */
3868 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3869 if (non_stop)
3870 {
3871 maybe_restore_traceframe.emplace ();
3872 set_current_traceframe (-1);
3873 }
3874
3875 /* The user/frontend should not notice a thread switch due to
3876 internal events. Make sure we revert to the user selected
3877 thread and frame after handling the event and running any
3878 breakpoint commands. */
3879 scoped_restore_current_thread restore_thread;
3880
3881 overlay_cache_invalid = 1;
3882 /* Flush target cache before starting to handle each event. Target
3883 was running and cache could be stale. This is just a heuristic.
3884 Running threads may modify target memory, but we don't get any
3885 event. */
3886 target_dcache_invalidate ();
3887
3888 scoped_restore save_exec_dir
3889 = make_scoped_restore (&execution_direction,
3890 target_execution_direction ());
3891
3892 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3893 {
3894 infrun_log_debug ("do_target_wait returned false");
3895 return;
3896 }
3897
3898 infrun_log_debug ("do_target_wait returned true");
3899
3900 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3901
3902 /* Switch to the target that generated the event, so we can do
3903 target calls. Any inferior bound to the target will do, so we
3904 just switch to the first we find. */
3905 for (inferior *inf : all_inferiors (ecs->target))
3906 {
3907 switch_to_inferior_no_thread (inf);
3908 break;
3909 }
3910
3911 if (debug_infrun)
3912 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3913
3914 /* If an error happens while handling the event, propagate GDB's
3915 knowledge of the executing state to the frontend/user running
3916 state. */
3917 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3918 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3919
3920 /* Get executed before scoped_restore_current_thread above to apply
3921 still for the thread which has thrown the exception. */
3922 auto defer_bpstat_clear
3923 = make_scope_exit (bpstat_clear_actions);
3924 auto defer_delete_threads
3925 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3926
3927 /* Now figure out what to do with the result of the result. */
3928 handle_inferior_event (ecs);
3929
3930 if (!ecs->wait_some_more)
3931 {
3932 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3933 int should_stop = 1;
3934 struct thread_info *thr = ecs->event_thread;
3935
3936 delete_just_stopped_threads_infrun_breakpoints ();
3937
3938 if (thr != NULL)
3939 {
3940 struct thread_fsm *thread_fsm = thr->thread_fsm;
3941
3942 if (thread_fsm != NULL)
3943 should_stop = thread_fsm->should_stop (thr);
3944 }
3945
3946 if (!should_stop)
3947 {
3948 keep_going (ecs);
3949 }
3950 else
3951 {
3952 bool should_notify_stop = true;
3953 int proceeded = 0;
3954
3955 clean_up_just_stopped_threads_fsms (ecs);
3956
3957 if (thr != NULL && thr->thread_fsm != NULL)
3958 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3959
3960 if (should_notify_stop)
3961 {
3962 /* We may not find an inferior if this was a process exit. */
3963 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3964 proceeded = normal_stop ();
3965 }
3966
3967 if (!proceeded)
3968 {
3969 inferior_event_handler (INF_EXEC_COMPLETE);
3970 cmd_done = 1;
3971 }
3972
3973 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3974 previously selected thread is gone. We have two
3975 choices - switch to no thread selected, or restore the
3976 previously selected thread (now exited). We chose the
3977 later, just because that's what GDB used to do. After
3978 this, "info threads" says "The current thread <Thread
3979 ID 2> has terminated." instead of "No thread
3980 selected.". */
3981 if (!non_stop
3982 && cmd_done
3983 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3984 restore_thread.dont_restore ();
3985 }
3986 }
3987
3988 defer_delete_threads.release ();
3989 defer_bpstat_clear.release ();
3990
3991 /* No error, don't finish the thread states yet. */
3992 finish_state.release ();
3993
3994 /* This scope is used to ensure that readline callbacks are
3995 reinstalled here. */
3996 }
3997
3998 /* If a UI was in sync execution mode, and now isn't, restore its
3999 prompt (a synchronous execution command has finished, and we're
4000 ready for input). */
4001 all_uis_check_sync_execution_done ();
4002
4003 if (cmd_done
4004 && exec_done_display_p
4005 && (inferior_ptid == null_ptid
4006 || inferior_thread ()->state != THREAD_RUNNING))
4007 printf_unfiltered (_("completed.\n"));
4008 }
4009
4010 /* See infrun.h. */
4011
4012 void
4013 set_step_info (thread_info *tp, struct frame_info *frame,
4014 struct symtab_and_line sal)
4015 {
4016 /* This can be removed once this function no longer implicitly relies on the
4017 inferior_ptid value. */
4018 gdb_assert (inferior_ptid == tp->ptid);
4019
4020 tp->control.step_frame_id = get_frame_id (frame);
4021 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4022
4023 tp->current_symtab = sal.symtab;
4024 tp->current_line = sal.line;
4025 }
4026
4027 /* Clear context switchable stepping state. */
4028
4029 void
4030 init_thread_stepping_state (struct thread_info *tss)
4031 {
4032 tss->stepped_breakpoint = 0;
4033 tss->stepping_over_breakpoint = 0;
4034 tss->stepping_over_watchpoint = 0;
4035 tss->step_after_step_resume_breakpoint = 0;
4036 }
4037
4038 /* See infrun.h. */
4039
4040 void
4041 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4042 target_waitstatus status)
4043 {
4044 target_last_proc_target = target;
4045 target_last_wait_ptid = ptid;
4046 target_last_waitstatus = status;
4047 }
4048
4049 /* See infrun.h. */
4050
4051 void
4052 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4053 target_waitstatus *status)
4054 {
4055 if (target != nullptr)
4056 *target = target_last_proc_target;
4057 if (ptid != nullptr)
4058 *ptid = target_last_wait_ptid;
4059 if (status != nullptr)
4060 *status = target_last_waitstatus;
4061 }
4062
4063 /* See infrun.h. */
4064
4065 void
4066 nullify_last_target_wait_ptid (void)
4067 {
4068 target_last_proc_target = nullptr;
4069 target_last_wait_ptid = minus_one_ptid;
4070 target_last_waitstatus = {};
4071 }
4072
4073 /* Switch thread contexts. */
4074
4075 static void
4076 context_switch (execution_control_state *ecs)
4077 {
4078 if (ecs->ptid != inferior_ptid
4079 && (inferior_ptid == null_ptid
4080 || ecs->event_thread != inferior_thread ()))
4081 {
4082 infrun_log_debug ("Switching context from %s to %s",
4083 target_pid_to_str (inferior_ptid).c_str (),
4084 target_pid_to_str (ecs->ptid).c_str ());
4085 }
4086
4087 switch_to_thread (ecs->event_thread);
4088 }
4089
4090 /* If the target can't tell whether we've hit breakpoints
4091 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4092 check whether that could have been caused by a breakpoint. If so,
4093 adjust the PC, per gdbarch_decr_pc_after_break. */
4094
4095 static void
4096 adjust_pc_after_break (struct thread_info *thread,
4097 struct target_waitstatus *ws)
4098 {
4099 struct regcache *regcache;
4100 struct gdbarch *gdbarch;
4101 CORE_ADDR breakpoint_pc, decr_pc;
4102
4103 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4104 we aren't, just return.
4105
4106 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4107 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4108 implemented by software breakpoints should be handled through the normal
4109 breakpoint layer.
4110
4111 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4112 different signals (SIGILL or SIGEMT for instance), but it is less
4113 clear where the PC is pointing afterwards. It may not match
4114 gdbarch_decr_pc_after_break. I don't know any specific target that
4115 generates these signals at breakpoints (the code has been in GDB since at
4116 least 1992) so I can not guess how to handle them here.
4117
4118 In earlier versions of GDB, a target with
4119 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4120 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4121 target with both of these set in GDB history, and it seems unlikely to be
4122 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4123
4124 if (ws->kind != TARGET_WAITKIND_STOPPED)
4125 return;
4126
4127 if (ws->value.sig != GDB_SIGNAL_TRAP)
4128 return;
4129
4130 /* In reverse execution, when a breakpoint is hit, the instruction
4131 under it has already been de-executed. The reported PC always
4132 points at the breakpoint address, so adjusting it further would
4133 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4134 architecture:
4135
4136 B1 0x08000000 : INSN1
4137 B2 0x08000001 : INSN2
4138 0x08000002 : INSN3
4139 PC -> 0x08000003 : INSN4
4140
4141 Say you're stopped at 0x08000003 as above. Reverse continuing
4142 from that point should hit B2 as below. Reading the PC when the
4143 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4144 been de-executed already.
4145
4146 B1 0x08000000 : INSN1
4147 B2 PC -> 0x08000001 : INSN2
4148 0x08000002 : INSN3
4149 0x08000003 : INSN4
4150
4151 We can't apply the same logic as for forward execution, because
4152 we would wrongly adjust the PC to 0x08000000, since there's a
4153 breakpoint at PC - 1. We'd then report a hit on B1, although
4154 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4155 behaviour. */
4156 if (execution_direction == EXEC_REVERSE)
4157 return;
4158
4159 /* If the target can tell whether the thread hit a SW breakpoint,
4160 trust it. Targets that can tell also adjust the PC
4161 themselves. */
4162 if (target_supports_stopped_by_sw_breakpoint ())
4163 return;
4164
4165 /* Note that relying on whether a breakpoint is planted in memory to
4166 determine this can fail. E.g,. the breakpoint could have been
4167 removed since. Or the thread could have been told to step an
4168 instruction the size of a breakpoint instruction, and only
4169 _after_ was a breakpoint inserted at its address. */
4170
4171 /* If this target does not decrement the PC after breakpoints, then
4172 we have nothing to do. */
4173 regcache = get_thread_regcache (thread);
4174 gdbarch = regcache->arch ();
4175
4176 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4177 if (decr_pc == 0)
4178 return;
4179
4180 const address_space *aspace = regcache->aspace ();
4181
4182 /* Find the location where (if we've hit a breakpoint) the
4183 breakpoint would be. */
4184 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4185
4186 /* If the target can't tell whether a software breakpoint triggered,
4187 fallback to figuring it out based on breakpoints we think were
4188 inserted in the target, and on whether the thread was stepped or
4189 continued. */
4190
4191 /* Check whether there actually is a software breakpoint inserted at
4192 that location.
4193
4194 If in non-stop mode, a race condition is possible where we've
4195 removed a breakpoint, but stop events for that breakpoint were
4196 already queued and arrive later. To suppress those spurious
4197 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4198 and retire them after a number of stop events are reported. Note
4199 this is an heuristic and can thus get confused. The real fix is
4200 to get the "stopped by SW BP and needs adjustment" info out of
4201 the target/kernel (and thus never reach here; see above). */
4202 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4203 || (target_is_non_stop_p ()
4204 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4205 {
4206 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4207
4208 if (record_full_is_used ())
4209 restore_operation_disable.emplace
4210 (record_full_gdb_operation_disable_set ());
4211
4212 /* When using hardware single-step, a SIGTRAP is reported for both
4213 a completed single-step and a software breakpoint. Need to
4214 differentiate between the two, as the latter needs adjusting
4215 but the former does not.
4216
4217 The SIGTRAP can be due to a completed hardware single-step only if
4218 - we didn't insert software single-step breakpoints
4219 - this thread is currently being stepped
4220
4221 If any of these events did not occur, we must have stopped due
4222 to hitting a software breakpoint, and have to back up to the
4223 breakpoint address.
4224
4225 As a special case, we could have hardware single-stepped a
4226 software breakpoint. In this case (prev_pc == breakpoint_pc),
4227 we also need to back up to the breakpoint address. */
4228
4229 if (thread_has_single_step_breakpoints_set (thread)
4230 || !currently_stepping (thread)
4231 || (thread->stepped_breakpoint
4232 && thread->prev_pc == breakpoint_pc))
4233 regcache_write_pc (regcache, breakpoint_pc);
4234 }
4235 }
4236
4237 static int
4238 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4239 {
4240 for (frame = get_prev_frame (frame);
4241 frame != NULL;
4242 frame = get_prev_frame (frame))
4243 {
4244 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4245 return 1;
4246 if (get_frame_type (frame) != INLINE_FRAME)
4247 break;
4248 }
4249
4250 return 0;
4251 }
4252
4253 /* Look for an inline frame that is marked for skip.
4254 If PREV_FRAME is TRUE start at the previous frame,
4255 otherwise start at the current frame. Stop at the
4256 first non-inline frame, or at the frame where the
4257 step started. */
4258
4259 static bool
4260 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4261 {
4262 struct frame_info *frame = get_current_frame ();
4263
4264 if (prev_frame)
4265 frame = get_prev_frame (frame);
4266
4267 for (; frame != NULL; frame = get_prev_frame (frame))
4268 {
4269 const char *fn = NULL;
4270 symtab_and_line sal;
4271 struct symbol *sym;
4272
4273 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4274 break;
4275 if (get_frame_type (frame) != INLINE_FRAME)
4276 break;
4277
4278 sal = find_frame_sal (frame);
4279 sym = get_frame_function (frame);
4280
4281 if (sym != NULL)
4282 fn = sym->print_name ();
4283
4284 if (sal.line != 0
4285 && function_name_is_marked_for_skip (fn, sal))
4286 return true;
4287 }
4288
4289 return false;
4290 }
4291
4292 /* If the event thread has the stop requested flag set, pretend it
4293 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4294 target_stop). */
4295
4296 static bool
4297 handle_stop_requested (struct execution_control_state *ecs)
4298 {
4299 if (ecs->event_thread->stop_requested)
4300 {
4301 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4302 ecs->ws.value.sig = GDB_SIGNAL_0;
4303 handle_signal_stop (ecs);
4304 return true;
4305 }
4306 return false;
4307 }
4308
4309 /* Auxiliary function that handles syscall entry/return events.
4310 It returns 1 if the inferior should keep going (and GDB
4311 should ignore the event), or 0 if the event deserves to be
4312 processed. */
4313
4314 static int
4315 handle_syscall_event (struct execution_control_state *ecs)
4316 {
4317 struct regcache *regcache;
4318 int syscall_number;
4319
4320 context_switch (ecs);
4321
4322 regcache = get_thread_regcache (ecs->event_thread);
4323 syscall_number = ecs->ws.value.syscall_number;
4324 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4325
4326 if (catch_syscall_enabled () > 0
4327 && catching_syscall_number (syscall_number) > 0)
4328 {
4329 infrun_log_debug ("syscall number=%d", syscall_number);
4330
4331 ecs->event_thread->control.stop_bpstat
4332 = bpstat_stop_status (regcache->aspace (),
4333 ecs->event_thread->suspend.stop_pc,
4334 ecs->event_thread, &ecs->ws);
4335
4336 if (handle_stop_requested (ecs))
4337 return 0;
4338
4339 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4340 {
4341 /* Catchpoint hit. */
4342 return 0;
4343 }
4344 }
4345
4346 if (handle_stop_requested (ecs))
4347 return 0;
4348
4349 /* If no catchpoint triggered for this, then keep going. */
4350 keep_going (ecs);
4351 return 1;
4352 }
4353
4354 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4355
4356 static void
4357 fill_in_stop_func (struct gdbarch *gdbarch,
4358 struct execution_control_state *ecs)
4359 {
4360 if (!ecs->stop_func_filled_in)
4361 {
4362 const block *block;
4363
4364 /* Don't care about return value; stop_func_start and stop_func_name
4365 will both be 0 if it doesn't work. */
4366 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4367 &ecs->stop_func_name,
4368 &ecs->stop_func_start,
4369 &ecs->stop_func_end,
4370 &block);
4371
4372 /* The call to find_pc_partial_function, above, will set
4373 stop_func_start and stop_func_end to the start and end
4374 of the range containing the stop pc. If this range
4375 contains the entry pc for the block (which is always the
4376 case for contiguous blocks), advance stop_func_start past
4377 the function's start offset and entrypoint. Note that
4378 stop_func_start is NOT advanced when in a range of a
4379 non-contiguous block that does not contain the entry pc. */
4380 if (block != nullptr
4381 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4382 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4383 {
4384 ecs->stop_func_start
4385 += gdbarch_deprecated_function_start_offset (gdbarch);
4386
4387 if (gdbarch_skip_entrypoint_p (gdbarch))
4388 ecs->stop_func_start
4389 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4390 }
4391
4392 ecs->stop_func_filled_in = 1;
4393 }
4394 }
4395
4396
4397 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4398
4399 static enum stop_kind
4400 get_inferior_stop_soon (execution_control_state *ecs)
4401 {
4402 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4403
4404 gdb_assert (inf != NULL);
4405 return inf->control.stop_soon;
4406 }
4407
4408 /* Poll for one event out of the current target. Store the resulting
4409 waitstatus in WS, and return the event ptid. Does not block. */
4410
4411 static ptid_t
4412 poll_one_curr_target (struct target_waitstatus *ws)
4413 {
4414 ptid_t event_ptid;
4415
4416 overlay_cache_invalid = 1;
4417
4418 /* Flush target cache before starting to handle each event.
4419 Target was running and cache could be stale. This is just a
4420 heuristic. Running threads may modify target memory, but we
4421 don't get any event. */
4422 target_dcache_invalidate ();
4423
4424 if (deprecated_target_wait_hook)
4425 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4426 else
4427 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4428
4429 if (debug_infrun)
4430 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4431
4432 return event_ptid;
4433 }
4434
4435 /* An event reported by wait_one. */
4436
4437 struct wait_one_event
4438 {
4439 /* The target the event came out of. */
4440 process_stratum_target *target;
4441
4442 /* The PTID the event was for. */
4443 ptid_t ptid;
4444
4445 /* The waitstatus. */
4446 target_waitstatus ws;
4447 };
4448
4449 /* Wait for one event out of any target. */
4450
4451 static wait_one_event
4452 wait_one ()
4453 {
4454 while (1)
4455 {
4456 for (inferior *inf : all_inferiors ())
4457 {
4458 process_stratum_target *target = inf->process_target ();
4459 if (target == NULL
4460 || !target->is_async_p ()
4461 || !target->threads_executing)
4462 continue;
4463
4464 switch_to_inferior_no_thread (inf);
4465
4466 wait_one_event event;
4467 event.target = target;
4468 event.ptid = poll_one_curr_target (&event.ws);
4469
4470 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4471 {
4472 /* If nothing is resumed, remove the target from the
4473 event loop. */
4474 target_async (0);
4475 }
4476 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4477 return event;
4478 }
4479
4480 /* Block waiting for some event. */
4481
4482 fd_set readfds;
4483 int nfds = 0;
4484
4485 FD_ZERO (&readfds);
4486
4487 for (inferior *inf : all_inferiors ())
4488 {
4489 process_stratum_target *target = inf->process_target ();
4490 if (target == NULL
4491 || !target->is_async_p ()
4492 || !target->threads_executing)
4493 continue;
4494
4495 int fd = target->async_wait_fd ();
4496 FD_SET (fd, &readfds);
4497 if (nfds <= fd)
4498 nfds = fd + 1;
4499 }
4500
4501 if (nfds == 0)
4502 {
4503 /* No waitable targets left. All must be stopped. */
4504 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4505 }
4506
4507 QUIT;
4508
4509 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4510 if (numfds < 0)
4511 {
4512 if (errno == EINTR)
4513 continue;
4514 else
4515 perror_with_name ("interruptible_select");
4516 }
4517 }
4518 }
4519
4520 /* Save the thread's event and stop reason to process it later. */
4521
4522 static void
4523 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4524 {
4525 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4526 target_waitstatus_to_string (ws).c_str (),
4527 tp->ptid.pid (),
4528 tp->ptid.lwp (),
4529 tp->ptid.tid ());
4530
4531 /* Record for later. */
4532 tp->suspend.waitstatus = *ws;
4533 tp->suspend.waitstatus_pending_p = 1;
4534
4535 struct regcache *regcache = get_thread_regcache (tp);
4536 const address_space *aspace = regcache->aspace ();
4537
4538 if (ws->kind == TARGET_WAITKIND_STOPPED
4539 && ws->value.sig == GDB_SIGNAL_TRAP)
4540 {
4541 CORE_ADDR pc = regcache_read_pc (regcache);
4542
4543 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4544
4545 scoped_restore_current_thread restore_thread;
4546 switch_to_thread (tp);
4547
4548 if (target_stopped_by_watchpoint ())
4549 {
4550 tp->suspend.stop_reason
4551 = TARGET_STOPPED_BY_WATCHPOINT;
4552 }
4553 else if (target_supports_stopped_by_sw_breakpoint ()
4554 && target_stopped_by_sw_breakpoint ())
4555 {
4556 tp->suspend.stop_reason
4557 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4558 }
4559 else if (target_supports_stopped_by_hw_breakpoint ()
4560 && target_stopped_by_hw_breakpoint ())
4561 {
4562 tp->suspend.stop_reason
4563 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4564 }
4565 else if (!target_supports_stopped_by_hw_breakpoint ()
4566 && hardware_breakpoint_inserted_here_p (aspace,
4567 pc))
4568 {
4569 tp->suspend.stop_reason
4570 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4571 }
4572 else if (!target_supports_stopped_by_sw_breakpoint ()
4573 && software_breakpoint_inserted_here_p (aspace,
4574 pc))
4575 {
4576 tp->suspend.stop_reason
4577 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4578 }
4579 else if (!thread_has_single_step_breakpoints_set (tp)
4580 && currently_stepping (tp))
4581 {
4582 tp->suspend.stop_reason
4583 = TARGET_STOPPED_BY_SINGLE_STEP;
4584 }
4585 }
4586 }
4587
4588 /* Mark the non-executing threads accordingly. In all-stop, all
4589 threads of all processes are stopped when we get any event
4590 reported. In non-stop mode, only the event thread stops. */
4591
4592 static void
4593 mark_non_executing_threads (process_stratum_target *target,
4594 ptid_t event_ptid,
4595 struct target_waitstatus ws)
4596 {
4597 ptid_t mark_ptid;
4598
4599 if (!target_is_non_stop_p ())
4600 mark_ptid = minus_one_ptid;
4601 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4602 || ws.kind == TARGET_WAITKIND_EXITED)
4603 {
4604 /* If we're handling a process exit in non-stop mode, even
4605 though threads haven't been deleted yet, one would think
4606 that there is nothing to do, as threads of the dead process
4607 will be soon deleted, and threads of any other process were
4608 left running. However, on some targets, threads survive a
4609 process exit event. E.g., for the "checkpoint" command,
4610 when the current checkpoint/fork exits, linux-fork.c
4611 automatically switches to another fork from within
4612 target_mourn_inferior, by associating the same
4613 inferior/thread to another fork. We haven't mourned yet at
4614 this point, but we must mark any threads left in the
4615 process as not-executing so that finish_thread_state marks
4616 them stopped (in the user's perspective) if/when we present
4617 the stop to the user. */
4618 mark_ptid = ptid_t (event_ptid.pid ());
4619 }
4620 else
4621 mark_ptid = event_ptid;
4622
4623 set_executing (target, mark_ptid, false);
4624
4625 /* Likewise the resumed flag. */
4626 set_resumed (target, mark_ptid, false);
4627 }
4628
4629 /* See infrun.h. */
4630
4631 void
4632 stop_all_threads (void)
4633 {
4634 /* We may need multiple passes to discover all threads. */
4635 int pass;
4636 int iterations = 0;
4637
4638 gdb_assert (exists_non_stop_target ());
4639
4640 infrun_log_debug ("stop_all_threads");
4641
4642 scoped_restore_current_thread restore_thread;
4643
4644 /* Enable thread events of all targets. */
4645 for (auto *target : all_non_exited_process_targets ())
4646 {
4647 switch_to_target_no_thread (target);
4648 target_thread_events (true);
4649 }
4650
4651 SCOPE_EXIT
4652 {
4653 /* Disable thread events of all targets. */
4654 for (auto *target : all_non_exited_process_targets ())
4655 {
4656 switch_to_target_no_thread (target);
4657 target_thread_events (false);
4658 }
4659
4660
4661 infrun_log_debug ("stop_all_threads done");
4662 };
4663
4664 /* Request threads to stop, and then wait for the stops. Because
4665 threads we already know about can spawn more threads while we're
4666 trying to stop them, and we only learn about new threads when we
4667 update the thread list, do this in a loop, and keep iterating
4668 until two passes find no threads that need to be stopped. */
4669 for (pass = 0; pass < 2; pass++, iterations++)
4670 {
4671 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4672 pass, iterations);
4673 while (1)
4674 {
4675 int waits_needed = 0;
4676
4677 for (auto *target : all_non_exited_process_targets ())
4678 {
4679 switch_to_target_no_thread (target);
4680 update_thread_list ();
4681 }
4682
4683 /* Go through all threads looking for threads that we need
4684 to tell the target to stop. */
4685 for (thread_info *t : all_non_exited_threads ())
4686 {
4687 /* For a single-target setting with an all-stop target,
4688 we would not even arrive here. For a multi-target
4689 setting, until GDB is able to handle a mixture of
4690 all-stop and non-stop targets, simply skip all-stop
4691 targets' threads. This should be fine due to the
4692 protection of 'check_multi_target_resumption'. */
4693
4694 switch_to_thread_no_regs (t);
4695 if (!target_is_non_stop_p ())
4696 continue;
4697
4698 if (t->executing)
4699 {
4700 /* If already stopping, don't request a stop again.
4701 We just haven't seen the notification yet. */
4702 if (!t->stop_requested)
4703 {
4704 infrun_log_debug (" %s executing, need stop",
4705 target_pid_to_str (t->ptid).c_str ());
4706 target_stop (t->ptid);
4707 t->stop_requested = 1;
4708 }
4709 else
4710 {
4711 infrun_log_debug (" %s executing, already stopping",
4712 target_pid_to_str (t->ptid).c_str ());
4713 }
4714
4715 if (t->stop_requested)
4716 waits_needed++;
4717 }
4718 else
4719 {
4720 infrun_log_debug (" %s not executing",
4721 target_pid_to_str (t->ptid).c_str ());
4722
4723 /* The thread may be not executing, but still be
4724 resumed with a pending status to process. */
4725 t->resumed = false;
4726 }
4727 }
4728
4729 if (waits_needed == 0)
4730 break;
4731
4732 /* If we find new threads on the second iteration, restart
4733 over. We want to see two iterations in a row with all
4734 threads stopped. */
4735 if (pass > 0)
4736 pass = -1;
4737
4738 for (int i = 0; i < waits_needed; i++)
4739 {
4740 wait_one_event event = wait_one ();
4741
4742 infrun_log_debug ("%s %s\n",
4743 target_waitstatus_to_string (&event.ws).c_str (),
4744 target_pid_to_str (event.ptid).c_str ());
4745
4746 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4747 {
4748 /* All resumed threads exited. */
4749 break;
4750 }
4751 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4752 || event.ws.kind == TARGET_WAITKIND_EXITED
4753 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4754 {
4755 /* One thread/process exited/signalled. */
4756
4757 thread_info *t = nullptr;
4758
4759 /* The target may have reported just a pid. If so, try
4760 the first non-exited thread. */
4761 if (event.ptid.is_pid ())
4762 {
4763 int pid = event.ptid.pid ();
4764 inferior *inf = find_inferior_pid (event.target, pid);
4765 for (thread_info *tp : inf->non_exited_threads ())
4766 {
4767 t = tp;
4768 break;
4769 }
4770
4771 /* If there is no available thread, the event would
4772 have to be appended to a per-inferior event list,
4773 which does not exist (and if it did, we'd have
4774 to adjust run control command to be able to
4775 resume such an inferior). We assert here instead
4776 of going into an infinite loop. */
4777 gdb_assert (t != nullptr);
4778
4779 infrun_log_debug ("using %s\n",
4780 target_pid_to_str (t->ptid).c_str ());
4781 }
4782 else
4783 {
4784 t = find_thread_ptid (event.target, event.ptid);
4785 /* Check if this is the first time we see this thread.
4786 Don't bother adding if it individually exited. */
4787 if (t == nullptr
4788 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4789 t = add_thread (event.target, event.ptid);
4790 }
4791
4792 if (t != nullptr)
4793 {
4794 /* Set the threads as non-executing to avoid
4795 another stop attempt on them. */
4796 switch_to_thread_no_regs (t);
4797 mark_non_executing_threads (event.target, event.ptid,
4798 event.ws);
4799 save_waitstatus (t, &event.ws);
4800 t->stop_requested = false;
4801 }
4802 }
4803 else
4804 {
4805 thread_info *t = find_thread_ptid (event.target, event.ptid);
4806 if (t == NULL)
4807 t = add_thread (event.target, event.ptid);
4808
4809 t->stop_requested = 0;
4810 t->executing = 0;
4811 t->resumed = false;
4812 t->control.may_range_step = 0;
4813
4814 /* This may be the first time we see the inferior report
4815 a stop. */
4816 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4817 if (inf->needs_setup)
4818 {
4819 switch_to_thread_no_regs (t);
4820 setup_inferior (0);
4821 }
4822
4823 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4824 && event.ws.value.sig == GDB_SIGNAL_0)
4825 {
4826 /* We caught the event that we intended to catch, so
4827 there's no event pending. */
4828 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4829 t->suspend.waitstatus_pending_p = 0;
4830
4831 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
4832 {
4833 /* Add it back to the step-over queue. */
4834 infrun_log_debug ("displaced-step of %s "
4835 "canceled: adding back to the "
4836 "step-over queue\n",
4837 target_pid_to_str (t->ptid).c_str ());
4838
4839 t->control.trap_expected = 0;
4840 global_thread_step_over_chain_enqueue (t);
4841 }
4842 }
4843 else
4844 {
4845 enum gdb_signal sig;
4846 struct regcache *regcache;
4847
4848 if (debug_infrun)
4849 {
4850 std::string statstr = target_waitstatus_to_string (&event.ws);
4851
4852 infrun_log_debug ("target_wait %s, saving "
4853 "status for %d.%ld.%ld\n",
4854 statstr.c_str (),
4855 t->ptid.pid (),
4856 t->ptid.lwp (),
4857 t->ptid.tid ());
4858 }
4859
4860 /* Record for later. */
4861 save_waitstatus (t, &event.ws);
4862
4863 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4864 ? event.ws.value.sig : GDB_SIGNAL_0);
4865
4866 if (displaced_step_finish (t, sig) < 0)
4867 {
4868 /* Add it back to the step-over queue. */
4869 t->control.trap_expected = 0;
4870 global_thread_step_over_chain_enqueue (t);
4871 }
4872
4873 regcache = get_thread_regcache (t);
4874 t->suspend.stop_pc = regcache_read_pc (regcache);
4875
4876 infrun_log_debug ("saved stop_pc=%s for %s "
4877 "(currently_stepping=%d)\n",
4878 paddress (target_gdbarch (),
4879 t->suspend.stop_pc),
4880 target_pid_to_str (t->ptid).c_str (),
4881 currently_stepping (t));
4882 }
4883 }
4884 }
4885 }
4886 }
4887 }
4888
4889 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4890
4891 static int
4892 handle_no_resumed (struct execution_control_state *ecs)
4893 {
4894 if (target_can_async_p ())
4895 {
4896 int any_sync = 0;
4897
4898 for (ui *ui : all_uis ())
4899 {
4900 if (ui->prompt_state == PROMPT_BLOCKED)
4901 {
4902 any_sync = 1;
4903 break;
4904 }
4905 }
4906 if (!any_sync)
4907 {
4908 /* There were no unwaited-for children left in the target, but,
4909 we're not synchronously waiting for events either. Just
4910 ignore. */
4911
4912 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4913 prepare_to_wait (ecs);
4914 return 1;
4915 }
4916 }
4917
4918 /* Otherwise, if we were running a synchronous execution command, we
4919 may need to cancel it and give the user back the terminal.
4920
4921 In non-stop mode, the target can't tell whether we've already
4922 consumed previous stop events, so it can end up sending us a
4923 no-resumed event like so:
4924
4925 #0 - thread 1 is left stopped
4926
4927 #1 - thread 2 is resumed and hits breakpoint
4928 -> TARGET_WAITKIND_STOPPED
4929
4930 #2 - thread 3 is resumed and exits
4931 this is the last resumed thread, so
4932 -> TARGET_WAITKIND_NO_RESUMED
4933
4934 #3 - gdb processes stop for thread 2 and decides to re-resume
4935 it.
4936
4937 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4938 thread 2 is now resumed, so the event should be ignored.
4939
4940 IOW, if the stop for thread 2 doesn't end a foreground command,
4941 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4942 event. But it could be that the event meant that thread 2 itself
4943 (or whatever other thread was the last resumed thread) exited.
4944
4945 To address this we refresh the thread list and check whether we
4946 have resumed threads _now_. In the example above, this removes
4947 thread 3 from the thread list. If thread 2 was re-resumed, we
4948 ignore this event. If we find no thread resumed, then we cancel
4949 the synchronous command and show "no unwaited-for " to the
4950 user. */
4951
4952 inferior *curr_inf = current_inferior ();
4953
4954 scoped_restore_current_thread restore_thread;
4955
4956 for (auto *target : all_non_exited_process_targets ())
4957 {
4958 switch_to_target_no_thread (target);
4959 update_thread_list ();
4960 }
4961
4962 /* If:
4963
4964 - the current target has no thread executing, and
4965 - the current inferior is native, and
4966 - the current inferior is the one which has the terminal, and
4967 - we did nothing,
4968
4969 then a Ctrl-C from this point on would remain stuck in the
4970 kernel, until a thread resumes and dequeues it. That would
4971 result in the GDB CLI not reacting to Ctrl-C, not able to
4972 interrupt the program. To address this, if the current inferior
4973 no longer has any thread executing, we give the terminal to some
4974 other inferior that has at least one thread executing. */
4975 bool swap_terminal = true;
4976
4977 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4978 whether to report it to the user. */
4979 bool ignore_event = false;
4980
4981 for (thread_info *thread : all_non_exited_threads ())
4982 {
4983 if (swap_terminal && thread->executing)
4984 {
4985 if (thread->inf != curr_inf)
4986 {
4987 target_terminal::ours ();
4988
4989 switch_to_thread (thread);
4990 target_terminal::inferior ();
4991 }
4992 swap_terminal = false;
4993 }
4994
4995 if (!ignore_event
4996 && (thread->executing
4997 || thread->suspend.waitstatus_pending_p))
4998 {
4999 /* Either there were no unwaited-for children left in the
5000 target at some point, but there are now, or some target
5001 other than the eventing one has unwaited-for children
5002 left. Just ignore. */
5003 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5004 "(ignoring: found resumed)\n");
5005
5006 ignore_event = true;
5007 }
5008
5009 if (ignore_event && !swap_terminal)
5010 break;
5011 }
5012
5013 if (ignore_event)
5014 {
5015 switch_to_inferior_no_thread (curr_inf);
5016 prepare_to_wait (ecs);
5017 return 1;
5018 }
5019
5020 /* Go ahead and report the event. */
5021 return 0;
5022 }
5023
5024 /* Given an execution control state that has been freshly filled in by
5025 an event from the inferior, figure out what it means and take
5026 appropriate action.
5027
5028 The alternatives are:
5029
5030 1) stop_waiting and return; to really stop and return to the
5031 debugger.
5032
5033 2) keep_going and return; to wait for the next event (set
5034 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5035 once). */
5036
5037 static void
5038 handle_inferior_event (struct execution_control_state *ecs)
5039 {
5040 /* Make sure that all temporary struct value objects that were
5041 created during the handling of the event get deleted at the
5042 end. */
5043 scoped_value_mark free_values;
5044
5045 enum stop_kind stop_soon;
5046
5047 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5048
5049 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5050 {
5051 /* We had an event in the inferior, but we are not interested in
5052 handling it at this level. The lower layers have already
5053 done what needs to be done, if anything.
5054
5055 One of the possible circumstances for this is when the
5056 inferior produces output for the console. The inferior has
5057 not stopped, and we are ignoring the event. Another possible
5058 circumstance is any event which the lower level knows will be
5059 reported multiple times without an intervening resume. */
5060 prepare_to_wait (ecs);
5061 return;
5062 }
5063
5064 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5065 {
5066 prepare_to_wait (ecs);
5067 return;
5068 }
5069
5070 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5071 && handle_no_resumed (ecs))
5072 return;
5073
5074 /* Cache the last target/ptid/waitstatus. */
5075 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5076
5077 /* Always clear state belonging to the previous time we stopped. */
5078 stop_stack_dummy = STOP_NONE;
5079
5080 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5081 {
5082 /* No unwaited-for children left. IOW, all resumed children
5083 have exited. */
5084 stop_print_frame = 0;
5085 stop_waiting (ecs);
5086 return;
5087 }
5088
5089 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5090 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5091 {
5092 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5093 /* If it's a new thread, add it to the thread database. */
5094 if (ecs->event_thread == NULL)
5095 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5096
5097 /* Disable range stepping. If the next step request could use a
5098 range, this will be end up re-enabled then. */
5099 ecs->event_thread->control.may_range_step = 0;
5100 }
5101
5102 /* Dependent on valid ECS->EVENT_THREAD. */
5103 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5104
5105 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5106 reinit_frame_cache ();
5107
5108 breakpoint_retire_moribund ();
5109
5110 /* First, distinguish signals caused by the debugger from signals
5111 that have to do with the program's own actions. Note that
5112 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5113 on the operating system version. Here we detect when a SIGILL or
5114 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5115 something similar for SIGSEGV, since a SIGSEGV will be generated
5116 when we're trying to execute a breakpoint instruction on a
5117 non-executable stack. This happens for call dummy breakpoints
5118 for architectures like SPARC that place call dummies on the
5119 stack. */
5120 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5121 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5122 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5123 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5124 {
5125 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5126
5127 if (breakpoint_inserted_here_p (regcache->aspace (),
5128 regcache_read_pc (regcache)))
5129 {
5130 infrun_log_debug ("Treating signal as SIGTRAP");
5131 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5132 }
5133 }
5134
5135 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5136
5137 switch (ecs->ws.kind)
5138 {
5139 case TARGET_WAITKIND_LOADED:
5140 context_switch (ecs);
5141 /* Ignore gracefully during startup of the inferior, as it might
5142 be the shell which has just loaded some objects, otherwise
5143 add the symbols for the newly loaded objects. Also ignore at
5144 the beginning of an attach or remote session; we will query
5145 the full list of libraries once the connection is
5146 established. */
5147
5148 stop_soon = get_inferior_stop_soon (ecs);
5149 if (stop_soon == NO_STOP_QUIETLY)
5150 {
5151 struct regcache *regcache;
5152
5153 regcache = get_thread_regcache (ecs->event_thread);
5154
5155 handle_solib_event ();
5156
5157 ecs->event_thread->control.stop_bpstat
5158 = bpstat_stop_status (regcache->aspace (),
5159 ecs->event_thread->suspend.stop_pc,
5160 ecs->event_thread, &ecs->ws);
5161
5162 if (handle_stop_requested (ecs))
5163 return;
5164
5165 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5166 {
5167 /* A catchpoint triggered. */
5168 process_event_stop_test (ecs);
5169 return;
5170 }
5171
5172 /* If requested, stop when the dynamic linker notifies
5173 gdb of events. This allows the user to get control
5174 and place breakpoints in initializer routines for
5175 dynamically loaded objects (among other things). */
5176 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5177 if (stop_on_solib_events)
5178 {
5179 /* Make sure we print "Stopped due to solib-event" in
5180 normal_stop. */
5181 stop_print_frame = 1;
5182
5183 stop_waiting (ecs);
5184 return;
5185 }
5186 }
5187
5188 /* If we are skipping through a shell, or through shared library
5189 loading that we aren't interested in, resume the program. If
5190 we're running the program normally, also resume. */
5191 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5192 {
5193 /* Loading of shared libraries might have changed breakpoint
5194 addresses. Make sure new breakpoints are inserted. */
5195 if (stop_soon == NO_STOP_QUIETLY)
5196 insert_breakpoints ();
5197 resume (GDB_SIGNAL_0);
5198 prepare_to_wait (ecs);
5199 return;
5200 }
5201
5202 /* But stop if we're attaching or setting up a remote
5203 connection. */
5204 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5205 || stop_soon == STOP_QUIETLY_REMOTE)
5206 {
5207 infrun_log_debug ("quietly stopped");
5208 stop_waiting (ecs);
5209 return;
5210 }
5211
5212 internal_error (__FILE__, __LINE__,
5213 _("unhandled stop_soon: %d"), (int) stop_soon);
5214
5215 case TARGET_WAITKIND_SPURIOUS:
5216 if (handle_stop_requested (ecs))
5217 return;
5218 context_switch (ecs);
5219 resume (GDB_SIGNAL_0);
5220 prepare_to_wait (ecs);
5221 return;
5222
5223 case TARGET_WAITKIND_THREAD_CREATED:
5224 if (handle_stop_requested (ecs))
5225 return;
5226 context_switch (ecs);
5227 if (!switch_back_to_stepped_thread (ecs))
5228 keep_going (ecs);
5229 return;
5230
5231 case TARGET_WAITKIND_EXITED:
5232 case TARGET_WAITKIND_SIGNALLED:
5233 {
5234 /* Depending on the system, ecs->ptid may point to a thread or
5235 to a process. On some targets, target_mourn_inferior may
5236 need to have access to the just-exited thread. That is the
5237 case of GNU/Linux's "checkpoint" support, for example.
5238 Call the switch_to_xxx routine as appropriate. */
5239 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5240 if (thr != nullptr)
5241 switch_to_thread (thr);
5242 else
5243 {
5244 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5245 switch_to_inferior_no_thread (inf);
5246 }
5247 }
5248 handle_vfork_child_exec_or_exit (0);
5249 target_terminal::ours (); /* Must do this before mourn anyway. */
5250
5251 /* Clearing any previous state of convenience variables. */
5252 clear_exit_convenience_vars ();
5253
5254 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5255 {
5256 /* Record the exit code in the convenience variable $_exitcode, so
5257 that the user can inspect this again later. */
5258 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5259 (LONGEST) ecs->ws.value.integer);
5260
5261 /* Also record this in the inferior itself. */
5262 current_inferior ()->has_exit_code = 1;
5263 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5264
5265 /* Support the --return-child-result option. */
5266 return_child_result_value = ecs->ws.value.integer;
5267
5268 gdb::observers::exited.notify (ecs->ws.value.integer);
5269 }
5270 else
5271 {
5272 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5273
5274 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5275 {
5276 /* Set the value of the internal variable $_exitsignal,
5277 which holds the signal uncaught by the inferior. */
5278 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5279 gdbarch_gdb_signal_to_target (gdbarch,
5280 ecs->ws.value.sig));
5281 }
5282 else
5283 {
5284 /* We don't have access to the target's method used for
5285 converting between signal numbers (GDB's internal
5286 representation <-> target's representation).
5287 Therefore, we cannot do a good job at displaying this
5288 information to the user. It's better to just warn
5289 her about it (if infrun debugging is enabled), and
5290 give up. */
5291 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5292 "signal number.");
5293 }
5294
5295 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5296 }
5297
5298 gdb_flush (gdb_stdout);
5299 target_mourn_inferior (inferior_ptid);
5300 stop_print_frame = 0;
5301 stop_waiting (ecs);
5302 return;
5303
5304 case TARGET_WAITKIND_FORKED:
5305 case TARGET_WAITKIND_VFORKED:
5306 /* Check whether the inferior is displaced stepping. */
5307 {
5308 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5309 struct gdbarch *gdbarch = regcache->arch ();
5310
5311 /* If checking displaced stepping is supported, and thread
5312 ecs->ptid is displaced stepping. */
5313 if (displaced_step_in_progress (ecs->event_thread))
5314 {
5315 struct inferior *parent_inf
5316 = find_inferior_ptid (ecs->target, ecs->ptid);
5317 struct regcache *child_regcache;
5318 CORE_ADDR parent_pc;
5319
5320 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5321 {
5322 // struct displaced_step_inferior_state *displaced
5323 // = get_displaced_stepping_state (parent_inf);
5324
5325 /* Restore scratch pad for child process. */
5326 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5327 // FIXME: we should restore all the buffers that were currently in use
5328 }
5329
5330 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5331 indicating that the displaced stepping of syscall instruction
5332 has been done. Perform cleanup for parent process here. Note
5333 that this operation also cleans up the child process for vfork,
5334 because their pages are shared. */
5335 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5336 /* Start a new step-over in another thread if there's one
5337 that needs it. */
5338 start_step_over ();
5339
5340 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5341 the child's PC is also within the scratchpad. Set the child's PC
5342 to the parent's PC value, which has already been fixed up.
5343 FIXME: we use the parent's aspace here, although we're touching
5344 the child, because the child hasn't been added to the inferior
5345 list yet at this point. */
5346
5347 child_regcache
5348 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5349 ecs->ws.value.related_pid,
5350 gdbarch,
5351 parent_inf->aspace);
5352 /* Read PC value of parent process. */
5353 parent_pc = regcache_read_pc (regcache);
5354
5355 if (debug_displaced)
5356 fprintf_unfiltered (gdb_stdlog,
5357 "displaced: write child pc from %s to %s\n",
5358 paddress (gdbarch,
5359 regcache_read_pc (child_regcache)),
5360 paddress (gdbarch, parent_pc));
5361
5362 regcache_write_pc (child_regcache, parent_pc);
5363 }
5364 }
5365
5366 context_switch (ecs);
5367
5368 /* Immediately detach breakpoints from the child before there's
5369 any chance of letting the user delete breakpoints from the
5370 breakpoint lists. If we don't do this early, it's easy to
5371 leave left over traps in the child, vis: "break foo; catch
5372 fork; c; <fork>; del; c; <child calls foo>". We only follow
5373 the fork on the last `continue', and by that time the
5374 breakpoint at "foo" is long gone from the breakpoint table.
5375 If we vforked, then we don't need to unpatch here, since both
5376 parent and child are sharing the same memory pages; we'll
5377 need to unpatch at follow/detach time instead to be certain
5378 that new breakpoints added between catchpoint hit time and
5379 vfork follow are detached. */
5380 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5381 {
5382 /* This won't actually modify the breakpoint list, but will
5383 physically remove the breakpoints from the child. */
5384 detach_breakpoints (ecs->ws.value.related_pid);
5385 }
5386
5387 delete_just_stopped_threads_single_step_breakpoints ();
5388
5389 /* In case the event is caught by a catchpoint, remember that
5390 the event is to be followed at the next resume of the thread,
5391 and not immediately. */
5392 ecs->event_thread->pending_follow = ecs->ws;
5393
5394 ecs->event_thread->suspend.stop_pc
5395 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5396
5397 ecs->event_thread->control.stop_bpstat
5398 = bpstat_stop_status (get_current_regcache ()->aspace (),
5399 ecs->event_thread->suspend.stop_pc,
5400 ecs->event_thread, &ecs->ws);
5401
5402 if (handle_stop_requested (ecs))
5403 return;
5404
5405 /* If no catchpoint triggered for this, then keep going. Note
5406 that we're interested in knowing the bpstat actually causes a
5407 stop, not just if it may explain the signal. Software
5408 watchpoints, for example, always appear in the bpstat. */
5409 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5410 {
5411 bool follow_child
5412 = (follow_fork_mode_string == follow_fork_mode_child);
5413
5414 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5415
5416 process_stratum_target *targ
5417 = ecs->event_thread->inf->process_target ();
5418
5419 bool should_resume = follow_fork ();
5420
5421 /* Note that one of these may be an invalid pointer,
5422 depending on detach_fork. */
5423 thread_info *parent = ecs->event_thread;
5424 thread_info *child
5425 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5426
5427 /* At this point, the parent is marked running, and the
5428 child is marked stopped. */
5429
5430 /* If not resuming the parent, mark it stopped. */
5431 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5432 parent->set_running (false);
5433
5434 /* If resuming the child, mark it running. */
5435 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5436 child->set_running (true);
5437
5438 /* In non-stop mode, also resume the other branch. */
5439 if (!detach_fork && (non_stop
5440 || (sched_multi && target_is_non_stop_p ())))
5441 {
5442 if (follow_child)
5443 switch_to_thread (parent);
5444 else
5445 switch_to_thread (child);
5446
5447 ecs->event_thread = inferior_thread ();
5448 ecs->ptid = inferior_ptid;
5449 keep_going (ecs);
5450 }
5451
5452 if (follow_child)
5453 switch_to_thread (child);
5454 else
5455 switch_to_thread (parent);
5456
5457 ecs->event_thread = inferior_thread ();
5458 ecs->ptid = inferior_ptid;
5459
5460 if (should_resume)
5461 keep_going (ecs);
5462 else
5463 stop_waiting (ecs);
5464 return;
5465 }
5466 process_event_stop_test (ecs);
5467 return;
5468
5469 case TARGET_WAITKIND_VFORK_DONE:
5470 /* Done with the shared memory region. Re-insert breakpoints in
5471 the parent, and keep going. */
5472
5473 context_switch (ecs);
5474
5475 current_inferior ()->waiting_for_vfork_done = 0;
5476 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5477
5478 if (handle_stop_requested (ecs))
5479 return;
5480
5481 /* This also takes care of reinserting breakpoints in the
5482 previously locked inferior. */
5483 keep_going (ecs);
5484 return;
5485
5486 case TARGET_WAITKIND_EXECD:
5487
5488 /* Note we can't read registers yet (the stop_pc), because we
5489 don't yet know the inferior's post-exec architecture.
5490 'stop_pc' is explicitly read below instead. */
5491 switch_to_thread_no_regs (ecs->event_thread);
5492
5493 /* Do whatever is necessary to the parent branch of the vfork. */
5494 handle_vfork_child_exec_or_exit (1);
5495
5496 /* This causes the eventpoints and symbol table to be reset.
5497 Must do this now, before trying to determine whether to
5498 stop. */
5499 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5500
5501 /* In follow_exec we may have deleted the original thread and
5502 created a new one. Make sure that the event thread is the
5503 execd thread for that case (this is a nop otherwise). */
5504 ecs->event_thread = inferior_thread ();
5505
5506 ecs->event_thread->suspend.stop_pc
5507 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5508
5509 ecs->event_thread->control.stop_bpstat
5510 = bpstat_stop_status (get_current_regcache ()->aspace (),
5511 ecs->event_thread->suspend.stop_pc,
5512 ecs->event_thread, &ecs->ws);
5513
5514 /* Note that this may be referenced from inside
5515 bpstat_stop_status above, through inferior_has_execd. */
5516 xfree (ecs->ws.value.execd_pathname);
5517 ecs->ws.value.execd_pathname = NULL;
5518
5519 if (handle_stop_requested (ecs))
5520 return;
5521
5522 /* If no catchpoint triggered for this, then keep going. */
5523 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5524 {
5525 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5526 keep_going (ecs);
5527 return;
5528 }
5529 process_event_stop_test (ecs);
5530 return;
5531
5532 /* Be careful not to try to gather much state about a thread
5533 that's in a syscall. It's frequently a losing proposition. */
5534 case TARGET_WAITKIND_SYSCALL_ENTRY:
5535 /* Getting the current syscall number. */
5536 if (handle_syscall_event (ecs) == 0)
5537 process_event_stop_test (ecs);
5538 return;
5539
5540 /* Before examining the threads further, step this thread to
5541 get it entirely out of the syscall. (We get notice of the
5542 event when the thread is just on the verge of exiting a
5543 syscall. Stepping one instruction seems to get it back
5544 into user code.) */
5545 case TARGET_WAITKIND_SYSCALL_RETURN:
5546 if (handle_syscall_event (ecs) == 0)
5547 process_event_stop_test (ecs);
5548 return;
5549
5550 case TARGET_WAITKIND_STOPPED:
5551 handle_signal_stop (ecs);
5552 return;
5553
5554 case TARGET_WAITKIND_NO_HISTORY:
5555 /* Reverse execution: target ran out of history info. */
5556
5557 /* Switch to the stopped thread. */
5558 context_switch (ecs);
5559 infrun_log_debug ("stopped");
5560
5561 delete_just_stopped_threads_single_step_breakpoints ();
5562 ecs->event_thread->suspend.stop_pc
5563 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5564
5565 if (handle_stop_requested (ecs))
5566 return;
5567
5568 gdb::observers::no_history.notify ();
5569 stop_waiting (ecs);
5570 return;
5571 }
5572 }
5573
5574 /* Restart threads back to what they were trying to do back when we
5575 paused them for an in-line step-over. The EVENT_THREAD thread is
5576 ignored. */
5577
5578 static void
5579 restart_threads (struct thread_info *event_thread)
5580 {
5581 /* In case the instruction just stepped spawned a new thread. */
5582 update_thread_list ();
5583
5584 for (thread_info *tp : all_non_exited_threads ())
5585 {
5586 switch_to_thread_no_regs (tp);
5587
5588 if (tp == event_thread)
5589 {
5590 infrun_log_debug ("restart threads: [%s] is event thread",
5591 target_pid_to_str (tp->ptid).c_str ());
5592 continue;
5593 }
5594
5595 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5596 {
5597 infrun_log_debug ("restart threads: [%s] not meant to be running",
5598 target_pid_to_str (tp->ptid).c_str ());
5599 continue;
5600 }
5601
5602 if (tp->resumed)
5603 {
5604 infrun_log_debug ("restart threads: [%s] resumed",
5605 target_pid_to_str (tp->ptid).c_str ());
5606 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5607 continue;
5608 }
5609
5610 if (thread_is_in_step_over_chain (tp))
5611 {
5612 infrun_log_debug ("restart threads: [%s] needs step-over",
5613 target_pid_to_str (tp->ptid).c_str ());
5614 gdb_assert (!tp->resumed);
5615 continue;
5616 }
5617
5618
5619 if (tp->suspend.waitstatus_pending_p)
5620 {
5621 infrun_log_debug ("restart threads: [%s] has pending status",
5622 target_pid_to_str (tp->ptid).c_str ());
5623 tp->resumed = true;
5624 continue;
5625 }
5626
5627 gdb_assert (!tp->stop_requested);
5628
5629 /* If some thread needs to start a step-over at this point, it
5630 should still be in the step-over queue, and thus skipped
5631 above. */
5632 if (thread_still_needs_step_over (tp))
5633 {
5634 internal_error (__FILE__, __LINE__,
5635 "thread [%s] needs a step-over, but not in "
5636 "step-over queue\n",
5637 target_pid_to_str (tp->ptid).c_str ());
5638 }
5639
5640 if (currently_stepping (tp))
5641 {
5642 infrun_log_debug ("restart threads: [%s] was stepping",
5643 target_pid_to_str (tp->ptid).c_str ());
5644 keep_going_stepped_thread (tp);
5645 }
5646 else
5647 {
5648 struct execution_control_state ecss;
5649 struct execution_control_state *ecs = &ecss;
5650
5651 infrun_log_debug ("restart threads: [%s] continuing",
5652 target_pid_to_str (tp->ptid).c_str ());
5653 reset_ecs (ecs, tp);
5654 switch_to_thread (tp);
5655 keep_going_pass_signal (ecs);
5656 }
5657 }
5658 }
5659
5660 /* Callback for iterate_over_threads. Find a resumed thread that has
5661 a pending waitstatus. */
5662
5663 static int
5664 resumed_thread_with_pending_status (struct thread_info *tp,
5665 void *arg)
5666 {
5667 return (tp->resumed
5668 && tp->suspend.waitstatus_pending_p);
5669 }
5670
5671 /* Called when we get an event that may finish an in-line or
5672 out-of-line (displaced stepping) step-over started previously.
5673 Return true if the event is processed and we should go back to the
5674 event loop; false if the caller should continue processing the
5675 event. */
5676
5677 static int
5678 finish_step_over (struct execution_control_state *ecs)
5679 {
5680 int had_step_over_info;
5681
5682 displaced_step_finish (ecs->event_thread,
5683 ecs->event_thread->suspend.stop_signal);
5684
5685 had_step_over_info = step_over_info_valid_p ();
5686
5687 if (had_step_over_info)
5688 {
5689 /* If we're stepping over a breakpoint with all threads locked,
5690 then only the thread that was stepped should be reporting
5691 back an event. */
5692 gdb_assert (ecs->event_thread->control.trap_expected);
5693
5694 clear_step_over_info ();
5695 }
5696
5697 if (!target_is_non_stop_p ())
5698 return 0;
5699
5700 /* Start a new step-over in another thread if there's one that
5701 needs it. */
5702 start_step_over ();
5703
5704 /* If we were stepping over a breakpoint before, and haven't started
5705 a new in-line step-over sequence, then restart all other threads
5706 (except the event thread). We can't do this in all-stop, as then
5707 e.g., we wouldn't be able to issue any other remote packet until
5708 these other threads stop. */
5709 if (had_step_over_info && !step_over_info_valid_p ())
5710 {
5711 struct thread_info *pending;
5712
5713 /* If we only have threads with pending statuses, the restart
5714 below won't restart any thread and so nothing re-inserts the
5715 breakpoint we just stepped over. But we need it inserted
5716 when we later process the pending events, otherwise if
5717 another thread has a pending event for this breakpoint too,
5718 we'd discard its event (because the breakpoint that
5719 originally caused the event was no longer inserted). */
5720 context_switch (ecs);
5721 insert_breakpoints ();
5722
5723 restart_threads (ecs->event_thread);
5724
5725 /* If we have events pending, go through handle_inferior_event
5726 again, picking up a pending event at random. This avoids
5727 thread starvation. */
5728
5729 /* But not if we just stepped over a watchpoint in order to let
5730 the instruction execute so we can evaluate its expression.
5731 The set of watchpoints that triggered is recorded in the
5732 breakpoint objects themselves (see bp->watchpoint_triggered).
5733 If we processed another event first, that other event could
5734 clobber this info. */
5735 if (ecs->event_thread->stepping_over_watchpoint)
5736 return 0;
5737
5738 pending = iterate_over_threads (resumed_thread_with_pending_status,
5739 NULL);
5740 if (pending != NULL)
5741 {
5742 struct thread_info *tp = ecs->event_thread;
5743 struct regcache *regcache;
5744
5745 infrun_log_debug ("found resumed threads with "
5746 "pending events, saving status");
5747
5748 gdb_assert (pending != tp);
5749
5750 /* Record the event thread's event for later. */
5751 save_waitstatus (tp, &ecs->ws);
5752 /* This was cleared early, by handle_inferior_event. Set it
5753 so this pending event is considered by
5754 do_target_wait. */
5755 tp->resumed = true;
5756
5757 gdb_assert (!tp->executing);
5758
5759 regcache = get_thread_regcache (tp);
5760 tp->suspend.stop_pc = regcache_read_pc (regcache);
5761
5762 infrun_log_debug ("saved stop_pc=%s for %s "
5763 "(currently_stepping=%d)\n",
5764 paddress (target_gdbarch (),
5765 tp->suspend.stop_pc),
5766 target_pid_to_str (tp->ptid).c_str (),
5767 currently_stepping (tp));
5768
5769 /* This in-line step-over finished; clear this so we won't
5770 start a new one. This is what handle_signal_stop would
5771 do, if we returned false. */
5772 tp->stepping_over_breakpoint = 0;
5773
5774 /* Wake up the event loop again. */
5775 mark_async_event_handler (infrun_async_inferior_event_token);
5776
5777 prepare_to_wait (ecs);
5778 return 1;
5779 }
5780 }
5781
5782 return 0;
5783 }
5784
5785 /* Come here when the program has stopped with a signal. */
5786
5787 static void
5788 handle_signal_stop (struct execution_control_state *ecs)
5789 {
5790 struct frame_info *frame;
5791 struct gdbarch *gdbarch;
5792 int stopped_by_watchpoint;
5793 enum stop_kind stop_soon;
5794 int random_signal;
5795
5796 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5797
5798 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5799
5800 /* Do we need to clean up the state of a thread that has
5801 completed a displaced single-step? (Doing so usually affects
5802 the PC, so do it here, before we set stop_pc.) */
5803 if (finish_step_over (ecs))
5804 return;
5805
5806 /* If we either finished a single-step or hit a breakpoint, but
5807 the user wanted this thread to be stopped, pretend we got a
5808 SIG0 (generic unsignaled stop). */
5809 if (ecs->event_thread->stop_requested
5810 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5811 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5812
5813 ecs->event_thread->suspend.stop_pc
5814 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5815
5816 if (debug_infrun)
5817 {
5818 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5819 struct gdbarch *reg_gdbarch = regcache->arch ();
5820
5821 switch_to_thread (ecs->event_thread);
5822
5823 infrun_log_debug ("stop_pc=%s",
5824 paddress (reg_gdbarch,
5825 ecs->event_thread->suspend.stop_pc));
5826 if (target_stopped_by_watchpoint ())
5827 {
5828 CORE_ADDR addr;
5829
5830 infrun_log_debug ("stopped by watchpoint");
5831
5832 if (target_stopped_data_address (current_top_target (), &addr))
5833 infrun_log_debug ("stopped data address=%s",
5834 paddress (reg_gdbarch, addr));
5835 else
5836 infrun_log_debug ("(no data address available)");
5837 }
5838 }
5839
5840 /* This is originated from start_remote(), start_inferior() and
5841 shared libraries hook functions. */
5842 stop_soon = get_inferior_stop_soon (ecs);
5843 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5844 {
5845 context_switch (ecs);
5846 infrun_log_debug ("quietly stopped");
5847 stop_print_frame = 1;
5848 stop_waiting (ecs);
5849 return;
5850 }
5851
5852 /* This originates from attach_command(). We need to overwrite
5853 the stop_signal here, because some kernels don't ignore a
5854 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5855 See more comments in inferior.h. On the other hand, if we
5856 get a non-SIGSTOP, report it to the user - assume the backend
5857 will handle the SIGSTOP if it should show up later.
5858
5859 Also consider that the attach is complete when we see a
5860 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5861 target extended-remote report it instead of a SIGSTOP
5862 (e.g. gdbserver). We already rely on SIGTRAP being our
5863 signal, so this is no exception.
5864
5865 Also consider that the attach is complete when we see a
5866 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5867 the target to stop all threads of the inferior, in case the
5868 low level attach operation doesn't stop them implicitly. If
5869 they weren't stopped implicitly, then the stub will report a
5870 GDB_SIGNAL_0, meaning: stopped for no particular reason
5871 other than GDB's request. */
5872 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5873 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5874 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5875 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5876 {
5877 stop_print_frame = 1;
5878 stop_waiting (ecs);
5879 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5880 return;
5881 }
5882
5883 /* See if something interesting happened to the non-current thread. If
5884 so, then switch to that thread. */
5885 if (ecs->ptid != inferior_ptid)
5886 {
5887 infrun_log_debug ("context switch");
5888
5889 context_switch (ecs);
5890
5891 if (deprecated_context_hook)
5892 deprecated_context_hook (ecs->event_thread->global_num);
5893 }
5894
5895 /* At this point, get hold of the now-current thread's frame. */
5896 frame = get_current_frame ();
5897 gdbarch = get_frame_arch (frame);
5898
5899 /* Pull the single step breakpoints out of the target. */
5900 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5901 {
5902 struct regcache *regcache;
5903 CORE_ADDR pc;
5904
5905 regcache = get_thread_regcache (ecs->event_thread);
5906 const address_space *aspace = regcache->aspace ();
5907
5908 pc = regcache_read_pc (regcache);
5909
5910 /* However, before doing so, if this single-step breakpoint was
5911 actually for another thread, set this thread up for moving
5912 past it. */
5913 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5914 aspace, pc))
5915 {
5916 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5917 {
5918 infrun_log_debug ("[%s] hit another thread's single-step "
5919 "breakpoint",
5920 target_pid_to_str (ecs->ptid).c_str ());
5921 ecs->hit_singlestep_breakpoint = 1;
5922 }
5923 }
5924 else
5925 {
5926 infrun_log_debug ("[%s] hit its single-step breakpoint",
5927 target_pid_to_str (ecs->ptid).c_str ());
5928 }
5929 }
5930 delete_just_stopped_threads_single_step_breakpoints ();
5931
5932 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5933 && ecs->event_thread->control.trap_expected
5934 && ecs->event_thread->stepping_over_watchpoint)
5935 stopped_by_watchpoint = 0;
5936 else
5937 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5938
5939 /* If necessary, step over this watchpoint. We'll be back to display
5940 it in a moment. */
5941 if (stopped_by_watchpoint
5942 && (target_have_steppable_watchpoint
5943 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5944 {
5945 /* At this point, we are stopped at an instruction which has
5946 attempted to write to a piece of memory under control of
5947 a watchpoint. The instruction hasn't actually executed
5948 yet. If we were to evaluate the watchpoint expression
5949 now, we would get the old value, and therefore no change
5950 would seem to have occurred.
5951
5952 In order to make watchpoints work `right', we really need
5953 to complete the memory write, and then evaluate the
5954 watchpoint expression. We do this by single-stepping the
5955 target.
5956
5957 It may not be necessary to disable the watchpoint to step over
5958 it. For example, the PA can (with some kernel cooperation)
5959 single step over a watchpoint without disabling the watchpoint.
5960
5961 It is far more common to need to disable a watchpoint to step
5962 the inferior over it. If we have non-steppable watchpoints,
5963 we must disable the current watchpoint; it's simplest to
5964 disable all watchpoints.
5965
5966 Any breakpoint at PC must also be stepped over -- if there's
5967 one, it will have already triggered before the watchpoint
5968 triggered, and we either already reported it to the user, or
5969 it didn't cause a stop and we called keep_going. In either
5970 case, if there was a breakpoint at PC, we must be trying to
5971 step past it. */
5972 ecs->event_thread->stepping_over_watchpoint = 1;
5973 keep_going (ecs);
5974 return;
5975 }
5976
5977 ecs->event_thread->stepping_over_breakpoint = 0;
5978 ecs->event_thread->stepping_over_watchpoint = 0;
5979 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5980 ecs->event_thread->control.stop_step = 0;
5981 stop_print_frame = 1;
5982 stopped_by_random_signal = 0;
5983 bpstat stop_chain = NULL;
5984
5985 /* Hide inlined functions starting here, unless we just performed stepi or
5986 nexti. After stepi and nexti, always show the innermost frame (not any
5987 inline function call sites). */
5988 if (ecs->event_thread->control.step_range_end != 1)
5989 {
5990 const address_space *aspace
5991 = get_thread_regcache (ecs->event_thread)->aspace ();
5992
5993 /* skip_inline_frames is expensive, so we avoid it if we can
5994 determine that the address is one where functions cannot have
5995 been inlined. This improves performance with inferiors that
5996 load a lot of shared libraries, because the solib event
5997 breakpoint is defined as the address of a function (i.e. not
5998 inline). Note that we have to check the previous PC as well
5999 as the current one to catch cases when we have just
6000 single-stepped off a breakpoint prior to reinstating it.
6001 Note that we're assuming that the code we single-step to is
6002 not inline, but that's not definitive: there's nothing
6003 preventing the event breakpoint function from containing
6004 inlined code, and the single-step ending up there. If the
6005 user had set a breakpoint on that inlined code, the missing
6006 skip_inline_frames call would break things. Fortunately
6007 that's an extremely unlikely scenario. */
6008 if (!pc_at_non_inline_function (aspace,
6009 ecs->event_thread->suspend.stop_pc,
6010 &ecs->ws)
6011 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6012 && ecs->event_thread->control.trap_expected
6013 && pc_at_non_inline_function (aspace,
6014 ecs->event_thread->prev_pc,
6015 &ecs->ws)))
6016 {
6017 stop_chain = build_bpstat_chain (aspace,
6018 ecs->event_thread->suspend.stop_pc,
6019 &ecs->ws);
6020 skip_inline_frames (ecs->event_thread, stop_chain);
6021
6022 /* Re-fetch current thread's frame in case that invalidated
6023 the frame cache. */
6024 frame = get_current_frame ();
6025 gdbarch = get_frame_arch (frame);
6026 }
6027 }
6028
6029 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6030 && ecs->event_thread->control.trap_expected
6031 && gdbarch_single_step_through_delay_p (gdbarch)
6032 && currently_stepping (ecs->event_thread))
6033 {
6034 /* We're trying to step off a breakpoint. Turns out that we're
6035 also on an instruction that needs to be stepped multiple
6036 times before it's been fully executing. E.g., architectures
6037 with a delay slot. It needs to be stepped twice, once for
6038 the instruction and once for the delay slot. */
6039 int step_through_delay
6040 = gdbarch_single_step_through_delay (gdbarch, frame);
6041
6042 if (step_through_delay)
6043 infrun_log_debug ("step through delay");
6044
6045 if (ecs->event_thread->control.step_range_end == 0
6046 && step_through_delay)
6047 {
6048 /* The user issued a continue when stopped at a breakpoint.
6049 Set up for another trap and get out of here. */
6050 ecs->event_thread->stepping_over_breakpoint = 1;
6051 keep_going (ecs);
6052 return;
6053 }
6054 else if (step_through_delay)
6055 {
6056 /* The user issued a step when stopped at a breakpoint.
6057 Maybe we should stop, maybe we should not - the delay
6058 slot *might* correspond to a line of source. In any
6059 case, don't decide that here, just set
6060 ecs->stepping_over_breakpoint, making sure we
6061 single-step again before breakpoints are re-inserted. */
6062 ecs->event_thread->stepping_over_breakpoint = 1;
6063 }
6064 }
6065
6066 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6067 handles this event. */
6068 ecs->event_thread->control.stop_bpstat
6069 = bpstat_stop_status (get_current_regcache ()->aspace (),
6070 ecs->event_thread->suspend.stop_pc,
6071 ecs->event_thread, &ecs->ws, stop_chain);
6072
6073 /* Following in case break condition called a
6074 function. */
6075 stop_print_frame = 1;
6076
6077 /* This is where we handle "moribund" watchpoints. Unlike
6078 software breakpoints traps, hardware watchpoint traps are
6079 always distinguishable from random traps. If no high-level
6080 watchpoint is associated with the reported stop data address
6081 anymore, then the bpstat does not explain the signal ---
6082 simply make sure to ignore it if `stopped_by_watchpoint' is
6083 set. */
6084
6085 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6086 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6087 GDB_SIGNAL_TRAP)
6088 && stopped_by_watchpoint)
6089 {
6090 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6091 "ignoring");
6092 }
6093
6094 /* NOTE: cagney/2003-03-29: These checks for a random signal
6095 at one stage in the past included checks for an inferior
6096 function call's call dummy's return breakpoint. The original
6097 comment, that went with the test, read:
6098
6099 ``End of a stack dummy. Some systems (e.g. Sony news) give
6100 another signal besides SIGTRAP, so check here as well as
6101 above.''
6102
6103 If someone ever tries to get call dummys on a
6104 non-executable stack to work (where the target would stop
6105 with something like a SIGSEGV), then those tests might need
6106 to be re-instated. Given, however, that the tests were only
6107 enabled when momentary breakpoints were not being used, I
6108 suspect that it won't be the case.
6109
6110 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6111 be necessary for call dummies on a non-executable stack on
6112 SPARC. */
6113
6114 /* See if the breakpoints module can explain the signal. */
6115 random_signal
6116 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6117 ecs->event_thread->suspend.stop_signal);
6118
6119 /* Maybe this was a trap for a software breakpoint that has since
6120 been removed. */
6121 if (random_signal && target_stopped_by_sw_breakpoint ())
6122 {
6123 if (gdbarch_program_breakpoint_here_p (gdbarch,
6124 ecs->event_thread->suspend.stop_pc))
6125 {
6126 struct regcache *regcache;
6127 int decr_pc;
6128
6129 /* Re-adjust PC to what the program would see if GDB was not
6130 debugging it. */
6131 regcache = get_thread_regcache (ecs->event_thread);
6132 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6133 if (decr_pc != 0)
6134 {
6135 gdb::optional<scoped_restore_tmpl<int>>
6136 restore_operation_disable;
6137
6138 if (record_full_is_used ())
6139 restore_operation_disable.emplace
6140 (record_full_gdb_operation_disable_set ());
6141
6142 regcache_write_pc (regcache,
6143 ecs->event_thread->suspend.stop_pc + decr_pc);
6144 }
6145 }
6146 else
6147 {
6148 /* A delayed software breakpoint event. Ignore the trap. */
6149 infrun_log_debug ("delayed software breakpoint trap, ignoring");
6150 random_signal = 0;
6151 }
6152 }
6153
6154 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6155 has since been removed. */
6156 if (random_signal && target_stopped_by_hw_breakpoint ())
6157 {
6158 /* A delayed hardware breakpoint event. Ignore the trap. */
6159 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6160 "trap, ignoring");
6161 random_signal = 0;
6162 }
6163
6164 /* If not, perhaps stepping/nexting can. */
6165 if (random_signal)
6166 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6167 && currently_stepping (ecs->event_thread));
6168
6169 /* Perhaps the thread hit a single-step breakpoint of _another_
6170 thread. Single-step breakpoints are transparent to the
6171 breakpoints module. */
6172 if (random_signal)
6173 random_signal = !ecs->hit_singlestep_breakpoint;
6174
6175 /* No? Perhaps we got a moribund watchpoint. */
6176 if (random_signal)
6177 random_signal = !stopped_by_watchpoint;
6178
6179 /* Always stop if the user explicitly requested this thread to
6180 remain stopped. */
6181 if (ecs->event_thread->stop_requested)
6182 {
6183 random_signal = 1;
6184 infrun_log_debug ("user-requested stop");
6185 }
6186
6187 /* For the program's own signals, act according to
6188 the signal handling tables. */
6189
6190 if (random_signal)
6191 {
6192 /* Signal not for debugging purposes. */
6193 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6194 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6195
6196 infrun_log_debug ("random signal (%s)",
6197 gdb_signal_to_symbol_string (stop_signal));
6198
6199 stopped_by_random_signal = 1;
6200
6201 /* Always stop on signals if we're either just gaining control
6202 of the program, or the user explicitly requested this thread
6203 to remain stopped. */
6204 if (stop_soon != NO_STOP_QUIETLY
6205 || ecs->event_thread->stop_requested
6206 || (!inf->detaching
6207 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6208 {
6209 stop_waiting (ecs);
6210 return;
6211 }
6212
6213 /* Notify observers the signal has "handle print" set. Note we
6214 returned early above if stopping; normal_stop handles the
6215 printing in that case. */
6216 if (signal_print[ecs->event_thread->suspend.stop_signal])
6217 {
6218 /* The signal table tells us to print about this signal. */
6219 target_terminal::ours_for_output ();
6220 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6221 target_terminal::inferior ();
6222 }
6223
6224 /* Clear the signal if it should not be passed. */
6225 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6226 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6227
6228 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6229 && ecs->event_thread->control.trap_expected
6230 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6231 {
6232 /* We were just starting a new sequence, attempting to
6233 single-step off of a breakpoint and expecting a SIGTRAP.
6234 Instead this signal arrives. This signal will take us out
6235 of the stepping range so GDB needs to remember to, when
6236 the signal handler returns, resume stepping off that
6237 breakpoint. */
6238 /* To simplify things, "continue" is forced to use the same
6239 code paths as single-step - set a breakpoint at the
6240 signal return address and then, once hit, step off that
6241 breakpoint. */
6242 infrun_log_debug ("signal arrived while stepping over breakpoint");
6243
6244 insert_hp_step_resume_breakpoint_at_frame (frame);
6245 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6246 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6247 ecs->event_thread->control.trap_expected = 0;
6248
6249 /* If we were nexting/stepping some other thread, switch to
6250 it, so that we don't continue it, losing control. */
6251 if (!switch_back_to_stepped_thread (ecs))
6252 keep_going (ecs);
6253 return;
6254 }
6255
6256 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6257 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6258 ecs->event_thread)
6259 || ecs->event_thread->control.step_range_end == 1)
6260 && frame_id_eq (get_stack_frame_id (frame),
6261 ecs->event_thread->control.step_stack_frame_id)
6262 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6263 {
6264 /* The inferior is about to take a signal that will take it
6265 out of the single step range. Set a breakpoint at the
6266 current PC (which is presumably where the signal handler
6267 will eventually return) and then allow the inferior to
6268 run free.
6269
6270 Note that this is only needed for a signal delivered
6271 while in the single-step range. Nested signals aren't a
6272 problem as they eventually all return. */
6273 infrun_log_debug ("signal may take us out of single-step range");
6274
6275 clear_step_over_info ();
6276 insert_hp_step_resume_breakpoint_at_frame (frame);
6277 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6278 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6279 ecs->event_thread->control.trap_expected = 0;
6280 keep_going (ecs);
6281 return;
6282 }
6283
6284 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6285 when either there's a nested signal, or when there's a
6286 pending signal enabled just as the signal handler returns
6287 (leaving the inferior at the step-resume-breakpoint without
6288 actually executing it). Either way continue until the
6289 breakpoint is really hit. */
6290
6291 if (!switch_back_to_stepped_thread (ecs))
6292 {
6293 infrun_log_debug ("random signal, keep going");
6294
6295 keep_going (ecs);
6296 }
6297 return;
6298 }
6299
6300 process_event_stop_test (ecs);
6301 }
6302
6303 /* Come here when we've got some debug event / signal we can explain
6304 (IOW, not a random signal), and test whether it should cause a
6305 stop, or whether we should resume the inferior (transparently).
6306 E.g., could be a breakpoint whose condition evaluates false; we
6307 could be still stepping within the line; etc. */
6308
6309 static void
6310 process_event_stop_test (struct execution_control_state *ecs)
6311 {
6312 struct symtab_and_line stop_pc_sal;
6313 struct frame_info *frame;
6314 struct gdbarch *gdbarch;
6315 CORE_ADDR jmp_buf_pc;
6316 struct bpstat_what what;
6317
6318 /* Handle cases caused by hitting a breakpoint. */
6319
6320 frame = get_current_frame ();
6321 gdbarch = get_frame_arch (frame);
6322
6323 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6324
6325 if (what.call_dummy)
6326 {
6327 stop_stack_dummy = what.call_dummy;
6328 }
6329
6330 /* A few breakpoint types have callbacks associated (e.g.,
6331 bp_jit_event). Run them now. */
6332 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6333
6334 /* If we hit an internal event that triggers symbol changes, the
6335 current frame will be invalidated within bpstat_what (e.g., if we
6336 hit an internal solib event). Re-fetch it. */
6337 frame = get_current_frame ();
6338 gdbarch = get_frame_arch (frame);
6339
6340 switch (what.main_action)
6341 {
6342 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6343 /* If we hit the breakpoint at longjmp while stepping, we
6344 install a momentary breakpoint at the target of the
6345 jmp_buf. */
6346
6347 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6348
6349 ecs->event_thread->stepping_over_breakpoint = 1;
6350
6351 if (what.is_longjmp)
6352 {
6353 struct value *arg_value;
6354
6355 /* If we set the longjmp breakpoint via a SystemTap probe,
6356 then use it to extract the arguments. The destination PC
6357 is the third argument to the probe. */
6358 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6359 if (arg_value)
6360 {
6361 jmp_buf_pc = value_as_address (arg_value);
6362 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6363 }
6364 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6365 || !gdbarch_get_longjmp_target (gdbarch,
6366 frame, &jmp_buf_pc))
6367 {
6368 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6369 "(!gdbarch_get_longjmp_target)");
6370 keep_going (ecs);
6371 return;
6372 }
6373
6374 /* Insert a breakpoint at resume address. */
6375 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6376 }
6377 else
6378 check_exception_resume (ecs, frame);
6379 keep_going (ecs);
6380 return;
6381
6382 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6383 {
6384 struct frame_info *init_frame;
6385
6386 /* There are several cases to consider.
6387
6388 1. The initiating frame no longer exists. In this case we
6389 must stop, because the exception or longjmp has gone too
6390 far.
6391
6392 2. The initiating frame exists, and is the same as the
6393 current frame. We stop, because the exception or longjmp
6394 has been caught.
6395
6396 3. The initiating frame exists and is different from the
6397 current frame. This means the exception or longjmp has
6398 been caught beneath the initiating frame, so keep going.
6399
6400 4. longjmp breakpoint has been placed just to protect
6401 against stale dummy frames and user is not interested in
6402 stopping around longjmps. */
6403
6404 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6405
6406 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6407 != NULL);
6408 delete_exception_resume_breakpoint (ecs->event_thread);
6409
6410 if (what.is_longjmp)
6411 {
6412 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6413
6414 if (!frame_id_p (ecs->event_thread->initiating_frame))
6415 {
6416 /* Case 4. */
6417 keep_going (ecs);
6418 return;
6419 }
6420 }
6421
6422 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6423
6424 if (init_frame)
6425 {
6426 struct frame_id current_id
6427 = get_frame_id (get_current_frame ());
6428 if (frame_id_eq (current_id,
6429 ecs->event_thread->initiating_frame))
6430 {
6431 /* Case 2. Fall through. */
6432 }
6433 else
6434 {
6435 /* Case 3. */
6436 keep_going (ecs);
6437 return;
6438 }
6439 }
6440
6441 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6442 exists. */
6443 delete_step_resume_breakpoint (ecs->event_thread);
6444
6445 end_stepping_range (ecs);
6446 }
6447 return;
6448
6449 case BPSTAT_WHAT_SINGLE:
6450 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
6451 ecs->event_thread->stepping_over_breakpoint = 1;
6452 /* Still need to check other stuff, at least the case where we
6453 are stepping and step out of the right range. */
6454 break;
6455
6456 case BPSTAT_WHAT_STEP_RESUME:
6457 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
6458
6459 delete_step_resume_breakpoint (ecs->event_thread);
6460 if (ecs->event_thread->control.proceed_to_finish
6461 && execution_direction == EXEC_REVERSE)
6462 {
6463 struct thread_info *tp = ecs->event_thread;
6464
6465 /* We are finishing a function in reverse, and just hit the
6466 step-resume breakpoint at the start address of the
6467 function, and we're almost there -- just need to back up
6468 by one more single-step, which should take us back to the
6469 function call. */
6470 tp->control.step_range_start = tp->control.step_range_end = 1;
6471 keep_going (ecs);
6472 return;
6473 }
6474 fill_in_stop_func (gdbarch, ecs);
6475 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6476 && execution_direction == EXEC_REVERSE)
6477 {
6478 /* We are stepping over a function call in reverse, and just
6479 hit the step-resume breakpoint at the start address of
6480 the function. Go back to single-stepping, which should
6481 take us back to the function call. */
6482 ecs->event_thread->stepping_over_breakpoint = 1;
6483 keep_going (ecs);
6484 return;
6485 }
6486 break;
6487
6488 case BPSTAT_WHAT_STOP_NOISY:
6489 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
6490 stop_print_frame = 1;
6491
6492 /* Assume the thread stopped for a breapoint. We'll still check
6493 whether a/the breakpoint is there when the thread is next
6494 resumed. */
6495 ecs->event_thread->stepping_over_breakpoint = 1;
6496
6497 stop_waiting (ecs);
6498 return;
6499
6500 case BPSTAT_WHAT_STOP_SILENT:
6501 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
6502 stop_print_frame = 0;
6503
6504 /* Assume the thread stopped for a breapoint. We'll still check
6505 whether a/the breakpoint is there when the thread is next
6506 resumed. */
6507 ecs->event_thread->stepping_over_breakpoint = 1;
6508 stop_waiting (ecs);
6509 return;
6510
6511 case BPSTAT_WHAT_HP_STEP_RESUME:
6512 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
6513
6514 delete_step_resume_breakpoint (ecs->event_thread);
6515 if (ecs->event_thread->step_after_step_resume_breakpoint)
6516 {
6517 /* Back when the step-resume breakpoint was inserted, we
6518 were trying to single-step off a breakpoint. Go back to
6519 doing that. */
6520 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6521 ecs->event_thread->stepping_over_breakpoint = 1;
6522 keep_going (ecs);
6523 return;
6524 }
6525 break;
6526
6527 case BPSTAT_WHAT_KEEP_CHECKING:
6528 break;
6529 }
6530
6531 /* If we stepped a permanent breakpoint and we had a high priority
6532 step-resume breakpoint for the address we stepped, but we didn't
6533 hit it, then we must have stepped into the signal handler. The
6534 step-resume was only necessary to catch the case of _not_
6535 stepping into the handler, so delete it, and fall through to
6536 checking whether the step finished. */
6537 if (ecs->event_thread->stepped_breakpoint)
6538 {
6539 struct breakpoint *sr_bp
6540 = ecs->event_thread->control.step_resume_breakpoint;
6541
6542 if (sr_bp != NULL
6543 && sr_bp->loc->permanent
6544 && sr_bp->type == bp_hp_step_resume
6545 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6546 {
6547 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
6548 delete_step_resume_breakpoint (ecs->event_thread);
6549 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6550 }
6551 }
6552
6553 /* We come here if we hit a breakpoint but should not stop for it.
6554 Possibly we also were stepping and should stop for that. So fall
6555 through and test for stepping. But, if not stepping, do not
6556 stop. */
6557
6558 /* In all-stop mode, if we're currently stepping but have stopped in
6559 some other thread, we need to switch back to the stepped thread. */
6560 if (switch_back_to_stepped_thread (ecs))
6561 return;
6562
6563 if (ecs->event_thread->control.step_resume_breakpoint)
6564 {
6565 infrun_log_debug ("step-resume breakpoint is inserted");
6566
6567 /* Having a step-resume breakpoint overrides anything
6568 else having to do with stepping commands until
6569 that breakpoint is reached. */
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 if (ecs->event_thread->control.step_range_end == 0)
6575 {
6576 infrun_log_debug ("no stepping, continue");
6577 /* Likewise if we aren't even stepping. */
6578 keep_going (ecs);
6579 return;
6580 }
6581
6582 /* Re-fetch current thread's frame in case the code above caused
6583 the frame cache to be re-initialized, making our FRAME variable
6584 a dangling pointer. */
6585 frame = get_current_frame ();
6586 gdbarch = get_frame_arch (frame);
6587 fill_in_stop_func (gdbarch, ecs);
6588
6589 /* If stepping through a line, keep going if still within it.
6590
6591 Note that step_range_end is the address of the first instruction
6592 beyond the step range, and NOT the address of the last instruction
6593 within it!
6594
6595 Note also that during reverse execution, we may be stepping
6596 through a function epilogue and therefore must detect when
6597 the current-frame changes in the middle of a line. */
6598
6599 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6600 ecs->event_thread)
6601 && (execution_direction != EXEC_REVERSE
6602 || frame_id_eq (get_frame_id (frame),
6603 ecs->event_thread->control.step_frame_id)))
6604 {
6605 infrun_log_debug
6606 ("stepping inside range [%s-%s]",
6607 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6608 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6609
6610 /* Tentatively re-enable range stepping; `resume' disables it if
6611 necessary (e.g., if we're stepping over a breakpoint or we
6612 have software watchpoints). */
6613 ecs->event_thread->control.may_range_step = 1;
6614
6615 /* When stepping backward, stop at beginning of line range
6616 (unless it's the function entry point, in which case
6617 keep going back to the call point). */
6618 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6619 if (stop_pc == ecs->event_thread->control.step_range_start
6620 && stop_pc != ecs->stop_func_start
6621 && execution_direction == EXEC_REVERSE)
6622 end_stepping_range (ecs);
6623 else
6624 keep_going (ecs);
6625
6626 return;
6627 }
6628
6629 /* We stepped out of the stepping range. */
6630
6631 /* If we are stepping at the source level and entered the runtime
6632 loader dynamic symbol resolution code...
6633
6634 EXEC_FORWARD: we keep on single stepping until we exit the run
6635 time loader code and reach the callee's address.
6636
6637 EXEC_REVERSE: we've already executed the callee (backward), and
6638 the runtime loader code is handled just like any other
6639 undebuggable function call. Now we need only keep stepping
6640 backward through the trampoline code, and that's handled further
6641 down, so there is nothing for us to do here. */
6642
6643 if (execution_direction != EXEC_REVERSE
6644 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6645 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6646 {
6647 CORE_ADDR pc_after_resolver =
6648 gdbarch_skip_solib_resolver (gdbarch,
6649 ecs->event_thread->suspend.stop_pc);
6650
6651 infrun_log_debug ("stepped into dynsym resolve code");
6652
6653 if (pc_after_resolver)
6654 {
6655 /* Set up a step-resume breakpoint at the address
6656 indicated by SKIP_SOLIB_RESOLVER. */
6657 symtab_and_line sr_sal;
6658 sr_sal.pc = pc_after_resolver;
6659 sr_sal.pspace = get_frame_program_space (frame);
6660
6661 insert_step_resume_breakpoint_at_sal (gdbarch,
6662 sr_sal, null_frame_id);
6663 }
6664
6665 keep_going (ecs);
6666 return;
6667 }
6668
6669 /* Step through an indirect branch thunk. */
6670 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6671 && gdbarch_in_indirect_branch_thunk (gdbarch,
6672 ecs->event_thread->suspend.stop_pc))
6673 {
6674 infrun_log_debug ("stepped into indirect branch thunk");
6675 keep_going (ecs);
6676 return;
6677 }
6678
6679 if (ecs->event_thread->control.step_range_end != 1
6680 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6681 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6682 && get_frame_type (frame) == SIGTRAMP_FRAME)
6683 {
6684 infrun_log_debug ("stepped into signal trampoline");
6685 /* The inferior, while doing a "step" or "next", has ended up in
6686 a signal trampoline (either by a signal being delivered or by
6687 the signal handler returning). Just single-step until the
6688 inferior leaves the trampoline (either by calling the handler
6689 or returning). */
6690 keep_going (ecs);
6691 return;
6692 }
6693
6694 /* If we're in the return path from a shared library trampoline,
6695 we want to proceed through the trampoline when stepping. */
6696 /* macro/2012-04-25: This needs to come before the subroutine
6697 call check below as on some targets return trampolines look
6698 like subroutine calls (MIPS16 return thunks). */
6699 if (gdbarch_in_solib_return_trampoline (gdbarch,
6700 ecs->event_thread->suspend.stop_pc,
6701 ecs->stop_func_name)
6702 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6703 {
6704 /* Determine where this trampoline returns. */
6705 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6706 CORE_ADDR real_stop_pc
6707 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6708
6709 infrun_log_debug ("stepped into solib return tramp");
6710
6711 /* Only proceed through if we know where it's going. */
6712 if (real_stop_pc)
6713 {
6714 /* And put the step-breakpoint there and go until there. */
6715 symtab_and_line sr_sal;
6716 sr_sal.pc = real_stop_pc;
6717 sr_sal.section = find_pc_overlay (sr_sal.pc);
6718 sr_sal.pspace = get_frame_program_space (frame);
6719
6720 /* Do not specify what the fp should be when we stop since
6721 on some machines the prologue is where the new fp value
6722 is established. */
6723 insert_step_resume_breakpoint_at_sal (gdbarch,
6724 sr_sal, null_frame_id);
6725
6726 /* Restart without fiddling with the step ranges or
6727 other state. */
6728 keep_going (ecs);
6729 return;
6730 }
6731 }
6732
6733 /* Check for subroutine calls. The check for the current frame
6734 equalling the step ID is not necessary - the check of the
6735 previous frame's ID is sufficient - but it is a common case and
6736 cheaper than checking the previous frame's ID.
6737
6738 NOTE: frame_id_eq will never report two invalid frame IDs as
6739 being equal, so to get into this block, both the current and
6740 previous frame must have valid frame IDs. */
6741 /* The outer_frame_id check is a heuristic to detect stepping
6742 through startup code. If we step over an instruction which
6743 sets the stack pointer from an invalid value to a valid value,
6744 we may detect that as a subroutine call from the mythical
6745 "outermost" function. This could be fixed by marking
6746 outermost frames as !stack_p,code_p,special_p. Then the
6747 initial outermost frame, before sp was valid, would
6748 have code_addr == &_start. See the comment in frame_id_eq
6749 for more. */
6750 if (!frame_id_eq (get_stack_frame_id (frame),
6751 ecs->event_thread->control.step_stack_frame_id)
6752 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6753 ecs->event_thread->control.step_stack_frame_id)
6754 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6755 outer_frame_id)
6756 || (ecs->event_thread->control.step_start_function
6757 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6758 {
6759 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6760 CORE_ADDR real_stop_pc;
6761
6762 infrun_log_debug ("stepped into subroutine");
6763
6764 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6765 {
6766 /* I presume that step_over_calls is only 0 when we're
6767 supposed to be stepping at the assembly language level
6768 ("stepi"). Just stop. */
6769 /* And this works the same backward as frontward. MVS */
6770 end_stepping_range (ecs);
6771 return;
6772 }
6773
6774 /* Reverse stepping through solib trampolines. */
6775
6776 if (execution_direction == EXEC_REVERSE
6777 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6778 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6779 || (ecs->stop_func_start == 0
6780 && in_solib_dynsym_resolve_code (stop_pc))))
6781 {
6782 /* Any solib trampoline code can be handled in reverse
6783 by simply continuing to single-step. We have already
6784 executed the solib function (backwards), and a few
6785 steps will take us back through the trampoline to the
6786 caller. */
6787 keep_going (ecs);
6788 return;
6789 }
6790
6791 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6792 {
6793 /* We're doing a "next".
6794
6795 Normal (forward) execution: set a breakpoint at the
6796 callee's return address (the address at which the caller
6797 will resume).
6798
6799 Reverse (backward) execution. set the step-resume
6800 breakpoint at the start of the function that we just
6801 stepped into (backwards), and continue to there. When we
6802 get there, we'll need to single-step back to the caller. */
6803
6804 if (execution_direction == EXEC_REVERSE)
6805 {
6806 /* If we're already at the start of the function, we've either
6807 just stepped backward into a single instruction function,
6808 or stepped back out of a signal handler to the first instruction
6809 of the function. Just keep going, which will single-step back
6810 to the caller. */
6811 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6812 {
6813 /* Normal function call return (static or dynamic). */
6814 symtab_and_line sr_sal;
6815 sr_sal.pc = ecs->stop_func_start;
6816 sr_sal.pspace = get_frame_program_space (frame);
6817 insert_step_resume_breakpoint_at_sal (gdbarch,
6818 sr_sal, null_frame_id);
6819 }
6820 }
6821 else
6822 insert_step_resume_breakpoint_at_caller (frame);
6823
6824 keep_going (ecs);
6825 return;
6826 }
6827
6828 /* If we are in a function call trampoline (a stub between the
6829 calling routine and the real function), locate the real
6830 function. That's what tells us (a) whether we want to step
6831 into it at all, and (b) what prologue we want to run to the
6832 end of, if we do step into it. */
6833 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6834 if (real_stop_pc == 0)
6835 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6836 if (real_stop_pc != 0)
6837 ecs->stop_func_start = real_stop_pc;
6838
6839 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6840 {
6841 symtab_and_line sr_sal;
6842 sr_sal.pc = ecs->stop_func_start;
6843 sr_sal.pspace = get_frame_program_space (frame);
6844
6845 insert_step_resume_breakpoint_at_sal (gdbarch,
6846 sr_sal, null_frame_id);
6847 keep_going (ecs);
6848 return;
6849 }
6850
6851 /* If we have line number information for the function we are
6852 thinking of stepping into and the function isn't on the skip
6853 list, step into it.
6854
6855 If there are several symtabs at that PC (e.g. with include
6856 files), just want to know whether *any* of them have line
6857 numbers. find_pc_line handles this. */
6858 {
6859 struct symtab_and_line tmp_sal;
6860
6861 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6862 if (tmp_sal.line != 0
6863 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6864 tmp_sal)
6865 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6866 {
6867 if (execution_direction == EXEC_REVERSE)
6868 handle_step_into_function_backward (gdbarch, ecs);
6869 else
6870 handle_step_into_function (gdbarch, ecs);
6871 return;
6872 }
6873 }
6874
6875 /* If we have no line number and the step-stop-if-no-debug is
6876 set, we stop the step so that the user has a chance to switch
6877 in assembly mode. */
6878 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6879 && step_stop_if_no_debug)
6880 {
6881 end_stepping_range (ecs);
6882 return;
6883 }
6884
6885 if (execution_direction == EXEC_REVERSE)
6886 {
6887 /* If we're already at the start of the function, we've either just
6888 stepped backward into a single instruction function without line
6889 number info, or stepped back out of a signal handler to the first
6890 instruction of the function without line number info. Just keep
6891 going, which will single-step back to the caller. */
6892 if (ecs->stop_func_start != stop_pc)
6893 {
6894 /* Set a breakpoint at callee's start address.
6895 From there we can step once and be back in the caller. */
6896 symtab_and_line sr_sal;
6897 sr_sal.pc = ecs->stop_func_start;
6898 sr_sal.pspace = get_frame_program_space (frame);
6899 insert_step_resume_breakpoint_at_sal (gdbarch,
6900 sr_sal, null_frame_id);
6901 }
6902 }
6903 else
6904 /* Set a breakpoint at callee's return address (the address
6905 at which the caller will resume). */
6906 insert_step_resume_breakpoint_at_caller (frame);
6907
6908 keep_going (ecs);
6909 return;
6910 }
6911
6912 /* Reverse stepping through solib trampolines. */
6913
6914 if (execution_direction == EXEC_REVERSE
6915 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6916 {
6917 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6918
6919 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6920 || (ecs->stop_func_start == 0
6921 && in_solib_dynsym_resolve_code (stop_pc)))
6922 {
6923 /* Any solib trampoline code can be handled in reverse
6924 by simply continuing to single-step. We have already
6925 executed the solib function (backwards), and a few
6926 steps will take us back through the trampoline to the
6927 caller. */
6928 keep_going (ecs);
6929 return;
6930 }
6931 else if (in_solib_dynsym_resolve_code (stop_pc))
6932 {
6933 /* Stepped backward into the solib dynsym resolver.
6934 Set a breakpoint at its start and continue, then
6935 one more step will take us out. */
6936 symtab_and_line sr_sal;
6937 sr_sal.pc = ecs->stop_func_start;
6938 sr_sal.pspace = get_frame_program_space (frame);
6939 insert_step_resume_breakpoint_at_sal (gdbarch,
6940 sr_sal, null_frame_id);
6941 keep_going (ecs);
6942 return;
6943 }
6944 }
6945
6946 /* This always returns the sal for the inner-most frame when we are in a
6947 stack of inlined frames, even if GDB actually believes that it is in a
6948 more outer frame. This is checked for below by calls to
6949 inline_skipped_frames. */
6950 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6951
6952 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6953 the trampoline processing logic, however, there are some trampolines
6954 that have no names, so we should do trampoline handling first. */
6955 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6956 && ecs->stop_func_name == NULL
6957 && stop_pc_sal.line == 0)
6958 {
6959 infrun_log_debug ("stepped into undebuggable function");
6960
6961 /* The inferior just stepped into, or returned to, an
6962 undebuggable function (where there is no debugging information
6963 and no line number corresponding to the address where the
6964 inferior stopped). Since we want to skip this kind of code,
6965 we keep going until the inferior returns from this
6966 function - unless the user has asked us not to (via
6967 set step-mode) or we no longer know how to get back
6968 to the call site. */
6969 if (step_stop_if_no_debug
6970 || !frame_id_p (frame_unwind_caller_id (frame)))
6971 {
6972 /* If we have no line number and the step-stop-if-no-debug
6973 is set, we stop the step so that the user has a chance to
6974 switch in assembly mode. */
6975 end_stepping_range (ecs);
6976 return;
6977 }
6978 else
6979 {
6980 /* Set a breakpoint at callee's return address (the address
6981 at which the caller will resume). */
6982 insert_step_resume_breakpoint_at_caller (frame);
6983 keep_going (ecs);
6984 return;
6985 }
6986 }
6987
6988 if (ecs->event_thread->control.step_range_end == 1)
6989 {
6990 /* It is stepi or nexti. We always want to stop stepping after
6991 one instruction. */
6992 infrun_log_debug ("stepi/nexti");
6993 end_stepping_range (ecs);
6994 return;
6995 }
6996
6997 if (stop_pc_sal.line == 0)
6998 {
6999 /* We have no line number information. That means to stop
7000 stepping (does this always happen right after one instruction,
7001 when we do "s" in a function with no line numbers,
7002 or can this happen as a result of a return or longjmp?). */
7003 infrun_log_debug ("line number info");
7004 end_stepping_range (ecs);
7005 return;
7006 }
7007
7008 /* Look for "calls" to inlined functions, part one. If the inline
7009 frame machinery detected some skipped call sites, we have entered
7010 a new inline function. */
7011
7012 if (frame_id_eq (get_frame_id (get_current_frame ()),
7013 ecs->event_thread->control.step_frame_id)
7014 && inline_skipped_frames (ecs->event_thread))
7015 {
7016 infrun_log_debug ("stepped into inlined function");
7017
7018 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7019
7020 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7021 {
7022 /* For "step", we're going to stop. But if the call site
7023 for this inlined function is on the same source line as
7024 we were previously stepping, go down into the function
7025 first. Otherwise stop at the call site. */
7026
7027 if (call_sal.line == ecs->event_thread->current_line
7028 && call_sal.symtab == ecs->event_thread->current_symtab)
7029 {
7030 step_into_inline_frame (ecs->event_thread);
7031 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7032 {
7033 keep_going (ecs);
7034 return;
7035 }
7036 }
7037
7038 end_stepping_range (ecs);
7039 return;
7040 }
7041 else
7042 {
7043 /* For "next", we should stop at the call site if it is on a
7044 different source line. Otherwise continue through the
7045 inlined function. */
7046 if (call_sal.line == ecs->event_thread->current_line
7047 && call_sal.symtab == ecs->event_thread->current_symtab)
7048 keep_going (ecs);
7049 else
7050 end_stepping_range (ecs);
7051 return;
7052 }
7053 }
7054
7055 /* Look for "calls" to inlined functions, part two. If we are still
7056 in the same real function we were stepping through, but we have
7057 to go further up to find the exact frame ID, we are stepping
7058 through a more inlined call beyond its call site. */
7059
7060 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7061 && !frame_id_eq (get_frame_id (get_current_frame ()),
7062 ecs->event_thread->control.step_frame_id)
7063 && stepped_in_from (get_current_frame (),
7064 ecs->event_thread->control.step_frame_id))
7065 {
7066 infrun_log_debug ("stepping through inlined function");
7067
7068 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7069 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7070 keep_going (ecs);
7071 else
7072 end_stepping_range (ecs);
7073 return;
7074 }
7075
7076 bool refresh_step_info = true;
7077 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7078 && (ecs->event_thread->current_line != stop_pc_sal.line
7079 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7080 {
7081 if (stop_pc_sal.is_stmt)
7082 {
7083 /* We are at the start of a different line. So stop. Note that
7084 we don't stop if we step into the middle of a different line.
7085 That is said to make things like for (;;) statements work
7086 better. */
7087 infrun_log_debug ("infrun: stepped to a different line\n");
7088 end_stepping_range (ecs);
7089 return;
7090 }
7091 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7092 ecs->event_thread->control.step_frame_id))
7093 {
7094 /* We are at the start of a different line, however, this line is
7095 not marked as a statement, and we have not changed frame. We
7096 ignore this line table entry, and continue stepping forward,
7097 looking for a better place to stop. */
7098 refresh_step_info = false;
7099 infrun_log_debug ("infrun: stepped to a different line, but "
7100 "it's not the start of a statement\n");
7101 }
7102 }
7103
7104 /* We aren't done stepping.
7105
7106 Optimize by setting the stepping range to the line.
7107 (We might not be in the original line, but if we entered a
7108 new line in mid-statement, we continue stepping. This makes
7109 things like for(;;) statements work better.)
7110
7111 If we entered a SAL that indicates a non-statement line table entry,
7112 then we update the stepping range, but we don't update the step info,
7113 which includes things like the line number we are stepping away from.
7114 This means we will stop when we find a line table entry that is marked
7115 as is-statement, even if it matches the non-statement one we just
7116 stepped into. */
7117
7118 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7119 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7120 ecs->event_thread->control.may_range_step = 1;
7121 if (refresh_step_info)
7122 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7123
7124 infrun_log_debug ("keep going");
7125 keep_going (ecs);
7126 }
7127
7128 /* In all-stop mode, if we're currently stepping but have stopped in
7129 some other thread, we may need to switch back to the stepped
7130 thread. Returns true we set the inferior running, false if we left
7131 it stopped (and the event needs further processing). */
7132
7133 static int
7134 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7135 {
7136 if (!target_is_non_stop_p ())
7137 {
7138 struct thread_info *stepping_thread;
7139
7140 /* If any thread is blocked on some internal breakpoint, and we
7141 simply need to step over that breakpoint to get it going
7142 again, do that first. */
7143
7144 /* However, if we see an event for the stepping thread, then we
7145 know all other threads have been moved past their breakpoints
7146 already. Let the caller check whether the step is finished,
7147 etc., before deciding to move it past a breakpoint. */
7148 if (ecs->event_thread->control.step_range_end != 0)
7149 return 0;
7150
7151 /* Check if the current thread is blocked on an incomplete
7152 step-over, interrupted by a random signal. */
7153 if (ecs->event_thread->control.trap_expected
7154 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7155 {
7156 infrun_log_debug ("need to finish step-over of [%s]",
7157 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7158 keep_going (ecs);
7159 return 1;
7160 }
7161
7162 /* Check if the current thread is blocked by a single-step
7163 breakpoint of another thread. */
7164 if (ecs->hit_singlestep_breakpoint)
7165 {
7166 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7167 target_pid_to_str (ecs->ptid).c_str ());
7168 keep_going (ecs);
7169 return 1;
7170 }
7171
7172 /* If this thread needs yet another step-over (e.g., stepping
7173 through a delay slot), do it first before moving on to
7174 another thread. */
7175 if (thread_still_needs_step_over (ecs->event_thread))
7176 {
7177 infrun_log_debug
7178 ("thread [%s] still needs step-over",
7179 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7180 keep_going (ecs);
7181 return 1;
7182 }
7183
7184 /* If scheduler locking applies even if not stepping, there's no
7185 need to walk over threads. Above we've checked whether the
7186 current thread is stepping. If some other thread not the
7187 event thread is stepping, then it must be that scheduler
7188 locking is not in effect. */
7189 if (schedlock_applies (ecs->event_thread))
7190 return 0;
7191
7192 /* Otherwise, we no longer expect a trap in the current thread.
7193 Clear the trap_expected flag before switching back -- this is
7194 what keep_going does as well, if we call it. */
7195 ecs->event_thread->control.trap_expected = 0;
7196
7197 /* Likewise, clear the signal if it should not be passed. */
7198 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7199 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7200
7201 /* Do all pending step-overs before actually proceeding with
7202 step/next/etc. */
7203 if (start_step_over ())
7204 {
7205 prepare_to_wait (ecs);
7206 return 1;
7207 }
7208
7209 /* Look for the stepping/nexting thread. */
7210 stepping_thread = NULL;
7211
7212 for (thread_info *tp : all_non_exited_threads ())
7213 {
7214 switch_to_thread_no_regs (tp);
7215
7216 /* Ignore threads of processes the caller is not
7217 resuming. */
7218 if (!sched_multi
7219 && (tp->inf->process_target () != ecs->target
7220 || tp->inf->pid != ecs->ptid.pid ()))
7221 continue;
7222
7223 /* When stepping over a breakpoint, we lock all threads
7224 except the one that needs to move past the breakpoint.
7225 If a non-event thread has this set, the "incomplete
7226 step-over" check above should have caught it earlier. */
7227 if (tp->control.trap_expected)
7228 {
7229 internal_error (__FILE__, __LINE__,
7230 "[%s] has inconsistent state: "
7231 "trap_expected=%d\n",
7232 target_pid_to_str (tp->ptid).c_str (),
7233 tp->control.trap_expected);
7234 }
7235
7236 /* Did we find the stepping thread? */
7237 if (tp->control.step_range_end)
7238 {
7239 /* Yep. There should only one though. */
7240 gdb_assert (stepping_thread == NULL);
7241
7242 /* The event thread is handled at the top, before we
7243 enter this loop. */
7244 gdb_assert (tp != ecs->event_thread);
7245
7246 /* If some thread other than the event thread is
7247 stepping, then scheduler locking can't be in effect,
7248 otherwise we wouldn't have resumed the current event
7249 thread in the first place. */
7250 gdb_assert (!schedlock_applies (tp));
7251
7252 stepping_thread = tp;
7253 }
7254 }
7255
7256 if (stepping_thread != NULL)
7257 {
7258 infrun_log_debug ("switching back to stepped thread");
7259
7260 if (keep_going_stepped_thread (stepping_thread))
7261 {
7262 prepare_to_wait (ecs);
7263 return 1;
7264 }
7265 }
7266
7267 switch_to_thread (ecs->event_thread);
7268 }
7269
7270 return 0;
7271 }
7272
7273 /* Set a previously stepped thread back to stepping. Returns true on
7274 success, false if the resume is not possible (e.g., the thread
7275 vanished). */
7276
7277 static int
7278 keep_going_stepped_thread (struct thread_info *tp)
7279 {
7280 struct frame_info *frame;
7281 struct execution_control_state ecss;
7282 struct execution_control_state *ecs = &ecss;
7283
7284 /* If the stepping thread exited, then don't try to switch back and
7285 resume it, which could fail in several different ways depending
7286 on the target. Instead, just keep going.
7287
7288 We can find a stepping dead thread in the thread list in two
7289 cases:
7290
7291 - The target supports thread exit events, and when the target
7292 tries to delete the thread from the thread list, inferior_ptid
7293 pointed at the exiting thread. In such case, calling
7294 delete_thread does not really remove the thread from the list;
7295 instead, the thread is left listed, with 'exited' state.
7296
7297 - The target's debug interface does not support thread exit
7298 events, and so we have no idea whatsoever if the previously
7299 stepping thread is still alive. For that reason, we need to
7300 synchronously query the target now. */
7301
7302 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7303 {
7304 infrun_log_debug ("not resuming previously stepped thread, it has "
7305 "vanished");
7306
7307 delete_thread (tp);
7308 return 0;
7309 }
7310
7311 infrun_log_debug ("resuming previously stepped thread");
7312
7313 reset_ecs (ecs, tp);
7314 switch_to_thread (tp);
7315
7316 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7317 frame = get_current_frame ();
7318
7319 /* If the PC of the thread we were trying to single-step has
7320 changed, then that thread has trapped or been signaled, but the
7321 event has not been reported to GDB yet. Re-poll the target
7322 looking for this particular thread's event (i.e. temporarily
7323 enable schedlock) by:
7324
7325 - setting a break at the current PC
7326 - resuming that particular thread, only (by setting trap
7327 expected)
7328
7329 This prevents us continuously moving the single-step breakpoint
7330 forward, one instruction at a time, overstepping. */
7331
7332 if (tp->suspend.stop_pc != tp->prev_pc)
7333 {
7334 ptid_t resume_ptid;
7335
7336 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7337 paddress (target_gdbarch (), tp->prev_pc),
7338 paddress (target_gdbarch (), tp->suspend.stop_pc));
7339
7340 /* Clear the info of the previous step-over, as it's no longer
7341 valid (if the thread was trying to step over a breakpoint, it
7342 has already succeeded). It's what keep_going would do too,
7343 if we called it. Do this before trying to insert the sss
7344 breakpoint, otherwise if we were previously trying to step
7345 over this exact address in another thread, the breakpoint is
7346 skipped. */
7347 clear_step_over_info ();
7348 tp->control.trap_expected = 0;
7349
7350 insert_single_step_breakpoint (get_frame_arch (frame),
7351 get_frame_address_space (frame),
7352 tp->suspend.stop_pc);
7353
7354 tp->resumed = true;
7355 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7356 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7357 }
7358 else
7359 {
7360 infrun_log_debug ("expected thread still hasn't advanced");
7361
7362 keep_going_pass_signal (ecs);
7363 }
7364 return 1;
7365 }
7366
7367 /* Is thread TP in the middle of (software or hardware)
7368 single-stepping? (Note the result of this function must never be
7369 passed directly as target_resume's STEP parameter.) */
7370
7371 static int
7372 currently_stepping (struct thread_info *tp)
7373 {
7374 return ((tp->control.step_range_end
7375 && tp->control.step_resume_breakpoint == NULL)
7376 || tp->control.trap_expected
7377 || tp->stepped_breakpoint
7378 || bpstat_should_step ());
7379 }
7380
7381 /* Inferior has stepped into a subroutine call with source code that
7382 we should not step over. Do step to the first line of code in
7383 it. */
7384
7385 static void
7386 handle_step_into_function (struct gdbarch *gdbarch,
7387 struct execution_control_state *ecs)
7388 {
7389 fill_in_stop_func (gdbarch, ecs);
7390
7391 compunit_symtab *cust
7392 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7393 if (cust != NULL && compunit_language (cust) != language_asm)
7394 ecs->stop_func_start
7395 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7396
7397 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7398 /* Use the step_resume_break to step until the end of the prologue,
7399 even if that involves jumps (as it seems to on the vax under
7400 4.2). */
7401 /* If the prologue ends in the middle of a source line, continue to
7402 the end of that source line (if it is still within the function).
7403 Otherwise, just go to end of prologue. */
7404 if (stop_func_sal.end
7405 && stop_func_sal.pc != ecs->stop_func_start
7406 && stop_func_sal.end < ecs->stop_func_end)
7407 ecs->stop_func_start = stop_func_sal.end;
7408
7409 /* Architectures which require breakpoint adjustment might not be able
7410 to place a breakpoint at the computed address. If so, the test
7411 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7412 ecs->stop_func_start to an address at which a breakpoint may be
7413 legitimately placed.
7414
7415 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7416 made, GDB will enter an infinite loop when stepping through
7417 optimized code consisting of VLIW instructions which contain
7418 subinstructions corresponding to different source lines. On
7419 FR-V, it's not permitted to place a breakpoint on any but the
7420 first subinstruction of a VLIW instruction. When a breakpoint is
7421 set, GDB will adjust the breakpoint address to the beginning of
7422 the VLIW instruction. Thus, we need to make the corresponding
7423 adjustment here when computing the stop address. */
7424
7425 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7426 {
7427 ecs->stop_func_start
7428 = gdbarch_adjust_breakpoint_address (gdbarch,
7429 ecs->stop_func_start);
7430 }
7431
7432 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7433 {
7434 /* We are already there: stop now. */
7435 end_stepping_range (ecs);
7436 return;
7437 }
7438 else
7439 {
7440 /* Put the step-breakpoint there and go until there. */
7441 symtab_and_line sr_sal;
7442 sr_sal.pc = ecs->stop_func_start;
7443 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7444 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7445
7446 /* Do not specify what the fp should be when we stop since on
7447 some machines the prologue is where the new fp value is
7448 established. */
7449 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7450
7451 /* And make sure stepping stops right away then. */
7452 ecs->event_thread->control.step_range_end
7453 = ecs->event_thread->control.step_range_start;
7454 }
7455 keep_going (ecs);
7456 }
7457
7458 /* Inferior has stepped backward into a subroutine call with source
7459 code that we should not step over. Do step to the beginning of the
7460 last line of code in it. */
7461
7462 static void
7463 handle_step_into_function_backward (struct gdbarch *gdbarch,
7464 struct execution_control_state *ecs)
7465 {
7466 struct compunit_symtab *cust;
7467 struct symtab_and_line stop_func_sal;
7468
7469 fill_in_stop_func (gdbarch, ecs);
7470
7471 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7472 if (cust != NULL && compunit_language (cust) != language_asm)
7473 ecs->stop_func_start
7474 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7475
7476 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7477
7478 /* OK, we're just going to keep stepping here. */
7479 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7480 {
7481 /* We're there already. Just stop stepping now. */
7482 end_stepping_range (ecs);
7483 }
7484 else
7485 {
7486 /* Else just reset the step range and keep going.
7487 No step-resume breakpoint, they don't work for
7488 epilogues, which can have multiple entry paths. */
7489 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7490 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7491 keep_going (ecs);
7492 }
7493 return;
7494 }
7495
7496 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7497 This is used to both functions and to skip over code. */
7498
7499 static void
7500 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7501 struct symtab_and_line sr_sal,
7502 struct frame_id sr_id,
7503 enum bptype sr_type)
7504 {
7505 /* There should never be more than one step-resume or longjmp-resume
7506 breakpoint per thread, so we should never be setting a new
7507 step_resume_breakpoint when one is already active. */
7508 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7509 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7510
7511 infrun_log_debug ("inserting step-resume breakpoint at %s",
7512 paddress (gdbarch, sr_sal.pc));
7513
7514 inferior_thread ()->control.step_resume_breakpoint
7515 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7516 }
7517
7518 void
7519 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7520 struct symtab_and_line sr_sal,
7521 struct frame_id sr_id)
7522 {
7523 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7524 sr_sal, sr_id,
7525 bp_step_resume);
7526 }
7527
7528 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7529 This is used to skip a potential signal handler.
7530
7531 This is called with the interrupted function's frame. The signal
7532 handler, when it returns, will resume the interrupted function at
7533 RETURN_FRAME.pc. */
7534
7535 static void
7536 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7537 {
7538 gdb_assert (return_frame != NULL);
7539
7540 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7541
7542 symtab_and_line sr_sal;
7543 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7544 sr_sal.section = find_pc_overlay (sr_sal.pc);
7545 sr_sal.pspace = get_frame_program_space (return_frame);
7546
7547 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7548 get_stack_frame_id (return_frame),
7549 bp_hp_step_resume);
7550 }
7551
7552 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7553 is used to skip a function after stepping into it (for "next" or if
7554 the called function has no debugging information).
7555
7556 The current function has almost always been reached by single
7557 stepping a call or return instruction. NEXT_FRAME belongs to the
7558 current function, and the breakpoint will be set at the caller's
7559 resume address.
7560
7561 This is a separate function rather than reusing
7562 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7563 get_prev_frame, which may stop prematurely (see the implementation
7564 of frame_unwind_caller_id for an example). */
7565
7566 static void
7567 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7568 {
7569 /* We shouldn't have gotten here if we don't know where the call site
7570 is. */
7571 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7572
7573 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7574
7575 symtab_and_line sr_sal;
7576 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7577 frame_unwind_caller_pc (next_frame));
7578 sr_sal.section = find_pc_overlay (sr_sal.pc);
7579 sr_sal.pspace = frame_unwind_program_space (next_frame);
7580
7581 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7582 frame_unwind_caller_id (next_frame));
7583 }
7584
7585 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7586 new breakpoint at the target of a jmp_buf. The handling of
7587 longjmp-resume uses the same mechanisms used for handling
7588 "step-resume" breakpoints. */
7589
7590 static void
7591 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7592 {
7593 /* There should never be more than one longjmp-resume breakpoint per
7594 thread, so we should never be setting a new
7595 longjmp_resume_breakpoint when one is already active. */
7596 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7597
7598 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7599 paddress (gdbarch, pc));
7600
7601 inferior_thread ()->control.exception_resume_breakpoint =
7602 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7603 }
7604
7605 /* Insert an exception resume breakpoint. TP is the thread throwing
7606 the exception. The block B is the block of the unwinder debug hook
7607 function. FRAME is the frame corresponding to the call to this
7608 function. SYM is the symbol of the function argument holding the
7609 target PC of the exception. */
7610
7611 static void
7612 insert_exception_resume_breakpoint (struct thread_info *tp,
7613 const struct block *b,
7614 struct frame_info *frame,
7615 struct symbol *sym)
7616 {
7617 try
7618 {
7619 struct block_symbol vsym;
7620 struct value *value;
7621 CORE_ADDR handler;
7622 struct breakpoint *bp;
7623
7624 vsym = lookup_symbol_search_name (sym->search_name (),
7625 b, VAR_DOMAIN);
7626 value = read_var_value (vsym.symbol, vsym.block, frame);
7627 /* If the value was optimized out, revert to the old behavior. */
7628 if (! value_optimized_out (value))
7629 {
7630 handler = value_as_address (value);
7631
7632 infrun_log_debug ("exception resume at %lx",
7633 (unsigned long) handler);
7634
7635 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7636 handler,
7637 bp_exception_resume).release ();
7638
7639 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7640 frame = NULL;
7641
7642 bp->thread = tp->global_num;
7643 inferior_thread ()->control.exception_resume_breakpoint = bp;
7644 }
7645 }
7646 catch (const gdb_exception_error &e)
7647 {
7648 /* We want to ignore errors here. */
7649 }
7650 }
7651
7652 /* A helper for check_exception_resume that sets an
7653 exception-breakpoint based on a SystemTap probe. */
7654
7655 static void
7656 insert_exception_resume_from_probe (struct thread_info *tp,
7657 const struct bound_probe *probe,
7658 struct frame_info *frame)
7659 {
7660 struct value *arg_value;
7661 CORE_ADDR handler;
7662 struct breakpoint *bp;
7663
7664 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7665 if (!arg_value)
7666 return;
7667
7668 handler = value_as_address (arg_value);
7669
7670 infrun_log_debug ("exception resume at %s",
7671 paddress (probe->objfile->arch (), handler));
7672
7673 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7674 handler, bp_exception_resume).release ();
7675 bp->thread = tp->global_num;
7676 inferior_thread ()->control.exception_resume_breakpoint = bp;
7677 }
7678
7679 /* This is called when an exception has been intercepted. Check to
7680 see whether the exception's destination is of interest, and if so,
7681 set an exception resume breakpoint there. */
7682
7683 static void
7684 check_exception_resume (struct execution_control_state *ecs,
7685 struct frame_info *frame)
7686 {
7687 struct bound_probe probe;
7688 struct symbol *func;
7689
7690 /* First see if this exception unwinding breakpoint was set via a
7691 SystemTap probe point. If so, the probe has two arguments: the
7692 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7693 set a breakpoint there. */
7694 probe = find_probe_by_pc (get_frame_pc (frame));
7695 if (probe.prob)
7696 {
7697 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7698 return;
7699 }
7700
7701 func = get_frame_function (frame);
7702 if (!func)
7703 return;
7704
7705 try
7706 {
7707 const struct block *b;
7708 struct block_iterator iter;
7709 struct symbol *sym;
7710 int argno = 0;
7711
7712 /* The exception breakpoint is a thread-specific breakpoint on
7713 the unwinder's debug hook, declared as:
7714
7715 void _Unwind_DebugHook (void *cfa, void *handler);
7716
7717 The CFA argument indicates the frame to which control is
7718 about to be transferred. HANDLER is the destination PC.
7719
7720 We ignore the CFA and set a temporary breakpoint at HANDLER.
7721 This is not extremely efficient but it avoids issues in gdb
7722 with computing the DWARF CFA, and it also works even in weird
7723 cases such as throwing an exception from inside a signal
7724 handler. */
7725
7726 b = SYMBOL_BLOCK_VALUE (func);
7727 ALL_BLOCK_SYMBOLS (b, iter, sym)
7728 {
7729 if (!SYMBOL_IS_ARGUMENT (sym))
7730 continue;
7731
7732 if (argno == 0)
7733 ++argno;
7734 else
7735 {
7736 insert_exception_resume_breakpoint (ecs->event_thread,
7737 b, frame, sym);
7738 break;
7739 }
7740 }
7741 }
7742 catch (const gdb_exception_error &e)
7743 {
7744 }
7745 }
7746
7747 static void
7748 stop_waiting (struct execution_control_state *ecs)
7749 {
7750 infrun_log_debug ("stop_waiting");
7751
7752 /* Let callers know we don't want to wait for the inferior anymore. */
7753 ecs->wait_some_more = 0;
7754
7755 /* If all-stop, but there exists a non-stop target, stop all
7756 threads now that we're presenting the stop to the user. */
7757 if (!non_stop && exists_non_stop_target ())
7758 stop_all_threads ();
7759 }
7760
7761 /* Like keep_going, but passes the signal to the inferior, even if the
7762 signal is set to nopass. */
7763
7764 static void
7765 keep_going_pass_signal (struct execution_control_state *ecs)
7766 {
7767 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7768 gdb_assert (!ecs->event_thread->resumed);
7769
7770 /* Save the pc before execution, to compare with pc after stop. */
7771 ecs->event_thread->prev_pc
7772 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7773
7774 if (ecs->event_thread->control.trap_expected)
7775 {
7776 struct thread_info *tp = ecs->event_thread;
7777
7778 infrun_log_debug ("%s has trap_expected set, "
7779 "resuming to collect trap",
7780 target_pid_to_str (tp->ptid).c_str ());
7781
7782 /* We haven't yet gotten our trap, and either: intercepted a
7783 non-signal event (e.g., a fork); or took a signal which we
7784 are supposed to pass through to the inferior. Simply
7785 continue. */
7786 resume (ecs->event_thread->suspend.stop_signal);
7787 }
7788 else if (step_over_info_valid_p ())
7789 {
7790 /* Another thread is stepping over a breakpoint in-line. If
7791 this thread needs a step-over too, queue the request. In
7792 either case, this resume must be deferred for later. */
7793 struct thread_info *tp = ecs->event_thread;
7794
7795 if (ecs->hit_singlestep_breakpoint
7796 || thread_still_needs_step_over (tp))
7797 {
7798 infrun_log_debug ("step-over already in progress: "
7799 "step-over for %s deferred",
7800 target_pid_to_str (tp->ptid).c_str ());
7801 global_thread_step_over_chain_enqueue (tp);
7802 }
7803 else
7804 {
7805 infrun_log_debug ("step-over in progress: resume of %s deferred",
7806 target_pid_to_str (tp->ptid).c_str ());
7807 }
7808 }
7809 else
7810 {
7811 struct regcache *regcache = get_current_regcache ();
7812 int remove_bp;
7813 int remove_wps;
7814 step_over_what step_what;
7815
7816 /* Either the trap was not expected, but we are continuing
7817 anyway (if we got a signal, the user asked it be passed to
7818 the child)
7819 -- or --
7820 We got our expected trap, but decided we should resume from
7821 it.
7822
7823 We're going to run this baby now!
7824
7825 Note that insert_breakpoints won't try to re-insert
7826 already inserted breakpoints. Therefore, we don't
7827 care if breakpoints were already inserted, or not. */
7828
7829 /* If we need to step over a breakpoint, and we're not using
7830 displaced stepping to do so, insert all breakpoints
7831 (watchpoints, etc.) but the one we're stepping over, step one
7832 instruction, and then re-insert the breakpoint when that step
7833 is finished. */
7834
7835 step_what = thread_still_needs_step_over (ecs->event_thread);
7836
7837 remove_bp = (ecs->hit_singlestep_breakpoint
7838 || (step_what & STEP_OVER_BREAKPOINT));
7839 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7840
7841 /* We can't use displaced stepping if we need to step past a
7842 watchpoint. The instruction copied to the scratch pad would
7843 still trigger the watchpoint. */
7844 if (remove_bp
7845 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7846 {
7847 set_step_over_info (regcache->aspace (),
7848 regcache_read_pc (regcache), remove_wps,
7849 ecs->event_thread->global_num);
7850 }
7851 else if (remove_wps)
7852 set_step_over_info (NULL, 0, remove_wps, -1);
7853
7854 /* If we now need to do an in-line step-over, we need to stop
7855 all other threads. Note this must be done before
7856 insert_breakpoints below, because that removes the breakpoint
7857 we're about to step over, otherwise other threads could miss
7858 it. */
7859 if (step_over_info_valid_p () && target_is_non_stop_p ())
7860 stop_all_threads ();
7861
7862 /* Stop stepping if inserting breakpoints fails. */
7863 try
7864 {
7865 insert_breakpoints ();
7866 }
7867 catch (const gdb_exception_error &e)
7868 {
7869 exception_print (gdb_stderr, e);
7870 stop_waiting (ecs);
7871 clear_step_over_info ();
7872 return;
7873 }
7874
7875 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7876
7877 resume (ecs->event_thread->suspend.stop_signal);
7878 }
7879
7880 prepare_to_wait (ecs);
7881 }
7882
7883 /* Called when we should continue running the inferior, because the
7884 current event doesn't cause a user visible stop. This does the
7885 resuming part; waiting for the next event is done elsewhere. */
7886
7887 static void
7888 keep_going (struct execution_control_state *ecs)
7889 {
7890 if (ecs->event_thread->control.trap_expected
7891 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7892 ecs->event_thread->control.trap_expected = 0;
7893
7894 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7895 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7896 keep_going_pass_signal (ecs);
7897 }
7898
7899 /* This function normally comes after a resume, before
7900 handle_inferior_event exits. It takes care of any last bits of
7901 housekeeping, and sets the all-important wait_some_more flag. */
7902
7903 static void
7904 prepare_to_wait (struct execution_control_state *ecs)
7905 {
7906 infrun_log_debug ("prepare_to_wait");
7907
7908 ecs->wait_some_more = 1;
7909
7910 /* If the target can't async, emulate it by marking the infrun event
7911 handler such that as soon as we get back to the event-loop, we
7912 immediately end up in fetch_inferior_event again calling
7913 target_wait. */
7914 if (!target_can_async_p ())
7915 mark_infrun_async_event_handler ();
7916 }
7917
7918 /* We are done with the step range of a step/next/si/ni command.
7919 Called once for each n of a "step n" operation. */
7920
7921 static void
7922 end_stepping_range (struct execution_control_state *ecs)
7923 {
7924 ecs->event_thread->control.stop_step = 1;
7925 stop_waiting (ecs);
7926 }
7927
7928 /* Several print_*_reason functions to print why the inferior has stopped.
7929 We always print something when the inferior exits, or receives a signal.
7930 The rest of the cases are dealt with later on in normal_stop and
7931 print_it_typical. Ideally there should be a call to one of these
7932 print_*_reason functions functions from handle_inferior_event each time
7933 stop_waiting is called.
7934
7935 Note that we don't call these directly, instead we delegate that to
7936 the interpreters, through observers. Interpreters then call these
7937 with whatever uiout is right. */
7938
7939 void
7940 print_end_stepping_range_reason (struct ui_out *uiout)
7941 {
7942 /* For CLI-like interpreters, print nothing. */
7943
7944 if (uiout->is_mi_like_p ())
7945 {
7946 uiout->field_string ("reason",
7947 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7948 }
7949 }
7950
7951 void
7952 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7953 {
7954 annotate_signalled ();
7955 if (uiout->is_mi_like_p ())
7956 uiout->field_string
7957 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7958 uiout->text ("\nProgram terminated with signal ");
7959 annotate_signal_name ();
7960 uiout->field_string ("signal-name",
7961 gdb_signal_to_name (siggnal));
7962 annotate_signal_name_end ();
7963 uiout->text (", ");
7964 annotate_signal_string ();
7965 uiout->field_string ("signal-meaning",
7966 gdb_signal_to_string (siggnal));
7967 annotate_signal_string_end ();
7968 uiout->text (".\n");
7969 uiout->text ("The program no longer exists.\n");
7970 }
7971
7972 void
7973 print_exited_reason (struct ui_out *uiout, int exitstatus)
7974 {
7975 struct inferior *inf = current_inferior ();
7976 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7977
7978 annotate_exited (exitstatus);
7979 if (exitstatus)
7980 {
7981 if (uiout->is_mi_like_p ())
7982 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7983 std::string exit_code_str
7984 = string_printf ("0%o", (unsigned int) exitstatus);
7985 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7986 plongest (inf->num), pidstr.c_str (),
7987 string_field ("exit-code", exit_code_str.c_str ()));
7988 }
7989 else
7990 {
7991 if (uiout->is_mi_like_p ())
7992 uiout->field_string
7993 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7994 uiout->message ("[Inferior %s (%s) exited normally]\n",
7995 plongest (inf->num), pidstr.c_str ());
7996 }
7997 }
7998
7999 /* Some targets/architectures can do extra processing/display of
8000 segmentation faults. E.g., Intel MPX boundary faults.
8001 Call the architecture dependent function to handle the fault. */
8002
8003 static void
8004 handle_segmentation_fault (struct ui_out *uiout)
8005 {
8006 struct regcache *regcache = get_current_regcache ();
8007 struct gdbarch *gdbarch = regcache->arch ();
8008
8009 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8010 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8011 }
8012
8013 void
8014 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8015 {
8016 struct thread_info *thr = inferior_thread ();
8017
8018 annotate_signal ();
8019
8020 if (uiout->is_mi_like_p ())
8021 ;
8022 else if (show_thread_that_caused_stop ())
8023 {
8024 const char *name;
8025
8026 uiout->text ("\nThread ");
8027 uiout->field_string ("thread-id", print_thread_id (thr));
8028
8029 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8030 if (name != NULL)
8031 {
8032 uiout->text (" \"");
8033 uiout->field_string ("name", name);
8034 uiout->text ("\"");
8035 }
8036 }
8037 else
8038 uiout->text ("\nProgram");
8039
8040 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8041 uiout->text (" stopped");
8042 else
8043 {
8044 uiout->text (" received signal ");
8045 annotate_signal_name ();
8046 if (uiout->is_mi_like_p ())
8047 uiout->field_string
8048 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8049 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8050 annotate_signal_name_end ();
8051 uiout->text (", ");
8052 annotate_signal_string ();
8053 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8054
8055 if (siggnal == GDB_SIGNAL_SEGV)
8056 handle_segmentation_fault (uiout);
8057
8058 annotate_signal_string_end ();
8059 }
8060 uiout->text (".\n");
8061 }
8062
8063 void
8064 print_no_history_reason (struct ui_out *uiout)
8065 {
8066 uiout->text ("\nNo more reverse-execution history.\n");
8067 }
8068
8069 /* Print current location without a level number, if we have changed
8070 functions or hit a breakpoint. Print source line if we have one.
8071 bpstat_print contains the logic deciding in detail what to print,
8072 based on the event(s) that just occurred. */
8073
8074 static void
8075 print_stop_location (struct target_waitstatus *ws)
8076 {
8077 int bpstat_ret;
8078 enum print_what source_flag;
8079 int do_frame_printing = 1;
8080 struct thread_info *tp = inferior_thread ();
8081
8082 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8083 switch (bpstat_ret)
8084 {
8085 case PRINT_UNKNOWN:
8086 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8087 should) carry around the function and does (or should) use
8088 that when doing a frame comparison. */
8089 if (tp->control.stop_step
8090 && frame_id_eq (tp->control.step_frame_id,
8091 get_frame_id (get_current_frame ()))
8092 && (tp->control.step_start_function
8093 == find_pc_function (tp->suspend.stop_pc)))
8094 {
8095 /* Finished step, just print source line. */
8096 source_flag = SRC_LINE;
8097 }
8098 else
8099 {
8100 /* Print location and source line. */
8101 source_flag = SRC_AND_LOC;
8102 }
8103 break;
8104 case PRINT_SRC_AND_LOC:
8105 /* Print location and source line. */
8106 source_flag = SRC_AND_LOC;
8107 break;
8108 case PRINT_SRC_ONLY:
8109 source_flag = SRC_LINE;
8110 break;
8111 case PRINT_NOTHING:
8112 /* Something bogus. */
8113 source_flag = SRC_LINE;
8114 do_frame_printing = 0;
8115 break;
8116 default:
8117 internal_error (__FILE__, __LINE__, _("Unknown value."));
8118 }
8119
8120 /* The behavior of this routine with respect to the source
8121 flag is:
8122 SRC_LINE: Print only source line
8123 LOCATION: Print only location
8124 SRC_AND_LOC: Print location and source line. */
8125 if (do_frame_printing)
8126 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8127 }
8128
8129 /* See infrun.h. */
8130
8131 void
8132 print_stop_event (struct ui_out *uiout, bool displays)
8133 {
8134 struct target_waitstatus last;
8135 struct thread_info *tp;
8136
8137 get_last_target_status (nullptr, nullptr, &last);
8138
8139 {
8140 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8141
8142 print_stop_location (&last);
8143
8144 /* Display the auto-display expressions. */
8145 if (displays)
8146 do_displays ();
8147 }
8148
8149 tp = inferior_thread ();
8150 if (tp->thread_fsm != NULL
8151 && tp->thread_fsm->finished_p ())
8152 {
8153 struct return_value_info *rv;
8154
8155 rv = tp->thread_fsm->return_value ();
8156 if (rv != NULL)
8157 print_return_value (uiout, rv);
8158 }
8159 }
8160
8161 /* See infrun.h. */
8162
8163 void
8164 maybe_remove_breakpoints (void)
8165 {
8166 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8167 {
8168 if (remove_breakpoints ())
8169 {
8170 target_terminal::ours_for_output ();
8171 printf_filtered (_("Cannot remove breakpoints because "
8172 "program is no longer writable.\nFurther "
8173 "execution is probably impossible.\n"));
8174 }
8175 }
8176 }
8177
8178 /* The execution context that just caused a normal stop. */
8179
8180 struct stop_context
8181 {
8182 stop_context ();
8183 ~stop_context ();
8184
8185 DISABLE_COPY_AND_ASSIGN (stop_context);
8186
8187 bool changed () const;
8188
8189 /* The stop ID. */
8190 ULONGEST stop_id;
8191
8192 /* The event PTID. */
8193
8194 ptid_t ptid;
8195
8196 /* If stopp for a thread event, this is the thread that caused the
8197 stop. */
8198 struct thread_info *thread;
8199
8200 /* The inferior that caused the stop. */
8201 int inf_num;
8202 };
8203
8204 /* Initializes a new stop context. If stopped for a thread event, this
8205 takes a strong reference to the thread. */
8206
8207 stop_context::stop_context ()
8208 {
8209 stop_id = get_stop_id ();
8210 ptid = inferior_ptid;
8211 inf_num = current_inferior ()->num;
8212
8213 if (inferior_ptid != null_ptid)
8214 {
8215 /* Take a strong reference so that the thread can't be deleted
8216 yet. */
8217 thread = inferior_thread ();
8218 thread->incref ();
8219 }
8220 else
8221 thread = NULL;
8222 }
8223
8224 /* Release a stop context previously created with save_stop_context.
8225 Releases the strong reference to the thread as well. */
8226
8227 stop_context::~stop_context ()
8228 {
8229 if (thread != NULL)
8230 thread->decref ();
8231 }
8232
8233 /* Return true if the current context no longer matches the saved stop
8234 context. */
8235
8236 bool
8237 stop_context::changed () const
8238 {
8239 if (ptid != inferior_ptid)
8240 return true;
8241 if (inf_num != current_inferior ()->num)
8242 return true;
8243 if (thread != NULL && thread->state != THREAD_STOPPED)
8244 return true;
8245 if (get_stop_id () != stop_id)
8246 return true;
8247 return false;
8248 }
8249
8250 /* See infrun.h. */
8251
8252 int
8253 normal_stop (void)
8254 {
8255 struct target_waitstatus last;
8256
8257 get_last_target_status (nullptr, nullptr, &last);
8258
8259 new_stop_id ();
8260
8261 /* If an exception is thrown from this point on, make sure to
8262 propagate GDB's knowledge of the executing state to the
8263 frontend/user running state. A QUIT is an easy exception to see
8264 here, so do this before any filtered output. */
8265
8266 ptid_t finish_ptid = null_ptid;
8267
8268 if (!non_stop)
8269 finish_ptid = minus_one_ptid;
8270 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8271 || last.kind == TARGET_WAITKIND_EXITED)
8272 {
8273 /* On some targets, we may still have live threads in the
8274 inferior when we get a process exit event. E.g., for
8275 "checkpoint", when the current checkpoint/fork exits,
8276 linux-fork.c automatically switches to another fork from
8277 within target_mourn_inferior. */
8278 if (inferior_ptid != null_ptid)
8279 finish_ptid = ptid_t (inferior_ptid.pid ());
8280 }
8281 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8282 finish_ptid = inferior_ptid;
8283
8284 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8285 if (finish_ptid != null_ptid)
8286 {
8287 maybe_finish_thread_state.emplace
8288 (user_visible_resume_target (finish_ptid), finish_ptid);
8289 }
8290
8291 /* As we're presenting a stop, and potentially removing breakpoints,
8292 update the thread list so we can tell whether there are threads
8293 running on the target. With target remote, for example, we can
8294 only learn about new threads when we explicitly update the thread
8295 list. Do this before notifying the interpreters about signal
8296 stops, end of stepping ranges, etc., so that the "new thread"
8297 output is emitted before e.g., "Program received signal FOO",
8298 instead of after. */
8299 update_thread_list ();
8300
8301 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8302 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8303
8304 /* As with the notification of thread events, we want to delay
8305 notifying the user that we've switched thread context until
8306 the inferior actually stops.
8307
8308 There's no point in saying anything if the inferior has exited.
8309 Note that SIGNALLED here means "exited with a signal", not
8310 "received a signal".
8311
8312 Also skip saying anything in non-stop mode. In that mode, as we
8313 don't want GDB to switch threads behind the user's back, to avoid
8314 races where the user is typing a command to apply to thread x,
8315 but GDB switches to thread y before the user finishes entering
8316 the command, fetch_inferior_event installs a cleanup to restore
8317 the current thread back to the thread the user had selected right
8318 after this event is handled, so we're not really switching, only
8319 informing of a stop. */
8320 if (!non_stop
8321 && previous_inferior_ptid != inferior_ptid
8322 && target_has_execution
8323 && last.kind != TARGET_WAITKIND_SIGNALLED
8324 && last.kind != TARGET_WAITKIND_EXITED
8325 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8326 {
8327 SWITCH_THRU_ALL_UIS ()
8328 {
8329 target_terminal::ours_for_output ();
8330 printf_filtered (_("[Switching to %s]\n"),
8331 target_pid_to_str (inferior_ptid).c_str ());
8332 annotate_thread_changed ();
8333 }
8334 previous_inferior_ptid = inferior_ptid;
8335 }
8336
8337 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8338 {
8339 SWITCH_THRU_ALL_UIS ()
8340 if (current_ui->prompt_state == PROMPT_BLOCKED)
8341 {
8342 target_terminal::ours_for_output ();
8343 printf_filtered (_("No unwaited-for children left.\n"));
8344 }
8345 }
8346
8347 /* Note: this depends on the update_thread_list call above. */
8348 maybe_remove_breakpoints ();
8349
8350 /* If an auto-display called a function and that got a signal,
8351 delete that auto-display to avoid an infinite recursion. */
8352
8353 if (stopped_by_random_signal)
8354 disable_current_display ();
8355
8356 SWITCH_THRU_ALL_UIS ()
8357 {
8358 async_enable_stdin ();
8359 }
8360
8361 /* Let the user/frontend see the threads as stopped. */
8362 maybe_finish_thread_state.reset ();
8363
8364 /* Select innermost stack frame - i.e., current frame is frame 0,
8365 and current location is based on that. Handle the case where the
8366 dummy call is returning after being stopped. E.g. the dummy call
8367 previously hit a breakpoint. (If the dummy call returns
8368 normally, we won't reach here.) Do this before the stop hook is
8369 run, so that it doesn't get to see the temporary dummy frame,
8370 which is not where we'll present the stop. */
8371 if (has_stack_frames ())
8372 {
8373 if (stop_stack_dummy == STOP_STACK_DUMMY)
8374 {
8375 /* Pop the empty frame that contains the stack dummy. This
8376 also restores inferior state prior to the call (struct
8377 infcall_suspend_state). */
8378 struct frame_info *frame = get_current_frame ();
8379
8380 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8381 frame_pop (frame);
8382 /* frame_pop calls reinit_frame_cache as the last thing it
8383 does which means there's now no selected frame. */
8384 }
8385
8386 select_frame (get_current_frame ());
8387
8388 /* Set the current source location. */
8389 set_current_sal_from_frame (get_current_frame ());
8390 }
8391
8392 /* Look up the hook_stop and run it (CLI internally handles problem
8393 of stop_command's pre-hook not existing). */
8394 if (stop_command != NULL)
8395 {
8396 stop_context saved_context;
8397
8398 try
8399 {
8400 execute_cmd_pre_hook (stop_command);
8401 }
8402 catch (const gdb_exception &ex)
8403 {
8404 exception_fprintf (gdb_stderr, ex,
8405 "Error while running hook_stop:\n");
8406 }
8407
8408 /* If the stop hook resumes the target, then there's no point in
8409 trying to notify about the previous stop; its context is
8410 gone. Likewise if the command switches thread or inferior --
8411 the observers would print a stop for the wrong
8412 thread/inferior. */
8413 if (saved_context.changed ())
8414 return 1;
8415 }
8416
8417 /* Notify observers about the stop. This is where the interpreters
8418 print the stop event. */
8419 if (inferior_ptid != null_ptid)
8420 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8421 stop_print_frame);
8422 else
8423 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8424
8425 annotate_stopped ();
8426
8427 if (target_has_execution)
8428 {
8429 if (last.kind != TARGET_WAITKIND_SIGNALLED
8430 && last.kind != TARGET_WAITKIND_EXITED
8431 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8432 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8433 Delete any breakpoint that is to be deleted at the next stop. */
8434 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8435 }
8436
8437 /* Try to get rid of automatically added inferiors that are no
8438 longer needed. Keeping those around slows down things linearly.
8439 Note that this never removes the current inferior. */
8440 prune_inferiors ();
8441
8442 return 0;
8443 }
8444 \f
8445 int
8446 signal_stop_state (int signo)
8447 {
8448 return signal_stop[signo];
8449 }
8450
8451 int
8452 signal_print_state (int signo)
8453 {
8454 return signal_print[signo];
8455 }
8456
8457 int
8458 signal_pass_state (int signo)
8459 {
8460 return signal_program[signo];
8461 }
8462
8463 static void
8464 signal_cache_update (int signo)
8465 {
8466 if (signo == -1)
8467 {
8468 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8469 signal_cache_update (signo);
8470
8471 return;
8472 }
8473
8474 signal_pass[signo] = (signal_stop[signo] == 0
8475 && signal_print[signo] == 0
8476 && signal_program[signo] == 1
8477 && signal_catch[signo] == 0);
8478 }
8479
8480 int
8481 signal_stop_update (int signo, int state)
8482 {
8483 int ret = signal_stop[signo];
8484
8485 signal_stop[signo] = state;
8486 signal_cache_update (signo);
8487 return ret;
8488 }
8489
8490 int
8491 signal_print_update (int signo, int state)
8492 {
8493 int ret = signal_print[signo];
8494
8495 signal_print[signo] = state;
8496 signal_cache_update (signo);
8497 return ret;
8498 }
8499
8500 int
8501 signal_pass_update (int signo, int state)
8502 {
8503 int ret = signal_program[signo];
8504
8505 signal_program[signo] = state;
8506 signal_cache_update (signo);
8507 return ret;
8508 }
8509
8510 /* Update the global 'signal_catch' from INFO and notify the
8511 target. */
8512
8513 void
8514 signal_catch_update (const unsigned int *info)
8515 {
8516 int i;
8517
8518 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8519 signal_catch[i] = info[i] > 0;
8520 signal_cache_update (-1);
8521 target_pass_signals (signal_pass);
8522 }
8523
8524 static void
8525 sig_print_header (void)
8526 {
8527 printf_filtered (_("Signal Stop\tPrint\tPass "
8528 "to program\tDescription\n"));
8529 }
8530
8531 static void
8532 sig_print_info (enum gdb_signal oursig)
8533 {
8534 const char *name = gdb_signal_to_name (oursig);
8535 int name_padding = 13 - strlen (name);
8536
8537 if (name_padding <= 0)
8538 name_padding = 0;
8539
8540 printf_filtered ("%s", name);
8541 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8542 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8543 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8544 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8545 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8546 }
8547
8548 /* Specify how various signals in the inferior should be handled. */
8549
8550 static void
8551 handle_command (const char *args, int from_tty)
8552 {
8553 int digits, wordlen;
8554 int sigfirst, siglast;
8555 enum gdb_signal oursig;
8556 int allsigs;
8557
8558 if (args == NULL)
8559 {
8560 error_no_arg (_("signal to handle"));
8561 }
8562
8563 /* Allocate and zero an array of flags for which signals to handle. */
8564
8565 const size_t nsigs = GDB_SIGNAL_LAST;
8566 unsigned char sigs[nsigs] {};
8567
8568 /* Break the command line up into args. */
8569
8570 gdb_argv built_argv (args);
8571
8572 /* Walk through the args, looking for signal oursigs, signal names, and
8573 actions. Signal numbers and signal names may be interspersed with
8574 actions, with the actions being performed for all signals cumulatively
8575 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8576
8577 for (char *arg : built_argv)
8578 {
8579 wordlen = strlen (arg);
8580 for (digits = 0; isdigit (arg[digits]); digits++)
8581 {;
8582 }
8583 allsigs = 0;
8584 sigfirst = siglast = -1;
8585
8586 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8587 {
8588 /* Apply action to all signals except those used by the
8589 debugger. Silently skip those. */
8590 allsigs = 1;
8591 sigfirst = 0;
8592 siglast = nsigs - 1;
8593 }
8594 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8595 {
8596 SET_SIGS (nsigs, sigs, signal_stop);
8597 SET_SIGS (nsigs, sigs, signal_print);
8598 }
8599 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8600 {
8601 UNSET_SIGS (nsigs, sigs, signal_program);
8602 }
8603 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8604 {
8605 SET_SIGS (nsigs, sigs, signal_print);
8606 }
8607 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8608 {
8609 SET_SIGS (nsigs, sigs, signal_program);
8610 }
8611 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8612 {
8613 UNSET_SIGS (nsigs, sigs, signal_stop);
8614 }
8615 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8616 {
8617 SET_SIGS (nsigs, sigs, signal_program);
8618 }
8619 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8620 {
8621 UNSET_SIGS (nsigs, sigs, signal_print);
8622 UNSET_SIGS (nsigs, sigs, signal_stop);
8623 }
8624 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8625 {
8626 UNSET_SIGS (nsigs, sigs, signal_program);
8627 }
8628 else if (digits > 0)
8629 {
8630 /* It is numeric. The numeric signal refers to our own
8631 internal signal numbering from target.h, not to host/target
8632 signal number. This is a feature; users really should be
8633 using symbolic names anyway, and the common ones like
8634 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8635
8636 sigfirst = siglast = (int)
8637 gdb_signal_from_command (atoi (arg));
8638 if (arg[digits] == '-')
8639 {
8640 siglast = (int)
8641 gdb_signal_from_command (atoi (arg + digits + 1));
8642 }
8643 if (sigfirst > siglast)
8644 {
8645 /* Bet he didn't figure we'd think of this case... */
8646 std::swap (sigfirst, siglast);
8647 }
8648 }
8649 else
8650 {
8651 oursig = gdb_signal_from_name (arg);
8652 if (oursig != GDB_SIGNAL_UNKNOWN)
8653 {
8654 sigfirst = siglast = (int) oursig;
8655 }
8656 else
8657 {
8658 /* Not a number and not a recognized flag word => complain. */
8659 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8660 }
8661 }
8662
8663 /* If any signal numbers or symbol names were found, set flags for
8664 which signals to apply actions to. */
8665
8666 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8667 {
8668 switch ((enum gdb_signal) signum)
8669 {
8670 case GDB_SIGNAL_TRAP:
8671 case GDB_SIGNAL_INT:
8672 if (!allsigs && !sigs[signum])
8673 {
8674 if (query (_("%s is used by the debugger.\n\
8675 Are you sure you want to change it? "),
8676 gdb_signal_to_name ((enum gdb_signal) signum)))
8677 {
8678 sigs[signum] = 1;
8679 }
8680 else
8681 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8682 }
8683 break;
8684 case GDB_SIGNAL_0:
8685 case GDB_SIGNAL_DEFAULT:
8686 case GDB_SIGNAL_UNKNOWN:
8687 /* Make sure that "all" doesn't print these. */
8688 break;
8689 default:
8690 sigs[signum] = 1;
8691 break;
8692 }
8693 }
8694 }
8695
8696 for (int signum = 0; signum < nsigs; signum++)
8697 if (sigs[signum])
8698 {
8699 signal_cache_update (-1);
8700 target_pass_signals (signal_pass);
8701 target_program_signals (signal_program);
8702
8703 if (from_tty)
8704 {
8705 /* Show the results. */
8706 sig_print_header ();
8707 for (; signum < nsigs; signum++)
8708 if (sigs[signum])
8709 sig_print_info ((enum gdb_signal) signum);
8710 }
8711
8712 break;
8713 }
8714 }
8715
8716 /* Complete the "handle" command. */
8717
8718 static void
8719 handle_completer (struct cmd_list_element *ignore,
8720 completion_tracker &tracker,
8721 const char *text, const char *word)
8722 {
8723 static const char * const keywords[] =
8724 {
8725 "all",
8726 "stop",
8727 "ignore",
8728 "print",
8729 "pass",
8730 "nostop",
8731 "noignore",
8732 "noprint",
8733 "nopass",
8734 NULL,
8735 };
8736
8737 signal_completer (ignore, tracker, text, word);
8738 complete_on_enum (tracker, keywords, word, word);
8739 }
8740
8741 enum gdb_signal
8742 gdb_signal_from_command (int num)
8743 {
8744 if (num >= 1 && num <= 15)
8745 return (enum gdb_signal) num;
8746 error (_("Only signals 1-15 are valid as numeric signals.\n\
8747 Use \"info signals\" for a list of symbolic signals."));
8748 }
8749
8750 /* Print current contents of the tables set by the handle command.
8751 It is possible we should just be printing signals actually used
8752 by the current target (but for things to work right when switching
8753 targets, all signals should be in the signal tables). */
8754
8755 static void
8756 info_signals_command (const char *signum_exp, int from_tty)
8757 {
8758 enum gdb_signal oursig;
8759
8760 sig_print_header ();
8761
8762 if (signum_exp)
8763 {
8764 /* First see if this is a symbol name. */
8765 oursig = gdb_signal_from_name (signum_exp);
8766 if (oursig == GDB_SIGNAL_UNKNOWN)
8767 {
8768 /* No, try numeric. */
8769 oursig =
8770 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8771 }
8772 sig_print_info (oursig);
8773 return;
8774 }
8775
8776 printf_filtered ("\n");
8777 /* These ugly casts brought to you by the native VAX compiler. */
8778 for (oursig = GDB_SIGNAL_FIRST;
8779 (int) oursig < (int) GDB_SIGNAL_LAST;
8780 oursig = (enum gdb_signal) ((int) oursig + 1))
8781 {
8782 QUIT;
8783
8784 if (oursig != GDB_SIGNAL_UNKNOWN
8785 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8786 sig_print_info (oursig);
8787 }
8788
8789 printf_filtered (_("\nUse the \"handle\" command "
8790 "to change these tables.\n"));
8791 }
8792
8793 /* The $_siginfo convenience variable is a bit special. We don't know
8794 for sure the type of the value until we actually have a chance to
8795 fetch the data. The type can change depending on gdbarch, so it is
8796 also dependent on which thread you have selected.
8797
8798 1. making $_siginfo be an internalvar that creates a new value on
8799 access.
8800
8801 2. making the value of $_siginfo be an lval_computed value. */
8802
8803 /* This function implements the lval_computed support for reading a
8804 $_siginfo value. */
8805
8806 static void
8807 siginfo_value_read (struct value *v)
8808 {
8809 LONGEST transferred;
8810
8811 /* If we can access registers, so can we access $_siginfo. Likewise
8812 vice versa. */
8813 validate_registers_access ();
8814
8815 transferred =
8816 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8817 NULL,
8818 value_contents_all_raw (v),
8819 value_offset (v),
8820 TYPE_LENGTH (value_type (v)));
8821
8822 if (transferred != TYPE_LENGTH (value_type (v)))
8823 error (_("Unable to read siginfo"));
8824 }
8825
8826 /* This function implements the lval_computed support for writing a
8827 $_siginfo value. */
8828
8829 static void
8830 siginfo_value_write (struct value *v, struct value *fromval)
8831 {
8832 LONGEST transferred;
8833
8834 /* If we can access registers, so can we access $_siginfo. Likewise
8835 vice versa. */
8836 validate_registers_access ();
8837
8838 transferred = target_write (current_top_target (),
8839 TARGET_OBJECT_SIGNAL_INFO,
8840 NULL,
8841 value_contents_all_raw (fromval),
8842 value_offset (v),
8843 TYPE_LENGTH (value_type (fromval)));
8844
8845 if (transferred != TYPE_LENGTH (value_type (fromval)))
8846 error (_("Unable to write siginfo"));
8847 }
8848
8849 static const struct lval_funcs siginfo_value_funcs =
8850 {
8851 siginfo_value_read,
8852 siginfo_value_write
8853 };
8854
8855 /* Return a new value with the correct type for the siginfo object of
8856 the current thread using architecture GDBARCH. Return a void value
8857 if there's no object available. */
8858
8859 static struct value *
8860 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8861 void *ignore)
8862 {
8863 if (target_has_stack
8864 && inferior_ptid != null_ptid
8865 && gdbarch_get_siginfo_type_p (gdbarch))
8866 {
8867 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8868
8869 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8870 }
8871
8872 return allocate_value (builtin_type (gdbarch)->builtin_void);
8873 }
8874
8875 \f
8876 /* infcall_suspend_state contains state about the program itself like its
8877 registers and any signal it received when it last stopped.
8878 This state must be restored regardless of how the inferior function call
8879 ends (either successfully, or after it hits a breakpoint or signal)
8880 if the program is to properly continue where it left off. */
8881
8882 class infcall_suspend_state
8883 {
8884 public:
8885 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8886 once the inferior function call has finished. */
8887 infcall_suspend_state (struct gdbarch *gdbarch,
8888 const struct thread_info *tp,
8889 struct regcache *regcache)
8890 : m_thread_suspend (tp->suspend),
8891 m_registers (new readonly_detached_regcache (*regcache))
8892 {
8893 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8894
8895 if (gdbarch_get_siginfo_type_p (gdbarch))
8896 {
8897 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8898 size_t len = TYPE_LENGTH (type);
8899
8900 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8901
8902 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8903 siginfo_data.get (), 0, len) != len)
8904 {
8905 /* Errors ignored. */
8906 siginfo_data.reset (nullptr);
8907 }
8908 }
8909
8910 if (siginfo_data)
8911 {
8912 m_siginfo_gdbarch = gdbarch;
8913 m_siginfo_data = std::move (siginfo_data);
8914 }
8915 }
8916
8917 /* Return a pointer to the stored register state. */
8918
8919 readonly_detached_regcache *registers () const
8920 {
8921 return m_registers.get ();
8922 }
8923
8924 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8925
8926 void restore (struct gdbarch *gdbarch,
8927 struct thread_info *tp,
8928 struct regcache *regcache) const
8929 {
8930 tp->suspend = m_thread_suspend;
8931
8932 if (m_siginfo_gdbarch == gdbarch)
8933 {
8934 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8935
8936 /* Errors ignored. */
8937 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8938 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8939 }
8940
8941 /* The inferior can be gone if the user types "print exit(0)"
8942 (and perhaps other times). */
8943 if (target_has_execution)
8944 /* NB: The register write goes through to the target. */
8945 regcache->restore (registers ());
8946 }
8947
8948 private:
8949 /* How the current thread stopped before the inferior function call was
8950 executed. */
8951 struct thread_suspend_state m_thread_suspend;
8952
8953 /* The registers before the inferior function call was executed. */
8954 std::unique_ptr<readonly_detached_regcache> m_registers;
8955
8956 /* Format of SIGINFO_DATA or NULL if it is not present. */
8957 struct gdbarch *m_siginfo_gdbarch = nullptr;
8958
8959 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8960 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8961 content would be invalid. */
8962 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8963 };
8964
8965 infcall_suspend_state_up
8966 save_infcall_suspend_state ()
8967 {
8968 struct thread_info *tp = inferior_thread ();
8969 struct regcache *regcache = get_current_regcache ();
8970 struct gdbarch *gdbarch = regcache->arch ();
8971
8972 infcall_suspend_state_up inf_state
8973 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8974
8975 /* Having saved the current state, adjust the thread state, discarding
8976 any stop signal information. The stop signal is not useful when
8977 starting an inferior function call, and run_inferior_call will not use
8978 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8979 tp->suspend.stop_signal = GDB_SIGNAL_0;
8980
8981 return inf_state;
8982 }
8983
8984 /* Restore inferior session state to INF_STATE. */
8985
8986 void
8987 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8988 {
8989 struct thread_info *tp = inferior_thread ();
8990 struct regcache *regcache = get_current_regcache ();
8991 struct gdbarch *gdbarch = regcache->arch ();
8992
8993 inf_state->restore (gdbarch, tp, regcache);
8994 discard_infcall_suspend_state (inf_state);
8995 }
8996
8997 void
8998 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8999 {
9000 delete inf_state;
9001 }
9002
9003 readonly_detached_regcache *
9004 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9005 {
9006 return inf_state->registers ();
9007 }
9008
9009 /* infcall_control_state contains state regarding gdb's control of the
9010 inferior itself like stepping control. It also contains session state like
9011 the user's currently selected frame. */
9012
9013 struct infcall_control_state
9014 {
9015 struct thread_control_state thread_control;
9016 struct inferior_control_state inferior_control;
9017
9018 /* Other fields: */
9019 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9020 int stopped_by_random_signal = 0;
9021
9022 /* ID if the selected frame when the inferior function call was made. */
9023 struct frame_id selected_frame_id {};
9024 };
9025
9026 /* Save all of the information associated with the inferior<==>gdb
9027 connection. */
9028
9029 infcall_control_state_up
9030 save_infcall_control_state ()
9031 {
9032 infcall_control_state_up inf_status (new struct infcall_control_state);
9033 struct thread_info *tp = inferior_thread ();
9034 struct inferior *inf = current_inferior ();
9035
9036 inf_status->thread_control = tp->control;
9037 inf_status->inferior_control = inf->control;
9038
9039 tp->control.step_resume_breakpoint = NULL;
9040 tp->control.exception_resume_breakpoint = NULL;
9041
9042 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9043 chain. If caller's caller is walking the chain, they'll be happier if we
9044 hand them back the original chain when restore_infcall_control_state is
9045 called. */
9046 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9047
9048 /* Other fields: */
9049 inf_status->stop_stack_dummy = stop_stack_dummy;
9050 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9051
9052 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9053
9054 return inf_status;
9055 }
9056
9057 static void
9058 restore_selected_frame (const frame_id &fid)
9059 {
9060 frame_info *frame = frame_find_by_id (fid);
9061
9062 /* If inf_status->selected_frame_id is NULL, there was no previously
9063 selected frame. */
9064 if (frame == NULL)
9065 {
9066 warning (_("Unable to restore previously selected frame."));
9067 return;
9068 }
9069
9070 select_frame (frame);
9071 }
9072
9073 /* Restore inferior session state to INF_STATUS. */
9074
9075 void
9076 restore_infcall_control_state (struct infcall_control_state *inf_status)
9077 {
9078 struct thread_info *tp = inferior_thread ();
9079 struct inferior *inf = current_inferior ();
9080
9081 if (tp->control.step_resume_breakpoint)
9082 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9083
9084 if (tp->control.exception_resume_breakpoint)
9085 tp->control.exception_resume_breakpoint->disposition
9086 = disp_del_at_next_stop;
9087
9088 /* Handle the bpstat_copy of the chain. */
9089 bpstat_clear (&tp->control.stop_bpstat);
9090
9091 tp->control = inf_status->thread_control;
9092 inf->control = inf_status->inferior_control;
9093
9094 /* Other fields: */
9095 stop_stack_dummy = inf_status->stop_stack_dummy;
9096 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9097
9098 if (target_has_stack)
9099 {
9100 /* The point of the try/catch is that if the stack is clobbered,
9101 walking the stack might encounter a garbage pointer and
9102 error() trying to dereference it. */
9103 try
9104 {
9105 restore_selected_frame (inf_status->selected_frame_id);
9106 }
9107 catch (const gdb_exception_error &ex)
9108 {
9109 exception_fprintf (gdb_stderr, ex,
9110 "Unable to restore previously selected frame:\n");
9111 /* Error in restoring the selected frame. Select the
9112 innermost frame. */
9113 select_frame (get_current_frame ());
9114 }
9115 }
9116
9117 delete inf_status;
9118 }
9119
9120 void
9121 discard_infcall_control_state (struct infcall_control_state *inf_status)
9122 {
9123 if (inf_status->thread_control.step_resume_breakpoint)
9124 inf_status->thread_control.step_resume_breakpoint->disposition
9125 = disp_del_at_next_stop;
9126
9127 if (inf_status->thread_control.exception_resume_breakpoint)
9128 inf_status->thread_control.exception_resume_breakpoint->disposition
9129 = disp_del_at_next_stop;
9130
9131 /* See save_infcall_control_state for info on stop_bpstat. */
9132 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9133
9134 delete inf_status;
9135 }
9136 \f
9137 /* See infrun.h. */
9138
9139 void
9140 clear_exit_convenience_vars (void)
9141 {
9142 clear_internalvar (lookup_internalvar ("_exitsignal"));
9143 clear_internalvar (lookup_internalvar ("_exitcode"));
9144 }
9145 \f
9146
9147 /* User interface for reverse debugging:
9148 Set exec-direction / show exec-direction commands
9149 (returns error unless target implements to_set_exec_direction method). */
9150
9151 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9152 static const char exec_forward[] = "forward";
9153 static const char exec_reverse[] = "reverse";
9154 static const char *exec_direction = exec_forward;
9155 static const char *const exec_direction_names[] = {
9156 exec_forward,
9157 exec_reverse,
9158 NULL
9159 };
9160
9161 static void
9162 set_exec_direction_func (const char *args, int from_tty,
9163 struct cmd_list_element *cmd)
9164 {
9165 if (target_can_execute_reverse)
9166 {
9167 if (!strcmp (exec_direction, exec_forward))
9168 execution_direction = EXEC_FORWARD;
9169 else if (!strcmp (exec_direction, exec_reverse))
9170 execution_direction = EXEC_REVERSE;
9171 }
9172 else
9173 {
9174 exec_direction = exec_forward;
9175 error (_("Target does not support this operation."));
9176 }
9177 }
9178
9179 static void
9180 show_exec_direction_func (struct ui_file *out, int from_tty,
9181 struct cmd_list_element *cmd, const char *value)
9182 {
9183 switch (execution_direction) {
9184 case EXEC_FORWARD:
9185 fprintf_filtered (out, _("Forward.\n"));
9186 break;
9187 case EXEC_REVERSE:
9188 fprintf_filtered (out, _("Reverse.\n"));
9189 break;
9190 default:
9191 internal_error (__FILE__, __LINE__,
9192 _("bogus execution_direction value: %d"),
9193 (int) execution_direction);
9194 }
9195 }
9196
9197 static void
9198 show_schedule_multiple (struct ui_file *file, int from_tty,
9199 struct cmd_list_element *c, const char *value)
9200 {
9201 fprintf_filtered (file, _("Resuming the execution of threads "
9202 "of all processes is %s.\n"), value);
9203 }
9204
9205 /* Implementation of `siginfo' variable. */
9206
9207 static const struct internalvar_funcs siginfo_funcs =
9208 {
9209 siginfo_make_value,
9210 NULL,
9211 NULL
9212 };
9213
9214 /* Callback for infrun's target events source. This is marked when a
9215 thread has a pending status to process. */
9216
9217 static void
9218 infrun_async_inferior_event_handler (gdb_client_data data)
9219 {
9220 inferior_event_handler (INF_REG_EVENT);
9221 }
9222
9223 void _initialize_infrun ();
9224 void
9225 _initialize_infrun ()
9226 {
9227 struct cmd_list_element *c;
9228
9229 /* Register extra event sources in the event loop. */
9230 infrun_async_inferior_event_token
9231 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9232
9233 add_info ("signals", info_signals_command, _("\
9234 What debugger does when program gets various signals.\n\
9235 Specify a signal as argument to print info on that signal only."));
9236 add_info_alias ("handle", "signals", 0);
9237
9238 c = add_com ("handle", class_run, handle_command, _("\
9239 Specify how to handle signals.\n\
9240 Usage: handle SIGNAL [ACTIONS]\n\
9241 Args are signals and actions to apply to those signals.\n\
9242 If no actions are specified, the current settings for the specified signals\n\
9243 will be displayed instead.\n\
9244 \n\
9245 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9246 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9247 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9248 The special arg \"all\" is recognized to mean all signals except those\n\
9249 used by the debugger, typically SIGTRAP and SIGINT.\n\
9250 \n\
9251 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9252 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9253 Stop means reenter debugger if this signal happens (implies print).\n\
9254 Print means print a message if this signal happens.\n\
9255 Pass means let program see this signal; otherwise program doesn't know.\n\
9256 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9257 Pass and Stop may be combined.\n\
9258 \n\
9259 Multiple signals may be specified. Signal numbers and signal names\n\
9260 may be interspersed with actions, with the actions being performed for\n\
9261 all signals cumulatively specified."));
9262 set_cmd_completer (c, handle_completer);
9263
9264 if (!dbx_commands)
9265 stop_command = add_cmd ("stop", class_obscure,
9266 not_just_help_class_command, _("\
9267 There is no `stop' command, but you can set a hook on `stop'.\n\
9268 This allows you to set a list of commands to be run each time execution\n\
9269 of the program stops."), &cmdlist);
9270
9271 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9272 Set inferior debugging."), _("\
9273 Show inferior debugging."), _("\
9274 When non-zero, inferior specific debugging is enabled."),
9275 NULL,
9276 show_debug_infrun,
9277 &setdebuglist, &showdebuglist);
9278
9279 add_setshow_boolean_cmd ("displaced", class_maintenance,
9280 &debug_displaced, _("\
9281 Set displaced stepping debugging."), _("\
9282 Show displaced stepping debugging."), _("\
9283 When non-zero, displaced stepping specific debugging is enabled."),
9284 NULL,
9285 show_debug_displaced,
9286 &setdebuglist, &showdebuglist);
9287
9288 add_setshow_boolean_cmd ("non-stop", no_class,
9289 &non_stop_1, _("\
9290 Set whether gdb controls the inferior in non-stop mode."), _("\
9291 Show whether gdb controls the inferior in non-stop mode."), _("\
9292 When debugging a multi-threaded program and this setting is\n\
9293 off (the default, also called all-stop mode), when one thread stops\n\
9294 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9295 all other threads in the program while you interact with the thread of\n\
9296 interest. When you continue or step a thread, you can allow the other\n\
9297 threads to run, or have them remain stopped, but while you inspect any\n\
9298 thread's state, all threads stop.\n\
9299 \n\
9300 In non-stop mode, when one thread stops, other threads can continue\n\
9301 to run freely. You'll be able to step each thread independently,\n\
9302 leave it stopped or free to run as needed."),
9303 set_non_stop,
9304 show_non_stop,
9305 &setlist,
9306 &showlist);
9307
9308 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9309 {
9310 signal_stop[i] = 1;
9311 signal_print[i] = 1;
9312 signal_program[i] = 1;
9313 signal_catch[i] = 0;
9314 }
9315
9316 /* Signals caused by debugger's own actions should not be given to
9317 the program afterwards.
9318
9319 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9320 explicitly specifies that it should be delivered to the target
9321 program. Typically, that would occur when a user is debugging a
9322 target monitor on a simulator: the target monitor sets a
9323 breakpoint; the simulator encounters this breakpoint and halts
9324 the simulation handing control to GDB; GDB, noting that the stop
9325 address doesn't map to any known breakpoint, returns control back
9326 to the simulator; the simulator then delivers the hardware
9327 equivalent of a GDB_SIGNAL_TRAP to the program being
9328 debugged. */
9329 signal_program[GDB_SIGNAL_TRAP] = 0;
9330 signal_program[GDB_SIGNAL_INT] = 0;
9331
9332 /* Signals that are not errors should not normally enter the debugger. */
9333 signal_stop[GDB_SIGNAL_ALRM] = 0;
9334 signal_print[GDB_SIGNAL_ALRM] = 0;
9335 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9336 signal_print[GDB_SIGNAL_VTALRM] = 0;
9337 signal_stop[GDB_SIGNAL_PROF] = 0;
9338 signal_print[GDB_SIGNAL_PROF] = 0;
9339 signal_stop[GDB_SIGNAL_CHLD] = 0;
9340 signal_print[GDB_SIGNAL_CHLD] = 0;
9341 signal_stop[GDB_SIGNAL_IO] = 0;
9342 signal_print[GDB_SIGNAL_IO] = 0;
9343 signal_stop[GDB_SIGNAL_POLL] = 0;
9344 signal_print[GDB_SIGNAL_POLL] = 0;
9345 signal_stop[GDB_SIGNAL_URG] = 0;
9346 signal_print[GDB_SIGNAL_URG] = 0;
9347 signal_stop[GDB_SIGNAL_WINCH] = 0;
9348 signal_print[GDB_SIGNAL_WINCH] = 0;
9349 signal_stop[GDB_SIGNAL_PRIO] = 0;
9350 signal_print[GDB_SIGNAL_PRIO] = 0;
9351
9352 /* These signals are used internally by user-level thread
9353 implementations. (See signal(5) on Solaris.) Like the above
9354 signals, a healthy program receives and handles them as part of
9355 its normal operation. */
9356 signal_stop[GDB_SIGNAL_LWP] = 0;
9357 signal_print[GDB_SIGNAL_LWP] = 0;
9358 signal_stop[GDB_SIGNAL_WAITING] = 0;
9359 signal_print[GDB_SIGNAL_WAITING] = 0;
9360 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9361 signal_print[GDB_SIGNAL_CANCEL] = 0;
9362 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9363 signal_print[GDB_SIGNAL_LIBRT] = 0;
9364
9365 /* Update cached state. */
9366 signal_cache_update (-1);
9367
9368 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9369 &stop_on_solib_events, _("\
9370 Set stopping for shared library events."), _("\
9371 Show stopping for shared library events."), _("\
9372 If nonzero, gdb will give control to the user when the dynamic linker\n\
9373 notifies gdb of shared library events. The most common event of interest\n\
9374 to the user would be loading/unloading of a new library."),
9375 set_stop_on_solib_events,
9376 show_stop_on_solib_events,
9377 &setlist, &showlist);
9378
9379 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9380 follow_fork_mode_kind_names,
9381 &follow_fork_mode_string, _("\
9382 Set debugger response to a program call of fork or vfork."), _("\
9383 Show debugger response to a program call of fork or vfork."), _("\
9384 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9385 parent - the original process is debugged after a fork\n\
9386 child - the new process is debugged after a fork\n\
9387 The unfollowed process will continue to run.\n\
9388 By default, the debugger will follow the parent process."),
9389 NULL,
9390 show_follow_fork_mode_string,
9391 &setlist, &showlist);
9392
9393 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9394 follow_exec_mode_names,
9395 &follow_exec_mode_string, _("\
9396 Set debugger response to a program call of exec."), _("\
9397 Show debugger response to a program call of exec."), _("\
9398 An exec call replaces the program image of a process.\n\
9399 \n\
9400 follow-exec-mode can be:\n\
9401 \n\
9402 new - the debugger creates a new inferior and rebinds the process\n\
9403 to this new inferior. The program the process was running before\n\
9404 the exec call can be restarted afterwards by restarting the original\n\
9405 inferior.\n\
9406 \n\
9407 same - the debugger keeps the process bound to the same inferior.\n\
9408 The new executable image replaces the previous executable loaded in\n\
9409 the inferior. Restarting the inferior after the exec call restarts\n\
9410 the executable the process was running after the exec call.\n\
9411 \n\
9412 By default, the debugger will use the same inferior."),
9413 NULL,
9414 show_follow_exec_mode_string,
9415 &setlist, &showlist);
9416
9417 add_setshow_enum_cmd ("scheduler-locking", class_run,
9418 scheduler_enums, &scheduler_mode, _("\
9419 Set mode for locking scheduler during execution."), _("\
9420 Show mode for locking scheduler during execution."), _("\
9421 off == no locking (threads may preempt at any time)\n\
9422 on == full locking (no thread except the current thread may run)\n\
9423 This applies to both normal execution and replay mode.\n\
9424 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9425 In this mode, other threads may run during other commands.\n\
9426 This applies to both normal execution and replay mode.\n\
9427 replay == scheduler locked in replay mode and unlocked during normal execution."),
9428 set_schedlock_func, /* traps on target vector */
9429 show_scheduler_mode,
9430 &setlist, &showlist);
9431
9432 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9433 Set mode for resuming threads of all processes."), _("\
9434 Show mode for resuming threads of all processes."), _("\
9435 When on, execution commands (such as 'continue' or 'next') resume all\n\
9436 threads of all processes. When off (which is the default), execution\n\
9437 commands only resume the threads of the current process. The set of\n\
9438 threads that are resumed is further refined by the scheduler-locking\n\
9439 mode (see help set scheduler-locking)."),
9440 NULL,
9441 show_schedule_multiple,
9442 &setlist, &showlist);
9443
9444 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9445 Set mode of the step operation."), _("\
9446 Show mode of the step operation."), _("\
9447 When set, doing a step over a function without debug line information\n\
9448 will stop at the first instruction of that function. Otherwise, the\n\
9449 function is skipped and the step command stops at a different source line."),
9450 NULL,
9451 show_step_stop_if_no_debug,
9452 &setlist, &showlist);
9453
9454 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9455 &can_use_displaced_stepping, _("\
9456 Set debugger's willingness to use displaced stepping."), _("\
9457 Show debugger's willingness to use displaced stepping."), _("\
9458 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9459 supported by the target architecture. If off, gdb will not use displaced\n\
9460 stepping to step over breakpoints, even if such is supported by the target\n\
9461 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9462 if the target architecture supports it and non-stop mode is active, but will not\n\
9463 use it in all-stop mode (see help set non-stop)."),
9464 NULL,
9465 show_can_use_displaced_stepping,
9466 &setlist, &showlist);
9467
9468 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9469 &exec_direction, _("Set direction of execution.\n\
9470 Options are 'forward' or 'reverse'."),
9471 _("Show direction of execution (forward/reverse)."),
9472 _("Tells gdb whether to execute forward or backward."),
9473 set_exec_direction_func, show_exec_direction_func,
9474 &setlist, &showlist);
9475
9476 /* Set/show detach-on-fork: user-settable mode. */
9477
9478 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9479 Set whether gdb will detach the child of a fork."), _("\
9480 Show whether gdb will detach the child of a fork."), _("\
9481 Tells gdb whether to detach the child of a fork."),
9482 NULL, NULL, &setlist, &showlist);
9483
9484 /* Set/show disable address space randomization mode. */
9485
9486 add_setshow_boolean_cmd ("disable-randomization", class_support,
9487 &disable_randomization, _("\
9488 Set disabling of debuggee's virtual address space randomization."), _("\
9489 Show disabling of debuggee's virtual address space randomization."), _("\
9490 When this mode is on (which is the default), randomization of the virtual\n\
9491 address space is disabled. Standalone programs run with the randomization\n\
9492 enabled by default on some platforms."),
9493 &set_disable_randomization,
9494 &show_disable_randomization,
9495 &setlist, &showlist);
9496
9497 /* ptid initializations */
9498 inferior_ptid = null_ptid;
9499 target_last_wait_ptid = minus_one_ptid;
9500
9501 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9502 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9503 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9504 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9505
9506 /* Explicitly create without lookup, since that tries to create a
9507 value with a void typed value, and when we get here, gdbarch
9508 isn't initialized yet. At this point, we're quite sure there
9509 isn't another convenience variable of the same name. */
9510 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9511
9512 add_setshow_boolean_cmd ("observer", no_class,
9513 &observer_mode_1, _("\
9514 Set whether gdb controls the inferior in observer mode."), _("\
9515 Show whether gdb controls the inferior in observer mode."), _("\
9516 In observer mode, GDB can get data from the inferior, but not\n\
9517 affect its execution. Registers and memory may not be changed,\n\
9518 breakpoints may not be set, and the program cannot be interrupted\n\
9519 or signalled."),
9520 set_observer_mode,
9521 show_observer_mode,
9522 &setlist,
9523 &showlist);
9524 }
This page took 0.227077 seconds and 4 git commands to generate.