c155899ea63a424b015bf5ebb5b3151f4c27b78a
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "gdbsupport/common-defs.h"
24 #include "gdbsupport/common-utils.h"
25 #include "infrun.h"
26 #include <ctype.h>
27 #include "symtab.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "breakpoint.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "target-connection.h"
35 #include "gdbthread.h"
36 #include "annotate.h"
37 #include "symfile.h"
38 #include "top.h"
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "utils.h"
42 #include "value.h"
43 #include "observable.h"
44 #include "language.h"
45 #include "solib.h"
46 #include "main.h"
47 #include "block.h"
48 #include "mi/mi-common.h"
49 #include "event-top.h"
50 #include "record.h"
51 #include "record-full.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "skip.h"
56 #include "probe.h"
57 #include "objfiles.h"
58 #include "completer.h"
59 #include "target-descriptions.h"
60 #include "target-dcache.h"
61 #include "terminal.h"
62 #include "solist.h"
63 #include "gdbsupport/event-loop.h"
64 #include "thread-fsm.h"
65 #include "gdbsupport/enum-flags.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "arch-utils.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/forward-scope-exit.h"
71 #include "gdbsupport/gdb_select.h"
72 #include <unordered_map>
73 #include "async-event.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 #define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108 static void ATTRIBUTE_PRINTF(3, 4)
109 infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111 {
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 infrun_async (int enable)
127 {
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
132 infrun_log_debug ("enable=%d", enable);
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139 }
140
141 /* See infrun.h. */
142
143 void
144 mark_infrun_async_event_handler (void)
145 {
146 mark_async_event_handler (infrun_async_inferior_event_token);
147 }
148
149 /* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
152 bool step_stop_if_no_debug = false;
153 static void
154 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158 }
159
160 /* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
163
164 static ptid_t previous_inferior_ptid;
165
166 /* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
171 static bool detach_fork = true;
172
173 bool debug_displaced = false;
174 static void
175 show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179 }
180
181 unsigned int debug_infrun = 0;
182 static void
183 show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187 }
188
189
190 /* Support for disabling address space randomization. */
191
192 bool disable_randomization = true;
193
194 static void
195 show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207 }
208
209 static void
210 set_disable_randomization (const char *args, int from_tty,
211 struct cmd_list_element *c)
212 {
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217 }
218
219 /* User interface for non-stop mode. */
220
221 bool non_stop = false;
222 static bool non_stop_1 = false;
223
224 static void
225 set_non_stop (const char *args, int from_tty,
226 struct cmd_list_element *c)
227 {
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235 }
236
237 static void
238 show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244 }
245
246 /* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
250 bool observer_mode = false;
251 static bool observer_mode_1 = false;
252
253 static void
254 set_observer_mode (const char *args, int from_tty,
255 struct cmd_list_element *c)
256 {
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
272 may_insert_fast_tracepoints = true;
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
280 pagination_enabled = 0;
281 non_stop = non_stop_1 = true;
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287 }
288
289 static void
290 show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292 {
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294 }
295
296 /* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302 void
303 update_observer_mode (void)
304 {
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char signal_stop[GDB_SIGNAL_LAST];
322 static unsigned char signal_print[GDB_SIGNAL_LAST];
323 static unsigned char signal_program[GDB_SIGNAL_LAST];
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. */
328 static unsigned char signal_catch[GDB_SIGNAL_LAST];
329
330 /* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
333 static unsigned char signal_pass[GDB_SIGNAL_LAST];
334
335 #define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343 #define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
351 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354 void
355 update_signals_program_target (void)
356 {
357 target_program_signals (signal_program);
358 }
359
360 /* Value to pass to target_resume() to cause all threads to resume. */
361
362 #define RESUME_ALL minus_one_ptid
363
364 /* Command list pointer for the "stop" placeholder. */
365
366 static struct cmd_list_element *stop_command;
367
368 /* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
370 int stop_on_solib_events;
371
372 /* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375 static void
376 set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397 static process_stratum_target *target_last_proc_target;
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 void init_thread_stepping_state (struct thread_info *tss);
402
403 static const char follow_fork_mode_child[] = "child";
404 static const char follow_fork_mode_parent[] = "parent";
405
406 static const char *const follow_fork_mode_kind_names[] = {
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
410 };
411
412 static const char *follow_fork_mode_string = follow_fork_mode_parent;
413 static void
414 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416 {
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
420 value);
421 }
422 \f
423
424 /* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
430 static bool
431 follow_fork_inferior (bool follow_child, bool detach_fork)
432 {
433 int has_vforked;
434 ptid_t parent_ptid, child_ptid;
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
443 && current_ui->prompt_state == PROMPT_BLOCKED
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452 Can not resume the parent process over vfork in the foreground while\n\
453 holding the child stopped. Try \"set detach-on-fork\" or \
454 \"set schedule-multiple\".\n"));
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_inf (current_inferior ());
474 }
475
476 if (print_inferior_events)
477 {
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
480
481 target_terminal::ours_for_output ();
482 fprintf_filtered (gdb_stdlog,
483 _("[Detaching after %s from child %s]\n"),
484 has_vforked ? "vfork" : "fork",
485 target_pid_to_str (process_ptid).c_str ());
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (child_ptid.pid ());
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
502
503 set_current_inferior (child_inf);
504 switch_to_no_thread ();
505 child_inf->symfile_flags = SYMFILE_NO_READ;
506 push_target (parent_inf->process_target ());
507 thread_info *child_thr
508 = add_thread_silent (child_inf->process_target (), child_ptid);
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
517 exec_on_vfork ();
518
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
526
527 /* Now that the inferiors and program spaces are all
528 wired up, we can switch to the child thread (which
529 switches inferior and program space too). */
530 switch_to_thread (child_thr);
531 }
532 else
533 {
534 child_inf->aspace = new_address_space ();
535 child_inf->pspace = new program_space (child_inf->aspace);
536 child_inf->removable = 1;
537 set_current_program_space (child_inf->pspace);
538 clone_program_space (child_inf->pspace, parent_inf->pspace);
539
540 /* solib_create_inferior_hook relies on the current
541 thread. */
542 switch_to_thread (child_thr);
543
544 /* Let the shared library layer (e.g., solib-svr4) learn
545 about this new process, relocate the cloned exec, pull
546 in shared libraries, and install the solib event
547 breakpoint. If a "cloned-VM" event was propagated
548 better throughout the core, this wouldn't be
549 required. */
550 solib_create_inferior_hook (0);
551 }
552 }
553
554 if (has_vforked)
555 {
556 struct inferior *parent_inf;
557
558 parent_inf = current_inferior ();
559
560 /* If we detached from the child, then we have to be careful
561 to not insert breakpoints in the parent until the child
562 is done with the shared memory region. However, if we're
563 staying attached to the child, then we can and should
564 insert breakpoints, so that we can debug it. A
565 subsequent child exec or exit is enough to know when does
566 the child stops using the parent's address space. */
567 parent_inf->waiting_for_vfork_done = detach_fork;
568 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
569 }
570 }
571 else
572 {
573 /* Follow the child. */
574 struct inferior *parent_inf, *child_inf;
575 struct program_space *parent_pspace;
576
577 if (print_inferior_events)
578 {
579 std::string parent_pid = target_pid_to_str (parent_ptid);
580 std::string child_pid = target_pid_to_str (child_ptid);
581
582 target_terminal::ours_for_output ();
583 fprintf_filtered (gdb_stdlog,
584 _("[Attaching after %s %s to child %s]\n"),
585 parent_pid.c_str (),
586 has_vforked ? "vfork" : "fork",
587 child_pid.c_str ());
588 }
589
590 /* Add the new inferior first, so that the target_detach below
591 doesn't unpush the target. */
592
593 child_inf = add_inferior (child_ptid.pid ());
594
595 parent_inf = current_inferior ();
596 child_inf->attach_flag = parent_inf->attach_flag;
597 copy_terminal_info (child_inf, parent_inf);
598 child_inf->gdbarch = parent_inf->gdbarch;
599 copy_inferior_target_desc_info (child_inf, parent_inf);
600
601 parent_pspace = parent_inf->pspace;
602
603 process_stratum_target *target = parent_inf->process_target ();
604
605 {
606 /* Hold a strong reference to the target while (maybe)
607 detaching the parent. Otherwise detaching could close the
608 target. */
609 auto target_ref = target_ops_ref::new_reference (target);
610
611 /* If we're vforking, we want to hold on to the parent until
612 the child exits or execs. At child exec or exit time we
613 can remove the old breakpoints from the parent and detach
614 or resume debugging it. Otherwise, detach the parent now;
615 we'll want to reuse it's program/address spaces, but we
616 can't set them to the child before removing breakpoints
617 from the parent, otherwise, the breakpoints module could
618 decide to remove breakpoints from the wrong process (since
619 they'd be assigned to the same address space). */
620
621 if (has_vforked)
622 {
623 gdb_assert (child_inf->vfork_parent == NULL);
624 gdb_assert (parent_inf->vfork_child == NULL);
625 child_inf->vfork_parent = parent_inf;
626 child_inf->pending_detach = 0;
627 parent_inf->vfork_child = child_inf;
628 parent_inf->pending_detach = detach_fork;
629 parent_inf->waiting_for_vfork_done = 0;
630 }
631 else if (detach_fork)
632 {
633 if (print_inferior_events)
634 {
635 /* Ensure that we have a process ptid. */
636 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
637
638 target_terminal::ours_for_output ();
639 fprintf_filtered (gdb_stdlog,
640 _("[Detaching after fork from "
641 "parent %s]\n"),
642 target_pid_to_str (process_ptid).c_str ());
643 }
644
645 target_detach (parent_inf, 0);
646 parent_inf = NULL;
647 }
648
649 /* Note that the detach above makes PARENT_INF dangling. */
650
651 /* Add the child thread to the appropriate lists, and switch
652 to this new thread, before cloning the program space, and
653 informing the solib layer about this new process. */
654
655 set_current_inferior (child_inf);
656 push_target (target);
657 }
658
659 thread_info *child_thr = add_thread_silent (target, child_ptid);
660
661 /* If this is a vfork child, then the address-space is shared
662 with the parent. If we detached from the parent, then we can
663 reuse the parent's program/address spaces. */
664 if (has_vforked || detach_fork)
665 {
666 child_inf->pspace = parent_pspace;
667 child_inf->aspace = child_inf->pspace->aspace;
668
669 exec_on_vfork ();
670 }
671 else
672 {
673 child_inf->aspace = new_address_space ();
674 child_inf->pspace = new program_space (child_inf->aspace);
675 child_inf->removable = 1;
676 child_inf->symfile_flags = SYMFILE_NO_READ;
677 set_current_program_space (child_inf->pspace);
678 clone_program_space (child_inf->pspace, parent_pspace);
679
680 /* Let the shared library layer (e.g., solib-svr4) learn
681 about this new process, relocate the cloned exec, pull in
682 shared libraries, and install the solib event breakpoint.
683 If a "cloned-VM" event was propagated better throughout
684 the core, this wouldn't be required. */
685 solib_create_inferior_hook (0);
686 }
687
688 switch_to_thread (child_thr);
689 }
690
691 return target_follow_fork (follow_child, detach_fork);
692 }
693
694 /* Tell the target to follow the fork we're stopped at. Returns true
695 if the inferior should be resumed; false, if the target for some
696 reason decided it's best not to resume. */
697
698 static bool
699 follow_fork ()
700 {
701 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
702 bool should_resume = true;
703 struct thread_info *tp;
704
705 /* Copy user stepping state to the new inferior thread. FIXME: the
706 followed fork child thread should have a copy of most of the
707 parent thread structure's run control related fields, not just these.
708 Initialized to avoid "may be used uninitialized" warnings from gcc. */
709 struct breakpoint *step_resume_breakpoint = NULL;
710 struct breakpoint *exception_resume_breakpoint = NULL;
711 CORE_ADDR step_range_start = 0;
712 CORE_ADDR step_range_end = 0;
713 int current_line = 0;
714 symtab *current_symtab = NULL;
715 struct frame_id step_frame_id = { 0 };
716 struct thread_fsm *thread_fsm = NULL;
717
718 if (!non_stop)
719 {
720 process_stratum_target *wait_target;
721 ptid_t wait_ptid;
722 struct target_waitstatus wait_status;
723
724 /* Get the last target status returned by target_wait(). */
725 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
726
727 /* If not stopped at a fork event, then there's nothing else to
728 do. */
729 if (wait_status.kind != TARGET_WAITKIND_FORKED
730 && wait_status.kind != TARGET_WAITKIND_VFORKED)
731 return 1;
732
733 /* Check if we switched over from WAIT_PTID, since the event was
734 reported. */
735 if (wait_ptid != minus_one_ptid
736 && (current_inferior ()->process_target () != wait_target
737 || inferior_ptid != wait_ptid))
738 {
739 /* We did. Switch back to WAIT_PTID thread, to tell the
740 target to follow it (in either direction). We'll
741 afterwards refuse to resume, and inform the user what
742 happened. */
743 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
744 switch_to_thread (wait_thread);
745 should_resume = false;
746 }
747 }
748
749 tp = inferior_thread ();
750
751 /* If there were any forks/vforks that were caught and are now to be
752 followed, then do so now. */
753 switch (tp->pending_follow.kind)
754 {
755 case TARGET_WAITKIND_FORKED:
756 case TARGET_WAITKIND_VFORKED:
757 {
758 ptid_t parent, child;
759
760 /* If the user did a next/step, etc, over a fork call,
761 preserve the stepping state in the fork child. */
762 if (follow_child && should_resume)
763 {
764 step_resume_breakpoint = clone_momentary_breakpoint
765 (tp->control.step_resume_breakpoint);
766 step_range_start = tp->control.step_range_start;
767 step_range_end = tp->control.step_range_end;
768 current_line = tp->current_line;
769 current_symtab = tp->current_symtab;
770 step_frame_id = tp->control.step_frame_id;
771 exception_resume_breakpoint
772 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
773 thread_fsm = tp->thread_fsm;
774
775 /* For now, delete the parent's sr breakpoint, otherwise,
776 parent/child sr breakpoints are considered duplicates,
777 and the child version will not be installed. Remove
778 this when the breakpoints module becomes aware of
779 inferiors and address spaces. */
780 delete_step_resume_breakpoint (tp);
781 tp->control.step_range_start = 0;
782 tp->control.step_range_end = 0;
783 tp->control.step_frame_id = null_frame_id;
784 delete_exception_resume_breakpoint (tp);
785 tp->thread_fsm = NULL;
786 }
787
788 parent = inferior_ptid;
789 child = tp->pending_follow.value.related_pid;
790
791 process_stratum_target *parent_targ = tp->inf->process_target ();
792 /* Set up inferior(s) as specified by the caller, and tell the
793 target to do whatever is necessary to follow either parent
794 or child. */
795 if (follow_fork_inferior (follow_child, detach_fork))
796 {
797 /* Target refused to follow, or there's some other reason
798 we shouldn't resume. */
799 should_resume = 0;
800 }
801 else
802 {
803 /* This pending follow fork event is now handled, one way
804 or another. The previous selected thread may be gone
805 from the lists by now, but if it is still around, need
806 to clear the pending follow request. */
807 tp = find_thread_ptid (parent_targ, parent);
808 if (tp)
809 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
810
811 /* This makes sure we don't try to apply the "Switched
812 over from WAIT_PID" logic above. */
813 nullify_last_target_wait_ptid ();
814
815 /* If we followed the child, switch to it... */
816 if (follow_child)
817 {
818 thread_info *child_thr = find_thread_ptid (parent_targ, child);
819 switch_to_thread (child_thr);
820
821 /* ... and preserve the stepping state, in case the
822 user was stepping over the fork call. */
823 if (should_resume)
824 {
825 tp = inferior_thread ();
826 tp->control.step_resume_breakpoint
827 = step_resume_breakpoint;
828 tp->control.step_range_start = step_range_start;
829 tp->control.step_range_end = step_range_end;
830 tp->current_line = current_line;
831 tp->current_symtab = current_symtab;
832 tp->control.step_frame_id = step_frame_id;
833 tp->control.exception_resume_breakpoint
834 = exception_resume_breakpoint;
835 tp->thread_fsm = thread_fsm;
836 }
837 else
838 {
839 /* If we get here, it was because we're trying to
840 resume from a fork catchpoint, but, the user
841 has switched threads away from the thread that
842 forked. In that case, the resume command
843 issued is most likely not applicable to the
844 child, so just warn, and refuse to resume. */
845 warning (_("Not resuming: switched threads "
846 "before following fork child."));
847 }
848
849 /* Reset breakpoints in the child as appropriate. */
850 follow_inferior_reset_breakpoints ();
851 }
852 }
853 }
854 break;
855 case TARGET_WAITKIND_SPURIOUS:
856 /* Nothing to follow. */
857 break;
858 default:
859 internal_error (__FILE__, __LINE__,
860 "Unexpected pending_follow.kind %d\n",
861 tp->pending_follow.kind);
862 break;
863 }
864
865 return should_resume;
866 }
867
868 static void
869 follow_inferior_reset_breakpoints (void)
870 {
871 struct thread_info *tp = inferior_thread ();
872
873 /* Was there a step_resume breakpoint? (There was if the user
874 did a "next" at the fork() call.) If so, explicitly reset its
875 thread number. Cloned step_resume breakpoints are disabled on
876 creation, so enable it here now that it is associated with the
877 correct thread.
878
879 step_resumes are a form of bp that are made to be per-thread.
880 Since we created the step_resume bp when the parent process
881 was being debugged, and now are switching to the child process,
882 from the breakpoint package's viewpoint, that's a switch of
883 "threads". We must update the bp's notion of which thread
884 it is for, or it'll be ignored when it triggers. */
885
886 if (tp->control.step_resume_breakpoint)
887 {
888 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
889 tp->control.step_resume_breakpoint->loc->enabled = 1;
890 }
891
892 /* Treat exception_resume breakpoints like step_resume breakpoints. */
893 if (tp->control.exception_resume_breakpoint)
894 {
895 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
896 tp->control.exception_resume_breakpoint->loc->enabled = 1;
897 }
898
899 /* Reinsert all breakpoints in the child. The user may have set
900 breakpoints after catching the fork, in which case those
901 were never set in the child, but only in the parent. This makes
902 sure the inserted breakpoints match the breakpoint list. */
903
904 breakpoint_re_set ();
905 insert_breakpoints ();
906 }
907
908 /* The child has exited or execed: resume threads of the parent the
909 user wanted to be executing. */
910
911 static int
912 proceed_after_vfork_done (struct thread_info *thread,
913 void *arg)
914 {
915 int pid = * (int *) arg;
916
917 if (thread->ptid.pid () == pid
918 && thread->state == THREAD_RUNNING
919 && !thread->executing
920 && !thread->stop_requested
921 && thread->suspend.stop_signal == GDB_SIGNAL_0)
922 {
923 infrun_log_debug ("resuming vfork parent thread %s",
924 target_pid_to_str (thread->ptid).c_str ());
925
926 switch_to_thread (thread);
927 clear_proceed_status (0);
928 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
929 }
930
931 return 0;
932 }
933
934 /* Called whenever we notice an exec or exit event, to handle
935 detaching or resuming a vfork parent. */
936
937 static void
938 handle_vfork_child_exec_or_exit (int exec)
939 {
940 struct inferior *inf = current_inferior ();
941
942 if (inf->vfork_parent)
943 {
944 int resume_parent = -1;
945
946 /* This exec or exit marks the end of the shared memory region
947 between the parent and the child. Break the bonds. */
948 inferior *vfork_parent = inf->vfork_parent;
949 inf->vfork_parent->vfork_child = NULL;
950 inf->vfork_parent = NULL;
951
952 /* If the user wanted to detach from the parent, now is the
953 time. */
954 if (vfork_parent->pending_detach)
955 {
956 struct program_space *pspace;
957 struct address_space *aspace;
958
959 /* follow-fork child, detach-on-fork on. */
960
961 vfork_parent->pending_detach = 0;
962
963 scoped_restore_current_pspace_and_thread restore_thread;
964
965 /* We're letting loose of the parent. */
966 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
967 switch_to_thread (tp);
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
986 if (print_inferior_events)
987 {
988 std::string pidstr
989 = target_pid_to_str (ptid_t (vfork_parent->pid));
990
991 target_terminal::ours_for_output ();
992
993 if (exec)
994 {
995 fprintf_filtered (gdb_stdlog,
996 _("[Detaching vfork parent %s "
997 "after child exec]\n"), pidstr.c_str ());
998 }
999 else
1000 {
1001 fprintf_filtered (gdb_stdlog,
1002 _("[Detaching vfork parent %s "
1003 "after child exit]\n"), pidstr.c_str ());
1004 }
1005 }
1006
1007 target_detach (vfork_parent, 0);
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
1017 inf->pspace = new program_space (maybe_new_address_space ());
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
1022 resume_parent = vfork_parent->pid;
1023 }
1024 else
1025 {
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
1035 /* Switch to no-thread while running clone_program_space, so
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
1038 scoped_restore_current_thread restore_thread;
1039 switch_to_no_thread ();
1040
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
1044 inf->removable = 1;
1045 inf->symfile_flags = SYMFILE_NO_READ;
1046 clone_program_space (inf->pspace, vfork_parent->pspace);
1047
1048 resume_parent = vfork_parent->pid;
1049 }
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 scoped_restore_current_thread restore_thread;
1058
1059 infrun_log_debug ("resuming vfork parent process %d",
1060 resume_parent);
1061
1062 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1063 }
1064 }
1065 }
1066
1067 /* Enum strings for "set|show follow-exec-mode". */
1068
1069 static const char follow_exec_mode_new[] = "new";
1070 static const char follow_exec_mode_same[] = "same";
1071 static const char *const follow_exec_mode_names[] =
1072 {
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076 };
1077
1078 static const char *follow_exec_mode_string = follow_exec_mode_same;
1079 static void
1080 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082 {
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084 }
1085
1086 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1087
1088 static void
1089 follow_exec (ptid_t ptid, const char *exec_file_target)
1090 {
1091 struct inferior *inf = current_inferior ();
1092 int pid = ptid.pid ();
1093 ptid_t process_ptid;
1094
1095 /* Switch terminal for any messages produced e.g. by
1096 breakpoint_re_set. */
1097 target_terminal::ours_for_output ();
1098
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten with a TRAP instruction). Since
1118 we now have a new a.out, those shadow contents aren't valid. */
1119
1120 mark_breakpoints_out ();
1121
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
1141 for (thread_info *th : all_threads_safe ())
1142 if (th->ptid.pid () == pid && th->ptid != ptid)
1143 delete_thread (th);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 thread_info *th = inferior_thread ();
1150 th->control.step_resume_breakpoint = NULL;
1151 th->control.exception_resume_breakpoint = NULL;
1152 th->control.single_step_breakpoints = NULL;
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
1155
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
1159 th->stop_requested = 0;
1160
1161 update_breakpoints_after_exec ();
1162
1163 /* What is this a.out's name? */
1164 process_ptid = ptid_t (pid);
1165 printf_unfiltered (_("%s is executing new program: %s\n"),
1166 target_pid_to_str (process_ptid).c_str (),
1167 exec_file_target);
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1170 inferior has essentially been killed & reborn. */
1171
1172 breakpoint_init_inferior (inf_execd);
1173
1174 gdb::unique_xmalloc_ptr<char> exec_file_host
1175 = exec_file_find (exec_file_target, NULL);
1176
1177 /* If we were unable to map the executable target pathname onto a host
1178 pathname, tell the user that. Otherwise GDB's subsequent behavior
1179 is confusing. Maybe it would even be better to stop at this point
1180 so that the user can specify a file manually before continuing. */
1181 if (exec_file_host == NULL)
1182 warning (_("Could not load symbols for executable %s.\n"
1183 "Do you need \"set sysroot\"?"),
1184 exec_file_target);
1185
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
1199 /* Do exit processing for the original inferior before setting the new
1200 inferior's pid. Having two inferiors with the same pid would confuse
1201 find_inferior_p(t)id. Transfer the terminal state and info from the
1202 old to the new inferior. */
1203 inf = add_inferior_with_spaces ();
1204 swap_terminal_info (inf, current_inferior ());
1205 exit_inferior_silent (current_inferior ());
1206
1207 inf->pid = pid;
1208 target_follow_exec (inf, exec_file_target);
1209
1210 inferior *org_inferior = current_inferior ();
1211 switch_to_inferior_no_thread (inf);
1212 push_target (org_inferior->process_target ());
1213 thread_info *thr = add_thread (inf->process_target (), ptid);
1214 switch_to_thread (thr);
1215 }
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
1234 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1235
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
1244 solib_create_inferior_hook (0);
1245
1246 jit_inferior_created_hook ();
1247
1248 breakpoint_re_set ();
1249
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1252 to symbol_file_command...). */
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1258 matically get reset there in the new process.). */
1259 }
1260
1261 /* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
1268 struct thread_info *global_thread_step_over_chain_head;
1269
1270 /* Bit flags indicating what the thread needs to step over. */
1271
1272 enum step_over_what_flag
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
1282 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1283
1284 /* Info about an instruction that is being stepped over. */
1285
1286 struct step_over_info
1287 {
1288 /* If we're stepping past a breakpoint, this is the address space
1289 and address of the instruction the breakpoint is set at. We'll
1290 skip inserting all breakpoints here. Valid iff ASPACE is
1291 non-NULL. */
1292 const address_space *aspace;
1293 CORE_ADDR address;
1294
1295 /* The instruction being stepped over triggers a nonsteppable
1296 watchpoint. If true, we'll skip inserting watchpoints. */
1297 int nonsteppable_watchpoint_p;
1298
1299 /* The thread's global number. */
1300 int thread;
1301 };
1302
1303 /* The step-over info of the location that is being stepped over.
1304
1305 Note that with async/breakpoint always-inserted mode, a user might
1306 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1307 being stepped over. As setting a new breakpoint inserts all
1308 breakpoints, we need to make sure the breakpoint being stepped over
1309 isn't inserted then. We do that by only clearing the step-over
1310 info when the step-over is actually finished (or aborted).
1311
1312 Presently GDB can only step over one breakpoint at any given time.
1313 Given threads that can't run code in the same address space as the
1314 breakpoint's can't really miss the breakpoint, GDB could be taught
1315 to step-over at most one breakpoint per address space (so this info
1316 could move to the address space object if/when GDB is extended).
1317 The set of breakpoints being stepped over will normally be much
1318 smaller than the set of all breakpoints, so a flag in the
1319 breakpoint location structure would be wasteful. A separate list
1320 also saves complexity and run-time, as otherwise we'd have to go
1321 through all breakpoint locations clearing their flag whenever we
1322 start a new sequence. Similar considerations weigh against storing
1323 this info in the thread object. Plus, not all step overs actually
1324 have breakpoint locations -- e.g., stepping past a single-step
1325 breakpoint, or stepping to complete a non-continuable
1326 watchpoint. */
1327 static struct step_over_info step_over_info;
1328
1329 /* Record the address of the breakpoint/instruction we're currently
1330 stepping over.
1331 N.B. We record the aspace and address now, instead of say just the thread,
1332 because when we need the info later the thread may be running. */
1333
1334 static void
1335 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1336 int nonsteppable_watchpoint_p,
1337 int thread)
1338 {
1339 step_over_info.aspace = aspace;
1340 step_over_info.address = address;
1341 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1342 step_over_info.thread = thread;
1343 }
1344
1345 /* Called when we're not longer stepping over a breakpoint / an
1346 instruction, so all breakpoints are free to be (re)inserted. */
1347
1348 static void
1349 clear_step_over_info (void)
1350 {
1351 infrun_log_debug ("clearing step over info");
1352 step_over_info.aspace = NULL;
1353 step_over_info.address = 0;
1354 step_over_info.nonsteppable_watchpoint_p = 0;
1355 step_over_info.thread = -1;
1356 }
1357
1358 /* See infrun.h. */
1359
1360 int
1361 stepping_past_instruction_at (struct address_space *aspace,
1362 CORE_ADDR address)
1363 {
1364 return (step_over_info.aspace != NULL
1365 && breakpoint_address_match (aspace, address,
1366 step_over_info.aspace,
1367 step_over_info.address));
1368 }
1369
1370 /* See infrun.h. */
1371
1372 int
1373 thread_is_stepping_over_breakpoint (int thread)
1374 {
1375 return (step_over_info.thread != -1
1376 && thread == step_over_info.thread);
1377 }
1378
1379 /* See infrun.h. */
1380
1381 int
1382 stepping_past_nonsteppable_watchpoint (void)
1383 {
1384 return step_over_info.nonsteppable_watchpoint_p;
1385 }
1386
1387 /* Returns true if step-over info is valid. */
1388
1389 static int
1390 step_over_info_valid_p (void)
1391 {
1392 return (step_over_info.aspace != NULL
1393 || stepping_past_nonsteppable_watchpoint ());
1394 }
1395
1396 \f
1397 /* Displaced stepping. */
1398
1399 /* In non-stop debugging mode, we must take special care to manage
1400 breakpoints properly; in particular, the traditional strategy for
1401 stepping a thread past a breakpoint it has hit is unsuitable.
1402 'Displaced stepping' is a tactic for stepping one thread past a
1403 breakpoint it has hit while ensuring that other threads running
1404 concurrently will hit the breakpoint as they should.
1405
1406 The traditional way to step a thread T off a breakpoint in a
1407 multi-threaded program in all-stop mode is as follows:
1408
1409 a0) Initially, all threads are stopped, and breakpoints are not
1410 inserted.
1411 a1) We single-step T, leaving breakpoints uninserted.
1412 a2) We insert breakpoints, and resume all threads.
1413
1414 In non-stop debugging, however, this strategy is unsuitable: we
1415 don't want to have to stop all threads in the system in order to
1416 continue or step T past a breakpoint. Instead, we use displaced
1417 stepping:
1418
1419 n0) Initially, T is stopped, other threads are running, and
1420 breakpoints are inserted.
1421 n1) We copy the instruction "under" the breakpoint to a separate
1422 location, outside the main code stream, making any adjustments
1423 to the instruction, register, and memory state as directed by
1424 T's architecture.
1425 n2) We single-step T over the instruction at its new location.
1426 n3) We adjust the resulting register and memory state as directed
1427 by T's architecture. This includes resetting T's PC to point
1428 back into the main instruction stream.
1429 n4) We resume T.
1430
1431 This approach depends on the following gdbarch methods:
1432
1433 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1434 indicate where to copy the instruction, and how much space must
1435 be reserved there. We use these in step n1.
1436
1437 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1438 address, and makes any necessary adjustments to the instruction,
1439 register contents, and memory. We use this in step n1.
1440
1441 - gdbarch_displaced_step_fixup adjusts registers and memory after
1442 we have successfully single-stepped the instruction, to yield the
1443 same effect the instruction would have had if we had executed it
1444 at its original address. We use this in step n3.
1445
1446 The gdbarch_displaced_step_copy_insn and
1447 gdbarch_displaced_step_fixup functions must be written so that
1448 copying an instruction with gdbarch_displaced_step_copy_insn,
1449 single-stepping across the copied instruction, and then applying
1450 gdbarch_displaced_insn_fixup should have the same effects on the
1451 thread's memory and registers as stepping the instruction in place
1452 would have. Exactly which responsibilities fall to the copy and
1453 which fall to the fixup is up to the author of those functions.
1454
1455 See the comments in gdbarch.sh for details.
1456
1457 Note that displaced stepping and software single-step cannot
1458 currently be used in combination, although with some care I think
1459 they could be made to. Software single-step works by placing
1460 breakpoints on all possible subsequent instructions; if the
1461 displaced instruction is a PC-relative jump, those breakpoints
1462 could fall in very strange places --- on pages that aren't
1463 executable, or at addresses that are not proper instruction
1464 boundaries. (We do generally let other threads run while we wait
1465 to hit the software single-step breakpoint, and they might
1466 encounter such a corrupted instruction.) One way to work around
1467 this would be to have gdbarch_displaced_step_copy_insn fully
1468 simulate the effect of PC-relative instructions (and return NULL)
1469 on architectures that use software single-stepping.
1470
1471 In non-stop mode, we can have independent and simultaneous step
1472 requests, so more than one thread may need to simultaneously step
1473 over a breakpoint. The current implementation assumes there is
1474 only one scratch space per process. In this case, we have to
1475 serialize access to the scratch space. If thread A wants to step
1476 over a breakpoint, but we are currently waiting for some other
1477 thread to complete a displaced step, we leave thread A stopped and
1478 place it in the displaced_step_request_queue. Whenever a displaced
1479 step finishes, we pick the next thread in the queue and start a new
1480 displaced step operation on it. See displaced_step_prepare and
1481 displaced_step_fixup for details. */
1482
1483 /* Get the displaced stepping state of inferior INF. */
1484
1485 static displaced_step_inferior_state *
1486 get_displaced_stepping_state (inferior *inf)
1487 {
1488 return &inf->displaced_step_state;
1489 }
1490
1491 /* Get the displaced stepping state of thread THREAD. */
1492
1493 static displaced_step_thread_state *
1494 get_displaced_stepping_state (thread_info *thread)
1495 {
1496 return &thread->displaced_step_state;
1497 }
1498
1499 /* Return true if the given thread is doing a displaced step. */
1500
1501 static bool
1502 displaced_step_in_progress (thread_info *thread)
1503 {
1504 gdb_assert (thread != NULL);
1505
1506 return get_displaced_stepping_state (thread)->in_progress ();
1507 }
1508
1509 /* Return true if any thread of this inferior is doing a displaced step. */
1510
1511 static bool
1512 displaced_step_in_progress (inferior *inf)
1513 {
1514 for (thread_info *thread : inf->non_exited_threads ())
1515 {
1516 if (displaced_step_in_progress (thread))
1517 return true;
1518 }
1519
1520 return false;
1521 }
1522
1523 /* Return true if any thread is doing a displaced step. */
1524
1525 static bool
1526 displaced_step_in_progress_any_thread ()
1527 {
1528 for (thread_info *thread : all_non_exited_threads ())
1529 {
1530 if (displaced_step_in_progress (thread))
1531 return true;
1532 }
1533
1534 return false;
1535 }
1536
1537 /* If inferior is in displaced stepping, and ADDR equals to starting address
1538 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
1539 return NULL. */
1540
1541 struct displaced_step_copy_insn_closure *
1542 get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
1543 {
1544 // FIXME: implement me (only needed on ARM).
1545 // displaced_step_inferior_state *displaced
1546 // = get_displaced_stepping_state (current_inferior ());
1547 //
1548 // /* If checking the mode of displaced instruction in copy area. */
1549 // if (displaced->step_thread != nullptr
1550 // && displaced->step_copy == addr)
1551 // return displaced->step_closure.get ();
1552 //
1553 return NULL;
1554 }
1555
1556 static void
1557 infrun_inferior_exit (struct inferior *inf)
1558 {
1559 inf->displaced_step_state.reset ();
1560 }
1561
1562 /* If ON, and the architecture supports it, GDB will use displaced
1563 stepping to step over breakpoints. If OFF, or if the architecture
1564 doesn't support it, GDB will instead use the traditional
1565 hold-and-step approach. If AUTO (which is the default), GDB will
1566 decide which technique to use to step over breakpoints depending on
1567 whether the target works in a non-stop way (see use_displaced_stepping). */
1568
1569 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1570
1571 static void
1572 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1573 struct cmd_list_element *c,
1574 const char *value)
1575 {
1576 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1577 fprintf_filtered (file,
1578 _("Debugger's willingness to use displaced stepping "
1579 "to step over breakpoints is %s (currently %s).\n"),
1580 value, target_is_non_stop_p () ? "on" : "off");
1581 else
1582 fprintf_filtered (file,
1583 _("Debugger's willingness to use displaced stepping "
1584 "to step over breakpoints is %s.\n"), value);
1585 }
1586
1587 /* Return true if the gdbarch implements the required methods to use
1588 displaced stepping. */
1589
1590 static bool
1591 gdbarch_supports_displaced_stepping (gdbarch *arch)
1592 {
1593 /* Only check for the presence of copy_insn. Other required methods
1594 are checked by the gdbarch validation to be provided if copy_insn is
1595 provided. */
1596 return gdbarch_displaced_step_copy_insn_p (arch);
1597 }
1598
1599 /* Return non-zero if displaced stepping can/should be used to step
1600 over breakpoints of thread TP. */
1601
1602 static bool
1603 use_displaced_stepping (thread_info *tp)
1604 {
1605 /* If the user disabled it explicitly, don't use displaced stepping. */
1606 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1607 return false;
1608
1609 /* If "auto", only use displaced stepping if the target operates in a non-stop
1610 way. */
1611 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1612 && !target_is_non_stop_p ())
1613 return false;
1614
1615 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1616
1617 /* If the architecture doesn't implement displaced stepping, don't use
1618 it. */
1619 if (!gdbarch_supports_displaced_stepping (gdbarch))
1620 return false;
1621
1622 /* If recording, don't use displaced stepping. */
1623 if (find_record_target () != nullptr)
1624 return false;
1625
1626 displaced_step_inferior_state *displaced_state
1627 = get_displaced_stepping_state (tp->inf);
1628
1629 /* If displaced stepping failed before for this inferior, don't bother trying
1630 again. */
1631 if (displaced_state->failed_before)
1632 return false;
1633
1634 return true;
1635 }
1636
1637 /* Simple function wrapper around displaced_step_thread_state::reset. */
1638
1639 static void
1640 displaced_step_reset (displaced_step_thread_state *displaced)
1641 {
1642 displaced->reset ();
1643 }
1644
1645 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1646 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1647
1648 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1649
1650 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1651 void
1652 displaced_step_dump_bytes (struct ui_file *file,
1653 const gdb_byte *buf,
1654 size_t len)
1655 {
1656 int i;
1657
1658 for (i = 0; i < len; i++)
1659 fprintf_unfiltered (file, "%02x ", buf[i]);
1660 fputs_unfiltered ("\n", file);
1661 }
1662
1663 /* Prepare to single-step, using displaced stepping.
1664
1665 Note that we cannot use displaced stepping when we have a signal to
1666 deliver. If we have a signal to deliver and an instruction to step
1667 over, then after the step, there will be no indication from the
1668 target whether the thread entered a signal handler or ignored the
1669 signal and stepped over the instruction successfully --- both cases
1670 result in a simple SIGTRAP. In the first case we mustn't do a
1671 fixup, and in the second case we must --- but we can't tell which.
1672 Comments in the code for 'random signals' in handle_inferior_event
1673 explain how we handle this case instead.
1674
1675 Returns 1 if preparing was successful -- this thread is going to be
1676 stepped now; 0 if displaced stepping this thread got queued; or -1
1677 if this instruction can't be displaced stepped. */
1678
1679 static displaced_step_prepare_status
1680 displaced_step_prepare_throw (thread_info *tp)
1681 {
1682 regcache *regcache = get_thread_regcache (tp);
1683 struct gdbarch *gdbarch = regcache->arch ();
1684 displaced_step_thread_state *thread_disp_step_state
1685 = get_displaced_stepping_state (tp);
1686
1687 /* We should never reach this function if the architecture does not
1688 support displaced stepping. */
1689 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1690
1691 /* Nor if the thread isn't meant to step over a breakpoint. */
1692 gdb_assert (tp->control.trap_expected);
1693
1694 /* Disable range stepping while executing in the scratch pad. We
1695 want a single-step even if executing the displaced instruction in
1696 the scratch buffer lands within the stepping range (e.g., a
1697 jump/branch). */
1698 tp->control.may_range_step = 0;
1699
1700 /* We are about to start a displaced step for this thread, if one is already
1701 in progress, we goofed up somewhere. */
1702 gdb_assert (!thread_disp_step_state->in_progress ());
1703
1704 scoped_restore_current_thread restore_thread;
1705
1706 switch_to_thread (tp);
1707
1708 CORE_ADDR original_pc = regcache_read_pc (regcache);
1709
1710 displaced_step_prepare_status status =
1711 gdbarch_displaced_step_prepare (gdbarch, tp);
1712
1713 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1714 {
1715 if (debug_displaced)
1716 fprintf_unfiltered (gdb_stdlog,
1717 "displaced: failed to prepare (%s)",
1718 target_pid_to_str (tp->ptid).c_str ());
1719
1720 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
1721 }
1722 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1723 {
1724 /* Not enough displaced stepping resources available, defer this
1725 request by placing it the queue. */
1726
1727 if (debug_displaced)
1728 fprintf_unfiltered (gdb_stdlog,
1729 "displaced: not enough resources available, "
1730 "deferring step of %s\n",
1731 target_pid_to_str (tp->ptid).c_str ());
1732
1733 global_thread_step_over_chain_enqueue (tp);
1734 tp->inf->displaced_step_state.unavailable = true;
1735
1736 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1737 }
1738
1739 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1740
1741 // FIXME: Should probably replicated in the arch implementation now.
1742 //
1743 // if (breakpoint_in_range_p (aspace, copy, len))
1744 // {
1745 // /* There's a breakpoint set in the scratch pad location range
1746 // (which is usually around the entry point). We'd either
1747 // install it before resuming, which would overwrite/corrupt the
1748 // scratch pad, or if it was already inserted, this displaced
1749 // step would overwrite it. The latter is OK in the sense that
1750 // we already assume that no thread is going to execute the code
1751 // in the scratch pad range (after initial startup) anyway, but
1752 // the former is unacceptable. Simply punt and fallback to
1753 // stepping over this breakpoint in-line. */
1754 // if (debug_displaced)
1755 // {
1756 // fprintf_unfiltered (gdb_stdlog,
1757 // "displaced: breakpoint set in scratch pad. "
1758 // "Stepping over breakpoint in-line instead.\n");
1759 // }
1760 //
1761 // gdb_assert (false);
1762 // gdbarch_displaced_step_release_location (gdbarch, copy);
1763 //
1764 // return -1;
1765 // }
1766
1767 /* Save the information we need to fix things up if the step
1768 succeeds. */
1769 thread_disp_step_state->set (gdbarch);
1770
1771 // FIXME: get it from _prepare?
1772 CORE_ADDR displaced_pc = 0;
1773
1774 if (debug_displaced)
1775 fprintf_unfiltered (gdb_stdlog,
1776 "displaced: prepared successfully thread=%s, "
1777 "original_pc=%s, displaced_pc=%s\n",
1778 target_pid_to_str (tp->ptid).c_str (),
1779 paddress (gdbarch, original_pc),
1780 paddress (gdbarch, displaced_pc));
1781
1782 return DISPLACED_STEP_PREPARE_STATUS_OK;
1783 }
1784
1785 /* Wrapper for displaced_step_prepare_throw that disabled further
1786 attempts at displaced stepping if we get a memory error. */
1787
1788 static displaced_step_prepare_status
1789 displaced_step_prepare (thread_info *thread)
1790 {
1791 displaced_step_prepare_status status
1792 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
1793
1794 try
1795 {
1796 status = displaced_step_prepare_throw (thread);
1797 }
1798 catch (const gdb_exception_error &ex)
1799 {
1800 struct displaced_step_inferior_state *displaced_state;
1801
1802 if (ex.error != MEMORY_ERROR
1803 && ex.error != NOT_SUPPORTED_ERROR)
1804 throw;
1805
1806 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1807 ex.what ());
1808
1809 /* Be verbose if "set displaced-stepping" is "on", silent if
1810 "auto". */
1811 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1812 {
1813 warning (_("disabling displaced stepping: %s"),
1814 ex.what ());
1815 }
1816
1817 /* Disable further displaced stepping attempts. */
1818 displaced_state
1819 = get_displaced_stepping_state (thread->inf);
1820 displaced_state->failed_before = 1;
1821 }
1822
1823 return status;
1824 }
1825
1826 /* If we displaced stepped an instruction successfully, adjust
1827 registers and memory to yield the same effect the instruction would
1828 have had if we had executed it at its original address, and return
1829 1. If the instruction didn't complete, relocate the PC and return
1830 -1. If the thread wasn't displaced stepping, return 0. */
1831
1832 static int
1833 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1834 {
1835 displaced_step_thread_state *displaced
1836 = get_displaced_stepping_state (event_thread);
1837
1838 /* Was this thread performing a displaced step? */
1839 if (!displaced->in_progress ())
1840 return 0;
1841
1842 displaced_step_reset_cleanup cleanup (displaced);
1843
1844 /* Fixup may need to read memory/registers. Switch to the thread
1845 that we're fixing up. Also, target_stopped_by_watchpoint checks
1846 the current thread, and displaced_step_restore performs ptid-dependent
1847 memory accesses using current_inferior() and current_top_target(). */
1848 switch_to_thread (event_thread);
1849
1850 /* Do the fixup, and release the resources acquired to do the displaced
1851 step. */
1852 displaced_step_finish_status finish_status =
1853 gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1854 event_thread, signal);
1855
1856 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1857 return 1;
1858 else
1859 return -1;
1860 }
1861
1862 /* Data to be passed around while handling an event. This data is
1863 discarded between events. */
1864 struct execution_control_state
1865 {
1866 process_stratum_target *target;
1867 ptid_t ptid;
1868 /* The thread that got the event, if this was a thread event; NULL
1869 otherwise. */
1870 struct thread_info *event_thread;
1871
1872 struct target_waitstatus ws;
1873 int stop_func_filled_in;
1874 CORE_ADDR stop_func_start;
1875 CORE_ADDR stop_func_end;
1876 const char *stop_func_name;
1877 int wait_some_more;
1878
1879 /* True if the event thread hit the single-step breakpoint of
1880 another thread. Thus the event doesn't cause a stop, the thread
1881 needs to be single-stepped past the single-step breakpoint before
1882 we can switch back to the original stepping thread. */
1883 int hit_singlestep_breakpoint;
1884 };
1885
1886 /* Clear ECS and set it to point at TP. */
1887
1888 static void
1889 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1890 {
1891 memset (ecs, 0, sizeof (*ecs));
1892 ecs->event_thread = tp;
1893 ecs->ptid = tp->ptid;
1894 }
1895
1896 static void keep_going_pass_signal (struct execution_control_state *ecs);
1897 static void prepare_to_wait (struct execution_control_state *ecs);
1898 static int keep_going_stepped_thread (struct thread_info *tp);
1899 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1900
1901 /* Are there any pending step-over requests? If so, run all we can
1902 now and return true. Otherwise, return false. */
1903
1904 static int
1905 start_step_over (void)
1906 {
1907 struct thread_info *tp, *next;
1908 int started = 0;
1909
1910 /* Don't start a new step-over if we already have an in-line
1911 step-over operation ongoing. */
1912 if (step_over_info_valid_p ())
1913 return started;
1914
1915 /* Steal the global thread step over chain. */
1916 thread_info *threads_to_step = global_thread_step_over_chain_head;
1917 global_thread_step_over_chain_head = NULL;
1918
1919 if (debug_infrun)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "infrun: stealing list of %d threads to step from global queue\n",
1922 thread_step_over_chain_length (threads_to_step));
1923
1924 for (inferior *inf : all_inferiors ())
1925 inf->displaced_step_state.unavailable = false;
1926
1927 for (tp = threads_to_step; tp != NULL; tp = next)
1928 {
1929 struct execution_control_state ecss;
1930 struct execution_control_state *ecs = &ecss;
1931 step_over_what step_what;
1932 int must_be_in_line;
1933
1934 gdb_assert (!tp->stop_requested);
1935
1936 next = thread_step_over_chain_next (threads_to_step, tp);
1937
1938 step_what = thread_still_needs_step_over (tp);
1939 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1940 || ((step_what & STEP_OVER_BREAKPOINT)
1941 && !use_displaced_stepping (tp)));
1942
1943 /* We currently stop all threads of all processes to step-over
1944 in-line. If we need to start a new in-line step-over, let
1945 any pending displaced steps finish first. */
1946 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1947 continue;
1948
1949 thread_step_over_chain_remove (&threads_to_step, tp);
1950
1951 if (tp->control.trap_expected
1952 || tp->resumed
1953 || tp->executing)
1954 {
1955 internal_error (__FILE__, __LINE__,
1956 "[%s] has inconsistent state: "
1957 "trap_expected=%d, resumed=%d, executing=%d\n",
1958 target_pid_to_str (tp->ptid).c_str (),
1959 tp->control.trap_expected,
1960 tp->resumed,
1961 tp->executing);
1962 }
1963
1964 infrun_log_debug ("resuming [%s] for step-over",
1965 target_pid_to_str (tp->ptid).c_str ());
1966
1967 /* keep_going_pass_signal skips the step-over if the breakpoint
1968 is no longer inserted. In all-stop, we want to keep looking
1969 for a thread that needs a step-over instead of resuming TP,
1970 because we wouldn't be able to resume anything else until the
1971 target stops again. In non-stop, the resume always resumes
1972 only TP, so it's OK to let the thread resume freely. */
1973 if (!target_is_non_stop_p () && !step_what)
1974 continue;
1975
1976 if (tp->inf->displaced_step_state.unavailable)
1977 {
1978 global_thread_step_over_chain_enqueue (tp);
1979 continue;
1980 }
1981
1982 switch_to_thread (tp);
1983 reset_ecs (ecs, tp);
1984 keep_going_pass_signal (ecs);
1985
1986 if (!ecs->wait_some_more)
1987 error (_("Command aborted."));
1988
1989 /* If the thread's step over could not be initiated, it was re-added
1990 to the global step over chain. */
1991 if (tp->resumed)
1992 {
1993 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
1994 target_pid_to_str (tp->ptid).c_str ());
1995 gdb_assert (!thread_is_in_step_over_chain (tp));
1996 }
1997 else
1998 {
1999 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
2000 target_pid_to_str (tp->ptid).c_str ());
2001 gdb_assert (thread_is_in_step_over_chain (tp));
2002
2003 }
2004
2005 /* If we started a new in-line step-over, we're done. */
2006 if (step_over_info_valid_p ())
2007 {
2008 gdb_assert (tp->control.trap_expected);
2009 started = 1;
2010 break;
2011 }
2012
2013 if (!target_is_non_stop_p ())
2014 {
2015 /* On all-stop, shouldn't have resumed unless we needed a
2016 step over. */
2017 gdb_assert (tp->control.trap_expected
2018 || tp->step_after_step_resume_breakpoint);
2019
2020 /* With remote targets (at least), in all-stop, we can't
2021 issue any further remote commands until the program stops
2022 again. */
2023 started = 1;
2024 break;
2025 }
2026
2027 /* Either the thread no longer needed a step-over, or a new
2028 displaced stepping sequence started. Even in the latter
2029 case, continue looking. Maybe we can also start another
2030 displaced step on a thread of other process. */
2031 }
2032
2033 /* If there are threads left in the THREADS_TO_STEP list, but we have
2034 detected that we can't start anything more, put back these threads
2035 in the global list. */
2036 if (threads_to_step == NULL)
2037 {
2038 if (debug_infrun)
2039 fprintf_unfiltered (gdb_stdlog,
2040 "infrun: step-over queue now empty\n");
2041 }
2042 else
2043 {
2044 if (debug_infrun)
2045 fprintf_unfiltered (gdb_stdlog,
2046 "infrun: putting back %d threads to step in global queue\n",
2047 thread_step_over_chain_length (threads_to_step));
2048 while (threads_to_step != nullptr)
2049 {
2050 thread_info *thread = threads_to_step;
2051
2052 /* Remove from that list. */
2053 thread_step_over_chain_remove (&threads_to_step, thread);
2054
2055 /* Add to global list. */
2056 global_thread_step_over_chain_enqueue (thread);
2057
2058 }
2059 }
2060
2061 return started;
2062 }
2063
2064 /* Update global variables holding ptids to hold NEW_PTID if they were
2065 holding OLD_PTID. */
2066 static void
2067 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2068 {
2069 if (inferior_ptid == old_ptid)
2070 inferior_ptid = new_ptid;
2071 }
2072
2073 \f
2074
2075 static const char schedlock_off[] = "off";
2076 static const char schedlock_on[] = "on";
2077 static const char schedlock_step[] = "step";
2078 static const char schedlock_replay[] = "replay";
2079 static const char *const scheduler_enums[] = {
2080 schedlock_off,
2081 schedlock_on,
2082 schedlock_step,
2083 schedlock_replay,
2084 NULL
2085 };
2086 static const char *scheduler_mode = schedlock_replay;
2087 static void
2088 show_scheduler_mode (struct ui_file *file, int from_tty,
2089 struct cmd_list_element *c, const char *value)
2090 {
2091 fprintf_filtered (file,
2092 _("Mode for locking scheduler "
2093 "during execution is \"%s\".\n"),
2094 value);
2095 }
2096
2097 static void
2098 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2099 {
2100 if (!target_can_lock_scheduler)
2101 {
2102 scheduler_mode = schedlock_off;
2103 error (_("Target '%s' cannot support this command."), target_shortname);
2104 }
2105 }
2106
2107 /* True if execution commands resume all threads of all processes by
2108 default; otherwise, resume only threads of the current inferior
2109 process. */
2110 bool sched_multi = false;
2111
2112 /* Try to setup for software single stepping over the specified location.
2113 Return 1 if target_resume() should use hardware single step.
2114
2115 GDBARCH the current gdbarch.
2116 PC the location to step over. */
2117
2118 static int
2119 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2120 {
2121 int hw_step = 1;
2122
2123 if (execution_direction == EXEC_FORWARD
2124 && gdbarch_software_single_step_p (gdbarch))
2125 hw_step = !insert_single_step_breakpoints (gdbarch);
2126
2127 return hw_step;
2128 }
2129
2130 /* See infrun.h. */
2131
2132 ptid_t
2133 user_visible_resume_ptid (int step)
2134 {
2135 ptid_t resume_ptid;
2136
2137 if (non_stop)
2138 {
2139 /* With non-stop mode on, threads are always handled
2140 individually. */
2141 resume_ptid = inferior_ptid;
2142 }
2143 else if ((scheduler_mode == schedlock_on)
2144 || (scheduler_mode == schedlock_step && step))
2145 {
2146 /* User-settable 'scheduler' mode requires solo thread
2147 resume. */
2148 resume_ptid = inferior_ptid;
2149 }
2150 else if ((scheduler_mode == schedlock_replay)
2151 && target_record_will_replay (minus_one_ptid, execution_direction))
2152 {
2153 /* User-settable 'scheduler' mode requires solo thread resume in replay
2154 mode. */
2155 resume_ptid = inferior_ptid;
2156 }
2157 else if (!sched_multi && target_supports_multi_process ())
2158 {
2159 /* Resume all threads of the current process (and none of other
2160 processes). */
2161 resume_ptid = ptid_t (inferior_ptid.pid ());
2162 }
2163 else
2164 {
2165 /* Resume all threads of all processes. */
2166 resume_ptid = RESUME_ALL;
2167 }
2168
2169 return resume_ptid;
2170 }
2171
2172 /* See infrun.h. */
2173
2174 process_stratum_target *
2175 user_visible_resume_target (ptid_t resume_ptid)
2176 {
2177 return (resume_ptid == minus_one_ptid && sched_multi
2178 ? NULL
2179 : current_inferior ()->process_target ());
2180 }
2181
2182 /* Return a ptid representing the set of threads that we will resume,
2183 in the perspective of the target, assuming run control handling
2184 does not require leaving some threads stopped (e.g., stepping past
2185 breakpoint). USER_STEP indicates whether we're about to start the
2186 target for a stepping command. */
2187
2188 static ptid_t
2189 internal_resume_ptid (int user_step)
2190 {
2191 /* In non-stop, we always control threads individually. Note that
2192 the target may always work in non-stop mode even with "set
2193 non-stop off", in which case user_visible_resume_ptid could
2194 return a wildcard ptid. */
2195 if (target_is_non_stop_p ())
2196 return inferior_ptid;
2197 else
2198 return user_visible_resume_ptid (user_step);
2199 }
2200
2201 /* Wrapper for target_resume, that handles infrun-specific
2202 bookkeeping. */
2203
2204 static void
2205 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2206 {
2207 struct thread_info *tp = inferior_thread ();
2208
2209 gdb_assert (!tp->stop_requested);
2210
2211 /* Install inferior's terminal modes. */
2212 target_terminal::inferior ();
2213
2214 /* Avoid confusing the next resume, if the next stop/resume
2215 happens to apply to another thread. */
2216 tp->suspend.stop_signal = GDB_SIGNAL_0;
2217
2218 /* Advise target which signals may be handled silently.
2219
2220 If we have removed breakpoints because we are stepping over one
2221 in-line (in any thread), we need to receive all signals to avoid
2222 accidentally skipping a breakpoint during execution of a signal
2223 handler.
2224
2225 Likewise if we're displaced stepping, otherwise a trap for a
2226 breakpoint in a signal handler might be confused with the
2227 displaced step finishing. We don't make the displaced_step_fixup
2228 step distinguish the cases instead, because:
2229
2230 - a backtrace while stopped in the signal handler would show the
2231 scratch pad as frame older than the signal handler, instead of
2232 the real mainline code.
2233
2234 - when the thread is later resumed, the signal handler would
2235 return to the scratch pad area, which would no longer be
2236 valid. */
2237 if (step_over_info_valid_p ()
2238 || displaced_step_in_progress (tp->inf))
2239 target_pass_signals ({});
2240 else
2241 target_pass_signals (signal_pass);
2242
2243 target_resume (resume_ptid, step, sig);
2244
2245 target_commit_resume ();
2246
2247 if (target_can_async_p ())
2248 target_async (1);
2249 }
2250
2251 /* Resume the inferior. SIG is the signal to give the inferior
2252 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2253 call 'resume', which handles exceptions. */
2254
2255 static void
2256 resume_1 (enum gdb_signal sig)
2257 {
2258 struct regcache *regcache = get_current_regcache ();
2259 struct gdbarch *gdbarch = regcache->arch ();
2260 struct thread_info *tp = inferior_thread ();
2261 const address_space *aspace = regcache->aspace ();
2262 ptid_t resume_ptid;
2263 /* This represents the user's step vs continue request. When
2264 deciding whether "set scheduler-locking step" applies, it's the
2265 user's intention that counts. */
2266 const int user_step = tp->control.stepping_command;
2267 /* This represents what we'll actually request the target to do.
2268 This can decay from a step to a continue, if e.g., we need to
2269 implement single-stepping with breakpoints (software
2270 single-step). */
2271 int step;
2272
2273 gdb_assert (!tp->stop_requested);
2274 gdb_assert (!thread_is_in_step_over_chain (tp));
2275
2276 if (tp->suspend.waitstatus_pending_p)
2277 {
2278 infrun_log_debug
2279 ("thread %s has pending wait "
2280 "status %s (currently_stepping=%d).",
2281 target_pid_to_str (tp->ptid).c_str (),
2282 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2283 currently_stepping (tp));
2284
2285 tp->inf->process_target ()->threads_executing = true;
2286 tp->resumed = true;
2287
2288 /* FIXME: What should we do if we are supposed to resume this
2289 thread with a signal? Maybe we should maintain a queue of
2290 pending signals to deliver. */
2291 if (sig != GDB_SIGNAL_0)
2292 {
2293 warning (_("Couldn't deliver signal %s to %s."),
2294 gdb_signal_to_name (sig),
2295 target_pid_to_str (tp->ptid).c_str ());
2296 }
2297
2298 tp->suspend.stop_signal = GDB_SIGNAL_0;
2299
2300 if (target_can_async_p ())
2301 {
2302 target_async (1);
2303 /* Tell the event loop we have an event to process. */
2304 mark_async_event_handler (infrun_async_inferior_event_token);
2305 }
2306 return;
2307 }
2308
2309 tp->stepped_breakpoint = 0;
2310
2311 /* Depends on stepped_breakpoint. */
2312 step = currently_stepping (tp);
2313
2314 if (current_inferior ()->waiting_for_vfork_done)
2315 {
2316 /* Don't try to single-step a vfork parent that is waiting for
2317 the child to get out of the shared memory region (by exec'ing
2318 or exiting). This is particularly important on software
2319 single-step archs, as the child process would trip on the
2320 software single step breakpoint inserted for the parent
2321 process. Since the parent will not actually execute any
2322 instruction until the child is out of the shared region (such
2323 are vfork's semantics), it is safe to simply continue it.
2324 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2325 the parent, and tell it to `keep_going', which automatically
2326 re-sets it stepping. */
2327 infrun_log_debug ("resume : clear step");
2328 step = 0;
2329 }
2330
2331 CORE_ADDR pc = regcache_read_pc (regcache);
2332
2333 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2334 "current thread [%s] at %s",
2335 step, gdb_signal_to_symbol_string (sig),
2336 tp->control.trap_expected,
2337 target_pid_to_str (inferior_ptid).c_str (),
2338 paddress (gdbarch, pc));
2339
2340 /* Normally, by the time we reach `resume', the breakpoints are either
2341 removed or inserted, as appropriate. The exception is if we're sitting
2342 at a permanent breakpoint; we need to step over it, but permanent
2343 breakpoints can't be removed. So we have to test for it here. */
2344 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2345 {
2346 if (sig != GDB_SIGNAL_0)
2347 {
2348 /* We have a signal to pass to the inferior. The resume
2349 may, or may not take us to the signal handler. If this
2350 is a step, we'll need to stop in the signal handler, if
2351 there's one, (if the target supports stepping into
2352 handlers), or in the next mainline instruction, if
2353 there's no handler. If this is a continue, we need to be
2354 sure to run the handler with all breakpoints inserted.
2355 In all cases, set a breakpoint at the current address
2356 (where the handler returns to), and once that breakpoint
2357 is hit, resume skipping the permanent breakpoint. If
2358 that breakpoint isn't hit, then we've stepped into the
2359 signal handler (or hit some other event). We'll delete
2360 the step-resume breakpoint then. */
2361
2362 infrun_log_debug ("resume: skipping permanent breakpoint, "
2363 "deliver signal first");
2364
2365 clear_step_over_info ();
2366 tp->control.trap_expected = 0;
2367
2368 if (tp->control.step_resume_breakpoint == NULL)
2369 {
2370 /* Set a "high-priority" step-resume, as we don't want
2371 user breakpoints at PC to trigger (again) when this
2372 hits. */
2373 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2374 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2375
2376 tp->step_after_step_resume_breakpoint = step;
2377 }
2378
2379 insert_breakpoints ();
2380 }
2381 else
2382 {
2383 /* There's no signal to pass, we can go ahead and skip the
2384 permanent breakpoint manually. */
2385 infrun_log_debug ("skipping permanent breakpoint");
2386 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2387 /* Update pc to reflect the new address from which we will
2388 execute instructions. */
2389 pc = regcache_read_pc (regcache);
2390
2391 if (step)
2392 {
2393 /* We've already advanced the PC, so the stepping part
2394 is done. Now we need to arrange for a trap to be
2395 reported to handle_inferior_event. Set a breakpoint
2396 at the current PC, and run to it. Don't update
2397 prev_pc, because if we end in
2398 switch_back_to_stepped_thread, we want the "expected
2399 thread advanced also" branch to be taken. IOW, we
2400 don't want this thread to step further from PC
2401 (overstep). */
2402 gdb_assert (!step_over_info_valid_p ());
2403 insert_single_step_breakpoint (gdbarch, aspace, pc);
2404 insert_breakpoints ();
2405
2406 resume_ptid = internal_resume_ptid (user_step);
2407 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2408 tp->resumed = true;
2409 return;
2410 }
2411 }
2412 }
2413
2414 /* If we have a breakpoint to step over, make sure to do a single
2415 step only. Same if we have software watchpoints. */
2416 if (tp->control.trap_expected || bpstat_should_step ())
2417 tp->control.may_range_step = 0;
2418
2419 /* If displaced stepping is enabled, step over breakpoints by executing a
2420 copy of the instruction at a different address.
2421
2422 We can't use displaced stepping when we have a signal to deliver;
2423 the comments for displaced_step_prepare explain why. The
2424 comments in the handle_inferior event for dealing with 'random
2425 signals' explain what we do instead.
2426
2427 We can't use displaced stepping when we are waiting for vfork_done
2428 event, displaced stepping breaks the vfork child similarly as single
2429 step software breakpoint. */
2430 if (tp->control.trap_expected
2431 && use_displaced_stepping (tp)
2432 && !step_over_info_valid_p ()
2433 && sig == GDB_SIGNAL_0
2434 && !current_inferior ()->waiting_for_vfork_done)
2435 {
2436 displaced_step_prepare_status prepare_status
2437 = displaced_step_prepare (tp);
2438
2439 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2440 {
2441 infrun_log_debug ("Got placed in step-over queue");
2442
2443 tp->control.trap_expected = 0;
2444 return;
2445 }
2446 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
2447 {
2448 /* Fallback to stepping over the breakpoint in-line. */
2449
2450 if (target_is_non_stop_p ())
2451 stop_all_threads ();
2452
2453 set_step_over_info (regcache->aspace (),
2454 regcache_read_pc (regcache), 0, tp->global_num);
2455
2456 step = maybe_software_singlestep (gdbarch, pc);
2457
2458 insert_breakpoints ();
2459 }
2460 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2461 {
2462 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
2463 }
2464 else
2465 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
2466 }
2467
2468 /* Do we need to do it the hard way, w/temp breakpoints? */
2469 else if (step)
2470 step = maybe_software_singlestep (gdbarch, pc);
2471
2472 /* Currently, our software single-step implementation leads to different
2473 results than hardware single-stepping in one situation: when stepping
2474 into delivering a signal which has an associated signal handler,
2475 hardware single-step will stop at the first instruction of the handler,
2476 while software single-step will simply skip execution of the handler.
2477
2478 For now, this difference in behavior is accepted since there is no
2479 easy way to actually implement single-stepping into a signal handler
2480 without kernel support.
2481
2482 However, there is one scenario where this difference leads to follow-on
2483 problems: if we're stepping off a breakpoint by removing all breakpoints
2484 and then single-stepping. In this case, the software single-step
2485 behavior means that even if there is a *breakpoint* in the signal
2486 handler, GDB still would not stop.
2487
2488 Fortunately, we can at least fix this particular issue. We detect
2489 here the case where we are about to deliver a signal while software
2490 single-stepping with breakpoints removed. In this situation, we
2491 revert the decisions to remove all breakpoints and insert single-
2492 step breakpoints, and instead we install a step-resume breakpoint
2493 at the current address, deliver the signal without stepping, and
2494 once we arrive back at the step-resume breakpoint, actually step
2495 over the breakpoint we originally wanted to step over. */
2496 if (thread_has_single_step_breakpoints_set (tp)
2497 && sig != GDB_SIGNAL_0
2498 && step_over_info_valid_p ())
2499 {
2500 /* If we have nested signals or a pending signal is delivered
2501 immediately after a handler returns, might already have
2502 a step-resume breakpoint set on the earlier handler. We cannot
2503 set another step-resume breakpoint; just continue on until the
2504 original breakpoint is hit. */
2505 if (tp->control.step_resume_breakpoint == NULL)
2506 {
2507 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2508 tp->step_after_step_resume_breakpoint = 1;
2509 }
2510
2511 delete_single_step_breakpoints (tp);
2512
2513 clear_step_over_info ();
2514 tp->control.trap_expected = 0;
2515
2516 insert_breakpoints ();
2517 }
2518
2519 /* If STEP is set, it's a request to use hardware stepping
2520 facilities. But in that case, we should never
2521 use singlestep breakpoint. */
2522 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2523
2524 /* Decide the set of threads to ask the target to resume. */
2525 if (tp->control.trap_expected)
2526 {
2527 /* We're allowing a thread to run past a breakpoint it has
2528 hit, either by single-stepping the thread with the breakpoint
2529 removed, or by displaced stepping, with the breakpoint inserted.
2530 In the former case, we need to single-step only this thread,
2531 and keep others stopped, as they can miss this breakpoint if
2532 allowed to run. That's not really a problem for displaced
2533 stepping, but, we still keep other threads stopped, in case
2534 another thread is also stopped for a breakpoint waiting for
2535 its turn in the displaced stepping queue. */
2536 resume_ptid = inferior_ptid;
2537 }
2538 else
2539 resume_ptid = internal_resume_ptid (user_step);
2540
2541 if (execution_direction != EXEC_REVERSE
2542 && step && breakpoint_inserted_here_p (aspace, pc))
2543 {
2544 /* There are two cases where we currently need to step a
2545 breakpoint instruction when we have a signal to deliver:
2546
2547 - See handle_signal_stop where we handle random signals that
2548 could take out us out of the stepping range. Normally, in
2549 that case we end up continuing (instead of stepping) over the
2550 signal handler with a breakpoint at PC, but there are cases
2551 where we should _always_ single-step, even if we have a
2552 step-resume breakpoint, like when a software watchpoint is
2553 set. Assuming single-stepping and delivering a signal at the
2554 same time would takes us to the signal handler, then we could
2555 have removed the breakpoint at PC to step over it. However,
2556 some hardware step targets (like e.g., Mac OS) can't step
2557 into signal handlers, and for those, we need to leave the
2558 breakpoint at PC inserted, as otherwise if the handler
2559 recurses and executes PC again, it'll miss the breakpoint.
2560 So we leave the breakpoint inserted anyway, but we need to
2561 record that we tried to step a breakpoint instruction, so
2562 that adjust_pc_after_break doesn't end up confused.
2563
2564 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2565 in one thread after another thread that was stepping had been
2566 momentarily paused for a step-over. When we re-resume the
2567 stepping thread, it may be resumed from that address with a
2568 breakpoint that hasn't trapped yet. Seen with
2569 gdb.threads/non-stop-fair-events.exp, on targets that don't
2570 do displaced stepping. */
2571
2572 infrun_log_debug ("resume: [%s] stepped breakpoint",
2573 target_pid_to_str (tp->ptid).c_str ());
2574
2575 tp->stepped_breakpoint = 1;
2576
2577 /* Most targets can step a breakpoint instruction, thus
2578 executing it normally. But if this one cannot, just
2579 continue and we will hit it anyway. */
2580 if (gdbarch_cannot_step_breakpoint (gdbarch))
2581 step = 0;
2582 }
2583
2584 if (debug_displaced
2585 && tp->control.trap_expected
2586 && use_displaced_stepping (tp)
2587 && !step_over_info_valid_p ())
2588 {
2589 struct regcache *resume_regcache = get_thread_regcache (tp);
2590 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2591 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2592 gdb_byte buf[4];
2593
2594 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2595 paddress (resume_gdbarch, actual_pc));
2596 read_memory (actual_pc, buf, sizeof (buf));
2597 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2598 }
2599
2600 if (tp->control.may_range_step)
2601 {
2602 /* If we're resuming a thread with the PC out of the step
2603 range, then we're doing some nested/finer run control
2604 operation, like stepping the thread out of the dynamic
2605 linker or the displaced stepping scratch pad. We
2606 shouldn't have allowed a range step then. */
2607 gdb_assert (pc_in_thread_step_range (pc, tp));
2608 }
2609
2610 do_target_resume (resume_ptid, step, sig);
2611 tp->resumed = true;
2612 }
2613
2614 /* Resume the inferior. SIG is the signal to give the inferior
2615 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2616 rolls back state on error. */
2617
2618 static void
2619 resume (gdb_signal sig)
2620 {
2621 try
2622 {
2623 resume_1 (sig);
2624 }
2625 catch (const gdb_exception &ex)
2626 {
2627 /* If resuming is being aborted for any reason, delete any
2628 single-step breakpoint resume_1 may have created, to avoid
2629 confusing the following resumption, and to avoid leaving
2630 single-step breakpoints perturbing other threads, in case
2631 we're running in non-stop mode. */
2632 if (inferior_ptid != null_ptid)
2633 delete_single_step_breakpoints (inferior_thread ());
2634 throw;
2635 }
2636 }
2637
2638 \f
2639 /* Proceeding. */
2640
2641 /* See infrun.h. */
2642
2643 /* Counter that tracks number of user visible stops. This can be used
2644 to tell whether a command has proceeded the inferior past the
2645 current location. This allows e.g., inferior function calls in
2646 breakpoint commands to not interrupt the command list. When the
2647 call finishes successfully, the inferior is standing at the same
2648 breakpoint as if nothing happened (and so we don't call
2649 normal_stop). */
2650 static ULONGEST current_stop_id;
2651
2652 /* See infrun.h. */
2653
2654 ULONGEST
2655 get_stop_id (void)
2656 {
2657 return current_stop_id;
2658 }
2659
2660 /* Called when we report a user visible stop. */
2661
2662 static void
2663 new_stop_id (void)
2664 {
2665 current_stop_id++;
2666 }
2667
2668 /* Clear out all variables saying what to do when inferior is continued.
2669 First do this, then set the ones you want, then call `proceed'. */
2670
2671 static void
2672 clear_proceed_status_thread (struct thread_info *tp)
2673 {
2674 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
2675
2676 /* If we're starting a new sequence, then the previous finished
2677 single-step is no longer relevant. */
2678 if (tp->suspend.waitstatus_pending_p)
2679 {
2680 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2681 {
2682 infrun_log_debug ("pending event of %s was a finished step. "
2683 "Discarding.",
2684 target_pid_to_str (tp->ptid).c_str ());
2685
2686 tp->suspend.waitstatus_pending_p = 0;
2687 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2688 }
2689 else
2690 {
2691 infrun_log_debug
2692 ("thread %s has pending wait status %s (currently_stepping=%d).",
2693 target_pid_to_str (tp->ptid).c_str (),
2694 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2695 currently_stepping (tp));
2696 }
2697 }
2698
2699 /* If this signal should not be seen by program, give it zero.
2700 Used for debugging signals. */
2701 if (!signal_pass_state (tp->suspend.stop_signal))
2702 tp->suspend.stop_signal = GDB_SIGNAL_0;
2703
2704 delete tp->thread_fsm;
2705 tp->thread_fsm = NULL;
2706
2707 tp->control.trap_expected = 0;
2708 tp->control.step_range_start = 0;
2709 tp->control.step_range_end = 0;
2710 tp->control.may_range_step = 0;
2711 tp->control.step_frame_id = null_frame_id;
2712 tp->control.step_stack_frame_id = null_frame_id;
2713 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2714 tp->control.step_start_function = NULL;
2715 tp->stop_requested = 0;
2716
2717 tp->control.stop_step = 0;
2718
2719 tp->control.proceed_to_finish = 0;
2720
2721 tp->control.stepping_command = 0;
2722
2723 /* Discard any remaining commands or status from previous stop. */
2724 bpstat_clear (&tp->control.stop_bpstat);
2725 }
2726
2727 void
2728 clear_proceed_status (int step)
2729 {
2730 /* With scheduler-locking replay, stop replaying other threads if we're
2731 not replaying the user-visible resume ptid.
2732
2733 This is a convenience feature to not require the user to explicitly
2734 stop replaying the other threads. We're assuming that the user's
2735 intent is to resume tracing the recorded process. */
2736 if (!non_stop && scheduler_mode == schedlock_replay
2737 && target_record_is_replaying (minus_one_ptid)
2738 && !target_record_will_replay (user_visible_resume_ptid (step),
2739 execution_direction))
2740 target_record_stop_replaying ();
2741
2742 if (!non_stop && inferior_ptid != null_ptid)
2743 {
2744 ptid_t resume_ptid = user_visible_resume_ptid (step);
2745 process_stratum_target *resume_target
2746 = user_visible_resume_target (resume_ptid);
2747
2748 /* In all-stop mode, delete the per-thread status of all threads
2749 we're about to resume, implicitly and explicitly. */
2750 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2751 clear_proceed_status_thread (tp);
2752 }
2753
2754 if (inferior_ptid != null_ptid)
2755 {
2756 struct inferior *inferior;
2757
2758 if (non_stop)
2759 {
2760 /* If in non-stop mode, only delete the per-thread status of
2761 the current thread. */
2762 clear_proceed_status_thread (inferior_thread ());
2763 }
2764
2765 inferior = current_inferior ();
2766 inferior->control.stop_soon = NO_STOP_QUIETLY;
2767 }
2768
2769 gdb::observers::about_to_proceed.notify ();
2770 }
2771
2772 /* Returns true if TP is still stopped at a breakpoint that needs
2773 stepping-over in order to make progress. If the breakpoint is gone
2774 meanwhile, we can skip the whole step-over dance. */
2775
2776 static int
2777 thread_still_needs_step_over_bp (struct thread_info *tp)
2778 {
2779 if (tp->stepping_over_breakpoint)
2780 {
2781 struct regcache *regcache = get_thread_regcache (tp);
2782
2783 if (breakpoint_here_p (regcache->aspace (),
2784 regcache_read_pc (regcache))
2785 == ordinary_breakpoint_here)
2786 return 1;
2787
2788 tp->stepping_over_breakpoint = 0;
2789 }
2790
2791 return 0;
2792 }
2793
2794 /* Check whether thread TP still needs to start a step-over in order
2795 to make progress when resumed. Returns an bitwise or of enum
2796 step_over_what bits, indicating what needs to be stepped over. */
2797
2798 static step_over_what
2799 thread_still_needs_step_over (struct thread_info *tp)
2800 {
2801 step_over_what what = 0;
2802
2803 if (thread_still_needs_step_over_bp (tp))
2804 what |= STEP_OVER_BREAKPOINT;
2805
2806 if (tp->stepping_over_watchpoint
2807 && !target_have_steppable_watchpoint)
2808 what |= STEP_OVER_WATCHPOINT;
2809
2810 return what;
2811 }
2812
2813 /* Returns true if scheduler locking applies. STEP indicates whether
2814 we're about to do a step/next-like command to a thread. */
2815
2816 static int
2817 schedlock_applies (struct thread_info *tp)
2818 {
2819 return (scheduler_mode == schedlock_on
2820 || (scheduler_mode == schedlock_step
2821 && tp->control.stepping_command)
2822 || (scheduler_mode == schedlock_replay
2823 && target_record_will_replay (minus_one_ptid,
2824 execution_direction)));
2825 }
2826
2827 /* Calls target_commit_resume on all targets. */
2828
2829 static void
2830 commit_resume_all_targets ()
2831 {
2832 scoped_restore_current_thread restore_thread;
2833
2834 /* Map between process_target and a representative inferior. This
2835 is to avoid committing a resume in the same target more than
2836 once. Resumptions must be idempotent, so this is an
2837 optimization. */
2838 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2839
2840 for (inferior *inf : all_non_exited_inferiors ())
2841 if (inf->has_execution ())
2842 conn_inf[inf->process_target ()] = inf;
2843
2844 for (const auto &ci : conn_inf)
2845 {
2846 inferior *inf = ci.second;
2847 switch_to_inferior_no_thread (inf);
2848 target_commit_resume ();
2849 }
2850 }
2851
2852 /* Check that all the targets we're about to resume are in non-stop
2853 mode. Ideally, we'd only care whether all targets support
2854 target-async, but we're not there yet. E.g., stop_all_threads
2855 doesn't know how to handle all-stop targets. Also, the remote
2856 protocol in all-stop mode is synchronous, irrespective of
2857 target-async, which means that things like a breakpoint re-set
2858 triggered by one target would try to read memory from all targets
2859 and fail. */
2860
2861 static void
2862 check_multi_target_resumption (process_stratum_target *resume_target)
2863 {
2864 if (!non_stop && resume_target == nullptr)
2865 {
2866 scoped_restore_current_thread restore_thread;
2867
2868 /* This is used to track whether we're resuming more than one
2869 target. */
2870 process_stratum_target *first_connection = nullptr;
2871
2872 /* The first inferior we see with a target that does not work in
2873 always-non-stop mode. */
2874 inferior *first_not_non_stop = nullptr;
2875
2876 for (inferior *inf : all_non_exited_inferiors (resume_target))
2877 {
2878 switch_to_inferior_no_thread (inf);
2879
2880 if (!target_has_execution)
2881 continue;
2882
2883 process_stratum_target *proc_target
2884 = current_inferior ()->process_target();
2885
2886 if (!target_is_non_stop_p ())
2887 first_not_non_stop = inf;
2888
2889 if (first_connection == nullptr)
2890 first_connection = proc_target;
2891 else if (first_connection != proc_target
2892 && first_not_non_stop != nullptr)
2893 {
2894 switch_to_inferior_no_thread (first_not_non_stop);
2895
2896 proc_target = current_inferior ()->process_target();
2897
2898 error (_("Connection %d (%s) does not support "
2899 "multi-target resumption."),
2900 proc_target->connection_number,
2901 make_target_connection_string (proc_target).c_str ());
2902 }
2903 }
2904 }
2905 }
2906
2907 /* Basic routine for continuing the program in various fashions.
2908
2909 ADDR is the address to resume at, or -1 for resume where stopped.
2910 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2911 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2912
2913 You should call clear_proceed_status before calling proceed. */
2914
2915 void
2916 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2917 {
2918 struct regcache *regcache;
2919 struct gdbarch *gdbarch;
2920 CORE_ADDR pc;
2921 struct execution_control_state ecss;
2922 struct execution_control_state *ecs = &ecss;
2923 int started;
2924
2925 /* If we're stopped at a fork/vfork, follow the branch set by the
2926 "set follow-fork-mode" command; otherwise, we'll just proceed
2927 resuming the current thread. */
2928 if (!follow_fork ())
2929 {
2930 /* The target for some reason decided not to resume. */
2931 normal_stop ();
2932 if (target_can_async_p ())
2933 inferior_event_handler (INF_EXEC_COMPLETE);
2934 return;
2935 }
2936
2937 /* We'll update this if & when we switch to a new thread. */
2938 previous_inferior_ptid = inferior_ptid;
2939
2940 regcache = get_current_regcache ();
2941 gdbarch = regcache->arch ();
2942 const address_space *aspace = regcache->aspace ();
2943
2944 pc = regcache_read_pc_protected (regcache);
2945
2946 thread_info *cur_thr = inferior_thread ();
2947
2948 /* Fill in with reasonable starting values. */
2949 init_thread_stepping_state (cur_thr);
2950
2951 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2952
2953 ptid_t resume_ptid
2954 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2955 process_stratum_target *resume_target
2956 = user_visible_resume_target (resume_ptid);
2957
2958 check_multi_target_resumption (resume_target);
2959
2960 if (addr == (CORE_ADDR) -1)
2961 {
2962 if (pc == cur_thr->suspend.stop_pc
2963 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2964 && execution_direction != EXEC_REVERSE)
2965 /* There is a breakpoint at the address we will resume at,
2966 step one instruction before inserting breakpoints so that
2967 we do not stop right away (and report a second hit at this
2968 breakpoint).
2969
2970 Note, we don't do this in reverse, because we won't
2971 actually be executing the breakpoint insn anyway.
2972 We'll be (un-)executing the previous instruction. */
2973 cur_thr->stepping_over_breakpoint = 1;
2974 else if (gdbarch_single_step_through_delay_p (gdbarch)
2975 && gdbarch_single_step_through_delay (gdbarch,
2976 get_current_frame ()))
2977 /* We stepped onto an instruction that needs to be stepped
2978 again before re-inserting the breakpoint, do so. */
2979 cur_thr->stepping_over_breakpoint = 1;
2980 }
2981 else
2982 {
2983 regcache_write_pc (regcache, addr);
2984 }
2985
2986 if (siggnal != GDB_SIGNAL_DEFAULT)
2987 cur_thr->suspend.stop_signal = siggnal;
2988
2989 /* If an exception is thrown from this point on, make sure to
2990 propagate GDB's knowledge of the executing state to the
2991 frontend/user running state. */
2992 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2993
2994 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2995 threads (e.g., we might need to set threads stepping over
2996 breakpoints first), from the user/frontend's point of view, all
2997 threads in RESUME_PTID are now running. Unless we're calling an
2998 inferior function, as in that case we pretend the inferior
2999 doesn't run at all. */
3000 if (!cur_thr->control.in_infcall)
3001 set_running (resume_target, resume_ptid, true);
3002
3003 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3004 gdb_signal_to_symbol_string (siggnal));
3005
3006 annotate_starting ();
3007
3008 /* Make sure that output from GDB appears before output from the
3009 inferior. */
3010 gdb_flush (gdb_stdout);
3011
3012 /* Since we've marked the inferior running, give it the terminal. A
3013 QUIT/Ctrl-C from here on is forwarded to the target (which can
3014 still detect attempts to unblock a stuck connection with repeated
3015 Ctrl-C from within target_pass_ctrlc). */
3016 target_terminal::inferior ();
3017
3018 /* In a multi-threaded task we may select another thread and
3019 then continue or step.
3020
3021 But if a thread that we're resuming had stopped at a breakpoint,
3022 it will immediately cause another breakpoint stop without any
3023 execution (i.e. it will report a breakpoint hit incorrectly). So
3024 we must step over it first.
3025
3026 Look for threads other than the current (TP) that reported a
3027 breakpoint hit and haven't been resumed yet since. */
3028
3029 /* If scheduler locking applies, we can avoid iterating over all
3030 threads. */
3031 if (!non_stop && !schedlock_applies (cur_thr))
3032 {
3033 for (thread_info *tp : all_non_exited_threads (resume_target,
3034 resume_ptid))
3035 {
3036 switch_to_thread_no_regs (tp);
3037
3038 /* Ignore the current thread here. It's handled
3039 afterwards. */
3040 if (tp == cur_thr)
3041 continue;
3042
3043 if (!thread_still_needs_step_over (tp))
3044 continue;
3045
3046 gdb_assert (!thread_is_in_step_over_chain (tp));
3047
3048 infrun_log_debug ("need to step-over [%s] first",
3049 target_pid_to_str (tp->ptid).c_str ());
3050
3051 global_thread_step_over_chain_enqueue (tp);
3052 }
3053
3054 switch_to_thread (cur_thr);
3055 }
3056
3057 /* Enqueue the current thread last, so that we move all other
3058 threads over their breakpoints first. */
3059 if (cur_thr->stepping_over_breakpoint)
3060 global_thread_step_over_chain_enqueue (cur_thr);
3061
3062 /* If the thread isn't started, we'll still need to set its prev_pc,
3063 so that switch_back_to_stepped_thread knows the thread hasn't
3064 advanced. Must do this before resuming any thread, as in
3065 all-stop/remote, once we resume we can't send any other packet
3066 until the target stops again. */
3067 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3068
3069 {
3070 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3071
3072 started = start_step_over ();
3073
3074 if (step_over_info_valid_p ())
3075 {
3076 /* Either this thread started a new in-line step over, or some
3077 other thread was already doing one. In either case, don't
3078 resume anything else until the step-over is finished. */
3079 }
3080 else if (started && !target_is_non_stop_p ())
3081 {
3082 /* A new displaced stepping sequence was started. In all-stop,
3083 we can't talk to the target anymore until it next stops. */
3084 }
3085 else if (!non_stop && target_is_non_stop_p ())
3086 {
3087 /* In all-stop, but the target is always in non-stop mode.
3088 Start all other threads that are implicitly resumed too. */
3089 for (thread_info *tp : all_non_exited_threads (resume_target,
3090 resume_ptid))
3091 {
3092 switch_to_thread_no_regs (tp);
3093
3094 if (!tp->inf->has_execution ())
3095 {
3096 infrun_log_debug ("[%s] target has no execution",
3097 target_pid_to_str (tp->ptid).c_str ());
3098 continue;
3099 }
3100
3101 if (tp->resumed)
3102 {
3103 infrun_log_debug ("[%s] resumed",
3104 target_pid_to_str (tp->ptid).c_str ());
3105 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3106 continue;
3107 }
3108
3109 if (thread_is_in_step_over_chain (tp))
3110 {
3111 infrun_log_debug ("[%s] needs step-over",
3112 target_pid_to_str (tp->ptid).c_str ());
3113 continue;
3114 }
3115
3116 infrun_log_debug ("resuming %s",
3117 target_pid_to_str (tp->ptid).c_str ());
3118
3119 reset_ecs (ecs, tp);
3120 switch_to_thread (tp);
3121 keep_going_pass_signal (ecs);
3122 if (!ecs->wait_some_more)
3123 error (_("Command aborted."));
3124 }
3125 }
3126 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3127 {
3128 /* The thread wasn't started, and isn't queued, run it now. */
3129 reset_ecs (ecs, cur_thr);
3130 switch_to_thread (cur_thr);
3131 keep_going_pass_signal (ecs);
3132 if (!ecs->wait_some_more)
3133 error (_("Command aborted."));
3134 }
3135 }
3136
3137 commit_resume_all_targets ();
3138
3139 finish_state.release ();
3140
3141 /* If we've switched threads above, switch back to the previously
3142 current thread. We don't want the user to see a different
3143 selected thread. */
3144 switch_to_thread (cur_thr);
3145
3146 /* Tell the event loop to wait for it to stop. If the target
3147 supports asynchronous execution, it'll do this from within
3148 target_resume. */
3149 if (!target_can_async_p ())
3150 mark_async_event_handler (infrun_async_inferior_event_token);
3151 }
3152 \f
3153
3154 /* Start remote-debugging of a machine over a serial link. */
3155
3156 void
3157 start_remote (int from_tty)
3158 {
3159 inferior *inf = current_inferior ();
3160 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3161
3162 /* Always go on waiting for the target, regardless of the mode. */
3163 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3164 indicate to wait_for_inferior that a target should timeout if
3165 nothing is returned (instead of just blocking). Because of this,
3166 targets expecting an immediate response need to, internally, set
3167 things up so that the target_wait() is forced to eventually
3168 timeout. */
3169 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3170 differentiate to its caller what the state of the target is after
3171 the initial open has been performed. Here we're assuming that
3172 the target has stopped. It should be possible to eventually have
3173 target_open() return to the caller an indication that the target
3174 is currently running and GDB state should be set to the same as
3175 for an async run. */
3176 wait_for_inferior (inf);
3177
3178 /* Now that the inferior has stopped, do any bookkeeping like
3179 loading shared libraries. We want to do this before normal_stop,
3180 so that the displayed frame is up to date. */
3181 post_create_inferior (current_top_target (), from_tty);
3182
3183 normal_stop ();
3184 }
3185
3186 /* Initialize static vars when a new inferior begins. */
3187
3188 void
3189 init_wait_for_inferior (void)
3190 {
3191 /* These are meaningless until the first time through wait_for_inferior. */
3192
3193 breakpoint_init_inferior (inf_starting);
3194
3195 clear_proceed_status (0);
3196
3197 nullify_last_target_wait_ptid ();
3198
3199 previous_inferior_ptid = inferior_ptid;
3200 }
3201
3202 \f
3203
3204 static void handle_inferior_event (struct execution_control_state *ecs);
3205
3206 static void handle_step_into_function (struct gdbarch *gdbarch,
3207 struct execution_control_state *ecs);
3208 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3209 struct execution_control_state *ecs);
3210 static void handle_signal_stop (struct execution_control_state *ecs);
3211 static void check_exception_resume (struct execution_control_state *,
3212 struct frame_info *);
3213
3214 static void end_stepping_range (struct execution_control_state *ecs);
3215 static void stop_waiting (struct execution_control_state *ecs);
3216 static void keep_going (struct execution_control_state *ecs);
3217 static void process_event_stop_test (struct execution_control_state *ecs);
3218 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3219
3220 /* This function is attached as a "thread_stop_requested" observer.
3221 Cleanup local state that assumed the PTID was to be resumed, and
3222 report the stop to the frontend. */
3223
3224 static void
3225 infrun_thread_stop_requested (ptid_t ptid)
3226 {
3227 process_stratum_target *curr_target = current_inferior ()->process_target ();
3228
3229 /* PTID was requested to stop. If the thread was already stopped,
3230 but the user/frontend doesn't know about that yet (e.g., the
3231 thread had been temporarily paused for some step-over), set up
3232 for reporting the stop now. */
3233 for (thread_info *tp : all_threads (curr_target, ptid))
3234 {
3235 if (tp->state != THREAD_RUNNING)
3236 continue;
3237 if (tp->executing)
3238 continue;
3239
3240 /* Remove matching threads from the step-over queue, so
3241 start_step_over doesn't try to resume them
3242 automatically. */
3243 if (thread_is_in_step_over_chain (tp))
3244 global_thread_step_over_chain_remove (tp);
3245
3246 /* If the thread is stopped, but the user/frontend doesn't
3247 know about that yet, queue a pending event, as if the
3248 thread had just stopped now. Unless the thread already had
3249 a pending event. */
3250 if (!tp->suspend.waitstatus_pending_p)
3251 {
3252 tp->suspend.waitstatus_pending_p = 1;
3253 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3254 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3255 }
3256
3257 /* Clear the inline-frame state, since we're re-processing the
3258 stop. */
3259 clear_inline_frame_state (tp);
3260
3261 /* If this thread was paused because some other thread was
3262 doing an inline-step over, let that finish first. Once
3263 that happens, we'll restart all threads and consume pending
3264 stop events then. */
3265 if (step_over_info_valid_p ())
3266 continue;
3267
3268 /* Otherwise we can process the (new) pending event now. Set
3269 it so this pending event is considered by
3270 do_target_wait. */
3271 tp->resumed = true;
3272 }
3273 }
3274
3275 static void
3276 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3277 {
3278 if (target_last_proc_target == tp->inf->process_target ()
3279 && target_last_wait_ptid == tp->ptid)
3280 nullify_last_target_wait_ptid ();
3281 }
3282
3283 /* Delete the step resume, single-step and longjmp/exception resume
3284 breakpoints of TP. */
3285
3286 static void
3287 delete_thread_infrun_breakpoints (struct thread_info *tp)
3288 {
3289 delete_step_resume_breakpoint (tp);
3290 delete_exception_resume_breakpoint (tp);
3291 delete_single_step_breakpoints (tp);
3292 }
3293
3294 /* If the target still has execution, call FUNC for each thread that
3295 just stopped. In all-stop, that's all the non-exited threads; in
3296 non-stop, that's the current thread, only. */
3297
3298 typedef void (*for_each_just_stopped_thread_callback_func)
3299 (struct thread_info *tp);
3300
3301 static void
3302 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3303 {
3304 if (!target_has_execution || inferior_ptid == null_ptid)
3305 return;
3306
3307 if (target_is_non_stop_p ())
3308 {
3309 /* If in non-stop mode, only the current thread stopped. */
3310 func (inferior_thread ());
3311 }
3312 else
3313 {
3314 /* In all-stop mode, all threads have stopped. */
3315 for (thread_info *tp : all_non_exited_threads ())
3316 func (tp);
3317 }
3318 }
3319
3320 /* Delete the step resume and longjmp/exception resume breakpoints of
3321 the threads that just stopped. */
3322
3323 static void
3324 delete_just_stopped_threads_infrun_breakpoints (void)
3325 {
3326 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3327 }
3328
3329 /* Delete the single-step breakpoints of the threads that just
3330 stopped. */
3331
3332 static void
3333 delete_just_stopped_threads_single_step_breakpoints (void)
3334 {
3335 for_each_just_stopped_thread (delete_single_step_breakpoints);
3336 }
3337
3338 /* See infrun.h. */
3339
3340 void
3341 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3342 const struct target_waitstatus *ws)
3343 {
3344 std::string status_string = target_waitstatus_to_string (ws);
3345 string_file stb;
3346
3347 /* The text is split over several lines because it was getting too long.
3348 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3349 output as a unit; we want only one timestamp printed if debug_timestamp
3350 is set. */
3351
3352 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3353 waiton_ptid.pid (),
3354 waiton_ptid.lwp (),
3355 waiton_ptid.tid ());
3356 if (waiton_ptid.pid () != -1)
3357 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3358 stb.printf (", status) =\n");
3359 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3360 result_ptid.pid (),
3361 result_ptid.lwp (),
3362 result_ptid.tid (),
3363 target_pid_to_str (result_ptid).c_str ());
3364 stb.printf ("infrun: %s\n", status_string.c_str ());
3365
3366 /* This uses %s in part to handle %'s in the text, but also to avoid
3367 a gcc error: the format attribute requires a string literal. */
3368 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3369 }
3370
3371 /* Select a thread at random, out of those which are resumed and have
3372 had events. */
3373
3374 static struct thread_info *
3375 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3376 {
3377 int num_events = 0;
3378
3379 auto has_event = [&] (thread_info *tp)
3380 {
3381 return (tp->ptid.matches (waiton_ptid)
3382 && tp->resumed
3383 && tp->suspend.waitstatus_pending_p);
3384 };
3385
3386 /* First see how many events we have. Count only resumed threads
3387 that have an event pending. */
3388 for (thread_info *tp : inf->non_exited_threads ())
3389 if (has_event (tp))
3390 num_events++;
3391
3392 if (num_events == 0)
3393 return NULL;
3394
3395 /* Now randomly pick a thread out of those that have had events. */
3396 int random_selector = (int) ((num_events * (double) rand ())
3397 / (RAND_MAX + 1.0));
3398
3399 if (num_events > 1)
3400 infrun_log_debug ("Found %d events, selecting #%d",
3401 num_events, random_selector);
3402
3403 /* Select the Nth thread that has had an event. */
3404 for (thread_info *tp : inf->non_exited_threads ())
3405 if (has_event (tp))
3406 if (random_selector-- == 0)
3407 return tp;
3408
3409 gdb_assert_not_reached ("event thread not found");
3410 }
3411
3412 /* Wrapper for target_wait that first checks whether threads have
3413 pending statuses to report before actually asking the target for
3414 more events. INF is the inferior we're using to call target_wait
3415 on. */
3416
3417 static ptid_t
3418 do_target_wait_1 (inferior *inf, ptid_t ptid,
3419 target_waitstatus *status, int options)
3420 {
3421 ptid_t event_ptid;
3422 struct thread_info *tp;
3423
3424 /* We know that we are looking for an event in the target of inferior
3425 INF, but we don't know which thread the event might come from. As
3426 such we want to make sure that INFERIOR_PTID is reset so that none of
3427 the wait code relies on it - doing so is always a mistake. */
3428 switch_to_inferior_no_thread (inf);
3429
3430 /* First check if there is a resumed thread with a wait status
3431 pending. */
3432 if (ptid == minus_one_ptid || ptid.is_pid ())
3433 {
3434 tp = random_pending_event_thread (inf, ptid);
3435 }
3436 else
3437 {
3438 infrun_log_debug ("Waiting for specific thread %s.",
3439 target_pid_to_str (ptid).c_str ());
3440
3441 /* We have a specific thread to check. */
3442 tp = find_thread_ptid (inf, ptid);
3443 gdb_assert (tp != NULL);
3444 if (!tp->suspend.waitstatus_pending_p)
3445 tp = NULL;
3446 }
3447
3448 if (tp != NULL
3449 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3450 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3451 {
3452 struct regcache *regcache = get_thread_regcache (tp);
3453 struct gdbarch *gdbarch = regcache->arch ();
3454 CORE_ADDR pc;
3455 int discard = 0;
3456
3457 pc = regcache_read_pc (regcache);
3458
3459 if (pc != tp->suspend.stop_pc)
3460 {
3461 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3462 target_pid_to_str (tp->ptid).c_str (),
3463 paddress (gdbarch, tp->suspend.stop_pc),
3464 paddress (gdbarch, pc));
3465 discard = 1;
3466 }
3467 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3468 {
3469 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3470 target_pid_to_str (tp->ptid).c_str (),
3471 paddress (gdbarch, pc));
3472
3473 discard = 1;
3474 }
3475
3476 if (discard)
3477 {
3478 infrun_log_debug ("pending event of %s cancelled.",
3479 target_pid_to_str (tp->ptid).c_str ());
3480
3481 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3482 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3483 }
3484 }
3485
3486 if (tp != NULL)
3487 {
3488 infrun_log_debug ("Using pending wait status %s for %s.",
3489 target_waitstatus_to_string
3490 (&tp->suspend.waitstatus).c_str (),
3491 target_pid_to_str (tp->ptid).c_str ());
3492
3493 /* Now that we've selected our final event LWP, un-adjust its PC
3494 if it was a software breakpoint (and the target doesn't
3495 always adjust the PC itself). */
3496 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3497 && !target_supports_stopped_by_sw_breakpoint ())
3498 {
3499 struct regcache *regcache;
3500 struct gdbarch *gdbarch;
3501 int decr_pc;
3502
3503 regcache = get_thread_regcache (tp);
3504 gdbarch = regcache->arch ();
3505
3506 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3507 if (decr_pc != 0)
3508 {
3509 CORE_ADDR pc;
3510
3511 pc = regcache_read_pc (regcache);
3512 regcache_write_pc (regcache, pc + decr_pc);
3513 }
3514 }
3515
3516 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3517 *status = tp->suspend.waitstatus;
3518 tp->suspend.waitstatus_pending_p = 0;
3519
3520 /* Wake up the event loop again, until all pending events are
3521 processed. */
3522 if (target_is_async_p ())
3523 mark_async_event_handler (infrun_async_inferior_event_token);
3524 return tp->ptid;
3525 }
3526
3527 /* But if we don't find one, we'll have to wait. */
3528
3529 if (deprecated_target_wait_hook)
3530 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3531 else
3532 event_ptid = target_wait (ptid, status, options);
3533
3534 return event_ptid;
3535 }
3536
3537 /* Wrapper for target_wait that first checks whether threads have
3538 pending statuses to report before actually asking the target for
3539 more events. Polls for events from all inferiors/targets. */
3540
3541 static bool
3542 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3543 {
3544 int num_inferiors = 0;
3545 int random_selector;
3546
3547 /* For fairness, we pick the first inferior/target to poll at random
3548 out of all inferiors that may report events, and then continue
3549 polling the rest of the inferior list starting from that one in a
3550 circular fashion until the whole list is polled once. */
3551
3552 auto inferior_matches = [&wait_ptid] (inferior *inf)
3553 {
3554 return (inf->process_target () != NULL
3555 && ptid_t (inf->pid).matches (wait_ptid));
3556 };
3557
3558 /* First see how many matching inferiors we have. */
3559 for (inferior *inf : all_inferiors ())
3560 if (inferior_matches (inf))
3561 num_inferiors++;
3562
3563 if (num_inferiors == 0)
3564 {
3565 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3566 return false;
3567 }
3568
3569 /* Now randomly pick an inferior out of those that matched. */
3570 random_selector = (int)
3571 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3572
3573 if (num_inferiors > 1)
3574 infrun_log_debug ("Found %d inferiors, starting at #%d",
3575 num_inferiors, random_selector);
3576
3577 /* Select the Nth inferior that matched. */
3578
3579 inferior *selected = nullptr;
3580
3581 for (inferior *inf : all_inferiors ())
3582 if (inferior_matches (inf))
3583 if (random_selector-- == 0)
3584 {
3585 selected = inf;
3586 break;
3587 }
3588
3589 /* Now poll for events out of each of the matching inferior's
3590 targets, starting from the selected one. */
3591
3592 auto do_wait = [&] (inferior *inf)
3593 {
3594 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3595 ecs->target = inf->process_target ();
3596 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3597 };
3598
3599 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3600 here spuriously after the target is all stopped and we've already
3601 reported the stop to the user, polling for events. */
3602 scoped_restore_current_thread restore_thread;
3603
3604 int inf_num = selected->num;
3605 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3606 if (inferior_matches (inf))
3607 if (do_wait (inf))
3608 return true;
3609
3610 for (inferior *inf = inferior_list;
3611 inf != NULL && inf->num < inf_num;
3612 inf = inf->next)
3613 if (inferior_matches (inf))
3614 if (do_wait (inf))
3615 return true;
3616
3617 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3618 return false;
3619 }
3620
3621 /* Prepare and stabilize the inferior for detaching it. E.g.,
3622 detaching while a thread is displaced stepping is a recipe for
3623 crashing it, as nothing would readjust the PC out of the scratch
3624 pad. */
3625
3626 void
3627 prepare_for_detach (void)
3628 {
3629 struct inferior *inf = current_inferior ();
3630 ptid_t pid_ptid = ptid_t (inf->pid);
3631
3632 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3633
3634 /* Is any thread of this process displaced stepping? If not,
3635 there's nothing else to do. */
3636 if (displaced_step_in_progress (inf))
3637 return;
3638
3639 infrun_log_debug ("displaced-stepping in-process while detaching");
3640
3641 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3642
3643 // FIXME
3644 while (false)
3645 {
3646 struct execution_control_state ecss;
3647 struct execution_control_state *ecs;
3648
3649 ecs = &ecss;
3650 memset (ecs, 0, sizeof (*ecs));
3651
3652 overlay_cache_invalid = 1;
3653 /* Flush target cache before starting to handle each event.
3654 Target was running and cache could be stale. This is just a
3655 heuristic. Running threads may modify target memory, but we
3656 don't get any event. */
3657 target_dcache_invalidate ();
3658
3659 do_target_wait (pid_ptid, ecs, 0);
3660
3661 if (debug_infrun)
3662 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3663
3664 /* If an error happens while handling the event, propagate GDB's
3665 knowledge of the executing state to the frontend/user running
3666 state. */
3667 scoped_finish_thread_state finish_state (inf->process_target (),
3668 minus_one_ptid);
3669
3670 /* Now figure out what to do with the result of the result. */
3671 handle_inferior_event (ecs);
3672
3673 /* No error, don't finish the state yet. */
3674 finish_state.release ();
3675
3676 /* Breakpoints and watchpoints are not installed on the target
3677 at this point, and signals are passed directly to the
3678 inferior, so this must mean the process is gone. */
3679 if (!ecs->wait_some_more)
3680 {
3681 restore_detaching.release ();
3682 error (_("Program exited while detaching"));
3683 }
3684 }
3685
3686 restore_detaching.release ();
3687 }
3688
3689 /* Wait for control to return from inferior to debugger.
3690
3691 If inferior gets a signal, we may decide to start it up again
3692 instead of returning. That is why there is a loop in this function.
3693 When this function actually returns it means the inferior
3694 should be left stopped and GDB should read more commands. */
3695
3696 static void
3697 wait_for_inferior (inferior *inf)
3698 {
3699 infrun_log_debug ("wait_for_inferior ()");
3700
3701 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3702
3703 /* If an error happens while handling the event, propagate GDB's
3704 knowledge of the executing state to the frontend/user running
3705 state. */
3706 scoped_finish_thread_state finish_state
3707 (inf->process_target (), minus_one_ptid);
3708
3709 while (1)
3710 {
3711 struct execution_control_state ecss;
3712 struct execution_control_state *ecs = &ecss;
3713
3714 memset (ecs, 0, sizeof (*ecs));
3715
3716 overlay_cache_invalid = 1;
3717
3718 /* Flush target cache before starting to handle each event.
3719 Target was running and cache could be stale. This is just a
3720 heuristic. Running threads may modify target memory, but we
3721 don't get any event. */
3722 target_dcache_invalidate ();
3723
3724 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3725 ecs->target = inf->process_target ();
3726
3727 if (debug_infrun)
3728 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3729
3730 /* Now figure out what to do with the result of the result. */
3731 handle_inferior_event (ecs);
3732
3733 if (!ecs->wait_some_more)
3734 break;
3735 }
3736
3737 /* No error, don't finish the state yet. */
3738 finish_state.release ();
3739 }
3740
3741 /* Cleanup that reinstalls the readline callback handler, if the
3742 target is running in the background. If while handling the target
3743 event something triggered a secondary prompt, like e.g., a
3744 pagination prompt, we'll have removed the callback handler (see
3745 gdb_readline_wrapper_line). Need to do this as we go back to the
3746 event loop, ready to process further input. Note this has no
3747 effect if the handler hasn't actually been removed, because calling
3748 rl_callback_handler_install resets the line buffer, thus losing
3749 input. */
3750
3751 static void
3752 reinstall_readline_callback_handler_cleanup ()
3753 {
3754 struct ui *ui = current_ui;
3755
3756 if (!ui->async)
3757 {
3758 /* We're not going back to the top level event loop yet. Don't
3759 install the readline callback, as it'd prep the terminal,
3760 readline-style (raw, noecho) (e.g., --batch). We'll install
3761 it the next time the prompt is displayed, when we're ready
3762 for input. */
3763 return;
3764 }
3765
3766 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3767 gdb_rl_callback_handler_reinstall ();
3768 }
3769
3770 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3771 that's just the event thread. In all-stop, that's all threads. */
3772
3773 static void
3774 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3775 {
3776 if (ecs->event_thread != NULL
3777 && ecs->event_thread->thread_fsm != NULL)
3778 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3779
3780 if (!non_stop)
3781 {
3782 for (thread_info *thr : all_non_exited_threads ())
3783 {
3784 if (thr->thread_fsm == NULL)
3785 continue;
3786 if (thr == ecs->event_thread)
3787 continue;
3788
3789 switch_to_thread (thr);
3790 thr->thread_fsm->clean_up (thr);
3791 }
3792
3793 if (ecs->event_thread != NULL)
3794 switch_to_thread (ecs->event_thread);
3795 }
3796 }
3797
3798 /* Helper for all_uis_check_sync_execution_done that works on the
3799 current UI. */
3800
3801 static void
3802 check_curr_ui_sync_execution_done (void)
3803 {
3804 struct ui *ui = current_ui;
3805
3806 if (ui->prompt_state == PROMPT_NEEDED
3807 && ui->async
3808 && !gdb_in_secondary_prompt_p (ui))
3809 {
3810 target_terminal::ours ();
3811 gdb::observers::sync_execution_done.notify ();
3812 ui_register_input_event_handler (ui);
3813 }
3814 }
3815
3816 /* See infrun.h. */
3817
3818 void
3819 all_uis_check_sync_execution_done (void)
3820 {
3821 SWITCH_THRU_ALL_UIS ()
3822 {
3823 check_curr_ui_sync_execution_done ();
3824 }
3825 }
3826
3827 /* See infrun.h. */
3828
3829 void
3830 all_uis_on_sync_execution_starting (void)
3831 {
3832 SWITCH_THRU_ALL_UIS ()
3833 {
3834 if (current_ui->prompt_state == PROMPT_NEEDED)
3835 async_disable_stdin ();
3836 }
3837 }
3838
3839 /* Asynchronous version of wait_for_inferior. It is called by the
3840 event loop whenever a change of state is detected on the file
3841 descriptor corresponding to the target. It can be called more than
3842 once to complete a single execution command. In such cases we need
3843 to keep the state in a global variable ECSS. If it is the last time
3844 that this function is called for a single execution command, then
3845 report to the user that the inferior has stopped, and do the
3846 necessary cleanups. */
3847
3848 void
3849 fetch_inferior_event ()
3850 {
3851 struct execution_control_state ecss;
3852 struct execution_control_state *ecs = &ecss;
3853 int cmd_done = 0;
3854
3855 memset (ecs, 0, sizeof (*ecs));
3856
3857 /* Events are always processed with the main UI as current UI. This
3858 way, warnings, debug output, etc. are always consistently sent to
3859 the main console. */
3860 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3861
3862 /* End up with readline processing input, if necessary. */
3863 {
3864 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3865
3866 /* We're handling a live event, so make sure we're doing live
3867 debugging. If we're looking at traceframes while the target is
3868 running, we're going to need to get back to that mode after
3869 handling the event. */
3870 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3871 if (non_stop)
3872 {
3873 maybe_restore_traceframe.emplace ();
3874 set_current_traceframe (-1);
3875 }
3876
3877 /* The user/frontend should not notice a thread switch due to
3878 internal events. Make sure we revert to the user selected
3879 thread and frame after handling the event and running any
3880 breakpoint commands. */
3881 scoped_restore_current_thread restore_thread;
3882
3883 overlay_cache_invalid = 1;
3884 /* Flush target cache before starting to handle each event. Target
3885 was running and cache could be stale. This is just a heuristic.
3886 Running threads may modify target memory, but we don't get any
3887 event. */
3888 target_dcache_invalidate ();
3889
3890 scoped_restore save_exec_dir
3891 = make_scoped_restore (&execution_direction,
3892 target_execution_direction ());
3893
3894 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3895 return;
3896
3897 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3898
3899 /* Switch to the target that generated the event, so we can do
3900 target calls. Any inferior bound to the target will do, so we
3901 just switch to the first we find. */
3902 for (inferior *inf : all_inferiors (ecs->target))
3903 {
3904 switch_to_inferior_no_thread (inf);
3905 break;
3906 }
3907
3908 if (debug_infrun)
3909 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3910
3911 /* If an error happens while handling the event, propagate GDB's
3912 knowledge of the executing state to the frontend/user running
3913 state. */
3914 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3915 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3916
3917 /* Get executed before scoped_restore_current_thread above to apply
3918 still for the thread which has thrown the exception. */
3919 auto defer_bpstat_clear
3920 = make_scope_exit (bpstat_clear_actions);
3921 auto defer_delete_threads
3922 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3923
3924 /* Now figure out what to do with the result of the result. */
3925 handle_inferior_event (ecs);
3926
3927 if (!ecs->wait_some_more)
3928 {
3929 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3930 int should_stop = 1;
3931 struct thread_info *thr = ecs->event_thread;
3932
3933 delete_just_stopped_threads_infrun_breakpoints ();
3934
3935 if (thr != NULL)
3936 {
3937 struct thread_fsm *thread_fsm = thr->thread_fsm;
3938
3939 if (thread_fsm != NULL)
3940 should_stop = thread_fsm->should_stop (thr);
3941 }
3942
3943 if (!should_stop)
3944 {
3945 keep_going (ecs);
3946 }
3947 else
3948 {
3949 bool should_notify_stop = true;
3950 int proceeded = 0;
3951
3952 clean_up_just_stopped_threads_fsms (ecs);
3953
3954 if (thr != NULL && thr->thread_fsm != NULL)
3955 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3956
3957 if (should_notify_stop)
3958 {
3959 /* We may not find an inferior if this was a process exit. */
3960 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3961 proceeded = normal_stop ();
3962 }
3963
3964 if (!proceeded)
3965 {
3966 inferior_event_handler (INF_EXEC_COMPLETE);
3967 cmd_done = 1;
3968 }
3969
3970 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3971 previously selected thread is gone. We have two
3972 choices - switch to no thread selected, or restore the
3973 previously selected thread (now exited). We chose the
3974 later, just because that's what GDB used to do. After
3975 this, "info threads" says "The current thread <Thread
3976 ID 2> has terminated." instead of "No thread
3977 selected.". */
3978 if (!non_stop
3979 && cmd_done
3980 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3981 restore_thread.dont_restore ();
3982 }
3983 }
3984
3985 defer_delete_threads.release ();
3986 defer_bpstat_clear.release ();
3987
3988 /* No error, don't finish the thread states yet. */
3989 finish_state.release ();
3990
3991 /* This scope is used to ensure that readline callbacks are
3992 reinstalled here. */
3993 }
3994
3995 /* If a UI was in sync execution mode, and now isn't, restore its
3996 prompt (a synchronous execution command has finished, and we're
3997 ready for input). */
3998 all_uis_check_sync_execution_done ();
3999
4000 if (cmd_done
4001 && exec_done_display_p
4002 && (inferior_ptid == null_ptid
4003 || inferior_thread ()->state != THREAD_RUNNING))
4004 printf_unfiltered (_("completed.\n"));
4005 }
4006
4007 /* See infrun.h. */
4008
4009 void
4010 set_step_info (thread_info *tp, struct frame_info *frame,
4011 struct symtab_and_line sal)
4012 {
4013 /* This can be removed once this function no longer implicitly relies on the
4014 inferior_ptid value. */
4015 gdb_assert (inferior_ptid == tp->ptid);
4016
4017 tp->control.step_frame_id = get_frame_id (frame);
4018 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4019
4020 tp->current_symtab = sal.symtab;
4021 tp->current_line = sal.line;
4022 }
4023
4024 /* Clear context switchable stepping state. */
4025
4026 void
4027 init_thread_stepping_state (struct thread_info *tss)
4028 {
4029 tss->stepped_breakpoint = 0;
4030 tss->stepping_over_breakpoint = 0;
4031 tss->stepping_over_watchpoint = 0;
4032 tss->step_after_step_resume_breakpoint = 0;
4033 }
4034
4035 /* See infrun.h. */
4036
4037 void
4038 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4039 target_waitstatus status)
4040 {
4041 target_last_proc_target = target;
4042 target_last_wait_ptid = ptid;
4043 target_last_waitstatus = status;
4044 }
4045
4046 /* See infrun.h. */
4047
4048 void
4049 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4050 target_waitstatus *status)
4051 {
4052 if (target != nullptr)
4053 *target = target_last_proc_target;
4054 if (ptid != nullptr)
4055 *ptid = target_last_wait_ptid;
4056 if (status != nullptr)
4057 *status = target_last_waitstatus;
4058 }
4059
4060 /* See infrun.h. */
4061
4062 void
4063 nullify_last_target_wait_ptid (void)
4064 {
4065 target_last_proc_target = nullptr;
4066 target_last_wait_ptid = minus_one_ptid;
4067 target_last_waitstatus = {};
4068 }
4069
4070 /* Switch thread contexts. */
4071
4072 static void
4073 context_switch (execution_control_state *ecs)
4074 {
4075 if (ecs->ptid != inferior_ptid
4076 && (inferior_ptid == null_ptid
4077 || ecs->event_thread != inferior_thread ()))
4078 {
4079 infrun_log_debug ("Switching context from %s to %s",
4080 target_pid_to_str (inferior_ptid).c_str (),
4081 target_pid_to_str (ecs->ptid).c_str ());
4082 }
4083
4084 switch_to_thread (ecs->event_thread);
4085 }
4086
4087 /* If the target can't tell whether we've hit breakpoints
4088 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4089 check whether that could have been caused by a breakpoint. If so,
4090 adjust the PC, per gdbarch_decr_pc_after_break. */
4091
4092 static void
4093 adjust_pc_after_break (struct thread_info *thread,
4094 struct target_waitstatus *ws)
4095 {
4096 struct regcache *regcache;
4097 struct gdbarch *gdbarch;
4098 CORE_ADDR breakpoint_pc, decr_pc;
4099
4100 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4101 we aren't, just return.
4102
4103 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4104 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4105 implemented by software breakpoints should be handled through the normal
4106 breakpoint layer.
4107
4108 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4109 different signals (SIGILL or SIGEMT for instance), but it is less
4110 clear where the PC is pointing afterwards. It may not match
4111 gdbarch_decr_pc_after_break. I don't know any specific target that
4112 generates these signals at breakpoints (the code has been in GDB since at
4113 least 1992) so I can not guess how to handle them here.
4114
4115 In earlier versions of GDB, a target with
4116 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4117 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4118 target with both of these set in GDB history, and it seems unlikely to be
4119 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4120
4121 if (ws->kind != TARGET_WAITKIND_STOPPED)
4122 return;
4123
4124 if (ws->value.sig != GDB_SIGNAL_TRAP)
4125 return;
4126
4127 /* In reverse execution, when a breakpoint is hit, the instruction
4128 under it has already been de-executed. The reported PC always
4129 points at the breakpoint address, so adjusting it further would
4130 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4131 architecture:
4132
4133 B1 0x08000000 : INSN1
4134 B2 0x08000001 : INSN2
4135 0x08000002 : INSN3
4136 PC -> 0x08000003 : INSN4
4137
4138 Say you're stopped at 0x08000003 as above. Reverse continuing
4139 from that point should hit B2 as below. Reading the PC when the
4140 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4141 been de-executed already.
4142
4143 B1 0x08000000 : INSN1
4144 B2 PC -> 0x08000001 : INSN2
4145 0x08000002 : INSN3
4146 0x08000003 : INSN4
4147
4148 We can't apply the same logic as for forward execution, because
4149 we would wrongly adjust the PC to 0x08000000, since there's a
4150 breakpoint at PC - 1. We'd then report a hit on B1, although
4151 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4152 behaviour. */
4153 if (execution_direction == EXEC_REVERSE)
4154 return;
4155
4156 /* If the target can tell whether the thread hit a SW breakpoint,
4157 trust it. Targets that can tell also adjust the PC
4158 themselves. */
4159 if (target_supports_stopped_by_sw_breakpoint ())
4160 return;
4161
4162 /* Note that relying on whether a breakpoint is planted in memory to
4163 determine this can fail. E.g,. the breakpoint could have been
4164 removed since. Or the thread could have been told to step an
4165 instruction the size of a breakpoint instruction, and only
4166 _after_ was a breakpoint inserted at its address. */
4167
4168 /* If this target does not decrement the PC after breakpoints, then
4169 we have nothing to do. */
4170 regcache = get_thread_regcache (thread);
4171 gdbarch = regcache->arch ();
4172
4173 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4174 if (decr_pc == 0)
4175 return;
4176
4177 const address_space *aspace = regcache->aspace ();
4178
4179 /* Find the location where (if we've hit a breakpoint) the
4180 breakpoint would be. */
4181 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4182
4183 /* If the target can't tell whether a software breakpoint triggered,
4184 fallback to figuring it out based on breakpoints we think were
4185 inserted in the target, and on whether the thread was stepped or
4186 continued. */
4187
4188 /* Check whether there actually is a software breakpoint inserted at
4189 that location.
4190
4191 If in non-stop mode, a race condition is possible where we've
4192 removed a breakpoint, but stop events for that breakpoint were
4193 already queued and arrive later. To suppress those spurious
4194 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4195 and retire them after a number of stop events are reported. Note
4196 this is an heuristic and can thus get confused. The real fix is
4197 to get the "stopped by SW BP and needs adjustment" info out of
4198 the target/kernel (and thus never reach here; see above). */
4199 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4200 || (target_is_non_stop_p ()
4201 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4202 {
4203 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4204
4205 if (record_full_is_used ())
4206 restore_operation_disable.emplace
4207 (record_full_gdb_operation_disable_set ());
4208
4209 /* When using hardware single-step, a SIGTRAP is reported for both
4210 a completed single-step and a software breakpoint. Need to
4211 differentiate between the two, as the latter needs adjusting
4212 but the former does not.
4213
4214 The SIGTRAP can be due to a completed hardware single-step only if
4215 - we didn't insert software single-step breakpoints
4216 - this thread is currently being stepped
4217
4218 If any of these events did not occur, we must have stopped due
4219 to hitting a software breakpoint, and have to back up to the
4220 breakpoint address.
4221
4222 As a special case, we could have hardware single-stepped a
4223 software breakpoint. In this case (prev_pc == breakpoint_pc),
4224 we also need to back up to the breakpoint address. */
4225
4226 if (thread_has_single_step_breakpoints_set (thread)
4227 || !currently_stepping (thread)
4228 || (thread->stepped_breakpoint
4229 && thread->prev_pc == breakpoint_pc))
4230 regcache_write_pc (regcache, breakpoint_pc);
4231 }
4232 }
4233
4234 static int
4235 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4236 {
4237 for (frame = get_prev_frame (frame);
4238 frame != NULL;
4239 frame = get_prev_frame (frame))
4240 {
4241 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4242 return 1;
4243 if (get_frame_type (frame) != INLINE_FRAME)
4244 break;
4245 }
4246
4247 return 0;
4248 }
4249
4250 /* Look for an inline frame that is marked for skip.
4251 If PREV_FRAME is TRUE start at the previous frame,
4252 otherwise start at the current frame. Stop at the
4253 first non-inline frame, or at the frame where the
4254 step started. */
4255
4256 static bool
4257 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4258 {
4259 struct frame_info *frame = get_current_frame ();
4260
4261 if (prev_frame)
4262 frame = get_prev_frame (frame);
4263
4264 for (; frame != NULL; frame = get_prev_frame (frame))
4265 {
4266 const char *fn = NULL;
4267 symtab_and_line sal;
4268 struct symbol *sym;
4269
4270 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4271 break;
4272 if (get_frame_type (frame) != INLINE_FRAME)
4273 break;
4274
4275 sal = find_frame_sal (frame);
4276 sym = get_frame_function (frame);
4277
4278 if (sym != NULL)
4279 fn = sym->print_name ();
4280
4281 if (sal.line != 0
4282 && function_name_is_marked_for_skip (fn, sal))
4283 return true;
4284 }
4285
4286 return false;
4287 }
4288
4289 /* If the event thread has the stop requested flag set, pretend it
4290 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4291 target_stop). */
4292
4293 static bool
4294 handle_stop_requested (struct execution_control_state *ecs)
4295 {
4296 if (ecs->event_thread->stop_requested)
4297 {
4298 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4299 ecs->ws.value.sig = GDB_SIGNAL_0;
4300 handle_signal_stop (ecs);
4301 return true;
4302 }
4303 return false;
4304 }
4305
4306 /* Auxiliary function that handles syscall entry/return events.
4307 It returns 1 if the inferior should keep going (and GDB
4308 should ignore the event), or 0 if the event deserves to be
4309 processed. */
4310
4311 static int
4312 handle_syscall_event (struct execution_control_state *ecs)
4313 {
4314 struct regcache *regcache;
4315 int syscall_number;
4316
4317 context_switch (ecs);
4318
4319 regcache = get_thread_regcache (ecs->event_thread);
4320 syscall_number = ecs->ws.value.syscall_number;
4321 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4322
4323 if (catch_syscall_enabled () > 0
4324 && catching_syscall_number (syscall_number) > 0)
4325 {
4326 infrun_log_debug ("syscall number=%d", syscall_number);
4327
4328 ecs->event_thread->control.stop_bpstat
4329 = bpstat_stop_status (regcache->aspace (),
4330 ecs->event_thread->suspend.stop_pc,
4331 ecs->event_thread, &ecs->ws);
4332
4333 if (handle_stop_requested (ecs))
4334 return 0;
4335
4336 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4337 {
4338 /* Catchpoint hit. */
4339 return 0;
4340 }
4341 }
4342
4343 if (handle_stop_requested (ecs))
4344 return 0;
4345
4346 /* If no catchpoint triggered for this, then keep going. */
4347 keep_going (ecs);
4348 return 1;
4349 }
4350
4351 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4352
4353 static void
4354 fill_in_stop_func (struct gdbarch *gdbarch,
4355 struct execution_control_state *ecs)
4356 {
4357 if (!ecs->stop_func_filled_in)
4358 {
4359 const block *block;
4360
4361 /* Don't care about return value; stop_func_start and stop_func_name
4362 will both be 0 if it doesn't work. */
4363 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4364 &ecs->stop_func_name,
4365 &ecs->stop_func_start,
4366 &ecs->stop_func_end,
4367 &block);
4368
4369 /* The call to find_pc_partial_function, above, will set
4370 stop_func_start and stop_func_end to the start and end
4371 of the range containing the stop pc. If this range
4372 contains the entry pc for the block (which is always the
4373 case for contiguous blocks), advance stop_func_start past
4374 the function's start offset and entrypoint. Note that
4375 stop_func_start is NOT advanced when in a range of a
4376 non-contiguous block that does not contain the entry pc. */
4377 if (block != nullptr
4378 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4379 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4380 {
4381 ecs->stop_func_start
4382 += gdbarch_deprecated_function_start_offset (gdbarch);
4383
4384 if (gdbarch_skip_entrypoint_p (gdbarch))
4385 ecs->stop_func_start
4386 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4387 }
4388
4389 ecs->stop_func_filled_in = 1;
4390 }
4391 }
4392
4393
4394 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4395
4396 static enum stop_kind
4397 get_inferior_stop_soon (execution_control_state *ecs)
4398 {
4399 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4400
4401 gdb_assert (inf != NULL);
4402 return inf->control.stop_soon;
4403 }
4404
4405 /* Poll for one event out of the current target. Store the resulting
4406 waitstatus in WS, and return the event ptid. Does not block. */
4407
4408 static ptid_t
4409 poll_one_curr_target (struct target_waitstatus *ws)
4410 {
4411 ptid_t event_ptid;
4412
4413 overlay_cache_invalid = 1;
4414
4415 /* Flush target cache before starting to handle each event.
4416 Target was running and cache could be stale. This is just a
4417 heuristic. Running threads may modify target memory, but we
4418 don't get any event. */
4419 target_dcache_invalidate ();
4420
4421 if (deprecated_target_wait_hook)
4422 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4423 else
4424 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4425
4426 if (debug_infrun)
4427 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4428
4429 return event_ptid;
4430 }
4431
4432 /* An event reported by wait_one. */
4433
4434 struct wait_one_event
4435 {
4436 /* The target the event came out of. */
4437 process_stratum_target *target;
4438
4439 /* The PTID the event was for. */
4440 ptid_t ptid;
4441
4442 /* The waitstatus. */
4443 target_waitstatus ws;
4444 };
4445
4446 /* Wait for one event out of any target. */
4447
4448 static wait_one_event
4449 wait_one ()
4450 {
4451 while (1)
4452 {
4453 for (inferior *inf : all_inferiors ())
4454 {
4455 process_stratum_target *target = inf->process_target ();
4456 if (target == NULL
4457 || !target->is_async_p ()
4458 || !target->threads_executing)
4459 continue;
4460
4461 switch_to_inferior_no_thread (inf);
4462
4463 wait_one_event event;
4464 event.target = target;
4465 event.ptid = poll_one_curr_target (&event.ws);
4466
4467 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4468 {
4469 /* If nothing is resumed, remove the target from the
4470 event loop. */
4471 target_async (0);
4472 }
4473 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4474 return event;
4475 }
4476
4477 /* Block waiting for some event. */
4478
4479 fd_set readfds;
4480 int nfds = 0;
4481
4482 FD_ZERO (&readfds);
4483
4484 for (inferior *inf : all_inferiors ())
4485 {
4486 process_stratum_target *target = inf->process_target ();
4487 if (target == NULL
4488 || !target->is_async_p ()
4489 || !target->threads_executing)
4490 continue;
4491
4492 int fd = target->async_wait_fd ();
4493 FD_SET (fd, &readfds);
4494 if (nfds <= fd)
4495 nfds = fd + 1;
4496 }
4497
4498 if (nfds == 0)
4499 {
4500 /* No waitable targets left. All must be stopped. */
4501 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4502 }
4503
4504 QUIT;
4505
4506 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4507 if (numfds < 0)
4508 {
4509 if (errno == EINTR)
4510 continue;
4511 else
4512 perror_with_name ("interruptible_select");
4513 }
4514 }
4515 }
4516
4517 /* Save the thread's event and stop reason to process it later. */
4518
4519 static void
4520 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4521 {
4522 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4523 target_waitstatus_to_string (ws).c_str (),
4524 tp->ptid.pid (),
4525 tp->ptid.lwp (),
4526 tp->ptid.tid ());
4527
4528 /* Record for later. */
4529 tp->suspend.waitstatus = *ws;
4530 tp->suspend.waitstatus_pending_p = 1;
4531
4532 struct regcache *regcache = get_thread_regcache (tp);
4533 const address_space *aspace = regcache->aspace ();
4534
4535 if (ws->kind == TARGET_WAITKIND_STOPPED
4536 && ws->value.sig == GDB_SIGNAL_TRAP)
4537 {
4538 CORE_ADDR pc = regcache_read_pc (regcache);
4539
4540 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4541
4542 scoped_restore_current_thread restore_thread;
4543 switch_to_thread (tp);
4544
4545 if (target_stopped_by_watchpoint ())
4546 {
4547 tp->suspend.stop_reason
4548 = TARGET_STOPPED_BY_WATCHPOINT;
4549 }
4550 else if (target_supports_stopped_by_sw_breakpoint ()
4551 && target_stopped_by_sw_breakpoint ())
4552 {
4553 tp->suspend.stop_reason
4554 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4555 }
4556 else if (target_supports_stopped_by_hw_breakpoint ()
4557 && target_stopped_by_hw_breakpoint ())
4558 {
4559 tp->suspend.stop_reason
4560 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4561 }
4562 else if (!target_supports_stopped_by_hw_breakpoint ()
4563 && hardware_breakpoint_inserted_here_p (aspace,
4564 pc))
4565 {
4566 tp->suspend.stop_reason
4567 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4568 }
4569 else if (!target_supports_stopped_by_sw_breakpoint ()
4570 && software_breakpoint_inserted_here_p (aspace,
4571 pc))
4572 {
4573 tp->suspend.stop_reason
4574 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4575 }
4576 else if (!thread_has_single_step_breakpoints_set (tp)
4577 && currently_stepping (tp))
4578 {
4579 tp->suspend.stop_reason
4580 = TARGET_STOPPED_BY_SINGLE_STEP;
4581 }
4582 }
4583 }
4584
4585 /* Mark the non-executing threads accordingly. In all-stop, all
4586 threads of all processes are stopped when we get any event
4587 reported. In non-stop mode, only the event thread stops. */
4588
4589 static void
4590 mark_non_executing_threads (process_stratum_target *target,
4591 ptid_t event_ptid,
4592 struct target_waitstatus ws)
4593 {
4594 ptid_t mark_ptid;
4595
4596 if (!target_is_non_stop_p ())
4597 mark_ptid = minus_one_ptid;
4598 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4599 || ws.kind == TARGET_WAITKIND_EXITED)
4600 {
4601 /* If we're handling a process exit in non-stop mode, even
4602 though threads haven't been deleted yet, one would think
4603 that there is nothing to do, as threads of the dead process
4604 will be soon deleted, and threads of any other process were
4605 left running. However, on some targets, threads survive a
4606 process exit event. E.g., for the "checkpoint" command,
4607 when the current checkpoint/fork exits, linux-fork.c
4608 automatically switches to another fork from within
4609 target_mourn_inferior, by associating the same
4610 inferior/thread to another fork. We haven't mourned yet at
4611 this point, but we must mark any threads left in the
4612 process as not-executing so that finish_thread_state marks
4613 them stopped (in the user's perspective) if/when we present
4614 the stop to the user. */
4615 mark_ptid = ptid_t (event_ptid.pid ());
4616 }
4617 else
4618 mark_ptid = event_ptid;
4619
4620 set_executing (target, mark_ptid, false);
4621
4622 /* Likewise the resumed flag. */
4623 set_resumed (target, mark_ptid, false);
4624 }
4625
4626 /* See infrun.h. */
4627
4628 void
4629 stop_all_threads (void)
4630 {
4631 /* We may need multiple passes to discover all threads. */
4632 int pass;
4633 int iterations = 0;
4634
4635 gdb_assert (exists_non_stop_target ());
4636
4637 infrun_log_debug ("stop_all_threads");
4638
4639 scoped_restore_current_thread restore_thread;
4640
4641 /* Enable thread events of all targets. */
4642 for (auto *target : all_non_exited_process_targets ())
4643 {
4644 switch_to_target_no_thread (target);
4645 target_thread_events (true);
4646 }
4647
4648 SCOPE_EXIT
4649 {
4650 /* Disable thread events of all targets. */
4651 for (auto *target : all_non_exited_process_targets ())
4652 {
4653 switch_to_target_no_thread (target);
4654 target_thread_events (false);
4655 }
4656
4657
4658 infrun_log_debug ("stop_all_threads done");
4659 };
4660
4661 /* Request threads to stop, and then wait for the stops. Because
4662 threads we already know about can spawn more threads while we're
4663 trying to stop them, and we only learn about new threads when we
4664 update the thread list, do this in a loop, and keep iterating
4665 until two passes find no threads that need to be stopped. */
4666 for (pass = 0; pass < 2; pass++, iterations++)
4667 {
4668 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4669 pass, iterations);
4670 while (1)
4671 {
4672 int waits_needed = 0;
4673
4674 for (auto *target : all_non_exited_process_targets ())
4675 {
4676 switch_to_target_no_thread (target);
4677 update_thread_list ();
4678 }
4679
4680 /* Go through all threads looking for threads that we need
4681 to tell the target to stop. */
4682 for (thread_info *t : all_non_exited_threads ())
4683 {
4684 /* For a single-target setting with an all-stop target,
4685 we would not even arrive here. For a multi-target
4686 setting, until GDB is able to handle a mixture of
4687 all-stop and non-stop targets, simply skip all-stop
4688 targets' threads. This should be fine due to the
4689 protection of 'check_multi_target_resumption'. */
4690
4691 switch_to_thread_no_regs (t);
4692 if (!target_is_non_stop_p ())
4693 continue;
4694
4695 if (t->executing)
4696 {
4697 /* If already stopping, don't request a stop again.
4698 We just haven't seen the notification yet. */
4699 if (!t->stop_requested)
4700 {
4701 infrun_log_debug (" %s executing, need stop",
4702 target_pid_to_str (t->ptid).c_str ());
4703 target_stop (t->ptid);
4704 t->stop_requested = 1;
4705 }
4706 else
4707 {
4708 infrun_log_debug (" %s executing, already stopping",
4709 target_pid_to_str (t->ptid).c_str ());
4710 }
4711
4712 if (t->stop_requested)
4713 waits_needed++;
4714 }
4715 else
4716 {
4717 infrun_log_debug (" %s not executing",
4718 target_pid_to_str (t->ptid).c_str ());
4719
4720 /* The thread may be not executing, but still be
4721 resumed with a pending status to process. */
4722 t->resumed = false;
4723 }
4724 }
4725
4726 if (waits_needed == 0)
4727 break;
4728
4729 /* If we find new threads on the second iteration, restart
4730 over. We want to see two iterations in a row with all
4731 threads stopped. */
4732 if (pass > 0)
4733 pass = -1;
4734
4735 for (int i = 0; i < waits_needed; i++)
4736 {
4737 wait_one_event event = wait_one ();
4738
4739 infrun_log_debug ("%s %s\n",
4740 target_waitstatus_to_string (&event.ws).c_str (),
4741 target_pid_to_str (event.ptid).c_str ());
4742
4743 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4744 {
4745 /* All resumed threads exited. */
4746 break;
4747 }
4748 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4749 || event.ws.kind == TARGET_WAITKIND_EXITED
4750 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4751 {
4752 /* One thread/process exited/signalled. */
4753
4754 thread_info *t = nullptr;
4755
4756 /* The target may have reported just a pid. If so, try
4757 the first non-exited thread. */
4758 if (event.ptid.is_pid ())
4759 {
4760 int pid = event.ptid.pid ();
4761 inferior *inf = find_inferior_pid (event.target, pid);
4762 for (thread_info *tp : inf->non_exited_threads ())
4763 {
4764 t = tp;
4765 break;
4766 }
4767
4768 /* If there is no available thread, the event would
4769 have to be appended to a per-inferior event list,
4770 which does not exist (and if it did, we'd have
4771 to adjust run control command to be able to
4772 resume such an inferior). We assert here instead
4773 of going into an infinite loop. */
4774 gdb_assert (t != nullptr);
4775
4776 infrun_log_debug ("using %s\n",
4777 target_pid_to_str (t->ptid).c_str ());
4778 }
4779 else
4780 {
4781 t = find_thread_ptid (event.target, event.ptid);
4782 /* Check if this is the first time we see this thread.
4783 Don't bother adding if it individually exited. */
4784 if (t == nullptr
4785 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4786 t = add_thread (event.target, event.ptid);
4787 }
4788
4789 if (t != nullptr)
4790 {
4791 /* Set the threads as non-executing to avoid
4792 another stop attempt on them. */
4793 switch_to_thread_no_regs (t);
4794 mark_non_executing_threads (event.target, event.ptid,
4795 event.ws);
4796 save_waitstatus (t, &event.ws);
4797 t->stop_requested = false;
4798 }
4799 }
4800 else
4801 {
4802 thread_info *t = find_thread_ptid (event.target, event.ptid);
4803 if (t == NULL)
4804 t = add_thread (event.target, event.ptid);
4805
4806 t->stop_requested = 0;
4807 t->executing = 0;
4808 t->resumed = false;
4809 t->control.may_range_step = 0;
4810
4811 /* This may be the first time we see the inferior report
4812 a stop. */
4813 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4814 if (inf->needs_setup)
4815 {
4816 switch_to_thread_no_regs (t);
4817 setup_inferior (0);
4818 }
4819
4820 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4821 && event.ws.value.sig == GDB_SIGNAL_0)
4822 {
4823 /* We caught the event that we intended to catch, so
4824 there's no event pending. */
4825 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4826 t->suspend.waitstatus_pending_p = 0;
4827
4828 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
4829 {
4830 /* Add it back to the step-over queue. */
4831 infrun_log_debug ("displaced-step of %s "
4832 "canceled: adding back to the "
4833 "step-over queue\n",
4834 target_pid_to_str (t->ptid).c_str ());
4835
4836 t->control.trap_expected = 0;
4837 global_thread_step_over_chain_enqueue (t);
4838 }
4839 }
4840 else
4841 {
4842 enum gdb_signal sig;
4843 struct regcache *regcache;
4844
4845 if (debug_infrun)
4846 {
4847 std::string statstr = target_waitstatus_to_string (&event.ws);
4848
4849 infrun_log_debug ("target_wait %s, saving "
4850 "status for %d.%ld.%ld\n",
4851 statstr.c_str (),
4852 t->ptid.pid (),
4853 t->ptid.lwp (),
4854 t->ptid.tid ());
4855 }
4856
4857 /* Record for later. */
4858 save_waitstatus (t, &event.ws);
4859
4860 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4861 ? event.ws.value.sig : GDB_SIGNAL_0);
4862
4863 if (displaced_step_finish (t, sig) < 0)
4864 {
4865 /* Add it back to the step-over queue. */
4866 t->control.trap_expected = 0;
4867 global_thread_step_over_chain_enqueue (t);
4868 }
4869
4870 regcache = get_thread_regcache (t);
4871 t->suspend.stop_pc = regcache_read_pc (regcache);
4872
4873 infrun_log_debug ("saved stop_pc=%s for %s "
4874 "(currently_stepping=%d)\n",
4875 paddress (target_gdbarch (),
4876 t->suspend.stop_pc),
4877 target_pid_to_str (t->ptid).c_str (),
4878 currently_stepping (t));
4879 }
4880 }
4881 }
4882 }
4883 }
4884 }
4885
4886 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4887
4888 static int
4889 handle_no_resumed (struct execution_control_state *ecs)
4890 {
4891 if (target_can_async_p ())
4892 {
4893 int any_sync = 0;
4894
4895 for (ui *ui : all_uis ())
4896 {
4897 if (ui->prompt_state == PROMPT_BLOCKED)
4898 {
4899 any_sync = 1;
4900 break;
4901 }
4902 }
4903 if (!any_sync)
4904 {
4905 /* There were no unwaited-for children left in the target, but,
4906 we're not synchronously waiting for events either. Just
4907 ignore. */
4908
4909 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4910 prepare_to_wait (ecs);
4911 return 1;
4912 }
4913 }
4914
4915 /* Otherwise, if we were running a synchronous execution command, we
4916 may need to cancel it and give the user back the terminal.
4917
4918 In non-stop mode, the target can't tell whether we've already
4919 consumed previous stop events, so it can end up sending us a
4920 no-resumed event like so:
4921
4922 #0 - thread 1 is left stopped
4923
4924 #1 - thread 2 is resumed and hits breakpoint
4925 -> TARGET_WAITKIND_STOPPED
4926
4927 #2 - thread 3 is resumed and exits
4928 this is the last resumed thread, so
4929 -> TARGET_WAITKIND_NO_RESUMED
4930
4931 #3 - gdb processes stop for thread 2 and decides to re-resume
4932 it.
4933
4934 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4935 thread 2 is now resumed, so the event should be ignored.
4936
4937 IOW, if the stop for thread 2 doesn't end a foreground command,
4938 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4939 event. But it could be that the event meant that thread 2 itself
4940 (or whatever other thread was the last resumed thread) exited.
4941
4942 To address this we refresh the thread list and check whether we
4943 have resumed threads _now_. In the example above, this removes
4944 thread 3 from the thread list. If thread 2 was re-resumed, we
4945 ignore this event. If we find no thread resumed, then we cancel
4946 the synchronous command and show "no unwaited-for " to the
4947 user. */
4948
4949 inferior *curr_inf = current_inferior ();
4950
4951 scoped_restore_current_thread restore_thread;
4952
4953 for (auto *target : all_non_exited_process_targets ())
4954 {
4955 switch_to_target_no_thread (target);
4956 update_thread_list ();
4957 }
4958
4959 /* If:
4960
4961 - the current target has no thread executing, and
4962 - the current inferior is native, and
4963 - the current inferior is the one which has the terminal, and
4964 - we did nothing,
4965
4966 then a Ctrl-C from this point on would remain stuck in the
4967 kernel, until a thread resumes and dequeues it. That would
4968 result in the GDB CLI not reacting to Ctrl-C, not able to
4969 interrupt the program. To address this, if the current inferior
4970 no longer has any thread executing, we give the terminal to some
4971 other inferior that has at least one thread executing. */
4972 bool swap_terminal = true;
4973
4974 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4975 whether to report it to the user. */
4976 bool ignore_event = false;
4977
4978 for (thread_info *thread : all_non_exited_threads ())
4979 {
4980 if (swap_terminal && thread->executing)
4981 {
4982 if (thread->inf != curr_inf)
4983 {
4984 target_terminal::ours ();
4985
4986 switch_to_thread (thread);
4987 target_terminal::inferior ();
4988 }
4989 swap_terminal = false;
4990 }
4991
4992 if (!ignore_event
4993 && (thread->executing
4994 || thread->suspend.waitstatus_pending_p))
4995 {
4996 /* Either there were no unwaited-for children left in the
4997 target at some point, but there are now, or some target
4998 other than the eventing one has unwaited-for children
4999 left. Just ignore. */
5000 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5001 "(ignoring: found resumed)\n");
5002
5003 ignore_event = true;
5004 }
5005
5006 if (ignore_event && !swap_terminal)
5007 break;
5008 }
5009
5010 if (ignore_event)
5011 {
5012 switch_to_inferior_no_thread (curr_inf);
5013 prepare_to_wait (ecs);
5014 return 1;
5015 }
5016
5017 /* Go ahead and report the event. */
5018 return 0;
5019 }
5020
5021 /* Given an execution control state that has been freshly filled in by
5022 an event from the inferior, figure out what it means and take
5023 appropriate action.
5024
5025 The alternatives are:
5026
5027 1) stop_waiting and return; to really stop and return to the
5028 debugger.
5029
5030 2) keep_going and return; to wait for the next event (set
5031 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5032 once). */
5033
5034 static void
5035 handle_inferior_event (struct execution_control_state *ecs)
5036 {
5037 /* Make sure that all temporary struct value objects that were
5038 created during the handling of the event get deleted at the
5039 end. */
5040 scoped_value_mark free_values;
5041
5042 enum stop_kind stop_soon;
5043
5044 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5045
5046 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5047 {
5048 /* We had an event in the inferior, but we are not interested in
5049 handling it at this level. The lower layers have already
5050 done what needs to be done, if anything.
5051
5052 One of the possible circumstances for this is when the
5053 inferior produces output for the console. The inferior has
5054 not stopped, and we are ignoring the event. Another possible
5055 circumstance is any event which the lower level knows will be
5056 reported multiple times without an intervening resume. */
5057 prepare_to_wait (ecs);
5058 return;
5059 }
5060
5061 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5062 {
5063 prepare_to_wait (ecs);
5064 return;
5065 }
5066
5067 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5068 && handle_no_resumed (ecs))
5069 return;
5070
5071 /* Cache the last target/ptid/waitstatus. */
5072 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5073
5074 /* Always clear state belonging to the previous time we stopped. */
5075 stop_stack_dummy = STOP_NONE;
5076
5077 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5078 {
5079 /* No unwaited-for children left. IOW, all resumed children
5080 have exited. */
5081 stop_print_frame = 0;
5082 stop_waiting (ecs);
5083 return;
5084 }
5085
5086 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5087 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5088 {
5089 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5090 /* If it's a new thread, add it to the thread database. */
5091 if (ecs->event_thread == NULL)
5092 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5093
5094 /* Disable range stepping. If the next step request could use a
5095 range, this will be end up re-enabled then. */
5096 ecs->event_thread->control.may_range_step = 0;
5097 }
5098
5099 /* Dependent on valid ECS->EVENT_THREAD. */
5100 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5101
5102 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5103 reinit_frame_cache ();
5104
5105 breakpoint_retire_moribund ();
5106
5107 /* First, distinguish signals caused by the debugger from signals
5108 that have to do with the program's own actions. Note that
5109 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5110 on the operating system version. Here we detect when a SIGILL or
5111 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5112 something similar for SIGSEGV, since a SIGSEGV will be generated
5113 when we're trying to execute a breakpoint instruction on a
5114 non-executable stack. This happens for call dummy breakpoints
5115 for architectures like SPARC that place call dummies on the
5116 stack. */
5117 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5118 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5119 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5120 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5121 {
5122 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5123
5124 if (breakpoint_inserted_here_p (regcache->aspace (),
5125 regcache_read_pc (regcache)))
5126 {
5127 infrun_log_debug ("Treating signal as SIGTRAP");
5128 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5129 }
5130 }
5131
5132 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5133
5134 switch (ecs->ws.kind)
5135 {
5136 case TARGET_WAITKIND_LOADED:
5137 context_switch (ecs);
5138 /* Ignore gracefully during startup of the inferior, as it might
5139 be the shell which has just loaded some objects, otherwise
5140 add the symbols for the newly loaded objects. Also ignore at
5141 the beginning of an attach or remote session; we will query
5142 the full list of libraries once the connection is
5143 established. */
5144
5145 stop_soon = get_inferior_stop_soon (ecs);
5146 if (stop_soon == NO_STOP_QUIETLY)
5147 {
5148 struct regcache *regcache;
5149
5150 regcache = get_thread_regcache (ecs->event_thread);
5151
5152 handle_solib_event ();
5153
5154 ecs->event_thread->control.stop_bpstat
5155 = bpstat_stop_status (regcache->aspace (),
5156 ecs->event_thread->suspend.stop_pc,
5157 ecs->event_thread, &ecs->ws);
5158
5159 if (handle_stop_requested (ecs))
5160 return;
5161
5162 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5163 {
5164 /* A catchpoint triggered. */
5165 process_event_stop_test (ecs);
5166 return;
5167 }
5168
5169 /* If requested, stop when the dynamic linker notifies
5170 gdb of events. This allows the user to get control
5171 and place breakpoints in initializer routines for
5172 dynamically loaded objects (among other things). */
5173 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5174 if (stop_on_solib_events)
5175 {
5176 /* Make sure we print "Stopped due to solib-event" in
5177 normal_stop. */
5178 stop_print_frame = 1;
5179
5180 stop_waiting (ecs);
5181 return;
5182 }
5183 }
5184
5185 /* If we are skipping through a shell, or through shared library
5186 loading that we aren't interested in, resume the program. If
5187 we're running the program normally, also resume. */
5188 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5189 {
5190 /* Loading of shared libraries might have changed breakpoint
5191 addresses. Make sure new breakpoints are inserted. */
5192 if (stop_soon == NO_STOP_QUIETLY)
5193 insert_breakpoints ();
5194 resume (GDB_SIGNAL_0);
5195 prepare_to_wait (ecs);
5196 return;
5197 }
5198
5199 /* But stop if we're attaching or setting up a remote
5200 connection. */
5201 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5202 || stop_soon == STOP_QUIETLY_REMOTE)
5203 {
5204 infrun_log_debug ("quietly stopped");
5205 stop_waiting (ecs);
5206 return;
5207 }
5208
5209 internal_error (__FILE__, __LINE__,
5210 _("unhandled stop_soon: %d"), (int) stop_soon);
5211
5212 case TARGET_WAITKIND_SPURIOUS:
5213 if (handle_stop_requested (ecs))
5214 return;
5215 context_switch (ecs);
5216 resume (GDB_SIGNAL_0);
5217 prepare_to_wait (ecs);
5218 return;
5219
5220 case TARGET_WAITKIND_THREAD_CREATED:
5221 if (handle_stop_requested (ecs))
5222 return;
5223 context_switch (ecs);
5224 if (!switch_back_to_stepped_thread (ecs))
5225 keep_going (ecs);
5226 return;
5227
5228 case TARGET_WAITKIND_EXITED:
5229 case TARGET_WAITKIND_SIGNALLED:
5230 {
5231 /* Depending on the system, ecs->ptid may point to a thread or
5232 to a process. On some targets, target_mourn_inferior may
5233 need to have access to the just-exited thread. That is the
5234 case of GNU/Linux's "checkpoint" support, for example.
5235 Call the switch_to_xxx routine as appropriate. */
5236 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5237 if (thr != nullptr)
5238 switch_to_thread (thr);
5239 else
5240 {
5241 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5242 switch_to_inferior_no_thread (inf);
5243 }
5244 }
5245 handle_vfork_child_exec_or_exit (0);
5246 target_terminal::ours (); /* Must do this before mourn anyway. */
5247
5248 /* Clearing any previous state of convenience variables. */
5249 clear_exit_convenience_vars ();
5250
5251 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5252 {
5253 /* Record the exit code in the convenience variable $_exitcode, so
5254 that the user can inspect this again later. */
5255 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5256 (LONGEST) ecs->ws.value.integer);
5257
5258 /* Also record this in the inferior itself. */
5259 current_inferior ()->has_exit_code = 1;
5260 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5261
5262 /* Support the --return-child-result option. */
5263 return_child_result_value = ecs->ws.value.integer;
5264
5265 gdb::observers::exited.notify (ecs->ws.value.integer);
5266 }
5267 else
5268 {
5269 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5270
5271 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5272 {
5273 /* Set the value of the internal variable $_exitsignal,
5274 which holds the signal uncaught by the inferior. */
5275 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5276 gdbarch_gdb_signal_to_target (gdbarch,
5277 ecs->ws.value.sig));
5278 }
5279 else
5280 {
5281 /* We don't have access to the target's method used for
5282 converting between signal numbers (GDB's internal
5283 representation <-> target's representation).
5284 Therefore, we cannot do a good job at displaying this
5285 information to the user. It's better to just warn
5286 her about it (if infrun debugging is enabled), and
5287 give up. */
5288 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5289 "signal number.");
5290 }
5291
5292 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5293 }
5294
5295 gdb_flush (gdb_stdout);
5296 target_mourn_inferior (inferior_ptid);
5297 stop_print_frame = 0;
5298 stop_waiting (ecs);
5299 return;
5300
5301 case TARGET_WAITKIND_FORKED:
5302 case TARGET_WAITKIND_VFORKED:
5303 /* Check whether the inferior is displaced stepping. */
5304 {
5305 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5306 struct gdbarch *gdbarch = regcache->arch ();
5307
5308 /* If checking displaced stepping is supported, and thread
5309 ecs->ptid is displaced stepping. */
5310 if (displaced_step_in_progress (ecs->event_thread))
5311 {
5312 struct inferior *parent_inf
5313 = find_inferior_ptid (ecs->target, ecs->ptid);
5314 struct regcache *child_regcache;
5315 CORE_ADDR parent_pc;
5316
5317 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5318 {
5319 // struct displaced_step_inferior_state *displaced
5320 // = get_displaced_stepping_state (parent_inf);
5321
5322 /* Restore scratch pad for child process. */
5323 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5324 // FIXME: we should restore all the buffers that were currently in use
5325 }
5326
5327 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5328 indicating that the displaced stepping of syscall instruction
5329 has been done. Perform cleanup for parent process here. Note
5330 that this operation also cleans up the child process for vfork,
5331 because their pages are shared. */
5332 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5333 /* Start a new step-over in another thread if there's one
5334 that needs it. */
5335 start_step_over ();
5336
5337 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5338 the child's PC is also within the scratchpad. Set the child's PC
5339 to the parent's PC value, which has already been fixed up.
5340 FIXME: we use the parent's aspace here, although we're touching
5341 the child, because the child hasn't been added to the inferior
5342 list yet at this point. */
5343
5344 child_regcache
5345 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5346 ecs->ws.value.related_pid,
5347 gdbarch,
5348 parent_inf->aspace);
5349 /* Read PC value of parent process. */
5350 parent_pc = regcache_read_pc (regcache);
5351
5352 if (debug_displaced)
5353 fprintf_unfiltered (gdb_stdlog,
5354 "displaced: write child pc from %s to %s\n",
5355 paddress (gdbarch,
5356 regcache_read_pc (child_regcache)),
5357 paddress (gdbarch, parent_pc));
5358
5359 regcache_write_pc (child_regcache, parent_pc);
5360 }
5361 }
5362
5363 context_switch (ecs);
5364
5365 /* Immediately detach breakpoints from the child before there's
5366 any chance of letting the user delete breakpoints from the
5367 breakpoint lists. If we don't do this early, it's easy to
5368 leave left over traps in the child, vis: "break foo; catch
5369 fork; c; <fork>; del; c; <child calls foo>". We only follow
5370 the fork on the last `continue', and by that time the
5371 breakpoint at "foo" is long gone from the breakpoint table.
5372 If we vforked, then we don't need to unpatch here, since both
5373 parent and child are sharing the same memory pages; we'll
5374 need to unpatch at follow/detach time instead to be certain
5375 that new breakpoints added between catchpoint hit time and
5376 vfork follow are detached. */
5377 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5378 {
5379 /* This won't actually modify the breakpoint list, but will
5380 physically remove the breakpoints from the child. */
5381 detach_breakpoints (ecs->ws.value.related_pid);
5382 }
5383
5384 delete_just_stopped_threads_single_step_breakpoints ();
5385
5386 /* In case the event is caught by a catchpoint, remember that
5387 the event is to be followed at the next resume of the thread,
5388 and not immediately. */
5389 ecs->event_thread->pending_follow = ecs->ws;
5390
5391 ecs->event_thread->suspend.stop_pc
5392 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5393
5394 ecs->event_thread->control.stop_bpstat
5395 = bpstat_stop_status (get_current_regcache ()->aspace (),
5396 ecs->event_thread->suspend.stop_pc,
5397 ecs->event_thread, &ecs->ws);
5398
5399 if (handle_stop_requested (ecs))
5400 return;
5401
5402 /* If no catchpoint triggered for this, then keep going. Note
5403 that we're interested in knowing the bpstat actually causes a
5404 stop, not just if it may explain the signal. Software
5405 watchpoints, for example, always appear in the bpstat. */
5406 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5407 {
5408 bool follow_child
5409 = (follow_fork_mode_string == follow_fork_mode_child);
5410
5411 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5412
5413 process_stratum_target *targ
5414 = ecs->event_thread->inf->process_target ();
5415
5416 bool should_resume = follow_fork ();
5417
5418 /* Note that one of these may be an invalid pointer,
5419 depending on detach_fork. */
5420 thread_info *parent = ecs->event_thread;
5421 thread_info *child
5422 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5423
5424 /* At this point, the parent is marked running, and the
5425 child is marked stopped. */
5426
5427 /* If not resuming the parent, mark it stopped. */
5428 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5429 parent->set_running (false);
5430
5431 /* If resuming the child, mark it running. */
5432 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5433 child->set_running (true);
5434
5435 /* In non-stop mode, also resume the other branch. */
5436 if (!detach_fork && (non_stop
5437 || (sched_multi && target_is_non_stop_p ())))
5438 {
5439 if (follow_child)
5440 switch_to_thread (parent);
5441 else
5442 switch_to_thread (child);
5443
5444 ecs->event_thread = inferior_thread ();
5445 ecs->ptid = inferior_ptid;
5446 keep_going (ecs);
5447 }
5448
5449 if (follow_child)
5450 switch_to_thread (child);
5451 else
5452 switch_to_thread (parent);
5453
5454 ecs->event_thread = inferior_thread ();
5455 ecs->ptid = inferior_ptid;
5456
5457 if (should_resume)
5458 keep_going (ecs);
5459 else
5460 stop_waiting (ecs);
5461 return;
5462 }
5463 process_event_stop_test (ecs);
5464 return;
5465
5466 case TARGET_WAITKIND_VFORK_DONE:
5467 /* Done with the shared memory region. Re-insert breakpoints in
5468 the parent, and keep going. */
5469
5470 context_switch (ecs);
5471
5472 current_inferior ()->waiting_for_vfork_done = 0;
5473 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5474
5475 if (handle_stop_requested (ecs))
5476 return;
5477
5478 /* This also takes care of reinserting breakpoints in the
5479 previously locked inferior. */
5480 keep_going (ecs);
5481 return;
5482
5483 case TARGET_WAITKIND_EXECD:
5484
5485 /* Note we can't read registers yet (the stop_pc), because we
5486 don't yet know the inferior's post-exec architecture.
5487 'stop_pc' is explicitly read below instead. */
5488 switch_to_thread_no_regs (ecs->event_thread);
5489
5490 /* Do whatever is necessary to the parent branch of the vfork. */
5491 handle_vfork_child_exec_or_exit (1);
5492
5493 /* This causes the eventpoints and symbol table to be reset.
5494 Must do this now, before trying to determine whether to
5495 stop. */
5496 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5497
5498 /* In follow_exec we may have deleted the original thread and
5499 created a new one. Make sure that the event thread is the
5500 execd thread for that case (this is a nop otherwise). */
5501 ecs->event_thread = inferior_thread ();
5502
5503 ecs->event_thread->suspend.stop_pc
5504 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5505
5506 ecs->event_thread->control.stop_bpstat
5507 = bpstat_stop_status (get_current_regcache ()->aspace (),
5508 ecs->event_thread->suspend.stop_pc,
5509 ecs->event_thread, &ecs->ws);
5510
5511 /* Note that this may be referenced from inside
5512 bpstat_stop_status above, through inferior_has_execd. */
5513 xfree (ecs->ws.value.execd_pathname);
5514 ecs->ws.value.execd_pathname = NULL;
5515
5516 if (handle_stop_requested (ecs))
5517 return;
5518
5519 /* If no catchpoint triggered for this, then keep going. */
5520 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5521 {
5522 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5523 keep_going (ecs);
5524 return;
5525 }
5526 process_event_stop_test (ecs);
5527 return;
5528
5529 /* Be careful not to try to gather much state about a thread
5530 that's in a syscall. It's frequently a losing proposition. */
5531 case TARGET_WAITKIND_SYSCALL_ENTRY:
5532 /* Getting the current syscall number. */
5533 if (handle_syscall_event (ecs) == 0)
5534 process_event_stop_test (ecs);
5535 return;
5536
5537 /* Before examining the threads further, step this thread to
5538 get it entirely out of the syscall. (We get notice of the
5539 event when the thread is just on the verge of exiting a
5540 syscall. Stepping one instruction seems to get it back
5541 into user code.) */
5542 case TARGET_WAITKIND_SYSCALL_RETURN:
5543 if (handle_syscall_event (ecs) == 0)
5544 process_event_stop_test (ecs);
5545 return;
5546
5547 case TARGET_WAITKIND_STOPPED:
5548 handle_signal_stop (ecs);
5549 return;
5550
5551 case TARGET_WAITKIND_NO_HISTORY:
5552 /* Reverse execution: target ran out of history info. */
5553
5554 /* Switch to the stopped thread. */
5555 context_switch (ecs);
5556 infrun_log_debug ("stopped");
5557
5558 delete_just_stopped_threads_single_step_breakpoints ();
5559 ecs->event_thread->suspend.stop_pc
5560 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5561
5562 if (handle_stop_requested (ecs))
5563 return;
5564
5565 gdb::observers::no_history.notify ();
5566 stop_waiting (ecs);
5567 return;
5568 }
5569 }
5570
5571 /* Restart threads back to what they were trying to do back when we
5572 paused them for an in-line step-over. The EVENT_THREAD thread is
5573 ignored. */
5574
5575 static void
5576 restart_threads (struct thread_info *event_thread)
5577 {
5578 /* In case the instruction just stepped spawned a new thread. */
5579 update_thread_list ();
5580
5581 for (thread_info *tp : all_non_exited_threads ())
5582 {
5583 switch_to_thread_no_regs (tp);
5584
5585 if (tp == event_thread)
5586 {
5587 infrun_log_debug ("restart threads: [%s] is event thread",
5588 target_pid_to_str (tp->ptid).c_str ());
5589 continue;
5590 }
5591
5592 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5593 {
5594 infrun_log_debug ("restart threads: [%s] not meant to be running",
5595 target_pid_to_str (tp->ptid).c_str ());
5596 continue;
5597 }
5598
5599 if (tp->resumed)
5600 {
5601 infrun_log_debug ("restart threads: [%s] resumed",
5602 target_pid_to_str (tp->ptid).c_str ());
5603 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5604 continue;
5605 }
5606
5607 if (thread_is_in_step_over_chain (tp))
5608 {
5609 infrun_log_debug ("restart threads: [%s] needs step-over",
5610 target_pid_to_str (tp->ptid).c_str ());
5611 gdb_assert (!tp->resumed);
5612 continue;
5613 }
5614
5615
5616 if (tp->suspend.waitstatus_pending_p)
5617 {
5618 infrun_log_debug ("restart threads: [%s] has pending status",
5619 target_pid_to_str (tp->ptid).c_str ());
5620 tp->resumed = true;
5621 continue;
5622 }
5623
5624 gdb_assert (!tp->stop_requested);
5625
5626 /* If some thread needs to start a step-over at this point, it
5627 should still be in the step-over queue, and thus skipped
5628 above. */
5629 if (thread_still_needs_step_over (tp))
5630 {
5631 internal_error (__FILE__, __LINE__,
5632 "thread [%s] needs a step-over, but not in "
5633 "step-over queue\n",
5634 target_pid_to_str (tp->ptid).c_str ());
5635 }
5636
5637 if (currently_stepping (tp))
5638 {
5639 infrun_log_debug ("restart threads: [%s] was stepping",
5640 target_pid_to_str (tp->ptid).c_str ());
5641 keep_going_stepped_thread (tp);
5642 }
5643 else
5644 {
5645 struct execution_control_state ecss;
5646 struct execution_control_state *ecs = &ecss;
5647
5648 infrun_log_debug ("restart threads: [%s] continuing",
5649 target_pid_to_str (tp->ptid).c_str ());
5650 reset_ecs (ecs, tp);
5651 switch_to_thread (tp);
5652 keep_going_pass_signal (ecs);
5653 }
5654 }
5655 }
5656
5657 /* Callback for iterate_over_threads. Find a resumed thread that has
5658 a pending waitstatus. */
5659
5660 static int
5661 resumed_thread_with_pending_status (struct thread_info *tp,
5662 void *arg)
5663 {
5664 return (tp->resumed
5665 && tp->suspend.waitstatus_pending_p);
5666 }
5667
5668 /* Called when we get an event that may finish an in-line or
5669 out-of-line (displaced stepping) step-over started previously.
5670 Return true if the event is processed and we should go back to the
5671 event loop; false if the caller should continue processing the
5672 event. */
5673
5674 static int
5675 finish_step_over (struct execution_control_state *ecs)
5676 {
5677 int had_step_over_info;
5678
5679 displaced_step_finish (ecs->event_thread,
5680 ecs->event_thread->suspend.stop_signal);
5681
5682 had_step_over_info = step_over_info_valid_p ();
5683
5684 if (had_step_over_info)
5685 {
5686 /* If we're stepping over a breakpoint with all threads locked,
5687 then only the thread that was stepped should be reporting
5688 back an event. */
5689 gdb_assert (ecs->event_thread->control.trap_expected);
5690
5691 clear_step_over_info ();
5692 }
5693
5694 if (!target_is_non_stop_p ())
5695 return 0;
5696
5697 /* Start a new step-over in another thread if there's one that
5698 needs it. */
5699 start_step_over ();
5700
5701 /* If we were stepping over a breakpoint before, and haven't started
5702 a new in-line step-over sequence, then restart all other threads
5703 (except the event thread). We can't do this in all-stop, as then
5704 e.g., we wouldn't be able to issue any other remote packet until
5705 these other threads stop. */
5706 if (had_step_over_info && !step_over_info_valid_p ())
5707 {
5708 struct thread_info *pending;
5709
5710 /* If we only have threads with pending statuses, the restart
5711 below won't restart any thread and so nothing re-inserts the
5712 breakpoint we just stepped over. But we need it inserted
5713 when we later process the pending events, otherwise if
5714 another thread has a pending event for this breakpoint too,
5715 we'd discard its event (because the breakpoint that
5716 originally caused the event was no longer inserted). */
5717 context_switch (ecs);
5718 insert_breakpoints ();
5719
5720 restart_threads (ecs->event_thread);
5721
5722 /* If we have events pending, go through handle_inferior_event
5723 again, picking up a pending event at random. This avoids
5724 thread starvation. */
5725
5726 /* But not if we just stepped over a watchpoint in order to let
5727 the instruction execute so we can evaluate its expression.
5728 The set of watchpoints that triggered is recorded in the
5729 breakpoint objects themselves (see bp->watchpoint_triggered).
5730 If we processed another event first, that other event could
5731 clobber this info. */
5732 if (ecs->event_thread->stepping_over_watchpoint)
5733 return 0;
5734
5735 pending = iterate_over_threads (resumed_thread_with_pending_status,
5736 NULL);
5737 if (pending != NULL)
5738 {
5739 struct thread_info *tp = ecs->event_thread;
5740 struct regcache *regcache;
5741
5742 infrun_log_debug ("found resumed threads with "
5743 "pending events, saving status");
5744
5745 gdb_assert (pending != tp);
5746
5747 /* Record the event thread's event for later. */
5748 save_waitstatus (tp, &ecs->ws);
5749 /* This was cleared early, by handle_inferior_event. Set it
5750 so this pending event is considered by
5751 do_target_wait. */
5752 tp->resumed = true;
5753
5754 gdb_assert (!tp->executing);
5755
5756 regcache = get_thread_regcache (tp);
5757 tp->suspend.stop_pc = regcache_read_pc (regcache);
5758
5759 infrun_log_debug ("saved stop_pc=%s for %s "
5760 "(currently_stepping=%d)\n",
5761 paddress (target_gdbarch (),
5762 tp->suspend.stop_pc),
5763 target_pid_to_str (tp->ptid).c_str (),
5764 currently_stepping (tp));
5765
5766 /* This in-line step-over finished; clear this so we won't
5767 start a new one. This is what handle_signal_stop would
5768 do, if we returned false. */
5769 tp->stepping_over_breakpoint = 0;
5770
5771 /* Wake up the event loop again. */
5772 mark_async_event_handler (infrun_async_inferior_event_token);
5773
5774 prepare_to_wait (ecs);
5775 return 1;
5776 }
5777 }
5778
5779 return 0;
5780 }
5781
5782 /* Come here when the program has stopped with a signal. */
5783
5784 static void
5785 handle_signal_stop (struct execution_control_state *ecs)
5786 {
5787 struct frame_info *frame;
5788 struct gdbarch *gdbarch;
5789 int stopped_by_watchpoint;
5790 enum stop_kind stop_soon;
5791 int random_signal;
5792
5793 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5794
5795 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5796
5797 /* Do we need to clean up the state of a thread that has
5798 completed a displaced single-step? (Doing so usually affects
5799 the PC, so do it here, before we set stop_pc.) */
5800 if (finish_step_over (ecs))
5801 return;
5802
5803 /* If we either finished a single-step or hit a breakpoint, but
5804 the user wanted this thread to be stopped, pretend we got a
5805 SIG0 (generic unsignaled stop). */
5806 if (ecs->event_thread->stop_requested
5807 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5808 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5809
5810 ecs->event_thread->suspend.stop_pc
5811 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5812
5813 if (debug_infrun)
5814 {
5815 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5816 struct gdbarch *reg_gdbarch = regcache->arch ();
5817
5818 switch_to_thread (ecs->event_thread);
5819
5820 infrun_log_debug ("stop_pc=%s",
5821 paddress (reg_gdbarch,
5822 ecs->event_thread->suspend.stop_pc));
5823 if (target_stopped_by_watchpoint ())
5824 {
5825 CORE_ADDR addr;
5826
5827 infrun_log_debug ("stopped by watchpoint");
5828
5829 if (target_stopped_data_address (current_top_target (), &addr))
5830 infrun_log_debug ("stopped data address=%s",
5831 paddress (reg_gdbarch, addr));
5832 else
5833 infrun_log_debug ("(no data address available)");
5834 }
5835 }
5836
5837 /* This is originated from start_remote(), start_inferior() and
5838 shared libraries hook functions. */
5839 stop_soon = get_inferior_stop_soon (ecs);
5840 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5841 {
5842 context_switch (ecs);
5843 infrun_log_debug ("quietly stopped");
5844 stop_print_frame = 1;
5845 stop_waiting (ecs);
5846 return;
5847 }
5848
5849 /* This originates from attach_command(). We need to overwrite
5850 the stop_signal here, because some kernels don't ignore a
5851 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5852 See more comments in inferior.h. On the other hand, if we
5853 get a non-SIGSTOP, report it to the user - assume the backend
5854 will handle the SIGSTOP if it should show up later.
5855
5856 Also consider that the attach is complete when we see a
5857 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5858 target extended-remote report it instead of a SIGSTOP
5859 (e.g. gdbserver). We already rely on SIGTRAP being our
5860 signal, so this is no exception.
5861
5862 Also consider that the attach is complete when we see a
5863 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5864 the target to stop all threads of the inferior, in case the
5865 low level attach operation doesn't stop them implicitly. If
5866 they weren't stopped implicitly, then the stub will report a
5867 GDB_SIGNAL_0, meaning: stopped for no particular reason
5868 other than GDB's request. */
5869 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5870 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5871 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5872 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5873 {
5874 stop_print_frame = 1;
5875 stop_waiting (ecs);
5876 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5877 return;
5878 }
5879
5880 /* See if something interesting happened to the non-current thread. If
5881 so, then switch to that thread. */
5882 if (ecs->ptid != inferior_ptid)
5883 {
5884 infrun_log_debug ("context switch");
5885
5886 context_switch (ecs);
5887
5888 if (deprecated_context_hook)
5889 deprecated_context_hook (ecs->event_thread->global_num);
5890 }
5891
5892 /* At this point, get hold of the now-current thread's frame. */
5893 frame = get_current_frame ();
5894 gdbarch = get_frame_arch (frame);
5895
5896 /* Pull the single step breakpoints out of the target. */
5897 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5898 {
5899 struct regcache *regcache;
5900 CORE_ADDR pc;
5901
5902 regcache = get_thread_regcache (ecs->event_thread);
5903 const address_space *aspace = regcache->aspace ();
5904
5905 pc = regcache_read_pc (regcache);
5906
5907 /* However, before doing so, if this single-step breakpoint was
5908 actually for another thread, set this thread up for moving
5909 past it. */
5910 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5911 aspace, pc))
5912 {
5913 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5914 {
5915 infrun_log_debug ("[%s] hit another thread's single-step "
5916 "breakpoint",
5917 target_pid_to_str (ecs->ptid).c_str ());
5918 ecs->hit_singlestep_breakpoint = 1;
5919 }
5920 }
5921 else
5922 {
5923 infrun_log_debug ("[%s] hit its single-step breakpoint",
5924 target_pid_to_str (ecs->ptid).c_str ());
5925 }
5926 }
5927 delete_just_stopped_threads_single_step_breakpoints ();
5928
5929 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5930 && ecs->event_thread->control.trap_expected
5931 && ecs->event_thread->stepping_over_watchpoint)
5932 stopped_by_watchpoint = 0;
5933 else
5934 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5935
5936 /* If necessary, step over this watchpoint. We'll be back to display
5937 it in a moment. */
5938 if (stopped_by_watchpoint
5939 && (target_have_steppable_watchpoint
5940 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5941 {
5942 /* At this point, we are stopped at an instruction which has
5943 attempted to write to a piece of memory under control of
5944 a watchpoint. The instruction hasn't actually executed
5945 yet. If we were to evaluate the watchpoint expression
5946 now, we would get the old value, and therefore no change
5947 would seem to have occurred.
5948
5949 In order to make watchpoints work `right', we really need
5950 to complete the memory write, and then evaluate the
5951 watchpoint expression. We do this by single-stepping the
5952 target.
5953
5954 It may not be necessary to disable the watchpoint to step over
5955 it. For example, the PA can (with some kernel cooperation)
5956 single step over a watchpoint without disabling the watchpoint.
5957
5958 It is far more common to need to disable a watchpoint to step
5959 the inferior over it. If we have non-steppable watchpoints,
5960 we must disable the current watchpoint; it's simplest to
5961 disable all watchpoints.
5962
5963 Any breakpoint at PC must also be stepped over -- if there's
5964 one, it will have already triggered before the watchpoint
5965 triggered, and we either already reported it to the user, or
5966 it didn't cause a stop and we called keep_going. In either
5967 case, if there was a breakpoint at PC, we must be trying to
5968 step past it. */
5969 ecs->event_thread->stepping_over_watchpoint = 1;
5970 keep_going (ecs);
5971 return;
5972 }
5973
5974 ecs->event_thread->stepping_over_breakpoint = 0;
5975 ecs->event_thread->stepping_over_watchpoint = 0;
5976 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5977 ecs->event_thread->control.stop_step = 0;
5978 stop_print_frame = 1;
5979 stopped_by_random_signal = 0;
5980 bpstat stop_chain = NULL;
5981
5982 /* Hide inlined functions starting here, unless we just performed stepi or
5983 nexti. After stepi and nexti, always show the innermost frame (not any
5984 inline function call sites). */
5985 if (ecs->event_thread->control.step_range_end != 1)
5986 {
5987 const address_space *aspace
5988 = get_thread_regcache (ecs->event_thread)->aspace ();
5989
5990 /* skip_inline_frames is expensive, so we avoid it if we can
5991 determine that the address is one where functions cannot have
5992 been inlined. This improves performance with inferiors that
5993 load a lot of shared libraries, because the solib event
5994 breakpoint is defined as the address of a function (i.e. not
5995 inline). Note that we have to check the previous PC as well
5996 as the current one to catch cases when we have just
5997 single-stepped off a breakpoint prior to reinstating it.
5998 Note that we're assuming that the code we single-step to is
5999 not inline, but that's not definitive: there's nothing
6000 preventing the event breakpoint function from containing
6001 inlined code, and the single-step ending up there. If the
6002 user had set a breakpoint on that inlined code, the missing
6003 skip_inline_frames call would break things. Fortunately
6004 that's an extremely unlikely scenario. */
6005 if (!pc_at_non_inline_function (aspace,
6006 ecs->event_thread->suspend.stop_pc,
6007 &ecs->ws)
6008 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6009 && ecs->event_thread->control.trap_expected
6010 && pc_at_non_inline_function (aspace,
6011 ecs->event_thread->prev_pc,
6012 &ecs->ws)))
6013 {
6014 stop_chain = build_bpstat_chain (aspace,
6015 ecs->event_thread->suspend.stop_pc,
6016 &ecs->ws);
6017 skip_inline_frames (ecs->event_thread, stop_chain);
6018
6019 /* Re-fetch current thread's frame in case that invalidated
6020 the frame cache. */
6021 frame = get_current_frame ();
6022 gdbarch = get_frame_arch (frame);
6023 }
6024 }
6025
6026 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6027 && ecs->event_thread->control.trap_expected
6028 && gdbarch_single_step_through_delay_p (gdbarch)
6029 && currently_stepping (ecs->event_thread))
6030 {
6031 /* We're trying to step off a breakpoint. Turns out that we're
6032 also on an instruction that needs to be stepped multiple
6033 times before it's been fully executing. E.g., architectures
6034 with a delay slot. It needs to be stepped twice, once for
6035 the instruction and once for the delay slot. */
6036 int step_through_delay
6037 = gdbarch_single_step_through_delay (gdbarch, frame);
6038
6039 if (step_through_delay)
6040 infrun_log_debug ("step through delay");
6041
6042 if (ecs->event_thread->control.step_range_end == 0
6043 && step_through_delay)
6044 {
6045 /* The user issued a continue when stopped at a breakpoint.
6046 Set up for another trap and get out of here. */
6047 ecs->event_thread->stepping_over_breakpoint = 1;
6048 keep_going (ecs);
6049 return;
6050 }
6051 else if (step_through_delay)
6052 {
6053 /* The user issued a step when stopped at a breakpoint.
6054 Maybe we should stop, maybe we should not - the delay
6055 slot *might* correspond to a line of source. In any
6056 case, don't decide that here, just set
6057 ecs->stepping_over_breakpoint, making sure we
6058 single-step again before breakpoints are re-inserted. */
6059 ecs->event_thread->stepping_over_breakpoint = 1;
6060 }
6061 }
6062
6063 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6064 handles this event. */
6065 ecs->event_thread->control.stop_bpstat
6066 = bpstat_stop_status (get_current_regcache ()->aspace (),
6067 ecs->event_thread->suspend.stop_pc,
6068 ecs->event_thread, &ecs->ws, stop_chain);
6069
6070 /* Following in case break condition called a
6071 function. */
6072 stop_print_frame = 1;
6073
6074 /* This is where we handle "moribund" watchpoints. Unlike
6075 software breakpoints traps, hardware watchpoint traps are
6076 always distinguishable from random traps. If no high-level
6077 watchpoint is associated with the reported stop data address
6078 anymore, then the bpstat does not explain the signal ---
6079 simply make sure to ignore it if `stopped_by_watchpoint' is
6080 set. */
6081
6082 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6083 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6084 GDB_SIGNAL_TRAP)
6085 && stopped_by_watchpoint)
6086 {
6087 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6088 "ignoring");
6089 }
6090
6091 /* NOTE: cagney/2003-03-29: These checks for a random signal
6092 at one stage in the past included checks for an inferior
6093 function call's call dummy's return breakpoint. The original
6094 comment, that went with the test, read:
6095
6096 ``End of a stack dummy. Some systems (e.g. Sony news) give
6097 another signal besides SIGTRAP, so check here as well as
6098 above.''
6099
6100 If someone ever tries to get call dummys on a
6101 non-executable stack to work (where the target would stop
6102 with something like a SIGSEGV), then those tests might need
6103 to be re-instated. Given, however, that the tests were only
6104 enabled when momentary breakpoints were not being used, I
6105 suspect that it won't be the case.
6106
6107 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6108 be necessary for call dummies on a non-executable stack on
6109 SPARC. */
6110
6111 /* See if the breakpoints module can explain the signal. */
6112 random_signal
6113 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6114 ecs->event_thread->suspend.stop_signal);
6115
6116 /* Maybe this was a trap for a software breakpoint that has since
6117 been removed. */
6118 if (random_signal && target_stopped_by_sw_breakpoint ())
6119 {
6120 if (gdbarch_program_breakpoint_here_p (gdbarch,
6121 ecs->event_thread->suspend.stop_pc))
6122 {
6123 struct regcache *regcache;
6124 int decr_pc;
6125
6126 /* Re-adjust PC to what the program would see if GDB was not
6127 debugging it. */
6128 regcache = get_thread_regcache (ecs->event_thread);
6129 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6130 if (decr_pc != 0)
6131 {
6132 gdb::optional<scoped_restore_tmpl<int>>
6133 restore_operation_disable;
6134
6135 if (record_full_is_used ())
6136 restore_operation_disable.emplace
6137 (record_full_gdb_operation_disable_set ());
6138
6139 regcache_write_pc (regcache,
6140 ecs->event_thread->suspend.stop_pc + decr_pc);
6141 }
6142 }
6143 else
6144 {
6145 /* A delayed software breakpoint event. Ignore the trap. */
6146 infrun_log_debug ("delayed software breakpoint trap, ignoring");
6147 random_signal = 0;
6148 }
6149 }
6150
6151 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6152 has since been removed. */
6153 if (random_signal && target_stopped_by_hw_breakpoint ())
6154 {
6155 /* A delayed hardware breakpoint event. Ignore the trap. */
6156 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6157 "trap, ignoring");
6158 random_signal = 0;
6159 }
6160
6161 /* If not, perhaps stepping/nexting can. */
6162 if (random_signal)
6163 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6164 && currently_stepping (ecs->event_thread));
6165
6166 /* Perhaps the thread hit a single-step breakpoint of _another_
6167 thread. Single-step breakpoints are transparent to the
6168 breakpoints module. */
6169 if (random_signal)
6170 random_signal = !ecs->hit_singlestep_breakpoint;
6171
6172 /* No? Perhaps we got a moribund watchpoint. */
6173 if (random_signal)
6174 random_signal = !stopped_by_watchpoint;
6175
6176 /* Always stop if the user explicitly requested this thread to
6177 remain stopped. */
6178 if (ecs->event_thread->stop_requested)
6179 {
6180 random_signal = 1;
6181 infrun_log_debug ("user-requested stop");
6182 }
6183
6184 /* For the program's own signals, act according to
6185 the signal handling tables. */
6186
6187 if (random_signal)
6188 {
6189 /* Signal not for debugging purposes. */
6190 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6191 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6192
6193 infrun_log_debug ("random signal (%s)",
6194 gdb_signal_to_symbol_string (stop_signal));
6195
6196 stopped_by_random_signal = 1;
6197
6198 /* Always stop on signals if we're either just gaining control
6199 of the program, or the user explicitly requested this thread
6200 to remain stopped. */
6201 if (stop_soon != NO_STOP_QUIETLY
6202 || ecs->event_thread->stop_requested
6203 || (!inf->detaching
6204 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6205 {
6206 stop_waiting (ecs);
6207 return;
6208 }
6209
6210 /* Notify observers the signal has "handle print" set. Note we
6211 returned early above if stopping; normal_stop handles the
6212 printing in that case. */
6213 if (signal_print[ecs->event_thread->suspend.stop_signal])
6214 {
6215 /* The signal table tells us to print about this signal. */
6216 target_terminal::ours_for_output ();
6217 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6218 target_terminal::inferior ();
6219 }
6220
6221 /* Clear the signal if it should not be passed. */
6222 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6223 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6224
6225 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6226 && ecs->event_thread->control.trap_expected
6227 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6228 {
6229 /* We were just starting a new sequence, attempting to
6230 single-step off of a breakpoint and expecting a SIGTRAP.
6231 Instead this signal arrives. This signal will take us out
6232 of the stepping range so GDB needs to remember to, when
6233 the signal handler returns, resume stepping off that
6234 breakpoint. */
6235 /* To simplify things, "continue" is forced to use the same
6236 code paths as single-step - set a breakpoint at the
6237 signal return address and then, once hit, step off that
6238 breakpoint. */
6239 infrun_log_debug ("signal arrived while stepping over breakpoint");
6240
6241 insert_hp_step_resume_breakpoint_at_frame (frame);
6242 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6243 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6244 ecs->event_thread->control.trap_expected = 0;
6245
6246 /* If we were nexting/stepping some other thread, switch to
6247 it, so that we don't continue it, losing control. */
6248 if (!switch_back_to_stepped_thread (ecs))
6249 keep_going (ecs);
6250 return;
6251 }
6252
6253 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6254 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6255 ecs->event_thread)
6256 || ecs->event_thread->control.step_range_end == 1)
6257 && frame_id_eq (get_stack_frame_id (frame),
6258 ecs->event_thread->control.step_stack_frame_id)
6259 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6260 {
6261 /* The inferior is about to take a signal that will take it
6262 out of the single step range. Set a breakpoint at the
6263 current PC (which is presumably where the signal handler
6264 will eventually return) and then allow the inferior to
6265 run free.
6266
6267 Note that this is only needed for a signal delivered
6268 while in the single-step range. Nested signals aren't a
6269 problem as they eventually all return. */
6270 infrun_log_debug ("signal may take us out of single-step range");
6271
6272 clear_step_over_info ();
6273 insert_hp_step_resume_breakpoint_at_frame (frame);
6274 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6275 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6276 ecs->event_thread->control.trap_expected = 0;
6277 keep_going (ecs);
6278 return;
6279 }
6280
6281 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6282 when either there's a nested signal, or when there's a
6283 pending signal enabled just as the signal handler returns
6284 (leaving the inferior at the step-resume-breakpoint without
6285 actually executing it). Either way continue until the
6286 breakpoint is really hit. */
6287
6288 if (!switch_back_to_stepped_thread (ecs))
6289 {
6290 infrun_log_debug ("random signal, keep going");
6291
6292 keep_going (ecs);
6293 }
6294 return;
6295 }
6296
6297 process_event_stop_test (ecs);
6298 }
6299
6300 /* Come here when we've got some debug event / signal we can explain
6301 (IOW, not a random signal), and test whether it should cause a
6302 stop, or whether we should resume the inferior (transparently).
6303 E.g., could be a breakpoint whose condition evaluates false; we
6304 could be still stepping within the line; etc. */
6305
6306 static void
6307 process_event_stop_test (struct execution_control_state *ecs)
6308 {
6309 struct symtab_and_line stop_pc_sal;
6310 struct frame_info *frame;
6311 struct gdbarch *gdbarch;
6312 CORE_ADDR jmp_buf_pc;
6313 struct bpstat_what what;
6314
6315 /* Handle cases caused by hitting a breakpoint. */
6316
6317 frame = get_current_frame ();
6318 gdbarch = get_frame_arch (frame);
6319
6320 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6321
6322 if (what.call_dummy)
6323 {
6324 stop_stack_dummy = what.call_dummy;
6325 }
6326
6327 /* A few breakpoint types have callbacks associated (e.g.,
6328 bp_jit_event). Run them now. */
6329 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6330
6331 /* If we hit an internal event that triggers symbol changes, the
6332 current frame will be invalidated within bpstat_what (e.g., if we
6333 hit an internal solib event). Re-fetch it. */
6334 frame = get_current_frame ();
6335 gdbarch = get_frame_arch (frame);
6336
6337 switch (what.main_action)
6338 {
6339 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6340 /* If we hit the breakpoint at longjmp while stepping, we
6341 install a momentary breakpoint at the target of the
6342 jmp_buf. */
6343
6344 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6345
6346 ecs->event_thread->stepping_over_breakpoint = 1;
6347
6348 if (what.is_longjmp)
6349 {
6350 struct value *arg_value;
6351
6352 /* If we set the longjmp breakpoint via a SystemTap probe,
6353 then use it to extract the arguments. The destination PC
6354 is the third argument to the probe. */
6355 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6356 if (arg_value)
6357 {
6358 jmp_buf_pc = value_as_address (arg_value);
6359 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6360 }
6361 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6362 || !gdbarch_get_longjmp_target (gdbarch,
6363 frame, &jmp_buf_pc))
6364 {
6365 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6366 "(!gdbarch_get_longjmp_target)");
6367 keep_going (ecs);
6368 return;
6369 }
6370
6371 /* Insert a breakpoint at resume address. */
6372 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6373 }
6374 else
6375 check_exception_resume (ecs, frame);
6376 keep_going (ecs);
6377 return;
6378
6379 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6380 {
6381 struct frame_info *init_frame;
6382
6383 /* There are several cases to consider.
6384
6385 1. The initiating frame no longer exists. In this case we
6386 must stop, because the exception or longjmp has gone too
6387 far.
6388
6389 2. The initiating frame exists, and is the same as the
6390 current frame. We stop, because the exception or longjmp
6391 has been caught.
6392
6393 3. The initiating frame exists and is different from the
6394 current frame. This means the exception or longjmp has
6395 been caught beneath the initiating frame, so keep going.
6396
6397 4. longjmp breakpoint has been placed just to protect
6398 against stale dummy frames and user is not interested in
6399 stopping around longjmps. */
6400
6401 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6402
6403 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6404 != NULL);
6405 delete_exception_resume_breakpoint (ecs->event_thread);
6406
6407 if (what.is_longjmp)
6408 {
6409 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6410
6411 if (!frame_id_p (ecs->event_thread->initiating_frame))
6412 {
6413 /* Case 4. */
6414 keep_going (ecs);
6415 return;
6416 }
6417 }
6418
6419 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6420
6421 if (init_frame)
6422 {
6423 struct frame_id current_id
6424 = get_frame_id (get_current_frame ());
6425 if (frame_id_eq (current_id,
6426 ecs->event_thread->initiating_frame))
6427 {
6428 /* Case 2. Fall through. */
6429 }
6430 else
6431 {
6432 /* Case 3. */
6433 keep_going (ecs);
6434 return;
6435 }
6436 }
6437
6438 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6439 exists. */
6440 delete_step_resume_breakpoint (ecs->event_thread);
6441
6442 end_stepping_range (ecs);
6443 }
6444 return;
6445
6446 case BPSTAT_WHAT_SINGLE:
6447 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
6448 ecs->event_thread->stepping_over_breakpoint = 1;
6449 /* Still need to check other stuff, at least the case where we
6450 are stepping and step out of the right range. */
6451 break;
6452
6453 case BPSTAT_WHAT_STEP_RESUME:
6454 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
6455
6456 delete_step_resume_breakpoint (ecs->event_thread);
6457 if (ecs->event_thread->control.proceed_to_finish
6458 && execution_direction == EXEC_REVERSE)
6459 {
6460 struct thread_info *tp = ecs->event_thread;
6461
6462 /* We are finishing a function in reverse, and just hit the
6463 step-resume breakpoint at the start address of the
6464 function, and we're almost there -- just need to back up
6465 by one more single-step, which should take us back to the
6466 function call. */
6467 tp->control.step_range_start = tp->control.step_range_end = 1;
6468 keep_going (ecs);
6469 return;
6470 }
6471 fill_in_stop_func (gdbarch, ecs);
6472 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6473 && execution_direction == EXEC_REVERSE)
6474 {
6475 /* We are stepping over a function call in reverse, and just
6476 hit the step-resume breakpoint at the start address of
6477 the function. Go back to single-stepping, which should
6478 take us back to the function call. */
6479 ecs->event_thread->stepping_over_breakpoint = 1;
6480 keep_going (ecs);
6481 return;
6482 }
6483 break;
6484
6485 case BPSTAT_WHAT_STOP_NOISY:
6486 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
6487 stop_print_frame = 1;
6488
6489 /* Assume the thread stopped for a breapoint. We'll still check
6490 whether a/the breakpoint is there when the thread is next
6491 resumed. */
6492 ecs->event_thread->stepping_over_breakpoint = 1;
6493
6494 stop_waiting (ecs);
6495 return;
6496
6497 case BPSTAT_WHAT_STOP_SILENT:
6498 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
6499 stop_print_frame = 0;
6500
6501 /* Assume the thread stopped for a breapoint. We'll still check
6502 whether a/the breakpoint is there when the thread is next
6503 resumed. */
6504 ecs->event_thread->stepping_over_breakpoint = 1;
6505 stop_waiting (ecs);
6506 return;
6507
6508 case BPSTAT_WHAT_HP_STEP_RESUME:
6509 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
6510
6511 delete_step_resume_breakpoint (ecs->event_thread);
6512 if (ecs->event_thread->step_after_step_resume_breakpoint)
6513 {
6514 /* Back when the step-resume breakpoint was inserted, we
6515 were trying to single-step off a breakpoint. Go back to
6516 doing that. */
6517 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6518 ecs->event_thread->stepping_over_breakpoint = 1;
6519 keep_going (ecs);
6520 return;
6521 }
6522 break;
6523
6524 case BPSTAT_WHAT_KEEP_CHECKING:
6525 break;
6526 }
6527
6528 /* If we stepped a permanent breakpoint and we had a high priority
6529 step-resume breakpoint for the address we stepped, but we didn't
6530 hit it, then we must have stepped into the signal handler. The
6531 step-resume was only necessary to catch the case of _not_
6532 stepping into the handler, so delete it, and fall through to
6533 checking whether the step finished. */
6534 if (ecs->event_thread->stepped_breakpoint)
6535 {
6536 struct breakpoint *sr_bp
6537 = ecs->event_thread->control.step_resume_breakpoint;
6538
6539 if (sr_bp != NULL
6540 && sr_bp->loc->permanent
6541 && sr_bp->type == bp_hp_step_resume
6542 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6543 {
6544 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
6545 delete_step_resume_breakpoint (ecs->event_thread);
6546 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6547 }
6548 }
6549
6550 /* We come here if we hit a breakpoint but should not stop for it.
6551 Possibly we also were stepping and should stop for that. So fall
6552 through and test for stepping. But, if not stepping, do not
6553 stop. */
6554
6555 /* In all-stop mode, if we're currently stepping but have stopped in
6556 some other thread, we need to switch back to the stepped thread. */
6557 if (switch_back_to_stepped_thread (ecs))
6558 return;
6559
6560 if (ecs->event_thread->control.step_resume_breakpoint)
6561 {
6562 infrun_log_debug ("step-resume breakpoint is inserted");
6563
6564 /* Having a step-resume breakpoint overrides anything
6565 else having to do with stepping commands until
6566 that breakpoint is reached. */
6567 keep_going (ecs);
6568 return;
6569 }
6570
6571 if (ecs->event_thread->control.step_range_end == 0)
6572 {
6573 infrun_log_debug ("no stepping, continue");
6574 /* Likewise if we aren't even stepping. */
6575 keep_going (ecs);
6576 return;
6577 }
6578
6579 /* Re-fetch current thread's frame in case the code above caused
6580 the frame cache to be re-initialized, making our FRAME variable
6581 a dangling pointer. */
6582 frame = get_current_frame ();
6583 gdbarch = get_frame_arch (frame);
6584 fill_in_stop_func (gdbarch, ecs);
6585
6586 /* If stepping through a line, keep going if still within it.
6587
6588 Note that step_range_end is the address of the first instruction
6589 beyond the step range, and NOT the address of the last instruction
6590 within it!
6591
6592 Note also that during reverse execution, we may be stepping
6593 through a function epilogue and therefore must detect when
6594 the current-frame changes in the middle of a line. */
6595
6596 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6597 ecs->event_thread)
6598 && (execution_direction != EXEC_REVERSE
6599 || frame_id_eq (get_frame_id (frame),
6600 ecs->event_thread->control.step_frame_id)))
6601 {
6602 infrun_log_debug
6603 ("stepping inside range [%s-%s]",
6604 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6605 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6606
6607 /* Tentatively re-enable range stepping; `resume' disables it if
6608 necessary (e.g., if we're stepping over a breakpoint or we
6609 have software watchpoints). */
6610 ecs->event_thread->control.may_range_step = 1;
6611
6612 /* When stepping backward, stop at beginning of line range
6613 (unless it's the function entry point, in which case
6614 keep going back to the call point). */
6615 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6616 if (stop_pc == ecs->event_thread->control.step_range_start
6617 && stop_pc != ecs->stop_func_start
6618 && execution_direction == EXEC_REVERSE)
6619 end_stepping_range (ecs);
6620 else
6621 keep_going (ecs);
6622
6623 return;
6624 }
6625
6626 /* We stepped out of the stepping range. */
6627
6628 /* If we are stepping at the source level and entered the runtime
6629 loader dynamic symbol resolution code...
6630
6631 EXEC_FORWARD: we keep on single stepping until we exit the run
6632 time loader code and reach the callee's address.
6633
6634 EXEC_REVERSE: we've already executed the callee (backward), and
6635 the runtime loader code is handled just like any other
6636 undebuggable function call. Now we need only keep stepping
6637 backward through the trampoline code, and that's handled further
6638 down, so there is nothing for us to do here. */
6639
6640 if (execution_direction != EXEC_REVERSE
6641 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6642 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6643 {
6644 CORE_ADDR pc_after_resolver =
6645 gdbarch_skip_solib_resolver (gdbarch,
6646 ecs->event_thread->suspend.stop_pc);
6647
6648 infrun_log_debug ("stepped into dynsym resolve code");
6649
6650 if (pc_after_resolver)
6651 {
6652 /* Set up a step-resume breakpoint at the address
6653 indicated by SKIP_SOLIB_RESOLVER. */
6654 symtab_and_line sr_sal;
6655 sr_sal.pc = pc_after_resolver;
6656 sr_sal.pspace = get_frame_program_space (frame);
6657
6658 insert_step_resume_breakpoint_at_sal (gdbarch,
6659 sr_sal, null_frame_id);
6660 }
6661
6662 keep_going (ecs);
6663 return;
6664 }
6665
6666 /* Step through an indirect branch thunk. */
6667 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6668 && gdbarch_in_indirect_branch_thunk (gdbarch,
6669 ecs->event_thread->suspend.stop_pc))
6670 {
6671 infrun_log_debug ("stepped into indirect branch thunk");
6672 keep_going (ecs);
6673 return;
6674 }
6675
6676 if (ecs->event_thread->control.step_range_end != 1
6677 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6678 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6679 && get_frame_type (frame) == SIGTRAMP_FRAME)
6680 {
6681 infrun_log_debug ("stepped into signal trampoline");
6682 /* The inferior, while doing a "step" or "next", has ended up in
6683 a signal trampoline (either by a signal being delivered or by
6684 the signal handler returning). Just single-step until the
6685 inferior leaves the trampoline (either by calling the handler
6686 or returning). */
6687 keep_going (ecs);
6688 return;
6689 }
6690
6691 /* If we're in the return path from a shared library trampoline,
6692 we want to proceed through the trampoline when stepping. */
6693 /* macro/2012-04-25: This needs to come before the subroutine
6694 call check below as on some targets return trampolines look
6695 like subroutine calls (MIPS16 return thunks). */
6696 if (gdbarch_in_solib_return_trampoline (gdbarch,
6697 ecs->event_thread->suspend.stop_pc,
6698 ecs->stop_func_name)
6699 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6700 {
6701 /* Determine where this trampoline returns. */
6702 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6703 CORE_ADDR real_stop_pc
6704 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6705
6706 infrun_log_debug ("stepped into solib return tramp");
6707
6708 /* Only proceed through if we know where it's going. */
6709 if (real_stop_pc)
6710 {
6711 /* And put the step-breakpoint there and go until there. */
6712 symtab_and_line sr_sal;
6713 sr_sal.pc = real_stop_pc;
6714 sr_sal.section = find_pc_overlay (sr_sal.pc);
6715 sr_sal.pspace = get_frame_program_space (frame);
6716
6717 /* Do not specify what the fp should be when we stop since
6718 on some machines the prologue is where the new fp value
6719 is established. */
6720 insert_step_resume_breakpoint_at_sal (gdbarch,
6721 sr_sal, null_frame_id);
6722
6723 /* Restart without fiddling with the step ranges or
6724 other state. */
6725 keep_going (ecs);
6726 return;
6727 }
6728 }
6729
6730 /* Check for subroutine calls. The check for the current frame
6731 equalling the step ID is not necessary - the check of the
6732 previous frame's ID is sufficient - but it is a common case and
6733 cheaper than checking the previous frame's ID.
6734
6735 NOTE: frame_id_eq will never report two invalid frame IDs as
6736 being equal, so to get into this block, both the current and
6737 previous frame must have valid frame IDs. */
6738 /* The outer_frame_id check is a heuristic to detect stepping
6739 through startup code. If we step over an instruction which
6740 sets the stack pointer from an invalid value to a valid value,
6741 we may detect that as a subroutine call from the mythical
6742 "outermost" function. This could be fixed by marking
6743 outermost frames as !stack_p,code_p,special_p. Then the
6744 initial outermost frame, before sp was valid, would
6745 have code_addr == &_start. See the comment in frame_id_eq
6746 for more. */
6747 if (!frame_id_eq (get_stack_frame_id (frame),
6748 ecs->event_thread->control.step_stack_frame_id)
6749 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6750 ecs->event_thread->control.step_stack_frame_id)
6751 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6752 outer_frame_id)
6753 || (ecs->event_thread->control.step_start_function
6754 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6755 {
6756 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6757 CORE_ADDR real_stop_pc;
6758
6759 infrun_log_debug ("stepped into subroutine");
6760
6761 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6762 {
6763 /* I presume that step_over_calls is only 0 when we're
6764 supposed to be stepping at the assembly language level
6765 ("stepi"). Just stop. */
6766 /* And this works the same backward as frontward. MVS */
6767 end_stepping_range (ecs);
6768 return;
6769 }
6770
6771 /* Reverse stepping through solib trampolines. */
6772
6773 if (execution_direction == EXEC_REVERSE
6774 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6775 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6776 || (ecs->stop_func_start == 0
6777 && in_solib_dynsym_resolve_code (stop_pc))))
6778 {
6779 /* Any solib trampoline code can be handled in reverse
6780 by simply continuing to single-step. We have already
6781 executed the solib function (backwards), and a few
6782 steps will take us back through the trampoline to the
6783 caller. */
6784 keep_going (ecs);
6785 return;
6786 }
6787
6788 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6789 {
6790 /* We're doing a "next".
6791
6792 Normal (forward) execution: set a breakpoint at the
6793 callee's return address (the address at which the caller
6794 will resume).
6795
6796 Reverse (backward) execution. set the step-resume
6797 breakpoint at the start of the function that we just
6798 stepped into (backwards), and continue to there. When we
6799 get there, we'll need to single-step back to the caller. */
6800
6801 if (execution_direction == EXEC_REVERSE)
6802 {
6803 /* If we're already at the start of the function, we've either
6804 just stepped backward into a single instruction function,
6805 or stepped back out of a signal handler to the first instruction
6806 of the function. Just keep going, which will single-step back
6807 to the caller. */
6808 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6809 {
6810 /* Normal function call return (static or dynamic). */
6811 symtab_and_line sr_sal;
6812 sr_sal.pc = ecs->stop_func_start;
6813 sr_sal.pspace = get_frame_program_space (frame);
6814 insert_step_resume_breakpoint_at_sal (gdbarch,
6815 sr_sal, null_frame_id);
6816 }
6817 }
6818 else
6819 insert_step_resume_breakpoint_at_caller (frame);
6820
6821 keep_going (ecs);
6822 return;
6823 }
6824
6825 /* If we are in a function call trampoline (a stub between the
6826 calling routine and the real function), locate the real
6827 function. That's what tells us (a) whether we want to step
6828 into it at all, and (b) what prologue we want to run to the
6829 end of, if we do step into it. */
6830 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6831 if (real_stop_pc == 0)
6832 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6833 if (real_stop_pc != 0)
6834 ecs->stop_func_start = real_stop_pc;
6835
6836 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6837 {
6838 symtab_and_line sr_sal;
6839 sr_sal.pc = ecs->stop_func_start;
6840 sr_sal.pspace = get_frame_program_space (frame);
6841
6842 insert_step_resume_breakpoint_at_sal (gdbarch,
6843 sr_sal, null_frame_id);
6844 keep_going (ecs);
6845 return;
6846 }
6847
6848 /* If we have line number information for the function we are
6849 thinking of stepping into and the function isn't on the skip
6850 list, step into it.
6851
6852 If there are several symtabs at that PC (e.g. with include
6853 files), just want to know whether *any* of them have line
6854 numbers. find_pc_line handles this. */
6855 {
6856 struct symtab_and_line tmp_sal;
6857
6858 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6859 if (tmp_sal.line != 0
6860 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6861 tmp_sal)
6862 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6863 {
6864 if (execution_direction == EXEC_REVERSE)
6865 handle_step_into_function_backward (gdbarch, ecs);
6866 else
6867 handle_step_into_function (gdbarch, ecs);
6868 return;
6869 }
6870 }
6871
6872 /* If we have no line number and the step-stop-if-no-debug is
6873 set, we stop the step so that the user has a chance to switch
6874 in assembly mode. */
6875 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6876 && step_stop_if_no_debug)
6877 {
6878 end_stepping_range (ecs);
6879 return;
6880 }
6881
6882 if (execution_direction == EXEC_REVERSE)
6883 {
6884 /* If we're already at the start of the function, we've either just
6885 stepped backward into a single instruction function without line
6886 number info, or stepped back out of a signal handler to the first
6887 instruction of the function without line number info. Just keep
6888 going, which will single-step back to the caller. */
6889 if (ecs->stop_func_start != stop_pc)
6890 {
6891 /* Set a breakpoint at callee's start address.
6892 From there we can step once and be back in the caller. */
6893 symtab_and_line sr_sal;
6894 sr_sal.pc = ecs->stop_func_start;
6895 sr_sal.pspace = get_frame_program_space (frame);
6896 insert_step_resume_breakpoint_at_sal (gdbarch,
6897 sr_sal, null_frame_id);
6898 }
6899 }
6900 else
6901 /* Set a breakpoint at callee's return address (the address
6902 at which the caller will resume). */
6903 insert_step_resume_breakpoint_at_caller (frame);
6904
6905 keep_going (ecs);
6906 return;
6907 }
6908
6909 /* Reverse stepping through solib trampolines. */
6910
6911 if (execution_direction == EXEC_REVERSE
6912 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6913 {
6914 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6915
6916 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6917 || (ecs->stop_func_start == 0
6918 && in_solib_dynsym_resolve_code (stop_pc)))
6919 {
6920 /* Any solib trampoline code can be handled in reverse
6921 by simply continuing to single-step. We have already
6922 executed the solib function (backwards), and a few
6923 steps will take us back through the trampoline to the
6924 caller. */
6925 keep_going (ecs);
6926 return;
6927 }
6928 else if (in_solib_dynsym_resolve_code (stop_pc))
6929 {
6930 /* Stepped backward into the solib dynsym resolver.
6931 Set a breakpoint at its start and continue, then
6932 one more step will take us out. */
6933 symtab_and_line sr_sal;
6934 sr_sal.pc = ecs->stop_func_start;
6935 sr_sal.pspace = get_frame_program_space (frame);
6936 insert_step_resume_breakpoint_at_sal (gdbarch,
6937 sr_sal, null_frame_id);
6938 keep_going (ecs);
6939 return;
6940 }
6941 }
6942
6943 /* This always returns the sal for the inner-most frame when we are in a
6944 stack of inlined frames, even if GDB actually believes that it is in a
6945 more outer frame. This is checked for below by calls to
6946 inline_skipped_frames. */
6947 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6948
6949 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6950 the trampoline processing logic, however, there are some trampolines
6951 that have no names, so we should do trampoline handling first. */
6952 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6953 && ecs->stop_func_name == NULL
6954 && stop_pc_sal.line == 0)
6955 {
6956 infrun_log_debug ("stepped into undebuggable function");
6957
6958 /* The inferior just stepped into, or returned to, an
6959 undebuggable function (where there is no debugging information
6960 and no line number corresponding to the address where the
6961 inferior stopped). Since we want to skip this kind of code,
6962 we keep going until the inferior returns from this
6963 function - unless the user has asked us not to (via
6964 set step-mode) or we no longer know how to get back
6965 to the call site. */
6966 if (step_stop_if_no_debug
6967 || !frame_id_p (frame_unwind_caller_id (frame)))
6968 {
6969 /* If we have no line number and the step-stop-if-no-debug
6970 is set, we stop the step so that the user has a chance to
6971 switch in assembly mode. */
6972 end_stepping_range (ecs);
6973 return;
6974 }
6975 else
6976 {
6977 /* Set a breakpoint at callee's return address (the address
6978 at which the caller will resume). */
6979 insert_step_resume_breakpoint_at_caller (frame);
6980 keep_going (ecs);
6981 return;
6982 }
6983 }
6984
6985 if (ecs->event_thread->control.step_range_end == 1)
6986 {
6987 /* It is stepi or nexti. We always want to stop stepping after
6988 one instruction. */
6989 infrun_log_debug ("stepi/nexti");
6990 end_stepping_range (ecs);
6991 return;
6992 }
6993
6994 if (stop_pc_sal.line == 0)
6995 {
6996 /* We have no line number information. That means to stop
6997 stepping (does this always happen right after one instruction,
6998 when we do "s" in a function with no line numbers,
6999 or can this happen as a result of a return or longjmp?). */
7000 infrun_log_debug ("line number info");
7001 end_stepping_range (ecs);
7002 return;
7003 }
7004
7005 /* Look for "calls" to inlined functions, part one. If the inline
7006 frame machinery detected some skipped call sites, we have entered
7007 a new inline function. */
7008
7009 if (frame_id_eq (get_frame_id (get_current_frame ()),
7010 ecs->event_thread->control.step_frame_id)
7011 && inline_skipped_frames (ecs->event_thread))
7012 {
7013 infrun_log_debug ("stepped into inlined function");
7014
7015 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7016
7017 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7018 {
7019 /* For "step", we're going to stop. But if the call site
7020 for this inlined function is on the same source line as
7021 we were previously stepping, go down into the function
7022 first. Otherwise stop at the call site. */
7023
7024 if (call_sal.line == ecs->event_thread->current_line
7025 && call_sal.symtab == ecs->event_thread->current_symtab)
7026 {
7027 step_into_inline_frame (ecs->event_thread);
7028 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7029 {
7030 keep_going (ecs);
7031 return;
7032 }
7033 }
7034
7035 end_stepping_range (ecs);
7036 return;
7037 }
7038 else
7039 {
7040 /* For "next", we should stop at the call site if it is on a
7041 different source line. Otherwise continue through the
7042 inlined function. */
7043 if (call_sal.line == ecs->event_thread->current_line
7044 && call_sal.symtab == ecs->event_thread->current_symtab)
7045 keep_going (ecs);
7046 else
7047 end_stepping_range (ecs);
7048 return;
7049 }
7050 }
7051
7052 /* Look for "calls" to inlined functions, part two. If we are still
7053 in the same real function we were stepping through, but we have
7054 to go further up to find the exact frame ID, we are stepping
7055 through a more inlined call beyond its call site. */
7056
7057 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7058 && !frame_id_eq (get_frame_id (get_current_frame ()),
7059 ecs->event_thread->control.step_frame_id)
7060 && stepped_in_from (get_current_frame (),
7061 ecs->event_thread->control.step_frame_id))
7062 {
7063 infrun_log_debug ("stepping through inlined function");
7064
7065 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7066 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7067 keep_going (ecs);
7068 else
7069 end_stepping_range (ecs);
7070 return;
7071 }
7072
7073 bool refresh_step_info = true;
7074 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7075 && (ecs->event_thread->current_line != stop_pc_sal.line
7076 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7077 {
7078 if (stop_pc_sal.is_stmt)
7079 {
7080 /* We are at the start of a different line. So stop. Note that
7081 we don't stop if we step into the middle of a different line.
7082 That is said to make things like for (;;) statements work
7083 better. */
7084 infrun_log_debug ("infrun: stepped to a different line\n");
7085 end_stepping_range (ecs);
7086 return;
7087 }
7088 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7089 ecs->event_thread->control.step_frame_id))
7090 {
7091 /* We are at the start of a different line, however, this line is
7092 not marked as a statement, and we have not changed frame. We
7093 ignore this line table entry, and continue stepping forward,
7094 looking for a better place to stop. */
7095 refresh_step_info = false;
7096 infrun_log_debug ("infrun: stepped to a different line, but "
7097 "it's not the start of a statement\n");
7098 }
7099 }
7100
7101 /* We aren't done stepping.
7102
7103 Optimize by setting the stepping range to the line.
7104 (We might not be in the original line, but if we entered a
7105 new line in mid-statement, we continue stepping. This makes
7106 things like for(;;) statements work better.)
7107
7108 If we entered a SAL that indicates a non-statement line table entry,
7109 then we update the stepping range, but we don't update the step info,
7110 which includes things like the line number we are stepping away from.
7111 This means we will stop when we find a line table entry that is marked
7112 as is-statement, even if it matches the non-statement one we just
7113 stepped into. */
7114
7115 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7116 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7117 ecs->event_thread->control.may_range_step = 1;
7118 if (refresh_step_info)
7119 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7120
7121 infrun_log_debug ("keep going");
7122 keep_going (ecs);
7123 }
7124
7125 /* In all-stop mode, if we're currently stepping but have stopped in
7126 some other thread, we may need to switch back to the stepped
7127 thread. Returns true we set the inferior running, false if we left
7128 it stopped (and the event needs further processing). */
7129
7130 static int
7131 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7132 {
7133 if (!target_is_non_stop_p ())
7134 {
7135 struct thread_info *stepping_thread;
7136
7137 /* If any thread is blocked on some internal breakpoint, and we
7138 simply need to step over that breakpoint to get it going
7139 again, do that first. */
7140
7141 /* However, if we see an event for the stepping thread, then we
7142 know all other threads have been moved past their breakpoints
7143 already. Let the caller check whether the step is finished,
7144 etc., before deciding to move it past a breakpoint. */
7145 if (ecs->event_thread->control.step_range_end != 0)
7146 return 0;
7147
7148 /* Check if the current thread is blocked on an incomplete
7149 step-over, interrupted by a random signal. */
7150 if (ecs->event_thread->control.trap_expected
7151 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7152 {
7153 infrun_log_debug ("need to finish step-over of [%s]",
7154 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7155 keep_going (ecs);
7156 return 1;
7157 }
7158
7159 /* Check if the current thread is blocked by a single-step
7160 breakpoint of another thread. */
7161 if (ecs->hit_singlestep_breakpoint)
7162 {
7163 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7164 target_pid_to_str (ecs->ptid).c_str ());
7165 keep_going (ecs);
7166 return 1;
7167 }
7168
7169 /* If this thread needs yet another step-over (e.g., stepping
7170 through a delay slot), do it first before moving on to
7171 another thread. */
7172 if (thread_still_needs_step_over (ecs->event_thread))
7173 {
7174 infrun_log_debug
7175 ("thread [%s] still needs step-over",
7176 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7177 keep_going (ecs);
7178 return 1;
7179 }
7180
7181 /* If scheduler locking applies even if not stepping, there's no
7182 need to walk over threads. Above we've checked whether the
7183 current thread is stepping. If some other thread not the
7184 event thread is stepping, then it must be that scheduler
7185 locking is not in effect. */
7186 if (schedlock_applies (ecs->event_thread))
7187 return 0;
7188
7189 /* Otherwise, we no longer expect a trap in the current thread.
7190 Clear the trap_expected flag before switching back -- this is
7191 what keep_going does as well, if we call it. */
7192 ecs->event_thread->control.trap_expected = 0;
7193
7194 /* Likewise, clear the signal if it should not be passed. */
7195 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7196 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7197
7198 /* Do all pending step-overs before actually proceeding with
7199 step/next/etc. */
7200 if (start_step_over ())
7201 {
7202 prepare_to_wait (ecs);
7203 return 1;
7204 }
7205
7206 /* Look for the stepping/nexting thread. */
7207 stepping_thread = NULL;
7208
7209 for (thread_info *tp : all_non_exited_threads ())
7210 {
7211 switch_to_thread_no_regs (tp);
7212
7213 /* Ignore threads of processes the caller is not
7214 resuming. */
7215 if (!sched_multi
7216 && (tp->inf->process_target () != ecs->target
7217 || tp->inf->pid != ecs->ptid.pid ()))
7218 continue;
7219
7220 /* When stepping over a breakpoint, we lock all threads
7221 except the one that needs to move past the breakpoint.
7222 If a non-event thread has this set, the "incomplete
7223 step-over" check above should have caught it earlier. */
7224 if (tp->control.trap_expected)
7225 {
7226 internal_error (__FILE__, __LINE__,
7227 "[%s] has inconsistent state: "
7228 "trap_expected=%d\n",
7229 target_pid_to_str (tp->ptid).c_str (),
7230 tp->control.trap_expected);
7231 }
7232
7233 /* Did we find the stepping thread? */
7234 if (tp->control.step_range_end)
7235 {
7236 /* Yep. There should only one though. */
7237 gdb_assert (stepping_thread == NULL);
7238
7239 /* The event thread is handled at the top, before we
7240 enter this loop. */
7241 gdb_assert (tp != ecs->event_thread);
7242
7243 /* If some thread other than the event thread is
7244 stepping, then scheduler locking can't be in effect,
7245 otherwise we wouldn't have resumed the current event
7246 thread in the first place. */
7247 gdb_assert (!schedlock_applies (tp));
7248
7249 stepping_thread = tp;
7250 }
7251 }
7252
7253 if (stepping_thread != NULL)
7254 {
7255 infrun_log_debug ("switching back to stepped thread");
7256
7257 if (keep_going_stepped_thread (stepping_thread))
7258 {
7259 prepare_to_wait (ecs);
7260 return 1;
7261 }
7262 }
7263
7264 switch_to_thread (ecs->event_thread);
7265 }
7266
7267 return 0;
7268 }
7269
7270 /* Set a previously stepped thread back to stepping. Returns true on
7271 success, false if the resume is not possible (e.g., the thread
7272 vanished). */
7273
7274 static int
7275 keep_going_stepped_thread (struct thread_info *tp)
7276 {
7277 struct frame_info *frame;
7278 struct execution_control_state ecss;
7279 struct execution_control_state *ecs = &ecss;
7280
7281 /* If the stepping thread exited, then don't try to switch back and
7282 resume it, which could fail in several different ways depending
7283 on the target. Instead, just keep going.
7284
7285 We can find a stepping dead thread in the thread list in two
7286 cases:
7287
7288 - The target supports thread exit events, and when the target
7289 tries to delete the thread from the thread list, inferior_ptid
7290 pointed at the exiting thread. In such case, calling
7291 delete_thread does not really remove the thread from the list;
7292 instead, the thread is left listed, with 'exited' state.
7293
7294 - The target's debug interface does not support thread exit
7295 events, and so we have no idea whatsoever if the previously
7296 stepping thread is still alive. For that reason, we need to
7297 synchronously query the target now. */
7298
7299 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7300 {
7301 infrun_log_debug ("not resuming previously stepped thread, it has "
7302 "vanished");
7303
7304 delete_thread (tp);
7305 return 0;
7306 }
7307
7308 infrun_log_debug ("resuming previously stepped thread");
7309
7310 reset_ecs (ecs, tp);
7311 switch_to_thread (tp);
7312
7313 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7314 frame = get_current_frame ();
7315
7316 /* If the PC of the thread we were trying to single-step has
7317 changed, then that thread has trapped or been signaled, but the
7318 event has not been reported to GDB yet. Re-poll the target
7319 looking for this particular thread's event (i.e. temporarily
7320 enable schedlock) by:
7321
7322 - setting a break at the current PC
7323 - resuming that particular thread, only (by setting trap
7324 expected)
7325
7326 This prevents us continuously moving the single-step breakpoint
7327 forward, one instruction at a time, overstepping. */
7328
7329 if (tp->suspend.stop_pc != tp->prev_pc)
7330 {
7331 ptid_t resume_ptid;
7332
7333 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7334 paddress (target_gdbarch (), tp->prev_pc),
7335 paddress (target_gdbarch (), tp->suspend.stop_pc));
7336
7337 /* Clear the info of the previous step-over, as it's no longer
7338 valid (if the thread was trying to step over a breakpoint, it
7339 has already succeeded). It's what keep_going would do too,
7340 if we called it. Do this before trying to insert the sss
7341 breakpoint, otherwise if we were previously trying to step
7342 over this exact address in another thread, the breakpoint is
7343 skipped. */
7344 clear_step_over_info ();
7345 tp->control.trap_expected = 0;
7346
7347 insert_single_step_breakpoint (get_frame_arch (frame),
7348 get_frame_address_space (frame),
7349 tp->suspend.stop_pc);
7350
7351 tp->resumed = true;
7352 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7353 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7354 }
7355 else
7356 {
7357 infrun_log_debug ("expected thread still hasn't advanced");
7358
7359 keep_going_pass_signal (ecs);
7360 }
7361 return 1;
7362 }
7363
7364 /* Is thread TP in the middle of (software or hardware)
7365 single-stepping? (Note the result of this function must never be
7366 passed directly as target_resume's STEP parameter.) */
7367
7368 static int
7369 currently_stepping (struct thread_info *tp)
7370 {
7371 return ((tp->control.step_range_end
7372 && tp->control.step_resume_breakpoint == NULL)
7373 || tp->control.trap_expected
7374 || tp->stepped_breakpoint
7375 || bpstat_should_step ());
7376 }
7377
7378 /* Inferior has stepped into a subroutine call with source code that
7379 we should not step over. Do step to the first line of code in
7380 it. */
7381
7382 static void
7383 handle_step_into_function (struct gdbarch *gdbarch,
7384 struct execution_control_state *ecs)
7385 {
7386 fill_in_stop_func (gdbarch, ecs);
7387
7388 compunit_symtab *cust
7389 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7390 if (cust != NULL && compunit_language (cust) != language_asm)
7391 ecs->stop_func_start
7392 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7393
7394 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7395 /* Use the step_resume_break to step until the end of the prologue,
7396 even if that involves jumps (as it seems to on the vax under
7397 4.2). */
7398 /* If the prologue ends in the middle of a source line, continue to
7399 the end of that source line (if it is still within the function).
7400 Otherwise, just go to end of prologue. */
7401 if (stop_func_sal.end
7402 && stop_func_sal.pc != ecs->stop_func_start
7403 && stop_func_sal.end < ecs->stop_func_end)
7404 ecs->stop_func_start = stop_func_sal.end;
7405
7406 /* Architectures which require breakpoint adjustment might not be able
7407 to place a breakpoint at the computed address. If so, the test
7408 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7409 ecs->stop_func_start to an address at which a breakpoint may be
7410 legitimately placed.
7411
7412 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7413 made, GDB will enter an infinite loop when stepping through
7414 optimized code consisting of VLIW instructions which contain
7415 subinstructions corresponding to different source lines. On
7416 FR-V, it's not permitted to place a breakpoint on any but the
7417 first subinstruction of a VLIW instruction. When a breakpoint is
7418 set, GDB will adjust the breakpoint address to the beginning of
7419 the VLIW instruction. Thus, we need to make the corresponding
7420 adjustment here when computing the stop address. */
7421
7422 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7423 {
7424 ecs->stop_func_start
7425 = gdbarch_adjust_breakpoint_address (gdbarch,
7426 ecs->stop_func_start);
7427 }
7428
7429 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7430 {
7431 /* We are already there: stop now. */
7432 end_stepping_range (ecs);
7433 return;
7434 }
7435 else
7436 {
7437 /* Put the step-breakpoint there and go until there. */
7438 symtab_and_line sr_sal;
7439 sr_sal.pc = ecs->stop_func_start;
7440 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7441 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7442
7443 /* Do not specify what the fp should be when we stop since on
7444 some machines the prologue is where the new fp value is
7445 established. */
7446 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7447
7448 /* And make sure stepping stops right away then. */
7449 ecs->event_thread->control.step_range_end
7450 = ecs->event_thread->control.step_range_start;
7451 }
7452 keep_going (ecs);
7453 }
7454
7455 /* Inferior has stepped backward into a subroutine call with source
7456 code that we should not step over. Do step to the beginning of the
7457 last line of code in it. */
7458
7459 static void
7460 handle_step_into_function_backward (struct gdbarch *gdbarch,
7461 struct execution_control_state *ecs)
7462 {
7463 struct compunit_symtab *cust;
7464 struct symtab_and_line stop_func_sal;
7465
7466 fill_in_stop_func (gdbarch, ecs);
7467
7468 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7469 if (cust != NULL && compunit_language (cust) != language_asm)
7470 ecs->stop_func_start
7471 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7472
7473 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7474
7475 /* OK, we're just going to keep stepping here. */
7476 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7477 {
7478 /* We're there already. Just stop stepping now. */
7479 end_stepping_range (ecs);
7480 }
7481 else
7482 {
7483 /* Else just reset the step range and keep going.
7484 No step-resume breakpoint, they don't work for
7485 epilogues, which can have multiple entry paths. */
7486 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7487 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7488 keep_going (ecs);
7489 }
7490 return;
7491 }
7492
7493 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7494 This is used to both functions and to skip over code. */
7495
7496 static void
7497 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7498 struct symtab_and_line sr_sal,
7499 struct frame_id sr_id,
7500 enum bptype sr_type)
7501 {
7502 /* There should never be more than one step-resume or longjmp-resume
7503 breakpoint per thread, so we should never be setting a new
7504 step_resume_breakpoint when one is already active. */
7505 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7506 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7507
7508 infrun_log_debug ("inserting step-resume breakpoint at %s",
7509 paddress (gdbarch, sr_sal.pc));
7510
7511 inferior_thread ()->control.step_resume_breakpoint
7512 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7513 }
7514
7515 void
7516 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7517 struct symtab_and_line sr_sal,
7518 struct frame_id sr_id)
7519 {
7520 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7521 sr_sal, sr_id,
7522 bp_step_resume);
7523 }
7524
7525 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7526 This is used to skip a potential signal handler.
7527
7528 This is called with the interrupted function's frame. The signal
7529 handler, when it returns, will resume the interrupted function at
7530 RETURN_FRAME.pc. */
7531
7532 static void
7533 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7534 {
7535 gdb_assert (return_frame != NULL);
7536
7537 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7538
7539 symtab_and_line sr_sal;
7540 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7541 sr_sal.section = find_pc_overlay (sr_sal.pc);
7542 sr_sal.pspace = get_frame_program_space (return_frame);
7543
7544 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7545 get_stack_frame_id (return_frame),
7546 bp_hp_step_resume);
7547 }
7548
7549 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7550 is used to skip a function after stepping into it (for "next" or if
7551 the called function has no debugging information).
7552
7553 The current function has almost always been reached by single
7554 stepping a call or return instruction. NEXT_FRAME belongs to the
7555 current function, and the breakpoint will be set at the caller's
7556 resume address.
7557
7558 This is a separate function rather than reusing
7559 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7560 get_prev_frame, which may stop prematurely (see the implementation
7561 of frame_unwind_caller_id for an example). */
7562
7563 static void
7564 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7565 {
7566 /* We shouldn't have gotten here if we don't know where the call site
7567 is. */
7568 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7569
7570 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7571
7572 symtab_and_line sr_sal;
7573 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7574 frame_unwind_caller_pc (next_frame));
7575 sr_sal.section = find_pc_overlay (sr_sal.pc);
7576 sr_sal.pspace = frame_unwind_program_space (next_frame);
7577
7578 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7579 frame_unwind_caller_id (next_frame));
7580 }
7581
7582 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7583 new breakpoint at the target of a jmp_buf. The handling of
7584 longjmp-resume uses the same mechanisms used for handling
7585 "step-resume" breakpoints. */
7586
7587 static void
7588 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7589 {
7590 /* There should never be more than one longjmp-resume breakpoint per
7591 thread, so we should never be setting a new
7592 longjmp_resume_breakpoint when one is already active. */
7593 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7594
7595 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7596 paddress (gdbarch, pc));
7597
7598 inferior_thread ()->control.exception_resume_breakpoint =
7599 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7600 }
7601
7602 /* Insert an exception resume breakpoint. TP is the thread throwing
7603 the exception. The block B is the block of the unwinder debug hook
7604 function. FRAME is the frame corresponding to the call to this
7605 function. SYM is the symbol of the function argument holding the
7606 target PC of the exception. */
7607
7608 static void
7609 insert_exception_resume_breakpoint (struct thread_info *tp,
7610 const struct block *b,
7611 struct frame_info *frame,
7612 struct symbol *sym)
7613 {
7614 try
7615 {
7616 struct block_symbol vsym;
7617 struct value *value;
7618 CORE_ADDR handler;
7619 struct breakpoint *bp;
7620
7621 vsym = lookup_symbol_search_name (sym->search_name (),
7622 b, VAR_DOMAIN);
7623 value = read_var_value (vsym.symbol, vsym.block, frame);
7624 /* If the value was optimized out, revert to the old behavior. */
7625 if (! value_optimized_out (value))
7626 {
7627 handler = value_as_address (value);
7628
7629 infrun_log_debug ("exception resume at %lx",
7630 (unsigned long) handler);
7631
7632 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7633 handler,
7634 bp_exception_resume).release ();
7635
7636 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7637 frame = NULL;
7638
7639 bp->thread = tp->global_num;
7640 inferior_thread ()->control.exception_resume_breakpoint = bp;
7641 }
7642 }
7643 catch (const gdb_exception_error &e)
7644 {
7645 /* We want to ignore errors here. */
7646 }
7647 }
7648
7649 /* A helper for check_exception_resume that sets an
7650 exception-breakpoint based on a SystemTap probe. */
7651
7652 static void
7653 insert_exception_resume_from_probe (struct thread_info *tp,
7654 const struct bound_probe *probe,
7655 struct frame_info *frame)
7656 {
7657 struct value *arg_value;
7658 CORE_ADDR handler;
7659 struct breakpoint *bp;
7660
7661 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7662 if (!arg_value)
7663 return;
7664
7665 handler = value_as_address (arg_value);
7666
7667 infrun_log_debug ("exception resume at %s",
7668 paddress (probe->objfile->arch (), handler));
7669
7670 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7671 handler, bp_exception_resume).release ();
7672 bp->thread = tp->global_num;
7673 inferior_thread ()->control.exception_resume_breakpoint = bp;
7674 }
7675
7676 /* This is called when an exception has been intercepted. Check to
7677 see whether the exception's destination is of interest, and if so,
7678 set an exception resume breakpoint there. */
7679
7680 static void
7681 check_exception_resume (struct execution_control_state *ecs,
7682 struct frame_info *frame)
7683 {
7684 struct bound_probe probe;
7685 struct symbol *func;
7686
7687 /* First see if this exception unwinding breakpoint was set via a
7688 SystemTap probe point. If so, the probe has two arguments: the
7689 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7690 set a breakpoint there. */
7691 probe = find_probe_by_pc (get_frame_pc (frame));
7692 if (probe.prob)
7693 {
7694 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7695 return;
7696 }
7697
7698 func = get_frame_function (frame);
7699 if (!func)
7700 return;
7701
7702 try
7703 {
7704 const struct block *b;
7705 struct block_iterator iter;
7706 struct symbol *sym;
7707 int argno = 0;
7708
7709 /* The exception breakpoint is a thread-specific breakpoint on
7710 the unwinder's debug hook, declared as:
7711
7712 void _Unwind_DebugHook (void *cfa, void *handler);
7713
7714 The CFA argument indicates the frame to which control is
7715 about to be transferred. HANDLER is the destination PC.
7716
7717 We ignore the CFA and set a temporary breakpoint at HANDLER.
7718 This is not extremely efficient but it avoids issues in gdb
7719 with computing the DWARF CFA, and it also works even in weird
7720 cases such as throwing an exception from inside a signal
7721 handler. */
7722
7723 b = SYMBOL_BLOCK_VALUE (func);
7724 ALL_BLOCK_SYMBOLS (b, iter, sym)
7725 {
7726 if (!SYMBOL_IS_ARGUMENT (sym))
7727 continue;
7728
7729 if (argno == 0)
7730 ++argno;
7731 else
7732 {
7733 insert_exception_resume_breakpoint (ecs->event_thread,
7734 b, frame, sym);
7735 break;
7736 }
7737 }
7738 }
7739 catch (const gdb_exception_error &e)
7740 {
7741 }
7742 }
7743
7744 static void
7745 stop_waiting (struct execution_control_state *ecs)
7746 {
7747 infrun_log_debug ("stop_waiting");
7748
7749 /* Let callers know we don't want to wait for the inferior anymore. */
7750 ecs->wait_some_more = 0;
7751
7752 /* If all-stop, but there exists a non-stop target, stop all
7753 threads now that we're presenting the stop to the user. */
7754 if (!non_stop && exists_non_stop_target ())
7755 stop_all_threads ();
7756 }
7757
7758 /* Like keep_going, but passes the signal to the inferior, even if the
7759 signal is set to nopass. */
7760
7761 static void
7762 keep_going_pass_signal (struct execution_control_state *ecs)
7763 {
7764 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7765 gdb_assert (!ecs->event_thread->resumed);
7766
7767 /* Save the pc before execution, to compare with pc after stop. */
7768 ecs->event_thread->prev_pc
7769 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7770
7771 if (ecs->event_thread->control.trap_expected)
7772 {
7773 struct thread_info *tp = ecs->event_thread;
7774
7775 infrun_log_debug ("%s has trap_expected set, "
7776 "resuming to collect trap",
7777 target_pid_to_str (tp->ptid).c_str ());
7778
7779 /* We haven't yet gotten our trap, and either: intercepted a
7780 non-signal event (e.g., a fork); or took a signal which we
7781 are supposed to pass through to the inferior. Simply
7782 continue. */
7783 resume (ecs->event_thread->suspend.stop_signal);
7784 }
7785 else if (step_over_info_valid_p ())
7786 {
7787 /* Another thread is stepping over a breakpoint in-line. If
7788 this thread needs a step-over too, queue the request. In
7789 either case, this resume must be deferred for later. */
7790 struct thread_info *tp = ecs->event_thread;
7791
7792 if (ecs->hit_singlestep_breakpoint
7793 || thread_still_needs_step_over (tp))
7794 {
7795 infrun_log_debug ("step-over already in progress: "
7796 "step-over for %s deferred",
7797 target_pid_to_str (tp->ptid).c_str ());
7798 global_thread_step_over_chain_enqueue (tp);
7799 }
7800 else
7801 {
7802 infrun_log_debug ("step-over in progress: resume of %s deferred",
7803 target_pid_to_str (tp->ptid).c_str ());
7804 }
7805 }
7806 else
7807 {
7808 struct regcache *regcache = get_current_regcache ();
7809 int remove_bp;
7810 int remove_wps;
7811 step_over_what step_what;
7812
7813 /* Either the trap was not expected, but we are continuing
7814 anyway (if we got a signal, the user asked it be passed to
7815 the child)
7816 -- or --
7817 We got our expected trap, but decided we should resume from
7818 it.
7819
7820 We're going to run this baby now!
7821
7822 Note that insert_breakpoints won't try to re-insert
7823 already inserted breakpoints. Therefore, we don't
7824 care if breakpoints were already inserted, or not. */
7825
7826 /* If we need to step over a breakpoint, and we're not using
7827 displaced stepping to do so, insert all breakpoints
7828 (watchpoints, etc.) but the one we're stepping over, step one
7829 instruction, and then re-insert the breakpoint when that step
7830 is finished. */
7831
7832 step_what = thread_still_needs_step_over (ecs->event_thread);
7833
7834 remove_bp = (ecs->hit_singlestep_breakpoint
7835 || (step_what & STEP_OVER_BREAKPOINT));
7836 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7837
7838 /* We can't use displaced stepping if we need to step past a
7839 watchpoint. The instruction copied to the scratch pad would
7840 still trigger the watchpoint. */
7841 if (remove_bp
7842 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7843 {
7844 set_step_over_info (regcache->aspace (),
7845 regcache_read_pc (regcache), remove_wps,
7846 ecs->event_thread->global_num);
7847 }
7848 else if (remove_wps)
7849 set_step_over_info (NULL, 0, remove_wps, -1);
7850
7851 /* If we now need to do an in-line step-over, we need to stop
7852 all other threads. Note this must be done before
7853 insert_breakpoints below, because that removes the breakpoint
7854 we're about to step over, otherwise other threads could miss
7855 it. */
7856 if (step_over_info_valid_p () && target_is_non_stop_p ())
7857 stop_all_threads ();
7858
7859 /* Stop stepping if inserting breakpoints fails. */
7860 try
7861 {
7862 insert_breakpoints ();
7863 }
7864 catch (const gdb_exception_error &e)
7865 {
7866 exception_print (gdb_stderr, e);
7867 stop_waiting (ecs);
7868 clear_step_over_info ();
7869 return;
7870 }
7871
7872 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7873
7874 resume (ecs->event_thread->suspend.stop_signal);
7875 }
7876
7877 prepare_to_wait (ecs);
7878 }
7879
7880 /* Called when we should continue running the inferior, because the
7881 current event doesn't cause a user visible stop. This does the
7882 resuming part; waiting for the next event is done elsewhere. */
7883
7884 static void
7885 keep_going (struct execution_control_state *ecs)
7886 {
7887 if (ecs->event_thread->control.trap_expected
7888 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7889 ecs->event_thread->control.trap_expected = 0;
7890
7891 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7892 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7893 keep_going_pass_signal (ecs);
7894 }
7895
7896 /* This function normally comes after a resume, before
7897 handle_inferior_event exits. It takes care of any last bits of
7898 housekeeping, and sets the all-important wait_some_more flag. */
7899
7900 static void
7901 prepare_to_wait (struct execution_control_state *ecs)
7902 {
7903 infrun_log_debug ("prepare_to_wait");
7904
7905 ecs->wait_some_more = 1;
7906
7907 /* If the target can't async, emulate it by marking the infrun event
7908 handler such that as soon as we get back to the event-loop, we
7909 immediately end up in fetch_inferior_event again calling
7910 target_wait. */
7911 if (!target_can_async_p ())
7912 mark_infrun_async_event_handler ();
7913 }
7914
7915 /* We are done with the step range of a step/next/si/ni command.
7916 Called once for each n of a "step n" operation. */
7917
7918 static void
7919 end_stepping_range (struct execution_control_state *ecs)
7920 {
7921 ecs->event_thread->control.stop_step = 1;
7922 stop_waiting (ecs);
7923 }
7924
7925 /* Several print_*_reason functions to print why the inferior has stopped.
7926 We always print something when the inferior exits, or receives a signal.
7927 The rest of the cases are dealt with later on in normal_stop and
7928 print_it_typical. Ideally there should be a call to one of these
7929 print_*_reason functions functions from handle_inferior_event each time
7930 stop_waiting is called.
7931
7932 Note that we don't call these directly, instead we delegate that to
7933 the interpreters, through observers. Interpreters then call these
7934 with whatever uiout is right. */
7935
7936 void
7937 print_end_stepping_range_reason (struct ui_out *uiout)
7938 {
7939 /* For CLI-like interpreters, print nothing. */
7940
7941 if (uiout->is_mi_like_p ())
7942 {
7943 uiout->field_string ("reason",
7944 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7945 }
7946 }
7947
7948 void
7949 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7950 {
7951 annotate_signalled ();
7952 if (uiout->is_mi_like_p ())
7953 uiout->field_string
7954 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7955 uiout->text ("\nProgram terminated with signal ");
7956 annotate_signal_name ();
7957 uiout->field_string ("signal-name",
7958 gdb_signal_to_name (siggnal));
7959 annotate_signal_name_end ();
7960 uiout->text (", ");
7961 annotate_signal_string ();
7962 uiout->field_string ("signal-meaning",
7963 gdb_signal_to_string (siggnal));
7964 annotate_signal_string_end ();
7965 uiout->text (".\n");
7966 uiout->text ("The program no longer exists.\n");
7967 }
7968
7969 void
7970 print_exited_reason (struct ui_out *uiout, int exitstatus)
7971 {
7972 struct inferior *inf = current_inferior ();
7973 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7974
7975 annotate_exited (exitstatus);
7976 if (exitstatus)
7977 {
7978 if (uiout->is_mi_like_p ())
7979 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7980 std::string exit_code_str
7981 = string_printf ("0%o", (unsigned int) exitstatus);
7982 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7983 plongest (inf->num), pidstr.c_str (),
7984 string_field ("exit-code", exit_code_str.c_str ()));
7985 }
7986 else
7987 {
7988 if (uiout->is_mi_like_p ())
7989 uiout->field_string
7990 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7991 uiout->message ("[Inferior %s (%s) exited normally]\n",
7992 plongest (inf->num), pidstr.c_str ());
7993 }
7994 }
7995
7996 /* Some targets/architectures can do extra processing/display of
7997 segmentation faults. E.g., Intel MPX boundary faults.
7998 Call the architecture dependent function to handle the fault. */
7999
8000 static void
8001 handle_segmentation_fault (struct ui_out *uiout)
8002 {
8003 struct regcache *regcache = get_current_regcache ();
8004 struct gdbarch *gdbarch = regcache->arch ();
8005
8006 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8007 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8008 }
8009
8010 void
8011 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8012 {
8013 struct thread_info *thr = inferior_thread ();
8014
8015 annotate_signal ();
8016
8017 if (uiout->is_mi_like_p ())
8018 ;
8019 else if (show_thread_that_caused_stop ())
8020 {
8021 const char *name;
8022
8023 uiout->text ("\nThread ");
8024 uiout->field_string ("thread-id", print_thread_id (thr));
8025
8026 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8027 if (name != NULL)
8028 {
8029 uiout->text (" \"");
8030 uiout->field_string ("name", name);
8031 uiout->text ("\"");
8032 }
8033 }
8034 else
8035 uiout->text ("\nProgram");
8036
8037 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8038 uiout->text (" stopped");
8039 else
8040 {
8041 uiout->text (" received signal ");
8042 annotate_signal_name ();
8043 if (uiout->is_mi_like_p ())
8044 uiout->field_string
8045 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8046 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8047 annotate_signal_name_end ();
8048 uiout->text (", ");
8049 annotate_signal_string ();
8050 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8051
8052 if (siggnal == GDB_SIGNAL_SEGV)
8053 handle_segmentation_fault (uiout);
8054
8055 annotate_signal_string_end ();
8056 }
8057 uiout->text (".\n");
8058 }
8059
8060 void
8061 print_no_history_reason (struct ui_out *uiout)
8062 {
8063 uiout->text ("\nNo more reverse-execution history.\n");
8064 }
8065
8066 /* Print current location without a level number, if we have changed
8067 functions or hit a breakpoint. Print source line if we have one.
8068 bpstat_print contains the logic deciding in detail what to print,
8069 based on the event(s) that just occurred. */
8070
8071 static void
8072 print_stop_location (struct target_waitstatus *ws)
8073 {
8074 int bpstat_ret;
8075 enum print_what source_flag;
8076 int do_frame_printing = 1;
8077 struct thread_info *tp = inferior_thread ();
8078
8079 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8080 switch (bpstat_ret)
8081 {
8082 case PRINT_UNKNOWN:
8083 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8084 should) carry around the function and does (or should) use
8085 that when doing a frame comparison. */
8086 if (tp->control.stop_step
8087 && frame_id_eq (tp->control.step_frame_id,
8088 get_frame_id (get_current_frame ()))
8089 && (tp->control.step_start_function
8090 == find_pc_function (tp->suspend.stop_pc)))
8091 {
8092 /* Finished step, just print source line. */
8093 source_flag = SRC_LINE;
8094 }
8095 else
8096 {
8097 /* Print location and source line. */
8098 source_flag = SRC_AND_LOC;
8099 }
8100 break;
8101 case PRINT_SRC_AND_LOC:
8102 /* Print location and source line. */
8103 source_flag = SRC_AND_LOC;
8104 break;
8105 case PRINT_SRC_ONLY:
8106 source_flag = SRC_LINE;
8107 break;
8108 case PRINT_NOTHING:
8109 /* Something bogus. */
8110 source_flag = SRC_LINE;
8111 do_frame_printing = 0;
8112 break;
8113 default:
8114 internal_error (__FILE__, __LINE__, _("Unknown value."));
8115 }
8116
8117 /* The behavior of this routine with respect to the source
8118 flag is:
8119 SRC_LINE: Print only source line
8120 LOCATION: Print only location
8121 SRC_AND_LOC: Print location and source line. */
8122 if (do_frame_printing)
8123 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8124 }
8125
8126 /* See infrun.h. */
8127
8128 void
8129 print_stop_event (struct ui_out *uiout, bool displays)
8130 {
8131 struct target_waitstatus last;
8132 struct thread_info *tp;
8133
8134 get_last_target_status (nullptr, nullptr, &last);
8135
8136 {
8137 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8138
8139 print_stop_location (&last);
8140
8141 /* Display the auto-display expressions. */
8142 if (displays)
8143 do_displays ();
8144 }
8145
8146 tp = inferior_thread ();
8147 if (tp->thread_fsm != NULL
8148 && tp->thread_fsm->finished_p ())
8149 {
8150 struct return_value_info *rv;
8151
8152 rv = tp->thread_fsm->return_value ();
8153 if (rv != NULL)
8154 print_return_value (uiout, rv);
8155 }
8156 }
8157
8158 /* See infrun.h. */
8159
8160 void
8161 maybe_remove_breakpoints (void)
8162 {
8163 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8164 {
8165 if (remove_breakpoints ())
8166 {
8167 target_terminal::ours_for_output ();
8168 printf_filtered (_("Cannot remove breakpoints because "
8169 "program is no longer writable.\nFurther "
8170 "execution is probably impossible.\n"));
8171 }
8172 }
8173 }
8174
8175 /* The execution context that just caused a normal stop. */
8176
8177 struct stop_context
8178 {
8179 stop_context ();
8180 ~stop_context ();
8181
8182 DISABLE_COPY_AND_ASSIGN (stop_context);
8183
8184 bool changed () const;
8185
8186 /* The stop ID. */
8187 ULONGEST stop_id;
8188
8189 /* The event PTID. */
8190
8191 ptid_t ptid;
8192
8193 /* If stopp for a thread event, this is the thread that caused the
8194 stop. */
8195 struct thread_info *thread;
8196
8197 /* The inferior that caused the stop. */
8198 int inf_num;
8199 };
8200
8201 /* Initializes a new stop context. If stopped for a thread event, this
8202 takes a strong reference to the thread. */
8203
8204 stop_context::stop_context ()
8205 {
8206 stop_id = get_stop_id ();
8207 ptid = inferior_ptid;
8208 inf_num = current_inferior ()->num;
8209
8210 if (inferior_ptid != null_ptid)
8211 {
8212 /* Take a strong reference so that the thread can't be deleted
8213 yet. */
8214 thread = inferior_thread ();
8215 thread->incref ();
8216 }
8217 else
8218 thread = NULL;
8219 }
8220
8221 /* Release a stop context previously created with save_stop_context.
8222 Releases the strong reference to the thread as well. */
8223
8224 stop_context::~stop_context ()
8225 {
8226 if (thread != NULL)
8227 thread->decref ();
8228 }
8229
8230 /* Return true if the current context no longer matches the saved stop
8231 context. */
8232
8233 bool
8234 stop_context::changed () const
8235 {
8236 if (ptid != inferior_ptid)
8237 return true;
8238 if (inf_num != current_inferior ()->num)
8239 return true;
8240 if (thread != NULL && thread->state != THREAD_STOPPED)
8241 return true;
8242 if (get_stop_id () != stop_id)
8243 return true;
8244 return false;
8245 }
8246
8247 /* See infrun.h. */
8248
8249 int
8250 normal_stop (void)
8251 {
8252 struct target_waitstatus last;
8253
8254 get_last_target_status (nullptr, nullptr, &last);
8255
8256 new_stop_id ();
8257
8258 /* If an exception is thrown from this point on, make sure to
8259 propagate GDB's knowledge of the executing state to the
8260 frontend/user running state. A QUIT is an easy exception to see
8261 here, so do this before any filtered output. */
8262
8263 ptid_t finish_ptid = null_ptid;
8264
8265 if (!non_stop)
8266 finish_ptid = minus_one_ptid;
8267 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8268 || last.kind == TARGET_WAITKIND_EXITED)
8269 {
8270 /* On some targets, we may still have live threads in the
8271 inferior when we get a process exit event. E.g., for
8272 "checkpoint", when the current checkpoint/fork exits,
8273 linux-fork.c automatically switches to another fork from
8274 within target_mourn_inferior. */
8275 if (inferior_ptid != null_ptid)
8276 finish_ptid = ptid_t (inferior_ptid.pid ());
8277 }
8278 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8279 finish_ptid = inferior_ptid;
8280
8281 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8282 if (finish_ptid != null_ptid)
8283 {
8284 maybe_finish_thread_state.emplace
8285 (user_visible_resume_target (finish_ptid), finish_ptid);
8286 }
8287
8288 /* As we're presenting a stop, and potentially removing breakpoints,
8289 update the thread list so we can tell whether there are threads
8290 running on the target. With target remote, for example, we can
8291 only learn about new threads when we explicitly update the thread
8292 list. Do this before notifying the interpreters about signal
8293 stops, end of stepping ranges, etc., so that the "new thread"
8294 output is emitted before e.g., "Program received signal FOO",
8295 instead of after. */
8296 update_thread_list ();
8297
8298 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8299 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8300
8301 /* As with the notification of thread events, we want to delay
8302 notifying the user that we've switched thread context until
8303 the inferior actually stops.
8304
8305 There's no point in saying anything if the inferior has exited.
8306 Note that SIGNALLED here means "exited with a signal", not
8307 "received a signal".
8308
8309 Also skip saying anything in non-stop mode. In that mode, as we
8310 don't want GDB to switch threads behind the user's back, to avoid
8311 races where the user is typing a command to apply to thread x,
8312 but GDB switches to thread y before the user finishes entering
8313 the command, fetch_inferior_event installs a cleanup to restore
8314 the current thread back to the thread the user had selected right
8315 after this event is handled, so we're not really switching, only
8316 informing of a stop. */
8317 if (!non_stop
8318 && previous_inferior_ptid != inferior_ptid
8319 && target_has_execution
8320 && last.kind != TARGET_WAITKIND_SIGNALLED
8321 && last.kind != TARGET_WAITKIND_EXITED
8322 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8323 {
8324 SWITCH_THRU_ALL_UIS ()
8325 {
8326 target_terminal::ours_for_output ();
8327 printf_filtered (_("[Switching to %s]\n"),
8328 target_pid_to_str (inferior_ptid).c_str ());
8329 annotate_thread_changed ();
8330 }
8331 previous_inferior_ptid = inferior_ptid;
8332 }
8333
8334 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8335 {
8336 SWITCH_THRU_ALL_UIS ()
8337 if (current_ui->prompt_state == PROMPT_BLOCKED)
8338 {
8339 target_terminal::ours_for_output ();
8340 printf_filtered (_("No unwaited-for children left.\n"));
8341 }
8342 }
8343
8344 /* Note: this depends on the update_thread_list call above. */
8345 maybe_remove_breakpoints ();
8346
8347 /* If an auto-display called a function and that got a signal,
8348 delete that auto-display to avoid an infinite recursion. */
8349
8350 if (stopped_by_random_signal)
8351 disable_current_display ();
8352
8353 SWITCH_THRU_ALL_UIS ()
8354 {
8355 async_enable_stdin ();
8356 }
8357
8358 /* Let the user/frontend see the threads as stopped. */
8359 maybe_finish_thread_state.reset ();
8360
8361 /* Select innermost stack frame - i.e., current frame is frame 0,
8362 and current location is based on that. Handle the case where the
8363 dummy call is returning after being stopped. E.g. the dummy call
8364 previously hit a breakpoint. (If the dummy call returns
8365 normally, we won't reach here.) Do this before the stop hook is
8366 run, so that it doesn't get to see the temporary dummy frame,
8367 which is not where we'll present the stop. */
8368 if (has_stack_frames ())
8369 {
8370 if (stop_stack_dummy == STOP_STACK_DUMMY)
8371 {
8372 /* Pop the empty frame that contains the stack dummy. This
8373 also restores inferior state prior to the call (struct
8374 infcall_suspend_state). */
8375 struct frame_info *frame = get_current_frame ();
8376
8377 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8378 frame_pop (frame);
8379 /* frame_pop calls reinit_frame_cache as the last thing it
8380 does which means there's now no selected frame. */
8381 }
8382
8383 select_frame (get_current_frame ());
8384
8385 /* Set the current source location. */
8386 set_current_sal_from_frame (get_current_frame ());
8387 }
8388
8389 /* Look up the hook_stop and run it (CLI internally handles problem
8390 of stop_command's pre-hook not existing). */
8391 if (stop_command != NULL)
8392 {
8393 stop_context saved_context;
8394
8395 try
8396 {
8397 execute_cmd_pre_hook (stop_command);
8398 }
8399 catch (const gdb_exception &ex)
8400 {
8401 exception_fprintf (gdb_stderr, ex,
8402 "Error while running hook_stop:\n");
8403 }
8404
8405 /* If the stop hook resumes the target, then there's no point in
8406 trying to notify about the previous stop; its context is
8407 gone. Likewise if the command switches thread or inferior --
8408 the observers would print a stop for the wrong
8409 thread/inferior. */
8410 if (saved_context.changed ())
8411 return 1;
8412 }
8413
8414 /* Notify observers about the stop. This is where the interpreters
8415 print the stop event. */
8416 if (inferior_ptid != null_ptid)
8417 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8418 stop_print_frame);
8419 else
8420 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8421
8422 annotate_stopped ();
8423
8424 if (target_has_execution)
8425 {
8426 if (last.kind != TARGET_WAITKIND_SIGNALLED
8427 && last.kind != TARGET_WAITKIND_EXITED
8428 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8429 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8430 Delete any breakpoint that is to be deleted at the next stop. */
8431 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8432 }
8433
8434 /* Try to get rid of automatically added inferiors that are no
8435 longer needed. Keeping those around slows down things linearly.
8436 Note that this never removes the current inferior. */
8437 prune_inferiors ();
8438
8439 return 0;
8440 }
8441 \f
8442 int
8443 signal_stop_state (int signo)
8444 {
8445 return signal_stop[signo];
8446 }
8447
8448 int
8449 signal_print_state (int signo)
8450 {
8451 return signal_print[signo];
8452 }
8453
8454 int
8455 signal_pass_state (int signo)
8456 {
8457 return signal_program[signo];
8458 }
8459
8460 static void
8461 signal_cache_update (int signo)
8462 {
8463 if (signo == -1)
8464 {
8465 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8466 signal_cache_update (signo);
8467
8468 return;
8469 }
8470
8471 signal_pass[signo] = (signal_stop[signo] == 0
8472 && signal_print[signo] == 0
8473 && signal_program[signo] == 1
8474 && signal_catch[signo] == 0);
8475 }
8476
8477 int
8478 signal_stop_update (int signo, int state)
8479 {
8480 int ret = signal_stop[signo];
8481
8482 signal_stop[signo] = state;
8483 signal_cache_update (signo);
8484 return ret;
8485 }
8486
8487 int
8488 signal_print_update (int signo, int state)
8489 {
8490 int ret = signal_print[signo];
8491
8492 signal_print[signo] = state;
8493 signal_cache_update (signo);
8494 return ret;
8495 }
8496
8497 int
8498 signal_pass_update (int signo, int state)
8499 {
8500 int ret = signal_program[signo];
8501
8502 signal_program[signo] = state;
8503 signal_cache_update (signo);
8504 return ret;
8505 }
8506
8507 /* Update the global 'signal_catch' from INFO and notify the
8508 target. */
8509
8510 void
8511 signal_catch_update (const unsigned int *info)
8512 {
8513 int i;
8514
8515 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8516 signal_catch[i] = info[i] > 0;
8517 signal_cache_update (-1);
8518 target_pass_signals (signal_pass);
8519 }
8520
8521 static void
8522 sig_print_header (void)
8523 {
8524 printf_filtered (_("Signal Stop\tPrint\tPass "
8525 "to program\tDescription\n"));
8526 }
8527
8528 static void
8529 sig_print_info (enum gdb_signal oursig)
8530 {
8531 const char *name = gdb_signal_to_name (oursig);
8532 int name_padding = 13 - strlen (name);
8533
8534 if (name_padding <= 0)
8535 name_padding = 0;
8536
8537 printf_filtered ("%s", name);
8538 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8539 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8540 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8541 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8542 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8543 }
8544
8545 /* Specify how various signals in the inferior should be handled. */
8546
8547 static void
8548 handle_command (const char *args, int from_tty)
8549 {
8550 int digits, wordlen;
8551 int sigfirst, siglast;
8552 enum gdb_signal oursig;
8553 int allsigs;
8554
8555 if (args == NULL)
8556 {
8557 error_no_arg (_("signal to handle"));
8558 }
8559
8560 /* Allocate and zero an array of flags for which signals to handle. */
8561
8562 const size_t nsigs = GDB_SIGNAL_LAST;
8563 unsigned char sigs[nsigs] {};
8564
8565 /* Break the command line up into args. */
8566
8567 gdb_argv built_argv (args);
8568
8569 /* Walk through the args, looking for signal oursigs, signal names, and
8570 actions. Signal numbers and signal names may be interspersed with
8571 actions, with the actions being performed for all signals cumulatively
8572 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8573
8574 for (char *arg : built_argv)
8575 {
8576 wordlen = strlen (arg);
8577 for (digits = 0; isdigit (arg[digits]); digits++)
8578 {;
8579 }
8580 allsigs = 0;
8581 sigfirst = siglast = -1;
8582
8583 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8584 {
8585 /* Apply action to all signals except those used by the
8586 debugger. Silently skip those. */
8587 allsigs = 1;
8588 sigfirst = 0;
8589 siglast = nsigs - 1;
8590 }
8591 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8592 {
8593 SET_SIGS (nsigs, sigs, signal_stop);
8594 SET_SIGS (nsigs, sigs, signal_print);
8595 }
8596 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8597 {
8598 UNSET_SIGS (nsigs, sigs, signal_program);
8599 }
8600 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8601 {
8602 SET_SIGS (nsigs, sigs, signal_print);
8603 }
8604 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8605 {
8606 SET_SIGS (nsigs, sigs, signal_program);
8607 }
8608 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8609 {
8610 UNSET_SIGS (nsigs, sigs, signal_stop);
8611 }
8612 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8613 {
8614 SET_SIGS (nsigs, sigs, signal_program);
8615 }
8616 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8617 {
8618 UNSET_SIGS (nsigs, sigs, signal_print);
8619 UNSET_SIGS (nsigs, sigs, signal_stop);
8620 }
8621 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8622 {
8623 UNSET_SIGS (nsigs, sigs, signal_program);
8624 }
8625 else if (digits > 0)
8626 {
8627 /* It is numeric. The numeric signal refers to our own
8628 internal signal numbering from target.h, not to host/target
8629 signal number. This is a feature; users really should be
8630 using symbolic names anyway, and the common ones like
8631 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8632
8633 sigfirst = siglast = (int)
8634 gdb_signal_from_command (atoi (arg));
8635 if (arg[digits] == '-')
8636 {
8637 siglast = (int)
8638 gdb_signal_from_command (atoi (arg + digits + 1));
8639 }
8640 if (sigfirst > siglast)
8641 {
8642 /* Bet he didn't figure we'd think of this case... */
8643 std::swap (sigfirst, siglast);
8644 }
8645 }
8646 else
8647 {
8648 oursig = gdb_signal_from_name (arg);
8649 if (oursig != GDB_SIGNAL_UNKNOWN)
8650 {
8651 sigfirst = siglast = (int) oursig;
8652 }
8653 else
8654 {
8655 /* Not a number and not a recognized flag word => complain. */
8656 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8657 }
8658 }
8659
8660 /* If any signal numbers or symbol names were found, set flags for
8661 which signals to apply actions to. */
8662
8663 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8664 {
8665 switch ((enum gdb_signal) signum)
8666 {
8667 case GDB_SIGNAL_TRAP:
8668 case GDB_SIGNAL_INT:
8669 if (!allsigs && !sigs[signum])
8670 {
8671 if (query (_("%s is used by the debugger.\n\
8672 Are you sure you want to change it? "),
8673 gdb_signal_to_name ((enum gdb_signal) signum)))
8674 {
8675 sigs[signum] = 1;
8676 }
8677 else
8678 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8679 }
8680 break;
8681 case GDB_SIGNAL_0:
8682 case GDB_SIGNAL_DEFAULT:
8683 case GDB_SIGNAL_UNKNOWN:
8684 /* Make sure that "all" doesn't print these. */
8685 break;
8686 default:
8687 sigs[signum] = 1;
8688 break;
8689 }
8690 }
8691 }
8692
8693 for (int signum = 0; signum < nsigs; signum++)
8694 if (sigs[signum])
8695 {
8696 signal_cache_update (-1);
8697 target_pass_signals (signal_pass);
8698 target_program_signals (signal_program);
8699
8700 if (from_tty)
8701 {
8702 /* Show the results. */
8703 sig_print_header ();
8704 for (; signum < nsigs; signum++)
8705 if (sigs[signum])
8706 sig_print_info ((enum gdb_signal) signum);
8707 }
8708
8709 break;
8710 }
8711 }
8712
8713 /* Complete the "handle" command. */
8714
8715 static void
8716 handle_completer (struct cmd_list_element *ignore,
8717 completion_tracker &tracker,
8718 const char *text, const char *word)
8719 {
8720 static const char * const keywords[] =
8721 {
8722 "all",
8723 "stop",
8724 "ignore",
8725 "print",
8726 "pass",
8727 "nostop",
8728 "noignore",
8729 "noprint",
8730 "nopass",
8731 NULL,
8732 };
8733
8734 signal_completer (ignore, tracker, text, word);
8735 complete_on_enum (tracker, keywords, word, word);
8736 }
8737
8738 enum gdb_signal
8739 gdb_signal_from_command (int num)
8740 {
8741 if (num >= 1 && num <= 15)
8742 return (enum gdb_signal) num;
8743 error (_("Only signals 1-15 are valid as numeric signals.\n\
8744 Use \"info signals\" for a list of symbolic signals."));
8745 }
8746
8747 /* Print current contents of the tables set by the handle command.
8748 It is possible we should just be printing signals actually used
8749 by the current target (but for things to work right when switching
8750 targets, all signals should be in the signal tables). */
8751
8752 static void
8753 info_signals_command (const char *signum_exp, int from_tty)
8754 {
8755 enum gdb_signal oursig;
8756
8757 sig_print_header ();
8758
8759 if (signum_exp)
8760 {
8761 /* First see if this is a symbol name. */
8762 oursig = gdb_signal_from_name (signum_exp);
8763 if (oursig == GDB_SIGNAL_UNKNOWN)
8764 {
8765 /* No, try numeric. */
8766 oursig =
8767 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8768 }
8769 sig_print_info (oursig);
8770 return;
8771 }
8772
8773 printf_filtered ("\n");
8774 /* These ugly casts brought to you by the native VAX compiler. */
8775 for (oursig = GDB_SIGNAL_FIRST;
8776 (int) oursig < (int) GDB_SIGNAL_LAST;
8777 oursig = (enum gdb_signal) ((int) oursig + 1))
8778 {
8779 QUIT;
8780
8781 if (oursig != GDB_SIGNAL_UNKNOWN
8782 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8783 sig_print_info (oursig);
8784 }
8785
8786 printf_filtered (_("\nUse the \"handle\" command "
8787 "to change these tables.\n"));
8788 }
8789
8790 /* The $_siginfo convenience variable is a bit special. We don't know
8791 for sure the type of the value until we actually have a chance to
8792 fetch the data. The type can change depending on gdbarch, so it is
8793 also dependent on which thread you have selected.
8794
8795 1. making $_siginfo be an internalvar that creates a new value on
8796 access.
8797
8798 2. making the value of $_siginfo be an lval_computed value. */
8799
8800 /* This function implements the lval_computed support for reading a
8801 $_siginfo value. */
8802
8803 static void
8804 siginfo_value_read (struct value *v)
8805 {
8806 LONGEST transferred;
8807
8808 /* If we can access registers, so can we access $_siginfo. Likewise
8809 vice versa. */
8810 validate_registers_access ();
8811
8812 transferred =
8813 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8814 NULL,
8815 value_contents_all_raw (v),
8816 value_offset (v),
8817 TYPE_LENGTH (value_type (v)));
8818
8819 if (transferred != TYPE_LENGTH (value_type (v)))
8820 error (_("Unable to read siginfo"));
8821 }
8822
8823 /* This function implements the lval_computed support for writing a
8824 $_siginfo value. */
8825
8826 static void
8827 siginfo_value_write (struct value *v, struct value *fromval)
8828 {
8829 LONGEST transferred;
8830
8831 /* If we can access registers, so can we access $_siginfo. Likewise
8832 vice versa. */
8833 validate_registers_access ();
8834
8835 transferred = target_write (current_top_target (),
8836 TARGET_OBJECT_SIGNAL_INFO,
8837 NULL,
8838 value_contents_all_raw (fromval),
8839 value_offset (v),
8840 TYPE_LENGTH (value_type (fromval)));
8841
8842 if (transferred != TYPE_LENGTH (value_type (fromval)))
8843 error (_("Unable to write siginfo"));
8844 }
8845
8846 static const struct lval_funcs siginfo_value_funcs =
8847 {
8848 siginfo_value_read,
8849 siginfo_value_write
8850 };
8851
8852 /* Return a new value with the correct type for the siginfo object of
8853 the current thread using architecture GDBARCH. Return a void value
8854 if there's no object available. */
8855
8856 static struct value *
8857 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8858 void *ignore)
8859 {
8860 if (target_has_stack
8861 && inferior_ptid != null_ptid
8862 && gdbarch_get_siginfo_type_p (gdbarch))
8863 {
8864 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8865
8866 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8867 }
8868
8869 return allocate_value (builtin_type (gdbarch)->builtin_void);
8870 }
8871
8872 \f
8873 /* infcall_suspend_state contains state about the program itself like its
8874 registers and any signal it received when it last stopped.
8875 This state must be restored regardless of how the inferior function call
8876 ends (either successfully, or after it hits a breakpoint or signal)
8877 if the program is to properly continue where it left off. */
8878
8879 class infcall_suspend_state
8880 {
8881 public:
8882 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8883 once the inferior function call has finished. */
8884 infcall_suspend_state (struct gdbarch *gdbarch,
8885 const struct thread_info *tp,
8886 struct regcache *regcache)
8887 : m_thread_suspend (tp->suspend),
8888 m_registers (new readonly_detached_regcache (*regcache))
8889 {
8890 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8891
8892 if (gdbarch_get_siginfo_type_p (gdbarch))
8893 {
8894 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8895 size_t len = TYPE_LENGTH (type);
8896
8897 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8898
8899 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8900 siginfo_data.get (), 0, len) != len)
8901 {
8902 /* Errors ignored. */
8903 siginfo_data.reset (nullptr);
8904 }
8905 }
8906
8907 if (siginfo_data)
8908 {
8909 m_siginfo_gdbarch = gdbarch;
8910 m_siginfo_data = std::move (siginfo_data);
8911 }
8912 }
8913
8914 /* Return a pointer to the stored register state. */
8915
8916 readonly_detached_regcache *registers () const
8917 {
8918 return m_registers.get ();
8919 }
8920
8921 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8922
8923 void restore (struct gdbarch *gdbarch,
8924 struct thread_info *tp,
8925 struct regcache *regcache) const
8926 {
8927 tp->suspend = m_thread_suspend;
8928
8929 if (m_siginfo_gdbarch == gdbarch)
8930 {
8931 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8932
8933 /* Errors ignored. */
8934 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8935 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8936 }
8937
8938 /* The inferior can be gone if the user types "print exit(0)"
8939 (and perhaps other times). */
8940 if (target_has_execution)
8941 /* NB: The register write goes through to the target. */
8942 regcache->restore (registers ());
8943 }
8944
8945 private:
8946 /* How the current thread stopped before the inferior function call was
8947 executed. */
8948 struct thread_suspend_state m_thread_suspend;
8949
8950 /* The registers before the inferior function call was executed. */
8951 std::unique_ptr<readonly_detached_regcache> m_registers;
8952
8953 /* Format of SIGINFO_DATA or NULL if it is not present. */
8954 struct gdbarch *m_siginfo_gdbarch = nullptr;
8955
8956 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8957 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8958 content would be invalid. */
8959 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8960 };
8961
8962 infcall_suspend_state_up
8963 save_infcall_suspend_state ()
8964 {
8965 struct thread_info *tp = inferior_thread ();
8966 struct regcache *regcache = get_current_regcache ();
8967 struct gdbarch *gdbarch = regcache->arch ();
8968
8969 infcall_suspend_state_up inf_state
8970 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8971
8972 /* Having saved the current state, adjust the thread state, discarding
8973 any stop signal information. The stop signal is not useful when
8974 starting an inferior function call, and run_inferior_call will not use
8975 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8976 tp->suspend.stop_signal = GDB_SIGNAL_0;
8977
8978 return inf_state;
8979 }
8980
8981 /* Restore inferior session state to INF_STATE. */
8982
8983 void
8984 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8985 {
8986 struct thread_info *tp = inferior_thread ();
8987 struct regcache *regcache = get_current_regcache ();
8988 struct gdbarch *gdbarch = regcache->arch ();
8989
8990 inf_state->restore (gdbarch, tp, regcache);
8991 discard_infcall_suspend_state (inf_state);
8992 }
8993
8994 void
8995 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8996 {
8997 delete inf_state;
8998 }
8999
9000 readonly_detached_regcache *
9001 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9002 {
9003 return inf_state->registers ();
9004 }
9005
9006 /* infcall_control_state contains state regarding gdb's control of the
9007 inferior itself like stepping control. It also contains session state like
9008 the user's currently selected frame. */
9009
9010 struct infcall_control_state
9011 {
9012 struct thread_control_state thread_control;
9013 struct inferior_control_state inferior_control;
9014
9015 /* Other fields: */
9016 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9017 int stopped_by_random_signal = 0;
9018
9019 /* ID if the selected frame when the inferior function call was made. */
9020 struct frame_id selected_frame_id {};
9021 };
9022
9023 /* Save all of the information associated with the inferior<==>gdb
9024 connection. */
9025
9026 infcall_control_state_up
9027 save_infcall_control_state ()
9028 {
9029 infcall_control_state_up inf_status (new struct infcall_control_state);
9030 struct thread_info *tp = inferior_thread ();
9031 struct inferior *inf = current_inferior ();
9032
9033 inf_status->thread_control = tp->control;
9034 inf_status->inferior_control = inf->control;
9035
9036 tp->control.step_resume_breakpoint = NULL;
9037 tp->control.exception_resume_breakpoint = NULL;
9038
9039 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9040 chain. If caller's caller is walking the chain, they'll be happier if we
9041 hand them back the original chain when restore_infcall_control_state is
9042 called. */
9043 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9044
9045 /* Other fields: */
9046 inf_status->stop_stack_dummy = stop_stack_dummy;
9047 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9048
9049 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9050
9051 return inf_status;
9052 }
9053
9054 static void
9055 restore_selected_frame (const frame_id &fid)
9056 {
9057 frame_info *frame = frame_find_by_id (fid);
9058
9059 /* If inf_status->selected_frame_id is NULL, there was no previously
9060 selected frame. */
9061 if (frame == NULL)
9062 {
9063 warning (_("Unable to restore previously selected frame."));
9064 return;
9065 }
9066
9067 select_frame (frame);
9068 }
9069
9070 /* Restore inferior session state to INF_STATUS. */
9071
9072 void
9073 restore_infcall_control_state (struct infcall_control_state *inf_status)
9074 {
9075 struct thread_info *tp = inferior_thread ();
9076 struct inferior *inf = current_inferior ();
9077
9078 if (tp->control.step_resume_breakpoint)
9079 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9080
9081 if (tp->control.exception_resume_breakpoint)
9082 tp->control.exception_resume_breakpoint->disposition
9083 = disp_del_at_next_stop;
9084
9085 /* Handle the bpstat_copy of the chain. */
9086 bpstat_clear (&tp->control.stop_bpstat);
9087
9088 tp->control = inf_status->thread_control;
9089 inf->control = inf_status->inferior_control;
9090
9091 /* Other fields: */
9092 stop_stack_dummy = inf_status->stop_stack_dummy;
9093 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9094
9095 if (target_has_stack)
9096 {
9097 /* The point of the try/catch is that if the stack is clobbered,
9098 walking the stack might encounter a garbage pointer and
9099 error() trying to dereference it. */
9100 try
9101 {
9102 restore_selected_frame (inf_status->selected_frame_id);
9103 }
9104 catch (const gdb_exception_error &ex)
9105 {
9106 exception_fprintf (gdb_stderr, ex,
9107 "Unable to restore previously selected frame:\n");
9108 /* Error in restoring the selected frame. Select the
9109 innermost frame. */
9110 select_frame (get_current_frame ());
9111 }
9112 }
9113
9114 delete inf_status;
9115 }
9116
9117 void
9118 discard_infcall_control_state (struct infcall_control_state *inf_status)
9119 {
9120 if (inf_status->thread_control.step_resume_breakpoint)
9121 inf_status->thread_control.step_resume_breakpoint->disposition
9122 = disp_del_at_next_stop;
9123
9124 if (inf_status->thread_control.exception_resume_breakpoint)
9125 inf_status->thread_control.exception_resume_breakpoint->disposition
9126 = disp_del_at_next_stop;
9127
9128 /* See save_infcall_control_state for info on stop_bpstat. */
9129 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9130
9131 delete inf_status;
9132 }
9133 \f
9134 /* See infrun.h. */
9135
9136 void
9137 clear_exit_convenience_vars (void)
9138 {
9139 clear_internalvar (lookup_internalvar ("_exitsignal"));
9140 clear_internalvar (lookup_internalvar ("_exitcode"));
9141 }
9142 \f
9143
9144 /* User interface for reverse debugging:
9145 Set exec-direction / show exec-direction commands
9146 (returns error unless target implements to_set_exec_direction method). */
9147
9148 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9149 static const char exec_forward[] = "forward";
9150 static const char exec_reverse[] = "reverse";
9151 static const char *exec_direction = exec_forward;
9152 static const char *const exec_direction_names[] = {
9153 exec_forward,
9154 exec_reverse,
9155 NULL
9156 };
9157
9158 static void
9159 set_exec_direction_func (const char *args, int from_tty,
9160 struct cmd_list_element *cmd)
9161 {
9162 if (target_can_execute_reverse)
9163 {
9164 if (!strcmp (exec_direction, exec_forward))
9165 execution_direction = EXEC_FORWARD;
9166 else if (!strcmp (exec_direction, exec_reverse))
9167 execution_direction = EXEC_REVERSE;
9168 }
9169 else
9170 {
9171 exec_direction = exec_forward;
9172 error (_("Target does not support this operation."));
9173 }
9174 }
9175
9176 static void
9177 show_exec_direction_func (struct ui_file *out, int from_tty,
9178 struct cmd_list_element *cmd, const char *value)
9179 {
9180 switch (execution_direction) {
9181 case EXEC_FORWARD:
9182 fprintf_filtered (out, _("Forward.\n"));
9183 break;
9184 case EXEC_REVERSE:
9185 fprintf_filtered (out, _("Reverse.\n"));
9186 break;
9187 default:
9188 internal_error (__FILE__, __LINE__,
9189 _("bogus execution_direction value: %d"),
9190 (int) execution_direction);
9191 }
9192 }
9193
9194 static void
9195 show_schedule_multiple (struct ui_file *file, int from_tty,
9196 struct cmd_list_element *c, const char *value)
9197 {
9198 fprintf_filtered (file, _("Resuming the execution of threads "
9199 "of all processes is %s.\n"), value);
9200 }
9201
9202 /* Implementation of `siginfo' variable. */
9203
9204 static const struct internalvar_funcs siginfo_funcs =
9205 {
9206 siginfo_make_value,
9207 NULL,
9208 NULL
9209 };
9210
9211 /* Callback for infrun's target events source. This is marked when a
9212 thread has a pending status to process. */
9213
9214 static void
9215 infrun_async_inferior_event_handler (gdb_client_data data)
9216 {
9217 inferior_event_handler (INF_REG_EVENT);
9218 }
9219
9220 void _initialize_infrun ();
9221 void
9222 _initialize_infrun ()
9223 {
9224 struct cmd_list_element *c;
9225
9226 /* Register extra event sources in the event loop. */
9227 infrun_async_inferior_event_token
9228 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9229
9230 add_info ("signals", info_signals_command, _("\
9231 What debugger does when program gets various signals.\n\
9232 Specify a signal as argument to print info on that signal only."));
9233 add_info_alias ("handle", "signals", 0);
9234
9235 c = add_com ("handle", class_run, handle_command, _("\
9236 Specify how to handle signals.\n\
9237 Usage: handle SIGNAL [ACTIONS]\n\
9238 Args are signals and actions to apply to those signals.\n\
9239 If no actions are specified, the current settings for the specified signals\n\
9240 will be displayed instead.\n\
9241 \n\
9242 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9243 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9244 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9245 The special arg \"all\" is recognized to mean all signals except those\n\
9246 used by the debugger, typically SIGTRAP and SIGINT.\n\
9247 \n\
9248 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9249 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9250 Stop means reenter debugger if this signal happens (implies print).\n\
9251 Print means print a message if this signal happens.\n\
9252 Pass means let program see this signal; otherwise program doesn't know.\n\
9253 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9254 Pass and Stop may be combined.\n\
9255 \n\
9256 Multiple signals may be specified. Signal numbers and signal names\n\
9257 may be interspersed with actions, with the actions being performed for\n\
9258 all signals cumulatively specified."));
9259 set_cmd_completer (c, handle_completer);
9260
9261 if (!dbx_commands)
9262 stop_command = add_cmd ("stop", class_obscure,
9263 not_just_help_class_command, _("\
9264 There is no `stop' command, but you can set a hook on `stop'.\n\
9265 This allows you to set a list of commands to be run each time execution\n\
9266 of the program stops."), &cmdlist);
9267
9268 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9269 Set inferior debugging."), _("\
9270 Show inferior debugging."), _("\
9271 When non-zero, inferior specific debugging is enabled."),
9272 NULL,
9273 show_debug_infrun,
9274 &setdebuglist, &showdebuglist);
9275
9276 add_setshow_boolean_cmd ("displaced", class_maintenance,
9277 &debug_displaced, _("\
9278 Set displaced stepping debugging."), _("\
9279 Show displaced stepping debugging."), _("\
9280 When non-zero, displaced stepping specific debugging is enabled."),
9281 NULL,
9282 show_debug_displaced,
9283 &setdebuglist, &showdebuglist);
9284
9285 add_setshow_boolean_cmd ("non-stop", no_class,
9286 &non_stop_1, _("\
9287 Set whether gdb controls the inferior in non-stop mode."), _("\
9288 Show whether gdb controls the inferior in non-stop mode."), _("\
9289 When debugging a multi-threaded program and this setting is\n\
9290 off (the default, also called all-stop mode), when one thread stops\n\
9291 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9292 all other threads in the program while you interact with the thread of\n\
9293 interest. When you continue or step a thread, you can allow the other\n\
9294 threads to run, or have them remain stopped, but while you inspect any\n\
9295 thread's state, all threads stop.\n\
9296 \n\
9297 In non-stop mode, when one thread stops, other threads can continue\n\
9298 to run freely. You'll be able to step each thread independently,\n\
9299 leave it stopped or free to run as needed."),
9300 set_non_stop,
9301 show_non_stop,
9302 &setlist,
9303 &showlist);
9304
9305 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9306 {
9307 signal_stop[i] = 1;
9308 signal_print[i] = 1;
9309 signal_program[i] = 1;
9310 signal_catch[i] = 0;
9311 }
9312
9313 /* Signals caused by debugger's own actions should not be given to
9314 the program afterwards.
9315
9316 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9317 explicitly specifies that it should be delivered to the target
9318 program. Typically, that would occur when a user is debugging a
9319 target monitor on a simulator: the target monitor sets a
9320 breakpoint; the simulator encounters this breakpoint and halts
9321 the simulation handing control to GDB; GDB, noting that the stop
9322 address doesn't map to any known breakpoint, returns control back
9323 to the simulator; the simulator then delivers the hardware
9324 equivalent of a GDB_SIGNAL_TRAP to the program being
9325 debugged. */
9326 signal_program[GDB_SIGNAL_TRAP] = 0;
9327 signal_program[GDB_SIGNAL_INT] = 0;
9328
9329 /* Signals that are not errors should not normally enter the debugger. */
9330 signal_stop[GDB_SIGNAL_ALRM] = 0;
9331 signal_print[GDB_SIGNAL_ALRM] = 0;
9332 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9333 signal_print[GDB_SIGNAL_VTALRM] = 0;
9334 signal_stop[GDB_SIGNAL_PROF] = 0;
9335 signal_print[GDB_SIGNAL_PROF] = 0;
9336 signal_stop[GDB_SIGNAL_CHLD] = 0;
9337 signal_print[GDB_SIGNAL_CHLD] = 0;
9338 signal_stop[GDB_SIGNAL_IO] = 0;
9339 signal_print[GDB_SIGNAL_IO] = 0;
9340 signal_stop[GDB_SIGNAL_POLL] = 0;
9341 signal_print[GDB_SIGNAL_POLL] = 0;
9342 signal_stop[GDB_SIGNAL_URG] = 0;
9343 signal_print[GDB_SIGNAL_URG] = 0;
9344 signal_stop[GDB_SIGNAL_WINCH] = 0;
9345 signal_print[GDB_SIGNAL_WINCH] = 0;
9346 signal_stop[GDB_SIGNAL_PRIO] = 0;
9347 signal_print[GDB_SIGNAL_PRIO] = 0;
9348
9349 /* These signals are used internally by user-level thread
9350 implementations. (See signal(5) on Solaris.) Like the above
9351 signals, a healthy program receives and handles them as part of
9352 its normal operation. */
9353 signal_stop[GDB_SIGNAL_LWP] = 0;
9354 signal_print[GDB_SIGNAL_LWP] = 0;
9355 signal_stop[GDB_SIGNAL_WAITING] = 0;
9356 signal_print[GDB_SIGNAL_WAITING] = 0;
9357 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9358 signal_print[GDB_SIGNAL_CANCEL] = 0;
9359 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9360 signal_print[GDB_SIGNAL_LIBRT] = 0;
9361
9362 /* Update cached state. */
9363 signal_cache_update (-1);
9364
9365 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9366 &stop_on_solib_events, _("\
9367 Set stopping for shared library events."), _("\
9368 Show stopping for shared library events."), _("\
9369 If nonzero, gdb will give control to the user when the dynamic linker\n\
9370 notifies gdb of shared library events. The most common event of interest\n\
9371 to the user would be loading/unloading of a new library."),
9372 set_stop_on_solib_events,
9373 show_stop_on_solib_events,
9374 &setlist, &showlist);
9375
9376 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9377 follow_fork_mode_kind_names,
9378 &follow_fork_mode_string, _("\
9379 Set debugger response to a program call of fork or vfork."), _("\
9380 Show debugger response to a program call of fork or vfork."), _("\
9381 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9382 parent - the original process is debugged after a fork\n\
9383 child - the new process is debugged after a fork\n\
9384 The unfollowed process will continue to run.\n\
9385 By default, the debugger will follow the parent process."),
9386 NULL,
9387 show_follow_fork_mode_string,
9388 &setlist, &showlist);
9389
9390 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9391 follow_exec_mode_names,
9392 &follow_exec_mode_string, _("\
9393 Set debugger response to a program call of exec."), _("\
9394 Show debugger response to a program call of exec."), _("\
9395 An exec call replaces the program image of a process.\n\
9396 \n\
9397 follow-exec-mode can be:\n\
9398 \n\
9399 new - the debugger creates a new inferior and rebinds the process\n\
9400 to this new inferior. The program the process was running before\n\
9401 the exec call can be restarted afterwards by restarting the original\n\
9402 inferior.\n\
9403 \n\
9404 same - the debugger keeps the process bound to the same inferior.\n\
9405 The new executable image replaces the previous executable loaded in\n\
9406 the inferior. Restarting the inferior after the exec call restarts\n\
9407 the executable the process was running after the exec call.\n\
9408 \n\
9409 By default, the debugger will use the same inferior."),
9410 NULL,
9411 show_follow_exec_mode_string,
9412 &setlist, &showlist);
9413
9414 add_setshow_enum_cmd ("scheduler-locking", class_run,
9415 scheduler_enums, &scheduler_mode, _("\
9416 Set mode for locking scheduler during execution."), _("\
9417 Show mode for locking scheduler during execution."), _("\
9418 off == no locking (threads may preempt at any time)\n\
9419 on == full locking (no thread except the current thread may run)\n\
9420 This applies to both normal execution and replay mode.\n\
9421 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9422 In this mode, other threads may run during other commands.\n\
9423 This applies to both normal execution and replay mode.\n\
9424 replay == scheduler locked in replay mode and unlocked during normal execution."),
9425 set_schedlock_func, /* traps on target vector */
9426 show_scheduler_mode,
9427 &setlist, &showlist);
9428
9429 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9430 Set mode for resuming threads of all processes."), _("\
9431 Show mode for resuming threads of all processes."), _("\
9432 When on, execution commands (such as 'continue' or 'next') resume all\n\
9433 threads of all processes. When off (which is the default), execution\n\
9434 commands only resume the threads of the current process. The set of\n\
9435 threads that are resumed is further refined by the scheduler-locking\n\
9436 mode (see help set scheduler-locking)."),
9437 NULL,
9438 show_schedule_multiple,
9439 &setlist, &showlist);
9440
9441 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9442 Set mode of the step operation."), _("\
9443 Show mode of the step operation."), _("\
9444 When set, doing a step over a function without debug line information\n\
9445 will stop at the first instruction of that function. Otherwise, the\n\
9446 function is skipped and the step command stops at a different source line."),
9447 NULL,
9448 show_step_stop_if_no_debug,
9449 &setlist, &showlist);
9450
9451 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9452 &can_use_displaced_stepping, _("\
9453 Set debugger's willingness to use displaced stepping."), _("\
9454 Show debugger's willingness to use displaced stepping."), _("\
9455 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9456 supported by the target architecture. If off, gdb will not use displaced\n\
9457 stepping to step over breakpoints, even if such is supported by the target\n\
9458 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9459 if the target architecture supports it and non-stop mode is active, but will not\n\
9460 use it in all-stop mode (see help set non-stop)."),
9461 NULL,
9462 show_can_use_displaced_stepping,
9463 &setlist, &showlist);
9464
9465 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9466 &exec_direction, _("Set direction of execution.\n\
9467 Options are 'forward' or 'reverse'."),
9468 _("Show direction of execution (forward/reverse)."),
9469 _("Tells gdb whether to execute forward or backward."),
9470 set_exec_direction_func, show_exec_direction_func,
9471 &setlist, &showlist);
9472
9473 /* Set/show detach-on-fork: user-settable mode. */
9474
9475 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9476 Set whether gdb will detach the child of a fork."), _("\
9477 Show whether gdb will detach the child of a fork."), _("\
9478 Tells gdb whether to detach the child of a fork."),
9479 NULL, NULL, &setlist, &showlist);
9480
9481 /* Set/show disable address space randomization mode. */
9482
9483 add_setshow_boolean_cmd ("disable-randomization", class_support,
9484 &disable_randomization, _("\
9485 Set disabling of debuggee's virtual address space randomization."), _("\
9486 Show disabling of debuggee's virtual address space randomization."), _("\
9487 When this mode is on (which is the default), randomization of the virtual\n\
9488 address space is disabled. Standalone programs run with the randomization\n\
9489 enabled by default on some platforms."),
9490 &set_disable_randomization,
9491 &show_disable_randomization,
9492 &setlist, &showlist);
9493
9494 /* ptid initializations */
9495 inferior_ptid = null_ptid;
9496 target_last_wait_ptid = minus_one_ptid;
9497
9498 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9499 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9500 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9501 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9502
9503 /* Explicitly create without lookup, since that tries to create a
9504 value with a void typed value, and when we get here, gdbarch
9505 isn't initialized yet. At this point, we're quite sure there
9506 isn't another convenience variable of the same name. */
9507 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9508
9509 add_setshow_boolean_cmd ("observer", no_class,
9510 &observer_mode_1, _("\
9511 Set whether gdb controls the inferior in observer mode."), _("\
9512 Show whether gdb controls the inferior in observer mode."), _("\
9513 In observer mode, GDB can get data from the inferior, but not\n\
9514 affect its execution. Registers and memory may not be changed,\n\
9515 breakpoints may not be set, and the program cannot be interrupted\n\
9516 or signalled."),
9517 set_observer_mode,
9518 show_observer_mode,
9519 &setlist,
9520 &showlist);
9521 }
This page took 0.239726 seconds and 3 git commands to generate.