c4dea90705ad2f034ef4cc214314f81179a2fa89
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5 Copyright (C) 2019-2020 Advanced Micro Devices, Inc. All rights reserved.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67
68 /* Prototypes for local functions */
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static int follow_fork (void);
75
76 static int follow_fork_inferior (int follow_child, int detach_fork);
77
78 static void follow_inferior_reset_breakpoints (void);
79
80 static int currently_stepping (struct thread_info *tp);
81
82 void nullify_last_target_wait_ptid (void);
83
84 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92 static void resume (gdb_signal sig);
93
94 /* Asynchronous signal handler registered as event loop source for
95 when we have pending events ready to be passed to the core. */
96 static struct async_event_handler *infrun_async_inferior_event_token;
97
98 /* Stores whether infrun_async was previously enabled or disabled.
99 Starts off as -1, indicating "never enabled/disabled". */
100 static int infrun_is_async = -1;
101
102 /* See infrun.h. */
103
104 void
105 infrun_async (int enable)
106 {
107 if (infrun_is_async != enable)
108 {
109 infrun_is_async = enable;
110
111 if (debug_infrun)
112 fprintf_unfiltered (gdb_stdlog,
113 "infrun: infrun_async(%d)\n",
114 enable);
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 mark_infrun_async_event_handler (void)
127 {
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 }
130
131 /* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
134 bool step_stop_if_no_debug = false;
135 static void
136 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140 }
141
142 /* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
145
146 static ptid_t previous_inferior_ptid;
147
148 /* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
153 static bool detach_fork = true;
154
155 bool debug_displaced = false;
156 static void
157 show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161 }
162
163 unsigned int debug_infrun = 0;
164 static void
165 show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169 }
170
171
172 /* Support for disabling address space randomization. */
173
174 bool disable_randomization = true;
175
176 static void
177 show_disable_randomization (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 if (target_supports_disable_randomization ())
181 fprintf_filtered (file,
182 _("Disabling randomization of debuggee's "
183 "virtual address space is %s.\n"),
184 value);
185 else
186 fputs_filtered (_("Disabling randomization of debuggee's "
187 "virtual address space is unsupported on\n"
188 "this platform.\n"), file);
189 }
190
191 static void
192 set_disable_randomization (const char *args, int from_tty,
193 struct cmd_list_element *c)
194 {
195 if (!target_supports_disable_randomization ())
196 error (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform."));
199 }
200
201 /* User interface for non-stop mode. */
202
203 bool non_stop = false;
204 static bool non_stop_1 = false;
205
206 static void
207 set_non_stop (const char *args, int from_tty,
208 struct cmd_list_element *c)
209 {
210 if (target_has_execution)
211 {
212 non_stop_1 = non_stop;
213 error (_("Cannot change this setting while the inferior is running."));
214 }
215
216 non_stop = non_stop_1;
217 }
218
219 static void
220 show_non_stop (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file,
224 _("Controlling the inferior in non-stop mode is %s.\n"),
225 value);
226 }
227
228 /* "Observer mode" is somewhat like a more extreme version of
229 non-stop, in which all GDB operations that might affect the
230 target's execution have been disabled. */
231
232 bool observer_mode = false;
233 static bool observer_mode_1 = false;
234
235 static void
236 set_observer_mode (const char *args, int from_tty,
237 struct cmd_list_element *c)
238 {
239 if (target_has_execution)
240 {
241 observer_mode_1 = observer_mode;
242 error (_("Cannot change this setting while the inferior is running."));
243 }
244
245 observer_mode = observer_mode_1;
246
247 may_write_registers = !observer_mode;
248 may_write_memory = !observer_mode;
249 may_insert_breakpoints = !observer_mode;
250 may_insert_tracepoints = !observer_mode;
251 /* We can insert fast tracepoints in or out of observer mode,
252 but enable them if we're going into this mode. */
253 if (observer_mode)
254 may_insert_fast_tracepoints = true;
255 may_stop = !observer_mode;
256 update_target_permissions ();
257
258 /* Going *into* observer mode we must force non-stop, then
259 going out we leave it that way. */
260 if (observer_mode)
261 {
262 pagination_enabled = 0;
263 non_stop = non_stop_1 = true;
264 }
265
266 if (from_tty)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (observer_mode ? "on" : "off"));
269 }
270
271 static void
272 show_observer_mode (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274 {
275 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
276 }
277
278 /* This updates the value of observer mode based on changes in
279 permissions. Note that we are deliberately ignoring the values of
280 may-write-registers and may-write-memory, since the user may have
281 reason to enable these during a session, for instance to turn on a
282 debugging-related global. */
283
284 void
285 update_observer_mode (void)
286 {
287 bool newval = (!may_insert_breakpoints
288 && !may_insert_tracepoints
289 && may_insert_fast_tracepoints
290 && !may_stop
291 && non_stop);
292
293 /* Let the user know if things change. */
294 if (newval != observer_mode)
295 printf_filtered (_("Observer mode is now %s.\n"),
296 (newval ? "on" : "off"));
297
298 observer_mode = observer_mode_1 = newval;
299 }
300
301 /* Tables of how to react to signals; the user sets them. */
302
303 static unsigned char signal_stop[GDB_SIGNAL_LAST];
304 static unsigned char signal_print[GDB_SIGNAL_LAST];
305 static unsigned char signal_program[GDB_SIGNAL_LAST];
306
307 /* Table of signals that are registered with "catch signal". A
308 non-zero entry indicates that the signal is caught by some "catch
309 signal" command. */
310 static unsigned char signal_catch[GDB_SIGNAL_LAST];
311
312 /* Table of signals that the target may silently handle.
313 This is automatically determined from the flags above,
314 and simply cached here. */
315 static unsigned char signal_pass[GDB_SIGNAL_LAST];
316
317 #define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325 #define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
333 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
334 this function is to avoid exporting `signal_program'. */
335
336 void
337 update_signals_program_target (void)
338 {
339 target_program_signals (signal_program);
340 }
341
342 /* Value to pass to target_resume() to cause all threads to resume. */
343
344 #define RESUME_ALL minus_one_ptid
345
346 /* Command list pointer for the "stop" placeholder. */
347
348 static struct cmd_list_element *stop_command;
349
350 /* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
352 int stop_on_solib_events;
353
354 /* Enable or disable optional shared library event breakpoints
355 as appropriate when the above flag is changed. */
356
357 static void
358 set_stop_on_solib_events (const char *args,
359 int from_tty, struct cmd_list_element *c)
360 {
361 update_solib_breakpoints ();
362 }
363
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* Nonzero after stop if current stack frame should be printed. */
373
374 static int stop_print_frame;
375
376 /* This is a cached copy of the pid/waitstatus of the last event
377 returned by target_wait()/deprecated_target_wait_hook(). This
378 information is returned by get_last_target_status(). */
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static int
412 follow_fork_inferior (int follow_child, int detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 inferior_ptid = child_ptid;
485 add_thread_silent (inferior_ptid);
486 set_current_inferior (child_inf);
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
507 child_inf->pspace = new program_space (child_inf->aspace);
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
520 }
521
522 if (has_vforked)
523 {
524 struct inferior *parent_inf;
525
526 parent_inf = current_inferior ();
527
528 /* If we detached from the child, then we have to be careful
529 to not insert breakpoints in the parent until the child
530 is done with the shared memory region. However, if we're
531 staying attached to the child, then we can and should
532 insert breakpoints, so that we can debug it. A
533 subsequent child exec or exit is enough to know when does
534 the child stops using the parent's address space. */
535 parent_inf->waiting_for_vfork_done = detach_fork;
536 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
537 }
538 }
539 else
540 {
541 /* Follow the child. */
542 struct inferior *parent_inf, *child_inf;
543 struct program_space *parent_pspace;
544
545 if (print_inferior_events)
546 {
547 std::string parent_pid = target_pid_to_str (parent_ptid);
548 std::string child_pid = target_pid_to_str (child_ptid);
549
550 target_terminal::ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("[Attaching after %s %s to child %s]\n"),
553 parent_pid.c_str (),
554 has_vforked ? "vfork" : "fork",
555 child_pid.c_str ());
556 }
557
558 /* Add the new inferior first, so that the target_detach below
559 doesn't unpush the target. */
560
561 child_inf = add_inferior (child_ptid.pid ());
562
563 parent_inf = current_inferior ();
564 child_inf->attach_flag = parent_inf->attach_flag;
565 copy_terminal_info (child_inf, parent_inf);
566 child_inf->gdbarch = parent_inf->gdbarch;
567 copy_inferior_target_desc_info (child_inf, parent_inf);
568
569 parent_pspace = parent_inf->pspace;
570
571 /* If we're vforking, we want to hold on to the parent until the
572 child exits or execs. At child exec or exit time we can
573 remove the old breakpoints from the parent and detach or
574 resume debugging it. Otherwise, detach the parent now; we'll
575 want to reuse it's program/address spaces, but we can't set
576 them to the child before removing breakpoints from the
577 parent, otherwise, the breakpoints module could decide to
578 remove breakpoints from the wrong process (since they'd be
579 assigned to the same address space). */
580
581 if (has_vforked)
582 {
583 gdb_assert (child_inf->vfork_parent == NULL);
584 gdb_assert (parent_inf->vfork_child == NULL);
585 child_inf->vfork_parent = parent_inf;
586 child_inf->pending_detach = 0;
587 parent_inf->vfork_child = child_inf;
588 parent_inf->pending_detach = detach_fork;
589 parent_inf->waiting_for_vfork_done = 0;
590 }
591 else if (detach_fork)
592 {
593 if (print_inferior_events)
594 {
595 /* Ensure that we have a process ptid. */
596 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
597
598 target_terminal::ours_for_output ();
599 fprintf_filtered (gdb_stdlog,
600 _("[Detaching after fork from "
601 "parent %s]\n"),
602 target_pid_to_str (process_ptid).c_str ());
603 }
604
605 target_detach (parent_inf, 0);
606 }
607
608 /* Note that the detach above makes PARENT_INF dangling. */
609
610 /* Add the child thread to the appropriate lists, and switch to
611 this new thread, before cloning the program space, and
612 informing the solib layer about this new process. */
613
614 inferior_ptid = child_ptid;
615 add_thread_silent (inferior_ptid);
616 set_current_inferior (child_inf);
617
618 /* If this is a vfork child, then the address-space is shared
619 with the parent. If we detached from the parent, then we can
620 reuse the parent's program/address spaces. */
621 if (has_vforked || detach_fork)
622 {
623 child_inf->pspace = parent_pspace;
624 child_inf->aspace = child_inf->pspace->aspace;
625 }
626 else
627 {
628 child_inf->aspace = new_address_space ();
629 child_inf->pspace = new program_space (child_inf->aspace);
630 child_inf->removable = 1;
631 child_inf->symfile_flags = SYMFILE_NO_READ;
632 set_current_program_space (child_inf->pspace);
633 clone_program_space (child_inf->pspace, parent_pspace);
634
635 /* Let the shared library layer (e.g., solib-svr4) learn
636 about this new process, relocate the cloned exec, pull in
637 shared libraries, and install the solib event breakpoint.
638 If a "cloned-VM" event was propagated better throughout
639 the core, this wouldn't be required. */
640 solib_create_inferior_hook (0);
641 }
642 }
643
644 return target_follow_fork (follow_child, detach_fork);
645 }
646
647 /* Tell the target to follow the fork we're stopped at. Returns true
648 if the inferior should be resumed; false, if the target for some
649 reason decided it's best not to resume. */
650
651 static int
652 follow_fork (void)
653 {
654 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
655 int should_resume = 1;
656 struct thread_info *tp;
657
658 /* Copy user stepping state to the new inferior thread. FIXME: the
659 followed fork child thread should have a copy of most of the
660 parent thread structure's run control related fields, not just these.
661 Initialized to avoid "may be used uninitialized" warnings from gcc. */
662 struct breakpoint *step_resume_breakpoint = NULL;
663 struct breakpoint *exception_resume_breakpoint = NULL;
664 CORE_ADDR step_range_start = 0;
665 CORE_ADDR step_range_end = 0;
666 struct frame_id step_frame_id = { 0 };
667 struct thread_fsm *thread_fsm = NULL;
668
669 if (!non_stop)
670 {
671 ptid_t wait_ptid;
672 struct target_waitstatus wait_status;
673
674 /* Get the last target status returned by target_wait(). */
675 get_last_target_status (&wait_ptid, &wait_status);
676
677 /* If not stopped at a fork event, then there's nothing else to
678 do. */
679 if (wait_status.kind != TARGET_WAITKIND_FORKED
680 && wait_status.kind != TARGET_WAITKIND_VFORKED)
681 return 1;
682
683 /* Check if we switched over from WAIT_PTID, since the event was
684 reported. */
685 if (wait_ptid != minus_one_ptid
686 && inferior_ptid != wait_ptid)
687 {
688 /* We did. Switch back to WAIT_PTID thread, to tell the
689 target to follow it (in either direction). We'll
690 afterwards refuse to resume, and inform the user what
691 happened. */
692 thread_info *wait_thread
693 = find_thread_ptid (wait_ptid);
694 switch_to_thread (wait_thread);
695 should_resume = 0;
696 }
697 }
698
699 tp = inferior_thread ();
700
701 /* If there were any forks/vforks that were caught and are now to be
702 followed, then do so now. */
703 switch (tp->pending_follow.kind)
704 {
705 case TARGET_WAITKIND_FORKED:
706 case TARGET_WAITKIND_VFORKED:
707 {
708 ptid_t parent, child;
709
710 /* If the user did a next/step, etc, over a fork call,
711 preserve the stepping state in the fork child. */
712 if (follow_child && should_resume)
713 {
714 step_resume_breakpoint = clone_momentary_breakpoint
715 (tp->control.step_resume_breakpoint);
716 step_range_start = tp->control.step_range_start;
717 step_range_end = tp->control.step_range_end;
718 step_frame_id = tp->control.step_frame_id;
719 exception_resume_breakpoint
720 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
721 thread_fsm = tp->thread_fsm;
722
723 /* For now, delete the parent's sr breakpoint, otherwise,
724 parent/child sr breakpoints are considered duplicates,
725 and the child version will not be installed. Remove
726 this when the breakpoints module becomes aware of
727 inferiors and address spaces. */
728 delete_step_resume_breakpoint (tp);
729 tp->control.step_range_start = 0;
730 tp->control.step_range_end = 0;
731 tp->control.step_frame_id = null_frame_id;
732 delete_exception_resume_breakpoint (tp);
733 tp->thread_fsm = NULL;
734 }
735
736 parent = inferior_ptid;
737 child = tp->pending_follow.value.related_pid;
738
739 /* Set up inferior(s) as specified by the caller, and tell the
740 target to do whatever is necessary to follow either parent
741 or child. */
742 if (follow_fork_inferior (follow_child, detach_fork))
743 {
744 /* Target refused to follow, or there's some other reason
745 we shouldn't resume. */
746 should_resume = 0;
747 }
748 else
749 {
750 /* This pending follow fork event is now handled, one way
751 or another. The previous selected thread may be gone
752 from the lists by now, but if it is still around, need
753 to clear the pending follow request. */
754 tp = find_thread_ptid (parent);
755 if (tp)
756 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
757
758 /* This makes sure we don't try to apply the "Switched
759 over from WAIT_PID" logic above. */
760 nullify_last_target_wait_ptid ();
761
762 /* If we followed the child, switch to it... */
763 if (follow_child)
764 {
765 thread_info *child_thr = find_thread_ptid (child);
766 switch_to_thread (child_thr);
767
768 /* ... and preserve the stepping state, in case the
769 user was stepping over the fork call. */
770 if (should_resume)
771 {
772 tp = inferior_thread ();
773 tp->control.step_resume_breakpoint
774 = step_resume_breakpoint;
775 tp->control.step_range_start = step_range_start;
776 tp->control.step_range_end = step_range_end;
777 tp->control.step_frame_id = step_frame_id;
778 tp->control.exception_resume_breakpoint
779 = exception_resume_breakpoint;
780 tp->thread_fsm = thread_fsm;
781 }
782 else
783 {
784 /* If we get here, it was because we're trying to
785 resume from a fork catchpoint, but, the user
786 has switched threads away from the thread that
787 forked. In that case, the resume command
788 issued is most likely not applicable to the
789 child, so just warn, and refuse to resume. */
790 warning (_("Not resuming: switched threads "
791 "before following fork child."));
792 }
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
797 }
798 }
799 break;
800 case TARGET_WAITKIND_SPURIOUS:
801 /* Nothing to follow. */
802 break;
803 default:
804 internal_error (__FILE__, __LINE__,
805 "Unexpected pending_follow.kind %d\n",
806 tp->pending_follow.kind);
807 break;
808 }
809
810 return should_resume;
811 }
812
813 static void
814 follow_inferior_reset_breakpoints (void)
815 {
816 struct thread_info *tp = inferior_thread ();
817
818 /* Was there a step_resume breakpoint? (There was if the user
819 did a "next" at the fork() call.) If so, explicitly reset its
820 thread number. Cloned step_resume breakpoints are disabled on
821 creation, so enable it here now that it is associated with the
822 correct thread.
823
824 step_resumes are a form of bp that are made to be per-thread.
825 Since we created the step_resume bp when the parent process
826 was being debugged, and now are switching to the child process,
827 from the breakpoint package's viewpoint, that's a switch of
828 "threads". We must update the bp's notion of which thread
829 it is for, or it'll be ignored when it triggers. */
830
831 if (tp->control.step_resume_breakpoint)
832 {
833 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
834 tp->control.step_resume_breakpoint->loc->enabled = 1;
835 }
836
837 /* Treat exception_resume breakpoints like step_resume breakpoints. */
838 if (tp->control.exception_resume_breakpoint)
839 {
840 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
841 tp->control.exception_resume_breakpoint->loc->enabled = 1;
842 }
843
844 /* Reinsert all breakpoints in the child. The user may have set
845 breakpoints after catching the fork, in which case those
846 were never set in the child, but only in the parent. This makes
847 sure the inserted breakpoints match the breakpoint list. */
848
849 breakpoint_re_set ();
850 insert_breakpoints ();
851 }
852
853 /* The child has exited or execed: resume threads of the parent the
854 user wanted to be executing. */
855
856 static int
857 proceed_after_vfork_done (struct thread_info *thread,
858 void *arg)
859 {
860 int pid = * (int *) arg;
861
862 if (thread->ptid.pid () == pid
863 && thread->state == THREAD_RUNNING
864 && !thread->executing
865 && !thread->stop_requested
866 && thread->suspend.stop_signal == GDB_SIGNAL_0)
867 {
868 if (debug_infrun)
869 fprintf_unfiltered (gdb_stdlog,
870 "infrun: resuming vfork parent thread %s\n",
871 target_pid_to_str (thread->ptid).c_str ());
872
873 switch_to_thread (thread);
874 clear_proceed_status (0);
875 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
876 }
877
878 return 0;
879 }
880
881 /* Save/restore inferior_ptid, current program space and current
882 inferior. Only use this if the current context points at an exited
883 inferior (and therefore there's no current thread to save). */
884 class scoped_restore_exited_inferior
885 {
886 public:
887 scoped_restore_exited_inferior ()
888 : m_saved_ptid (&inferior_ptid)
889 {}
890
891 private:
892 scoped_restore_tmpl<ptid_t> m_saved_ptid;
893 scoped_restore_current_program_space m_pspace;
894 scoped_restore_current_inferior m_inferior;
895 };
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. Break the bonds. */
911 inferior *vfork_parent = inf->vfork_parent;
912 inf->vfork_parent->vfork_child = NULL;
913 inf->vfork_parent = NULL;
914
915 /* If the user wanted to detach from the parent, now is the
916 time. */
917 if (vfork_parent->pending_detach)
918 {
919 struct thread_info *tp;
920 struct program_space *pspace;
921 struct address_space *aspace;
922
923 /* follow-fork child, detach-on-fork on. */
924
925 vfork_parent->pending_detach = 0;
926
927 gdb::optional<scoped_restore_exited_inferior>
928 maybe_restore_inferior;
929 gdb::optional<scoped_restore_current_pspace_and_thread>
930 maybe_restore_thread;
931
932 /* If we're handling a child exit, then inferior_ptid points
933 at the inferior's pid, not to a thread. */
934 if (!exec)
935 maybe_restore_inferior.emplace ();
936 else
937 maybe_restore_thread.emplace ();
938
939 /* We're letting loose of the parent. */
940 tp = any_live_thread_of_inferior (vfork_parent);
941 switch_to_thread (tp);
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
960 if (print_inferior_events)
961 {
962 std::string pidstr
963 = target_pid_to_str (ptid_t (vfork_parent->pid));
964
965 target_terminal::ours_for_output ();
966
967 if (exec)
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("[Detaching vfork parent %s "
971 "after child exec]\n"), pidstr.c_str ());
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("[Detaching vfork parent %s "
977 "after child exit]\n"), pidstr.c_str ());
978 }
979 }
980
981 target_detach (vfork_parent, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
991 inf->pspace = new program_space (maybe_new_address_space ());
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
996 resume_parent = vfork_parent->pid;
997 }
998 else
999 {
1000 struct program_space *pspace;
1001
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
1011 /* Switch to null_ptid while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore restore_ptid
1015 = make_scoped_restore (&inferior_ptid, null_ptid);
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = new program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 resume_parent = vfork_parent->pid;
1031 }
1032
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
1039 scoped_restore_current_thread restore_thread;
1040
1041 if (debug_infrun)
1042 fprintf_unfiltered (gdb_stdlog,
1043 "infrun: resuming vfork parent process %d\n",
1044 resume_parent);
1045
1046 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1047 }
1048 }
1049 }
1050
1051 /* Enum strings for "set|show follow-exec-mode". */
1052
1053 static const char follow_exec_mode_new[] = "new";
1054 static const char follow_exec_mode_same[] = "same";
1055 static const char *const follow_exec_mode_names[] =
1056 {
1057 follow_exec_mode_new,
1058 follow_exec_mode_same,
1059 NULL,
1060 };
1061
1062 static const char *follow_exec_mode_string = follow_exec_mode_same;
1063 static void
1064 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1065 struct cmd_list_element *c, const char *value)
1066 {
1067 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1068 }
1069
1070 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1071
1072 static void
1073 follow_exec (ptid_t ptid, const char *exec_file_target)
1074 {
1075 struct inferior *inf = current_inferior ();
1076 int pid = ptid.pid ();
1077 ptid_t process_ptid;
1078
1079 /* Switch terminal for any messages produced e.g. by
1080 breakpoint_re_set. */
1081 target_terminal::ours_for_output ();
1082
1083 /* This is an exec event that we actually wish to pay attention to.
1084 Refresh our symbol table to the newly exec'd program, remove any
1085 momentary bp's, etc.
1086
1087 If there are breakpoints, they aren't really inserted now,
1088 since the exec() transformed our inferior into a fresh set
1089 of instructions.
1090
1091 We want to preserve symbolic breakpoints on the list, since
1092 we have hopes that they can be reset after the new a.out's
1093 symbol table is read.
1094
1095 However, any "raw" breakpoints must be removed from the list
1096 (e.g., the solib bp's), since their address is probably invalid
1097 now.
1098
1099 And, we DON'T want to call delete_breakpoints() here, since
1100 that may write the bp's "shadow contents" (the instruction
1101 value that was overwritten with a TRAP instruction). Since
1102 we now have a new a.out, those shadow contents aren't valid. */
1103
1104 mark_breakpoints_out ();
1105
1106 /* The target reports the exec event to the main thread, even if
1107 some other thread does the exec, and even if the main thread was
1108 stopped or already gone. We may still have non-leader threads of
1109 the process on our list. E.g., on targets that don't have thread
1110 exit events (like remote); or on native Linux in non-stop mode if
1111 there were only two threads in the inferior and the non-leader
1112 one is the one that execs (and nothing forces an update of the
1113 thread list up to here). When debugging remotely, it's best to
1114 avoid extra traffic, when possible, so avoid syncing the thread
1115 list with the target, and instead go ahead and delete all threads
1116 of the process but one that reported the event. Note this must
1117 be done before calling update_breakpoints_after_exec, as
1118 otherwise clearing the threads' resources would reference stale
1119 thread breakpoints -- it may have been one of these threads that
1120 stepped across the exec. We could just clear their stepping
1121 states, but as long as we're iterating, might as well delete
1122 them. Deleting them now rather than at the next user-visible
1123 stop provides a nicer sequence of events for user and MI
1124 notifications. */
1125 for (thread_info *th : all_threads_safe ())
1126 if (th->ptid.pid () == pid && th->ptid != ptid)
1127 delete_thread (th);
1128
1129 /* We also need to clear any left over stale state for the
1130 leader/event thread. E.g., if there was any step-resume
1131 breakpoint or similar, it's gone now. We cannot truly
1132 step-to-next statement through an exec(). */
1133 thread_info *th = inferior_thread ();
1134 th->control.step_resume_breakpoint = NULL;
1135 th->control.exception_resume_breakpoint = NULL;
1136 th->control.single_step_breakpoints = NULL;
1137 th->control.step_range_start = 0;
1138 th->control.step_range_end = 0;
1139
1140 /* The user may have had the main thread held stopped in the
1141 previous image (e.g., schedlock on, or non-stop). Release
1142 it now. */
1143 th->stop_requested = 0;
1144
1145 update_breakpoints_after_exec ();
1146
1147 /* What is this a.out's name? */
1148 process_ptid = ptid_t (pid);
1149 printf_unfiltered (_("%s is executing new program: %s\n"),
1150 target_pid_to_str (process_ptid).c_str (),
1151 exec_file_target);
1152
1153 /* We've followed the inferior through an exec. Therefore, the
1154 inferior has essentially been killed & reborn. */
1155
1156 breakpoint_init_inferior (inf_execd);
1157
1158 gdb::unique_xmalloc_ptr<char> exec_file_host
1159 = exec_file_find (exec_file_target, NULL);
1160
1161 /* If we were unable to map the executable target pathname onto a host
1162 pathname, tell the user that. Otherwise GDB's subsequent behavior
1163 is confusing. Maybe it would even be better to stop at this point
1164 so that the user can specify a file manually before continuing. */
1165 if (exec_file_host == NULL)
1166 warning (_("Could not load symbols for executable %s.\n"
1167 "Do you need \"set sysroot\"?"),
1168 exec_file_target);
1169
1170 /* Reset the shared library package. This ensures that we get a
1171 shlib event when the child reaches "_start", at which point the
1172 dld will have had a chance to initialize the child. */
1173 /* Also, loading a symbol file below may trigger symbol lookups, and
1174 we don't want those to be satisfied by the libraries of the
1175 previous incarnation of this process. */
1176 no_shared_libraries (NULL, 0);
1177
1178 if (follow_exec_mode_string == follow_exec_mode_new)
1179 {
1180 /* The user wants to keep the old inferior and program spaces
1181 around. Create a new fresh one, and switch to it. */
1182
1183 /* Do exit processing for the original inferior before setting the new
1184 inferior's pid. Having two inferiors with the same pid would confuse
1185 find_inferior_p(t)id. Transfer the terminal state and info from the
1186 old to the new inferior. */
1187 inf = add_inferior_with_spaces ();
1188 swap_terminal_info (inf, current_inferior ());
1189 exit_inferior_silent (current_inferior ());
1190
1191 inf->pid = pid;
1192 target_follow_exec (inf, exec_file_target);
1193
1194 set_current_inferior (inf);
1195 set_current_program_space (inf->pspace);
1196 add_thread (ptid);
1197 }
1198 else
1199 {
1200 /* The old description may no longer be fit for the new image.
1201 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1202 old description; we'll read a new one below. No need to do
1203 this on "follow-exec-mode new", as the old inferior stays
1204 around (its description is later cleared/refetched on
1205 restart). */
1206 target_clear_description ();
1207 }
1208
1209 gdb_assert (current_program_space == inf->pspace);
1210
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1217
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
1226 solib_create_inferior_hook (0);
1227
1228 jit_inferior_created_hook ();
1229
1230 breakpoint_re_set ();
1231
1232 /* Reinsert all breakpoints. (Those which were symbolic have
1233 been reset to the proper address in the new a.out, thanks
1234 to symbol_file_command...). */
1235 insert_breakpoints ();
1236
1237 /* The next resume of this inferior should bring it to the shlib
1238 startup breakpoints. (If the user had also set bp's on
1239 "main" from the old (parent) process, then they'll auto-
1240 matically get reset there in the new process.). */
1241 }
1242
1243 /* The queue of threads that need to do a step-over operation to get
1244 past e.g., a breakpoint. What technique is used to step over the
1245 breakpoint/watchpoint does not matter -- all threads end up in the
1246 same queue, to maintain rough temporal order of execution, in order
1247 to avoid starvation, otherwise, we could e.g., find ourselves
1248 constantly stepping the same couple threads past their breakpoints
1249 over and over, if the single-step finish fast enough. */
1250 struct thread_info *global_thread_step_over_chain_head;
1251
1252 /* Bit flags indicating what the thread needs to step over. */
1253
1254 enum step_over_what_flag
1255 {
1256 /* Step over a breakpoint. */
1257 STEP_OVER_BREAKPOINT = 1,
1258
1259 /* Step past a non-continuable watchpoint, in order to let the
1260 instruction execute so we can evaluate the watchpoint
1261 expression. */
1262 STEP_OVER_WATCHPOINT = 2
1263 };
1264 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1265
1266 /* Info about an instruction that is being stepped over. */
1267
1268 struct step_over_info
1269 {
1270 /* If we're stepping past a breakpoint, this is the address space
1271 and address of the instruction the breakpoint is set at. We'll
1272 skip inserting all breakpoints here. Valid iff ASPACE is
1273 non-NULL. */
1274 const address_space *aspace;
1275 CORE_ADDR address;
1276
1277 /* The instruction being stepped over triggers a nonsteppable
1278 watchpoint. If true, we'll skip inserting watchpoints. */
1279 int nonsteppable_watchpoint_p;
1280
1281 /* The thread's global number. */
1282 int thread;
1283 };
1284
1285 /* The step-over info of the location that is being stepped over.
1286
1287 Note that with async/breakpoint always-inserted mode, a user might
1288 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1289 being stepped over. As setting a new breakpoint inserts all
1290 breakpoints, we need to make sure the breakpoint being stepped over
1291 isn't inserted then. We do that by only clearing the step-over
1292 info when the step-over is actually finished (or aborted).
1293
1294 Presently GDB can only step over one breakpoint at any given time.
1295 Given threads that can't run code in the same address space as the
1296 breakpoint's can't really miss the breakpoint, GDB could be taught
1297 to step-over at most one breakpoint per address space (so this info
1298 could move to the address space object if/when GDB is extended).
1299 The set of breakpoints being stepped over will normally be much
1300 smaller than the set of all breakpoints, so a flag in the
1301 breakpoint location structure would be wasteful. A separate list
1302 also saves complexity and run-time, as otherwise we'd have to go
1303 through all breakpoint locations clearing their flag whenever we
1304 start a new sequence. Similar considerations weigh against storing
1305 this info in the thread object. Plus, not all step overs actually
1306 have breakpoint locations -- e.g., stepping past a single-step
1307 breakpoint, or stepping to complete a non-continuable
1308 watchpoint. */
1309 static struct step_over_info step_over_info;
1310
1311 /* Record the address of the breakpoint/instruction we're currently
1312 stepping over.
1313 N.B. We record the aspace and address now, instead of say just the thread,
1314 because when we need the info later the thread may be running. */
1315
1316 static void
1317 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1318 int nonsteppable_watchpoint_p,
1319 int thread)
1320 {
1321 step_over_info.aspace = aspace;
1322 step_over_info.address = address;
1323 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1324 step_over_info.thread = thread;
1325 }
1326
1327 /* Called when we're not longer stepping over a breakpoint / an
1328 instruction, so all breakpoints are free to be (re)inserted. */
1329
1330 static void
1331 clear_step_over_info (void)
1332 {
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: clear_step_over_info\n");
1336 step_over_info.aspace = NULL;
1337 step_over_info.address = 0;
1338 step_over_info.nonsteppable_watchpoint_p = 0;
1339 step_over_info.thread = -1;
1340 }
1341
1342 /* See infrun.h. */
1343
1344 int
1345 stepping_past_instruction_at (struct address_space *aspace,
1346 CORE_ADDR address)
1347 {
1348 return (step_over_info.aspace != NULL
1349 && breakpoint_address_match (aspace, address,
1350 step_over_info.aspace,
1351 step_over_info.address));
1352 }
1353
1354 /* See infrun.h. */
1355
1356 int
1357 thread_is_stepping_over_breakpoint (int thread)
1358 {
1359 return (step_over_info.thread != -1
1360 && thread == step_over_info.thread);
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 stepping_past_nonsteppable_watchpoint (void)
1367 {
1368 return step_over_info.nonsteppable_watchpoint_p;
1369 }
1370
1371 /* Returns true if step-over info is valid. */
1372
1373 static int
1374 step_over_info_valid_p (void)
1375 {
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
1378 }
1379
1380 \f
1381 /* Displaced stepping. */
1382
1383 /* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfully single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 The gdbarch_displaced_step_copy_insn and
1431 gdbarch_displaced_step_fixup functions must be written so that
1432 copying an instruction with gdbarch_displaced_step_copy_insn,
1433 single-stepping across the copied instruction, and then applying
1434 gdbarch_displaced_insn_fixup should have the same effects on the
1435 thread's memory and registers as stepping the instruction in place
1436 would have. Exactly which responsibilities fall to the copy and
1437 which fall to the fixup is up to the author of those functions.
1438
1439 See the comments in gdbarch.sh for details.
1440
1441 Note that displaced stepping and software single-step cannot
1442 currently be used in combination, although with some care I think
1443 they could be made to. Software single-step works by placing
1444 breakpoints on all possible subsequent instructions; if the
1445 displaced instruction is a PC-relative jump, those breakpoints
1446 could fall in very strange places --- on pages that aren't
1447 executable, or at addresses that are not proper instruction
1448 boundaries. (We do generally let other threads run while we wait
1449 to hit the software single-step breakpoint, and they might
1450 encounter such a corrupted instruction.) One way to work around
1451 this would be to have gdbarch_displaced_step_copy_insn fully
1452 simulate the effect of PC-relative instructions (and return NULL)
1453 on architectures that use software single-stepping.
1454
1455 In non-stop mode, we can have independent and simultaneous step
1456 requests, so more than one thread may need to simultaneously step
1457 over a breakpoint. The current implementation assumes there is
1458 only one scratch space per process. In this case, we have to
1459 serialize access to the scratch space. If thread A wants to step
1460 over a breakpoint, but we are currently waiting for some other
1461 thread to complete a displaced step, we leave thread A stopped and
1462 place it in the displaced_step_request_queue. Whenever a displaced
1463 step finishes, we pick the next thread in the queue and start a new
1464 displaced step operation on it. See displaced_step_prepare and
1465 displaced_step_fixup for details. */
1466
1467 /* Default destructor for displaced_step_copy_insn_closure. */
1468
1469 displaced_step_copy_insn_closure::~displaced_step_copy_insn_closure () = default;
1470
1471 /* Get the displaced stepping state of process PID. */
1472
1473 static displaced_step_inferior_state *
1474 get_displaced_stepping_state (inferior *inf)
1475 {
1476 return &inf->displaced_step_state;
1477 }
1478
1479 /* Returns true if any inferior has a thread doing a displaced
1480 step. */
1481
1482 static bool
1483 displaced_step_in_progress_any_inferior ()
1484 {
1485 for (inferior *i : all_inferiors ())
1486 {
1487 if (i->displaced_step_state.step_thread != nullptr)
1488 return true;
1489 }
1490
1491 return false;
1492 }
1493
1494 /* Return true if thread represented by PTID is doing a displaced
1495 step. */
1496
1497 static int
1498 displaced_step_in_progress_thread (thread_info *thread)
1499 {
1500 gdb_assert (thread != NULL);
1501
1502 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1503 }
1504
1505 /* Return true if process PID has a thread doing a displaced step. */
1506
1507 static int
1508 displaced_step_in_progress (inferior *inf)
1509 {
1510 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1511 }
1512
1513 /* If inferior is in displaced stepping, and ADDR equals to starting address
1514 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
1515 return NULL. */
1516
1517 struct displaced_step_copy_insn_closure *
1518 get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
1519 {
1520 displaced_step_inferior_state *displaced
1521 = get_displaced_stepping_state (current_inferior ());
1522
1523 /* If checking the mode of displaced instruction in copy area. */
1524 if (displaced->step_thread != nullptr
1525 && displaced->step_copy == addr)
1526 return displaced->step_closure.get ();
1527
1528 return NULL;
1529 }
1530
1531 static void
1532 infrun_inferior_exit (struct inferior *inf)
1533 {
1534 inf->displaced_step_state.reset ();
1535 }
1536
1537 /* If ON, and the architecture supports it, GDB will use displaced
1538 stepping to step over breakpoints. If OFF, or if the architecture
1539 doesn't support it, GDB will instead use the traditional
1540 hold-and-step approach. If AUTO (which is the default), GDB will
1541 decide which technique to use to step over breakpoints depending on
1542 whether the target works in a non-stop way (see use_displaced_stepping). */
1543
1544 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1545
1546 static void
1547 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1548 struct cmd_list_element *c,
1549 const char *value)
1550 {
1551 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1552 fprintf_filtered (file,
1553 _("Debugger's willingness to use displaced stepping "
1554 "to step over breakpoints is %s (currently %s).\n"),
1555 value, target_is_non_stop_p () ? "on" : "off");
1556 else
1557 fprintf_filtered (file,
1558 _("Debugger's willingness to use displaced stepping "
1559 "to step over breakpoints is %s.\n"), value);
1560 }
1561
1562 /* Return true if the gdbarch implements the required methods to use
1563 displaced stepping. */
1564
1565 static bool
1566 gdbarch_supports_displaced_stepping (gdbarch *arch)
1567 {
1568 /* Only check for the presence of step_copy_insn. Other required methods
1569 are checked by the gdbarch validation. */
1570 return gdbarch_displaced_step_copy_insn_p (arch);
1571 }
1572
1573 /* Return non-zero if displaced stepping can/should be used to step
1574 over breakpoints of thread TP. */
1575
1576 static bool
1577 use_displaced_stepping (thread_info *tp)
1578 {
1579 /* If the user disabled it explicitly, don't use displaced stepping. */
1580 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1581 return false;
1582
1583 /* If "auto", only use displaced stepping if the target operates in a non-stop
1584 way. */
1585 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1586 && !target_is_non_stop_p ())
1587 return false;
1588
1589 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1590
1591 /* If the architecture doesn't implement displaced stepping, don't use
1592 it. */
1593 if (!gdbarch_supports_displaced_stepping (gdbarch))
1594 return false;
1595
1596 /* If recording, don't use displaced stepping. */
1597 if (find_record_target () != nullptr)
1598 return false;
1599
1600 displaced_step_inferior_state *displaced_state
1601 = get_displaced_stepping_state (tp->inf);
1602
1603 /* If displaced stepping failed before for this inferior, don't bother trying
1604 again. */
1605 if (displaced_state->failed_before)
1606 return false;
1607
1608 return true;
1609 }
1610
1611 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1612
1613 static void
1614 displaced_step_reset (displaced_step_inferior_state *displaced)
1615 {
1616 displaced->reset ();
1617 }
1618
1619 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1620 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1621
1622 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1623
1624 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1625 void
1626 displaced_step_dump_bytes (struct ui_file *file,
1627 const gdb_byte *buf,
1628 size_t len)
1629 {
1630 int i;
1631
1632 for (i = 0; i < len; i++)
1633 fprintf_unfiltered (file, "%02x ", buf[i]);
1634 fputs_unfiltered ("\n", file);
1635 }
1636
1637 /* Prepare to single-step, using displaced stepping.
1638
1639 Note that we cannot use displaced stepping when we have a signal to
1640 deliver. If we have a signal to deliver and an instruction to step
1641 over, then after the step, there will be no indication from the
1642 target whether the thread entered a signal handler or ignored the
1643 signal and stepped over the instruction successfully --- both cases
1644 result in a simple SIGTRAP. In the first case we mustn't do a
1645 fixup, and in the second case we must --- but we can't tell which.
1646 Comments in the code for 'random signals' in handle_inferior_event
1647 explain how we handle this case instead.
1648
1649 Returns 1 if preparing was successful -- this thread is going to be
1650 stepped now; 0 if displaced stepping this thread got queued; or -1
1651 if this instruction can't be displaced stepped. */
1652
1653 static int
1654 displaced_step_prepare_throw (thread_info *tp)
1655 {
1656 regcache *regcache = get_thread_regcache (tp);
1657 struct gdbarch *gdbarch = regcache->arch ();
1658 const address_space *aspace = regcache->aspace ();
1659 CORE_ADDR original, copy;
1660 ULONGEST len;
1661 int status;
1662
1663 /* We should never reach this function if the architecture does not
1664 support displaced stepping. */
1665 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1666
1667 /* Nor if the thread isn't meant to step over a breakpoint. */
1668 gdb_assert (tp->control.trap_expected);
1669
1670 /* Disable range stepping while executing in the scratch pad. We
1671 want a single-step even if executing the displaced instruction in
1672 the scratch buffer lands within the stepping range (e.g., a
1673 jump/branch). */
1674 tp->control.may_range_step = 0;
1675
1676 /* We have to displaced step one thread at a time, as we only have
1677 access to a single scratch space per inferior. */
1678
1679 displaced_step_inferior_state *displaced
1680 = get_displaced_stepping_state (tp->inf);
1681
1682 if (displaced->step_thread != nullptr)
1683 {
1684 /* Already waiting for a displaced step to finish. Defer this
1685 request and place in queue. */
1686
1687 if (debug_displaced)
1688 fprintf_unfiltered (gdb_stdlog,
1689 "displaced: deferring step of %s\n",
1690 target_pid_to_str (tp->ptid).c_str ());
1691
1692 global_thread_step_over_chain_enqueue (tp);
1693 return 0;
1694 }
1695 else
1696 {
1697 if (debug_displaced)
1698 fprintf_unfiltered (gdb_stdlog,
1699 "displaced: stepping %s now\n",
1700 target_pid_to_str (tp->ptid).c_str ());
1701 }
1702
1703 displaced_step_reset (displaced);
1704
1705 scoped_restore_current_thread restore_thread;
1706
1707 switch_to_thread (tp);
1708
1709 original = regcache_read_pc (regcache);
1710
1711 copy = gdbarch_displaced_step_location (gdbarch);
1712 len = gdbarch_max_insn_length (gdbarch);
1713
1714 if (breakpoint_in_range_p (aspace, copy, len))
1715 {
1716 /* There's a breakpoint set in the scratch pad location range
1717 (which is usually around the entry point). We'd either
1718 install it before resuming, which would overwrite/corrupt the
1719 scratch pad, or if it was already inserted, this displaced
1720 step would overwrite it. The latter is OK in the sense that
1721 we already assume that no thread is going to execute the code
1722 in the scratch pad range (after initial startup) anyway, but
1723 the former is unacceptable. Simply punt and fallback to
1724 stepping over this breakpoint in-line. */
1725 if (debug_displaced)
1726 {
1727 fprintf_unfiltered (gdb_stdlog,
1728 "displaced: breakpoint set in scratch pad. "
1729 "Stepping over breakpoint in-line instead.\n");
1730 }
1731
1732 return -1;
1733 }
1734
1735 /* Save the original contents of the copy area. */
1736 displaced->step_saved_copy.resize (len);
1737 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1738 if (status != 0)
1739 throw_error (MEMORY_ERROR,
1740 _("Error accessing memory address %s (%s) for "
1741 "displaced-stepping scratch space."),
1742 paddress (gdbarch, copy), safe_strerror (status));
1743 if (debug_displaced)
1744 {
1745 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1746 paddress (gdbarch, copy));
1747 displaced_step_dump_bytes (gdb_stdlog,
1748 displaced->step_saved_copy.data (),
1749 len);
1750 };
1751
1752 displaced->step_closure
1753 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1754 if (displaced->step_closure == NULL)
1755 {
1756 /* The architecture doesn't know how or want to displaced step
1757 this instruction or instruction sequence. Fallback to
1758 stepping over the breakpoint in-line. */
1759 return -1;
1760 }
1761
1762 /* Save the information we need to fix things up if the step
1763 succeeds. */
1764 displaced->step_thread = tp;
1765 displaced->step_gdbarch = gdbarch;
1766 displaced->step_original = original;
1767 displaced->step_copy = copy;
1768
1769 {
1770 displaced_step_reset_cleanup cleanup (displaced);
1771
1772 /* Resume execution at the copy. */
1773 regcache_write_pc (regcache, copy);
1774
1775 cleanup.release ();
1776 }
1777
1778 if (debug_displaced)
1779 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1780 paddress (gdbarch, copy));
1781
1782 return 1;
1783 }
1784
1785 /* Wrapper for displaced_step_prepare_throw that disabled further
1786 attempts at displaced stepping if we get a memory error. */
1787
1788 static int
1789 displaced_step_prepare (thread_info *thread)
1790 {
1791 int prepared = -1;
1792
1793 try
1794 {
1795 prepared = displaced_step_prepare_throw (thread);
1796 }
1797 catch (const gdb_exception_error &ex)
1798 {
1799 struct displaced_step_inferior_state *displaced_state;
1800
1801 if (ex.error != MEMORY_ERROR
1802 && ex.error != NOT_SUPPORTED_ERROR)
1803 throw;
1804
1805 if (debug_infrun)
1806 {
1807 fprintf_unfiltered (gdb_stdlog,
1808 "infrun: disabling displaced stepping: %s\n",
1809 ex.what ());
1810 }
1811
1812 /* Be verbose if "set displaced-stepping" is "on", silent if
1813 "auto". */
1814 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1815 {
1816 warning (_("disabling displaced stepping: %s"),
1817 ex.what ());
1818 }
1819
1820 /* Disable further displaced stepping attempts. */
1821 displaced_state
1822 = get_displaced_stepping_state (thread->inf);
1823 displaced_state->failed_before = 1;
1824 }
1825
1826 return prepared;
1827 }
1828
1829 static void
1830 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1831 const gdb_byte *myaddr, int len)
1832 {
1833 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1834
1835 inferior_ptid = ptid;
1836 write_memory (memaddr, myaddr, len);
1837 }
1838
1839 /* Restore the contents of the copy area for thread PTID. */
1840
1841 static void
1842 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1843 ptid_t ptid)
1844 {
1845 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1846
1847 write_memory_ptid (ptid, displaced->step_copy,
1848 displaced->step_saved_copy.data (), len);
1849 if (debug_displaced)
1850 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1851 target_pid_to_str (ptid).c_str (),
1852 paddress (displaced->step_gdbarch,
1853 displaced->step_copy));
1854 }
1855
1856 /* If we displaced stepped an instruction successfully, adjust
1857 registers and memory to yield the same effect the instruction would
1858 have had if we had executed it at its original address, and return
1859 1. If the instruction didn't complete, relocate the PC and return
1860 -1. If the thread wasn't displaced stepping, return 0. */
1861
1862 static int
1863 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1864 {
1865 struct displaced_step_inferior_state *displaced
1866 = get_displaced_stepping_state (event_thread->inf);
1867 int ret;
1868
1869 /* Was this event for the thread we displaced? */
1870 if (displaced->step_thread != event_thread)
1871 return 0;
1872
1873 displaced_step_reset_cleanup cleanup (displaced);
1874
1875 displaced_step_restore (displaced, displaced->step_thread->ptid);
1876
1877 /* Fixup may need to read memory/registers. Switch to the thread
1878 that we're fixing up. Also, target_stopped_by_watchpoint checks
1879 the current thread. */
1880 switch_to_thread (event_thread);
1881
1882 /* Did the instruction complete successfully? */
1883 if (signal == GDB_SIGNAL_TRAP
1884 && !(target_stopped_by_watchpoint ()
1885 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1886 || target_have_steppable_watchpoint)))
1887 {
1888 /* Fix up the resulting state. */
1889 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1890 displaced->step_closure.get (),
1891 displaced->step_original,
1892 displaced->step_copy,
1893 get_thread_regcache (displaced->step_thread));
1894 ret = 1;
1895 }
1896 else
1897 {
1898 /* Since the instruction didn't complete, all we can do is
1899 relocate the PC. */
1900 struct regcache *regcache = get_thread_regcache (event_thread);
1901 CORE_ADDR pc = regcache_read_pc (regcache);
1902
1903 pc = displaced->step_original + (pc - displaced->step_copy);
1904 regcache_write_pc (regcache, pc);
1905 ret = -1;
1906 }
1907
1908 return ret;
1909 }
1910
1911 /* Data to be passed around while handling an event. This data is
1912 discarded between events. */
1913 struct execution_control_state
1914 {
1915 ptid_t ptid;
1916 /* The thread that got the event, if this was a thread event; NULL
1917 otherwise. */
1918 struct thread_info *event_thread;
1919
1920 struct target_waitstatus ws;
1921 int stop_func_filled_in;
1922 CORE_ADDR stop_func_start;
1923 CORE_ADDR stop_func_end;
1924 const char *stop_func_name;
1925 int wait_some_more;
1926
1927 /* True if the event thread hit the single-step breakpoint of
1928 another thread. Thus the event doesn't cause a stop, the thread
1929 needs to be single-stepped past the single-step breakpoint before
1930 we can switch back to the original stepping thread. */
1931 int hit_singlestep_breakpoint;
1932 };
1933
1934 /* Clear ECS and set it to point at TP. */
1935
1936 static void
1937 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1938 {
1939 memset (ecs, 0, sizeof (*ecs));
1940 ecs->event_thread = tp;
1941 ecs->ptid = tp->ptid;
1942 }
1943
1944 static void keep_going_pass_signal (struct execution_control_state *ecs);
1945 static void prepare_to_wait (struct execution_control_state *ecs);
1946 static int keep_going_stepped_thread (struct thread_info *tp);
1947 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1948
1949 /* Are there any pending step-over requests? If so, run all we can
1950 now and return true. Otherwise, return false. */
1951
1952 static int
1953 start_step_over (void)
1954 {
1955 struct thread_info *tp, *next;
1956
1957 /* Don't start a new step-over if we already have an in-line
1958 step-over operation ongoing. */
1959 if (step_over_info_valid_p ())
1960 return 0;
1961
1962 for (tp = global_thread_step_over_chain_head; tp != NULL; tp = next)
1963 {
1964 struct execution_control_state ecss;
1965 struct execution_control_state *ecs = &ecss;
1966 step_over_what step_what;
1967 int must_be_in_line;
1968
1969 gdb_assert (!tp->stop_requested);
1970
1971 next = global_thread_step_over_chain_next (tp);
1972
1973 /* If this inferior already has a displaced step in process,
1974 don't start a new one. */
1975 if (displaced_step_in_progress (tp->inf))
1976 continue;
1977
1978 step_what = thread_still_needs_step_over (tp);
1979 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1980 || ((step_what & STEP_OVER_BREAKPOINT)
1981 && !use_displaced_stepping (tp)));
1982
1983 /* We currently stop all threads of all processes to step-over
1984 in-line. If we need to start a new in-line step-over, let
1985 any pending displaced steps finish first. */
1986 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1987 return 0;
1988
1989 global_thread_step_over_chain_remove (tp);
1990
1991 if (global_thread_step_over_chain_head == NULL)
1992 {
1993 if (debug_infrun)
1994 fprintf_unfiltered (gdb_stdlog,
1995 "infrun: step-over queue now empty\n");
1996 }
1997
1998 if (tp->control.trap_expected
1999 || tp->resumed
2000 || tp->executing)
2001 {
2002 internal_error (__FILE__, __LINE__,
2003 "[%s] has inconsistent state: "
2004 "trap_expected=%d, resumed=%d, executing=%d\n",
2005 target_pid_to_str (tp->ptid).c_str (),
2006 tp->control.trap_expected,
2007 tp->resumed,
2008 tp->executing);
2009 }
2010
2011 if (debug_infrun)
2012 fprintf_unfiltered (gdb_stdlog,
2013 "infrun: resuming [%s] for step-over\n",
2014 target_pid_to_str (tp->ptid).c_str ());
2015
2016 /* keep_going_pass_signal skips the step-over if the breakpoint
2017 is no longer inserted. In all-stop, we want to keep looking
2018 for a thread that needs a step-over instead of resuming TP,
2019 because we wouldn't be able to resume anything else until the
2020 target stops again. In non-stop, the resume always resumes
2021 only TP, so it's OK to let the thread resume freely. */
2022 if (!target_is_non_stop_p () && !step_what)
2023 continue;
2024
2025 switch_to_thread (tp);
2026 reset_ecs (ecs, tp);
2027 keep_going_pass_signal (ecs);
2028
2029 if (!ecs->wait_some_more)
2030 error (_("Command aborted."));
2031
2032 gdb_assert (tp->resumed);
2033
2034 /* If we started a new in-line step-over, we're done. */
2035 if (step_over_info_valid_p ())
2036 {
2037 gdb_assert (tp->control.trap_expected);
2038 return 1;
2039 }
2040
2041 if (!target_is_non_stop_p ())
2042 {
2043 /* On all-stop, shouldn't have resumed unless we needed a
2044 step over. */
2045 gdb_assert (tp->control.trap_expected
2046 || tp->step_after_step_resume_breakpoint);
2047
2048 /* With remote targets (at least), in all-stop, we can't
2049 issue any further remote commands until the program stops
2050 again. */
2051 return 1;
2052 }
2053
2054 /* Either the thread no longer needed a step-over, or a new
2055 displaced stepping sequence started. Even in the latter
2056 case, continue looking. Maybe we can also start another
2057 displaced step on a thread of other process. */
2058 }
2059
2060 return 0;
2061 }
2062
2063 /* Update global variables holding ptids to hold NEW_PTID if they were
2064 holding OLD_PTID. */
2065 static void
2066 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2067 {
2068 if (inferior_ptid == old_ptid)
2069 inferior_ptid = new_ptid;
2070 }
2071
2072 \f
2073
2074 static const char schedlock_off[] = "off";
2075 static const char schedlock_on[] = "on";
2076 static const char schedlock_step[] = "step";
2077 static const char schedlock_replay[] = "replay";
2078 static const char *const scheduler_enums[] = {
2079 schedlock_off,
2080 schedlock_on,
2081 schedlock_step,
2082 schedlock_replay,
2083 NULL
2084 };
2085 static const char *scheduler_mode = schedlock_replay;
2086 static void
2087 show_scheduler_mode (struct ui_file *file, int from_tty,
2088 struct cmd_list_element *c, const char *value)
2089 {
2090 fprintf_filtered (file,
2091 _("Mode for locking scheduler "
2092 "during execution is \"%s\".\n"),
2093 value);
2094 }
2095
2096 static void
2097 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2098 {
2099 if (!target_can_lock_scheduler)
2100 {
2101 scheduler_mode = schedlock_off;
2102 error (_("Target '%s' cannot support this command."), target_shortname);
2103 }
2104 }
2105
2106 /* True if execution commands resume all threads of all processes by
2107 default; otherwise, resume only threads of the current inferior
2108 process. */
2109 bool sched_multi = false;
2110
2111 /* Try to setup for software single stepping over the specified location.
2112 Return 1 if target_resume() should use hardware single step.
2113
2114 GDBARCH the current gdbarch.
2115 PC the location to step over. */
2116
2117 static int
2118 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2119 {
2120 int hw_step = 1;
2121
2122 if (execution_direction == EXEC_FORWARD
2123 && gdbarch_software_single_step_p (gdbarch))
2124 hw_step = !insert_single_step_breakpoints (gdbarch);
2125
2126 return hw_step;
2127 }
2128
2129 /* See infrun.h. */
2130
2131 ptid_t
2132 user_visible_resume_ptid (int step)
2133 {
2134 ptid_t resume_ptid;
2135
2136 if (non_stop)
2137 {
2138 /* With non-stop mode on, threads are always handled
2139 individually. */
2140 resume_ptid = inferior_ptid;
2141 }
2142 else if ((scheduler_mode == schedlock_on)
2143 || (scheduler_mode == schedlock_step && step))
2144 {
2145 /* User-settable 'scheduler' mode requires solo thread
2146 resume. */
2147 resume_ptid = inferior_ptid;
2148 }
2149 else if ((scheduler_mode == schedlock_replay)
2150 && target_record_will_replay (minus_one_ptid, execution_direction))
2151 {
2152 /* User-settable 'scheduler' mode requires solo thread resume in replay
2153 mode. */
2154 resume_ptid = inferior_ptid;
2155 }
2156 else if (!sched_multi && target_supports_multi_process ())
2157 {
2158 /* Resume all threads of the current process (and none of other
2159 processes). */
2160 resume_ptid = ptid_t (inferior_ptid.pid ());
2161 }
2162 else
2163 {
2164 /* Resume all threads of all processes. */
2165 resume_ptid = RESUME_ALL;
2166 }
2167
2168 return resume_ptid;
2169 }
2170
2171 /* Return a ptid representing the set of threads that we will resume,
2172 in the perspective of the target, assuming run control handling
2173 does not require leaving some threads stopped (e.g., stepping past
2174 breakpoint). USER_STEP indicates whether we're about to start the
2175 target for a stepping command. */
2176
2177 static ptid_t
2178 internal_resume_ptid (int user_step)
2179 {
2180 /* In non-stop, we always control threads individually. Note that
2181 the target may always work in non-stop mode even with "set
2182 non-stop off", in which case user_visible_resume_ptid could
2183 return a wildcard ptid. */
2184 if (target_is_non_stop_p ())
2185 return inferior_ptid;
2186 else
2187 return user_visible_resume_ptid (user_step);
2188 }
2189
2190 /* Wrapper for target_resume, that handles infrun-specific
2191 bookkeeping. */
2192
2193 static void
2194 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2195 {
2196 struct thread_info *tp = inferior_thread ();
2197
2198 gdb_assert (!tp->stop_requested);
2199
2200 /* Install inferior's terminal modes. */
2201 target_terminal::inferior ();
2202
2203 /* Avoid confusing the next resume, if the next stop/resume
2204 happens to apply to another thread. */
2205 tp->suspend.stop_signal = GDB_SIGNAL_0;
2206
2207 /* Advise target which signals may be handled silently.
2208
2209 If we have removed breakpoints because we are stepping over one
2210 in-line (in any thread), we need to receive all signals to avoid
2211 accidentally skipping a breakpoint during execution of a signal
2212 handler.
2213
2214 Likewise if we're displaced stepping, otherwise a trap for a
2215 breakpoint in a signal handler might be confused with the
2216 displaced step finishing. We don't make the displaced_step_fixup
2217 step distinguish the cases instead, because:
2218
2219 - a backtrace while stopped in the signal handler would show the
2220 scratch pad as frame older than the signal handler, instead of
2221 the real mainline code.
2222
2223 - when the thread is later resumed, the signal handler would
2224 return to the scratch pad area, which would no longer be
2225 valid. */
2226 if (step_over_info_valid_p ()
2227 || displaced_step_in_progress (tp->inf))
2228 target_pass_signals ({});
2229 else
2230 target_pass_signals (signal_pass);
2231
2232 target_resume (resume_ptid, step, sig);
2233
2234 target_commit_resume ();
2235 }
2236
2237 /* Resume the inferior. SIG is the signal to give the inferior
2238 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2239 call 'resume', which handles exceptions. */
2240
2241 static void
2242 resume_1 (enum gdb_signal sig)
2243 {
2244 struct regcache *regcache = get_current_regcache ();
2245 struct gdbarch *gdbarch = regcache->arch ();
2246 struct thread_info *tp = inferior_thread ();
2247 CORE_ADDR pc = regcache_read_pc (regcache);
2248 const address_space *aspace = regcache->aspace ();
2249 ptid_t resume_ptid;
2250 /* This represents the user's step vs continue request. When
2251 deciding whether "set scheduler-locking step" applies, it's the
2252 user's intention that counts. */
2253 const int user_step = tp->control.stepping_command;
2254 /* This represents what we'll actually request the target to do.
2255 This can decay from a step to a continue, if e.g., we need to
2256 implement single-stepping with breakpoints (software
2257 single-step). */
2258 int step;
2259
2260 gdb_assert (!tp->stop_requested);
2261 gdb_assert (!thread_is_in_step_over_chain (tp));
2262
2263 if (tp->suspend.waitstatus_pending_p)
2264 {
2265 if (debug_infrun)
2266 {
2267 std::string statstr
2268 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2269
2270 fprintf_unfiltered (gdb_stdlog,
2271 "infrun: resume: thread %s has pending wait "
2272 "status %s (currently_stepping=%d).\n",
2273 target_pid_to_str (tp->ptid).c_str (),
2274 statstr.c_str (),
2275 currently_stepping (tp));
2276 }
2277
2278 tp->resumed = 1;
2279
2280 /* FIXME: What should we do if we are supposed to resume this
2281 thread with a signal? Maybe we should maintain a queue of
2282 pending signals to deliver. */
2283 if (sig != GDB_SIGNAL_0)
2284 {
2285 warning (_("Couldn't deliver signal %s to %s."),
2286 gdb_signal_to_name (sig),
2287 target_pid_to_str (tp->ptid).c_str ());
2288 }
2289
2290 tp->suspend.stop_signal = GDB_SIGNAL_0;
2291
2292 if (target_can_async_p ())
2293 {
2294 target_async (1);
2295 /* Tell the event loop we have an event to process. */
2296 mark_async_event_handler (infrun_async_inferior_event_token);
2297 }
2298 return;
2299 }
2300
2301 tp->stepped_breakpoint = 0;
2302
2303 /* Depends on stepped_breakpoint. */
2304 step = currently_stepping (tp);
2305
2306 if (current_inferior ()->waiting_for_vfork_done)
2307 {
2308 /* Don't try to single-step a vfork parent that is waiting for
2309 the child to get out of the shared memory region (by exec'ing
2310 or exiting). This is particularly important on software
2311 single-step archs, as the child process would trip on the
2312 software single step breakpoint inserted for the parent
2313 process. Since the parent will not actually execute any
2314 instruction until the child is out of the shared region (such
2315 are vfork's semantics), it is safe to simply continue it.
2316 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2317 the parent, and tell it to `keep_going', which automatically
2318 re-sets it stepping. */
2319 if (debug_infrun)
2320 fprintf_unfiltered (gdb_stdlog,
2321 "infrun: resume : clear step\n");
2322 step = 0;
2323 }
2324
2325 if (debug_infrun)
2326 fprintf_unfiltered (gdb_stdlog,
2327 "infrun: resume (step=%d, signal=%s), "
2328 "trap_expected=%d, current thread [%s] at %s\n",
2329 step, gdb_signal_to_symbol_string (sig),
2330 tp->control.trap_expected,
2331 target_pid_to_str (inferior_ptid).c_str (),
2332 paddress (gdbarch, pc));
2333
2334 /* Normally, by the time we reach `resume', the breakpoints are either
2335 removed or inserted, as appropriate. The exception is if we're sitting
2336 at a permanent breakpoint; we need to step over it, but permanent
2337 breakpoints can't be removed. So we have to test for it here. */
2338 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2339 {
2340 if (sig != GDB_SIGNAL_0)
2341 {
2342 /* We have a signal to pass to the inferior. The resume
2343 may, or may not take us to the signal handler. If this
2344 is a step, we'll need to stop in the signal handler, if
2345 there's one, (if the target supports stepping into
2346 handlers), or in the next mainline instruction, if
2347 there's no handler. If this is a continue, we need to be
2348 sure to run the handler with all breakpoints inserted.
2349 In all cases, set a breakpoint at the current address
2350 (where the handler returns to), and once that breakpoint
2351 is hit, resume skipping the permanent breakpoint. If
2352 that breakpoint isn't hit, then we've stepped into the
2353 signal handler (or hit some other event). We'll delete
2354 the step-resume breakpoint then. */
2355
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: skipping permanent breakpoint, "
2359 "deliver signal first\n");
2360
2361 clear_step_over_info ();
2362 tp->control.trap_expected = 0;
2363
2364 if (tp->control.step_resume_breakpoint == NULL)
2365 {
2366 /* Set a "high-priority" step-resume, as we don't want
2367 user breakpoints at PC to trigger (again) when this
2368 hits. */
2369 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2370 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2371
2372 tp->step_after_step_resume_breakpoint = step;
2373 }
2374
2375 insert_breakpoints ();
2376 }
2377 else
2378 {
2379 /* There's no signal to pass, we can go ahead and skip the
2380 permanent breakpoint manually. */
2381 if (debug_infrun)
2382 fprintf_unfiltered (gdb_stdlog,
2383 "infrun: resume: skipping permanent breakpoint\n");
2384 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2385 /* Update pc to reflect the new address from which we will
2386 execute instructions. */
2387 pc = regcache_read_pc (regcache);
2388
2389 if (step)
2390 {
2391 /* We've already advanced the PC, so the stepping part
2392 is done. Now we need to arrange for a trap to be
2393 reported to handle_inferior_event. Set a breakpoint
2394 at the current PC, and run to it. Don't update
2395 prev_pc, because if we end in
2396 switch_back_to_stepped_thread, we want the "expected
2397 thread advanced also" branch to be taken. IOW, we
2398 don't want this thread to step further from PC
2399 (overstep). */
2400 gdb_assert (!step_over_info_valid_p ());
2401 insert_single_step_breakpoint (gdbarch, aspace, pc);
2402 insert_breakpoints ();
2403
2404 resume_ptid = internal_resume_ptid (user_step);
2405 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2406 tp->resumed = 1;
2407 return;
2408 }
2409 }
2410 }
2411
2412 /* If we have a breakpoint to step over, make sure to do a single
2413 step only. Same if we have software watchpoints. */
2414 if (tp->control.trap_expected || bpstat_should_step ())
2415 tp->control.may_range_step = 0;
2416
2417 /* If enabled, step over breakpoints by executing a copy of the
2418 instruction at a different address.
2419
2420 We can't use displaced stepping when we have a signal to deliver;
2421 the comments for displaced_step_prepare explain why. The
2422 comments in the handle_inferior event for dealing with 'random
2423 signals' explain what we do instead.
2424
2425 We can't use displaced stepping when we are waiting for vfork_done
2426 event, displaced stepping breaks the vfork child similarly as single
2427 step software breakpoint. */
2428 if (tp->control.trap_expected
2429 && use_displaced_stepping (tp)
2430 && !step_over_info_valid_p ()
2431 && sig == GDB_SIGNAL_0
2432 && !current_inferior ()->waiting_for_vfork_done)
2433 {
2434 int prepared = displaced_step_prepare (tp);
2435
2436 if (prepared == 0)
2437 {
2438 if (debug_infrun)
2439 fprintf_unfiltered (gdb_stdlog,
2440 "Got placed in step-over queue\n");
2441
2442 tp->control.trap_expected = 0;
2443 return;
2444 }
2445 else if (prepared < 0)
2446 {
2447 /* Fallback to stepping over the breakpoint in-line. */
2448
2449 if (target_is_non_stop_p ())
2450 stop_all_threads ();
2451
2452 set_step_over_info (regcache->aspace (),
2453 regcache_read_pc (regcache), 0, tp->global_num);
2454
2455 step = maybe_software_singlestep (gdbarch, pc);
2456
2457 insert_breakpoints ();
2458 }
2459 else if (prepared > 0)
2460 {
2461 struct displaced_step_inferior_state *displaced;
2462
2463 /* Update pc to reflect the new address from which we will
2464 execute instructions due to displaced stepping. */
2465 pc = regcache_read_pc (get_thread_regcache (tp));
2466
2467 displaced = get_displaced_stepping_state (tp->inf);
2468 step = gdbarch_displaced_step_hw_singlestep
2469 (gdbarch, displaced->step_closure.get ());
2470 }
2471 }
2472
2473 /* Do we need to do it the hard way, w/temp breakpoints? */
2474 else if (step)
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 /* Currently, our software single-step implementation leads to different
2478 results than hardware single-stepping in one situation: when stepping
2479 into delivering a signal which has an associated signal handler,
2480 hardware single-step will stop at the first instruction of the handler,
2481 while software single-step will simply skip execution of the handler.
2482
2483 For now, this difference in behavior is accepted since there is no
2484 easy way to actually implement single-stepping into a signal handler
2485 without kernel support.
2486
2487 However, there is one scenario where this difference leads to follow-on
2488 problems: if we're stepping off a breakpoint by removing all breakpoints
2489 and then single-stepping. In this case, the software single-step
2490 behavior means that even if there is a *breakpoint* in the signal
2491 handler, GDB still would not stop.
2492
2493 Fortunately, we can at least fix this particular issue. We detect
2494 here the case where we are about to deliver a signal while software
2495 single-stepping with breakpoints removed. In this situation, we
2496 revert the decisions to remove all breakpoints and insert single-
2497 step breakpoints, and instead we install a step-resume breakpoint
2498 at the current address, deliver the signal without stepping, and
2499 once we arrive back at the step-resume breakpoint, actually step
2500 over the breakpoint we originally wanted to step over. */
2501 if (thread_has_single_step_breakpoints_set (tp)
2502 && sig != GDB_SIGNAL_0
2503 && step_over_info_valid_p ())
2504 {
2505 /* If we have nested signals or a pending signal is delivered
2506 immediately after a handler returns, might might already have
2507 a step-resume breakpoint set on the earlier handler. We cannot
2508 set another step-resume breakpoint; just continue on until the
2509 original breakpoint is hit. */
2510 if (tp->control.step_resume_breakpoint == NULL)
2511 {
2512 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2513 tp->step_after_step_resume_breakpoint = 1;
2514 }
2515
2516 delete_single_step_breakpoints (tp);
2517
2518 clear_step_over_info ();
2519 tp->control.trap_expected = 0;
2520
2521 insert_breakpoints ();
2522 }
2523
2524 /* If STEP is set, it's a request to use hardware stepping
2525 facilities. But in that case, we should never
2526 use singlestep breakpoint. */
2527 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2528
2529 /* Decide the set of threads to ask the target to resume. */
2530 if (tp->control.trap_expected)
2531 {
2532 /* We're allowing a thread to run past a breakpoint it has
2533 hit, either by single-stepping the thread with the breakpoint
2534 removed, or by displaced stepping, with the breakpoint inserted.
2535 In the former case, we need to single-step only this thread,
2536 and keep others stopped, as they can miss this breakpoint if
2537 allowed to run. That's not really a problem for displaced
2538 stepping, but, we still keep other threads stopped, in case
2539 another thread is also stopped for a breakpoint waiting for
2540 its turn in the displaced stepping queue. */
2541 resume_ptid = inferior_ptid;
2542 }
2543 else
2544 resume_ptid = internal_resume_ptid (user_step);
2545
2546 if (execution_direction != EXEC_REVERSE
2547 && step && breakpoint_inserted_here_p (aspace, pc))
2548 {
2549 /* There are two cases where we currently need to step a
2550 breakpoint instruction when we have a signal to deliver:
2551
2552 - See handle_signal_stop where we handle random signals that
2553 could take out us out of the stepping range. Normally, in
2554 that case we end up continuing (instead of stepping) over the
2555 signal handler with a breakpoint at PC, but there are cases
2556 where we should _always_ single-step, even if we have a
2557 step-resume breakpoint, like when a software watchpoint is
2558 set. Assuming single-stepping and delivering a signal at the
2559 same time would takes us to the signal handler, then we could
2560 have removed the breakpoint at PC to step over it. However,
2561 some hardware step targets (like e.g., Mac OS) can't step
2562 into signal handlers, and for those, we need to leave the
2563 breakpoint at PC inserted, as otherwise if the handler
2564 recurses and executes PC again, it'll miss the breakpoint.
2565 So we leave the breakpoint inserted anyway, but we need to
2566 record that we tried to step a breakpoint instruction, so
2567 that adjust_pc_after_break doesn't end up confused.
2568
2569 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2570 in one thread after another thread that was stepping had been
2571 momentarily paused for a step-over. When we re-resume the
2572 stepping thread, it may be resumed from that address with a
2573 breakpoint that hasn't trapped yet. Seen with
2574 gdb.threads/non-stop-fair-events.exp, on targets that don't
2575 do displaced stepping. */
2576
2577 if (debug_infrun)
2578 fprintf_unfiltered (gdb_stdlog,
2579 "infrun: resume: [%s] stepped breakpoint\n",
2580 target_pid_to_str (tp->ptid).c_str ());
2581
2582 tp->stepped_breakpoint = 1;
2583
2584 /* Most targets can step a breakpoint instruction, thus
2585 executing it normally. But if this one cannot, just
2586 continue and we will hit it anyway. */
2587 if (gdbarch_cannot_step_breakpoint (gdbarch))
2588 step = 0;
2589 }
2590
2591 if (debug_displaced
2592 && tp->control.trap_expected
2593 && use_displaced_stepping (tp)
2594 && !step_over_info_valid_p ())
2595 {
2596 struct regcache *resume_regcache = get_thread_regcache (tp);
2597 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2598 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2599 gdb_byte buf[4];
2600
2601 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2602 paddress (resume_gdbarch, actual_pc));
2603 read_memory (actual_pc, buf, sizeof (buf));
2604 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2605 }
2606
2607 if (tp->control.may_range_step)
2608 {
2609 /* If we're resuming a thread with the PC out of the step
2610 range, then we're doing some nested/finer run control
2611 operation, like stepping the thread out of the dynamic
2612 linker or the displaced stepping scratch pad. We
2613 shouldn't have allowed a range step then. */
2614 gdb_assert (pc_in_thread_step_range (pc, tp));
2615 }
2616
2617 do_target_resume (resume_ptid, step, sig);
2618 tp->resumed = 1;
2619 }
2620
2621 /* Resume the inferior. SIG is the signal to give the inferior
2622 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2623 rolls back state on error. */
2624
2625 static void
2626 resume (gdb_signal sig)
2627 {
2628 try
2629 {
2630 resume_1 (sig);
2631 }
2632 catch (const gdb_exception &ex)
2633 {
2634 /* If resuming is being aborted for any reason, delete any
2635 single-step breakpoint resume_1 may have created, to avoid
2636 confusing the following resumption, and to avoid leaving
2637 single-step breakpoints perturbing other threads, in case
2638 we're running in non-stop mode. */
2639 if (inferior_ptid != null_ptid)
2640 delete_single_step_breakpoints (inferior_thread ());
2641 throw;
2642 }
2643 }
2644
2645 \f
2646 /* Proceeding. */
2647
2648 /* See infrun.h. */
2649
2650 /* Counter that tracks number of user visible stops. This can be used
2651 to tell whether a command has proceeded the inferior past the
2652 current location. This allows e.g., inferior function calls in
2653 breakpoint commands to not interrupt the command list. When the
2654 call finishes successfully, the inferior is standing at the same
2655 breakpoint as if nothing happened (and so we don't call
2656 normal_stop). */
2657 static ULONGEST current_stop_id;
2658
2659 /* See infrun.h. */
2660
2661 ULONGEST
2662 get_stop_id (void)
2663 {
2664 return current_stop_id;
2665 }
2666
2667 /* Called when we report a user visible stop. */
2668
2669 static void
2670 new_stop_id (void)
2671 {
2672 current_stop_id++;
2673 }
2674
2675 /* Clear out all variables saying what to do when inferior is continued.
2676 First do this, then set the ones you want, then call `proceed'. */
2677
2678 static void
2679 clear_proceed_status_thread (struct thread_info *tp)
2680 {
2681 if (debug_infrun)
2682 fprintf_unfiltered (gdb_stdlog,
2683 "infrun: clear_proceed_status_thread (%s)\n",
2684 target_pid_to_str (tp->ptid).c_str ());
2685
2686 /* If we're starting a new sequence, then the previous finished
2687 single-step is no longer relevant. */
2688 if (tp->suspend.waitstatus_pending_p)
2689 {
2690 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2691 {
2692 if (debug_infrun)
2693 fprintf_unfiltered (gdb_stdlog,
2694 "infrun: clear_proceed_status: pending "
2695 "event of %s was a finished step. "
2696 "Discarding.\n",
2697 target_pid_to_str (tp->ptid).c_str ());
2698
2699 tp->suspend.waitstatus_pending_p = 0;
2700 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2701 }
2702 else if (debug_infrun)
2703 {
2704 std::string statstr
2705 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2706
2707 fprintf_unfiltered (gdb_stdlog,
2708 "infrun: clear_proceed_status_thread: thread %s "
2709 "has pending wait status %s "
2710 "(currently_stepping=%d).\n",
2711 target_pid_to_str (tp->ptid).c_str (),
2712 statstr.c_str (),
2713 currently_stepping (tp));
2714 }
2715 }
2716
2717 /* If this signal should not be seen by program, give it zero.
2718 Used for debugging signals. */
2719 if (!signal_pass_state (tp->suspend.stop_signal))
2720 tp->suspend.stop_signal = GDB_SIGNAL_0;
2721
2722 delete tp->thread_fsm;
2723 tp->thread_fsm = NULL;
2724
2725 tp->control.trap_expected = 0;
2726 tp->control.step_range_start = 0;
2727 tp->control.step_range_end = 0;
2728 tp->control.may_range_step = 0;
2729 tp->control.step_frame_id = null_frame_id;
2730 tp->control.step_stack_frame_id = null_frame_id;
2731 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2732 tp->control.step_start_function = NULL;
2733 tp->stop_requested = 0;
2734
2735 tp->control.stop_step = 0;
2736
2737 tp->control.proceed_to_finish = 0;
2738
2739 tp->control.stepping_command = 0;
2740
2741 /* Discard any remaining commands or status from previous stop. */
2742 bpstat_clear (&tp->control.stop_bpstat);
2743 }
2744
2745 void
2746 clear_proceed_status (int step)
2747 {
2748 /* With scheduler-locking replay, stop replaying other threads if we're
2749 not replaying the user-visible resume ptid.
2750
2751 This is a convenience feature to not require the user to explicitly
2752 stop replaying the other threads. We're assuming that the user's
2753 intent is to resume tracing the recorded process. */
2754 if (!non_stop && scheduler_mode == schedlock_replay
2755 && target_record_is_replaying (minus_one_ptid)
2756 && !target_record_will_replay (user_visible_resume_ptid (step),
2757 execution_direction))
2758 target_record_stop_replaying ();
2759
2760 if (!non_stop && inferior_ptid != null_ptid)
2761 {
2762 ptid_t resume_ptid = user_visible_resume_ptid (step);
2763
2764 /* In all-stop mode, delete the per-thread status of all threads
2765 we're about to resume, implicitly and explicitly. */
2766 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2767 clear_proceed_status_thread (tp);
2768 }
2769
2770 if (inferior_ptid != null_ptid)
2771 {
2772 struct inferior *inferior;
2773
2774 if (non_stop)
2775 {
2776 /* If in non-stop mode, only delete the per-thread status of
2777 the current thread. */
2778 clear_proceed_status_thread (inferior_thread ());
2779 }
2780
2781 inferior = current_inferior ();
2782 inferior->control.stop_soon = NO_STOP_QUIETLY;
2783 }
2784
2785 gdb::observers::about_to_proceed.notify ();
2786 }
2787
2788 /* Returns true if TP is still stopped at a breakpoint that needs
2789 stepping-over in order to make progress. If the breakpoint is gone
2790 meanwhile, we can skip the whole step-over dance. */
2791
2792 static int
2793 thread_still_needs_step_over_bp (struct thread_info *tp)
2794 {
2795 if (tp->stepping_over_breakpoint)
2796 {
2797 struct regcache *regcache = get_thread_regcache (tp);
2798
2799 if (breakpoint_here_p (regcache->aspace (),
2800 regcache_read_pc (regcache))
2801 == ordinary_breakpoint_here)
2802 return 1;
2803
2804 tp->stepping_over_breakpoint = 0;
2805 }
2806
2807 return 0;
2808 }
2809
2810 /* Check whether thread TP still needs to start a step-over in order
2811 to make progress when resumed. Returns an bitwise or of enum
2812 step_over_what bits, indicating what needs to be stepped over. */
2813
2814 static step_over_what
2815 thread_still_needs_step_over (struct thread_info *tp)
2816 {
2817 step_over_what what = 0;
2818
2819 if (thread_still_needs_step_over_bp (tp))
2820 what |= STEP_OVER_BREAKPOINT;
2821
2822 if (tp->stepping_over_watchpoint
2823 && !target_have_steppable_watchpoint)
2824 what |= STEP_OVER_WATCHPOINT;
2825
2826 return what;
2827 }
2828
2829 /* Returns true if scheduler locking applies. STEP indicates whether
2830 we're about to do a step/next-like command to a thread. */
2831
2832 static int
2833 schedlock_applies (struct thread_info *tp)
2834 {
2835 return (scheduler_mode == schedlock_on
2836 || (scheduler_mode == schedlock_step
2837 && tp->control.stepping_command)
2838 || (scheduler_mode == schedlock_replay
2839 && target_record_will_replay (minus_one_ptid,
2840 execution_direction)));
2841 }
2842
2843 /* Basic routine for continuing the program in various fashions.
2844
2845 ADDR is the address to resume at, or -1 for resume where stopped.
2846 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2847 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2848
2849 You should call clear_proceed_status before calling proceed. */
2850
2851 void
2852 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2853 {
2854 struct regcache *regcache;
2855 struct gdbarch *gdbarch;
2856 CORE_ADDR pc;
2857 ptid_t resume_ptid;
2858 struct execution_control_state ecss;
2859 struct execution_control_state *ecs = &ecss;
2860 int started;
2861
2862 /* If we're stopped at a fork/vfork, follow the branch set by the
2863 "set follow-fork-mode" command; otherwise, we'll just proceed
2864 resuming the current thread. */
2865 if (!follow_fork ())
2866 {
2867 /* The target for some reason decided not to resume. */
2868 normal_stop ();
2869 if (target_can_async_p ())
2870 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2871 return;
2872 }
2873
2874 /* We'll update this if & when we switch to a new thread. */
2875 previous_inferior_ptid = inferior_ptid;
2876
2877 regcache = get_current_regcache ();
2878 gdbarch = regcache->arch ();
2879 const address_space *aspace = regcache->aspace ();
2880
2881 pc = regcache_read_pc (regcache);
2882 thread_info *cur_thr = inferior_thread ();
2883
2884 /* Fill in with reasonable starting values. */
2885 init_thread_stepping_state (cur_thr);
2886
2887 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2888
2889 if (addr == (CORE_ADDR) -1)
2890 {
2891 if (pc == cur_thr->suspend.stop_pc
2892 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2893 && execution_direction != EXEC_REVERSE)
2894 /* There is a breakpoint at the address we will resume at,
2895 step one instruction before inserting breakpoints so that
2896 we do not stop right away (and report a second hit at this
2897 breakpoint).
2898
2899 Note, we don't do this in reverse, because we won't
2900 actually be executing the breakpoint insn anyway.
2901 We'll be (un-)executing the previous instruction. */
2902 cur_thr->stepping_over_breakpoint = 1;
2903 else if (gdbarch_single_step_through_delay_p (gdbarch)
2904 && gdbarch_single_step_through_delay (gdbarch,
2905 get_current_frame ()))
2906 /* We stepped onto an instruction that needs to be stepped
2907 again before re-inserting the breakpoint, do so. */
2908 cur_thr->stepping_over_breakpoint = 1;
2909 }
2910 else
2911 {
2912 regcache_write_pc (regcache, addr);
2913 }
2914
2915 if (siggnal != GDB_SIGNAL_DEFAULT)
2916 cur_thr->suspend.stop_signal = siggnal;
2917
2918 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2919
2920 /* If an exception is thrown from this point on, make sure to
2921 propagate GDB's knowledge of the executing state to the
2922 frontend/user running state. */
2923 scoped_finish_thread_state finish_state (resume_ptid);
2924
2925 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2926 threads (e.g., we might need to set threads stepping over
2927 breakpoints first), from the user/frontend's point of view, all
2928 threads in RESUME_PTID are now running. Unless we're calling an
2929 inferior function, as in that case we pretend the inferior
2930 doesn't run at all. */
2931 if (!cur_thr->control.in_infcall)
2932 set_running (resume_ptid, 1);
2933
2934 if (debug_infrun)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "infrun: proceed (addr=%s, signal=%s)\n",
2937 paddress (gdbarch, addr),
2938 gdb_signal_to_symbol_string (siggnal));
2939
2940 annotate_starting ();
2941
2942 /* Make sure that output from GDB appears before output from the
2943 inferior. */
2944 gdb_flush (gdb_stdout);
2945
2946 /* Since we've marked the inferior running, give it the terminal. A
2947 QUIT/Ctrl-C from here on is forwarded to the target (which can
2948 still detect attempts to unblock a stuck connection with repeated
2949 Ctrl-C from within target_pass_ctrlc). */
2950 target_terminal::inferior ();
2951
2952 /* In a multi-threaded task we may select another thread and
2953 then continue or step.
2954
2955 But if a thread that we're resuming had stopped at a breakpoint,
2956 it will immediately cause another breakpoint stop without any
2957 execution (i.e. it will report a breakpoint hit incorrectly). So
2958 we must step over it first.
2959
2960 Look for threads other than the current (TP) that reported a
2961 breakpoint hit and haven't been resumed yet since. */
2962
2963 /* If scheduler locking applies, we can avoid iterating over all
2964 threads. */
2965 if (!non_stop && !schedlock_applies (cur_thr))
2966 {
2967 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2968 {
2969 /* Ignore the current thread here. It's handled
2970 afterwards. */
2971 if (tp == cur_thr)
2972 continue;
2973
2974 if (!thread_still_needs_step_over (tp))
2975 continue;
2976
2977 gdb_assert (!thread_is_in_step_over_chain (tp));
2978
2979 if (debug_infrun)
2980 fprintf_unfiltered (gdb_stdlog,
2981 "infrun: need to step-over [%s] first\n",
2982 target_pid_to_str (tp->ptid).c_str ());
2983
2984 global_thread_step_over_chain_enqueue (tp);
2985 }
2986 }
2987
2988 /* Enqueue the current thread last, so that we move all other
2989 threads over their breakpoints first. */
2990 if (cur_thr->stepping_over_breakpoint)
2991 global_thread_step_over_chain_enqueue (cur_thr);
2992
2993 /* If the thread isn't started, we'll still need to set its prev_pc,
2994 so that switch_back_to_stepped_thread knows the thread hasn't
2995 advanced. Must do this before resuming any thread, as in
2996 all-stop/remote, once we resume we can't send any other packet
2997 until the target stops again. */
2998 cur_thr->prev_pc = regcache_read_pc (regcache);
2999
3000 {
3001 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3002
3003 started = start_step_over ();
3004
3005 if (step_over_info_valid_p ())
3006 {
3007 /* Either this thread started a new in-line step over, or some
3008 other thread was already doing one. In either case, don't
3009 resume anything else until the step-over is finished. */
3010 }
3011 else if (started && !target_is_non_stop_p ())
3012 {
3013 /* A new displaced stepping sequence was started. In all-stop,
3014 we can't talk to the target anymore until it next stops. */
3015 }
3016 else if (!non_stop && target_is_non_stop_p ())
3017 {
3018 /* In all-stop, but the target is always in non-stop mode.
3019 Start all other threads that are implicitly resumed too. */
3020 for (thread_info *tp : all_non_exited_threads (resume_ptid))
3021 {
3022 if (tp->resumed)
3023 {
3024 if (debug_infrun)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "infrun: proceed: [%s] resumed\n",
3027 target_pid_to_str (tp->ptid).c_str ());
3028 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3029 continue;
3030 }
3031
3032 if (thread_is_in_step_over_chain (tp))
3033 {
3034 if (debug_infrun)
3035 fprintf_unfiltered (gdb_stdlog,
3036 "infrun: proceed: [%s] needs step-over\n",
3037 target_pid_to_str (tp->ptid).c_str ());
3038 continue;
3039 }
3040
3041 if (debug_infrun)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "infrun: proceed: resuming %s\n",
3044 target_pid_to_str (tp->ptid).c_str ());
3045
3046 reset_ecs (ecs, tp);
3047 switch_to_thread (tp);
3048 keep_going_pass_signal (ecs);
3049 if (!ecs->wait_some_more)
3050 error (_("Command aborted."));
3051 }
3052 }
3053 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3054 {
3055 /* The thread wasn't started, and isn't queued, run it now. */
3056 reset_ecs (ecs, cur_thr);
3057 switch_to_thread (cur_thr);
3058 keep_going_pass_signal (ecs);
3059 if (!ecs->wait_some_more)
3060 error (_("Command aborted."));
3061 }
3062 }
3063
3064 target_commit_resume ();
3065
3066 finish_state.release ();
3067
3068 /* Tell the event loop to wait for it to stop. If the target
3069 supports asynchronous execution, it'll do this from within
3070 target_resume. */
3071 if (!target_can_async_p ())
3072 mark_async_event_handler (infrun_async_inferior_event_token);
3073 }
3074 \f
3075
3076 /* Start remote-debugging of a machine over a serial link. */
3077
3078 void
3079 start_remote (int from_tty)
3080 {
3081 struct inferior *inferior;
3082
3083 inferior = current_inferior ();
3084 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3085
3086 /* Always go on waiting for the target, regardless of the mode. */
3087 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3088 indicate to wait_for_inferior that a target should timeout if
3089 nothing is returned (instead of just blocking). Because of this,
3090 targets expecting an immediate response need to, internally, set
3091 things up so that the target_wait() is forced to eventually
3092 timeout. */
3093 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3094 differentiate to its caller what the state of the target is after
3095 the initial open has been performed. Here we're assuming that
3096 the target has stopped. It should be possible to eventually have
3097 target_open() return to the caller an indication that the target
3098 is currently running and GDB state should be set to the same as
3099 for an async run. */
3100 wait_for_inferior ();
3101
3102 /* Now that the inferior has stopped, do any bookkeeping like
3103 loading shared libraries. We want to do this before normal_stop,
3104 so that the displayed frame is up to date. */
3105 post_create_inferior (current_top_target (), from_tty);
3106
3107 normal_stop ();
3108 }
3109
3110 /* Initialize static vars when a new inferior begins. */
3111
3112 void
3113 init_wait_for_inferior (void)
3114 {
3115 /* These are meaningless until the first time through wait_for_inferior. */
3116
3117 breakpoint_init_inferior (inf_starting);
3118
3119 clear_proceed_status (0);
3120
3121 target_last_wait_ptid = minus_one_ptid;
3122
3123 previous_inferior_ptid = inferior_ptid;
3124 }
3125
3126 \f
3127
3128 static void handle_inferior_event (struct execution_control_state *ecs);
3129
3130 static void handle_step_into_function (struct gdbarch *gdbarch,
3131 struct execution_control_state *ecs);
3132 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3133 struct execution_control_state *ecs);
3134 static void handle_signal_stop (struct execution_control_state *ecs);
3135 static void check_exception_resume (struct execution_control_state *,
3136 struct frame_info *);
3137
3138 static void end_stepping_range (struct execution_control_state *ecs);
3139 static void stop_waiting (struct execution_control_state *ecs);
3140 static void keep_going (struct execution_control_state *ecs);
3141 static void process_event_stop_test (struct execution_control_state *ecs);
3142 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3143
3144 /* This function is attached as a "thread_stop_requested" observer.
3145 Cleanup local state that assumed the PTID was to be resumed, and
3146 report the stop to the frontend. */
3147
3148 static void
3149 infrun_thread_stop_requested (ptid_t ptid)
3150 {
3151 /* PTID was requested to stop. If the thread was already stopped,
3152 but the user/frontend doesn't know about that yet (e.g., the
3153 thread had been temporarily paused for some step-over), set up
3154 for reporting the stop now. */
3155 for (thread_info *tp : all_threads (ptid))
3156 {
3157 if (tp->state != THREAD_RUNNING)
3158 continue;
3159 if (tp->executing)
3160 continue;
3161
3162 /* Remove matching threads from the step-over queue, so
3163 start_step_over doesn't try to resume them
3164 automatically. */
3165 if (thread_is_in_step_over_chain (tp))
3166 global_thread_step_over_chain_remove (tp);
3167
3168 /* If the thread is stopped, but the user/frontend doesn't
3169 know about that yet, queue a pending event, as if the
3170 thread had just stopped now. Unless the thread already had
3171 a pending event. */
3172 if (!tp->suspend.waitstatus_pending_p)
3173 {
3174 tp->suspend.waitstatus_pending_p = 1;
3175 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3176 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3177 }
3178
3179 /* Clear the inline-frame state, since we're re-processing the
3180 stop. */
3181 clear_inline_frame_state (tp->ptid);
3182
3183 /* If this thread was paused because some other thread was
3184 doing an inline-step over, let that finish first. Once
3185 that happens, we'll restart all threads and consume pending
3186 stop events then. */
3187 if (step_over_info_valid_p ())
3188 continue;
3189
3190 /* Otherwise we can process the (new) pending event now. Set
3191 it so this pending event is considered by
3192 do_target_wait. */
3193 tp->resumed = 1;
3194 }
3195 }
3196
3197 static void
3198 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3199 {
3200 if (target_last_wait_ptid == tp->ptid)
3201 nullify_last_target_wait_ptid ();
3202 }
3203
3204 /* Delete the step resume, single-step and longjmp/exception resume
3205 breakpoints of TP. */
3206
3207 static void
3208 delete_thread_infrun_breakpoints (struct thread_info *tp)
3209 {
3210 delete_step_resume_breakpoint (tp);
3211 delete_exception_resume_breakpoint (tp);
3212 delete_single_step_breakpoints (tp);
3213 }
3214
3215 /* If the target still has execution, call FUNC for each thread that
3216 just stopped. In all-stop, that's all the non-exited threads; in
3217 non-stop, that's the current thread, only. */
3218
3219 typedef void (*for_each_just_stopped_thread_callback_func)
3220 (struct thread_info *tp);
3221
3222 static void
3223 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3224 {
3225 if (!target_has_execution || inferior_ptid == null_ptid)
3226 return;
3227
3228 if (target_is_non_stop_p ())
3229 {
3230 /* If in non-stop mode, only the current thread stopped. */
3231 func (inferior_thread ());
3232 }
3233 else
3234 {
3235 /* In all-stop mode, all threads have stopped. */
3236 for (thread_info *tp : all_non_exited_threads ())
3237 func (tp);
3238 }
3239 }
3240
3241 /* Delete the step resume and longjmp/exception resume breakpoints of
3242 the threads that just stopped. */
3243
3244 static void
3245 delete_just_stopped_threads_infrun_breakpoints (void)
3246 {
3247 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3248 }
3249
3250 /* Delete the single-step breakpoints of the threads that just
3251 stopped. */
3252
3253 static void
3254 delete_just_stopped_threads_single_step_breakpoints (void)
3255 {
3256 for_each_just_stopped_thread (delete_single_step_breakpoints);
3257 }
3258
3259 /* See infrun.h. */
3260
3261 void
3262 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3263 const struct target_waitstatus *ws)
3264 {
3265 std::string status_string = target_waitstatus_to_string (ws);
3266 string_file stb;
3267
3268 /* The text is split over several lines because it was getting too long.
3269 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3270 output as a unit; we want only one timestamp printed if debug_timestamp
3271 is set. */
3272
3273 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3274 waiton_ptid.pid (),
3275 waiton_ptid.lwp (),
3276 waiton_ptid.tid ());
3277 if (waiton_ptid.pid () != -1)
3278 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3279 stb.printf (", status) =\n");
3280 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3281 result_ptid.pid (),
3282 result_ptid.lwp (),
3283 result_ptid.tid (),
3284 target_pid_to_str (result_ptid).c_str ());
3285 stb.printf ("infrun: %s\n", status_string.c_str ());
3286
3287 /* This uses %s in part to handle %'s in the text, but also to avoid
3288 a gcc error: the format attribute requires a string literal. */
3289 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3290 }
3291
3292 /* Select a thread at random, out of those which are resumed and have
3293 had events. */
3294
3295 static struct thread_info *
3296 random_pending_event_thread (ptid_t waiton_ptid)
3297 {
3298 int num_events = 0;
3299
3300 auto has_event = [] (thread_info *tp)
3301 {
3302 return (tp->resumed
3303 && tp->suspend.waitstatus_pending_p);
3304 };
3305
3306 /* First see how many events we have. Count only resumed threads
3307 that have an event pending. */
3308 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3309 if (has_event (tp))
3310 num_events++;
3311
3312 if (num_events == 0)
3313 return NULL;
3314
3315 /* Now randomly pick a thread out of those that have had events. */
3316 int random_selector = (int) ((num_events * (double) rand ())
3317 / (RAND_MAX + 1.0));
3318
3319 if (debug_infrun && num_events > 1)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "infrun: Found %d events, selecting #%d\n",
3322 num_events, random_selector);
3323
3324 /* Select the Nth thread that has had an event. */
3325 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3326 if (has_event (tp))
3327 if (random_selector-- == 0)
3328 return tp;
3329
3330 gdb_assert_not_reached ("event thread not found");
3331 }
3332
3333 /* Wrapper for target_wait that first checks whether threads have
3334 pending statuses to report before actually asking the target for
3335 more events. */
3336
3337 static ptid_t
3338 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3339 {
3340 ptid_t event_ptid;
3341 struct thread_info *tp;
3342
3343 /* First check if there is a resumed thread with a wait status
3344 pending. */
3345 if (ptid == minus_one_ptid || ptid.is_pid ())
3346 {
3347 tp = random_pending_event_thread (ptid);
3348 }
3349 else
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: Waiting for specific thread %s.\n",
3354 target_pid_to_str (ptid).c_str ());
3355
3356 /* We have a specific thread to check. */
3357 tp = find_thread_ptid (ptid);
3358 gdb_assert (tp != NULL);
3359 if (!tp->suspend.waitstatus_pending_p)
3360 tp = NULL;
3361 }
3362
3363 if (tp != NULL
3364 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3365 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3366 {
3367 struct regcache *regcache = get_thread_regcache (tp);
3368 struct gdbarch *gdbarch = regcache->arch ();
3369 CORE_ADDR pc;
3370 int discard = 0;
3371
3372 pc = regcache_read_pc (regcache);
3373
3374 if (pc != tp->suspend.stop_pc)
3375 {
3376 if (debug_infrun)
3377 fprintf_unfiltered (gdb_stdlog,
3378 "infrun: PC of %s changed. was=%s, now=%s\n",
3379 target_pid_to_str (tp->ptid).c_str (),
3380 paddress (gdbarch, tp->suspend.stop_pc),
3381 paddress (gdbarch, pc));
3382 discard = 1;
3383 }
3384 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3385 {
3386 if (debug_infrun)
3387 fprintf_unfiltered (gdb_stdlog,
3388 "infrun: previous breakpoint of %s, at %s gone\n",
3389 target_pid_to_str (tp->ptid).c_str (),
3390 paddress (gdbarch, pc));
3391
3392 discard = 1;
3393 }
3394
3395 if (discard)
3396 {
3397 if (debug_infrun)
3398 fprintf_unfiltered (gdb_stdlog,
3399 "infrun: pending event of %s cancelled.\n",
3400 target_pid_to_str (tp->ptid).c_str ());
3401
3402 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3403 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3404 }
3405 }
3406
3407 if (tp != NULL)
3408 {
3409 if (debug_infrun)
3410 {
3411 std::string statstr
3412 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3413
3414 fprintf_unfiltered (gdb_stdlog,
3415 "infrun: Using pending wait status %s for %s.\n",
3416 statstr.c_str (),
3417 target_pid_to_str (tp->ptid).c_str ());
3418 }
3419
3420 /* Now that we've selected our final event LWP, un-adjust its PC
3421 if it was a software breakpoint (and the target doesn't
3422 always adjust the PC itself). */
3423 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3424 && !target_supports_stopped_by_sw_breakpoint ())
3425 {
3426 struct regcache *regcache;
3427 struct gdbarch *gdbarch;
3428 int decr_pc;
3429
3430 regcache = get_thread_regcache (tp);
3431 gdbarch = regcache->arch ();
3432
3433 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3434 if (decr_pc != 0)
3435 {
3436 CORE_ADDR pc;
3437
3438 pc = regcache_read_pc (regcache);
3439 regcache_write_pc (regcache, pc + decr_pc);
3440 }
3441 }
3442
3443 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3444 *status = tp->suspend.waitstatus;
3445 tp->suspend.waitstatus_pending_p = 0;
3446
3447 /* Wake up the event loop again, until all pending events are
3448 processed. */
3449 if (target_is_async_p ())
3450 mark_async_event_handler (infrun_async_inferior_event_token);
3451 return tp->ptid;
3452 }
3453
3454 /* But if we don't find one, we'll have to wait. */
3455
3456 if (deprecated_target_wait_hook)
3457 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3458 else
3459 event_ptid = target_wait (ptid, status, options);
3460
3461 return event_ptid;
3462 }
3463
3464 /* Prepare and stabilize the inferior for detaching it. E.g.,
3465 detaching while a thread is displaced stepping is a recipe for
3466 crashing it, as nothing would readjust the PC out of the scratch
3467 pad. */
3468
3469 void
3470 prepare_for_detach (void)
3471 {
3472 struct inferior *inf = current_inferior ();
3473 ptid_t pid_ptid = ptid_t (inf->pid);
3474
3475 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3476
3477 /* Is any thread of this process displaced stepping? If not,
3478 there's nothing else to do. */
3479 if (displaced->step_thread == nullptr)
3480 return;
3481
3482 if (debug_infrun)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "displaced-stepping in-process while detaching");
3485
3486 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3487
3488 while (displaced->step_thread != nullptr)
3489 {
3490 struct execution_control_state ecss;
3491 struct execution_control_state *ecs;
3492
3493 ecs = &ecss;
3494 memset (ecs, 0, sizeof (*ecs));
3495
3496 overlay_cache_invalid = 1;
3497 /* Flush target cache before starting to handle each event.
3498 Target was running and cache could be stale. This is just a
3499 heuristic. Running threads may modify target memory, but we
3500 don't get any event. */
3501 target_dcache_invalidate ();
3502
3503 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3504
3505 if (debug_infrun)
3506 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3507
3508 /* If an error happens while handling the event, propagate GDB's
3509 knowledge of the executing state to the frontend/user running
3510 state. */
3511 scoped_finish_thread_state finish_state (minus_one_ptid);
3512
3513 /* Now figure out what to do with the result of the result. */
3514 handle_inferior_event (ecs);
3515
3516 /* No error, don't finish the state yet. */
3517 finish_state.release ();
3518
3519 /* Breakpoints and watchpoints are not installed on the target
3520 at this point, and signals are passed directly to the
3521 inferior, so this must mean the process is gone. */
3522 if (!ecs->wait_some_more)
3523 {
3524 restore_detaching.release ();
3525 error (_("Program exited while detaching"));
3526 }
3527 }
3528
3529 restore_detaching.release ();
3530 }
3531
3532 /* Wait for control to return from inferior to debugger.
3533
3534 If inferior gets a signal, we may decide to start it up again
3535 instead of returning. That is why there is a loop in this function.
3536 When this function actually returns it means the inferior
3537 should be left stopped and GDB should read more commands. */
3538
3539 void
3540 wait_for_inferior (void)
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered
3544 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3545
3546 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3547
3548 /* If an error happens while handling the event, propagate GDB's
3549 knowledge of the executing state to the frontend/user running
3550 state. */
3551 scoped_finish_thread_state finish_state (minus_one_ptid);
3552
3553 while (1)
3554 {
3555 struct execution_control_state ecss;
3556 struct execution_control_state *ecs = &ecss;
3557 ptid_t waiton_ptid = minus_one_ptid;
3558
3559 memset (ecs, 0, sizeof (*ecs));
3560
3561 overlay_cache_invalid = 1;
3562
3563 /* Flush target cache before starting to handle each event.
3564 Target was running and cache could be stale. This is just a
3565 heuristic. Running threads may modify target memory, but we
3566 don't get any event. */
3567 target_dcache_invalidate ();
3568
3569 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3570
3571 if (debug_infrun)
3572 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3573
3574 /* Now figure out what to do with the result of the result. */
3575 handle_inferior_event (ecs);
3576
3577 if (!ecs->wait_some_more)
3578 break;
3579 }
3580
3581 /* No error, don't finish the state yet. */
3582 finish_state.release ();
3583 }
3584
3585 /* Cleanup that reinstalls the readline callback handler, if the
3586 target is running in the background. If while handling the target
3587 event something triggered a secondary prompt, like e.g., a
3588 pagination prompt, we'll have removed the callback handler (see
3589 gdb_readline_wrapper_line). Need to do this as we go back to the
3590 event loop, ready to process further input. Note this has no
3591 effect if the handler hasn't actually been removed, because calling
3592 rl_callback_handler_install resets the line buffer, thus losing
3593 input. */
3594
3595 static void
3596 reinstall_readline_callback_handler_cleanup ()
3597 {
3598 struct ui *ui = current_ui;
3599
3600 if (!ui->async)
3601 {
3602 /* We're not going back to the top level event loop yet. Don't
3603 install the readline callback, as it'd prep the terminal,
3604 readline-style (raw, noecho) (e.g., --batch). We'll install
3605 it the next time the prompt is displayed, when we're ready
3606 for input. */
3607 return;
3608 }
3609
3610 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3611 gdb_rl_callback_handler_reinstall ();
3612 }
3613
3614 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3615 that's just the event thread. In all-stop, that's all threads. */
3616
3617 static void
3618 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3619 {
3620 if (ecs->event_thread != NULL
3621 && ecs->event_thread->thread_fsm != NULL)
3622 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3623
3624 if (!non_stop)
3625 {
3626 for (thread_info *thr : all_non_exited_threads ())
3627 {
3628 if (thr->thread_fsm == NULL)
3629 continue;
3630 if (thr == ecs->event_thread)
3631 continue;
3632
3633 switch_to_thread (thr);
3634 thr->thread_fsm->clean_up (thr);
3635 }
3636
3637 if (ecs->event_thread != NULL)
3638 switch_to_thread (ecs->event_thread);
3639 }
3640 }
3641
3642 /* Helper for all_uis_check_sync_execution_done that works on the
3643 current UI. */
3644
3645 static void
3646 check_curr_ui_sync_execution_done (void)
3647 {
3648 struct ui *ui = current_ui;
3649
3650 if (ui->prompt_state == PROMPT_NEEDED
3651 && ui->async
3652 && !gdb_in_secondary_prompt_p (ui))
3653 {
3654 target_terminal::ours ();
3655 gdb::observers::sync_execution_done.notify ();
3656 ui_register_input_event_handler (ui);
3657 }
3658 }
3659
3660 /* See infrun.h. */
3661
3662 void
3663 all_uis_check_sync_execution_done (void)
3664 {
3665 SWITCH_THRU_ALL_UIS ()
3666 {
3667 check_curr_ui_sync_execution_done ();
3668 }
3669 }
3670
3671 /* See infrun.h. */
3672
3673 void
3674 all_uis_on_sync_execution_starting (void)
3675 {
3676 SWITCH_THRU_ALL_UIS ()
3677 {
3678 if (current_ui->prompt_state == PROMPT_NEEDED)
3679 async_disable_stdin ();
3680 }
3681 }
3682
3683 /* Asynchronous version of wait_for_inferior. It is called by the
3684 event loop whenever a change of state is detected on the file
3685 descriptor corresponding to the target. It can be called more than
3686 once to complete a single execution command. In such cases we need
3687 to keep the state in a global variable ECSS. If it is the last time
3688 that this function is called for a single execution command, then
3689 report to the user that the inferior has stopped, and do the
3690 necessary cleanups. */
3691
3692 void
3693 fetch_inferior_event (void *client_data)
3694 {
3695 struct execution_control_state ecss;
3696 struct execution_control_state *ecs = &ecss;
3697 int cmd_done = 0;
3698 ptid_t waiton_ptid = minus_one_ptid;
3699
3700 memset (ecs, 0, sizeof (*ecs));
3701
3702 /* Events are always processed with the main UI as current UI. This
3703 way, warnings, debug output, etc. are always consistently sent to
3704 the main console. */
3705 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3706
3707 /* End up with readline processing input, if necessary. */
3708 {
3709 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3710
3711 /* We're handling a live event, so make sure we're doing live
3712 debugging. If we're looking at traceframes while the target is
3713 running, we're going to need to get back to that mode after
3714 handling the event. */
3715 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3716 if (non_stop)
3717 {
3718 maybe_restore_traceframe.emplace ();
3719 set_current_traceframe (-1);
3720 }
3721
3722 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3723
3724 if (non_stop)
3725 /* In non-stop mode, the user/frontend should not notice a thread
3726 switch due to internal events. Make sure we reverse to the
3727 user selected thread and frame after handling the event and
3728 running any breakpoint commands. */
3729 maybe_restore_thread.emplace ();
3730
3731 overlay_cache_invalid = 1;
3732 /* Flush target cache before starting to handle each event. Target
3733 was running and cache could be stale. This is just a heuristic.
3734 Running threads may modify target memory, but we don't get any
3735 event. */
3736 target_dcache_invalidate ();
3737
3738 scoped_restore save_exec_dir
3739 = make_scoped_restore (&execution_direction,
3740 target_execution_direction ());
3741
3742 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3743 target_can_async_p () ? TARGET_WNOHANG : 0);
3744
3745 if (debug_infrun)
3746 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3747
3748 /* If an error happens while handling the event, propagate GDB's
3749 knowledge of the executing state to the frontend/user running
3750 state. */
3751 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3752 scoped_finish_thread_state finish_state (finish_ptid);
3753
3754 /* Get executed before scoped_restore_current_thread above to apply
3755 still for the thread which has thrown the exception. */
3756 auto defer_bpstat_clear
3757 = make_scope_exit (bpstat_clear_actions);
3758 auto defer_delete_threads
3759 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3760
3761 /* Now figure out what to do with the result of the result. */
3762 handle_inferior_event (ecs);
3763
3764 if (!ecs->wait_some_more)
3765 {
3766 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3767 int should_stop = 1;
3768 struct thread_info *thr = ecs->event_thread;
3769
3770 delete_just_stopped_threads_infrun_breakpoints ();
3771
3772 if (thr != NULL)
3773 {
3774 struct thread_fsm *thread_fsm = thr->thread_fsm;
3775
3776 if (thread_fsm != NULL)
3777 should_stop = thread_fsm->should_stop (thr);
3778 }
3779
3780 if (!should_stop)
3781 {
3782 keep_going (ecs);
3783 }
3784 else
3785 {
3786 bool should_notify_stop = true;
3787 int proceeded = 0;
3788
3789 clean_up_just_stopped_threads_fsms (ecs);
3790
3791 if (thr != NULL && thr->thread_fsm != NULL)
3792 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3793
3794 if (should_notify_stop)
3795 {
3796 /* We may not find an inferior if this was a process exit. */
3797 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3798 proceeded = normal_stop ();
3799 }
3800
3801 if (!proceeded)
3802 {
3803 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3804 cmd_done = 1;
3805 }
3806 }
3807 }
3808
3809 defer_delete_threads.release ();
3810 defer_bpstat_clear.release ();
3811
3812 /* No error, don't finish the thread states yet. */
3813 finish_state.release ();
3814
3815 /* This scope is used to ensure that readline callbacks are
3816 reinstalled here. */
3817 }
3818
3819 /* If a UI was in sync execution mode, and now isn't, restore its
3820 prompt (a synchronous execution command has finished, and we're
3821 ready for input). */
3822 all_uis_check_sync_execution_done ();
3823
3824 if (cmd_done
3825 && exec_done_display_p
3826 && (inferior_ptid == null_ptid
3827 || inferior_thread ()->state != THREAD_RUNNING))
3828 printf_unfiltered (_("completed.\n"));
3829 }
3830
3831 /* Record the frame and location we're currently stepping through. */
3832 void
3833 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3834 {
3835 struct thread_info *tp = inferior_thread ();
3836
3837 tp->control.step_frame_id = get_frame_id (frame);
3838 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3839
3840 tp->current_symtab = sal.symtab;
3841 tp->current_line = sal.line;
3842 }
3843
3844 /* Clear context switchable stepping state. */
3845
3846 void
3847 init_thread_stepping_state (struct thread_info *tss)
3848 {
3849 tss->stepped_breakpoint = 0;
3850 tss->stepping_over_breakpoint = 0;
3851 tss->stepping_over_watchpoint = 0;
3852 tss->step_after_step_resume_breakpoint = 0;
3853 }
3854
3855 /* Set the cached copy of the last ptid/waitstatus. */
3856
3857 void
3858 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3859 {
3860 target_last_wait_ptid = ptid;
3861 target_last_waitstatus = status;
3862 }
3863
3864 /* Return the cached copy of the last pid/waitstatus returned by
3865 target_wait()/deprecated_target_wait_hook(). The data is actually
3866 cached by handle_inferior_event(), which gets called immediately
3867 after target_wait()/deprecated_target_wait_hook(). */
3868
3869 void
3870 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3871 {
3872 *ptidp = target_last_wait_ptid;
3873 *status = target_last_waitstatus;
3874 }
3875
3876 void
3877 nullify_last_target_wait_ptid (void)
3878 {
3879 target_last_wait_ptid = minus_one_ptid;
3880 }
3881
3882 /* Switch thread contexts. */
3883
3884 static void
3885 context_switch (execution_control_state *ecs)
3886 {
3887 if (debug_infrun
3888 && ecs->ptid != inferior_ptid
3889 && ecs->event_thread != inferior_thread ())
3890 {
3891 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3892 target_pid_to_str (inferior_ptid).c_str ());
3893 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3894 target_pid_to_str (ecs->ptid).c_str ());
3895 }
3896
3897 switch_to_thread (ecs->event_thread);
3898 }
3899
3900 /* If the target can't tell whether we've hit breakpoints
3901 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3902 check whether that could have been caused by a breakpoint. If so,
3903 adjust the PC, per gdbarch_decr_pc_after_break. */
3904
3905 static void
3906 adjust_pc_after_break (struct thread_info *thread,
3907 struct target_waitstatus *ws)
3908 {
3909 struct regcache *regcache;
3910 struct gdbarch *gdbarch;
3911 CORE_ADDR breakpoint_pc, decr_pc;
3912
3913 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3914 we aren't, just return.
3915
3916 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3917 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3918 implemented by software breakpoints should be handled through the normal
3919 breakpoint layer.
3920
3921 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3922 different signals (SIGILL or SIGEMT for instance), but it is less
3923 clear where the PC is pointing afterwards. It may not match
3924 gdbarch_decr_pc_after_break. I don't know any specific target that
3925 generates these signals at breakpoints (the code has been in GDB since at
3926 least 1992) so I can not guess how to handle them here.
3927
3928 In earlier versions of GDB, a target with
3929 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3930 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3931 target with both of these set in GDB history, and it seems unlikely to be
3932 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3933
3934 if (ws->kind != TARGET_WAITKIND_STOPPED)
3935 return;
3936
3937 if (ws->value.sig != GDB_SIGNAL_TRAP)
3938 return;
3939
3940 /* In reverse execution, when a breakpoint is hit, the instruction
3941 under it has already been de-executed. The reported PC always
3942 points at the breakpoint address, so adjusting it further would
3943 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3944 architecture:
3945
3946 B1 0x08000000 : INSN1
3947 B2 0x08000001 : INSN2
3948 0x08000002 : INSN3
3949 PC -> 0x08000003 : INSN4
3950
3951 Say you're stopped at 0x08000003 as above. Reverse continuing
3952 from that point should hit B2 as below. Reading the PC when the
3953 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3954 been de-executed already.
3955
3956 B1 0x08000000 : INSN1
3957 B2 PC -> 0x08000001 : INSN2
3958 0x08000002 : INSN3
3959 0x08000003 : INSN4
3960
3961 We can't apply the same logic as for forward execution, because
3962 we would wrongly adjust the PC to 0x08000000, since there's a
3963 breakpoint at PC - 1. We'd then report a hit on B1, although
3964 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3965 behaviour. */
3966 if (execution_direction == EXEC_REVERSE)
3967 return;
3968
3969 /* If the target can tell whether the thread hit a SW breakpoint,
3970 trust it. Targets that can tell also adjust the PC
3971 themselves. */
3972 if (target_supports_stopped_by_sw_breakpoint ())
3973 return;
3974
3975 /* Note that relying on whether a breakpoint is planted in memory to
3976 determine this can fail. E.g,. the breakpoint could have been
3977 removed since. Or the thread could have been told to step an
3978 instruction the size of a breakpoint instruction, and only
3979 _after_ was a breakpoint inserted at its address. */
3980
3981 /* If this target does not decrement the PC after breakpoints, then
3982 we have nothing to do. */
3983 regcache = get_thread_regcache (thread);
3984 gdbarch = regcache->arch ();
3985
3986 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3987 if (decr_pc == 0)
3988 return;
3989
3990 const address_space *aspace = regcache->aspace ();
3991
3992 /* Find the location where (if we've hit a breakpoint) the
3993 breakpoint would be. */
3994 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3995
3996 /* If the target can't tell whether a software breakpoint triggered,
3997 fallback to figuring it out based on breakpoints we think were
3998 inserted in the target, and on whether the thread was stepped or
3999 continued. */
4000
4001 /* Check whether there actually is a software breakpoint inserted at
4002 that location.
4003
4004 If in non-stop mode, a race condition is possible where we've
4005 removed a breakpoint, but stop events for that breakpoint were
4006 already queued and arrive later. To suppress those spurious
4007 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4008 and retire them after a number of stop events are reported. Note
4009 this is an heuristic and can thus get confused. The real fix is
4010 to get the "stopped by SW BP and needs adjustment" info out of
4011 the target/kernel (and thus never reach here; see above). */
4012 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4013 || (target_is_non_stop_p ()
4014 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4015 {
4016 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4017
4018 if (record_full_is_used ())
4019 restore_operation_disable.emplace
4020 (record_full_gdb_operation_disable_set ());
4021
4022 /* When using hardware single-step, a SIGTRAP is reported for both
4023 a completed single-step and a software breakpoint. Need to
4024 differentiate between the two, as the latter needs adjusting
4025 but the former does not.
4026
4027 The SIGTRAP can be due to a completed hardware single-step only if
4028 - we didn't insert software single-step breakpoints
4029 - this thread is currently being stepped
4030
4031 If any of these events did not occur, we must have stopped due
4032 to hitting a software breakpoint, and have to back up to the
4033 breakpoint address.
4034
4035 As a special case, we could have hardware single-stepped a
4036 software breakpoint. In this case (prev_pc == breakpoint_pc),
4037 we also need to back up to the breakpoint address. */
4038
4039 if (thread_has_single_step_breakpoints_set (thread)
4040 || !currently_stepping (thread)
4041 || (thread->stepped_breakpoint
4042 && thread->prev_pc == breakpoint_pc))
4043 regcache_write_pc (regcache, breakpoint_pc);
4044 }
4045 }
4046
4047 static int
4048 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4049 {
4050 for (frame = get_prev_frame (frame);
4051 frame != NULL;
4052 frame = get_prev_frame (frame))
4053 {
4054 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4055 return 1;
4056 if (get_frame_type (frame) != INLINE_FRAME)
4057 break;
4058 }
4059
4060 return 0;
4061 }
4062
4063 /* If the event thread has the stop requested flag set, pretend it
4064 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4065 target_stop). */
4066
4067 static bool
4068 handle_stop_requested (struct execution_control_state *ecs)
4069 {
4070 if (ecs->event_thread->stop_requested)
4071 {
4072 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4073 ecs->ws.value.sig = GDB_SIGNAL_0;
4074 handle_signal_stop (ecs);
4075 return true;
4076 }
4077 return false;
4078 }
4079
4080 /* Auxiliary function that handles syscall entry/return events.
4081 It returns 1 if the inferior should keep going (and GDB
4082 should ignore the event), or 0 if the event deserves to be
4083 processed. */
4084
4085 static int
4086 handle_syscall_event (struct execution_control_state *ecs)
4087 {
4088 struct regcache *regcache;
4089 int syscall_number;
4090
4091 context_switch (ecs);
4092
4093 regcache = get_thread_regcache (ecs->event_thread);
4094 syscall_number = ecs->ws.value.syscall_number;
4095 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4096
4097 if (catch_syscall_enabled () > 0
4098 && catching_syscall_number (syscall_number) > 0)
4099 {
4100 if (debug_infrun)
4101 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4102 syscall_number);
4103
4104 ecs->event_thread->control.stop_bpstat
4105 = bpstat_stop_status (regcache->aspace (),
4106 ecs->event_thread->suspend.stop_pc,
4107 ecs->event_thread, &ecs->ws);
4108
4109 if (handle_stop_requested (ecs))
4110 return 0;
4111
4112 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4113 {
4114 /* Catchpoint hit. */
4115 return 0;
4116 }
4117 }
4118
4119 if (handle_stop_requested (ecs))
4120 return 0;
4121
4122 /* If no catchpoint triggered for this, then keep going. */
4123 keep_going (ecs);
4124 return 1;
4125 }
4126
4127 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4128
4129 static void
4130 fill_in_stop_func (struct gdbarch *gdbarch,
4131 struct execution_control_state *ecs)
4132 {
4133 if (!ecs->stop_func_filled_in)
4134 {
4135 const block *block;
4136
4137 /* Don't care about return value; stop_func_start and stop_func_name
4138 will both be 0 if it doesn't work. */
4139 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4140 &ecs->stop_func_name,
4141 &ecs->stop_func_start,
4142 &ecs->stop_func_end,
4143 &block);
4144
4145 /* The call to find_pc_partial_function, above, will set
4146 stop_func_start and stop_func_end to the start and end
4147 of the range containing the stop pc. If this range
4148 contains the entry pc for the block (which is always the
4149 case for contiguous blocks), advance stop_func_start past
4150 the function's start offset and entrypoint. Note that
4151 stop_func_start is NOT advanced when in a range of a
4152 non-contiguous block that does not contain the entry pc. */
4153 if (block != nullptr
4154 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4155 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4156 {
4157 ecs->stop_func_start
4158 += gdbarch_deprecated_function_start_offset (gdbarch);
4159
4160 if (gdbarch_skip_entrypoint_p (gdbarch))
4161 ecs->stop_func_start
4162 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4163 }
4164
4165 ecs->stop_func_filled_in = 1;
4166 }
4167 }
4168
4169
4170 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4171
4172 static enum stop_kind
4173 get_inferior_stop_soon (execution_control_state *ecs)
4174 {
4175 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4176
4177 gdb_assert (inf != NULL);
4178 return inf->control.stop_soon;
4179 }
4180
4181 /* Wait for one event. Store the resulting waitstatus in WS, and
4182 return the event ptid. */
4183
4184 static ptid_t
4185 wait_one (struct target_waitstatus *ws)
4186 {
4187 ptid_t event_ptid;
4188 ptid_t wait_ptid = minus_one_ptid;
4189
4190 overlay_cache_invalid = 1;
4191
4192 /* Flush target cache before starting to handle each event.
4193 Target was running and cache could be stale. This is just a
4194 heuristic. Running threads may modify target memory, but we
4195 don't get any event. */
4196 target_dcache_invalidate ();
4197
4198 if (deprecated_target_wait_hook)
4199 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4200 else
4201 event_ptid = target_wait (wait_ptid, ws, 0);
4202
4203 if (debug_infrun)
4204 print_target_wait_results (wait_ptid, event_ptid, ws);
4205
4206 return event_ptid;
4207 }
4208
4209 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4210 instead of the current thread. */
4211 #define THREAD_STOPPED_BY(REASON) \
4212 static int \
4213 thread_stopped_by_ ## REASON (ptid_t ptid) \
4214 { \
4215 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4216 inferior_ptid = ptid; \
4217 \
4218 return target_stopped_by_ ## REASON (); \
4219 }
4220
4221 /* Generate thread_stopped_by_watchpoint. */
4222 THREAD_STOPPED_BY (watchpoint)
4223 /* Generate thread_stopped_by_sw_breakpoint. */
4224 THREAD_STOPPED_BY (sw_breakpoint)
4225 /* Generate thread_stopped_by_hw_breakpoint. */
4226 THREAD_STOPPED_BY (hw_breakpoint)
4227
4228 /* Save the thread's event and stop reason to process it later. */
4229
4230 static void
4231 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4232 {
4233 if (debug_infrun)
4234 {
4235 std::string statstr = target_waitstatus_to_string (ws);
4236
4237 fprintf_unfiltered (gdb_stdlog,
4238 "infrun: saving status %s for %d.%ld.%ld\n",
4239 statstr.c_str (),
4240 tp->ptid.pid (),
4241 tp->ptid.lwp (),
4242 tp->ptid.tid ());
4243 }
4244
4245 /* Record for later. */
4246 tp->suspend.waitstatus = *ws;
4247 tp->suspend.waitstatus_pending_p = 1;
4248
4249 struct regcache *regcache = get_thread_regcache (tp);
4250 const address_space *aspace = regcache->aspace ();
4251
4252 if (ws->kind == TARGET_WAITKIND_STOPPED
4253 && ws->value.sig == GDB_SIGNAL_TRAP)
4254 {
4255 CORE_ADDR pc = regcache_read_pc (regcache);
4256
4257 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4258
4259 if (thread_stopped_by_watchpoint (tp->ptid))
4260 {
4261 tp->suspend.stop_reason
4262 = TARGET_STOPPED_BY_WATCHPOINT;
4263 }
4264 else if (target_supports_stopped_by_sw_breakpoint ()
4265 && thread_stopped_by_sw_breakpoint (tp->ptid))
4266 {
4267 tp->suspend.stop_reason
4268 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4269 }
4270 else if (target_supports_stopped_by_hw_breakpoint ()
4271 && thread_stopped_by_hw_breakpoint (tp->ptid))
4272 {
4273 tp->suspend.stop_reason
4274 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4275 }
4276 else if (!target_supports_stopped_by_hw_breakpoint ()
4277 && hardware_breakpoint_inserted_here_p (aspace,
4278 pc))
4279 {
4280 tp->suspend.stop_reason
4281 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4282 }
4283 else if (!target_supports_stopped_by_sw_breakpoint ()
4284 && software_breakpoint_inserted_here_p (aspace,
4285 pc))
4286 {
4287 tp->suspend.stop_reason
4288 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4289 }
4290 else if (!thread_has_single_step_breakpoints_set (tp)
4291 && currently_stepping (tp))
4292 {
4293 tp->suspend.stop_reason
4294 = TARGET_STOPPED_BY_SINGLE_STEP;
4295 }
4296 }
4297 }
4298
4299 /* See infrun.h. */
4300
4301 void
4302 stop_all_threads (void)
4303 {
4304 /* We may need multiple passes to discover all threads. */
4305 int pass;
4306 int iterations = 0;
4307
4308 gdb_assert (target_is_non_stop_p ());
4309
4310 if (debug_infrun)
4311 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4312
4313 scoped_restore_current_thread restore_thread;
4314
4315 target_thread_events (1);
4316 SCOPE_EXIT { target_thread_events (0); };
4317
4318 /* Request threads to stop, and then wait for the stops. Because
4319 threads we already know about can spawn more threads while we're
4320 trying to stop them, and we only learn about new threads when we
4321 update the thread list, do this in a loop, and keep iterating
4322 until two passes find no threads that need to be stopped. */
4323 for (pass = 0; pass < 2; pass++, iterations++)
4324 {
4325 if (debug_infrun)
4326 fprintf_unfiltered (gdb_stdlog,
4327 "infrun: stop_all_threads, pass=%d, "
4328 "iterations=%d\n", pass, iterations);
4329 while (1)
4330 {
4331 ptid_t event_ptid;
4332 struct target_waitstatus ws;
4333 int need_wait = 0;
4334
4335 update_thread_list ();
4336
4337 /* Go through all threads looking for threads that we need
4338 to tell the target to stop. */
4339 for (thread_info *t : all_non_exited_threads ())
4340 {
4341 if (t->executing)
4342 {
4343 /* If already stopping, don't request a stop again.
4344 We just haven't seen the notification yet. */
4345 if (!t->stop_requested)
4346 {
4347 if (debug_infrun)
4348 fprintf_unfiltered (gdb_stdlog,
4349 "infrun: %s executing, "
4350 "need stop\n",
4351 target_pid_to_str (t->ptid).c_str ());
4352 target_stop (t->ptid);
4353 t->stop_requested = 1;
4354 }
4355 else
4356 {
4357 if (debug_infrun)
4358 fprintf_unfiltered (gdb_stdlog,
4359 "infrun: %s executing, "
4360 "already stopping\n",
4361 target_pid_to_str (t->ptid).c_str ());
4362 }
4363
4364 if (t->stop_requested)
4365 need_wait = 1;
4366 }
4367 else
4368 {
4369 if (debug_infrun)
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: %s not executing\n",
4372 target_pid_to_str (t->ptid).c_str ());
4373
4374 /* The thread may be not executing, but still be
4375 resumed with a pending status to process. */
4376 t->resumed = 0;
4377 }
4378 }
4379
4380 if (!need_wait)
4381 break;
4382
4383 /* If we find new threads on the second iteration, restart
4384 over. We want to see two iterations in a row with all
4385 threads stopped. */
4386 if (pass > 0)
4387 pass = -1;
4388
4389 event_ptid = wait_one (&ws);
4390 if (debug_infrun)
4391 {
4392 fprintf_unfiltered (gdb_stdlog,
4393 "infrun: stop_all_threads %s %s\n",
4394 target_waitstatus_to_string (&ws).c_str (),
4395 target_pid_to_str (event_ptid).c_str ());
4396 }
4397
4398 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4399 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4400 || ws.kind == TARGET_WAITKIND_EXITED
4401 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4402 {
4403 /* All resumed threads exited
4404 or one thread/process exited/signalled. */
4405 }
4406 else
4407 {
4408 thread_info *t = find_thread_ptid (event_ptid);
4409 if (t == NULL)
4410 t = add_thread (event_ptid);
4411
4412 t->stop_requested = 0;
4413 t->executing = 0;
4414 t->resumed = 0;
4415 t->control.may_range_step = 0;
4416
4417 /* This may be the first time we see the inferior report
4418 a stop. */
4419 inferior *inf = find_inferior_ptid (event_ptid);
4420 if (inf->needs_setup)
4421 {
4422 switch_to_thread_no_regs (t);
4423 setup_inferior (0);
4424 }
4425
4426 if (ws.kind == TARGET_WAITKIND_STOPPED
4427 && ws.value.sig == GDB_SIGNAL_0)
4428 {
4429 /* We caught the event that we intended to catch, so
4430 there's no event pending. */
4431 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4432 t->suspend.waitstatus_pending_p = 0;
4433
4434 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4435 {
4436 /* Add it back to the step-over queue. */
4437 if (debug_infrun)
4438 {
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: displaced-step of %s "
4441 "canceled: adding back to the "
4442 "step-over queue\n",
4443 target_pid_to_str (t->ptid).c_str ());
4444 }
4445 t->control.trap_expected = 0;
4446 global_thread_step_over_chain_enqueue (t);
4447 }
4448 }
4449 else
4450 {
4451 enum gdb_signal sig;
4452 struct regcache *regcache;
4453
4454 if (debug_infrun)
4455 {
4456 std::string statstr = target_waitstatus_to_string (&ws);
4457
4458 fprintf_unfiltered (gdb_stdlog,
4459 "infrun: target_wait %s, saving "
4460 "status for %d.%ld.%ld\n",
4461 statstr.c_str (),
4462 t->ptid.pid (),
4463 t->ptid.lwp (),
4464 t->ptid.tid ());
4465 }
4466
4467 /* Record for later. */
4468 save_waitstatus (t, &ws);
4469
4470 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4471 ? ws.value.sig : GDB_SIGNAL_0);
4472
4473 if (displaced_step_fixup (t, sig) < 0)
4474 {
4475 /* Add it back to the step-over queue. */
4476 t->control.trap_expected = 0;
4477 global_thread_step_over_chain_enqueue (t);
4478 }
4479
4480 regcache = get_thread_regcache (t);
4481 t->suspend.stop_pc = regcache_read_pc (regcache);
4482
4483 if (debug_infrun)
4484 {
4485 fprintf_unfiltered (gdb_stdlog,
4486 "infrun: saved stop_pc=%s for %s "
4487 "(currently_stepping=%d)\n",
4488 paddress (target_gdbarch (),
4489 t->suspend.stop_pc),
4490 target_pid_to_str (t->ptid).c_str (),
4491 currently_stepping (t));
4492 }
4493 }
4494 }
4495 }
4496 }
4497
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4500 }
4501
4502 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4503
4504 static int
4505 handle_no_resumed (struct execution_control_state *ecs)
4506 {
4507 if (target_can_async_p ())
4508 {
4509 struct ui *ui;
4510 int any_sync = 0;
4511
4512 ALL_UIS (ui)
4513 {
4514 if (ui->prompt_state == PROMPT_BLOCKED)
4515 {
4516 any_sync = 1;
4517 break;
4518 }
4519 }
4520 if (!any_sync)
4521 {
4522 /* There were no unwaited-for children left in the target, but,
4523 we're not synchronously waiting for events either. Just
4524 ignore. */
4525
4526 if (debug_infrun)
4527 fprintf_unfiltered (gdb_stdlog,
4528 "infrun: TARGET_WAITKIND_NO_RESUMED "
4529 "(ignoring: bg)\n");
4530 prepare_to_wait (ecs);
4531 return 1;
4532 }
4533 }
4534
4535 /* Otherwise, if we were running a synchronous execution command, we
4536 may need to cancel it and give the user back the terminal.
4537
4538 In non-stop mode, the target can't tell whether we've already
4539 consumed previous stop events, so it can end up sending us a
4540 no-resumed event like so:
4541
4542 #0 - thread 1 is left stopped
4543
4544 #1 - thread 2 is resumed and hits breakpoint
4545 -> TARGET_WAITKIND_STOPPED
4546
4547 #2 - thread 3 is resumed and exits
4548 this is the last resumed thread, so
4549 -> TARGET_WAITKIND_NO_RESUMED
4550
4551 #3 - gdb processes stop for thread 2 and decides to re-resume
4552 it.
4553
4554 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4555 thread 2 is now resumed, so the event should be ignored.
4556
4557 IOW, if the stop for thread 2 doesn't end a foreground command,
4558 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4559 event. But it could be that the event meant that thread 2 itself
4560 (or whatever other thread was the last resumed thread) exited.
4561
4562 To address this we refresh the thread list and check whether we
4563 have resumed threads _now_. In the example above, this removes
4564 thread 3 from the thread list. If thread 2 was re-resumed, we
4565 ignore this event. If we find no thread resumed, then we cancel
4566 the synchronous command show "no unwaited-for " to the user. */
4567 update_thread_list ();
4568
4569 for (thread_info *thread : all_non_exited_threads ())
4570 {
4571 if (thread->executing
4572 || thread->suspend.waitstatus_pending_p)
4573 {
4574 /* There were no unwaited-for children left in the target at
4575 some point, but there are now. Just ignore. */
4576 if (debug_infrun)
4577 fprintf_unfiltered (gdb_stdlog,
4578 "infrun: TARGET_WAITKIND_NO_RESUMED "
4579 "(ignoring: found resumed)\n");
4580 prepare_to_wait (ecs);
4581 return 1;
4582 }
4583 }
4584
4585 /* Note however that we may find no resumed thread because the whole
4586 process exited meanwhile (thus updating the thread list results
4587 in an empty thread list). In this case we know we'll be getting
4588 a process exit event shortly. */
4589 for (inferior *inf : all_inferiors ())
4590 {
4591 if (inf->pid == 0)
4592 continue;
4593
4594 thread_info *thread = any_live_thread_of_inferior (inf);
4595 if (thread == NULL)
4596 {
4597 if (debug_infrun)
4598 fprintf_unfiltered (gdb_stdlog,
4599 "infrun: TARGET_WAITKIND_NO_RESUMED "
4600 "(expect process exit)\n");
4601 prepare_to_wait (ecs);
4602 return 1;
4603 }
4604 }
4605
4606 /* Go ahead and report the event. */
4607 return 0;
4608 }
4609
4610 /* Given an execution control state that has been freshly filled in by
4611 an event from the inferior, figure out what it means and take
4612 appropriate action.
4613
4614 The alternatives are:
4615
4616 1) stop_waiting and return; to really stop and return to the
4617 debugger.
4618
4619 2) keep_going and return; to wait for the next event (set
4620 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4621 once). */
4622
4623 static void
4624 handle_inferior_event (struct execution_control_state *ecs)
4625 {
4626 /* Make sure that all temporary struct value objects that were
4627 created during the handling of the event get deleted at the
4628 end. */
4629 scoped_value_mark free_values;
4630
4631 enum stop_kind stop_soon;
4632
4633 if (debug_infrun)
4634 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4635 target_waitstatus_to_string (&ecs->ws).c_str ());
4636
4637 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4638 {
4639 /* We had an event in the inferior, but we are not interested in
4640 handling it at this level. The lower layers have already
4641 done what needs to be done, if anything.
4642
4643 One of the possible circumstances for this is when the
4644 inferior produces output for the console. The inferior has
4645 not stopped, and we are ignoring the event. Another possible
4646 circumstance is any event which the lower level knows will be
4647 reported multiple times without an intervening resume. */
4648 prepare_to_wait (ecs);
4649 return;
4650 }
4651
4652 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4653 {
4654 prepare_to_wait (ecs);
4655 return;
4656 }
4657
4658 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4659 && handle_no_resumed (ecs))
4660 return;
4661
4662 /* Cache the last pid/waitstatus. */
4663 set_last_target_status (ecs->ptid, ecs->ws);
4664
4665 /* Always clear state belonging to the previous time we stopped. */
4666 stop_stack_dummy = STOP_NONE;
4667
4668 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4669 {
4670 /* No unwaited-for children left. IOW, all resumed children
4671 have exited. */
4672 stop_print_frame = 0;
4673 stop_waiting (ecs);
4674 return;
4675 }
4676
4677 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4678 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4679 {
4680 ecs->event_thread = find_thread_ptid (ecs->ptid);
4681 /* If it's a new thread, add it to the thread database. */
4682 if (ecs->event_thread == NULL)
4683 ecs->event_thread = add_thread (ecs->ptid);
4684
4685 /* Disable range stepping. If the next step request could use a
4686 range, this will be end up re-enabled then. */
4687 ecs->event_thread->control.may_range_step = 0;
4688 }
4689
4690 /* Dependent on valid ECS->EVENT_THREAD. */
4691 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4692
4693 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4694 reinit_frame_cache ();
4695
4696 breakpoint_retire_moribund ();
4697
4698 /* First, distinguish signals caused by the debugger from signals
4699 that have to do with the program's own actions. Note that
4700 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4701 on the operating system version. Here we detect when a SIGILL or
4702 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4703 something similar for SIGSEGV, since a SIGSEGV will be generated
4704 when we're trying to execute a breakpoint instruction on a
4705 non-executable stack. This happens for call dummy breakpoints
4706 for architectures like SPARC that place call dummies on the
4707 stack. */
4708 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4709 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4710 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4711 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4712 {
4713 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4714
4715 if (breakpoint_inserted_here_p (regcache->aspace (),
4716 regcache_read_pc (regcache)))
4717 {
4718 if (debug_infrun)
4719 fprintf_unfiltered (gdb_stdlog,
4720 "infrun: Treating signal as SIGTRAP\n");
4721 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4722 }
4723 }
4724
4725 /* Mark the non-executing threads accordingly. In all-stop, all
4726 threads of all processes are stopped when we get any event
4727 reported. In non-stop mode, only the event thread stops. */
4728 {
4729 ptid_t mark_ptid;
4730
4731 if (!target_is_non_stop_p ())
4732 mark_ptid = minus_one_ptid;
4733 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4734 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4735 {
4736 /* If we're handling a process exit in non-stop mode, even
4737 though threads haven't been deleted yet, one would think
4738 that there is nothing to do, as threads of the dead process
4739 will be soon deleted, and threads of any other process were
4740 left running. However, on some targets, threads survive a
4741 process exit event. E.g., for the "checkpoint" command,
4742 when the current checkpoint/fork exits, linux-fork.c
4743 automatically switches to another fork from within
4744 target_mourn_inferior, by associating the same
4745 inferior/thread to another fork. We haven't mourned yet at
4746 this point, but we must mark any threads left in the
4747 process as not-executing so that finish_thread_state marks
4748 them stopped (in the user's perspective) if/when we present
4749 the stop to the user. */
4750 mark_ptid = ptid_t (ecs->ptid.pid ());
4751 }
4752 else
4753 mark_ptid = ecs->ptid;
4754
4755 set_executing (mark_ptid, 0);
4756
4757 /* Likewise the resumed flag. */
4758 set_resumed (mark_ptid, 0);
4759 }
4760
4761 switch (ecs->ws.kind)
4762 {
4763 case TARGET_WAITKIND_LOADED:
4764 context_switch (ecs);
4765 /* Ignore gracefully during startup of the inferior, as it might
4766 be the shell which has just loaded some objects, otherwise
4767 add the symbols for the newly loaded objects. Also ignore at
4768 the beginning of an attach or remote session; we will query
4769 the full list of libraries once the connection is
4770 established. */
4771
4772 stop_soon = get_inferior_stop_soon (ecs);
4773 if (stop_soon == NO_STOP_QUIETLY)
4774 {
4775 struct regcache *regcache;
4776
4777 regcache = get_thread_regcache (ecs->event_thread);
4778
4779 handle_solib_event ();
4780
4781 ecs->event_thread->control.stop_bpstat
4782 = bpstat_stop_status (regcache->aspace (),
4783 ecs->event_thread->suspend.stop_pc,
4784 ecs->event_thread, &ecs->ws);
4785
4786 if (handle_stop_requested (ecs))
4787 return;
4788
4789 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4790 {
4791 /* A catchpoint triggered. */
4792 process_event_stop_test (ecs);
4793 return;
4794 }
4795
4796 /* If requested, stop when the dynamic linker notifies
4797 gdb of events. This allows the user to get control
4798 and place breakpoints in initializer routines for
4799 dynamically loaded objects (among other things). */
4800 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4801 if (stop_on_solib_events)
4802 {
4803 /* Make sure we print "Stopped due to solib-event" in
4804 normal_stop. */
4805 stop_print_frame = 1;
4806
4807 stop_waiting (ecs);
4808 return;
4809 }
4810 }
4811
4812 /* If we are skipping through a shell, or through shared library
4813 loading that we aren't interested in, resume the program. If
4814 we're running the program normally, also resume. */
4815 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4816 {
4817 /* Loading of shared libraries might have changed breakpoint
4818 addresses. Make sure new breakpoints are inserted. */
4819 if (stop_soon == NO_STOP_QUIETLY)
4820 insert_breakpoints ();
4821 resume (GDB_SIGNAL_0);
4822 prepare_to_wait (ecs);
4823 return;
4824 }
4825
4826 /* But stop if we're attaching or setting up a remote
4827 connection. */
4828 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4829 || stop_soon == STOP_QUIETLY_REMOTE)
4830 {
4831 if (debug_infrun)
4832 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4833 stop_waiting (ecs);
4834 return;
4835 }
4836
4837 internal_error (__FILE__, __LINE__,
4838 _("unhandled stop_soon: %d"), (int) stop_soon);
4839
4840 case TARGET_WAITKIND_SPURIOUS:
4841 if (handle_stop_requested (ecs))
4842 return;
4843 context_switch (ecs);
4844 resume (GDB_SIGNAL_0);
4845 prepare_to_wait (ecs);
4846 return;
4847
4848 case TARGET_WAITKIND_THREAD_CREATED:
4849 if (handle_stop_requested (ecs))
4850 return;
4851 context_switch (ecs);
4852 if (!switch_back_to_stepped_thread (ecs))
4853 keep_going (ecs);
4854 return;
4855
4856 case TARGET_WAITKIND_EXITED:
4857 case TARGET_WAITKIND_SIGNALLED:
4858 inferior_ptid = ecs->ptid;
4859 set_current_inferior (find_inferior_ptid (ecs->ptid));
4860 set_current_program_space (current_inferior ()->pspace);
4861 handle_vfork_child_exec_or_exit (0);
4862 target_terminal::ours (); /* Must do this before mourn anyway. */
4863
4864 /* Clearing any previous state of convenience variables. */
4865 clear_exit_convenience_vars ();
4866
4867 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4868 {
4869 /* Record the exit code in the convenience variable $_exitcode, so
4870 that the user can inspect this again later. */
4871 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4872 (LONGEST) ecs->ws.value.integer);
4873
4874 /* Also record this in the inferior itself. */
4875 current_inferior ()->has_exit_code = 1;
4876 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4877
4878 /* Support the --return-child-result option. */
4879 return_child_result_value = ecs->ws.value.integer;
4880
4881 gdb::observers::exited.notify (ecs->ws.value.integer);
4882 }
4883 else
4884 {
4885 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4886
4887 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4888 {
4889 /* Set the value of the internal variable $_exitsignal,
4890 which holds the signal uncaught by the inferior. */
4891 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4892 gdbarch_gdb_signal_to_target (gdbarch,
4893 ecs->ws.value.sig));
4894 }
4895 else
4896 {
4897 /* We don't have access to the target's method used for
4898 converting between signal numbers (GDB's internal
4899 representation <-> target's representation).
4900 Therefore, we cannot do a good job at displaying this
4901 information to the user. It's better to just warn
4902 her about it (if infrun debugging is enabled), and
4903 give up. */
4904 if (debug_infrun)
4905 fprintf_filtered (gdb_stdlog, _("\
4906 Cannot fill $_exitsignal with the correct signal number.\n"));
4907 }
4908
4909 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4910 }
4911
4912 gdb_flush (gdb_stdout);
4913 target_mourn_inferior (inferior_ptid);
4914 stop_print_frame = 0;
4915 stop_waiting (ecs);
4916 return;
4917
4918 /* The following are the only cases in which we keep going;
4919 the above cases end in a continue or goto. */
4920 case TARGET_WAITKIND_FORKED:
4921 case TARGET_WAITKIND_VFORKED:
4922 /* Check whether the inferior is displaced stepping. */
4923 {
4924 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4925 struct gdbarch *gdbarch = regcache->arch ();
4926
4927 /* If checking displaced stepping is supported, and thread
4928 ecs->ptid is displaced stepping. */
4929 if (displaced_step_in_progress_thread (ecs->event_thread))
4930 {
4931 struct inferior *parent_inf
4932 = find_inferior_ptid (ecs->ptid);
4933 struct regcache *child_regcache;
4934 CORE_ADDR parent_pc;
4935
4936 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4937 {
4938 struct displaced_step_inferior_state *displaced
4939 = get_displaced_stepping_state (parent_inf);
4940
4941 /* Restore scratch pad for child process. */
4942 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4943 }
4944
4945 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4946 indicating that the displaced stepping of syscall instruction
4947 has been done. Perform cleanup for parent process here. Note
4948 that this operation also cleans up the child process for vfork,
4949 because their pages are shared. */
4950 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4951 /* Start a new step-over in another thread if there's one
4952 that needs it. */
4953 start_step_over ();
4954
4955 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4956 the child's PC is also within the scratchpad. Set the child's PC
4957 to the parent's PC value, which has already been fixed up.
4958 FIXME: we use the parent's aspace here, although we're touching
4959 the child, because the child hasn't been added to the inferior
4960 list yet at this point. */
4961
4962 child_regcache
4963 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4964 gdbarch,
4965 parent_inf->aspace);
4966 /* Read PC value of parent process. */
4967 parent_pc = regcache_read_pc (regcache);
4968
4969 if (debug_displaced)
4970 fprintf_unfiltered (gdb_stdlog,
4971 "displaced: write child pc from %s to %s\n",
4972 paddress (gdbarch,
4973 regcache_read_pc (child_regcache)),
4974 paddress (gdbarch, parent_pc));
4975
4976 regcache_write_pc (child_regcache, parent_pc);
4977 }
4978 }
4979
4980 context_switch (ecs);
4981
4982 /* Immediately detach breakpoints from the child before there's
4983 any chance of letting the user delete breakpoints from the
4984 breakpoint lists. If we don't do this early, it's easy to
4985 leave left over traps in the child, vis: "break foo; catch
4986 fork; c; <fork>; del; c; <child calls foo>". We only follow
4987 the fork on the last `continue', and by that time the
4988 breakpoint at "foo" is long gone from the breakpoint table.
4989 If we vforked, then we don't need to unpatch here, since both
4990 parent and child are sharing the same memory pages; we'll
4991 need to unpatch at follow/detach time instead to be certain
4992 that new breakpoints added between catchpoint hit time and
4993 vfork follow are detached. */
4994 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4995 {
4996 /* This won't actually modify the breakpoint list, but will
4997 physically remove the breakpoints from the child. */
4998 detach_breakpoints (ecs->ws.value.related_pid);
4999 }
5000
5001 delete_just_stopped_threads_single_step_breakpoints ();
5002
5003 /* In case the event is caught by a catchpoint, remember that
5004 the event is to be followed at the next resume of the thread,
5005 and not immediately. */
5006 ecs->event_thread->pending_follow = ecs->ws;
5007
5008 ecs->event_thread->suspend.stop_pc
5009 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5010
5011 ecs->event_thread->control.stop_bpstat
5012 = bpstat_stop_status (get_current_regcache ()->aspace (),
5013 ecs->event_thread->suspend.stop_pc,
5014 ecs->event_thread, &ecs->ws);
5015
5016 if (handle_stop_requested (ecs))
5017 return;
5018
5019 /* If no catchpoint triggered for this, then keep going. Note
5020 that we're interested in knowing the bpstat actually causes a
5021 stop, not just if it may explain the signal. Software
5022 watchpoints, for example, always appear in the bpstat. */
5023 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5024 {
5025 int should_resume;
5026 int follow_child
5027 = (follow_fork_mode_string == follow_fork_mode_child);
5028
5029 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5030
5031 should_resume = follow_fork ();
5032
5033 thread_info *parent = ecs->event_thread;
5034 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5035
5036 /* At this point, the parent is marked running, and the
5037 child is marked stopped. */
5038
5039 /* If not resuming the parent, mark it stopped. */
5040 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5041 parent->set_running (false);
5042
5043 /* If resuming the child, mark it running. */
5044 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5045 child->set_running (true);
5046
5047 /* In non-stop mode, also resume the other branch. */
5048 if (!detach_fork && (non_stop
5049 || (sched_multi && target_is_non_stop_p ())))
5050 {
5051 if (follow_child)
5052 switch_to_thread (parent);
5053 else
5054 switch_to_thread (child);
5055
5056 ecs->event_thread = inferior_thread ();
5057 ecs->ptid = inferior_ptid;
5058 keep_going (ecs);
5059 }
5060
5061 if (follow_child)
5062 switch_to_thread (child);
5063 else
5064 switch_to_thread (parent);
5065
5066 ecs->event_thread = inferior_thread ();
5067 ecs->ptid = inferior_ptid;
5068
5069 if (should_resume)
5070 keep_going (ecs);
5071 else
5072 stop_waiting (ecs);
5073 return;
5074 }
5075 process_event_stop_test (ecs);
5076 return;
5077
5078 case TARGET_WAITKIND_VFORK_DONE:
5079 /* Done with the shared memory region. Re-insert breakpoints in
5080 the parent, and keep going. */
5081
5082 context_switch (ecs);
5083
5084 current_inferior ()->waiting_for_vfork_done = 0;
5085 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5086
5087 if (handle_stop_requested (ecs))
5088 return;
5089
5090 /* This also takes care of reinserting breakpoints in the
5091 previously locked inferior. */
5092 keep_going (ecs);
5093 return;
5094
5095 case TARGET_WAITKIND_EXECD:
5096
5097 /* Note we can't read registers yet (the stop_pc), because we
5098 don't yet know the inferior's post-exec architecture.
5099 'stop_pc' is explicitly read below instead. */
5100 switch_to_thread_no_regs (ecs->event_thread);
5101
5102 /* Do whatever is necessary to the parent branch of the vfork. */
5103 handle_vfork_child_exec_or_exit (1);
5104
5105 /* This causes the eventpoints and symbol table to be reset.
5106 Must do this now, before trying to determine whether to
5107 stop. */
5108 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5109
5110 /* In follow_exec we may have deleted the original thread and
5111 created a new one. Make sure that the event thread is the
5112 execd thread for that case (this is a nop otherwise). */
5113 ecs->event_thread = inferior_thread ();
5114
5115 ecs->event_thread->suspend.stop_pc
5116 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5117
5118 ecs->event_thread->control.stop_bpstat
5119 = bpstat_stop_status (get_current_regcache ()->aspace (),
5120 ecs->event_thread->suspend.stop_pc,
5121 ecs->event_thread, &ecs->ws);
5122
5123 /* Note that this may be referenced from inside
5124 bpstat_stop_status above, through inferior_has_execd. */
5125 xfree (ecs->ws.value.execd_pathname);
5126 ecs->ws.value.execd_pathname = NULL;
5127
5128 if (handle_stop_requested (ecs))
5129 return;
5130
5131 /* If no catchpoint triggered for this, then keep going. */
5132 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5133 {
5134 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5135 keep_going (ecs);
5136 return;
5137 }
5138 process_event_stop_test (ecs);
5139 return;
5140
5141 /* Be careful not to try to gather much state about a thread
5142 that's in a syscall. It's frequently a losing proposition. */
5143 case TARGET_WAITKIND_SYSCALL_ENTRY:
5144 /* Getting the current syscall number. */
5145 if (handle_syscall_event (ecs) == 0)
5146 process_event_stop_test (ecs);
5147 return;
5148
5149 /* Before examining the threads further, step this thread to
5150 get it entirely out of the syscall. (We get notice of the
5151 event when the thread is just on the verge of exiting a
5152 syscall. Stepping one instruction seems to get it back
5153 into user code.) */
5154 case TARGET_WAITKIND_SYSCALL_RETURN:
5155 if (handle_syscall_event (ecs) == 0)
5156 process_event_stop_test (ecs);
5157 return;
5158
5159 case TARGET_WAITKIND_STOPPED:
5160 handle_signal_stop (ecs);
5161 return;
5162
5163 case TARGET_WAITKIND_NO_HISTORY:
5164 /* Reverse execution: target ran out of history info. */
5165
5166 /* Switch to the stopped thread. */
5167 context_switch (ecs);
5168 if (debug_infrun)
5169 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5170
5171 delete_just_stopped_threads_single_step_breakpoints ();
5172 ecs->event_thread->suspend.stop_pc
5173 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5174
5175 if (handle_stop_requested (ecs))
5176 return;
5177
5178 gdb::observers::no_history.notify ();
5179 stop_waiting (ecs);
5180 return;
5181 }
5182 }
5183
5184 /* Restart threads back to what they were trying to do back when we
5185 paused them for an in-line step-over. The EVENT_THREAD thread is
5186 ignored. */
5187
5188 static void
5189 restart_threads (struct thread_info *event_thread)
5190 {
5191 /* In case the instruction just stepped spawned a new thread. */
5192 update_thread_list ();
5193
5194 for (thread_info *tp : all_non_exited_threads ())
5195 {
5196 if (tp == event_thread)
5197 {
5198 if (debug_infrun)
5199 fprintf_unfiltered (gdb_stdlog,
5200 "infrun: restart threads: "
5201 "[%s] is event thread\n",
5202 target_pid_to_str (tp->ptid).c_str ());
5203 continue;
5204 }
5205
5206 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5207 {
5208 if (debug_infrun)
5209 fprintf_unfiltered (gdb_stdlog,
5210 "infrun: restart threads: "
5211 "[%s] not meant to be running\n",
5212 target_pid_to_str (tp->ptid).c_str ());
5213 continue;
5214 }
5215
5216 if (tp->resumed)
5217 {
5218 if (debug_infrun)
5219 fprintf_unfiltered (gdb_stdlog,
5220 "infrun: restart threads: [%s] resumed\n",
5221 target_pid_to_str (tp->ptid).c_str ());
5222 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5223 continue;
5224 }
5225
5226 if (thread_is_in_step_over_chain (tp))
5227 {
5228 if (debug_infrun)
5229 fprintf_unfiltered (gdb_stdlog,
5230 "infrun: restart threads: "
5231 "[%s] needs step-over\n",
5232 target_pid_to_str (tp->ptid).c_str ());
5233 gdb_assert (!tp->resumed);
5234 continue;
5235 }
5236
5237
5238 if (tp->suspend.waitstatus_pending_p)
5239 {
5240 if (debug_infrun)
5241 fprintf_unfiltered (gdb_stdlog,
5242 "infrun: restart threads: "
5243 "[%s] has pending status\n",
5244 target_pid_to_str (tp->ptid).c_str ());
5245 tp->resumed = 1;
5246 continue;
5247 }
5248
5249 gdb_assert (!tp->stop_requested);
5250
5251 /* If some thread needs to start a step-over at this point, it
5252 should still be in the step-over queue, and thus skipped
5253 above. */
5254 if (thread_still_needs_step_over (tp))
5255 {
5256 internal_error (__FILE__, __LINE__,
5257 "thread [%s] needs a step-over, but not in "
5258 "step-over queue\n",
5259 target_pid_to_str (tp->ptid).c_str ());
5260 }
5261
5262 if (currently_stepping (tp))
5263 {
5264 if (debug_infrun)
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: restart threads: [%s] was stepping\n",
5267 target_pid_to_str (tp->ptid).c_str ());
5268 keep_going_stepped_thread (tp);
5269 }
5270 else
5271 {
5272 struct execution_control_state ecss;
5273 struct execution_control_state *ecs = &ecss;
5274
5275 if (debug_infrun)
5276 fprintf_unfiltered (gdb_stdlog,
5277 "infrun: restart threads: [%s] continuing\n",
5278 target_pid_to_str (tp->ptid).c_str ());
5279 reset_ecs (ecs, tp);
5280 switch_to_thread (tp);
5281 keep_going_pass_signal (ecs);
5282 }
5283 }
5284 }
5285
5286 /* Callback for iterate_over_threads. Find a resumed thread that has
5287 a pending waitstatus. */
5288
5289 static int
5290 resumed_thread_with_pending_status (struct thread_info *tp,
5291 void *arg)
5292 {
5293 return (tp->resumed
5294 && tp->suspend.waitstatus_pending_p);
5295 }
5296
5297 /* Called when we get an event that may finish an in-line or
5298 out-of-line (displaced stepping) step-over started previously.
5299 Return true if the event is processed and we should go back to the
5300 event loop; false if the caller should continue processing the
5301 event. */
5302
5303 static int
5304 finish_step_over (struct execution_control_state *ecs)
5305 {
5306 int had_step_over_info;
5307
5308 displaced_step_fixup (ecs->event_thread,
5309 ecs->event_thread->suspend.stop_signal);
5310
5311 had_step_over_info = step_over_info_valid_p ();
5312
5313 if (had_step_over_info)
5314 {
5315 /* If we're stepping over a breakpoint with all threads locked,
5316 then only the thread that was stepped should be reporting
5317 back an event. */
5318 gdb_assert (ecs->event_thread->control.trap_expected);
5319
5320 clear_step_over_info ();
5321 }
5322
5323 if (!target_is_non_stop_p ())
5324 return 0;
5325
5326 /* Start a new step-over in another thread if there's one that
5327 needs it. */
5328 start_step_over ();
5329
5330 /* If we were stepping over a breakpoint before, and haven't started
5331 a new in-line step-over sequence, then restart all other threads
5332 (except the event thread). We can't do this in all-stop, as then
5333 e.g., we wouldn't be able to issue any other remote packet until
5334 these other threads stop. */
5335 if (had_step_over_info && !step_over_info_valid_p ())
5336 {
5337 struct thread_info *pending;
5338
5339 /* If we only have threads with pending statuses, the restart
5340 below won't restart any thread and so nothing re-inserts the
5341 breakpoint we just stepped over. But we need it inserted
5342 when we later process the pending events, otherwise if
5343 another thread has a pending event for this breakpoint too,
5344 we'd discard its event (because the breakpoint that
5345 originally caused the event was no longer inserted). */
5346 context_switch (ecs);
5347 insert_breakpoints ();
5348
5349 {
5350 scoped_restore save_defer_tc
5351 = make_scoped_defer_target_commit_resume ();
5352 restart_threads (ecs->event_thread);
5353 }
5354 target_commit_resume ();
5355
5356 /* If we have events pending, go through handle_inferior_event
5357 again, picking up a pending event at random. This avoids
5358 thread starvation. */
5359
5360 /* But not if we just stepped over a watchpoint in order to let
5361 the instruction execute so we can evaluate its expression.
5362 The set of watchpoints that triggered is recorded in the
5363 breakpoint objects themselves (see bp->watchpoint_triggered).
5364 If we processed another event first, that other event could
5365 clobber this info. */
5366 if (ecs->event_thread->stepping_over_watchpoint)
5367 return 0;
5368
5369 pending = iterate_over_threads (resumed_thread_with_pending_status,
5370 NULL);
5371 if (pending != NULL)
5372 {
5373 struct thread_info *tp = ecs->event_thread;
5374 struct regcache *regcache;
5375
5376 if (debug_infrun)
5377 {
5378 fprintf_unfiltered (gdb_stdlog,
5379 "infrun: found resumed threads with "
5380 "pending events, saving status\n");
5381 }
5382
5383 gdb_assert (pending != tp);
5384
5385 /* Record the event thread's event for later. */
5386 save_waitstatus (tp, &ecs->ws);
5387 /* This was cleared early, by handle_inferior_event. Set it
5388 so this pending event is considered by
5389 do_target_wait. */
5390 tp->resumed = 1;
5391
5392 gdb_assert (!tp->executing);
5393
5394 regcache = get_thread_regcache (tp);
5395 tp->suspend.stop_pc = regcache_read_pc (regcache);
5396
5397 if (debug_infrun)
5398 {
5399 fprintf_unfiltered (gdb_stdlog,
5400 "infrun: saved stop_pc=%s for %s "
5401 "(currently_stepping=%d)\n",
5402 paddress (target_gdbarch (),
5403 tp->suspend.stop_pc),
5404 target_pid_to_str (tp->ptid).c_str (),
5405 currently_stepping (tp));
5406 }
5407
5408 /* This in-line step-over finished; clear this so we won't
5409 start a new one. This is what handle_signal_stop would
5410 do, if we returned false. */
5411 tp->stepping_over_breakpoint = 0;
5412
5413 /* Wake up the event loop again. */
5414 mark_async_event_handler (infrun_async_inferior_event_token);
5415
5416 prepare_to_wait (ecs);
5417 return 1;
5418 }
5419 }
5420
5421 return 0;
5422 }
5423
5424 /* Come here when the program has stopped with a signal. */
5425
5426 static void
5427 handle_signal_stop (struct execution_control_state *ecs)
5428 {
5429 struct frame_info *frame;
5430 struct gdbarch *gdbarch;
5431 int stopped_by_watchpoint;
5432 enum stop_kind stop_soon;
5433 int random_signal;
5434
5435 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5436
5437 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5438
5439 /* Do we need to clean up the state of a thread that has
5440 completed a displaced single-step? (Doing so usually affects
5441 the PC, so do it here, before we set stop_pc.) */
5442 if (finish_step_over (ecs))
5443 return;
5444
5445 /* If we either finished a single-step or hit a breakpoint, but
5446 the user wanted this thread to be stopped, pretend we got a
5447 SIG0 (generic unsignaled stop). */
5448 if (ecs->event_thread->stop_requested
5449 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5450 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5451
5452 ecs->event_thread->suspend.stop_pc
5453 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5454
5455 if (debug_infrun)
5456 {
5457 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5458 struct gdbarch *reg_gdbarch = regcache->arch ();
5459 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5460
5461 inferior_ptid = ecs->ptid;
5462
5463 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5464 paddress (reg_gdbarch,
5465 ecs->event_thread->suspend.stop_pc));
5466 if (target_stopped_by_watchpoint ())
5467 {
5468 CORE_ADDR addr;
5469
5470 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5471
5472 if (target_stopped_data_address (current_top_target (), &addr))
5473 fprintf_unfiltered (gdb_stdlog,
5474 "infrun: stopped data address = %s\n",
5475 paddress (reg_gdbarch, addr));
5476 else
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: (no data address available)\n");
5479 }
5480 }
5481
5482 /* This is originated from start_remote(), start_inferior() and
5483 shared libraries hook functions. */
5484 stop_soon = get_inferior_stop_soon (ecs);
5485 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5486 {
5487 context_switch (ecs);
5488 if (debug_infrun)
5489 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5490 stop_print_frame = 1;
5491 stop_waiting (ecs);
5492 return;
5493 }
5494
5495 /* This originates from attach_command(). We need to overwrite
5496 the stop_signal here, because some kernels don't ignore a
5497 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5498 See more comments in inferior.h. On the other hand, if we
5499 get a non-SIGSTOP, report it to the user - assume the backend
5500 will handle the SIGSTOP if it should show up later.
5501
5502 Also consider that the attach is complete when we see a
5503 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5504 target extended-remote report it instead of a SIGSTOP
5505 (e.g. gdbserver). We already rely on SIGTRAP being our
5506 signal, so this is no exception.
5507
5508 Also consider that the attach is complete when we see a
5509 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5510 the target to stop all threads of the inferior, in case the
5511 low level attach operation doesn't stop them implicitly. If
5512 they weren't stopped implicitly, then the stub will report a
5513 GDB_SIGNAL_0, meaning: stopped for no particular reason
5514 other than GDB's request. */
5515 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5516 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5517 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5518 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5519 {
5520 stop_print_frame = 1;
5521 stop_waiting (ecs);
5522 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5523 return;
5524 }
5525
5526 /* See if something interesting happened to the non-current thread. If
5527 so, then switch to that thread. */
5528 if (ecs->ptid != inferior_ptid)
5529 {
5530 if (debug_infrun)
5531 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5532
5533 context_switch (ecs);
5534
5535 if (deprecated_context_hook)
5536 deprecated_context_hook (ecs->event_thread->global_num);
5537 }
5538
5539 /* At this point, get hold of the now-current thread's frame. */
5540 frame = get_current_frame ();
5541 gdbarch = get_frame_arch (frame);
5542
5543 /* Pull the single step breakpoints out of the target. */
5544 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5545 {
5546 struct regcache *regcache;
5547 CORE_ADDR pc;
5548
5549 regcache = get_thread_regcache (ecs->event_thread);
5550 const address_space *aspace = regcache->aspace ();
5551
5552 pc = regcache_read_pc (regcache);
5553
5554 /* However, before doing so, if this single-step breakpoint was
5555 actually for another thread, set this thread up for moving
5556 past it. */
5557 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5558 aspace, pc))
5559 {
5560 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5561 {
5562 if (debug_infrun)
5563 {
5564 fprintf_unfiltered (gdb_stdlog,
5565 "infrun: [%s] hit another thread's "
5566 "single-step breakpoint\n",
5567 target_pid_to_str (ecs->ptid).c_str ());
5568 }
5569 ecs->hit_singlestep_breakpoint = 1;
5570 }
5571 }
5572 else
5573 {
5574 if (debug_infrun)
5575 {
5576 fprintf_unfiltered (gdb_stdlog,
5577 "infrun: [%s] hit its "
5578 "single-step breakpoint\n",
5579 target_pid_to_str (ecs->ptid).c_str ());
5580 }
5581 }
5582 }
5583 delete_just_stopped_threads_single_step_breakpoints ();
5584
5585 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5586 && ecs->event_thread->control.trap_expected
5587 && ecs->event_thread->stepping_over_watchpoint)
5588 stopped_by_watchpoint = 0;
5589 else
5590 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5591
5592 /* If necessary, step over this watchpoint. We'll be back to display
5593 it in a moment. */
5594 if (stopped_by_watchpoint
5595 && (target_have_steppable_watchpoint
5596 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5597 {
5598 /* At this point, we are stopped at an instruction which has
5599 attempted to write to a piece of memory under control of
5600 a watchpoint. The instruction hasn't actually executed
5601 yet. If we were to evaluate the watchpoint expression
5602 now, we would get the old value, and therefore no change
5603 would seem to have occurred.
5604
5605 In order to make watchpoints work `right', we really need
5606 to complete the memory write, and then evaluate the
5607 watchpoint expression. We do this by single-stepping the
5608 target.
5609
5610 It may not be necessary to disable the watchpoint to step over
5611 it. For example, the PA can (with some kernel cooperation)
5612 single step over a watchpoint without disabling the watchpoint.
5613
5614 It is far more common to need to disable a watchpoint to step
5615 the inferior over it. If we have non-steppable watchpoints,
5616 we must disable the current watchpoint; it's simplest to
5617 disable all watchpoints.
5618
5619 Any breakpoint at PC must also be stepped over -- if there's
5620 one, it will have already triggered before the watchpoint
5621 triggered, and we either already reported it to the user, or
5622 it didn't cause a stop and we called keep_going. In either
5623 case, if there was a breakpoint at PC, we must be trying to
5624 step past it. */
5625 ecs->event_thread->stepping_over_watchpoint = 1;
5626 keep_going (ecs);
5627 return;
5628 }
5629
5630 ecs->event_thread->stepping_over_breakpoint = 0;
5631 ecs->event_thread->stepping_over_watchpoint = 0;
5632 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5633 ecs->event_thread->control.stop_step = 0;
5634 stop_print_frame = 1;
5635 stopped_by_random_signal = 0;
5636 bpstat stop_chain = NULL;
5637
5638 /* Hide inlined functions starting here, unless we just performed stepi or
5639 nexti. After stepi and nexti, always show the innermost frame (not any
5640 inline function call sites). */
5641 if (ecs->event_thread->control.step_range_end != 1)
5642 {
5643 const address_space *aspace
5644 = get_thread_regcache (ecs->event_thread)->aspace ();
5645
5646 /* skip_inline_frames is expensive, so we avoid it if we can
5647 determine that the address is one where functions cannot have
5648 been inlined. This improves performance with inferiors that
5649 load a lot of shared libraries, because the solib event
5650 breakpoint is defined as the address of a function (i.e. not
5651 inline). Note that we have to check the previous PC as well
5652 as the current one to catch cases when we have just
5653 single-stepped off a breakpoint prior to reinstating it.
5654 Note that we're assuming that the code we single-step to is
5655 not inline, but that's not definitive: there's nothing
5656 preventing the event breakpoint function from containing
5657 inlined code, and the single-step ending up there. If the
5658 user had set a breakpoint on that inlined code, the missing
5659 skip_inline_frames call would break things. Fortunately
5660 that's an extremely unlikely scenario. */
5661 if (!pc_at_non_inline_function (aspace,
5662 ecs->event_thread->suspend.stop_pc,
5663 &ecs->ws)
5664 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5665 && ecs->event_thread->control.trap_expected
5666 && pc_at_non_inline_function (aspace,
5667 ecs->event_thread->prev_pc,
5668 &ecs->ws)))
5669 {
5670 stop_chain = build_bpstat_chain (aspace,
5671 ecs->event_thread->suspend.stop_pc,
5672 &ecs->ws);
5673 skip_inline_frames (ecs->event_thread, stop_chain);
5674
5675 /* Re-fetch current thread's frame in case that invalidated
5676 the frame cache. */
5677 frame = get_current_frame ();
5678 gdbarch = get_frame_arch (frame);
5679 }
5680 }
5681
5682 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5683 && ecs->event_thread->control.trap_expected
5684 && gdbarch_single_step_through_delay_p (gdbarch)
5685 && currently_stepping (ecs->event_thread))
5686 {
5687 /* We're trying to step off a breakpoint. Turns out that we're
5688 also on an instruction that needs to be stepped multiple
5689 times before it's been fully executing. E.g., architectures
5690 with a delay slot. It needs to be stepped twice, once for
5691 the instruction and once for the delay slot. */
5692 int step_through_delay
5693 = gdbarch_single_step_through_delay (gdbarch, frame);
5694
5695 if (debug_infrun && step_through_delay)
5696 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5697 if (ecs->event_thread->control.step_range_end == 0
5698 && step_through_delay)
5699 {
5700 /* The user issued a continue when stopped at a breakpoint.
5701 Set up for another trap and get out of here. */
5702 ecs->event_thread->stepping_over_breakpoint = 1;
5703 keep_going (ecs);
5704 return;
5705 }
5706 else if (step_through_delay)
5707 {
5708 /* The user issued a step when stopped at a breakpoint.
5709 Maybe we should stop, maybe we should not - the delay
5710 slot *might* correspond to a line of source. In any
5711 case, don't decide that here, just set
5712 ecs->stepping_over_breakpoint, making sure we
5713 single-step again before breakpoints are re-inserted. */
5714 ecs->event_thread->stepping_over_breakpoint = 1;
5715 }
5716 }
5717
5718 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5719 handles this event. */
5720 ecs->event_thread->control.stop_bpstat
5721 = bpstat_stop_status (get_current_regcache ()->aspace (),
5722 ecs->event_thread->suspend.stop_pc,
5723 ecs->event_thread, &ecs->ws, stop_chain);
5724
5725 /* Following in case break condition called a
5726 function. */
5727 stop_print_frame = 1;
5728
5729 /* This is where we handle "moribund" watchpoints. Unlike
5730 software breakpoints traps, hardware watchpoint traps are
5731 always distinguishable from random traps. If no high-level
5732 watchpoint is associated with the reported stop data address
5733 anymore, then the bpstat does not explain the signal ---
5734 simply make sure to ignore it if `stopped_by_watchpoint' is
5735 set. */
5736
5737 if (debug_infrun
5738 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5739 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5740 GDB_SIGNAL_TRAP)
5741 && stopped_by_watchpoint)
5742 fprintf_unfiltered (gdb_stdlog,
5743 "infrun: no user watchpoint explains "
5744 "watchpoint SIGTRAP, ignoring\n");
5745
5746 /* NOTE: cagney/2003-03-29: These checks for a random signal
5747 at one stage in the past included checks for an inferior
5748 function call's call dummy's return breakpoint. The original
5749 comment, that went with the test, read:
5750
5751 ``End of a stack dummy. Some systems (e.g. Sony news) give
5752 another signal besides SIGTRAP, so check here as well as
5753 above.''
5754
5755 If someone ever tries to get call dummys on a
5756 non-executable stack to work (where the target would stop
5757 with something like a SIGSEGV), then those tests might need
5758 to be re-instated. Given, however, that the tests were only
5759 enabled when momentary breakpoints were not being used, I
5760 suspect that it won't be the case.
5761
5762 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5763 be necessary for call dummies on a non-executable stack on
5764 SPARC. */
5765
5766 /* See if the breakpoints module can explain the signal. */
5767 random_signal
5768 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5769 ecs->event_thread->suspend.stop_signal);
5770
5771 /* Maybe this was a trap for a software breakpoint that has since
5772 been removed. */
5773 if (random_signal && target_stopped_by_sw_breakpoint ())
5774 {
5775 if (program_breakpoint_here_p (gdbarch,
5776 ecs->event_thread->suspend.stop_pc))
5777 {
5778 struct regcache *regcache;
5779 int decr_pc;
5780
5781 /* Re-adjust PC to what the program would see if GDB was not
5782 debugging it. */
5783 regcache = get_thread_regcache (ecs->event_thread);
5784 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5785 if (decr_pc != 0)
5786 {
5787 gdb::optional<scoped_restore_tmpl<int>>
5788 restore_operation_disable;
5789
5790 if (record_full_is_used ())
5791 restore_operation_disable.emplace
5792 (record_full_gdb_operation_disable_set ());
5793
5794 regcache_write_pc (regcache,
5795 ecs->event_thread->suspend.stop_pc + decr_pc);
5796 }
5797 }
5798 else
5799 {
5800 /* A delayed software breakpoint event. Ignore the trap. */
5801 if (debug_infrun)
5802 fprintf_unfiltered (gdb_stdlog,
5803 "infrun: delayed software breakpoint "
5804 "trap, ignoring\n");
5805 random_signal = 0;
5806 }
5807 }
5808
5809 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5810 has since been removed. */
5811 if (random_signal && target_stopped_by_hw_breakpoint ())
5812 {
5813 /* A delayed hardware breakpoint event. Ignore the trap. */
5814 if (debug_infrun)
5815 fprintf_unfiltered (gdb_stdlog,
5816 "infrun: delayed hardware breakpoint/watchpoint "
5817 "trap, ignoring\n");
5818 random_signal = 0;
5819 }
5820
5821 /* If not, perhaps stepping/nexting can. */
5822 if (random_signal)
5823 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5824 && currently_stepping (ecs->event_thread));
5825
5826 /* Perhaps the thread hit a single-step breakpoint of _another_
5827 thread. Single-step breakpoints are transparent to the
5828 breakpoints module. */
5829 if (random_signal)
5830 random_signal = !ecs->hit_singlestep_breakpoint;
5831
5832 /* No? Perhaps we got a moribund watchpoint. */
5833 if (random_signal)
5834 random_signal = !stopped_by_watchpoint;
5835
5836 /* Always stop if the user explicitly requested this thread to
5837 remain stopped. */
5838 if (ecs->event_thread->stop_requested)
5839 {
5840 random_signal = 1;
5841 if (debug_infrun)
5842 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5843 }
5844
5845 /* For the program's own signals, act according to
5846 the signal handling tables. */
5847
5848 if (random_signal)
5849 {
5850 /* Signal not for debugging purposes. */
5851 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5852 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5853
5854 if (debug_infrun)
5855 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5856 gdb_signal_to_symbol_string (stop_signal));
5857
5858 stopped_by_random_signal = 1;
5859
5860 /* Always stop on signals if we're either just gaining control
5861 of the program, or the user explicitly requested this thread
5862 to remain stopped. */
5863 if (stop_soon != NO_STOP_QUIETLY
5864 || ecs->event_thread->stop_requested
5865 || (!inf->detaching
5866 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5867 {
5868 stop_waiting (ecs);
5869 return;
5870 }
5871
5872 /* Notify observers the signal has "handle print" set. Note we
5873 returned early above if stopping; normal_stop handles the
5874 printing in that case. */
5875 if (signal_print[ecs->event_thread->suspend.stop_signal])
5876 {
5877 /* The signal table tells us to print about this signal. */
5878 target_terminal::ours_for_output ();
5879 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5880 target_terminal::inferior ();
5881 }
5882
5883 /* Clear the signal if it should not be passed. */
5884 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5885 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5886
5887 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5888 && ecs->event_thread->control.trap_expected
5889 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5890 {
5891 /* We were just starting a new sequence, attempting to
5892 single-step off of a breakpoint and expecting a SIGTRAP.
5893 Instead this signal arrives. This signal will take us out
5894 of the stepping range so GDB needs to remember to, when
5895 the signal handler returns, resume stepping off that
5896 breakpoint. */
5897 /* To simplify things, "continue" is forced to use the same
5898 code paths as single-step - set a breakpoint at the
5899 signal return address and then, once hit, step off that
5900 breakpoint. */
5901 if (debug_infrun)
5902 fprintf_unfiltered (gdb_stdlog,
5903 "infrun: signal arrived while stepping over "
5904 "breakpoint\n");
5905
5906 insert_hp_step_resume_breakpoint_at_frame (frame);
5907 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5908 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5909 ecs->event_thread->control.trap_expected = 0;
5910
5911 /* If we were nexting/stepping some other thread, switch to
5912 it, so that we don't continue it, losing control. */
5913 if (!switch_back_to_stepped_thread (ecs))
5914 keep_going (ecs);
5915 return;
5916 }
5917
5918 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5919 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5920 ecs->event_thread)
5921 || ecs->event_thread->control.step_range_end == 1)
5922 && frame_id_eq (get_stack_frame_id (frame),
5923 ecs->event_thread->control.step_stack_frame_id)
5924 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5925 {
5926 /* The inferior is about to take a signal that will take it
5927 out of the single step range. Set a breakpoint at the
5928 current PC (which is presumably where the signal handler
5929 will eventually return) and then allow the inferior to
5930 run free.
5931
5932 Note that this is only needed for a signal delivered
5933 while in the single-step range. Nested signals aren't a
5934 problem as they eventually all return. */
5935 if (debug_infrun)
5936 fprintf_unfiltered (gdb_stdlog,
5937 "infrun: signal may take us out of "
5938 "single-step range\n");
5939
5940 clear_step_over_info ();
5941 insert_hp_step_resume_breakpoint_at_frame (frame);
5942 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5943 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5944 ecs->event_thread->control.trap_expected = 0;
5945 keep_going (ecs);
5946 return;
5947 }
5948
5949 /* Note: step_resume_breakpoint may be non-NULL. This occurs
5950 when either there's a nested signal, or when there's a
5951 pending signal enabled just as the signal handler returns
5952 (leaving the inferior at the step-resume-breakpoint without
5953 actually executing it). Either way continue until the
5954 breakpoint is really hit. */
5955
5956 if (!switch_back_to_stepped_thread (ecs))
5957 {
5958 if (debug_infrun)
5959 fprintf_unfiltered (gdb_stdlog,
5960 "infrun: random signal, keep going\n");
5961
5962 keep_going (ecs);
5963 }
5964 return;
5965 }
5966
5967 process_event_stop_test (ecs);
5968 }
5969
5970 /* Come here when we've got some debug event / signal we can explain
5971 (IOW, not a random signal), and test whether it should cause a
5972 stop, or whether we should resume the inferior (transparently).
5973 E.g., could be a breakpoint whose condition evaluates false; we
5974 could be still stepping within the line; etc. */
5975
5976 static void
5977 process_event_stop_test (struct execution_control_state *ecs)
5978 {
5979 struct symtab_and_line stop_pc_sal;
5980 struct frame_info *frame;
5981 struct gdbarch *gdbarch;
5982 CORE_ADDR jmp_buf_pc;
5983 struct bpstat_what what;
5984
5985 /* Handle cases caused by hitting a breakpoint. */
5986
5987 frame = get_current_frame ();
5988 gdbarch = get_frame_arch (frame);
5989
5990 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5991
5992 if (what.call_dummy)
5993 {
5994 stop_stack_dummy = what.call_dummy;
5995 }
5996
5997 /* A few breakpoint types have callbacks associated (e.g.,
5998 bp_jit_event). Run them now. */
5999 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6000
6001 /* If we hit an internal event that triggers symbol changes, the
6002 current frame will be invalidated within bpstat_what (e.g., if we
6003 hit an internal solib event). Re-fetch it. */
6004 frame = get_current_frame ();
6005 gdbarch = get_frame_arch (frame);
6006
6007 switch (what.main_action)
6008 {
6009 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6010 /* If we hit the breakpoint at longjmp while stepping, we
6011 install a momentary breakpoint at the target of the
6012 jmp_buf. */
6013
6014 if (debug_infrun)
6015 fprintf_unfiltered (gdb_stdlog,
6016 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6017
6018 ecs->event_thread->stepping_over_breakpoint = 1;
6019
6020 if (what.is_longjmp)
6021 {
6022 struct value *arg_value;
6023
6024 /* If we set the longjmp breakpoint via a SystemTap probe,
6025 then use it to extract the arguments. The destination PC
6026 is the third argument to the probe. */
6027 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6028 if (arg_value)
6029 {
6030 jmp_buf_pc = value_as_address (arg_value);
6031 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6032 }
6033 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6034 || !gdbarch_get_longjmp_target (gdbarch,
6035 frame, &jmp_buf_pc))
6036 {
6037 if (debug_infrun)
6038 fprintf_unfiltered (gdb_stdlog,
6039 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6040 "(!gdbarch_get_longjmp_target)\n");
6041 keep_going (ecs);
6042 return;
6043 }
6044
6045 /* Insert a breakpoint at resume address. */
6046 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6047 }
6048 else
6049 check_exception_resume (ecs, frame);
6050 keep_going (ecs);
6051 return;
6052
6053 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6054 {
6055 struct frame_info *init_frame;
6056
6057 /* There are several cases to consider.
6058
6059 1. The initiating frame no longer exists. In this case we
6060 must stop, because the exception or longjmp has gone too
6061 far.
6062
6063 2. The initiating frame exists, and is the same as the
6064 current frame. We stop, because the exception or longjmp
6065 has been caught.
6066
6067 3. The initiating frame exists and is different from the
6068 current frame. This means the exception or longjmp has
6069 been caught beneath the initiating frame, so keep going.
6070
6071 4. longjmp breakpoint has been placed just to protect
6072 against stale dummy frames and user is not interested in
6073 stopping around longjmps. */
6074
6075 if (debug_infrun)
6076 fprintf_unfiltered (gdb_stdlog,
6077 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6078
6079 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6080 != NULL);
6081 delete_exception_resume_breakpoint (ecs->event_thread);
6082
6083 if (what.is_longjmp)
6084 {
6085 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6086
6087 if (!frame_id_p (ecs->event_thread->initiating_frame))
6088 {
6089 /* Case 4. */
6090 keep_going (ecs);
6091 return;
6092 }
6093 }
6094
6095 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6096
6097 if (init_frame)
6098 {
6099 struct frame_id current_id
6100 = get_frame_id (get_current_frame ());
6101 if (frame_id_eq (current_id,
6102 ecs->event_thread->initiating_frame))
6103 {
6104 /* Case 2. Fall through. */
6105 }
6106 else
6107 {
6108 /* Case 3. */
6109 keep_going (ecs);
6110 return;
6111 }
6112 }
6113
6114 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6115 exists. */
6116 delete_step_resume_breakpoint (ecs->event_thread);
6117
6118 end_stepping_range (ecs);
6119 }
6120 return;
6121
6122 case BPSTAT_WHAT_SINGLE:
6123 if (debug_infrun)
6124 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6125 ecs->event_thread->stepping_over_breakpoint = 1;
6126 /* Still need to check other stuff, at least the case where we
6127 are stepping and step out of the right range. */
6128 break;
6129
6130 case BPSTAT_WHAT_STEP_RESUME:
6131 if (debug_infrun)
6132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6133
6134 delete_step_resume_breakpoint (ecs->event_thread);
6135 if (ecs->event_thread->control.proceed_to_finish
6136 && execution_direction == EXEC_REVERSE)
6137 {
6138 struct thread_info *tp = ecs->event_thread;
6139
6140 /* We are finishing a function in reverse, and just hit the
6141 step-resume breakpoint at the start address of the
6142 function, and we're almost there -- just need to back up
6143 by one more single-step, which should take us back to the
6144 function call. */
6145 tp->control.step_range_start = tp->control.step_range_end = 1;
6146 keep_going (ecs);
6147 return;
6148 }
6149 fill_in_stop_func (gdbarch, ecs);
6150 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6151 && execution_direction == EXEC_REVERSE)
6152 {
6153 /* We are stepping over a function call in reverse, and just
6154 hit the step-resume breakpoint at the start address of
6155 the function. Go back to single-stepping, which should
6156 take us back to the function call. */
6157 ecs->event_thread->stepping_over_breakpoint = 1;
6158 keep_going (ecs);
6159 return;
6160 }
6161 break;
6162
6163 case BPSTAT_WHAT_STOP_NOISY:
6164 if (debug_infrun)
6165 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6166 stop_print_frame = 1;
6167
6168 /* Assume the thread stopped for a breapoint. We'll still check
6169 whether a/the breakpoint is there when the thread is next
6170 resumed. */
6171 ecs->event_thread->stepping_over_breakpoint = 1;
6172
6173 stop_waiting (ecs);
6174 return;
6175
6176 case BPSTAT_WHAT_STOP_SILENT:
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6179 stop_print_frame = 0;
6180
6181 /* Assume the thread stopped for a breapoint. We'll still check
6182 whether a/the breakpoint is there when the thread is next
6183 resumed. */
6184 ecs->event_thread->stepping_over_breakpoint = 1;
6185 stop_waiting (ecs);
6186 return;
6187
6188 case BPSTAT_WHAT_HP_STEP_RESUME:
6189 if (debug_infrun)
6190 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6191
6192 delete_step_resume_breakpoint (ecs->event_thread);
6193 if (ecs->event_thread->step_after_step_resume_breakpoint)
6194 {
6195 /* Back when the step-resume breakpoint was inserted, we
6196 were trying to single-step off a breakpoint. Go back to
6197 doing that. */
6198 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6199 ecs->event_thread->stepping_over_breakpoint = 1;
6200 keep_going (ecs);
6201 return;
6202 }
6203 break;
6204
6205 case BPSTAT_WHAT_KEEP_CHECKING:
6206 break;
6207 }
6208
6209 /* If we stepped a permanent breakpoint and we had a high priority
6210 step-resume breakpoint for the address we stepped, but we didn't
6211 hit it, then we must have stepped into the signal handler. The
6212 step-resume was only necessary to catch the case of _not_
6213 stepping into the handler, so delete it, and fall through to
6214 checking whether the step finished. */
6215 if (ecs->event_thread->stepped_breakpoint)
6216 {
6217 struct breakpoint *sr_bp
6218 = ecs->event_thread->control.step_resume_breakpoint;
6219
6220 if (sr_bp != NULL
6221 && sr_bp->loc->permanent
6222 && sr_bp->type == bp_hp_step_resume
6223 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6224 {
6225 if (debug_infrun)
6226 fprintf_unfiltered (gdb_stdlog,
6227 "infrun: stepped permanent breakpoint, stopped in "
6228 "handler\n");
6229 delete_step_resume_breakpoint (ecs->event_thread);
6230 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6231 }
6232 }
6233
6234 /* We come here if we hit a breakpoint but should not stop for it.
6235 Possibly we also were stepping and should stop for that. So fall
6236 through and test for stepping. But, if not stepping, do not
6237 stop. */
6238
6239 /* In all-stop mode, if we're currently stepping but have stopped in
6240 some other thread, we need to switch back to the stepped thread. */
6241 if (switch_back_to_stepped_thread (ecs))
6242 return;
6243
6244 if (ecs->event_thread->control.step_resume_breakpoint)
6245 {
6246 if (debug_infrun)
6247 fprintf_unfiltered (gdb_stdlog,
6248 "infrun: step-resume breakpoint is inserted\n");
6249
6250 /* Having a step-resume breakpoint overrides anything
6251 else having to do with stepping commands until
6252 that breakpoint is reached. */
6253 keep_going (ecs);
6254 return;
6255 }
6256
6257 if (ecs->event_thread->control.step_range_end == 0)
6258 {
6259 if (debug_infrun)
6260 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6261 /* Likewise if we aren't even stepping. */
6262 keep_going (ecs);
6263 return;
6264 }
6265
6266 /* Re-fetch current thread's frame in case the code above caused
6267 the frame cache to be re-initialized, making our FRAME variable
6268 a dangling pointer. */
6269 frame = get_current_frame ();
6270 gdbarch = get_frame_arch (frame);
6271 fill_in_stop_func (gdbarch, ecs);
6272
6273 /* If stepping through a line, keep going if still within it.
6274
6275 Note that step_range_end is the address of the first instruction
6276 beyond the step range, and NOT the address of the last instruction
6277 within it!
6278
6279 Note also that during reverse execution, we may be stepping
6280 through a function epilogue and therefore must detect when
6281 the current-frame changes in the middle of a line. */
6282
6283 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6284 ecs->event_thread)
6285 && (execution_direction != EXEC_REVERSE
6286 || frame_id_eq (get_frame_id (frame),
6287 ecs->event_thread->control.step_frame_id)))
6288 {
6289 if (debug_infrun)
6290 fprintf_unfiltered
6291 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6292 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6293 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6294
6295 /* Tentatively re-enable range stepping; `resume' disables it if
6296 necessary (e.g., if we're stepping over a breakpoint or we
6297 have software watchpoints). */
6298 ecs->event_thread->control.may_range_step = 1;
6299
6300 /* When stepping backward, stop at beginning of line range
6301 (unless it's the function entry point, in which case
6302 keep going back to the call point). */
6303 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6304 if (stop_pc == ecs->event_thread->control.step_range_start
6305 && stop_pc != ecs->stop_func_start
6306 && execution_direction == EXEC_REVERSE)
6307 end_stepping_range (ecs);
6308 else
6309 keep_going (ecs);
6310
6311 return;
6312 }
6313
6314 /* We stepped out of the stepping range. */
6315
6316 /* If we are stepping at the source level and entered the runtime
6317 loader dynamic symbol resolution code...
6318
6319 EXEC_FORWARD: we keep on single stepping until we exit the run
6320 time loader code and reach the callee's address.
6321
6322 EXEC_REVERSE: we've already executed the callee (backward), and
6323 the runtime loader code is handled just like any other
6324 undebuggable function call. Now we need only keep stepping
6325 backward through the trampoline code, and that's handled further
6326 down, so there is nothing for us to do here. */
6327
6328 if (execution_direction != EXEC_REVERSE
6329 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6330 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6331 {
6332 CORE_ADDR pc_after_resolver =
6333 gdbarch_skip_solib_resolver (gdbarch,
6334 ecs->event_thread->suspend.stop_pc);
6335
6336 if (debug_infrun)
6337 fprintf_unfiltered (gdb_stdlog,
6338 "infrun: stepped into dynsym resolve code\n");
6339
6340 if (pc_after_resolver)
6341 {
6342 /* Set up a step-resume breakpoint at the address
6343 indicated by SKIP_SOLIB_RESOLVER. */
6344 symtab_and_line sr_sal;
6345 sr_sal.pc = pc_after_resolver;
6346 sr_sal.pspace = get_frame_program_space (frame);
6347
6348 insert_step_resume_breakpoint_at_sal (gdbarch,
6349 sr_sal, null_frame_id);
6350 }
6351
6352 keep_going (ecs);
6353 return;
6354 }
6355
6356 /* Step through an indirect branch thunk. */
6357 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6358 && gdbarch_in_indirect_branch_thunk (gdbarch,
6359 ecs->event_thread->suspend.stop_pc))
6360 {
6361 if (debug_infrun)
6362 fprintf_unfiltered (gdb_stdlog,
6363 "infrun: stepped into indirect branch thunk\n");
6364 keep_going (ecs);
6365 return;
6366 }
6367
6368 if (ecs->event_thread->control.step_range_end != 1
6369 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6370 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6371 && get_frame_type (frame) == SIGTRAMP_FRAME)
6372 {
6373 if (debug_infrun)
6374 fprintf_unfiltered (gdb_stdlog,
6375 "infrun: stepped into signal trampoline\n");
6376 /* The inferior, while doing a "step" or "next", has ended up in
6377 a signal trampoline (either by a signal being delivered or by
6378 the signal handler returning). Just single-step until the
6379 inferior leaves the trampoline (either by calling the handler
6380 or returning). */
6381 keep_going (ecs);
6382 return;
6383 }
6384
6385 /* If we're in the return path from a shared library trampoline,
6386 we want to proceed through the trampoline when stepping. */
6387 /* macro/2012-04-25: This needs to come before the subroutine
6388 call check below as on some targets return trampolines look
6389 like subroutine calls (MIPS16 return thunks). */
6390 if (gdbarch_in_solib_return_trampoline (gdbarch,
6391 ecs->event_thread->suspend.stop_pc,
6392 ecs->stop_func_name)
6393 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6394 {
6395 /* Determine where this trampoline returns. */
6396 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6397 CORE_ADDR real_stop_pc
6398 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6399
6400 if (debug_infrun)
6401 fprintf_unfiltered (gdb_stdlog,
6402 "infrun: stepped into solib return tramp\n");
6403
6404 /* Only proceed through if we know where it's going. */
6405 if (real_stop_pc)
6406 {
6407 /* And put the step-breakpoint there and go until there. */
6408 symtab_and_line sr_sal;
6409 sr_sal.pc = real_stop_pc;
6410 sr_sal.section = find_pc_overlay (sr_sal.pc);
6411 sr_sal.pspace = get_frame_program_space (frame);
6412
6413 /* Do not specify what the fp should be when we stop since
6414 on some machines the prologue is where the new fp value
6415 is established. */
6416 insert_step_resume_breakpoint_at_sal (gdbarch,
6417 sr_sal, null_frame_id);
6418
6419 /* Restart without fiddling with the step ranges or
6420 other state. */
6421 keep_going (ecs);
6422 return;
6423 }
6424 }
6425
6426 /* Check for subroutine calls. The check for the current frame
6427 equalling the step ID is not necessary - the check of the
6428 previous frame's ID is sufficient - but it is a common case and
6429 cheaper than checking the previous frame's ID.
6430
6431 NOTE: frame_id_eq will never report two invalid frame IDs as
6432 being equal, so to get into this block, both the current and
6433 previous frame must have valid frame IDs. */
6434 /* The outer_frame_id check is a heuristic to detect stepping
6435 through startup code. If we step over an instruction which
6436 sets the stack pointer from an invalid value to a valid value,
6437 we may detect that as a subroutine call from the mythical
6438 "outermost" function. This could be fixed by marking
6439 outermost frames as !stack_p,code_p,special_p. Then the
6440 initial outermost frame, before sp was valid, would
6441 have code_addr == &_start. See the comment in frame_id_eq
6442 for more. */
6443 if (!frame_id_eq (get_stack_frame_id (frame),
6444 ecs->event_thread->control.step_stack_frame_id)
6445 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6446 ecs->event_thread->control.step_stack_frame_id)
6447 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6448 outer_frame_id)
6449 || (ecs->event_thread->control.step_start_function
6450 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6451 {
6452 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6453 CORE_ADDR real_stop_pc;
6454
6455 if (debug_infrun)
6456 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6457
6458 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6459 {
6460 /* I presume that step_over_calls is only 0 when we're
6461 supposed to be stepping at the assembly language level
6462 ("stepi"). Just stop. */
6463 /* And this works the same backward as frontward. MVS */
6464 end_stepping_range (ecs);
6465 return;
6466 }
6467
6468 /* Reverse stepping through solib trampolines. */
6469
6470 if (execution_direction == EXEC_REVERSE
6471 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6472 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6473 || (ecs->stop_func_start == 0
6474 && in_solib_dynsym_resolve_code (stop_pc))))
6475 {
6476 /* Any solib trampoline code can be handled in reverse
6477 by simply continuing to single-step. We have already
6478 executed the solib function (backwards), and a few
6479 steps will take us back through the trampoline to the
6480 caller. */
6481 keep_going (ecs);
6482 return;
6483 }
6484
6485 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6486 {
6487 /* We're doing a "next".
6488
6489 Normal (forward) execution: set a breakpoint at the
6490 callee's return address (the address at which the caller
6491 will resume).
6492
6493 Reverse (backward) execution. set the step-resume
6494 breakpoint at the start of the function that we just
6495 stepped into (backwards), and continue to there. When we
6496 get there, we'll need to single-step back to the caller. */
6497
6498 if (execution_direction == EXEC_REVERSE)
6499 {
6500 /* If we're already at the start of the function, we've either
6501 just stepped backward into a single instruction function,
6502 or stepped back out of a signal handler to the first instruction
6503 of the function. Just keep going, which will single-step back
6504 to the caller. */
6505 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6506 {
6507 /* Normal function call return (static or dynamic). */
6508 symtab_and_line sr_sal;
6509 sr_sal.pc = ecs->stop_func_start;
6510 sr_sal.pspace = get_frame_program_space (frame);
6511 insert_step_resume_breakpoint_at_sal (gdbarch,
6512 sr_sal, null_frame_id);
6513 }
6514 }
6515 else
6516 insert_step_resume_breakpoint_at_caller (frame);
6517
6518 keep_going (ecs);
6519 return;
6520 }
6521
6522 /* If we are in a function call trampoline (a stub between the
6523 calling routine and the real function), locate the real
6524 function. That's what tells us (a) whether we want to step
6525 into it at all, and (b) what prologue we want to run to the
6526 end of, if we do step into it. */
6527 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6528 if (real_stop_pc == 0)
6529 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6530 if (real_stop_pc != 0)
6531 ecs->stop_func_start = real_stop_pc;
6532
6533 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6534 {
6535 symtab_and_line sr_sal;
6536 sr_sal.pc = ecs->stop_func_start;
6537 sr_sal.pspace = get_frame_program_space (frame);
6538
6539 insert_step_resume_breakpoint_at_sal (gdbarch,
6540 sr_sal, null_frame_id);
6541 keep_going (ecs);
6542 return;
6543 }
6544
6545 /* If we have line number information for the function we are
6546 thinking of stepping into and the function isn't on the skip
6547 list, step into it.
6548
6549 If there are several symtabs at that PC (e.g. with include
6550 files), just want to know whether *any* of them have line
6551 numbers. find_pc_line handles this. */
6552 {
6553 struct symtab_and_line tmp_sal;
6554
6555 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6556 if (tmp_sal.line != 0
6557 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6558 tmp_sal))
6559 {
6560 if (execution_direction == EXEC_REVERSE)
6561 handle_step_into_function_backward (gdbarch, ecs);
6562 else
6563 handle_step_into_function (gdbarch, ecs);
6564 return;
6565 }
6566 }
6567
6568 /* If we have no line number and the step-stop-if-no-debug is
6569 set, we stop the step so that the user has a chance to switch
6570 in assembly mode. */
6571 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6572 && step_stop_if_no_debug)
6573 {
6574 end_stepping_range (ecs);
6575 return;
6576 }
6577
6578 if (execution_direction == EXEC_REVERSE)
6579 {
6580 /* If we're already at the start of the function, we've either just
6581 stepped backward into a single instruction function without line
6582 number info, or stepped back out of a signal handler to the first
6583 instruction of the function without line number info. Just keep
6584 going, which will single-step back to the caller. */
6585 if (ecs->stop_func_start != stop_pc)
6586 {
6587 /* Set a breakpoint at callee's start address.
6588 From there we can step once and be back in the caller. */
6589 symtab_and_line sr_sal;
6590 sr_sal.pc = ecs->stop_func_start;
6591 sr_sal.pspace = get_frame_program_space (frame);
6592 insert_step_resume_breakpoint_at_sal (gdbarch,
6593 sr_sal, null_frame_id);
6594 }
6595 }
6596 else
6597 /* Set a breakpoint at callee's return address (the address
6598 at which the caller will resume). */
6599 insert_step_resume_breakpoint_at_caller (frame);
6600
6601 keep_going (ecs);
6602 return;
6603 }
6604
6605 /* Reverse stepping through solib trampolines. */
6606
6607 if (execution_direction == EXEC_REVERSE
6608 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6609 {
6610 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6611
6612 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6613 || (ecs->stop_func_start == 0
6614 && in_solib_dynsym_resolve_code (stop_pc)))
6615 {
6616 /* Any solib trampoline code can be handled in reverse
6617 by simply continuing to single-step. We have already
6618 executed the solib function (backwards), and a few
6619 steps will take us back through the trampoline to the
6620 caller. */
6621 keep_going (ecs);
6622 return;
6623 }
6624 else if (in_solib_dynsym_resolve_code (stop_pc))
6625 {
6626 /* Stepped backward into the solib dynsym resolver.
6627 Set a breakpoint at its start and continue, then
6628 one more step will take us out. */
6629 symtab_and_line sr_sal;
6630 sr_sal.pc = ecs->stop_func_start;
6631 sr_sal.pspace = get_frame_program_space (frame);
6632 insert_step_resume_breakpoint_at_sal (gdbarch,
6633 sr_sal, null_frame_id);
6634 keep_going (ecs);
6635 return;
6636 }
6637 }
6638
6639 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6640
6641 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6642 the trampoline processing logic, however, there are some trampolines
6643 that have no names, so we should do trampoline handling first. */
6644 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6645 && ecs->stop_func_name == NULL
6646 && stop_pc_sal.line == 0)
6647 {
6648 if (debug_infrun)
6649 fprintf_unfiltered (gdb_stdlog,
6650 "infrun: stepped into undebuggable function\n");
6651
6652 /* The inferior just stepped into, or returned to, an
6653 undebuggable function (where there is no debugging information
6654 and no line number corresponding to the address where the
6655 inferior stopped). Since we want to skip this kind of code,
6656 we keep going until the inferior returns from this
6657 function - unless the user has asked us not to (via
6658 set step-mode) or we no longer know how to get back
6659 to the call site. */
6660 if (step_stop_if_no_debug
6661 || !frame_id_p (frame_unwind_caller_id (frame)))
6662 {
6663 /* If we have no line number and the step-stop-if-no-debug
6664 is set, we stop the step so that the user has a chance to
6665 switch in assembly mode. */
6666 end_stepping_range (ecs);
6667 return;
6668 }
6669 else
6670 {
6671 /* Set a breakpoint at callee's return address (the address
6672 at which the caller will resume). */
6673 insert_step_resume_breakpoint_at_caller (frame);
6674 keep_going (ecs);
6675 return;
6676 }
6677 }
6678
6679 if (ecs->event_thread->control.step_range_end == 1)
6680 {
6681 /* It is stepi or nexti. We always want to stop stepping after
6682 one instruction. */
6683 if (debug_infrun)
6684 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6685 end_stepping_range (ecs);
6686 return;
6687 }
6688
6689 if (stop_pc_sal.line == 0)
6690 {
6691 /* We have no line number information. That means to stop
6692 stepping (does this always happen right after one instruction,
6693 when we do "s" in a function with no line numbers,
6694 or can this happen as a result of a return or longjmp?). */
6695 if (debug_infrun)
6696 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6697 end_stepping_range (ecs);
6698 return;
6699 }
6700
6701 /* Look for "calls" to inlined functions, part one. If the inline
6702 frame machinery detected some skipped call sites, we have entered
6703 a new inline function. */
6704
6705 if (frame_id_eq (get_frame_id (get_current_frame ()),
6706 ecs->event_thread->control.step_frame_id)
6707 && inline_skipped_frames (ecs->event_thread))
6708 {
6709 if (debug_infrun)
6710 fprintf_unfiltered (gdb_stdlog,
6711 "infrun: stepped into inlined function\n");
6712
6713 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6714
6715 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6716 {
6717 /* For "step", we're going to stop. But if the call site
6718 for this inlined function is on the same source line as
6719 we were previously stepping, go down into the function
6720 first. Otherwise stop at the call site. */
6721
6722 if (call_sal.line == ecs->event_thread->current_line
6723 && call_sal.symtab == ecs->event_thread->current_symtab)
6724 step_into_inline_frame (ecs->event_thread);
6725
6726 end_stepping_range (ecs);
6727 return;
6728 }
6729 else
6730 {
6731 /* For "next", we should stop at the call site if it is on a
6732 different source line. Otherwise continue through the
6733 inlined function. */
6734 if (call_sal.line == ecs->event_thread->current_line
6735 && call_sal.symtab == ecs->event_thread->current_symtab)
6736 keep_going (ecs);
6737 else
6738 end_stepping_range (ecs);
6739 return;
6740 }
6741 }
6742
6743 /* Look for "calls" to inlined functions, part two. If we are still
6744 in the same real function we were stepping through, but we have
6745 to go further up to find the exact frame ID, we are stepping
6746 through a more inlined call beyond its call site. */
6747
6748 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6749 && !frame_id_eq (get_frame_id (get_current_frame ()),
6750 ecs->event_thread->control.step_frame_id)
6751 && stepped_in_from (get_current_frame (),
6752 ecs->event_thread->control.step_frame_id))
6753 {
6754 if (debug_infrun)
6755 fprintf_unfiltered (gdb_stdlog,
6756 "infrun: stepping through inlined function\n");
6757
6758 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6759 keep_going (ecs);
6760 else
6761 end_stepping_range (ecs);
6762 return;
6763 }
6764
6765 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6766 && (ecs->event_thread->current_line != stop_pc_sal.line
6767 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6768 {
6769 /* We are at the start of a different line. So stop. Note that
6770 we don't stop if we step into the middle of a different line.
6771 That is said to make things like for (;;) statements work
6772 better. */
6773 if (debug_infrun)
6774 fprintf_unfiltered (gdb_stdlog,
6775 "infrun: stepped to a different line\n");
6776 end_stepping_range (ecs);
6777 return;
6778 }
6779
6780 /* We aren't done stepping.
6781
6782 Optimize by setting the stepping range to the line.
6783 (We might not be in the original line, but if we entered a
6784 new line in mid-statement, we continue stepping. This makes
6785 things like for(;;) statements work better.) */
6786
6787 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6788 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6789 ecs->event_thread->control.may_range_step = 1;
6790 set_step_info (frame, stop_pc_sal);
6791
6792 if (debug_infrun)
6793 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6794 keep_going (ecs);
6795 }
6796
6797 /* In all-stop mode, if we're currently stepping but have stopped in
6798 some other thread, we may need to switch back to the stepped
6799 thread. Returns true we set the inferior running, false if we left
6800 it stopped (and the event needs further processing). */
6801
6802 static int
6803 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6804 {
6805 if (!target_is_non_stop_p ())
6806 {
6807 struct thread_info *stepping_thread;
6808
6809 /* If any thread is blocked on some internal breakpoint, and we
6810 simply need to step over that breakpoint to get it going
6811 again, do that first. */
6812
6813 /* However, if we see an event for the stepping thread, then we
6814 know all other threads have been moved past their breakpoints
6815 already. Let the caller check whether the step is finished,
6816 etc., before deciding to move it past a breakpoint. */
6817 if (ecs->event_thread->control.step_range_end != 0)
6818 return 0;
6819
6820 /* Check if the current thread is blocked on an incomplete
6821 step-over, interrupted by a random signal. */
6822 if (ecs->event_thread->control.trap_expected
6823 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6824 {
6825 if (debug_infrun)
6826 {
6827 fprintf_unfiltered (gdb_stdlog,
6828 "infrun: need to finish step-over of [%s]\n",
6829 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6830 }
6831 keep_going (ecs);
6832 return 1;
6833 }
6834
6835 /* Check if the current thread is blocked by a single-step
6836 breakpoint of another thread. */
6837 if (ecs->hit_singlestep_breakpoint)
6838 {
6839 if (debug_infrun)
6840 {
6841 fprintf_unfiltered (gdb_stdlog,
6842 "infrun: need to step [%s] over single-step "
6843 "breakpoint\n",
6844 target_pid_to_str (ecs->ptid).c_str ());
6845 }
6846 keep_going (ecs);
6847 return 1;
6848 }
6849
6850 /* If this thread needs yet another step-over (e.g., stepping
6851 through a delay slot), do it first before moving on to
6852 another thread. */
6853 if (thread_still_needs_step_over (ecs->event_thread))
6854 {
6855 if (debug_infrun)
6856 {
6857 fprintf_unfiltered (gdb_stdlog,
6858 "infrun: thread [%s] still needs step-over\n",
6859 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6860 }
6861 keep_going (ecs);
6862 return 1;
6863 }
6864
6865 /* If scheduler locking applies even if not stepping, there's no
6866 need to walk over threads. Above we've checked whether the
6867 current thread is stepping. If some other thread not the
6868 event thread is stepping, then it must be that scheduler
6869 locking is not in effect. */
6870 if (schedlock_applies (ecs->event_thread))
6871 return 0;
6872
6873 /* Otherwise, we no longer expect a trap in the current thread.
6874 Clear the trap_expected flag before switching back -- this is
6875 what keep_going does as well, if we call it. */
6876 ecs->event_thread->control.trap_expected = 0;
6877
6878 /* Likewise, clear the signal if it should not be passed. */
6879 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6880 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6881
6882 /* Do all pending step-overs before actually proceeding with
6883 step/next/etc. */
6884 if (start_step_over ())
6885 {
6886 prepare_to_wait (ecs);
6887 return 1;
6888 }
6889
6890 /* Look for the stepping/nexting thread. */
6891 stepping_thread = NULL;
6892
6893 for (thread_info *tp : all_non_exited_threads ())
6894 {
6895 /* Ignore threads of processes the caller is not
6896 resuming. */
6897 if (!sched_multi
6898 && tp->ptid.pid () != ecs->ptid.pid ())
6899 continue;
6900
6901 /* When stepping over a breakpoint, we lock all threads
6902 except the one that needs to move past the breakpoint.
6903 If a non-event thread has this set, the "incomplete
6904 step-over" check above should have caught it earlier. */
6905 if (tp->control.trap_expected)
6906 {
6907 internal_error (__FILE__, __LINE__,
6908 "[%s] has inconsistent state: "
6909 "trap_expected=%d\n",
6910 target_pid_to_str (tp->ptid).c_str (),
6911 tp->control.trap_expected);
6912 }
6913
6914 /* Did we find the stepping thread? */
6915 if (tp->control.step_range_end)
6916 {
6917 /* Yep. There should only one though. */
6918 gdb_assert (stepping_thread == NULL);
6919
6920 /* The event thread is handled at the top, before we
6921 enter this loop. */
6922 gdb_assert (tp != ecs->event_thread);
6923
6924 /* If some thread other than the event thread is
6925 stepping, then scheduler locking can't be in effect,
6926 otherwise we wouldn't have resumed the current event
6927 thread in the first place. */
6928 gdb_assert (!schedlock_applies (tp));
6929
6930 stepping_thread = tp;
6931 }
6932 }
6933
6934 if (stepping_thread != NULL)
6935 {
6936 if (debug_infrun)
6937 fprintf_unfiltered (gdb_stdlog,
6938 "infrun: switching back to stepped thread\n");
6939
6940 if (keep_going_stepped_thread (stepping_thread))
6941 {
6942 prepare_to_wait (ecs);
6943 return 1;
6944 }
6945 }
6946 }
6947
6948 return 0;
6949 }
6950
6951 /* Set a previously stepped thread back to stepping. Returns true on
6952 success, false if the resume is not possible (e.g., the thread
6953 vanished). */
6954
6955 static int
6956 keep_going_stepped_thread (struct thread_info *tp)
6957 {
6958 struct frame_info *frame;
6959 struct execution_control_state ecss;
6960 struct execution_control_state *ecs = &ecss;
6961
6962 /* If the stepping thread exited, then don't try to switch back and
6963 resume it, which could fail in several different ways depending
6964 on the target. Instead, just keep going.
6965
6966 We can find a stepping dead thread in the thread list in two
6967 cases:
6968
6969 - The target supports thread exit events, and when the target
6970 tries to delete the thread from the thread list, inferior_ptid
6971 pointed at the exiting thread. In such case, calling
6972 delete_thread does not really remove the thread from the list;
6973 instead, the thread is left listed, with 'exited' state.
6974
6975 - The target's debug interface does not support thread exit
6976 events, and so we have no idea whatsoever if the previously
6977 stepping thread is still alive. For that reason, we need to
6978 synchronously query the target now. */
6979
6980 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
6981 {
6982 if (debug_infrun)
6983 fprintf_unfiltered (gdb_stdlog,
6984 "infrun: not resuming previously "
6985 "stepped thread, it has vanished\n");
6986
6987 delete_thread (tp);
6988 return 0;
6989 }
6990
6991 if (debug_infrun)
6992 fprintf_unfiltered (gdb_stdlog,
6993 "infrun: resuming previously stepped thread\n");
6994
6995 reset_ecs (ecs, tp);
6996 switch_to_thread (tp);
6997
6998 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
6999 frame = get_current_frame ();
7000
7001 /* If the PC of the thread we were trying to single-step has
7002 changed, then that thread has trapped or been signaled, but the
7003 event has not been reported to GDB yet. Re-poll the target
7004 looking for this particular thread's event (i.e. temporarily
7005 enable schedlock) by:
7006
7007 - setting a break at the current PC
7008 - resuming that particular thread, only (by setting trap
7009 expected)
7010
7011 This prevents us continuously moving the single-step breakpoint
7012 forward, one instruction at a time, overstepping. */
7013
7014 if (tp->suspend.stop_pc != tp->prev_pc)
7015 {
7016 ptid_t resume_ptid;
7017
7018 if (debug_infrun)
7019 fprintf_unfiltered (gdb_stdlog,
7020 "infrun: expected thread advanced also (%s -> %s)\n",
7021 paddress (target_gdbarch (), tp->prev_pc),
7022 paddress (target_gdbarch (), tp->suspend.stop_pc));
7023
7024 /* Clear the info of the previous step-over, as it's no longer
7025 valid (if the thread was trying to step over a breakpoint, it
7026 has already succeeded). It's what keep_going would do too,
7027 if we called it. Do this before trying to insert the sss
7028 breakpoint, otherwise if we were previously trying to step
7029 over this exact address in another thread, the breakpoint is
7030 skipped. */
7031 clear_step_over_info ();
7032 tp->control.trap_expected = 0;
7033
7034 insert_single_step_breakpoint (get_frame_arch (frame),
7035 get_frame_address_space (frame),
7036 tp->suspend.stop_pc);
7037
7038 tp->resumed = 1;
7039 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7040 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7041 }
7042 else
7043 {
7044 if (debug_infrun)
7045 fprintf_unfiltered (gdb_stdlog,
7046 "infrun: expected thread still hasn't advanced\n");
7047
7048 keep_going_pass_signal (ecs);
7049 }
7050 return 1;
7051 }
7052
7053 /* Is thread TP in the middle of (software or hardware)
7054 single-stepping? (Note the result of this function must never be
7055 passed directly as target_resume's STEP parameter.) */
7056
7057 static int
7058 currently_stepping (struct thread_info *tp)
7059 {
7060 return ((tp->control.step_range_end
7061 && tp->control.step_resume_breakpoint == NULL)
7062 || tp->control.trap_expected
7063 || tp->stepped_breakpoint
7064 || bpstat_should_step ());
7065 }
7066
7067 /* Inferior has stepped into a subroutine call with source code that
7068 we should not step over. Do step to the first line of code in
7069 it. */
7070
7071 static void
7072 handle_step_into_function (struct gdbarch *gdbarch,
7073 struct execution_control_state *ecs)
7074 {
7075 fill_in_stop_func (gdbarch, ecs);
7076
7077 compunit_symtab *cust
7078 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7079 if (cust != NULL && compunit_language (cust) != language_asm)
7080 ecs->stop_func_start
7081 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7082
7083 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7084 /* Use the step_resume_break to step until the end of the prologue,
7085 even if that involves jumps (as it seems to on the vax under
7086 4.2). */
7087 /* If the prologue ends in the middle of a source line, continue to
7088 the end of that source line (if it is still within the function).
7089 Otherwise, just go to end of prologue. */
7090 if (stop_func_sal.end
7091 && stop_func_sal.pc != ecs->stop_func_start
7092 && stop_func_sal.end < ecs->stop_func_end)
7093 ecs->stop_func_start = stop_func_sal.end;
7094
7095 /* Architectures which require breakpoint adjustment might not be able
7096 to place a breakpoint at the computed address. If so, the test
7097 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7098 ecs->stop_func_start to an address at which a breakpoint may be
7099 legitimately placed.
7100
7101 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7102 made, GDB will enter an infinite loop when stepping through
7103 optimized code consisting of VLIW instructions which contain
7104 subinstructions corresponding to different source lines. On
7105 FR-V, it's not permitted to place a breakpoint on any but the
7106 first subinstruction of a VLIW instruction. When a breakpoint is
7107 set, GDB will adjust the breakpoint address to the beginning of
7108 the VLIW instruction. Thus, we need to make the corresponding
7109 adjustment here when computing the stop address. */
7110
7111 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7112 {
7113 ecs->stop_func_start
7114 = gdbarch_adjust_breakpoint_address (gdbarch,
7115 ecs->stop_func_start);
7116 }
7117
7118 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7119 {
7120 /* We are already there: stop now. */
7121 end_stepping_range (ecs);
7122 return;
7123 }
7124 else
7125 {
7126 /* Put the step-breakpoint there and go until there. */
7127 symtab_and_line sr_sal;
7128 sr_sal.pc = ecs->stop_func_start;
7129 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7130 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7131
7132 /* Do not specify what the fp should be when we stop since on
7133 some machines the prologue is where the new fp value is
7134 established. */
7135 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7136
7137 /* And make sure stepping stops right away then. */
7138 ecs->event_thread->control.step_range_end
7139 = ecs->event_thread->control.step_range_start;
7140 }
7141 keep_going (ecs);
7142 }
7143
7144 /* Inferior has stepped backward into a subroutine call with source
7145 code that we should not step over. Do step to the beginning of the
7146 last line of code in it. */
7147
7148 static void
7149 handle_step_into_function_backward (struct gdbarch *gdbarch,
7150 struct execution_control_state *ecs)
7151 {
7152 struct compunit_symtab *cust;
7153 struct symtab_and_line stop_func_sal;
7154
7155 fill_in_stop_func (gdbarch, ecs);
7156
7157 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7158 if (cust != NULL && compunit_language (cust) != language_asm)
7159 ecs->stop_func_start
7160 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7161
7162 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7163
7164 /* OK, we're just going to keep stepping here. */
7165 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7166 {
7167 /* We're there already. Just stop stepping now. */
7168 end_stepping_range (ecs);
7169 }
7170 else
7171 {
7172 /* Else just reset the step range and keep going.
7173 No step-resume breakpoint, they don't work for
7174 epilogues, which can have multiple entry paths. */
7175 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7176 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7177 keep_going (ecs);
7178 }
7179 return;
7180 }
7181
7182 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7183 This is used to both functions and to skip over code. */
7184
7185 static void
7186 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7187 struct symtab_and_line sr_sal,
7188 struct frame_id sr_id,
7189 enum bptype sr_type)
7190 {
7191 /* There should never be more than one step-resume or longjmp-resume
7192 breakpoint per thread, so we should never be setting a new
7193 step_resume_breakpoint when one is already active. */
7194 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7195 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7196
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "infrun: inserting step-resume breakpoint at %s\n",
7200 paddress (gdbarch, sr_sal.pc));
7201
7202 inferior_thread ()->control.step_resume_breakpoint
7203 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7204 }
7205
7206 void
7207 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7208 struct symtab_and_line sr_sal,
7209 struct frame_id sr_id)
7210 {
7211 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7212 sr_sal, sr_id,
7213 bp_step_resume);
7214 }
7215
7216 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7217 This is used to skip a potential signal handler.
7218
7219 This is called with the interrupted function's frame. The signal
7220 handler, when it returns, will resume the interrupted function at
7221 RETURN_FRAME.pc. */
7222
7223 static void
7224 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7225 {
7226 gdb_assert (return_frame != NULL);
7227
7228 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7229
7230 symtab_and_line sr_sal;
7231 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7232 sr_sal.section = find_pc_overlay (sr_sal.pc);
7233 sr_sal.pspace = get_frame_program_space (return_frame);
7234
7235 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7236 get_stack_frame_id (return_frame),
7237 bp_hp_step_resume);
7238 }
7239
7240 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7241 is used to skip a function after stepping into it (for "next" or if
7242 the called function has no debugging information).
7243
7244 The current function has almost always been reached by single
7245 stepping a call or return instruction. NEXT_FRAME belongs to the
7246 current function, and the breakpoint will be set at the caller's
7247 resume address.
7248
7249 This is a separate function rather than reusing
7250 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7251 get_prev_frame, which may stop prematurely (see the implementation
7252 of frame_unwind_caller_id for an example). */
7253
7254 static void
7255 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7256 {
7257 /* We shouldn't have gotten here if we don't know where the call site
7258 is. */
7259 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7260
7261 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7262
7263 symtab_and_line sr_sal;
7264 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7265 frame_unwind_caller_pc (next_frame));
7266 sr_sal.section = find_pc_overlay (sr_sal.pc);
7267 sr_sal.pspace = frame_unwind_program_space (next_frame);
7268
7269 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7270 frame_unwind_caller_id (next_frame));
7271 }
7272
7273 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7274 new breakpoint at the target of a jmp_buf. The handling of
7275 longjmp-resume uses the same mechanisms used for handling
7276 "step-resume" breakpoints. */
7277
7278 static void
7279 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7280 {
7281 /* There should never be more than one longjmp-resume breakpoint per
7282 thread, so we should never be setting a new
7283 longjmp_resume_breakpoint when one is already active. */
7284 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7285
7286 if (debug_infrun)
7287 fprintf_unfiltered (gdb_stdlog,
7288 "infrun: inserting longjmp-resume breakpoint at %s\n",
7289 paddress (gdbarch, pc));
7290
7291 inferior_thread ()->control.exception_resume_breakpoint =
7292 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7293 }
7294
7295 /* Insert an exception resume breakpoint. TP is the thread throwing
7296 the exception. The block B is the block of the unwinder debug hook
7297 function. FRAME is the frame corresponding to the call to this
7298 function. SYM is the symbol of the function argument holding the
7299 target PC of the exception. */
7300
7301 static void
7302 insert_exception_resume_breakpoint (struct thread_info *tp,
7303 const struct block *b,
7304 struct frame_info *frame,
7305 struct symbol *sym)
7306 {
7307 try
7308 {
7309 struct block_symbol vsym;
7310 struct value *value;
7311 CORE_ADDR handler;
7312 struct breakpoint *bp;
7313
7314 vsym = lookup_symbol_search_name (sym->search_name (),
7315 b, VAR_DOMAIN);
7316 value = read_var_value (vsym.symbol, vsym.block, frame);
7317 /* If the value was optimized out, revert to the old behavior. */
7318 if (! value_optimized_out (value))
7319 {
7320 handler = value_as_address (value);
7321
7322 if (debug_infrun)
7323 fprintf_unfiltered (gdb_stdlog,
7324 "infrun: exception resume at %lx\n",
7325 (unsigned long) handler);
7326
7327 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7328 handler,
7329 bp_exception_resume).release ();
7330
7331 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7332 frame = NULL;
7333
7334 bp->thread = tp->global_num;
7335 inferior_thread ()->control.exception_resume_breakpoint = bp;
7336 }
7337 }
7338 catch (const gdb_exception_error &e)
7339 {
7340 /* We want to ignore errors here. */
7341 }
7342 }
7343
7344 /* A helper for check_exception_resume that sets an
7345 exception-breakpoint based on a SystemTap probe. */
7346
7347 static void
7348 insert_exception_resume_from_probe (struct thread_info *tp,
7349 const struct bound_probe *probe,
7350 struct frame_info *frame)
7351 {
7352 struct value *arg_value;
7353 CORE_ADDR handler;
7354 struct breakpoint *bp;
7355
7356 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7357 if (!arg_value)
7358 return;
7359
7360 handler = value_as_address (arg_value);
7361
7362 if (debug_infrun)
7363 fprintf_unfiltered (gdb_stdlog,
7364 "infrun: exception resume at %s\n",
7365 paddress (get_objfile_arch (probe->objfile),
7366 handler));
7367
7368 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7369 handler, bp_exception_resume).release ();
7370 bp->thread = tp->global_num;
7371 inferior_thread ()->control.exception_resume_breakpoint = bp;
7372 }
7373
7374 /* This is called when an exception has been intercepted. Check to
7375 see whether the exception's destination is of interest, and if so,
7376 set an exception resume breakpoint there. */
7377
7378 static void
7379 check_exception_resume (struct execution_control_state *ecs,
7380 struct frame_info *frame)
7381 {
7382 struct bound_probe probe;
7383 struct symbol *func;
7384
7385 /* First see if this exception unwinding breakpoint was set via a
7386 SystemTap probe point. If so, the probe has two arguments: the
7387 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7388 set a breakpoint there. */
7389 probe = find_probe_by_pc (get_frame_pc (frame));
7390 if (probe.prob)
7391 {
7392 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7393 return;
7394 }
7395
7396 func = get_frame_function (frame);
7397 if (!func)
7398 return;
7399
7400 try
7401 {
7402 const struct block *b;
7403 struct block_iterator iter;
7404 struct symbol *sym;
7405 int argno = 0;
7406
7407 /* The exception breakpoint is a thread-specific breakpoint on
7408 the unwinder's debug hook, declared as:
7409
7410 void _Unwind_DebugHook (void *cfa, void *handler);
7411
7412 The CFA argument indicates the frame to which control is
7413 about to be transferred. HANDLER is the destination PC.
7414
7415 We ignore the CFA and set a temporary breakpoint at HANDLER.
7416 This is not extremely efficient but it avoids issues in gdb
7417 with computing the DWARF CFA, and it also works even in weird
7418 cases such as throwing an exception from inside a signal
7419 handler. */
7420
7421 b = SYMBOL_BLOCK_VALUE (func);
7422 ALL_BLOCK_SYMBOLS (b, iter, sym)
7423 {
7424 if (!SYMBOL_IS_ARGUMENT (sym))
7425 continue;
7426
7427 if (argno == 0)
7428 ++argno;
7429 else
7430 {
7431 insert_exception_resume_breakpoint (ecs->event_thread,
7432 b, frame, sym);
7433 break;
7434 }
7435 }
7436 }
7437 catch (const gdb_exception_error &e)
7438 {
7439 }
7440 }
7441
7442 static void
7443 stop_waiting (struct execution_control_state *ecs)
7444 {
7445 if (debug_infrun)
7446 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7447
7448 /* Let callers know we don't want to wait for the inferior anymore. */
7449 ecs->wait_some_more = 0;
7450
7451 /* If all-stop, but the target is always in non-stop mode, stop all
7452 threads now that we're presenting the stop to the user. */
7453 if (!non_stop && target_is_non_stop_p ())
7454 stop_all_threads ();
7455 }
7456
7457 /* Like keep_going, but passes the signal to the inferior, even if the
7458 signal is set to nopass. */
7459
7460 static void
7461 keep_going_pass_signal (struct execution_control_state *ecs)
7462 {
7463 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7464 gdb_assert (!ecs->event_thread->resumed);
7465
7466 /* Save the pc before execution, to compare with pc after stop. */
7467 ecs->event_thread->prev_pc
7468 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7469
7470 if (ecs->event_thread->control.trap_expected)
7471 {
7472 struct thread_info *tp = ecs->event_thread;
7473
7474 if (debug_infrun)
7475 fprintf_unfiltered (gdb_stdlog,
7476 "infrun: %s has trap_expected set, "
7477 "resuming to collect trap\n",
7478 target_pid_to_str (tp->ptid).c_str ());
7479
7480 /* We haven't yet gotten our trap, and either: intercepted a
7481 non-signal event (e.g., a fork); or took a signal which we
7482 are supposed to pass through to the inferior. Simply
7483 continue. */
7484 resume (ecs->event_thread->suspend.stop_signal);
7485 }
7486 else if (step_over_info_valid_p ())
7487 {
7488 /* Another thread is stepping over a breakpoint in-line. If
7489 this thread needs a step-over too, queue the request. In
7490 either case, this resume must be deferred for later. */
7491 struct thread_info *tp = ecs->event_thread;
7492
7493 if (ecs->hit_singlestep_breakpoint
7494 || thread_still_needs_step_over (tp))
7495 {
7496 if (debug_infrun)
7497 fprintf_unfiltered (gdb_stdlog,
7498 "infrun: step-over already in progress: "
7499 "step-over for %s deferred\n",
7500 target_pid_to_str (tp->ptid).c_str ());
7501 global_thread_step_over_chain_enqueue (tp);
7502 }
7503 else
7504 {
7505 if (debug_infrun)
7506 fprintf_unfiltered (gdb_stdlog,
7507 "infrun: step-over in progress: "
7508 "resume of %s deferred\n",
7509 target_pid_to_str (tp->ptid).c_str ());
7510 }
7511 }
7512 else
7513 {
7514 struct regcache *regcache = get_current_regcache ();
7515 int remove_bp;
7516 int remove_wps;
7517 step_over_what step_what;
7518
7519 /* Either the trap was not expected, but we are continuing
7520 anyway (if we got a signal, the user asked it be passed to
7521 the child)
7522 -- or --
7523 We got our expected trap, but decided we should resume from
7524 it.
7525
7526 We're going to run this baby now!
7527
7528 Note that insert_breakpoints won't try to re-insert
7529 already inserted breakpoints. Therefore, we don't
7530 care if breakpoints were already inserted, or not. */
7531
7532 /* If we need to step over a breakpoint, and we're not using
7533 displaced stepping to do so, insert all breakpoints
7534 (watchpoints, etc.) but the one we're stepping over, step one
7535 instruction, and then re-insert the breakpoint when that step
7536 is finished. */
7537
7538 step_what = thread_still_needs_step_over (ecs->event_thread);
7539
7540 remove_bp = (ecs->hit_singlestep_breakpoint
7541 || (step_what & STEP_OVER_BREAKPOINT));
7542 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7543
7544 /* We can't use displaced stepping if we need to step past a
7545 watchpoint. The instruction copied to the scratch pad would
7546 still trigger the watchpoint. */
7547 if (remove_bp
7548 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7549 {
7550 set_step_over_info (regcache->aspace (),
7551 regcache_read_pc (regcache), remove_wps,
7552 ecs->event_thread->global_num);
7553 }
7554 else if (remove_wps)
7555 set_step_over_info (NULL, 0, remove_wps, -1);
7556
7557 /* If we now need to do an in-line step-over, we need to stop
7558 all other threads. Note this must be done before
7559 insert_breakpoints below, because that removes the breakpoint
7560 we're about to step over, otherwise other threads could miss
7561 it. */
7562 if (step_over_info_valid_p () && target_is_non_stop_p ())
7563 stop_all_threads ();
7564
7565 /* Stop stepping if inserting breakpoints fails. */
7566 try
7567 {
7568 insert_breakpoints ();
7569 }
7570 catch (const gdb_exception_error &e)
7571 {
7572 exception_print (gdb_stderr, e);
7573 stop_waiting (ecs);
7574 clear_step_over_info ();
7575 return;
7576 }
7577
7578 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7579
7580 resume (ecs->event_thread->suspend.stop_signal);
7581 }
7582
7583 prepare_to_wait (ecs);
7584 }
7585
7586 /* Called when we should continue running the inferior, because the
7587 current event doesn't cause a user visible stop. This does the
7588 resuming part; waiting for the next event is done elsewhere. */
7589
7590 static void
7591 keep_going (struct execution_control_state *ecs)
7592 {
7593 if (ecs->event_thread->control.trap_expected
7594 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7595 ecs->event_thread->control.trap_expected = 0;
7596
7597 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7598 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7599 keep_going_pass_signal (ecs);
7600 }
7601
7602 /* This function normally comes after a resume, before
7603 handle_inferior_event exits. It takes care of any last bits of
7604 housekeeping, and sets the all-important wait_some_more flag. */
7605
7606 static void
7607 prepare_to_wait (struct execution_control_state *ecs)
7608 {
7609 if (debug_infrun)
7610 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7611
7612 ecs->wait_some_more = 1;
7613
7614 if (!target_is_async_p ())
7615 mark_infrun_async_event_handler ();
7616 }
7617
7618 /* We are done with the step range of a step/next/si/ni command.
7619 Called once for each n of a "step n" operation. */
7620
7621 static void
7622 end_stepping_range (struct execution_control_state *ecs)
7623 {
7624 ecs->event_thread->control.stop_step = 1;
7625 stop_waiting (ecs);
7626 }
7627
7628 /* Several print_*_reason functions to print why the inferior has stopped.
7629 We always print something when the inferior exits, or receives a signal.
7630 The rest of the cases are dealt with later on in normal_stop and
7631 print_it_typical. Ideally there should be a call to one of these
7632 print_*_reason functions functions from handle_inferior_event each time
7633 stop_waiting is called.
7634
7635 Note that we don't call these directly, instead we delegate that to
7636 the interpreters, through observers. Interpreters then call these
7637 with whatever uiout is right. */
7638
7639 void
7640 print_end_stepping_range_reason (struct ui_out *uiout)
7641 {
7642 /* For CLI-like interpreters, print nothing. */
7643
7644 if (uiout->is_mi_like_p ())
7645 {
7646 uiout->field_string ("reason",
7647 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7648 }
7649 }
7650
7651 void
7652 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7653 {
7654 annotate_signalled ();
7655 if (uiout->is_mi_like_p ())
7656 uiout->field_string
7657 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7658 uiout->text ("\nProgram terminated with signal ");
7659 annotate_signal_name ();
7660 uiout->field_string ("signal-name",
7661 gdb_signal_to_name (siggnal));
7662 annotate_signal_name_end ();
7663 uiout->text (", ");
7664 annotate_signal_string ();
7665 uiout->field_string ("signal-meaning",
7666 gdb_signal_to_string (siggnal));
7667 annotate_signal_string_end ();
7668 uiout->text (".\n");
7669 uiout->text ("The program no longer exists.\n");
7670 }
7671
7672 void
7673 print_exited_reason (struct ui_out *uiout, int exitstatus)
7674 {
7675 struct inferior *inf = current_inferior ();
7676 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7677
7678 annotate_exited (exitstatus);
7679 if (exitstatus)
7680 {
7681 if (uiout->is_mi_like_p ())
7682 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7683 std::string exit_code_str
7684 = string_printf ("0%o", (unsigned int) exitstatus);
7685 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7686 plongest (inf->num), pidstr.c_str (),
7687 string_field ("exit-code", exit_code_str.c_str ()));
7688 }
7689 else
7690 {
7691 if (uiout->is_mi_like_p ())
7692 uiout->field_string
7693 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7694 uiout->message ("[Inferior %s (%s) exited normally]\n",
7695 plongest (inf->num), pidstr.c_str ());
7696 }
7697 }
7698
7699 /* Some targets/architectures can do extra processing/display of
7700 segmentation faults. E.g., Intel MPX boundary faults.
7701 Call the architecture dependent function to handle the fault. */
7702
7703 static void
7704 handle_segmentation_fault (struct ui_out *uiout)
7705 {
7706 struct regcache *regcache = get_current_regcache ();
7707 struct gdbarch *gdbarch = regcache->arch ();
7708
7709 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7710 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7711 }
7712
7713 void
7714 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7715 {
7716 struct thread_info *thr = inferior_thread ();
7717
7718 annotate_signal ();
7719
7720 if (uiout->is_mi_like_p ())
7721 ;
7722 else if (show_thread_that_caused_stop ())
7723 {
7724 const char *name;
7725
7726 uiout->text ("\nThread ");
7727 uiout->field_string ("thread-id", print_thread_id (thr));
7728
7729 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7730 if (name != NULL)
7731 {
7732 uiout->text (" \"");
7733 uiout->field_string ("name", name);
7734 uiout->text ("\"");
7735 }
7736 }
7737 else
7738 uiout->text ("\nProgram");
7739
7740 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7741 uiout->text (" stopped");
7742 else
7743 {
7744 uiout->text (" received signal ");
7745 annotate_signal_name ();
7746 if (uiout->is_mi_like_p ())
7747 uiout->field_string
7748 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7749 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7750 annotate_signal_name_end ();
7751 uiout->text (", ");
7752 annotate_signal_string ();
7753 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7754
7755 if (siggnal == GDB_SIGNAL_SEGV)
7756 handle_segmentation_fault (uiout);
7757
7758 annotate_signal_string_end ();
7759 }
7760 uiout->text (".\n");
7761 }
7762
7763 void
7764 print_no_history_reason (struct ui_out *uiout)
7765 {
7766 uiout->text ("\nNo more reverse-execution history.\n");
7767 }
7768
7769 /* Print current location without a level number, if we have changed
7770 functions or hit a breakpoint. Print source line if we have one.
7771 bpstat_print contains the logic deciding in detail what to print,
7772 based on the event(s) that just occurred. */
7773
7774 static void
7775 print_stop_location (struct target_waitstatus *ws)
7776 {
7777 int bpstat_ret;
7778 enum print_what source_flag;
7779 int do_frame_printing = 1;
7780 struct thread_info *tp = inferior_thread ();
7781
7782 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7783 switch (bpstat_ret)
7784 {
7785 case PRINT_UNKNOWN:
7786 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7787 should) carry around the function and does (or should) use
7788 that when doing a frame comparison. */
7789 if (tp->control.stop_step
7790 && frame_id_eq (tp->control.step_frame_id,
7791 get_frame_id (get_current_frame ()))
7792 && (tp->control.step_start_function
7793 == find_pc_function (tp->suspend.stop_pc)))
7794 {
7795 /* Finished step, just print source line. */
7796 source_flag = SRC_LINE;
7797 }
7798 else
7799 {
7800 /* Print location and source line. */
7801 source_flag = SRC_AND_LOC;
7802 }
7803 break;
7804 case PRINT_SRC_AND_LOC:
7805 /* Print location and source line. */
7806 source_flag = SRC_AND_LOC;
7807 break;
7808 case PRINT_SRC_ONLY:
7809 source_flag = SRC_LINE;
7810 break;
7811 case PRINT_NOTHING:
7812 /* Something bogus. */
7813 source_flag = SRC_LINE;
7814 do_frame_printing = 0;
7815 break;
7816 default:
7817 internal_error (__FILE__, __LINE__, _("Unknown value."));
7818 }
7819
7820 /* The behavior of this routine with respect to the source
7821 flag is:
7822 SRC_LINE: Print only source line
7823 LOCATION: Print only location
7824 SRC_AND_LOC: Print location and source line. */
7825 if (do_frame_printing)
7826 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7827 }
7828
7829 /* See infrun.h. */
7830
7831 void
7832 print_stop_event (struct ui_out *uiout, bool displays)
7833 {
7834 struct target_waitstatus last;
7835 ptid_t last_ptid;
7836 struct thread_info *tp;
7837
7838 get_last_target_status (&last_ptid, &last);
7839
7840 {
7841 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7842
7843 print_stop_location (&last);
7844
7845 /* Display the auto-display expressions. */
7846 if (displays)
7847 do_displays ();
7848 }
7849
7850 tp = inferior_thread ();
7851 if (tp->thread_fsm != NULL
7852 && tp->thread_fsm->finished_p ())
7853 {
7854 struct return_value_info *rv;
7855
7856 rv = tp->thread_fsm->return_value ();
7857 if (rv != NULL)
7858 print_return_value (uiout, rv);
7859 }
7860 }
7861
7862 /* See infrun.h. */
7863
7864 void
7865 maybe_remove_breakpoints (void)
7866 {
7867 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7868 {
7869 if (remove_breakpoints ())
7870 {
7871 target_terminal::ours_for_output ();
7872 printf_filtered (_("Cannot remove breakpoints because "
7873 "program is no longer writable.\nFurther "
7874 "execution is probably impossible.\n"));
7875 }
7876 }
7877 }
7878
7879 /* The execution context that just caused a normal stop. */
7880
7881 struct stop_context
7882 {
7883 stop_context ();
7884 ~stop_context ();
7885
7886 DISABLE_COPY_AND_ASSIGN (stop_context);
7887
7888 bool changed () const;
7889
7890 /* The stop ID. */
7891 ULONGEST stop_id;
7892
7893 /* The event PTID. */
7894
7895 ptid_t ptid;
7896
7897 /* If stopp for a thread event, this is the thread that caused the
7898 stop. */
7899 struct thread_info *thread;
7900
7901 /* The inferior that caused the stop. */
7902 int inf_num;
7903 };
7904
7905 /* Initializes a new stop context. If stopped for a thread event, this
7906 takes a strong reference to the thread. */
7907
7908 stop_context::stop_context ()
7909 {
7910 stop_id = get_stop_id ();
7911 ptid = inferior_ptid;
7912 inf_num = current_inferior ()->num;
7913
7914 if (inferior_ptid != null_ptid)
7915 {
7916 /* Take a strong reference so that the thread can't be deleted
7917 yet. */
7918 thread = inferior_thread ();
7919 thread->incref ();
7920 }
7921 else
7922 thread = NULL;
7923 }
7924
7925 /* Release a stop context previously created with save_stop_context.
7926 Releases the strong reference to the thread as well. */
7927
7928 stop_context::~stop_context ()
7929 {
7930 if (thread != NULL)
7931 thread->decref ();
7932 }
7933
7934 /* Return true if the current context no longer matches the saved stop
7935 context. */
7936
7937 bool
7938 stop_context::changed () const
7939 {
7940 if (ptid != inferior_ptid)
7941 return true;
7942 if (inf_num != current_inferior ()->num)
7943 return true;
7944 if (thread != NULL && thread->state != THREAD_STOPPED)
7945 return true;
7946 if (get_stop_id () != stop_id)
7947 return true;
7948 return false;
7949 }
7950
7951 /* See infrun.h. */
7952
7953 int
7954 normal_stop (void)
7955 {
7956 struct target_waitstatus last;
7957 ptid_t last_ptid;
7958
7959 get_last_target_status (&last_ptid, &last);
7960
7961 new_stop_id ();
7962
7963 /* If an exception is thrown from this point on, make sure to
7964 propagate GDB's knowledge of the executing state to the
7965 frontend/user running state. A QUIT is an easy exception to see
7966 here, so do this before any filtered output. */
7967
7968 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7969
7970 if (!non_stop)
7971 maybe_finish_thread_state.emplace (minus_one_ptid);
7972 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7973 || last.kind == TARGET_WAITKIND_EXITED)
7974 {
7975 /* On some targets, we may still have live threads in the
7976 inferior when we get a process exit event. E.g., for
7977 "checkpoint", when the current checkpoint/fork exits,
7978 linux-fork.c automatically switches to another fork from
7979 within target_mourn_inferior. */
7980 if (inferior_ptid != null_ptid)
7981 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
7982 }
7983 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7984 maybe_finish_thread_state.emplace (inferior_ptid);
7985
7986 /* As we're presenting a stop, and potentially removing breakpoints,
7987 update the thread list so we can tell whether there are threads
7988 running on the target. With target remote, for example, we can
7989 only learn about new threads when we explicitly update the thread
7990 list. Do this before notifying the interpreters about signal
7991 stops, end of stepping ranges, etc., so that the "new thread"
7992 output is emitted before e.g., "Program received signal FOO",
7993 instead of after. */
7994 update_thread_list ();
7995
7996 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7997 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
7998
7999 /* As with the notification of thread events, we want to delay
8000 notifying the user that we've switched thread context until
8001 the inferior actually stops.
8002
8003 There's no point in saying anything if the inferior has exited.
8004 Note that SIGNALLED here means "exited with a signal", not
8005 "received a signal".
8006
8007 Also skip saying anything in non-stop mode. In that mode, as we
8008 don't want GDB to switch threads behind the user's back, to avoid
8009 races where the user is typing a command to apply to thread x,
8010 but GDB switches to thread y before the user finishes entering
8011 the command, fetch_inferior_event installs a cleanup to restore
8012 the current thread back to the thread the user had selected right
8013 after this event is handled, so we're not really switching, only
8014 informing of a stop. */
8015 if (!non_stop
8016 && previous_inferior_ptid != inferior_ptid
8017 && target_has_execution
8018 && last.kind != TARGET_WAITKIND_SIGNALLED
8019 && last.kind != TARGET_WAITKIND_EXITED
8020 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8021 {
8022 SWITCH_THRU_ALL_UIS ()
8023 {
8024 target_terminal::ours_for_output ();
8025 printf_filtered (_("[Switching to %s]\n"),
8026 target_pid_to_str (inferior_ptid).c_str ());
8027 annotate_thread_changed ();
8028 }
8029 previous_inferior_ptid = inferior_ptid;
8030 }
8031
8032 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8033 {
8034 SWITCH_THRU_ALL_UIS ()
8035 if (current_ui->prompt_state == PROMPT_BLOCKED)
8036 {
8037 target_terminal::ours_for_output ();
8038 printf_filtered (_("No unwaited-for children left.\n"));
8039 }
8040 }
8041
8042 /* Note: this depends on the update_thread_list call above. */
8043 maybe_remove_breakpoints ();
8044
8045 /* If an auto-display called a function and that got a signal,
8046 delete that auto-display to avoid an infinite recursion. */
8047
8048 if (stopped_by_random_signal)
8049 disable_current_display ();
8050
8051 SWITCH_THRU_ALL_UIS ()
8052 {
8053 async_enable_stdin ();
8054 }
8055
8056 /* Let the user/frontend see the threads as stopped. */
8057 maybe_finish_thread_state.reset ();
8058
8059 /* Select innermost stack frame - i.e., current frame is frame 0,
8060 and current location is based on that. Handle the case where the
8061 dummy call is returning after being stopped. E.g. the dummy call
8062 previously hit a breakpoint. (If the dummy call returns
8063 normally, we won't reach here.) Do this before the stop hook is
8064 run, so that it doesn't get to see the temporary dummy frame,
8065 which is not where we'll present the stop. */
8066 if (has_stack_frames ())
8067 {
8068 if (stop_stack_dummy == STOP_STACK_DUMMY)
8069 {
8070 /* Pop the empty frame that contains the stack dummy. This
8071 also restores inferior state prior to the call (struct
8072 infcall_suspend_state). */
8073 struct frame_info *frame = get_current_frame ();
8074
8075 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8076 frame_pop (frame);
8077 /* frame_pop calls reinit_frame_cache as the last thing it
8078 does which means there's now no selected frame. */
8079 }
8080
8081 select_frame (get_current_frame ());
8082
8083 /* Set the current source location. */
8084 set_current_sal_from_frame (get_current_frame ());
8085 }
8086
8087 /* Look up the hook_stop and run it (CLI internally handles problem
8088 of stop_command's pre-hook not existing). */
8089 if (stop_command != NULL)
8090 {
8091 stop_context saved_context;
8092
8093 try
8094 {
8095 execute_cmd_pre_hook (stop_command);
8096 }
8097 catch (const gdb_exception &ex)
8098 {
8099 exception_fprintf (gdb_stderr, ex,
8100 "Error while running hook_stop:\n");
8101 }
8102
8103 /* If the stop hook resumes the target, then there's no point in
8104 trying to notify about the previous stop; its context is
8105 gone. Likewise if the command switches thread or inferior --
8106 the observers would print a stop for the wrong
8107 thread/inferior. */
8108 if (saved_context.changed ())
8109 return 1;
8110 }
8111
8112 /* Notify observers about the stop. This is where the interpreters
8113 print the stop event. */
8114 if (inferior_ptid != null_ptid)
8115 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8116 stop_print_frame);
8117 else
8118 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8119
8120 annotate_stopped ();
8121
8122 if (target_has_execution)
8123 {
8124 if (last.kind != TARGET_WAITKIND_SIGNALLED
8125 && last.kind != TARGET_WAITKIND_EXITED
8126 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8127 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8128 Delete any breakpoint that is to be deleted at the next stop. */
8129 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8130 }
8131
8132 /* Try to get rid of automatically added inferiors that are no
8133 longer needed. Keeping those around slows down things linearly.
8134 Note that this never removes the current inferior. */
8135 prune_inferiors ();
8136
8137 return 0;
8138 }
8139 \f
8140 int
8141 signal_stop_state (int signo)
8142 {
8143 return signal_stop[signo];
8144 }
8145
8146 int
8147 signal_print_state (int signo)
8148 {
8149 return signal_print[signo];
8150 }
8151
8152 int
8153 signal_pass_state (int signo)
8154 {
8155 return signal_program[signo];
8156 }
8157
8158 static void
8159 signal_cache_update (int signo)
8160 {
8161 if (signo == -1)
8162 {
8163 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8164 signal_cache_update (signo);
8165
8166 return;
8167 }
8168
8169 signal_pass[signo] = (signal_stop[signo] == 0
8170 && signal_print[signo] == 0
8171 && signal_program[signo] == 1
8172 && signal_catch[signo] == 0);
8173 }
8174
8175 int
8176 signal_stop_update (int signo, int state)
8177 {
8178 int ret = signal_stop[signo];
8179
8180 signal_stop[signo] = state;
8181 signal_cache_update (signo);
8182 return ret;
8183 }
8184
8185 int
8186 signal_print_update (int signo, int state)
8187 {
8188 int ret = signal_print[signo];
8189
8190 signal_print[signo] = state;
8191 signal_cache_update (signo);
8192 return ret;
8193 }
8194
8195 int
8196 signal_pass_update (int signo, int state)
8197 {
8198 int ret = signal_program[signo];
8199
8200 signal_program[signo] = state;
8201 signal_cache_update (signo);
8202 return ret;
8203 }
8204
8205 /* Update the global 'signal_catch' from INFO and notify the
8206 target. */
8207
8208 void
8209 signal_catch_update (const unsigned int *info)
8210 {
8211 int i;
8212
8213 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8214 signal_catch[i] = info[i] > 0;
8215 signal_cache_update (-1);
8216 target_pass_signals (signal_pass);
8217 }
8218
8219 static void
8220 sig_print_header (void)
8221 {
8222 printf_filtered (_("Signal Stop\tPrint\tPass "
8223 "to program\tDescription\n"));
8224 }
8225
8226 static void
8227 sig_print_info (enum gdb_signal oursig)
8228 {
8229 const char *name = gdb_signal_to_name (oursig);
8230 int name_padding = 13 - strlen (name);
8231
8232 if (name_padding <= 0)
8233 name_padding = 0;
8234
8235 printf_filtered ("%s", name);
8236 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8237 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8238 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8239 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8240 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8241 }
8242
8243 /* Specify how various signals in the inferior should be handled. */
8244
8245 static void
8246 handle_command (const char *args, int from_tty)
8247 {
8248 int digits, wordlen;
8249 int sigfirst, siglast;
8250 enum gdb_signal oursig;
8251 int allsigs;
8252
8253 if (args == NULL)
8254 {
8255 error_no_arg (_("signal to handle"));
8256 }
8257
8258 /* Allocate and zero an array of flags for which signals to handle. */
8259
8260 const size_t nsigs = GDB_SIGNAL_LAST;
8261 unsigned char sigs[nsigs] {};
8262
8263 /* Break the command line up into args. */
8264
8265 gdb_argv built_argv (args);
8266
8267 /* Walk through the args, looking for signal oursigs, signal names, and
8268 actions. Signal numbers and signal names may be interspersed with
8269 actions, with the actions being performed for all signals cumulatively
8270 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8271
8272 for (char *arg : built_argv)
8273 {
8274 wordlen = strlen (arg);
8275 for (digits = 0; isdigit (arg[digits]); digits++)
8276 {;
8277 }
8278 allsigs = 0;
8279 sigfirst = siglast = -1;
8280
8281 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8282 {
8283 /* Apply action to all signals except those used by the
8284 debugger. Silently skip those. */
8285 allsigs = 1;
8286 sigfirst = 0;
8287 siglast = nsigs - 1;
8288 }
8289 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8290 {
8291 SET_SIGS (nsigs, sigs, signal_stop);
8292 SET_SIGS (nsigs, sigs, signal_print);
8293 }
8294 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8295 {
8296 UNSET_SIGS (nsigs, sigs, signal_program);
8297 }
8298 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8299 {
8300 SET_SIGS (nsigs, sigs, signal_print);
8301 }
8302 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8303 {
8304 SET_SIGS (nsigs, sigs, signal_program);
8305 }
8306 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8307 {
8308 UNSET_SIGS (nsigs, sigs, signal_stop);
8309 }
8310 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8311 {
8312 SET_SIGS (nsigs, sigs, signal_program);
8313 }
8314 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8315 {
8316 UNSET_SIGS (nsigs, sigs, signal_print);
8317 UNSET_SIGS (nsigs, sigs, signal_stop);
8318 }
8319 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8320 {
8321 UNSET_SIGS (nsigs, sigs, signal_program);
8322 }
8323 else if (digits > 0)
8324 {
8325 /* It is numeric. The numeric signal refers to our own
8326 internal signal numbering from target.h, not to host/target
8327 signal number. This is a feature; users really should be
8328 using symbolic names anyway, and the common ones like
8329 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8330
8331 sigfirst = siglast = (int)
8332 gdb_signal_from_command (atoi (arg));
8333 if (arg[digits] == '-')
8334 {
8335 siglast = (int)
8336 gdb_signal_from_command (atoi (arg + digits + 1));
8337 }
8338 if (sigfirst > siglast)
8339 {
8340 /* Bet he didn't figure we'd think of this case... */
8341 std::swap (sigfirst, siglast);
8342 }
8343 }
8344 else
8345 {
8346 oursig = gdb_signal_from_name (arg);
8347 if (oursig != GDB_SIGNAL_UNKNOWN)
8348 {
8349 sigfirst = siglast = (int) oursig;
8350 }
8351 else
8352 {
8353 /* Not a number and not a recognized flag word => complain. */
8354 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8355 }
8356 }
8357
8358 /* If any signal numbers or symbol names were found, set flags for
8359 which signals to apply actions to. */
8360
8361 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8362 {
8363 switch ((enum gdb_signal) signum)
8364 {
8365 case GDB_SIGNAL_TRAP:
8366 case GDB_SIGNAL_INT:
8367 if (!allsigs && !sigs[signum])
8368 {
8369 if (query (_("%s is used by the debugger.\n\
8370 Are you sure you want to change it? "),
8371 gdb_signal_to_name ((enum gdb_signal) signum)))
8372 {
8373 sigs[signum] = 1;
8374 }
8375 else
8376 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8377 }
8378 break;
8379 case GDB_SIGNAL_0:
8380 case GDB_SIGNAL_DEFAULT:
8381 case GDB_SIGNAL_UNKNOWN:
8382 /* Make sure that "all" doesn't print these. */
8383 break;
8384 default:
8385 sigs[signum] = 1;
8386 break;
8387 }
8388 }
8389 }
8390
8391 for (int signum = 0; signum < nsigs; signum++)
8392 if (sigs[signum])
8393 {
8394 signal_cache_update (-1);
8395 target_pass_signals (signal_pass);
8396 target_program_signals (signal_program);
8397
8398 if (from_tty)
8399 {
8400 /* Show the results. */
8401 sig_print_header ();
8402 for (; signum < nsigs; signum++)
8403 if (sigs[signum])
8404 sig_print_info ((enum gdb_signal) signum);
8405 }
8406
8407 break;
8408 }
8409 }
8410
8411 /* Complete the "handle" command. */
8412
8413 static void
8414 handle_completer (struct cmd_list_element *ignore,
8415 completion_tracker &tracker,
8416 const char *text, const char *word)
8417 {
8418 static const char * const keywords[] =
8419 {
8420 "all",
8421 "stop",
8422 "ignore",
8423 "print",
8424 "pass",
8425 "nostop",
8426 "noignore",
8427 "noprint",
8428 "nopass",
8429 NULL,
8430 };
8431
8432 signal_completer (ignore, tracker, text, word);
8433 complete_on_enum (tracker, keywords, word, word);
8434 }
8435
8436 enum gdb_signal
8437 gdb_signal_from_command (int num)
8438 {
8439 if (num >= 1 && num <= 15)
8440 return (enum gdb_signal) num;
8441 error (_("Only signals 1-15 are valid as numeric signals.\n\
8442 Use \"info signals\" for a list of symbolic signals."));
8443 }
8444
8445 /* Print current contents of the tables set by the handle command.
8446 It is possible we should just be printing signals actually used
8447 by the current target (but for things to work right when switching
8448 targets, all signals should be in the signal tables). */
8449
8450 static void
8451 info_signals_command (const char *signum_exp, int from_tty)
8452 {
8453 enum gdb_signal oursig;
8454
8455 sig_print_header ();
8456
8457 if (signum_exp)
8458 {
8459 /* First see if this is a symbol name. */
8460 oursig = gdb_signal_from_name (signum_exp);
8461 if (oursig == GDB_SIGNAL_UNKNOWN)
8462 {
8463 /* No, try numeric. */
8464 oursig =
8465 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8466 }
8467 sig_print_info (oursig);
8468 return;
8469 }
8470
8471 printf_filtered ("\n");
8472 /* These ugly casts brought to you by the native VAX compiler. */
8473 for (oursig = GDB_SIGNAL_FIRST;
8474 (int) oursig < (int) GDB_SIGNAL_LAST;
8475 oursig = (enum gdb_signal) ((int) oursig + 1))
8476 {
8477 QUIT;
8478
8479 if (oursig != GDB_SIGNAL_UNKNOWN
8480 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8481 sig_print_info (oursig);
8482 }
8483
8484 printf_filtered (_("\nUse the \"handle\" command "
8485 "to change these tables.\n"));
8486 }
8487
8488 /* The $_siginfo convenience variable is a bit special. We don't know
8489 for sure the type of the value until we actually have a chance to
8490 fetch the data. The type can change depending on gdbarch, so it is
8491 also dependent on which thread you have selected.
8492
8493 1. making $_siginfo be an internalvar that creates a new value on
8494 access.
8495
8496 2. making the value of $_siginfo be an lval_computed value. */
8497
8498 /* This function implements the lval_computed support for reading a
8499 $_siginfo value. */
8500
8501 static void
8502 siginfo_value_read (struct value *v)
8503 {
8504 LONGEST transferred;
8505
8506 /* If we can access registers, so can we access $_siginfo. Likewise
8507 vice versa. */
8508 validate_registers_access ();
8509
8510 transferred =
8511 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8512 NULL,
8513 value_contents_all_raw (v),
8514 value_offset (v),
8515 TYPE_LENGTH (value_type (v)));
8516
8517 if (transferred != TYPE_LENGTH (value_type (v)))
8518 error (_("Unable to read siginfo"));
8519 }
8520
8521 /* This function implements the lval_computed support for writing a
8522 $_siginfo value. */
8523
8524 static void
8525 siginfo_value_write (struct value *v, struct value *fromval)
8526 {
8527 LONGEST transferred;
8528
8529 /* If we can access registers, so can we access $_siginfo. Likewise
8530 vice versa. */
8531 validate_registers_access ();
8532
8533 transferred = target_write (current_top_target (),
8534 TARGET_OBJECT_SIGNAL_INFO,
8535 NULL,
8536 value_contents_all_raw (fromval),
8537 value_offset (v),
8538 TYPE_LENGTH (value_type (fromval)));
8539
8540 if (transferred != TYPE_LENGTH (value_type (fromval)))
8541 error (_("Unable to write siginfo"));
8542 }
8543
8544 static const struct lval_funcs siginfo_value_funcs =
8545 {
8546 siginfo_value_read,
8547 siginfo_value_write
8548 };
8549
8550 /* Return a new value with the correct type for the siginfo object of
8551 the current thread using architecture GDBARCH. Return a void value
8552 if there's no object available. */
8553
8554 static struct value *
8555 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8556 void *ignore)
8557 {
8558 if (target_has_stack
8559 && inferior_ptid != null_ptid
8560 && gdbarch_get_siginfo_type_p (gdbarch))
8561 {
8562 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8563
8564 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8565 }
8566
8567 return allocate_value (builtin_type (gdbarch)->builtin_void);
8568 }
8569
8570 \f
8571 /* infcall_suspend_state contains state about the program itself like its
8572 registers and any signal it received when it last stopped.
8573 This state must be restored regardless of how the inferior function call
8574 ends (either successfully, or after it hits a breakpoint or signal)
8575 if the program is to properly continue where it left off. */
8576
8577 class infcall_suspend_state
8578 {
8579 public:
8580 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8581 once the inferior function call has finished. */
8582 infcall_suspend_state (struct gdbarch *gdbarch,
8583 const struct thread_info *tp,
8584 struct regcache *regcache)
8585 : m_thread_suspend (tp->suspend),
8586 m_registers (new readonly_detached_regcache (*regcache))
8587 {
8588 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8589
8590 if (gdbarch_get_siginfo_type_p (gdbarch))
8591 {
8592 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8593 size_t len = TYPE_LENGTH (type);
8594
8595 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8596
8597 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8598 siginfo_data.get (), 0, len) != len)
8599 {
8600 /* Errors ignored. */
8601 siginfo_data.reset (nullptr);
8602 }
8603 }
8604
8605 if (siginfo_data)
8606 {
8607 m_siginfo_gdbarch = gdbarch;
8608 m_siginfo_data = std::move (siginfo_data);
8609 }
8610 }
8611
8612 /* Return a pointer to the stored register state. */
8613
8614 readonly_detached_regcache *registers () const
8615 {
8616 return m_registers.get ();
8617 }
8618
8619 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8620
8621 void restore (struct gdbarch *gdbarch,
8622 struct thread_info *tp,
8623 struct regcache *regcache) const
8624 {
8625 tp->suspend = m_thread_suspend;
8626
8627 if (m_siginfo_gdbarch == gdbarch)
8628 {
8629 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8630
8631 /* Errors ignored. */
8632 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8633 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8634 }
8635
8636 /* The inferior can be gone if the user types "print exit(0)"
8637 (and perhaps other times). */
8638 if (target_has_execution)
8639 /* NB: The register write goes through to the target. */
8640 regcache->restore (registers ());
8641 }
8642
8643 private:
8644 /* How the current thread stopped before the inferior function call was
8645 executed. */
8646 struct thread_suspend_state m_thread_suspend;
8647
8648 /* The registers before the inferior function call was executed. */
8649 std::unique_ptr<readonly_detached_regcache> m_registers;
8650
8651 /* Format of SIGINFO_DATA or NULL if it is not present. */
8652 struct gdbarch *m_siginfo_gdbarch = nullptr;
8653
8654 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8655 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8656 content would be invalid. */
8657 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8658 };
8659
8660 infcall_suspend_state_up
8661 save_infcall_suspend_state ()
8662 {
8663 struct thread_info *tp = inferior_thread ();
8664 struct regcache *regcache = get_current_regcache ();
8665 struct gdbarch *gdbarch = regcache->arch ();
8666
8667 infcall_suspend_state_up inf_state
8668 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8669
8670 /* Having saved the current state, adjust the thread state, discarding
8671 any stop signal information. The stop signal is not useful when
8672 starting an inferior function call, and run_inferior_call will not use
8673 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8674 tp->suspend.stop_signal = GDB_SIGNAL_0;
8675
8676 return inf_state;
8677 }
8678
8679 /* Restore inferior session state to INF_STATE. */
8680
8681 void
8682 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8683 {
8684 struct thread_info *tp = inferior_thread ();
8685 struct regcache *regcache = get_current_regcache ();
8686 struct gdbarch *gdbarch = regcache->arch ();
8687
8688 inf_state->restore (gdbarch, tp, regcache);
8689 discard_infcall_suspend_state (inf_state);
8690 }
8691
8692 void
8693 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8694 {
8695 delete inf_state;
8696 }
8697
8698 readonly_detached_regcache *
8699 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8700 {
8701 return inf_state->registers ();
8702 }
8703
8704 /* infcall_control_state contains state regarding gdb's control of the
8705 inferior itself like stepping control. It also contains session state like
8706 the user's currently selected frame. */
8707
8708 struct infcall_control_state
8709 {
8710 struct thread_control_state thread_control;
8711 struct inferior_control_state inferior_control;
8712
8713 /* Other fields: */
8714 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8715 int stopped_by_random_signal = 0;
8716
8717 /* ID if the selected frame when the inferior function call was made. */
8718 struct frame_id selected_frame_id {};
8719 };
8720
8721 /* Save all of the information associated with the inferior<==>gdb
8722 connection. */
8723
8724 infcall_control_state_up
8725 save_infcall_control_state ()
8726 {
8727 infcall_control_state_up inf_status (new struct infcall_control_state);
8728 struct thread_info *tp = inferior_thread ();
8729 struct inferior *inf = current_inferior ();
8730
8731 inf_status->thread_control = tp->control;
8732 inf_status->inferior_control = inf->control;
8733
8734 tp->control.step_resume_breakpoint = NULL;
8735 tp->control.exception_resume_breakpoint = NULL;
8736
8737 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8738 chain. If caller's caller is walking the chain, they'll be happier if we
8739 hand them back the original chain when restore_infcall_control_state is
8740 called. */
8741 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8742
8743 /* Other fields: */
8744 inf_status->stop_stack_dummy = stop_stack_dummy;
8745 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8746
8747 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8748
8749 return inf_status;
8750 }
8751
8752 static void
8753 restore_selected_frame (const frame_id &fid)
8754 {
8755 frame_info *frame = frame_find_by_id (fid);
8756
8757 /* If inf_status->selected_frame_id is NULL, there was no previously
8758 selected frame. */
8759 if (frame == NULL)
8760 {
8761 warning (_("Unable to restore previously selected frame."));
8762 return;
8763 }
8764
8765 select_frame (frame);
8766 }
8767
8768 /* Restore inferior session state to INF_STATUS. */
8769
8770 void
8771 restore_infcall_control_state (struct infcall_control_state *inf_status)
8772 {
8773 struct thread_info *tp = inferior_thread ();
8774 struct inferior *inf = current_inferior ();
8775
8776 if (tp->control.step_resume_breakpoint)
8777 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8778
8779 if (tp->control.exception_resume_breakpoint)
8780 tp->control.exception_resume_breakpoint->disposition
8781 = disp_del_at_next_stop;
8782
8783 /* Handle the bpstat_copy of the chain. */
8784 bpstat_clear (&tp->control.stop_bpstat);
8785
8786 tp->control = inf_status->thread_control;
8787 inf->control = inf_status->inferior_control;
8788
8789 /* Other fields: */
8790 stop_stack_dummy = inf_status->stop_stack_dummy;
8791 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8792
8793 if (target_has_stack)
8794 {
8795 /* The point of the try/catch is that if the stack is clobbered,
8796 walking the stack might encounter a garbage pointer and
8797 error() trying to dereference it. */
8798 try
8799 {
8800 restore_selected_frame (inf_status->selected_frame_id);
8801 }
8802 catch (const gdb_exception_error &ex)
8803 {
8804 exception_fprintf (gdb_stderr, ex,
8805 "Unable to restore previously selected frame:\n");
8806 /* Error in restoring the selected frame. Select the
8807 innermost frame. */
8808 select_frame (get_current_frame ());
8809 }
8810 }
8811
8812 delete inf_status;
8813 }
8814
8815 void
8816 discard_infcall_control_state (struct infcall_control_state *inf_status)
8817 {
8818 if (inf_status->thread_control.step_resume_breakpoint)
8819 inf_status->thread_control.step_resume_breakpoint->disposition
8820 = disp_del_at_next_stop;
8821
8822 if (inf_status->thread_control.exception_resume_breakpoint)
8823 inf_status->thread_control.exception_resume_breakpoint->disposition
8824 = disp_del_at_next_stop;
8825
8826 /* See save_infcall_control_state for info on stop_bpstat. */
8827 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8828
8829 delete inf_status;
8830 }
8831 \f
8832 /* See infrun.h. */
8833
8834 void
8835 clear_exit_convenience_vars (void)
8836 {
8837 clear_internalvar (lookup_internalvar ("_exitsignal"));
8838 clear_internalvar (lookup_internalvar ("_exitcode"));
8839 }
8840 \f
8841
8842 /* User interface for reverse debugging:
8843 Set exec-direction / show exec-direction commands
8844 (returns error unless target implements to_set_exec_direction method). */
8845
8846 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8847 static const char exec_forward[] = "forward";
8848 static const char exec_reverse[] = "reverse";
8849 static const char *exec_direction = exec_forward;
8850 static const char *const exec_direction_names[] = {
8851 exec_forward,
8852 exec_reverse,
8853 NULL
8854 };
8855
8856 static void
8857 set_exec_direction_func (const char *args, int from_tty,
8858 struct cmd_list_element *cmd)
8859 {
8860 if (target_can_execute_reverse)
8861 {
8862 if (!strcmp (exec_direction, exec_forward))
8863 execution_direction = EXEC_FORWARD;
8864 else if (!strcmp (exec_direction, exec_reverse))
8865 execution_direction = EXEC_REVERSE;
8866 }
8867 else
8868 {
8869 exec_direction = exec_forward;
8870 error (_("Target does not support this operation."));
8871 }
8872 }
8873
8874 static void
8875 show_exec_direction_func (struct ui_file *out, int from_tty,
8876 struct cmd_list_element *cmd, const char *value)
8877 {
8878 switch (execution_direction) {
8879 case EXEC_FORWARD:
8880 fprintf_filtered (out, _("Forward.\n"));
8881 break;
8882 case EXEC_REVERSE:
8883 fprintf_filtered (out, _("Reverse.\n"));
8884 break;
8885 default:
8886 internal_error (__FILE__, __LINE__,
8887 _("bogus execution_direction value: %d"),
8888 (int) execution_direction);
8889 }
8890 }
8891
8892 static void
8893 show_schedule_multiple (struct ui_file *file, int from_tty,
8894 struct cmd_list_element *c, const char *value)
8895 {
8896 fprintf_filtered (file, _("Resuming the execution of threads "
8897 "of all processes is %s.\n"), value);
8898 }
8899
8900 /* Implementation of `siginfo' variable. */
8901
8902 static const struct internalvar_funcs siginfo_funcs =
8903 {
8904 siginfo_make_value,
8905 NULL,
8906 NULL
8907 };
8908
8909 /* Callback for infrun's target events source. This is marked when a
8910 thread has a pending status to process. */
8911
8912 static void
8913 infrun_async_inferior_event_handler (gdb_client_data data)
8914 {
8915 inferior_event_handler (INF_REG_EVENT, NULL);
8916 }
8917
8918 void
8919 _initialize_infrun (void)
8920 {
8921 struct cmd_list_element *c;
8922
8923 /* Register extra event sources in the event loop. */
8924 infrun_async_inferior_event_token
8925 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8926
8927 add_info ("signals", info_signals_command, _("\
8928 What debugger does when program gets various signals.\n\
8929 Specify a signal as argument to print info on that signal only."));
8930 add_info_alias ("handle", "signals", 0);
8931
8932 c = add_com ("handle", class_run, handle_command, _("\
8933 Specify how to handle signals.\n\
8934 Usage: handle SIGNAL [ACTIONS]\n\
8935 Args are signals and actions to apply to those signals.\n\
8936 If no actions are specified, the current settings for the specified signals\n\
8937 will be displayed instead.\n\
8938 \n\
8939 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8940 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8941 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8942 The special arg \"all\" is recognized to mean all signals except those\n\
8943 used by the debugger, typically SIGTRAP and SIGINT.\n\
8944 \n\
8945 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8946 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8947 Stop means reenter debugger if this signal happens (implies print).\n\
8948 Print means print a message if this signal happens.\n\
8949 Pass means let program see this signal; otherwise program doesn't know.\n\
8950 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8951 Pass and Stop may be combined.\n\
8952 \n\
8953 Multiple signals may be specified. Signal numbers and signal names\n\
8954 may be interspersed with actions, with the actions being performed for\n\
8955 all signals cumulatively specified."));
8956 set_cmd_completer (c, handle_completer);
8957
8958 if (!dbx_commands)
8959 stop_command = add_cmd ("stop", class_obscure,
8960 not_just_help_class_command, _("\
8961 There is no `stop' command, but you can set a hook on `stop'.\n\
8962 This allows you to set a list of commands to be run each time execution\n\
8963 of the program stops."), &cmdlist);
8964
8965 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8966 Set inferior debugging."), _("\
8967 Show inferior debugging."), _("\
8968 When non-zero, inferior specific debugging is enabled."),
8969 NULL,
8970 show_debug_infrun,
8971 &setdebuglist, &showdebuglist);
8972
8973 add_setshow_boolean_cmd ("displaced", class_maintenance,
8974 &debug_displaced, _("\
8975 Set displaced stepping debugging."), _("\
8976 Show displaced stepping debugging."), _("\
8977 When non-zero, displaced stepping specific debugging is enabled."),
8978 NULL,
8979 show_debug_displaced,
8980 &setdebuglist, &showdebuglist);
8981
8982 add_setshow_boolean_cmd ("non-stop", no_class,
8983 &non_stop_1, _("\
8984 Set whether gdb controls the inferior in non-stop mode."), _("\
8985 Show whether gdb controls the inferior in non-stop mode."), _("\
8986 When debugging a multi-threaded program and this setting is\n\
8987 off (the default, also called all-stop mode), when one thread stops\n\
8988 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8989 all other threads in the program while you interact with the thread of\n\
8990 interest. When you continue or step a thread, you can allow the other\n\
8991 threads to run, or have them remain stopped, but while you inspect any\n\
8992 thread's state, all threads stop.\n\
8993 \n\
8994 In non-stop mode, when one thread stops, other threads can continue\n\
8995 to run freely. You'll be able to step each thread independently,\n\
8996 leave it stopped or free to run as needed."),
8997 set_non_stop,
8998 show_non_stop,
8999 &setlist,
9000 &showlist);
9001
9002 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9003 {
9004 signal_stop[i] = 1;
9005 signal_print[i] = 1;
9006 signal_program[i] = 1;
9007 signal_catch[i] = 0;
9008 }
9009
9010 /* Signals caused by debugger's own actions should not be given to
9011 the program afterwards.
9012
9013 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9014 explicitly specifies that it should be delivered to the target
9015 program. Typically, that would occur when a user is debugging a
9016 target monitor on a simulator: the target monitor sets a
9017 breakpoint; the simulator encounters this breakpoint and halts
9018 the simulation handing control to GDB; GDB, noting that the stop
9019 address doesn't map to any known breakpoint, returns control back
9020 to the simulator; the simulator then delivers the hardware
9021 equivalent of a GDB_SIGNAL_TRAP to the program being
9022 debugged. */
9023 signal_program[GDB_SIGNAL_TRAP] = 0;
9024 signal_program[GDB_SIGNAL_INT] = 0;
9025
9026 /* Signals that are not errors should not normally enter the debugger. */
9027 signal_stop[GDB_SIGNAL_ALRM] = 0;
9028 signal_print[GDB_SIGNAL_ALRM] = 0;
9029 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9030 signal_print[GDB_SIGNAL_VTALRM] = 0;
9031 signal_stop[GDB_SIGNAL_PROF] = 0;
9032 signal_print[GDB_SIGNAL_PROF] = 0;
9033 signal_stop[GDB_SIGNAL_CHLD] = 0;
9034 signal_print[GDB_SIGNAL_CHLD] = 0;
9035 signal_stop[GDB_SIGNAL_IO] = 0;
9036 signal_print[GDB_SIGNAL_IO] = 0;
9037 signal_stop[GDB_SIGNAL_POLL] = 0;
9038 signal_print[GDB_SIGNAL_POLL] = 0;
9039 signal_stop[GDB_SIGNAL_URG] = 0;
9040 signal_print[GDB_SIGNAL_URG] = 0;
9041 signal_stop[GDB_SIGNAL_WINCH] = 0;
9042 signal_print[GDB_SIGNAL_WINCH] = 0;
9043 signal_stop[GDB_SIGNAL_PRIO] = 0;
9044 signal_print[GDB_SIGNAL_PRIO] = 0;
9045
9046 /* These signals are used internally by user-level thread
9047 implementations. (See signal(5) on Solaris.) Like the above
9048 signals, a healthy program receives and handles them as part of
9049 its normal operation. */
9050 signal_stop[GDB_SIGNAL_LWP] = 0;
9051 signal_print[GDB_SIGNAL_LWP] = 0;
9052 signal_stop[GDB_SIGNAL_WAITING] = 0;
9053 signal_print[GDB_SIGNAL_WAITING] = 0;
9054 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9055 signal_print[GDB_SIGNAL_CANCEL] = 0;
9056 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9057 signal_print[GDB_SIGNAL_LIBRT] = 0;
9058
9059 /* Update cached state. */
9060 signal_cache_update (-1);
9061
9062 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9063 &stop_on_solib_events, _("\
9064 Set stopping for shared library events."), _("\
9065 Show stopping for shared library events."), _("\
9066 If nonzero, gdb will give control to the user when the dynamic linker\n\
9067 notifies gdb of shared library events. The most common event of interest\n\
9068 to the user would be loading/unloading of a new library."),
9069 set_stop_on_solib_events,
9070 show_stop_on_solib_events,
9071 &setlist, &showlist);
9072
9073 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9074 follow_fork_mode_kind_names,
9075 &follow_fork_mode_string, _("\
9076 Set debugger response to a program call of fork or vfork."), _("\
9077 Show debugger response to a program call of fork or vfork."), _("\
9078 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9079 parent - the original process is debugged after a fork\n\
9080 child - the new process is debugged after a fork\n\
9081 The unfollowed process will continue to run.\n\
9082 By default, the debugger will follow the parent process."),
9083 NULL,
9084 show_follow_fork_mode_string,
9085 &setlist, &showlist);
9086
9087 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9088 follow_exec_mode_names,
9089 &follow_exec_mode_string, _("\
9090 Set debugger response to a program call of exec."), _("\
9091 Show debugger response to a program call of exec."), _("\
9092 An exec call replaces the program image of a process.\n\
9093 \n\
9094 follow-exec-mode can be:\n\
9095 \n\
9096 new - the debugger creates a new inferior and rebinds the process\n\
9097 to this new inferior. The program the process was running before\n\
9098 the exec call can be restarted afterwards by restarting the original\n\
9099 inferior.\n\
9100 \n\
9101 same - the debugger keeps the process bound to the same inferior.\n\
9102 The new executable image replaces the previous executable loaded in\n\
9103 the inferior. Restarting the inferior after the exec call restarts\n\
9104 the executable the process was running after the exec call.\n\
9105 \n\
9106 By default, the debugger will use the same inferior."),
9107 NULL,
9108 show_follow_exec_mode_string,
9109 &setlist, &showlist);
9110
9111 add_setshow_enum_cmd ("scheduler-locking", class_run,
9112 scheduler_enums, &scheduler_mode, _("\
9113 Set mode for locking scheduler during execution."), _("\
9114 Show mode for locking scheduler during execution."), _("\
9115 off == no locking (threads may preempt at any time)\n\
9116 on == full locking (no thread except the current thread may run)\n\
9117 This applies to both normal execution and replay mode.\n\
9118 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9119 In this mode, other threads may run during other commands.\n\
9120 This applies to both normal execution and replay mode.\n\
9121 replay == scheduler locked in replay mode and unlocked during normal execution."),
9122 set_schedlock_func, /* traps on target vector */
9123 show_scheduler_mode,
9124 &setlist, &showlist);
9125
9126 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9127 Set mode for resuming threads of all processes."), _("\
9128 Show mode for resuming threads of all processes."), _("\
9129 When on, execution commands (such as 'continue' or 'next') resume all\n\
9130 threads of all processes. When off (which is the default), execution\n\
9131 commands only resume the threads of the current process. The set of\n\
9132 threads that are resumed is further refined by the scheduler-locking\n\
9133 mode (see help set scheduler-locking)."),
9134 NULL,
9135 show_schedule_multiple,
9136 &setlist, &showlist);
9137
9138 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9139 Set mode of the step operation."), _("\
9140 Show mode of the step operation."), _("\
9141 When set, doing a step over a function without debug line information\n\
9142 will stop at the first instruction of that function. Otherwise, the\n\
9143 function is skipped and the step command stops at a different source line."),
9144 NULL,
9145 show_step_stop_if_no_debug,
9146 &setlist, &showlist);
9147
9148 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9149 &can_use_displaced_stepping, _("\
9150 Set debugger's willingness to use displaced stepping."), _("\
9151 Show debugger's willingness to use displaced stepping."), _("\
9152 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9153 supported by the target architecture. If off, gdb will not use displaced\n\
9154 stepping to step over breakpoints, even if such is supported by the target\n\
9155 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9156 if the target architecture supports it and non-stop mode is active, but will not\n\
9157 use it in all-stop mode (see help set non-stop)."),
9158 NULL,
9159 show_can_use_displaced_stepping,
9160 &setlist, &showlist);
9161
9162 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9163 &exec_direction, _("Set direction of execution.\n\
9164 Options are 'forward' or 'reverse'."),
9165 _("Show direction of execution (forward/reverse)."),
9166 _("Tells gdb whether to execute forward or backward."),
9167 set_exec_direction_func, show_exec_direction_func,
9168 &setlist, &showlist);
9169
9170 /* Set/show detach-on-fork: user-settable mode. */
9171
9172 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9173 Set whether gdb will detach the child of a fork."), _("\
9174 Show whether gdb will detach the child of a fork."), _("\
9175 Tells gdb whether to detach the child of a fork."),
9176 NULL, NULL, &setlist, &showlist);
9177
9178 /* Set/show disable address space randomization mode. */
9179
9180 add_setshow_boolean_cmd ("disable-randomization", class_support,
9181 &disable_randomization, _("\
9182 Set disabling of debuggee's virtual address space randomization."), _("\
9183 Show disabling of debuggee's virtual address space randomization."), _("\
9184 When this mode is on (which is the default), randomization of the virtual\n\
9185 address space is disabled. Standalone programs run with the randomization\n\
9186 enabled by default on some platforms."),
9187 &set_disable_randomization,
9188 &show_disable_randomization,
9189 &setlist, &showlist);
9190
9191 /* ptid initializations */
9192 inferior_ptid = null_ptid;
9193 target_last_wait_ptid = minus_one_ptid;
9194
9195 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9196 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9197 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9198 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9199
9200 /* Explicitly create without lookup, since that tries to create a
9201 value with a void typed value, and when we get here, gdbarch
9202 isn't initialized yet. At this point, we're quite sure there
9203 isn't another convenience variable of the same name. */
9204 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9205
9206 add_setshow_boolean_cmd ("observer", no_class,
9207 &observer_mode_1, _("\
9208 Set whether gdb controls the inferior in observer mode."), _("\
9209 Show whether gdb controls the inferior in observer mode."), _("\
9210 In observer mode, GDB can get data from the inferior, but not\n\
9211 affect its execution. Registers and memory may not be changed,\n\
9212 breakpoints may not be set, and the program cannot be interrupted\n\
9213 or signalled."),
9214 set_observer_mode,
9215 show_observer_mode,
9216 &setlist,
9217 &showlist);
9218 }
This page took 0.306685 seconds and 3 git commands to generate.