92823807f153450d23dfef46ba0777e93cb53f1b
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2020 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "macrotab.h"
23 #include "macroexp.h"
24 #include "macroscope.h"
25 #include "c-lang.h"
26
27
28 \f
29 /* A resizeable, substringable string type. */
30
31
32 /* A string type that we can resize, quickly append to, and use to
33 refer to substrings of other strings. */
34 struct macro_buffer
35 {
36 /* An array of characters. The first LEN bytes are the real text,
37 but there are SIZE bytes allocated to the array. If SIZE is
38 zero, then this doesn't point to a malloc'ed block. If SHARED is
39 non-zero, then this buffer is actually a pointer into some larger
40 string, and we shouldn't append characters to it, etc. Because
41 of sharing, we can't assume in general that the text is
42 null-terminated. */
43 char *text;
44
45 /* The number of characters in the string. */
46 int len;
47
48 /* The number of characters allocated to the string. If SHARED is
49 non-zero, this is meaningless; in this case, we set it to zero so
50 that any "do we have room to append something?" tests will fail,
51 so we don't always have to check SHARED before using this field. */
52 int size;
53
54 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55 block). Non-zero if TEXT is actually pointing into the middle of
56 some other block, or to a string literal, and we shouldn't
57 reallocate it. */
58 bool shared;
59
60 /* For detecting token splicing.
61
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
68 int last_token = -1;
69
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
72 int is_identifier = 0;
73
74
75 macro_buffer ()
76 : text (NULL),
77 len (0),
78 size (0),
79 shared (false)
80 {
81 }
82
83 /* Set the macro buffer to the empty string, guessing that its
84 final contents will fit in N bytes. (It'll get resized if it
85 doesn't, so the guess doesn't have to be right.) Allocate the
86 initial storage with xmalloc. */
87 explicit macro_buffer (int n)
88 : len (0),
89 size (n),
90 shared (false)
91 {
92 if (n > 0)
93 text = (char *) xmalloc (n);
94 else
95 text = NULL;
96 }
97
98 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
99 shared substring. */
100 macro_buffer (const char *addr, int len)
101 {
102 set_shared (addr, len);
103 }
104
105 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
106 shared substring. */
107 void set_shared (const char *addr, int len_)
108 {
109 text = (char *) addr;
110 len = len_;
111 size = 0;
112 shared = true;
113 }
114
115 macro_buffer& operator= (const macro_buffer &src)
116 {
117 gdb_assert (src.shared);
118 gdb_assert (shared);
119 set_shared (src.text, src.len);
120 last_token = src.last_token;
121 is_identifier = src.is_identifier;
122 return *this;
123 }
124
125 ~macro_buffer ()
126 {
127 if (! shared && size)
128 xfree (text);
129 }
130
131 /* Release the text of the buffer to the caller, which is now
132 responsible for freeing it. */
133 ATTRIBUTE_UNUSED_RESULT char *release ()
134 {
135 gdb_assert (! shared);
136 gdb_assert (size);
137 char *result = text;
138 text = NULL;
139 return result;
140 }
141
142 /* Resize the buffer to be at least N bytes long. Raise an error if
143 the buffer shouldn't be resized. */
144 void resize_buffer (int n)
145 {
146 /* We shouldn't be trying to resize shared strings. */
147 gdb_assert (! shared);
148
149 if (size == 0)
150 size = n;
151 else
152 while (size <= n)
153 size *= 2;
154
155 text = (char *) xrealloc (text, size);
156 }
157
158 /* Append the character C to the buffer. */
159 void appendc (int c)
160 {
161 int new_len = len + 1;
162
163 if (new_len > size)
164 resize_buffer (new_len);
165
166 text[len] = c;
167 len = new_len;
168 }
169
170 /* Append the COUNT bytes at ADDR to the buffer. */
171 void appendmem (const char *addr, int count)
172 {
173 int new_len = len + count;
174
175 if (new_len > size)
176 resize_buffer (new_len);
177
178 memcpy (text + len, addr, count);
179 len = new_len;
180 }
181 };
182
183
184 \f
185 /* Recognizing preprocessor tokens. */
186
187
188 int
189 macro_is_whitespace (int c)
190 {
191 return (c == ' '
192 || c == '\t'
193 || c == '\n'
194 || c == '\v'
195 || c == '\f');
196 }
197
198
199 int
200 macro_is_digit (int c)
201 {
202 return ('0' <= c && c <= '9');
203 }
204
205
206 int
207 macro_is_identifier_nondigit (int c)
208 {
209 return (c == '_'
210 || ('a' <= c && c <= 'z')
211 || ('A' <= c && c <= 'Z'));
212 }
213
214
215 static void
216 set_token (struct macro_buffer *tok, char *start, char *end)
217 {
218 tok->set_shared (start, end - start);
219 tok->last_token = 0;
220
221 /* Presumed; get_identifier may overwrite this. */
222 tok->is_identifier = 0;
223 }
224
225
226 static int
227 get_comment (struct macro_buffer *tok, char *p, char *end)
228 {
229 if (p + 2 > end)
230 return 0;
231 else if (p[0] == '/'
232 && p[1] == '*')
233 {
234 char *tok_start = p;
235
236 p += 2;
237
238 for (; p < end; p++)
239 if (p + 2 <= end
240 && p[0] == '*'
241 && p[1] == '/')
242 {
243 p += 2;
244 set_token (tok, tok_start, p);
245 return 1;
246 }
247
248 error (_("Unterminated comment in macro expansion."));
249 }
250 else if (p[0] == '/'
251 && p[1] == '/')
252 {
253 char *tok_start = p;
254
255 p += 2;
256 for (; p < end; p++)
257 if (*p == '\n')
258 break;
259
260 set_token (tok, tok_start, p);
261 return 1;
262 }
263 else
264 return 0;
265 }
266
267
268 static int
269 get_identifier (struct macro_buffer *tok, char *p, char *end)
270 {
271 if (p < end
272 && macro_is_identifier_nondigit (*p))
273 {
274 char *tok_start = p;
275
276 while (p < end
277 && (macro_is_identifier_nondigit (*p)
278 || macro_is_digit (*p)))
279 p++;
280
281 set_token (tok, tok_start, p);
282 tok->is_identifier = 1;
283 return 1;
284 }
285 else
286 return 0;
287 }
288
289
290 static int
291 get_pp_number (struct macro_buffer *tok, char *p, char *end)
292 {
293 if (p < end
294 && (macro_is_digit (*p)
295 || (*p == '.'
296 && p + 2 <= end
297 && macro_is_digit (p[1]))))
298 {
299 char *tok_start = p;
300
301 while (p < end)
302 {
303 if (p + 2 <= end
304 && strchr ("eEpP", *p)
305 && (p[1] == '+' || p[1] == '-'))
306 p += 2;
307 else if (macro_is_digit (*p)
308 || macro_is_identifier_nondigit (*p)
309 || *p == '.')
310 p++;
311 else
312 break;
313 }
314
315 set_token (tok, tok_start, p);
316 return 1;
317 }
318 else
319 return 0;
320 }
321
322
323
324 /* If the text starting at P going up to (but not including) END
325 starts with a character constant, set *TOK to point to that
326 character constant, and return 1. Otherwise, return zero.
327 Signal an error if it contains a malformed or incomplete character
328 constant. */
329 static int
330 get_character_constant (struct macro_buffer *tok, char *p, char *end)
331 {
332 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
333 But of course, what really matters is that we handle it the same
334 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
335 to handle escape sequences. */
336 if ((p + 1 <= end && *p == '\'')
337 || (p + 2 <= end
338 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
339 && p[1] == '\''))
340 {
341 char *tok_start = p;
342 int char_count = 0;
343
344 if (*p == '\'')
345 p++;
346 else if (*p == 'L' || *p == 'u' || *p == 'U')
347 p += 2;
348 else
349 gdb_assert_not_reached ("unexpected character constant");
350
351 for (;;)
352 {
353 if (p >= end)
354 error (_("Unmatched single quote."));
355 else if (*p == '\'')
356 {
357 if (!char_count)
358 error (_("A character constant must contain at least one "
359 "character."));
360 p++;
361 break;
362 }
363 else if (*p == '\\')
364 {
365 const char *s, *o;
366
367 s = o = ++p;
368 char_count += c_parse_escape (&s, NULL);
369 p += s - o;
370 }
371 else
372 {
373 p++;
374 char_count++;
375 }
376 }
377
378 set_token (tok, tok_start, p);
379 return 1;
380 }
381 else
382 return 0;
383 }
384
385
386 /* If the text starting at P going up to (but not including) END
387 starts with a string literal, set *TOK to point to that string
388 literal, and return 1. Otherwise, return zero. Signal an error if
389 it contains a malformed or incomplete string literal. */
390 static int
391 get_string_literal (struct macro_buffer *tok, char *p, char *end)
392 {
393 if ((p + 1 <= end
394 && *p == '"')
395 || (p + 2 <= end
396 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
397 && p[1] == '"'))
398 {
399 char *tok_start = p;
400
401 if (*p == '"')
402 p++;
403 else if (*p == 'L' || *p == 'u' || *p == 'U')
404 p += 2;
405 else
406 gdb_assert_not_reached ("unexpected string literal");
407
408 for (;;)
409 {
410 if (p >= end)
411 error (_("Unterminated string in expression."));
412 else if (*p == '"')
413 {
414 p++;
415 break;
416 }
417 else if (*p == '\n')
418 error (_("Newline characters may not appear in string "
419 "constants."));
420 else if (*p == '\\')
421 {
422 const char *s, *o;
423
424 s = o = ++p;
425 c_parse_escape (&s, NULL);
426 p += s - o;
427 }
428 else
429 p++;
430 }
431
432 set_token (tok, tok_start, p);
433 return 1;
434 }
435 else
436 return 0;
437 }
438
439
440 static int
441 get_punctuator (struct macro_buffer *tok, char *p, char *end)
442 {
443 /* Here, speed is much less important than correctness and clarity. */
444
445 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
446 Note that this table is ordered in a special way. A punctuator
447 which is a prefix of another punctuator must appear after its
448 "extension". Otherwise, the wrong token will be returned. */
449 static const char * const punctuators[] = {
450 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
451 "...", ".",
452 "->", "--", "-=", "-",
453 "++", "+=", "+",
454 "*=", "*",
455 "!=", "!",
456 "&&", "&=", "&",
457 "/=", "/",
458 "%>", "%:%:", "%:", "%=", "%",
459 "^=", "^",
460 "##", "#",
461 ":>", ":",
462 "||", "|=", "|",
463 "<<=", "<<", "<=", "<:", "<%", "<",
464 ">>=", ">>", ">=", ">",
465 "==", "=",
466 0
467 };
468
469 int i;
470
471 if (p + 1 <= end)
472 {
473 for (i = 0; punctuators[i]; i++)
474 {
475 const char *punctuator = punctuators[i];
476
477 if (p[0] == punctuator[0])
478 {
479 int len = strlen (punctuator);
480
481 if (p + len <= end
482 && ! memcmp (p, punctuator, len))
483 {
484 set_token (tok, p, p + len);
485 return 1;
486 }
487 }
488 }
489 }
490
491 return 0;
492 }
493
494
495 /* Peel the next preprocessor token off of SRC, and put it in TOK.
496 Mutate TOK to refer to the first token in SRC, and mutate SRC to
497 refer to the text after that token. SRC must be a shared buffer;
498 the resulting TOK will be shared, pointing into the same string SRC
499 does. Initialize TOK's last_token field. Return non-zero if we
500 succeed, or 0 if we didn't find any more tokens in SRC. */
501 static int
502 get_token (struct macro_buffer *tok,
503 struct macro_buffer *src)
504 {
505 char *p = src->text;
506 char *end = p + src->len;
507
508 gdb_assert (src->shared);
509
510 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
511
512 preprocessing-token:
513 header-name
514 identifier
515 pp-number
516 character-constant
517 string-literal
518 punctuator
519 each non-white-space character that cannot be one of the above
520
521 We don't have to deal with header-name tokens, since those can
522 only occur after a #include, which we will never see. */
523
524 while (p < end)
525 if (macro_is_whitespace (*p))
526 p++;
527 else if (get_comment (tok, p, end))
528 p += tok->len;
529 else if (get_pp_number (tok, p, end)
530 || get_character_constant (tok, p, end)
531 || get_string_literal (tok, p, end)
532 /* Note: the grammar in the standard seems to be
533 ambiguous: L'x' can be either a wide character
534 constant, or an identifier followed by a normal
535 character constant. By trying `get_identifier' after
536 we try get_character_constant and get_string_literal,
537 we give the wide character syntax precedence. Now,
538 since GDB doesn't handle wide character constants
539 anyway, is this the right thing to do? */
540 || get_identifier (tok, p, end)
541 || get_punctuator (tok, p, end))
542 {
543 /* How many characters did we consume, including whitespace? */
544 int consumed = p - src->text + tok->len;
545
546 src->text += consumed;
547 src->len -= consumed;
548 return 1;
549 }
550 else
551 {
552 /* We have found a "non-whitespace character that cannot be
553 one of the above." Make a token out of it. */
554 int consumed;
555
556 set_token (tok, p, p + 1);
557 consumed = p - src->text + tok->len;
558 src->text += consumed;
559 src->len -= consumed;
560 return 1;
561 }
562
563 return 0;
564 }
565
566
567 \f
568 /* Appending token strings, with and without splicing */
569
570
571 /* Append the macro buffer SRC to the end of DEST, and ensure that
572 doing so doesn't splice the token at the end of SRC with the token
573 at the beginning of DEST. SRC and DEST must have their last_token
574 fields set. Upon return, DEST's last_token field is set correctly.
575
576 For example:
577
578 If DEST is "(" and SRC is "y", then we can return with
579 DEST set to "(y" --- we've simply appended the two buffers.
580
581 However, if DEST is "x" and SRC is "y", then we must not return
582 with DEST set to "xy" --- that would splice the two tokens "x" and
583 "y" together to make a single token "xy". However, it would be
584 fine to return with DEST set to "x y". Similarly, "<" and "<" must
585 yield "< <", not "<<", etc. */
586 static void
587 append_tokens_without_splicing (struct macro_buffer *dest,
588 struct macro_buffer *src)
589 {
590 int original_dest_len = dest->len;
591 struct macro_buffer dest_tail, new_token;
592
593 gdb_assert (src->last_token != -1);
594 gdb_assert (dest->last_token != -1);
595
596 /* First, just try appending the two, and call get_token to see if
597 we got a splice. */
598 dest->appendmem (src->text, src->len);
599
600 /* If DEST originally had no token abutting its end, then we can't
601 have spliced anything, so we're done. */
602 if (dest->last_token == original_dest_len)
603 {
604 dest->last_token = original_dest_len + src->last_token;
605 return;
606 }
607
608 /* Set DEST_TAIL to point to the last token in DEST, followed by
609 all the stuff we just appended. */
610 dest_tail.set_shared (dest->text + dest->last_token,
611 dest->len - dest->last_token);
612
613 /* Re-parse DEST's last token. We know that DEST used to contain
614 at least one token, so if it doesn't contain any after the
615 append, then we must have spliced "/" and "*" or "/" and "/" to
616 make a comment start. (Just for the record, I got this right
617 the first time. This is not a bug fix.) */
618 if (get_token (&new_token, &dest_tail)
619 && (new_token.text + new_token.len
620 == dest->text + original_dest_len))
621 {
622 /* No splice, so we're done. */
623 dest->last_token = original_dest_len + src->last_token;
624 return;
625 }
626
627 /* Okay, a simple append caused a splice. Let's chop dest back to
628 its original length and try again, but separate the texts with a
629 space. */
630 dest->len = original_dest_len;
631 dest->appendc (' ');
632 dest->appendmem (src->text, src->len);
633
634 dest_tail.set_shared (dest->text + dest->last_token,
635 dest->len - dest->last_token);
636
637 /* Try to re-parse DEST's last token, as above. */
638 if (get_token (&new_token, &dest_tail)
639 && (new_token.text + new_token.len
640 == dest->text + original_dest_len))
641 {
642 /* No splice, so we're done. */
643 dest->last_token = original_dest_len + 1 + src->last_token;
644 return;
645 }
646
647 /* As far as I know, there's no case where inserting a space isn't
648 enough to prevent a splice. */
649 internal_error (__FILE__, __LINE__,
650 _("unable to avoid splicing tokens during macro expansion"));
651 }
652
653 /* Stringify an argument, and insert it into DEST. ARG is the text to
654 stringify; it is LEN bytes long. */
655
656 static void
657 stringify (struct macro_buffer *dest, const char *arg, int len)
658 {
659 /* Trim initial whitespace from ARG. */
660 while (len > 0 && macro_is_whitespace (*arg))
661 {
662 ++arg;
663 --len;
664 }
665
666 /* Trim trailing whitespace from ARG. */
667 while (len > 0 && macro_is_whitespace (arg[len - 1]))
668 --len;
669
670 /* Insert the string. */
671 dest->appendc ('"');
672 while (len > 0)
673 {
674 /* We could try to handle strange cases here, like control
675 characters, but there doesn't seem to be much point. */
676 if (macro_is_whitespace (*arg))
677 {
678 /* Replace a sequence of whitespace with a single space. */
679 dest->appendc (' ');
680 while (len > 1 && macro_is_whitespace (arg[1]))
681 {
682 ++arg;
683 --len;
684 }
685 }
686 else if (*arg == '\\' || *arg == '"')
687 {
688 dest->appendc ('\\');
689 dest->appendc (*arg);
690 }
691 else
692 dest->appendc (*arg);
693 ++arg;
694 --len;
695 }
696 dest->appendc ('"');
697 dest->last_token = dest->len;
698 }
699
700 /* See macroexp.h. */
701
702 char *
703 macro_stringify (const char *str)
704 {
705 int len = strlen (str);
706 struct macro_buffer buffer (len);
707
708 stringify (&buffer, str, len);
709 buffer.appendc ('\0');
710
711 return buffer.release ();
712 }
713
714 \f
715 /* Expanding macros! */
716
717
718 /* A singly-linked list of the names of the macros we are currently
719 expanding --- for detecting expansion loops. */
720 struct macro_name_list {
721 const char *name;
722 struct macro_name_list *next;
723 };
724
725
726 /* Return non-zero if we are currently expanding the macro named NAME,
727 according to LIST; otherwise, return zero.
728
729 You know, it would be possible to get rid of all the NO_LOOP
730 arguments to these functions by simply generating a new lookup
731 function and baton which refuses to find the definition for a
732 particular macro, and otherwise delegates the decision to another
733 function/baton pair. But that makes the linked list of excluded
734 macros chained through untyped baton pointers, which will make it
735 harder to debug. :( */
736 static int
737 currently_rescanning (struct macro_name_list *list, const char *name)
738 {
739 for (; list; list = list->next)
740 if (strcmp (name, list->name) == 0)
741 return 1;
742
743 return 0;
744 }
745
746
747 /* Gather the arguments to a macro expansion.
748
749 NAME is the name of the macro being invoked. (It's only used for
750 printing error messages.)
751
752 Assume that SRC is the text of the macro invocation immediately
753 following the macro name. For example, if we're processing the
754 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
755 baz).
756
757 If SRC doesn't start with an open paren ( token at all, return
758 false, leave SRC unchanged, and don't set *ARGS_PTR to anything.
759
760 If SRC doesn't contain a properly terminated argument list, then
761 raise an error.
762
763 For a variadic macro, NARGS holds the number of formal arguments to
764 the macro. For a GNU-style variadic macro, this should be the
765 number of named arguments. For a non-variadic macro, NARGS should
766 be -1.
767
768 Otherwise, return true and set *ARGS_PTR to a vector of macro
769 buffers referring to the argument texts. The macro buffers share
770 their text with SRC, and their last_token fields are initialized.
771
772 NOTE WELL: if SRC starts with a open paren ( token followed
773 immediately by a close paren ) token (e.g., the invocation looks
774 like "foo()"), we treat that as one argument, which happens to be
775 the empty list of tokens. The caller should keep in mind that such
776 a sequence of tokens is a valid way to invoke one-parameter
777 function-like macros, but also a valid way to invoke zero-parameter
778 function-like macros. Eeew.
779
780 Consume the tokens from SRC; after this call, SRC contains the text
781 following the invocation. */
782
783 static bool
784 gather_arguments (const char *name, struct macro_buffer *src, int nargs,
785 std::vector<struct macro_buffer> *args_ptr)
786 {
787 struct macro_buffer tok;
788 std::vector<struct macro_buffer> args;
789
790 /* Does SRC start with an opening paren token? Read from a copy of
791 SRC, so SRC itself is unaffected if we don't find an opening
792 paren. */
793 {
794 struct macro_buffer temp (src->text, src->len);
795
796 if (! get_token (&tok, &temp)
797 || tok.len != 1
798 || tok.text[0] != '(')
799 return false;
800 }
801
802 /* Consume SRC's opening paren. */
803 get_token (&tok, src);
804
805 for (;;)
806 {
807 struct macro_buffer *arg;
808 int depth;
809
810 /* Initialize the next argument. */
811 args.emplace_back ();
812 arg = &args.back ();
813 set_token (arg, src->text, src->text);
814
815 /* Gather the argument's tokens. */
816 depth = 0;
817 for (;;)
818 {
819 if (! get_token (&tok, src))
820 error (_("Malformed argument list for macro `%s'."), name);
821
822 /* Is tok an opening paren? */
823 if (tok.len == 1 && tok.text[0] == '(')
824 depth++;
825
826 /* Is tok is a closing paren? */
827 else if (tok.len == 1 && tok.text[0] == ')')
828 {
829 /* If it's a closing paren at the top level, then that's
830 the end of the argument list. */
831 if (depth == 0)
832 {
833 /* In the varargs case, the last argument may be
834 missing. Add an empty argument in this case. */
835 if (nargs != -1 && args.size () == nargs - 1)
836 {
837 args.emplace_back ();
838 arg = &args.back ();
839 set_token (arg, src->text, src->text);
840 }
841
842 *args_ptr = std::move (args);
843 return true;
844 }
845
846 depth--;
847 }
848
849 /* If tok is a comma at top level, then that's the end of
850 the current argument. However, if we are handling a
851 variadic macro and we are computing the last argument, we
852 want to include the comma and remaining tokens. */
853 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
854 && (nargs == -1 || args.size () < nargs))
855 break;
856
857 /* Extend the current argument to enclose this token. If
858 this is the current argument's first token, leave out any
859 leading whitespace, just for aesthetics. */
860 if (arg->len == 0)
861 {
862 arg->text = tok.text;
863 arg->len = tok.len;
864 arg->last_token = 0;
865 }
866 else
867 {
868 arg->len = (tok.text + tok.len) - arg->text;
869 arg->last_token = tok.text - arg->text;
870 }
871 }
872 }
873 }
874
875
876 /* The `expand' and `substitute_args' functions both invoke `scan'
877 recursively, so we need a forward declaration somewhere. */
878 static void scan (struct macro_buffer *dest,
879 struct macro_buffer *src,
880 struct macro_name_list *no_loop,
881 const macro_scope &scope);
882
883 /* A helper function for substitute_args.
884
885 ARGV is a vector of all the arguments; ARGC is the number of
886 arguments. IS_VARARGS is true if the macro being substituted is a
887 varargs macro; in this case VA_ARG_NAME is the name of the
888 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
889 false.
890
891 If the token TOK is the name of a parameter, return the parameter's
892 index. If TOK is not an argument, return -1. */
893
894 static int
895 find_parameter (const struct macro_buffer *tok,
896 int is_varargs, const struct macro_buffer *va_arg_name,
897 int argc, const char * const *argv)
898 {
899 int i;
900
901 if (! tok->is_identifier)
902 return -1;
903
904 for (i = 0; i < argc; ++i)
905 if (tok->len == strlen (argv[i])
906 && !memcmp (tok->text, argv[i], tok->len))
907 return i;
908
909 if (is_varargs && tok->len == va_arg_name->len
910 && ! memcmp (tok->text, va_arg_name->text, tok->len))
911 return argc - 1;
912
913 return -1;
914 }
915
916 /* Helper function for substitute_args that gets the next token and
917 updates the passed-in state variables. */
918
919 static void
920 get_next_token_for_substitution (struct macro_buffer *replacement_list,
921 struct macro_buffer *token,
922 char **start,
923 struct macro_buffer *lookahead,
924 char **lookahead_start,
925 int *lookahead_valid,
926 bool *keep_going)
927 {
928 if (!*lookahead_valid)
929 *keep_going = false;
930 else
931 {
932 *keep_going = true;
933 *token = *lookahead;
934 *start = *lookahead_start;
935 *lookahead_start = replacement_list->text;
936 *lookahead_valid = get_token (lookahead, replacement_list);
937 }
938 }
939
940 /* Given the macro definition DEF, being invoked with the actual
941 arguments given by ARGV, substitute the arguments into the
942 replacement list, and store the result in DEST.
943
944 IS_VARARGS should be true if DEF is a varargs macro. In this case,
945 VA_ARG_NAME should be the name of the "variable" argument -- either
946 __VA_ARGS__ for c99-style varargs, or the final argument name, for
947 GNU-style varargs. If IS_VARARGS is false, this parameter is
948 ignored.
949
950 If it is necessary to expand macro invocations in one of the
951 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
952 definitions, and don't expand invocations of the macros listed in
953 NO_LOOP. */
954
955 static void
956 substitute_args (struct macro_buffer *dest,
957 struct macro_definition *def,
958 int is_varargs, const struct macro_buffer *va_arg_name,
959 const std::vector<struct macro_buffer> &argv,
960 struct macro_name_list *no_loop,
961 const macro_scope &scope)
962 {
963 /* The token we are currently considering. */
964 struct macro_buffer tok;
965 /* The replacement list's pointer from just before TOK was lexed. */
966 char *original_rl_start;
967 /* We have a single lookahead token to handle token splicing. */
968 struct macro_buffer lookahead;
969 /* The lookahead token might not be valid. */
970 int lookahead_valid;
971 /* The replacement list's pointer from just before LOOKAHEAD was
972 lexed. */
973 char *lookahead_rl_start;
974
975 /* A macro buffer for the macro's replacement list. */
976 struct macro_buffer replacement_list (def->replacement,
977 strlen (def->replacement));
978
979 gdb_assert (dest->len == 0);
980 dest->last_token = 0;
981
982 original_rl_start = replacement_list.text;
983 if (! get_token (&tok, &replacement_list))
984 return;
985 lookahead_rl_start = replacement_list.text;
986 lookahead_valid = get_token (&lookahead, &replacement_list);
987
988 /* __VA_OPT__ state variable. The states are:
989 0 - nothing happening
990 1 - saw __VA_OPT__
991 >= 2 in __VA_OPT__, the value encodes the parenthesis depth. */
992 unsigned vaopt_state = 0;
993
994 for (bool keep_going = true;
995 keep_going;
996 get_next_token_for_substitution (&replacement_list,
997 &tok,
998 &original_rl_start,
999 &lookahead,
1000 &lookahead_rl_start,
1001 &lookahead_valid,
1002 &keep_going))
1003 {
1004 bool token_is_vaopt = (tok.len == 10
1005 && strncmp (tok.text, "__VA_OPT__", 10) == 0);
1006
1007 if (vaopt_state > 0)
1008 {
1009 if (token_is_vaopt)
1010 error (_("__VA_OPT__ cannot appear inside __VA_OPT__"));
1011 else if (tok.len == 1 && tok.text[0] == '(')
1012 {
1013 ++vaopt_state;
1014 /* We just entered __VA_OPT__, so don't emit this
1015 token. */
1016 continue;
1017 }
1018 else if (vaopt_state == 1)
1019 error (_("__VA_OPT__ must be followed by an open parenthesis"));
1020 else if (tok.len == 1 && tok.text[0] == ')')
1021 {
1022 --vaopt_state;
1023 if (vaopt_state == 1)
1024 {
1025 /* Done with __VA_OPT__. */
1026 vaopt_state = 0;
1027 /* Don't emit. */
1028 continue;
1029 }
1030 }
1031
1032 /* If __VA_ARGS__ is empty, then drop the contents of
1033 __VA_OPT__. */
1034 if (argv.back ().len == 0)
1035 continue;
1036 }
1037 else if (token_is_vaopt)
1038 {
1039 if (!is_varargs)
1040 error (_("__VA_OPT__ is only valid in a variadic macro"));
1041 vaopt_state = 1;
1042 /* Don't emit this token. */
1043 continue;
1044 }
1045
1046 /* Just for aesthetics. If we skipped some whitespace, copy
1047 that to DEST. */
1048 if (tok.text > original_rl_start)
1049 {
1050 dest->appendmem (original_rl_start, tok.text - original_rl_start);
1051 dest->last_token = dest->len;
1052 }
1053
1054 /* Is this token the stringification operator? */
1055 if (tok.len == 1
1056 && tok.text[0] == '#')
1057 {
1058 int arg;
1059
1060 if (!lookahead_valid)
1061 error (_("Stringification operator requires an argument."));
1062
1063 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1064 def->argc, def->argv);
1065 if (arg == -1)
1066 error (_("Argument to stringification operator must name "
1067 "a macro parameter."));
1068
1069 stringify (dest, argv[arg].text, argv[arg].len);
1070
1071 /* Read one token and let the loop iteration code handle the
1072 rest. */
1073 lookahead_rl_start = replacement_list.text;
1074 lookahead_valid = get_token (&lookahead, &replacement_list);
1075 }
1076 /* Is this token the splicing operator? */
1077 else if (tok.len == 2
1078 && tok.text[0] == '#'
1079 && tok.text[1] == '#')
1080 error (_("Stray splicing operator"));
1081 /* Is the next token the splicing operator? */
1082 else if (lookahead_valid
1083 && lookahead.len == 2
1084 && lookahead.text[0] == '#'
1085 && lookahead.text[1] == '#')
1086 {
1087 int finished = 0;
1088 int prev_was_comma = 0;
1089
1090 /* Note that GCC warns if the result of splicing is not a
1091 token. In the debugger there doesn't seem to be much
1092 benefit from doing this. */
1093
1094 /* Insert the first token. */
1095 if (tok.len == 1 && tok.text[0] == ',')
1096 prev_was_comma = 1;
1097 else
1098 {
1099 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1100 def->argc, def->argv);
1101
1102 if (arg != -1)
1103 dest->appendmem (argv[arg].text, argv[arg].len);
1104 else
1105 dest->appendmem (tok.text, tok.len);
1106 }
1107
1108 /* Apply a possible sequence of ## operators. */
1109 for (;;)
1110 {
1111 if (! get_token (&tok, &replacement_list))
1112 error (_("Splicing operator at end of macro"));
1113
1114 /* Handle a comma before a ##. If we are handling
1115 varargs, and the token on the right hand side is the
1116 varargs marker, and the final argument is empty or
1117 missing, then drop the comma. This is a GNU
1118 extension. There is one ambiguous case here,
1119 involving pedantic behavior with an empty argument,
1120 but we settle that in favor of GNU-style (GCC uses an
1121 option). If we aren't dealing with varargs, we
1122 simply insert the comma. */
1123 if (prev_was_comma)
1124 {
1125 if (! (is_varargs
1126 && tok.len == va_arg_name->len
1127 && !memcmp (tok.text, va_arg_name->text, tok.len)
1128 && argv.back ().len == 0))
1129 dest->appendmem (",", 1);
1130 prev_was_comma = 0;
1131 }
1132
1133 /* Insert the token. If it is a parameter, insert the
1134 argument. If it is a comma, treat it specially. */
1135 if (tok.len == 1 && tok.text[0] == ',')
1136 prev_was_comma = 1;
1137 else
1138 {
1139 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1140 def->argc, def->argv);
1141
1142 if (arg != -1)
1143 dest->appendmem (argv[arg].text, argv[arg].len);
1144 else
1145 dest->appendmem (tok.text, tok.len);
1146 }
1147
1148 /* Now read another token. If it is another splice, we
1149 loop. */
1150 original_rl_start = replacement_list.text;
1151 if (! get_token (&tok, &replacement_list))
1152 {
1153 finished = 1;
1154 break;
1155 }
1156
1157 if (! (tok.len == 2
1158 && tok.text[0] == '#'
1159 && tok.text[1] == '#'))
1160 break;
1161 }
1162
1163 if (prev_was_comma)
1164 {
1165 /* We saw a comma. Insert it now. */
1166 dest->appendmem (",", 1);
1167 }
1168
1169 dest->last_token = dest->len;
1170 if (finished)
1171 lookahead_valid = 0;
1172 else
1173 {
1174 /* Set up for the loop iterator. */
1175 lookahead = tok;
1176 lookahead_rl_start = original_rl_start;
1177 lookahead_valid = 1;
1178 }
1179 }
1180 else
1181 {
1182 /* Is this token an identifier? */
1183 int substituted = 0;
1184 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1185 def->argc, def->argv);
1186
1187 if (arg != -1)
1188 {
1189 /* Expand any macro invocations in the argument text,
1190 and append the result to dest. Remember that scan
1191 mutates its source, so we need to scan a new buffer
1192 referring to the argument's text, not the argument
1193 itself. */
1194 struct macro_buffer arg_src (argv[arg].text, argv[arg].len);
1195 scan (dest, &arg_src, no_loop, scope);
1196 substituted = 1;
1197 }
1198
1199 /* If it wasn't a parameter, then just copy it across. */
1200 if (! substituted)
1201 append_tokens_without_splicing (dest, &tok);
1202 }
1203 }
1204
1205 if (vaopt_state > 0)
1206 error (_("Unterminated __VA_OPT__"));
1207 }
1208
1209
1210 /* Expand a call to a macro named ID, whose definition is DEF. Append
1211 its expansion to DEST. SRC is the input text following the ID
1212 token. We are currently rescanning the expansions of the macros
1213 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1214 LOOKUP_BATON to find definitions for any nested macro references.
1215
1216 Return 1 if we decided to expand it, zero otherwise. (If it's a
1217 function-like macro name that isn't followed by an argument list,
1218 we don't expand it.) If we return zero, leave SRC unchanged. */
1219 static int
1220 expand (const char *id,
1221 struct macro_definition *def,
1222 struct macro_buffer *dest,
1223 struct macro_buffer *src,
1224 struct macro_name_list *no_loop,
1225 const macro_scope &scope)
1226 {
1227 struct macro_name_list new_no_loop;
1228
1229 /* Create a new node to be added to the front of the no-expand list.
1230 This list is appropriate for re-scanning replacement lists, but
1231 it is *not* appropriate for scanning macro arguments; invocations
1232 of the macro whose arguments we are gathering *do* get expanded
1233 there. */
1234 new_no_loop.name = id;
1235 new_no_loop.next = no_loop;
1236
1237 /* What kind of macro are we expanding? */
1238 if (def->kind == macro_object_like)
1239 {
1240 struct macro_buffer replacement_list (def->replacement,
1241 strlen (def->replacement));
1242
1243 scan (dest, &replacement_list, &new_no_loop, scope);
1244 return 1;
1245 }
1246 else if (def->kind == macro_function_like)
1247 {
1248 struct macro_buffer va_arg_name;
1249 int is_varargs = 0;
1250
1251 if (def->argc >= 1)
1252 {
1253 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1254 {
1255 /* In C99-style varargs, substitution is done using
1256 __VA_ARGS__. */
1257 va_arg_name.set_shared ("__VA_ARGS__", strlen ("__VA_ARGS__"));
1258 is_varargs = 1;
1259 }
1260 else
1261 {
1262 int len = strlen (def->argv[def->argc - 1]);
1263
1264 if (len > 3
1265 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1266 {
1267 /* In GNU-style varargs, the name of the
1268 substitution parameter is the name of the formal
1269 argument without the "...". */
1270 va_arg_name.set_shared (def->argv[def->argc - 1], len - 3);
1271 is_varargs = 1;
1272 }
1273 }
1274 }
1275
1276 std::vector<struct macro_buffer> argv;
1277 /* If we couldn't find any argument list, then we don't expand
1278 this macro. */
1279 if (!gather_arguments (id, src, is_varargs ? def->argc : -1,
1280 &argv))
1281 return 0;
1282
1283 /* Check that we're passing an acceptable number of arguments for
1284 this macro. */
1285 if (argv.size () != def->argc)
1286 {
1287 if (is_varargs && argv.size () >= def->argc - 1)
1288 {
1289 /* Ok. */
1290 }
1291 /* Remember that a sequence of tokens like "foo()" is a
1292 valid invocation of a macro expecting either zero or one
1293 arguments. */
1294 else if (! (argv.size () == 1
1295 && argv[0].len == 0
1296 && def->argc == 0))
1297 error (_("Wrong number of arguments to macro `%s' "
1298 "(expected %d, got %d)."),
1299 id, def->argc, int (argv.size ()));
1300 }
1301
1302 /* Note that we don't expand macro invocations in the arguments
1303 yet --- we let subst_args take care of that. Parameters that
1304 appear as operands of the stringifying operator "#" or the
1305 splicing operator "##" don't get macro references expanded,
1306 so we can't really tell whether it's appropriate to macro-
1307 expand an argument until we see how it's being used. */
1308 struct macro_buffer substituted (0);
1309 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1310 argv, no_loop, scope);
1311
1312 /* Now `substituted' is the macro's replacement list, with all
1313 argument values substituted into it properly. Re-scan it for
1314 macro references, but don't expand invocations of this macro.
1315
1316 We create a new buffer, `substituted_src', which points into
1317 `substituted', and scan that. We can't scan `substituted'
1318 itself, since the tokenization process moves the buffer's
1319 text pointer around, and we still need to be able to find
1320 `substituted's original text buffer after scanning it so we
1321 can free it. */
1322 struct macro_buffer substituted_src (substituted.text, substituted.len);
1323 scan (dest, &substituted_src, &new_no_loop, scope);
1324
1325 return 1;
1326 }
1327 else
1328 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1329 }
1330
1331
1332 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1333 constitute a macro invocation not forbidden in NO_LOOP, append its
1334 expansion to DEST and return non-zero. Otherwise, return zero, and
1335 leave DEST unchanged.
1336
1337 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1338 SRC_FIRST must be a string built by get_token. */
1339 static int
1340 maybe_expand (struct macro_buffer *dest,
1341 struct macro_buffer *src_first,
1342 struct macro_buffer *src_rest,
1343 struct macro_name_list *no_loop,
1344 const macro_scope &scope)
1345 {
1346 gdb_assert (src_first->shared);
1347 gdb_assert (src_rest->shared);
1348 gdb_assert (! dest->shared);
1349
1350 /* Is this token an identifier? */
1351 if (src_first->is_identifier)
1352 {
1353 /* Make a null-terminated copy of it, since that's what our
1354 lookup function expects. */
1355 std::string id (src_first->text, src_first->len);
1356
1357 /* If we're currently re-scanning the result of expanding
1358 this macro, don't expand it again. */
1359 if (! currently_rescanning (no_loop, id.c_str ()))
1360 {
1361 /* Does this identifier have a macro definition in scope? */
1362 macro_definition *def = standard_macro_lookup (id.c_str (), scope);
1363
1364 if (def && expand (id.c_str (), def, dest, src_rest, no_loop, scope))
1365 return 1;
1366 }
1367 }
1368
1369 return 0;
1370 }
1371
1372
1373 /* Expand macro references in SRC, appending the results to DEST.
1374 Assume we are re-scanning the result of expanding the macros named
1375 in NO_LOOP, and don't try to re-expand references to them.
1376
1377 SRC must be a shared buffer; DEST must not be one. */
1378 static void
1379 scan (struct macro_buffer *dest,
1380 struct macro_buffer *src,
1381 struct macro_name_list *no_loop,
1382 const macro_scope &scope)
1383 {
1384 gdb_assert (src->shared);
1385 gdb_assert (! dest->shared);
1386
1387 for (;;)
1388 {
1389 struct macro_buffer tok;
1390 char *original_src_start = src->text;
1391
1392 /* Find the next token in SRC. */
1393 if (! get_token (&tok, src))
1394 break;
1395
1396 /* Just for aesthetics. If we skipped some whitespace, copy
1397 that to DEST. */
1398 if (tok.text > original_src_start)
1399 {
1400 dest->appendmem (original_src_start, tok.text - original_src_start);
1401 dest->last_token = dest->len;
1402 }
1403
1404 if (! maybe_expand (dest, &tok, src, no_loop, scope))
1405 /* We didn't end up expanding tok as a macro reference, so
1406 simply append it to dest. */
1407 append_tokens_without_splicing (dest, &tok);
1408 }
1409
1410 /* Just for aesthetics. If there was any trailing whitespace in
1411 src, copy it to dest. */
1412 if (src->len)
1413 {
1414 dest->appendmem (src->text, src->len);
1415 dest->last_token = dest->len;
1416 }
1417 }
1418
1419
1420 gdb::unique_xmalloc_ptr<char>
1421 macro_expand (const char *source, const macro_scope &scope)
1422 {
1423 struct macro_buffer src (source, strlen (source));
1424
1425 struct macro_buffer dest (0);
1426 dest.last_token = 0;
1427
1428 scan (&dest, &src, 0, scope);
1429
1430 dest.appendc ('\0');
1431
1432 return gdb::unique_xmalloc_ptr<char> (dest.release ());
1433 }
1434
1435
1436 gdb::unique_xmalloc_ptr<char>
1437 macro_expand_once (const char *source, const macro_scope &scope)
1438 {
1439 error (_("Expand-once not implemented yet."));
1440 }
1441
1442
1443 char *
1444 macro_expand_next (const char **lexptr, const macro_scope &scope)
1445 {
1446 struct macro_buffer tok;
1447
1448 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1449 struct macro_buffer src (*lexptr, strlen (*lexptr));
1450
1451 /* Set up DEST to receive the expansion, if there is one. */
1452 struct macro_buffer dest (0);
1453 dest.last_token = 0;
1454
1455 /* Get the text's first preprocessing token. */
1456 if (! get_token (&tok, &src))
1457 return 0;
1458
1459 /* If it's a macro invocation, expand it. */
1460 if (maybe_expand (&dest, &tok, &src, 0, scope))
1461 {
1462 /* It was a macro invocation! Package up the expansion as a
1463 null-terminated string and return it. Set *lexptr to the
1464 start of the next token in the input. */
1465 dest.appendc ('\0');
1466 *lexptr = src.text;
1467 return dest.release ();
1468 }
1469 else
1470 {
1471 /* It wasn't a macro invocation. */
1472 return 0;
1473 }
1474 }
This page took 0.059196 seconds and 3 git commands to generate.