gdb/infrun: add reason parameter to stop_all_threads
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void process_initial_stop_replies (int from_tty);
770
771 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing,
772 bool silent_p);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (int pid);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 void packet_command (const char *args, int from_tty);
960
961 private: /* data fields */
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 /* Per-program-space data key. */
1000 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1001 remote_pspace_data;
1002
1003 /* The variable registered as the control variable used by the
1004 remote exec-file commands. While the remote exec-file setting is
1005 per-program-space, the set/show machinery uses this as the
1006 location of the remote exec-file value. */
1007 static char *remote_exec_file_var;
1008
1009 /* The size to align memory write packets, when practical. The protocol
1010 does not guarantee any alignment, and gdb will generate short
1011 writes and unaligned writes, but even as a best-effort attempt this
1012 can improve bulk transfers. For instance, if a write is misaligned
1013 relative to the target's data bus, the stub may need to make an extra
1014 round trip fetching data from the target. This doesn't make a
1015 huge difference, but it's easy to do, so we try to be helpful.
1016
1017 The alignment chosen is arbitrary; usually data bus width is
1018 important here, not the possibly larger cache line size. */
1019 enum { REMOTE_ALIGN_WRITES = 16 };
1020
1021 /* Prototypes for local functions. */
1022
1023 static int hexnumlen (ULONGEST num);
1024
1025 static int stubhex (int ch);
1026
1027 static int hexnumstr (char *, ULONGEST);
1028
1029 static int hexnumnstr (char *, ULONGEST, int);
1030
1031 static CORE_ADDR remote_address_masked (CORE_ADDR);
1032
1033 static void print_packet (const char *);
1034
1035 static int stub_unpack_int (const char *buff, int fieldlength);
1036
1037 struct packet_config;
1038
1039 static void show_packet_config_cmd (struct packet_config *config);
1040
1041 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1042 int from_tty,
1043 struct cmd_list_element *c,
1044 const char *value);
1045
1046 static ptid_t read_ptid (const char *buf, const char **obuf);
1047
1048 static void remote_async_inferior_event_handler (gdb_client_data);
1049
1050 static bool remote_read_description_p (struct target_ops *target);
1051
1052 static void remote_console_output (const char *msg);
1053
1054 static void remote_btrace_reset (remote_state *rs);
1055
1056 static void remote_unpush_and_throw (remote_target *target);
1057
1058 /* For "remote". */
1059
1060 static struct cmd_list_element *remote_cmdlist;
1061
1062 /* For "set remote" and "show remote". */
1063
1064 static struct cmd_list_element *remote_set_cmdlist;
1065 static struct cmd_list_element *remote_show_cmdlist;
1066
1067 /* Controls whether GDB is willing to use range stepping. */
1068
1069 static bool use_range_stepping = true;
1070
1071 /* From the remote target's point of view, each thread is in one of these three
1072 states. */
1073 enum class resume_state
1074 {
1075 /* Not resumed - we haven't been asked to resume this thread. */
1076 NOT_RESUMED,
1077
1078 /* We have been asked to resume this thread, but haven't sent a vCont action
1079 for it yet. We'll need to consider it next time commit_resume is
1080 called. */
1081 RESUMED_PENDING_VCONT,
1082
1083 /* We have been asked to resume this thread, and we have sent a vCont action
1084 for it. */
1085 RESUMED,
1086 };
1087
1088 /* Information about a thread's pending vCont-resume. Used when a thread is in
1089 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1090 stores this information which is then picked up by
1091 remote_target::commit_resume to know which is the proper action for this
1092 thread to include in the vCont packet. */
1093 struct resumed_pending_vcont_info
1094 {
1095 /* True if the last resume call for this thread was a step request, false
1096 if a continue request. */
1097 bool step;
1098
1099 /* The signal specified in the last resume call for this thread. */
1100 gdb_signal sig;
1101 };
1102
1103 /* Private data that we'll store in (struct thread_info)->priv. */
1104 struct remote_thread_info : public private_thread_info
1105 {
1106 std::string extra;
1107 std::string name;
1108 int core = -1;
1109
1110 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1111 sequence of bytes. */
1112 gdb::byte_vector thread_handle;
1113
1114 /* Whether the target stopped for a breakpoint/watchpoint. */
1115 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1116
1117 /* This is set to the data address of the access causing the target
1118 to stop for a watchpoint. */
1119 CORE_ADDR watch_data_address = 0;
1120
1121 /* Get the thread's resume state. */
1122 enum resume_state get_resume_state () const
1123 {
1124 return m_resume_state;
1125 }
1126
1127 /* Put the thread in the NOT_RESUMED state. */
1128 void set_not_resumed ()
1129 {
1130 m_resume_state = resume_state::NOT_RESUMED;
1131 }
1132
1133 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1134 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1135 {
1136 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1137 m_resumed_pending_vcont_info.step = step;
1138 m_resumed_pending_vcont_info.sig = sig;
1139 }
1140
1141 /* Get the information this thread's pending vCont-resumption.
1142
1143 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1144 state. */
1145 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1146 {
1147 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1148
1149 return m_resumed_pending_vcont_info;
1150 }
1151
1152 /* Put the thread in the VCONT_RESUMED state. */
1153 void set_resumed ()
1154 {
1155 m_resume_state = resume_state::RESUMED;
1156 }
1157
1158 private:
1159 /* Resume state for this thread. This is used to implement vCont action
1160 coalescing (only when the target operates in non-stop mode).
1161
1162 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1163 which notes that this thread must be considered in the next commit_resume
1164 call.
1165
1166 remote_target::commit_resume sends a vCont packet with actions for the
1167 threads in the RESUMED_PENDING_VCONT state and moves them to the
1168 VCONT_RESUMED state.
1169
1170 When reporting a stop to the core for a thread, that thread is moved back
1171 to the NOT_RESUMED state. */
1172 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1173
1174 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1175 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1176 };
1177
1178 remote_state::remote_state ()
1179 : buf (400)
1180 {
1181 }
1182
1183 remote_state::~remote_state ()
1184 {
1185 xfree (this->last_pass_packet);
1186 xfree (this->last_program_signals_packet);
1187 xfree (this->finished_object);
1188 xfree (this->finished_annex);
1189 }
1190
1191 /* Utility: generate error from an incoming stub packet. */
1192 static void
1193 trace_error (char *buf)
1194 {
1195 if (*buf++ != 'E')
1196 return; /* not an error msg */
1197 switch (*buf)
1198 {
1199 case '1': /* malformed packet error */
1200 if (*++buf == '0') /* general case: */
1201 error (_("remote.c: error in outgoing packet."));
1202 else
1203 error (_("remote.c: error in outgoing packet at field #%ld."),
1204 strtol (buf, NULL, 16));
1205 default:
1206 error (_("Target returns error code '%s'."), buf);
1207 }
1208 }
1209
1210 /* Utility: wait for reply from stub, while accepting "O" packets. */
1211
1212 char *
1213 remote_target::remote_get_noisy_reply ()
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 do /* Loop on reply from remote stub. */
1218 {
1219 char *buf;
1220
1221 QUIT; /* Allow user to bail out with ^C. */
1222 getpkt (&rs->buf, 0);
1223 buf = rs->buf.data ();
1224 if (buf[0] == 'E')
1225 trace_error (buf);
1226 else if (startswith (buf, "qRelocInsn:"))
1227 {
1228 ULONGEST ul;
1229 CORE_ADDR from, to, org_to;
1230 const char *p, *pp;
1231 int adjusted_size = 0;
1232 int relocated = 0;
1233
1234 p = buf + strlen ("qRelocInsn:");
1235 pp = unpack_varlen_hex (p, &ul);
1236 if (*pp != ';')
1237 error (_("invalid qRelocInsn packet: %s"), buf);
1238 from = ul;
1239
1240 p = pp + 1;
1241 unpack_varlen_hex (p, &ul);
1242 to = ul;
1243
1244 org_to = to;
1245
1246 try
1247 {
1248 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1249 relocated = 1;
1250 }
1251 catch (const gdb_exception &ex)
1252 {
1253 if (ex.error == MEMORY_ERROR)
1254 {
1255 /* Propagate memory errors silently back to the
1256 target. The stub may have limited the range of
1257 addresses we can write to, for example. */
1258 }
1259 else
1260 {
1261 /* Something unexpectedly bad happened. Be verbose
1262 so we can tell what, and propagate the error back
1263 to the stub, so it doesn't get stuck waiting for
1264 a response. */
1265 exception_fprintf (gdb_stderr, ex,
1266 _("warning: relocating instruction: "));
1267 }
1268 putpkt ("E01");
1269 }
1270
1271 if (relocated)
1272 {
1273 adjusted_size = to - org_to;
1274
1275 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1276 putpkt (buf);
1277 }
1278 }
1279 else if (buf[0] == 'O' && buf[1] != 'K')
1280 remote_console_output (buf + 1); /* 'O' message from stub */
1281 else
1282 return buf; /* Here's the actual reply. */
1283 }
1284 while (1);
1285 }
1286
1287 struct remote_arch_state *
1288 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1289 {
1290 remote_arch_state *rsa;
1291
1292 auto it = this->m_arch_states.find (gdbarch);
1293 if (it == this->m_arch_states.end ())
1294 {
1295 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1296 std::forward_as_tuple (gdbarch),
1297 std::forward_as_tuple (gdbarch));
1298 rsa = &p.first->second;
1299
1300 /* Make sure that the packet buffer is plenty big enough for
1301 this architecture. */
1302 if (this->buf.size () < rsa->remote_packet_size)
1303 this->buf.resize (2 * rsa->remote_packet_size);
1304 }
1305 else
1306 rsa = &it->second;
1307
1308 return rsa;
1309 }
1310
1311 /* Fetch the global remote target state. */
1312
1313 remote_state *
1314 remote_target::get_remote_state ()
1315 {
1316 /* Make sure that the remote architecture state has been
1317 initialized, because doing so might reallocate rs->buf. Any
1318 function which calls getpkt also needs to be mindful of changes
1319 to rs->buf, but this call limits the number of places which run
1320 into trouble. */
1321 m_remote_state.get_remote_arch_state (target_gdbarch ());
1322
1323 return &m_remote_state;
1324 }
1325
1326 /* Fetch the remote exec-file from the current program space. */
1327
1328 static const char *
1329 get_remote_exec_file (void)
1330 {
1331 char *remote_exec_file;
1332
1333 remote_exec_file = remote_pspace_data.get (current_program_space);
1334 if (remote_exec_file == NULL)
1335 return "";
1336
1337 return remote_exec_file;
1338 }
1339
1340 /* Set the remote exec file for PSPACE. */
1341
1342 static void
1343 set_pspace_remote_exec_file (struct program_space *pspace,
1344 const char *remote_exec_file)
1345 {
1346 char *old_file = remote_pspace_data.get (pspace);
1347
1348 xfree (old_file);
1349 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1350 }
1351
1352 /* The "set/show remote exec-file" set command hook. */
1353
1354 static void
1355 set_remote_exec_file (const char *ignored, int from_tty,
1356 struct cmd_list_element *c)
1357 {
1358 gdb_assert (remote_exec_file_var != NULL);
1359 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1360 }
1361
1362 /* The "set/show remote exec-file" show command hook. */
1363
1364 static void
1365 show_remote_exec_file (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *cmd, const char *value)
1367 {
1368 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1369 }
1370
1371 static int
1372 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1373 {
1374 int regnum, num_remote_regs, offset;
1375 struct packet_reg **remote_regs;
1376
1377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1378 {
1379 struct packet_reg *r = &regs[regnum];
1380
1381 if (register_size (gdbarch, regnum) == 0)
1382 /* Do not try to fetch zero-sized (placeholder) registers. */
1383 r->pnum = -1;
1384 else
1385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1386
1387 r->regnum = regnum;
1388 }
1389
1390 /* Define the g/G packet format as the contents of each register
1391 with a remote protocol number, in order of ascending protocol
1392 number. */
1393
1394 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1395 for (num_remote_regs = 0, regnum = 0;
1396 regnum < gdbarch_num_regs (gdbarch);
1397 regnum++)
1398 if (regs[regnum].pnum != -1)
1399 remote_regs[num_remote_regs++] = &regs[regnum];
1400
1401 std::sort (remote_regs, remote_regs + num_remote_regs,
1402 [] (const packet_reg *a, const packet_reg *b)
1403 { return a->pnum < b->pnum; });
1404
1405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1406 {
1407 remote_regs[regnum]->in_g_packet = 1;
1408 remote_regs[regnum]->offset = offset;
1409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1410 }
1411
1412 return offset;
1413 }
1414
1415 /* Given the architecture described by GDBARCH, return the remote
1416 protocol register's number and the register's offset in the g/G
1417 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1418 If the target does not have a mapping for REGNUM, return false,
1419 otherwise, return true. */
1420
1421 int
1422 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1423 int *pnum, int *poffset)
1424 {
1425 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1426
1427 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1428
1429 map_regcache_remote_table (gdbarch, regs.data ());
1430
1431 *pnum = regs[regnum].pnum;
1432 *poffset = regs[regnum].offset;
1433
1434 return *pnum != -1;
1435 }
1436
1437 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1438 {
1439 /* Use the architecture to build a regnum<->pnum table, which will be
1440 1:1 unless a feature set specifies otherwise. */
1441 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1442
1443 /* Record the maximum possible size of the g packet - it may turn out
1444 to be smaller. */
1445 this->sizeof_g_packet
1446 = map_regcache_remote_table (gdbarch, this->regs.get ());
1447
1448 /* Default maximum number of characters in a packet body. Many
1449 remote stubs have a hardwired buffer size of 400 bytes
1450 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1451 as the maximum packet-size to ensure that the packet and an extra
1452 NUL character can always fit in the buffer. This stops GDB
1453 trashing stubs that try to squeeze an extra NUL into what is
1454 already a full buffer (As of 1999-12-04 that was most stubs). */
1455 this->remote_packet_size = 400 - 1;
1456
1457 /* This one is filled in when a ``g'' packet is received. */
1458 this->actual_register_packet_size = 0;
1459
1460 /* Should rsa->sizeof_g_packet needs more space than the
1461 default, adjust the size accordingly. Remember that each byte is
1462 encoded as two characters. 32 is the overhead for the packet
1463 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1464 (``$NN:G...#NN'') is a better guess, the below has been padded a
1465 little. */
1466 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1467 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1468 }
1469
1470 /* Get a pointer to the current remote target. If not connected to a
1471 remote target, return NULL. */
1472
1473 static remote_target *
1474 get_current_remote_target ()
1475 {
1476 target_ops *proc_target = current_inferior ()->process_target ();
1477 return dynamic_cast<remote_target *> (proc_target);
1478 }
1479
1480 /* Return the current allowed size of a remote packet. This is
1481 inferred from the current architecture, and should be used to
1482 limit the length of outgoing packets. */
1483 long
1484 remote_target::get_remote_packet_size ()
1485 {
1486 struct remote_state *rs = get_remote_state ();
1487 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1488
1489 if (rs->explicit_packet_size)
1490 return rs->explicit_packet_size;
1491
1492 return rsa->remote_packet_size;
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 long regnum)
1498 {
1499 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1500 return NULL;
1501 else
1502 {
1503 struct packet_reg *r = &rsa->regs[regnum];
1504
1505 gdb_assert (r->regnum == regnum);
1506 return r;
1507 }
1508 }
1509
1510 static struct packet_reg *
1511 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1512 LONGEST pnum)
1513 {
1514 int i;
1515
1516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1517 {
1518 struct packet_reg *r = &rsa->regs[i];
1519
1520 if (r->pnum == pnum)
1521 return r;
1522 }
1523 return NULL;
1524 }
1525
1526 /* Allow the user to specify what sequence to send to the remote
1527 when he requests a program interruption: Although ^C is usually
1528 what remote systems expect (this is the default, here), it is
1529 sometimes preferable to send a break. On other systems such
1530 as the Linux kernel, a break followed by g, which is Magic SysRq g
1531 is required in order to interrupt the execution. */
1532 const char interrupt_sequence_control_c[] = "Ctrl-C";
1533 const char interrupt_sequence_break[] = "BREAK";
1534 const char interrupt_sequence_break_g[] = "BREAK-g";
1535 static const char *const interrupt_sequence_modes[] =
1536 {
1537 interrupt_sequence_control_c,
1538 interrupt_sequence_break,
1539 interrupt_sequence_break_g,
1540 NULL
1541 };
1542 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1543
1544 static void
1545 show_interrupt_sequence (struct ui_file *file, int from_tty,
1546 struct cmd_list_element *c,
1547 const char *value)
1548 {
1549 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1550 fprintf_filtered (file,
1551 _("Send the ASCII ETX character (Ctrl-c) "
1552 "to the remote target to interrupt the "
1553 "execution of the program.\n"));
1554 else if (interrupt_sequence_mode == interrupt_sequence_break)
1555 fprintf_filtered (file,
1556 _("send a break signal to the remote target "
1557 "to interrupt the execution of the program.\n"));
1558 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1559 fprintf_filtered (file,
1560 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1561 "the remote target to interrupt the execution "
1562 "of Linux kernel.\n"));
1563 else
1564 internal_error (__FILE__, __LINE__,
1565 _("Invalid value for interrupt_sequence_mode: %s."),
1566 interrupt_sequence_mode);
1567 }
1568
1569 /* This boolean variable specifies whether interrupt_sequence is sent
1570 to the remote target when gdb connects to it.
1571 This is mostly needed when you debug the Linux kernel: The Linux kernel
1572 expects BREAK g which is Magic SysRq g for connecting gdb. */
1573 static bool interrupt_on_connect = false;
1574
1575 /* This variable is used to implement the "set/show remotebreak" commands.
1576 Since these commands are now deprecated in favor of "set/show remote
1577 interrupt-sequence", it no longer has any effect on the code. */
1578 static bool remote_break;
1579
1580 static void
1581 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 if (remote_break)
1584 interrupt_sequence_mode = interrupt_sequence_break;
1585 else
1586 interrupt_sequence_mode = interrupt_sequence_control_c;
1587 }
1588
1589 static void
1590 show_remotebreak (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c,
1592 const char *value)
1593 {
1594 }
1595
1596 /* This variable sets the number of bits in an address that are to be
1597 sent in a memory ("M" or "m") packet. Normally, after stripping
1598 leading zeros, the entire address would be sent. This variable
1599 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1600 initial implementation of remote.c restricted the address sent in
1601 memory packets to ``host::sizeof long'' bytes - (typically 32
1602 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1603 address was never sent. Since fixing this bug may cause a break in
1604 some remote targets this variable is principally provided to
1605 facilitate backward compatibility. */
1606
1607 static unsigned int remote_address_size;
1608
1609 \f
1610 /* User configurable variables for the number of characters in a
1611 memory read/write packet. MIN (rsa->remote_packet_size,
1612 rsa->sizeof_g_packet) is the default. Some targets need smaller
1613 values (fifo overruns, et.al.) and some users need larger values
1614 (speed up transfers). The variables ``preferred_*'' (the user
1615 request), ``current_*'' (what was actually set) and ``forced_*''
1616 (Positive - a soft limit, negative - a hard limit). */
1617
1618 struct memory_packet_config
1619 {
1620 const char *name;
1621 long size;
1622 int fixed_p;
1623 };
1624
1625 /* The default max memory-write-packet-size, when the setting is
1626 "fixed". The 16k is historical. (It came from older GDB's using
1627 alloca for buffers and the knowledge (folklore?) that some hosts
1628 don't cope very well with large alloca calls.) */
1629 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1630
1631 /* The minimum remote packet size for memory transfers. Ensures we
1632 can write at least one byte. */
1633 #define MIN_MEMORY_PACKET_SIZE 20
1634
1635 /* Get the memory packet size, assuming it is fixed. */
1636
1637 static long
1638 get_fixed_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 gdb_assert (config->fixed_p);
1641
1642 if (config->size <= 0)
1643 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1644 else
1645 return config->size;
1646 }
1647
1648 /* Compute the current size of a read/write packet. Since this makes
1649 use of ``actual_register_packet_size'' the computation is dynamic. */
1650
1651 long
1652 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1656
1657 long what_they_get;
1658 if (config->fixed_p)
1659 what_they_get = get_fixed_memory_packet_size (config);
1660 else
1661 {
1662 what_they_get = get_remote_packet_size ();
1663 /* Limit the packet to the size specified by the user. */
1664 if (config->size > 0
1665 && what_they_get > config->size)
1666 what_they_get = config->size;
1667
1668 /* Limit it to the size of the targets ``g'' response unless we have
1669 permission from the stub to use a larger packet size. */
1670 if (rs->explicit_packet_size == 0
1671 && rsa->actual_register_packet_size > 0
1672 && what_they_get > rsa->actual_register_packet_size)
1673 what_they_get = rsa->actual_register_packet_size;
1674 }
1675 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1676 what_they_get = MIN_MEMORY_PACKET_SIZE;
1677
1678 /* Make sure there is room in the global buffer for this packet
1679 (including its trailing NUL byte). */
1680 if (rs->buf.size () < what_they_get + 1)
1681 rs->buf.resize (2 * what_they_get);
1682
1683 return what_they_get;
1684 }
1685
1686 /* Update the size of a read/write packet. If they user wants
1687 something really big then do a sanity check. */
1688
1689 static void
1690 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1691 {
1692 int fixed_p = config->fixed_p;
1693 long size = config->size;
1694
1695 if (args == NULL)
1696 error (_("Argument required (integer, `fixed' or `limited')."));
1697 else if (strcmp (args, "hard") == 0
1698 || strcmp (args, "fixed") == 0)
1699 fixed_p = 1;
1700 else if (strcmp (args, "soft") == 0
1701 || strcmp (args, "limit") == 0)
1702 fixed_p = 0;
1703 else
1704 {
1705 char *end;
1706
1707 size = strtoul (args, &end, 0);
1708 if (args == end)
1709 error (_("Invalid %s (bad syntax)."), config->name);
1710
1711 /* Instead of explicitly capping the size of a packet to or
1712 disallowing it, the user is allowed to set the size to
1713 something arbitrarily large. */
1714 }
1715
1716 /* Extra checks? */
1717 if (fixed_p && !config->fixed_p)
1718 {
1719 /* So that the query shows the correct value. */
1720 long query_size = (size <= 0
1721 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1722 : size);
1723
1724 if (! query (_("The target may not be able to correctly handle a %s\n"
1725 "of %ld bytes. Change the packet size? "),
1726 config->name, query_size))
1727 error (_("Packet size not changed."));
1728 }
1729 /* Update the config. */
1730 config->fixed_p = fixed_p;
1731 config->size = size;
1732 }
1733
1734 static void
1735 show_memory_packet_size (struct memory_packet_config *config)
1736 {
1737 if (config->size == 0)
1738 printf_filtered (_("The %s is 0 (default). "), config->name);
1739 else
1740 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1741 if (config->fixed_p)
1742 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1743 get_fixed_memory_packet_size (config));
1744 else
1745 {
1746 remote_target *remote = get_current_remote_target ();
1747
1748 if (remote != NULL)
1749 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1750 remote->get_memory_packet_size (config));
1751 else
1752 puts_filtered ("The actual limit will be further reduced "
1753 "dependent on the target.\n");
1754 }
1755 }
1756
1757 /* FIXME: needs to be per-remote-target. */
1758 static struct memory_packet_config memory_write_packet_config =
1759 {
1760 "memory-write-packet-size",
1761 };
1762
1763 static void
1764 set_memory_write_packet_size (const char *args, int from_tty)
1765 {
1766 set_memory_packet_size (args, &memory_write_packet_config);
1767 }
1768
1769 static void
1770 show_memory_write_packet_size (const char *args, int from_tty)
1771 {
1772 show_memory_packet_size (&memory_write_packet_config);
1773 }
1774
1775 /* Show the number of hardware watchpoints that can be used. */
1776
1777 static void
1778 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum number of target hardware "
1783 "watchpoints is %s.\n"), value);
1784 }
1785
1786 /* Show the length limit (in bytes) for hardware watchpoints. */
1787
1788 static void
1789 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1794 "hardware watchpoint is %s.\n"), value);
1795 }
1796
1797 /* Show the number of hardware breakpoints that can be used. */
1798
1799 static void
1800 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1801 struct cmd_list_element *c,
1802 const char *value)
1803 {
1804 fprintf_filtered (file, _("The maximum number of target hardware "
1805 "breakpoints is %s.\n"), value);
1806 }
1807
1808 /* Controls the maximum number of characters to display in the debug output
1809 for each remote packet. The remaining characters are omitted. */
1810
1811 static int remote_packet_max_chars = 512;
1812
1813 /* Show the maximum number of characters to display for each remote packet
1814 when remote debugging is enabled. */
1815
1816 static void
1817 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1818 struct cmd_list_element *c,
1819 const char *value)
1820 {
1821 fprintf_filtered (file, _("Number of remote packet characters to "
1822 "display is %s.\n"), value);
1823 }
1824
1825 long
1826 remote_target::get_memory_write_packet_size ()
1827 {
1828 return get_memory_packet_size (&memory_write_packet_config);
1829 }
1830
1831 /* FIXME: needs to be per-remote-target. */
1832 static struct memory_packet_config memory_read_packet_config =
1833 {
1834 "memory-read-packet-size",
1835 };
1836
1837 static void
1838 set_memory_read_packet_size (const char *args, int from_tty)
1839 {
1840 set_memory_packet_size (args, &memory_read_packet_config);
1841 }
1842
1843 static void
1844 show_memory_read_packet_size (const char *args, int from_tty)
1845 {
1846 show_memory_packet_size (&memory_read_packet_config);
1847 }
1848
1849 long
1850 remote_target::get_memory_read_packet_size ()
1851 {
1852 long size = get_memory_packet_size (&memory_read_packet_config);
1853
1854 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1855 extra buffer size argument before the memory read size can be
1856 increased beyond this. */
1857 if (size > get_remote_packet_size ())
1858 size = get_remote_packet_size ();
1859 return size;
1860 }
1861
1862 \f
1863
1864 struct packet_config
1865 {
1866 const char *name;
1867 const char *title;
1868
1869 /* If auto, GDB auto-detects support for this packet or feature,
1870 either through qSupported, or by trying the packet and looking
1871 at the response. If true, GDB assumes the target supports this
1872 packet. If false, the packet is disabled. Configs that don't
1873 have an associated command always have this set to auto. */
1874 enum auto_boolean detect;
1875
1876 /* Does the target support this packet? */
1877 enum packet_support support;
1878 };
1879
1880 static enum packet_support packet_config_support (struct packet_config *config);
1881 static enum packet_support packet_support (int packet);
1882
1883 static void
1884 show_packet_config_cmd (struct packet_config *config)
1885 {
1886 const char *support = "internal-error";
1887
1888 switch (packet_config_support (config))
1889 {
1890 case PACKET_ENABLE:
1891 support = "enabled";
1892 break;
1893 case PACKET_DISABLE:
1894 support = "disabled";
1895 break;
1896 case PACKET_SUPPORT_UNKNOWN:
1897 support = "unknown";
1898 break;
1899 }
1900 switch (config->detect)
1901 {
1902 case AUTO_BOOLEAN_AUTO:
1903 printf_filtered (_("Support for the `%s' packet "
1904 "is auto-detected, currently %s.\n"),
1905 config->name, support);
1906 break;
1907 case AUTO_BOOLEAN_TRUE:
1908 case AUTO_BOOLEAN_FALSE:
1909 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1910 config->name, support);
1911 break;
1912 }
1913 }
1914
1915 static void
1916 add_packet_config_cmd (struct packet_config *config, const char *name,
1917 const char *title, int legacy)
1918 {
1919 char *set_doc;
1920 char *show_doc;
1921 char *cmd_name;
1922
1923 config->name = name;
1924 config->title = title;
1925 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1926 name, title);
1927 show_doc = xstrprintf ("Show current use of remote "
1928 "protocol `%s' (%s) packet.",
1929 name, title);
1930 /* set/show TITLE-packet {auto,on,off} */
1931 cmd_name = xstrprintf ("%s-packet", title);
1932 set_show_commands cmds
1933 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1934 &config->detect, set_doc,
1935 show_doc, NULL, /* help_doc */
1936 NULL,
1937 show_remote_protocol_packet_cmd,
1938 &remote_set_cmdlist, &remote_show_cmdlist);
1939
1940 /* The command code copies the documentation strings. */
1941 xfree (set_doc);
1942 xfree (show_doc);
1943
1944 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1945 if (legacy)
1946 {
1947 char *legacy_name;
1948
1949 legacy_name = xstrprintf ("%s-packet", name);
1950 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1951 &remote_set_cmdlist);
1952 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1953 &remote_show_cmdlist);
1954 }
1955 }
1956
1957 static enum packet_result
1958 packet_check_result (const char *buf)
1959 {
1960 if (buf[0] != '\0')
1961 {
1962 /* The stub recognized the packet request. Check that the
1963 operation succeeded. */
1964 if (buf[0] == 'E'
1965 && isxdigit (buf[1]) && isxdigit (buf[2])
1966 && buf[3] == '\0')
1967 /* "Enn" - definitely an error. */
1968 return PACKET_ERROR;
1969
1970 /* Always treat "E." as an error. This will be used for
1971 more verbose error messages, such as E.memtypes. */
1972 if (buf[0] == 'E' && buf[1] == '.')
1973 return PACKET_ERROR;
1974
1975 /* The packet may or may not be OK. Just assume it is. */
1976 return PACKET_OK;
1977 }
1978 else
1979 /* The stub does not support the packet. */
1980 return PACKET_UNKNOWN;
1981 }
1982
1983 static enum packet_result
1984 packet_check_result (const gdb::char_vector &buf)
1985 {
1986 return packet_check_result (buf.data ());
1987 }
1988
1989 static enum packet_result
1990 packet_ok (const char *buf, struct packet_config *config)
1991 {
1992 enum packet_result result;
1993
1994 if (config->detect != AUTO_BOOLEAN_TRUE
1995 && config->support == PACKET_DISABLE)
1996 internal_error (__FILE__, __LINE__,
1997 _("packet_ok: attempt to use a disabled packet"));
1998
1999 result = packet_check_result (buf);
2000 switch (result)
2001 {
2002 case PACKET_OK:
2003 case PACKET_ERROR:
2004 /* The stub recognized the packet request. */
2005 if (config->support == PACKET_SUPPORT_UNKNOWN)
2006 {
2007 remote_debug_printf ("Packet %s (%s) is supported",
2008 config->name, config->title);
2009 config->support = PACKET_ENABLE;
2010 }
2011 break;
2012 case PACKET_UNKNOWN:
2013 /* The stub does not support the packet. */
2014 if (config->detect == AUTO_BOOLEAN_AUTO
2015 && config->support == PACKET_ENABLE)
2016 {
2017 /* If the stub previously indicated that the packet was
2018 supported then there is a protocol error. */
2019 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2020 config->name, config->title);
2021 }
2022 else if (config->detect == AUTO_BOOLEAN_TRUE)
2023 {
2024 /* The user set it wrong. */
2025 error (_("Enabled packet %s (%s) not recognized by stub"),
2026 config->name, config->title);
2027 }
2028
2029 remote_debug_printf ("Packet %s (%s) is NOT supported",
2030 config->name, config->title);
2031 config->support = PACKET_DISABLE;
2032 break;
2033 }
2034
2035 return result;
2036 }
2037
2038 static enum packet_result
2039 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2040 {
2041 return packet_ok (buf.data (), config);
2042 }
2043
2044 enum {
2045 PACKET_vCont = 0,
2046 PACKET_X,
2047 PACKET_qSymbol,
2048 PACKET_P,
2049 PACKET_p,
2050 PACKET_Z0,
2051 PACKET_Z1,
2052 PACKET_Z2,
2053 PACKET_Z3,
2054 PACKET_Z4,
2055 PACKET_vFile_setfs,
2056 PACKET_vFile_open,
2057 PACKET_vFile_pread,
2058 PACKET_vFile_pwrite,
2059 PACKET_vFile_close,
2060 PACKET_vFile_unlink,
2061 PACKET_vFile_readlink,
2062 PACKET_vFile_fstat,
2063 PACKET_qXfer_auxv,
2064 PACKET_qXfer_features,
2065 PACKET_qXfer_exec_file,
2066 PACKET_qXfer_libraries,
2067 PACKET_qXfer_libraries_svr4,
2068 PACKET_qXfer_memory_map,
2069 PACKET_qXfer_osdata,
2070 PACKET_qXfer_threads,
2071 PACKET_qXfer_statictrace_read,
2072 PACKET_qXfer_traceframe_info,
2073 PACKET_qXfer_uib,
2074 PACKET_qGetTIBAddr,
2075 PACKET_qGetTLSAddr,
2076 PACKET_qSupported,
2077 PACKET_qTStatus,
2078 PACKET_QPassSignals,
2079 PACKET_QCatchSyscalls,
2080 PACKET_QProgramSignals,
2081 PACKET_QSetWorkingDir,
2082 PACKET_QStartupWithShell,
2083 PACKET_QEnvironmentHexEncoded,
2084 PACKET_QEnvironmentReset,
2085 PACKET_QEnvironmentUnset,
2086 PACKET_qCRC,
2087 PACKET_qSearch_memory,
2088 PACKET_vAttach,
2089 PACKET_vRun,
2090 PACKET_QStartNoAckMode,
2091 PACKET_vKill,
2092 PACKET_qXfer_siginfo_read,
2093 PACKET_qXfer_siginfo_write,
2094 PACKET_qAttached,
2095
2096 /* Support for conditional tracepoints. */
2097 PACKET_ConditionalTracepoints,
2098
2099 /* Support for target-side breakpoint conditions. */
2100 PACKET_ConditionalBreakpoints,
2101
2102 /* Support for target-side breakpoint commands. */
2103 PACKET_BreakpointCommands,
2104
2105 /* Support for fast tracepoints. */
2106 PACKET_FastTracepoints,
2107
2108 /* Support for static tracepoints. */
2109 PACKET_StaticTracepoints,
2110
2111 /* Support for installing tracepoints while a trace experiment is
2112 running. */
2113 PACKET_InstallInTrace,
2114
2115 PACKET_bc,
2116 PACKET_bs,
2117 PACKET_TracepointSource,
2118 PACKET_QAllow,
2119 PACKET_qXfer_fdpic,
2120 PACKET_QDisableRandomization,
2121 PACKET_QAgent,
2122 PACKET_QTBuffer_size,
2123 PACKET_Qbtrace_off,
2124 PACKET_Qbtrace_bts,
2125 PACKET_Qbtrace_pt,
2126 PACKET_qXfer_btrace,
2127
2128 /* Support for the QNonStop packet. */
2129 PACKET_QNonStop,
2130
2131 /* Support for the QThreadEvents packet. */
2132 PACKET_QThreadEvents,
2133
2134 /* Support for multi-process extensions. */
2135 PACKET_multiprocess_feature,
2136
2137 /* Support for enabling and disabling tracepoints while a trace
2138 experiment is running. */
2139 PACKET_EnableDisableTracepoints_feature,
2140
2141 /* Support for collecting strings using the tracenz bytecode. */
2142 PACKET_tracenz_feature,
2143
2144 /* Support for continuing to run a trace experiment while GDB is
2145 disconnected. */
2146 PACKET_DisconnectedTracing_feature,
2147
2148 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2149 PACKET_augmented_libraries_svr4_read_feature,
2150
2151 /* Support for the qXfer:btrace-conf:read packet. */
2152 PACKET_qXfer_btrace_conf,
2153
2154 /* Support for the Qbtrace-conf:bts:size packet. */
2155 PACKET_Qbtrace_conf_bts_size,
2156
2157 /* Support for swbreak+ feature. */
2158 PACKET_swbreak_feature,
2159
2160 /* Support for hwbreak+ feature. */
2161 PACKET_hwbreak_feature,
2162
2163 /* Support for fork events. */
2164 PACKET_fork_event_feature,
2165
2166 /* Support for vfork events. */
2167 PACKET_vfork_event_feature,
2168
2169 /* Support for the Qbtrace-conf:pt:size packet. */
2170 PACKET_Qbtrace_conf_pt_size,
2171
2172 /* Support for exec events. */
2173 PACKET_exec_event_feature,
2174
2175 /* Support for query supported vCont actions. */
2176 PACKET_vContSupported,
2177
2178 /* Support remote CTRL-C. */
2179 PACKET_vCtrlC,
2180
2181 /* Support TARGET_WAITKIND_NO_RESUMED. */
2182 PACKET_no_resumed,
2183
2184 /* Support for memory tagging, allocation tag fetch/store
2185 packets and the tag violation stop replies. */
2186 PACKET_memory_tagging_feature,
2187
2188 PACKET_MAX
2189 };
2190
2191 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2192 assuming all remote targets are the same server (thus all support
2193 the same packets). */
2194 static struct packet_config remote_protocol_packets[PACKET_MAX];
2195
2196 /* Returns the packet's corresponding "set remote foo-packet" command
2197 state. See struct packet_config for more details. */
2198
2199 static enum auto_boolean
2200 packet_set_cmd_state (int packet)
2201 {
2202 return remote_protocol_packets[packet].detect;
2203 }
2204
2205 /* Returns whether a given packet or feature is supported. This takes
2206 into account the state of the corresponding "set remote foo-packet"
2207 command, which may be used to bypass auto-detection. */
2208
2209 static enum packet_support
2210 packet_config_support (struct packet_config *config)
2211 {
2212 switch (config->detect)
2213 {
2214 case AUTO_BOOLEAN_TRUE:
2215 return PACKET_ENABLE;
2216 case AUTO_BOOLEAN_FALSE:
2217 return PACKET_DISABLE;
2218 case AUTO_BOOLEAN_AUTO:
2219 return config->support;
2220 default:
2221 gdb_assert_not_reached (_("bad switch"));
2222 }
2223 }
2224
2225 /* Same as packet_config_support, but takes the packet's enum value as
2226 argument. */
2227
2228 static enum packet_support
2229 packet_support (int packet)
2230 {
2231 struct packet_config *config = &remote_protocol_packets[packet];
2232
2233 return packet_config_support (config);
2234 }
2235
2236 static void
2237 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2238 struct cmd_list_element *c,
2239 const char *value)
2240 {
2241 struct packet_config *packet;
2242
2243 for (packet = remote_protocol_packets;
2244 packet < &remote_protocol_packets[PACKET_MAX];
2245 packet++)
2246 {
2247 if (&packet->detect == c->var)
2248 {
2249 show_packet_config_cmd (packet);
2250 return;
2251 }
2252 }
2253 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2254 c->name);
2255 }
2256
2257 /* Should we try one of the 'Z' requests? */
2258
2259 enum Z_packet_type
2260 {
2261 Z_PACKET_SOFTWARE_BP,
2262 Z_PACKET_HARDWARE_BP,
2263 Z_PACKET_WRITE_WP,
2264 Z_PACKET_READ_WP,
2265 Z_PACKET_ACCESS_WP,
2266 NR_Z_PACKET_TYPES
2267 };
2268
2269 /* For compatibility with older distributions. Provide a ``set remote
2270 Z-packet ...'' command that updates all the Z packet types. */
2271
2272 static enum auto_boolean remote_Z_packet_detect;
2273
2274 static void
2275 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2276 struct cmd_list_element *c)
2277 {
2278 int i;
2279
2280 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2281 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2282 }
2283
2284 static void
2285 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2286 struct cmd_list_element *c,
2287 const char *value)
2288 {
2289 int i;
2290
2291 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2292 {
2293 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2294 }
2295 }
2296
2297 /* Returns true if the multi-process extensions are in effect. */
2298
2299 static int
2300 remote_multi_process_p (struct remote_state *rs)
2301 {
2302 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2303 }
2304
2305 /* Returns true if fork events are supported. */
2306
2307 static int
2308 remote_fork_event_p (struct remote_state *rs)
2309 {
2310 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2311 }
2312
2313 /* Returns true if vfork events are supported. */
2314
2315 static int
2316 remote_vfork_event_p (struct remote_state *rs)
2317 {
2318 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2319 }
2320
2321 /* Returns true if exec events are supported. */
2322
2323 static int
2324 remote_exec_event_p (struct remote_state *rs)
2325 {
2326 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2327 }
2328
2329 /* Returns true if memory tagging is supported, false otherwise. */
2330
2331 static bool
2332 remote_memory_tagging_p ()
2333 {
2334 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2335 }
2336
2337 /* Insert fork catchpoint target routine. If fork events are enabled
2338 then return success, nothing more to do. */
2339
2340 int
2341 remote_target::insert_fork_catchpoint (int pid)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344
2345 return !remote_fork_event_p (rs);
2346 }
2347
2348 /* Remove fork catchpoint target routine. Nothing to do, just
2349 return success. */
2350
2351 int
2352 remote_target::remove_fork_catchpoint (int pid)
2353 {
2354 return 0;
2355 }
2356
2357 /* Insert vfork catchpoint target routine. If vfork events are enabled
2358 then return success, nothing more to do. */
2359
2360 int
2361 remote_target::insert_vfork_catchpoint (int pid)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364
2365 return !remote_vfork_event_p (rs);
2366 }
2367
2368 /* Remove vfork catchpoint target routine. Nothing to do, just
2369 return success. */
2370
2371 int
2372 remote_target::remove_vfork_catchpoint (int pid)
2373 {
2374 return 0;
2375 }
2376
2377 /* Insert exec catchpoint target routine. If exec events are
2378 enabled, just return success. */
2379
2380 int
2381 remote_target::insert_exec_catchpoint (int pid)
2382 {
2383 struct remote_state *rs = get_remote_state ();
2384
2385 return !remote_exec_event_p (rs);
2386 }
2387
2388 /* Remove exec catchpoint target routine. Nothing to do, just
2389 return success. */
2390
2391 int
2392 remote_target::remove_exec_catchpoint (int pid)
2393 {
2394 return 0;
2395 }
2396
2397 \f
2398
2399 /* Take advantage of the fact that the TID field is not used, to tag
2400 special ptids with it set to != 0. */
2401 static const ptid_t magic_null_ptid (42000, -1, 1);
2402 static const ptid_t not_sent_ptid (42000, -2, 1);
2403 static const ptid_t any_thread_ptid (42000, 0, 1);
2404
2405 /* Find out if the stub attached to PID (and hence GDB should offer to
2406 detach instead of killing it when bailing out). */
2407
2408 int
2409 remote_target::remote_query_attached (int pid)
2410 {
2411 struct remote_state *rs = get_remote_state ();
2412 size_t size = get_remote_packet_size ();
2413
2414 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2415 return 0;
2416
2417 if (remote_multi_process_p (rs))
2418 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2419 else
2420 xsnprintf (rs->buf.data (), size, "qAttached");
2421
2422 putpkt (rs->buf);
2423 getpkt (&rs->buf, 0);
2424
2425 switch (packet_ok (rs->buf,
2426 &remote_protocol_packets[PACKET_qAttached]))
2427 {
2428 case PACKET_OK:
2429 if (strcmp (rs->buf.data (), "1") == 0)
2430 return 1;
2431 break;
2432 case PACKET_ERROR:
2433 warning (_("Remote failure reply: %s"), rs->buf.data ());
2434 break;
2435 case PACKET_UNKNOWN:
2436 break;
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2443 has been invented by GDB, instead of reported by the target. Since
2444 we can be connected to a remote system before before knowing about
2445 any inferior, mark the target with execution when we find the first
2446 inferior. If ATTACHED is 1, then we had just attached to this
2447 inferior. If it is 0, then we just created this inferior. If it
2448 is -1, then try querying the remote stub to find out if it had
2449 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2450 attempt to open this inferior's executable as the main executable
2451 if no main executable is open already. */
2452
2453 inferior *
2454 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2455 int try_open_exec)
2456 {
2457 struct inferior *inf;
2458
2459 /* Check whether this process we're learning about is to be
2460 considered attached, or if is to be considered to have been
2461 spawned by the stub. */
2462 if (attached == -1)
2463 attached = remote_query_attached (pid);
2464
2465 if (gdbarch_has_global_solist (target_gdbarch ()))
2466 {
2467 /* If the target shares code across all inferiors, then every
2468 attach adds a new inferior. */
2469 inf = add_inferior (pid);
2470
2471 /* ... and every inferior is bound to the same program space.
2472 However, each inferior may still have its own address
2473 space. */
2474 inf->aspace = maybe_new_address_space ();
2475 inf->pspace = current_program_space;
2476 }
2477 else
2478 {
2479 /* In the traditional debugging scenario, there's a 1-1 match
2480 between program/address spaces. We simply bind the inferior
2481 to the program space's address space. */
2482 inf = current_inferior ();
2483
2484 /* However, if the current inferior is already bound to a
2485 process, find some other empty inferior. */
2486 if (inf->pid != 0)
2487 {
2488 inf = nullptr;
2489 for (inferior *it : all_inferiors ())
2490 if (it->pid == 0)
2491 {
2492 inf = it;
2493 break;
2494 }
2495 }
2496 if (inf == nullptr)
2497 {
2498 /* Since all inferiors were already bound to a process, add
2499 a new inferior. */
2500 inf = add_inferior_with_spaces ();
2501 }
2502 switch_to_inferior_no_thread (inf);
2503 inf->push_target (this);
2504 inferior_appeared (inf, pid);
2505 }
2506
2507 inf->attach_flag = attached;
2508 inf->fake_pid_p = fake_pid_p;
2509
2510 /* If no main executable is currently open then attempt to
2511 open the file that was executed to create this inferior. */
2512 if (try_open_exec && get_exec_file (0) == NULL)
2513 exec_file_locate_attach (pid, 0, 1);
2514
2515 /* Check for exec file mismatch, and let the user solve it. */
2516 validate_exec_file (1);
2517
2518 return inf;
2519 }
2520
2521 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2522 static remote_thread_info *get_remote_thread_info (remote_target *target,
2523 ptid_t ptid);
2524
2525 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2526 according to EXECUTING and RUNNING respectively. If SILENT_P (or the
2527 remote_state::starting_up flag) is true then the new thread is added
2528 silently, otherwise the new thread will be announced to the user. */
2529
2530 thread_info *
2531 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing,
2532 bool silent_p)
2533 {
2534 struct remote_state *rs = get_remote_state ();
2535 struct thread_info *thread;
2536
2537 /* GDB historically didn't pull threads in the initial connection
2538 setup. If the remote target doesn't even have a concept of
2539 threads (e.g., a bare-metal target), even if internally we
2540 consider that a single-threaded target, mentioning a new thread
2541 might be confusing to the user. Be silent then, preserving the
2542 age old behavior. */
2543 if (rs->starting_up || silent_p)
2544 thread = add_thread_silent (this, ptid);
2545 else
2546 thread = add_thread (this, ptid);
2547
2548 /* We start by assuming threads are resumed. That state then gets updated
2549 when we process a matching stop reply. */
2550 get_remote_thread_info (thread)->set_resumed ();
2551
2552 set_executing (this, ptid, executing);
2553 set_running (this, ptid, running);
2554
2555 return thread;
2556 }
2557
2558 /* Come here when we learn about a thread id from the remote target.
2559 It may be the first time we hear about such thread, so take the
2560 opportunity to add it to GDB's thread list. In case this is the
2561 first time we're noticing its corresponding inferior, add it to
2562 GDB's inferior list as well. EXECUTING indicates whether the
2563 thread is (internally) executing or stopped. */
2564
2565 void
2566 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2567 {
2568 /* In non-stop mode, we assume new found threads are (externally)
2569 running until proven otherwise with a stop reply. In all-stop,
2570 we can only get here if all threads are stopped. */
2571 bool running = target_is_non_stop_p ();
2572
2573 /* If this is a new thread, add it to GDB's thread list.
2574 If we leave it up to WFI to do this, bad things will happen. */
2575
2576 thread_info *tp = find_thread_ptid (this, currthread);
2577 if (tp != NULL && tp->state == THREAD_EXITED)
2578 {
2579 /* We're seeing an event on a thread id we knew had exited.
2580 This has to be a new thread reusing the old id. Add it. */
2581 remote_add_thread (currthread, running, executing, false);
2582 return;
2583 }
2584
2585 if (!in_thread_list (this, currthread))
2586 {
2587 struct inferior *inf = NULL;
2588 int pid = currthread.pid ();
2589
2590 if (inferior_ptid.is_pid ()
2591 && pid == inferior_ptid.pid ())
2592 {
2593 /* inferior_ptid has no thread member yet. This can happen
2594 with the vAttach -> remote_wait,"TAAthread:" path if the
2595 stub doesn't support qC. This is the first stop reported
2596 after an attach, so this is the main thread. Update the
2597 ptid in the thread list. */
2598 if (in_thread_list (this, ptid_t (pid)))
2599 thread_change_ptid (this, inferior_ptid, currthread);
2600 else
2601 {
2602 thread_info *thr
2603 = remote_add_thread (currthread, running, executing, false);
2604 switch_to_thread (thr);
2605 }
2606 return;
2607 }
2608
2609 if (magic_null_ptid == inferior_ptid)
2610 {
2611 /* inferior_ptid is not set yet. This can happen with the
2612 vRun -> remote_wait,"TAAthread:" path if the stub
2613 doesn't support qC. This is the first stop reported
2614 after an attach, so this is the main thread. Update the
2615 ptid in the thread list. */
2616 thread_change_ptid (this, inferior_ptid, currthread);
2617 return;
2618 }
2619
2620 /* When connecting to a target remote, or to a target
2621 extended-remote which already was debugging an inferior, we
2622 may not know about it yet. Add it before adding its child
2623 thread, so notifications are emitted in a sensible order. */
2624 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2625 {
2626 struct remote_state *rs = get_remote_state ();
2627 bool fake_pid_p = !remote_multi_process_p (rs);
2628
2629 inf = remote_add_inferior (fake_pid_p,
2630 currthread.pid (), -1, 1);
2631 }
2632
2633 /* This is really a new thread. Add it. */
2634 thread_info *new_thr
2635 = remote_add_thread (currthread, running, executing, false);
2636
2637 /* If we found a new inferior, let the common code do whatever
2638 it needs to with it (e.g., read shared libraries, insert
2639 breakpoints), unless we're just setting up an all-stop
2640 connection. */
2641 if (inf != NULL)
2642 {
2643 struct remote_state *rs = get_remote_state ();
2644
2645 if (!rs->starting_up)
2646 notice_new_inferior (new_thr, executing, 0);
2647 }
2648 }
2649 }
2650
2651 /* Return THREAD's private thread data, creating it if necessary. */
2652
2653 static remote_thread_info *
2654 get_remote_thread_info (thread_info *thread)
2655 {
2656 gdb_assert (thread != NULL);
2657
2658 if (thread->priv == NULL)
2659 thread->priv.reset (new remote_thread_info);
2660
2661 return static_cast<remote_thread_info *> (thread->priv.get ());
2662 }
2663
2664 /* Return PTID's private thread data, creating it if necessary. */
2665
2666 static remote_thread_info *
2667 get_remote_thread_info (remote_target *target, ptid_t ptid)
2668 {
2669 thread_info *thr = find_thread_ptid (target, ptid);
2670 return get_remote_thread_info (thr);
2671 }
2672
2673 /* Call this function as a result of
2674 1) A halt indication (T packet) containing a thread id
2675 2) A direct query of currthread
2676 3) Successful execution of set thread */
2677
2678 static void
2679 record_currthread (struct remote_state *rs, ptid_t currthread)
2680 {
2681 rs->general_thread = currthread;
2682 }
2683
2684 /* If 'QPassSignals' is supported, tell the remote stub what signals
2685 it can simply pass through to the inferior without reporting. */
2686
2687 void
2688 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2689 {
2690 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2691 {
2692 char *pass_packet, *p;
2693 int count = 0;
2694 struct remote_state *rs = get_remote_state ();
2695
2696 gdb_assert (pass_signals.size () < 256);
2697 for (size_t i = 0; i < pass_signals.size (); i++)
2698 {
2699 if (pass_signals[i])
2700 count++;
2701 }
2702 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2703 strcpy (pass_packet, "QPassSignals:");
2704 p = pass_packet + strlen (pass_packet);
2705 for (size_t i = 0; i < pass_signals.size (); i++)
2706 {
2707 if (pass_signals[i])
2708 {
2709 if (i >= 16)
2710 *p++ = tohex (i >> 4);
2711 *p++ = tohex (i & 15);
2712 if (count)
2713 *p++ = ';';
2714 else
2715 break;
2716 count--;
2717 }
2718 }
2719 *p = 0;
2720 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2721 {
2722 putpkt (pass_packet);
2723 getpkt (&rs->buf, 0);
2724 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2725 xfree (rs->last_pass_packet);
2726 rs->last_pass_packet = pass_packet;
2727 }
2728 else
2729 xfree (pass_packet);
2730 }
2731 }
2732
2733 /* If 'QCatchSyscalls' is supported, tell the remote stub
2734 to report syscalls to GDB. */
2735
2736 int
2737 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2738 gdb::array_view<const int> syscall_counts)
2739 {
2740 const char *catch_packet;
2741 enum packet_result result;
2742 int n_sysno = 0;
2743
2744 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2745 {
2746 /* Not supported. */
2747 return 1;
2748 }
2749
2750 if (needed && any_count == 0)
2751 {
2752 /* Count how many syscalls are to be caught. */
2753 for (size_t i = 0; i < syscall_counts.size (); i++)
2754 {
2755 if (syscall_counts[i] != 0)
2756 n_sysno++;
2757 }
2758 }
2759
2760 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2761 pid, needed, any_count, n_sysno);
2762
2763 std::string built_packet;
2764 if (needed)
2765 {
2766 /* Prepare a packet with the sysno list, assuming max 8+1
2767 characters for a sysno. If the resulting packet size is too
2768 big, fallback on the non-selective packet. */
2769 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2770 built_packet.reserve (maxpktsz);
2771 built_packet = "QCatchSyscalls:1";
2772 if (any_count == 0)
2773 {
2774 /* Add in each syscall to be caught. */
2775 for (size_t i = 0; i < syscall_counts.size (); i++)
2776 {
2777 if (syscall_counts[i] != 0)
2778 string_appendf (built_packet, ";%zx", i);
2779 }
2780 }
2781 if (built_packet.size () > get_remote_packet_size ())
2782 {
2783 /* catch_packet too big. Fallback to less efficient
2784 non selective mode, with GDB doing the filtering. */
2785 catch_packet = "QCatchSyscalls:1";
2786 }
2787 else
2788 catch_packet = built_packet.c_str ();
2789 }
2790 else
2791 catch_packet = "QCatchSyscalls:0";
2792
2793 struct remote_state *rs = get_remote_state ();
2794
2795 putpkt (catch_packet);
2796 getpkt (&rs->buf, 0);
2797 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2798 if (result == PACKET_OK)
2799 return 0;
2800 else
2801 return -1;
2802 }
2803
2804 /* If 'QProgramSignals' is supported, tell the remote stub what
2805 signals it should pass through to the inferior when detaching. */
2806
2807 void
2808 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2809 {
2810 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2811 {
2812 char *packet, *p;
2813 int count = 0;
2814 struct remote_state *rs = get_remote_state ();
2815
2816 gdb_assert (signals.size () < 256);
2817 for (size_t i = 0; i < signals.size (); i++)
2818 {
2819 if (signals[i])
2820 count++;
2821 }
2822 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2823 strcpy (packet, "QProgramSignals:");
2824 p = packet + strlen (packet);
2825 for (size_t i = 0; i < signals.size (); i++)
2826 {
2827 if (signal_pass_state (i))
2828 {
2829 if (i >= 16)
2830 *p++ = tohex (i >> 4);
2831 *p++ = tohex (i & 15);
2832 if (count)
2833 *p++ = ';';
2834 else
2835 break;
2836 count--;
2837 }
2838 }
2839 *p = 0;
2840 if (!rs->last_program_signals_packet
2841 || strcmp (rs->last_program_signals_packet, packet) != 0)
2842 {
2843 putpkt (packet);
2844 getpkt (&rs->buf, 0);
2845 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2846 xfree (rs->last_program_signals_packet);
2847 rs->last_program_signals_packet = packet;
2848 }
2849 else
2850 xfree (packet);
2851 }
2852 }
2853
2854 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2855 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2856 thread. If GEN is set, set the general thread, if not, then set
2857 the step/continue thread. */
2858 void
2859 remote_target::set_thread (ptid_t ptid, int gen)
2860 {
2861 struct remote_state *rs = get_remote_state ();
2862 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2863 char *buf = rs->buf.data ();
2864 char *endbuf = buf + get_remote_packet_size ();
2865
2866 if (state == ptid)
2867 return;
2868
2869 *buf++ = 'H';
2870 *buf++ = gen ? 'g' : 'c';
2871 if (ptid == magic_null_ptid)
2872 xsnprintf (buf, endbuf - buf, "0");
2873 else if (ptid == any_thread_ptid)
2874 xsnprintf (buf, endbuf - buf, "0");
2875 else if (ptid == minus_one_ptid)
2876 xsnprintf (buf, endbuf - buf, "-1");
2877 else
2878 write_ptid (buf, endbuf, ptid);
2879 putpkt (rs->buf);
2880 getpkt (&rs->buf, 0);
2881 if (gen)
2882 rs->general_thread = ptid;
2883 else
2884 rs->continue_thread = ptid;
2885 }
2886
2887 void
2888 remote_target::set_general_thread (ptid_t ptid)
2889 {
2890 set_thread (ptid, 1);
2891 }
2892
2893 void
2894 remote_target::set_continue_thread (ptid_t ptid)
2895 {
2896 set_thread (ptid, 0);
2897 }
2898
2899 /* Change the remote current process. Which thread within the process
2900 ends up selected isn't important, as long as it is the same process
2901 as what INFERIOR_PTID points to.
2902
2903 This comes from that fact that there is no explicit notion of
2904 "selected process" in the protocol. The selected process for
2905 general operations is the process the selected general thread
2906 belongs to. */
2907
2908 void
2909 remote_target::set_general_process ()
2910 {
2911 struct remote_state *rs = get_remote_state ();
2912
2913 /* If the remote can't handle multiple processes, don't bother. */
2914 if (!remote_multi_process_p (rs))
2915 return;
2916
2917 /* We only need to change the remote current thread if it's pointing
2918 at some other process. */
2919 if (rs->general_thread.pid () != inferior_ptid.pid ())
2920 set_general_thread (inferior_ptid);
2921 }
2922
2923 \f
2924 /* Return nonzero if this is the main thread that we made up ourselves
2925 to model non-threaded targets as single-threaded. */
2926
2927 static int
2928 remote_thread_always_alive (ptid_t ptid)
2929 {
2930 if (ptid == magic_null_ptid)
2931 /* The main thread is always alive. */
2932 return 1;
2933
2934 if (ptid.pid () != 0 && ptid.lwp () == 0)
2935 /* The main thread is always alive. This can happen after a
2936 vAttach, if the remote side doesn't support
2937 multi-threading. */
2938 return 1;
2939
2940 return 0;
2941 }
2942
2943 /* Return nonzero if the thread PTID is still alive on the remote
2944 system. */
2945
2946 bool
2947 remote_target::thread_alive (ptid_t ptid)
2948 {
2949 struct remote_state *rs = get_remote_state ();
2950 char *p, *endp;
2951
2952 /* Check if this is a thread that we made up ourselves to model
2953 non-threaded targets as single-threaded. */
2954 if (remote_thread_always_alive (ptid))
2955 return 1;
2956
2957 p = rs->buf.data ();
2958 endp = p + get_remote_packet_size ();
2959
2960 *p++ = 'T';
2961 write_ptid (p, endp, ptid);
2962
2963 putpkt (rs->buf);
2964 getpkt (&rs->buf, 0);
2965 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2966 }
2967
2968 /* Return a pointer to a thread name if we know it and NULL otherwise.
2969 The thread_info object owns the memory for the name. */
2970
2971 const char *
2972 remote_target::thread_name (struct thread_info *info)
2973 {
2974 if (info->priv != NULL)
2975 {
2976 const std::string &name = get_remote_thread_info (info)->name;
2977 return !name.empty () ? name.c_str () : NULL;
2978 }
2979
2980 return NULL;
2981 }
2982
2983 /* About these extended threadlist and threadinfo packets. They are
2984 variable length packets but, the fields within them are often fixed
2985 length. They are redundant enough to send over UDP as is the
2986 remote protocol in general. There is a matching unit test module
2987 in libstub. */
2988
2989 /* WARNING: This threadref data structure comes from the remote O.S.,
2990 libstub protocol encoding, and remote.c. It is not particularly
2991 changable. */
2992
2993 /* Right now, the internal structure is int. We want it to be bigger.
2994 Plan to fix this. */
2995
2996 typedef int gdb_threadref; /* Internal GDB thread reference. */
2997
2998 /* gdb_ext_thread_info is an internal GDB data structure which is
2999 equivalent to the reply of the remote threadinfo packet. */
3000
3001 struct gdb_ext_thread_info
3002 {
3003 threadref threadid; /* External form of thread reference. */
3004 int active; /* Has state interesting to GDB?
3005 regs, stack. */
3006 char display[256]; /* Brief state display, name,
3007 blocked/suspended. */
3008 char shortname[32]; /* To be used to name threads. */
3009 char more_display[256]; /* Long info, statistics, queue depth,
3010 whatever. */
3011 };
3012
3013 /* The volume of remote transfers can be limited by submitting
3014 a mask containing bits specifying the desired information.
3015 Use a union of these values as the 'selection' parameter to
3016 get_thread_info. FIXME: Make these TAG names more thread specific. */
3017
3018 #define TAG_THREADID 1
3019 #define TAG_EXISTS 2
3020 #define TAG_DISPLAY 4
3021 #define TAG_THREADNAME 8
3022 #define TAG_MOREDISPLAY 16
3023
3024 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3025
3026 static const char *unpack_nibble (const char *buf, int *val);
3027
3028 static const char *unpack_byte (const char *buf, int *value);
3029
3030 static char *pack_int (char *buf, int value);
3031
3032 static const char *unpack_int (const char *buf, int *value);
3033
3034 static const char *unpack_string (const char *src, char *dest, int length);
3035
3036 static char *pack_threadid (char *pkt, threadref *id);
3037
3038 static const char *unpack_threadid (const char *inbuf, threadref *id);
3039
3040 void int_to_threadref (threadref *id, int value);
3041
3042 static int threadref_to_int (threadref *ref);
3043
3044 static void copy_threadref (threadref *dest, threadref *src);
3045
3046 static int threadmatch (threadref *dest, threadref *src);
3047
3048 static char *pack_threadinfo_request (char *pkt, int mode,
3049 threadref *id);
3050
3051 static char *pack_threadlist_request (char *pkt, int startflag,
3052 int threadcount,
3053 threadref *nextthread);
3054
3055 static int remote_newthread_step (threadref *ref, void *context);
3056
3057
3058 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3059 buffer we're allowed to write to. Returns
3060 BUF+CHARACTERS_WRITTEN. */
3061
3062 char *
3063 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3064 {
3065 int pid, tid;
3066 struct remote_state *rs = get_remote_state ();
3067
3068 if (remote_multi_process_p (rs))
3069 {
3070 pid = ptid.pid ();
3071 if (pid < 0)
3072 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3073 else
3074 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3075 }
3076 tid = ptid.lwp ();
3077 if (tid < 0)
3078 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3079 else
3080 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3081
3082 return buf;
3083 }
3084
3085 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3086 last parsed char. Returns null_ptid if no thread id is found, and
3087 throws an error if the thread id has an invalid format. */
3088
3089 static ptid_t
3090 read_ptid (const char *buf, const char **obuf)
3091 {
3092 const char *p = buf;
3093 const char *pp;
3094 ULONGEST pid = 0, tid = 0;
3095
3096 if (*p == 'p')
3097 {
3098 /* Multi-process ptid. */
3099 pp = unpack_varlen_hex (p + 1, &pid);
3100 if (*pp != '.')
3101 error (_("invalid remote ptid: %s"), p);
3102
3103 p = pp;
3104 pp = unpack_varlen_hex (p + 1, &tid);
3105 if (obuf)
3106 *obuf = pp;
3107 return ptid_t (pid, tid, 0);
3108 }
3109
3110 /* No multi-process. Just a tid. */
3111 pp = unpack_varlen_hex (p, &tid);
3112
3113 /* Return null_ptid when no thread id is found. */
3114 if (p == pp)
3115 {
3116 if (obuf)
3117 *obuf = pp;
3118 return null_ptid;
3119 }
3120
3121 /* Since the stub is not sending a process id, then default to
3122 what's in inferior_ptid, unless it's null at this point. If so,
3123 then since there's no way to know the pid of the reported
3124 threads, use the magic number. */
3125 if (inferior_ptid == null_ptid)
3126 pid = magic_null_ptid.pid ();
3127 else
3128 pid = inferior_ptid.pid ();
3129
3130 if (obuf)
3131 *obuf = pp;
3132 return ptid_t (pid, tid, 0);
3133 }
3134
3135 static int
3136 stubhex (int ch)
3137 {
3138 if (ch >= 'a' && ch <= 'f')
3139 return ch - 'a' + 10;
3140 if (ch >= '0' && ch <= '9')
3141 return ch - '0';
3142 if (ch >= 'A' && ch <= 'F')
3143 return ch - 'A' + 10;
3144 return -1;
3145 }
3146
3147 static int
3148 stub_unpack_int (const char *buff, int fieldlength)
3149 {
3150 int nibble;
3151 int retval = 0;
3152
3153 while (fieldlength)
3154 {
3155 nibble = stubhex (*buff++);
3156 retval |= nibble;
3157 fieldlength--;
3158 if (fieldlength)
3159 retval = retval << 4;
3160 }
3161 return retval;
3162 }
3163
3164 static const char *
3165 unpack_nibble (const char *buf, int *val)
3166 {
3167 *val = fromhex (*buf++);
3168 return buf;
3169 }
3170
3171 static const char *
3172 unpack_byte (const char *buf, int *value)
3173 {
3174 *value = stub_unpack_int (buf, 2);
3175 return buf + 2;
3176 }
3177
3178 static char *
3179 pack_int (char *buf, int value)
3180 {
3181 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3182 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3183 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3184 buf = pack_hex_byte (buf, (value & 0xff));
3185 return buf;
3186 }
3187
3188 static const char *
3189 unpack_int (const char *buf, int *value)
3190 {
3191 *value = stub_unpack_int (buf, 8);
3192 return buf + 8;
3193 }
3194
3195 #if 0 /* Currently unused, uncomment when needed. */
3196 static char *pack_string (char *pkt, char *string);
3197
3198 static char *
3199 pack_string (char *pkt, char *string)
3200 {
3201 char ch;
3202 int len;
3203
3204 len = strlen (string);
3205 if (len > 200)
3206 len = 200; /* Bigger than most GDB packets, junk??? */
3207 pkt = pack_hex_byte (pkt, len);
3208 while (len-- > 0)
3209 {
3210 ch = *string++;
3211 if ((ch == '\0') || (ch == '#'))
3212 ch = '*'; /* Protect encapsulation. */
3213 *pkt++ = ch;
3214 }
3215 return pkt;
3216 }
3217 #endif /* 0 (unused) */
3218
3219 static const char *
3220 unpack_string (const char *src, char *dest, int length)
3221 {
3222 while (length--)
3223 *dest++ = *src++;
3224 *dest = '\0';
3225 return src;
3226 }
3227
3228 static char *
3229 pack_threadid (char *pkt, threadref *id)
3230 {
3231 char *limit;
3232 unsigned char *altid;
3233
3234 altid = (unsigned char *) id;
3235 limit = pkt + BUF_THREAD_ID_SIZE;
3236 while (pkt < limit)
3237 pkt = pack_hex_byte (pkt, *altid++);
3238 return pkt;
3239 }
3240
3241
3242 static const char *
3243 unpack_threadid (const char *inbuf, threadref *id)
3244 {
3245 char *altref;
3246 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3247 int x, y;
3248
3249 altref = (char *) id;
3250
3251 while (inbuf < limit)
3252 {
3253 x = stubhex (*inbuf++);
3254 y = stubhex (*inbuf++);
3255 *altref++ = (x << 4) | y;
3256 }
3257 return inbuf;
3258 }
3259
3260 /* Externally, threadrefs are 64 bits but internally, they are still
3261 ints. This is due to a mismatch of specifications. We would like
3262 to use 64bit thread references internally. This is an adapter
3263 function. */
3264
3265 void
3266 int_to_threadref (threadref *id, int value)
3267 {
3268 unsigned char *scan;
3269
3270 scan = (unsigned char *) id;
3271 {
3272 int i = 4;
3273 while (i--)
3274 *scan++ = 0;
3275 }
3276 *scan++ = (value >> 24) & 0xff;
3277 *scan++ = (value >> 16) & 0xff;
3278 *scan++ = (value >> 8) & 0xff;
3279 *scan++ = (value & 0xff);
3280 }
3281
3282 static int
3283 threadref_to_int (threadref *ref)
3284 {
3285 int i, value = 0;
3286 unsigned char *scan;
3287
3288 scan = *ref;
3289 scan += 4;
3290 i = 4;
3291 while (i-- > 0)
3292 value = (value << 8) | ((*scan++) & 0xff);
3293 return value;
3294 }
3295
3296 static void
3297 copy_threadref (threadref *dest, threadref *src)
3298 {
3299 int i;
3300 unsigned char *csrc, *cdest;
3301
3302 csrc = (unsigned char *) src;
3303 cdest = (unsigned char *) dest;
3304 i = 8;
3305 while (i--)
3306 *cdest++ = *csrc++;
3307 }
3308
3309 static int
3310 threadmatch (threadref *dest, threadref *src)
3311 {
3312 /* Things are broken right now, so just assume we got a match. */
3313 #if 0
3314 unsigned char *srcp, *destp;
3315 int i, result;
3316 srcp = (char *) src;
3317 destp = (char *) dest;
3318
3319 result = 1;
3320 while (i-- > 0)
3321 result &= (*srcp++ == *destp++) ? 1 : 0;
3322 return result;
3323 #endif
3324 return 1;
3325 }
3326
3327 /*
3328 threadid:1, # always request threadid
3329 context_exists:2,
3330 display:4,
3331 unique_name:8,
3332 more_display:16
3333 */
3334
3335 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3336
3337 static char *
3338 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3339 {
3340 *pkt++ = 'q'; /* Info Query */
3341 *pkt++ = 'P'; /* process or thread info */
3342 pkt = pack_int (pkt, mode); /* mode */
3343 pkt = pack_threadid (pkt, id); /* threadid */
3344 *pkt = '\0'; /* terminate */
3345 return pkt;
3346 }
3347
3348 /* These values tag the fields in a thread info response packet. */
3349 /* Tagging the fields allows us to request specific fields and to
3350 add more fields as time goes by. */
3351
3352 #define TAG_THREADID 1 /* Echo the thread identifier. */
3353 #define TAG_EXISTS 2 /* Is this process defined enough to
3354 fetch registers and its stack? */
3355 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3356 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3357 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3358 the process. */
3359
3360 int
3361 remote_target::remote_unpack_thread_info_response (const char *pkt,
3362 threadref *expectedref,
3363 gdb_ext_thread_info *info)
3364 {
3365 struct remote_state *rs = get_remote_state ();
3366 int mask, length;
3367 int tag;
3368 threadref ref;
3369 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3370 int retval = 1;
3371
3372 /* info->threadid = 0; FIXME: implement zero_threadref. */
3373 info->active = 0;
3374 info->display[0] = '\0';
3375 info->shortname[0] = '\0';
3376 info->more_display[0] = '\0';
3377
3378 /* Assume the characters indicating the packet type have been
3379 stripped. */
3380 pkt = unpack_int (pkt, &mask); /* arg mask */
3381 pkt = unpack_threadid (pkt, &ref);
3382
3383 if (mask == 0)
3384 warning (_("Incomplete response to threadinfo request."));
3385 if (!threadmatch (&ref, expectedref))
3386 { /* This is an answer to a different request. */
3387 warning (_("ERROR RMT Thread info mismatch."));
3388 return 0;
3389 }
3390 copy_threadref (&info->threadid, &ref);
3391
3392 /* Loop on tagged fields , try to bail if something goes wrong. */
3393
3394 /* Packets are terminated with nulls. */
3395 while ((pkt < limit) && mask && *pkt)
3396 {
3397 pkt = unpack_int (pkt, &tag); /* tag */
3398 pkt = unpack_byte (pkt, &length); /* length */
3399 if (!(tag & mask)) /* Tags out of synch with mask. */
3400 {
3401 warning (_("ERROR RMT: threadinfo tag mismatch."));
3402 retval = 0;
3403 break;
3404 }
3405 if (tag == TAG_THREADID)
3406 {
3407 if (length != 16)
3408 {
3409 warning (_("ERROR RMT: length of threadid is not 16."));
3410 retval = 0;
3411 break;
3412 }
3413 pkt = unpack_threadid (pkt, &ref);
3414 mask = mask & ~TAG_THREADID;
3415 continue;
3416 }
3417 if (tag == TAG_EXISTS)
3418 {
3419 info->active = stub_unpack_int (pkt, length);
3420 pkt += length;
3421 mask = mask & ~(TAG_EXISTS);
3422 if (length > 8)
3423 {
3424 warning (_("ERROR RMT: 'exists' length too long."));
3425 retval = 0;
3426 break;
3427 }
3428 continue;
3429 }
3430 if (tag == TAG_THREADNAME)
3431 {
3432 pkt = unpack_string (pkt, &info->shortname[0], length);
3433 mask = mask & ~TAG_THREADNAME;
3434 continue;
3435 }
3436 if (tag == TAG_DISPLAY)
3437 {
3438 pkt = unpack_string (pkt, &info->display[0], length);
3439 mask = mask & ~TAG_DISPLAY;
3440 continue;
3441 }
3442 if (tag == TAG_MOREDISPLAY)
3443 {
3444 pkt = unpack_string (pkt, &info->more_display[0], length);
3445 mask = mask & ~TAG_MOREDISPLAY;
3446 continue;
3447 }
3448 warning (_("ERROR RMT: unknown thread info tag."));
3449 break; /* Not a tag we know about. */
3450 }
3451 return retval;
3452 }
3453
3454 int
3455 remote_target::remote_get_threadinfo (threadref *threadid,
3456 int fieldset,
3457 gdb_ext_thread_info *info)
3458 {
3459 struct remote_state *rs = get_remote_state ();
3460 int result;
3461
3462 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3463 putpkt (rs->buf);
3464 getpkt (&rs->buf, 0);
3465
3466 if (rs->buf[0] == '\0')
3467 return 0;
3468
3469 result = remote_unpack_thread_info_response (&rs->buf[2],
3470 threadid, info);
3471 return result;
3472 }
3473
3474 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3475
3476 static char *
3477 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3478 threadref *nextthread)
3479 {
3480 *pkt++ = 'q'; /* info query packet */
3481 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3482 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3483 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3484 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3485 *pkt = '\0';
3486 return pkt;
3487 }
3488
3489 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3490
3491 int
3492 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3493 threadref *original_echo,
3494 threadref *resultlist,
3495 int *doneflag)
3496 {
3497 struct remote_state *rs = get_remote_state ();
3498 int count, resultcount, done;
3499
3500 resultcount = 0;
3501 /* Assume the 'q' and 'M chars have been stripped. */
3502 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3503 /* done parse past here */
3504 pkt = unpack_byte (pkt, &count); /* count field */
3505 pkt = unpack_nibble (pkt, &done);
3506 /* The first threadid is the argument threadid. */
3507 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3508 while ((count-- > 0) && (pkt < limit))
3509 {
3510 pkt = unpack_threadid (pkt, resultlist++);
3511 if (resultcount++ >= result_limit)
3512 break;
3513 }
3514 if (doneflag)
3515 *doneflag = done;
3516 return resultcount;
3517 }
3518
3519 /* Fetch the next batch of threads from the remote. Returns -1 if the
3520 qL packet is not supported, 0 on error and 1 on success. */
3521
3522 int
3523 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3524 int result_limit, int *done, int *result_count,
3525 threadref *threadlist)
3526 {
3527 struct remote_state *rs = get_remote_state ();
3528 int result = 1;
3529
3530 /* Truncate result limit to be smaller than the packet size. */
3531 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3532 >= get_remote_packet_size ())
3533 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3534
3535 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3536 nextthread);
3537 putpkt (rs->buf);
3538 getpkt (&rs->buf, 0);
3539 if (rs->buf[0] == '\0')
3540 {
3541 /* Packet not supported. */
3542 return -1;
3543 }
3544
3545 *result_count =
3546 parse_threadlist_response (&rs->buf[2], result_limit,
3547 &rs->echo_nextthread, threadlist, done);
3548
3549 if (!threadmatch (&rs->echo_nextthread, nextthread))
3550 {
3551 /* FIXME: This is a good reason to drop the packet. */
3552 /* Possibly, there is a duplicate response. */
3553 /* Possibilities :
3554 retransmit immediatly - race conditions
3555 retransmit after timeout - yes
3556 exit
3557 wait for packet, then exit
3558 */
3559 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3560 return 0; /* I choose simply exiting. */
3561 }
3562 if (*result_count <= 0)
3563 {
3564 if (*done != 1)
3565 {
3566 warning (_("RMT ERROR : failed to get remote thread list."));
3567 result = 0;
3568 }
3569 return result; /* break; */
3570 }
3571 if (*result_count > result_limit)
3572 {
3573 *result_count = 0;
3574 warning (_("RMT ERROR: threadlist response longer than requested."));
3575 return 0;
3576 }
3577 return result;
3578 }
3579
3580 /* Fetch the list of remote threads, with the qL packet, and call
3581 STEPFUNCTION for each thread found. Stops iterating and returns 1
3582 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3583 STEPFUNCTION returns false. If the packet is not supported,
3584 returns -1. */
3585
3586 int
3587 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3588 void *context, int looplimit)
3589 {
3590 struct remote_state *rs = get_remote_state ();
3591 int done, i, result_count;
3592 int startflag = 1;
3593 int result = 1;
3594 int loopcount = 0;
3595
3596 done = 0;
3597 while (!done)
3598 {
3599 if (loopcount++ > looplimit)
3600 {
3601 result = 0;
3602 warning (_("Remote fetch threadlist -infinite loop-."));
3603 break;
3604 }
3605 result = remote_get_threadlist (startflag, &rs->nextthread,
3606 MAXTHREADLISTRESULTS,
3607 &done, &result_count,
3608 rs->resultthreadlist);
3609 if (result <= 0)
3610 break;
3611 /* Clear for later iterations. */
3612 startflag = 0;
3613 /* Setup to resume next batch of thread references, set nextthread. */
3614 if (result_count >= 1)
3615 copy_threadref (&rs->nextthread,
3616 &rs->resultthreadlist[result_count - 1]);
3617 i = 0;
3618 while (result_count--)
3619 {
3620 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3621 {
3622 result = 0;
3623 break;
3624 }
3625 }
3626 }
3627 return result;
3628 }
3629
3630 /* A thread found on the remote target. */
3631
3632 struct thread_item
3633 {
3634 explicit thread_item (ptid_t ptid_)
3635 : ptid (ptid_)
3636 {}
3637
3638 thread_item (thread_item &&other) = default;
3639 thread_item &operator= (thread_item &&other) = default;
3640
3641 DISABLE_COPY_AND_ASSIGN (thread_item);
3642
3643 /* The thread's PTID. */
3644 ptid_t ptid;
3645
3646 /* The thread's extra info. */
3647 std::string extra;
3648
3649 /* The thread's name. */
3650 std::string name;
3651
3652 /* The core the thread was running on. -1 if not known. */
3653 int core = -1;
3654
3655 /* The thread handle associated with the thread. */
3656 gdb::byte_vector thread_handle;
3657 };
3658
3659 /* Context passed around to the various methods listing remote
3660 threads. As new threads are found, they're added to the ITEMS
3661 vector. */
3662
3663 struct threads_listing_context
3664 {
3665 /* Return true if this object contains an entry for a thread with ptid
3666 PTID. */
3667
3668 bool contains_thread (ptid_t ptid) const
3669 {
3670 auto match_ptid = [&] (const thread_item &item)
3671 {
3672 return item.ptid == ptid;
3673 };
3674
3675 auto it = std::find_if (this->items.begin (),
3676 this->items.end (),
3677 match_ptid);
3678
3679 return it != this->items.end ();
3680 }
3681
3682 /* Remove the thread with ptid PTID. */
3683
3684 void remove_thread (ptid_t ptid)
3685 {
3686 auto match_ptid = [&] (const thread_item &item)
3687 {
3688 return item.ptid == ptid;
3689 };
3690
3691 auto it = std::remove_if (this->items.begin (),
3692 this->items.end (),
3693 match_ptid);
3694
3695 if (it != this->items.end ())
3696 this->items.erase (it);
3697 }
3698
3699 /* The threads found on the remote target. */
3700 std::vector<thread_item> items;
3701 };
3702
3703 static int
3704 remote_newthread_step (threadref *ref, void *data)
3705 {
3706 struct threads_listing_context *context
3707 = (struct threads_listing_context *) data;
3708 int pid = inferior_ptid.pid ();
3709 int lwp = threadref_to_int (ref);
3710 ptid_t ptid (pid, lwp);
3711
3712 context->items.emplace_back (ptid);
3713
3714 return 1; /* continue iterator */
3715 }
3716
3717 #define CRAZY_MAX_THREADS 1000
3718
3719 ptid_t
3720 remote_target::remote_current_thread (ptid_t oldpid)
3721 {
3722 struct remote_state *rs = get_remote_state ();
3723
3724 putpkt ("qC");
3725 getpkt (&rs->buf, 0);
3726 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3727 {
3728 const char *obuf;
3729 ptid_t result;
3730
3731 result = read_ptid (&rs->buf[2], &obuf);
3732 if (*obuf != '\0')
3733 remote_debug_printf ("warning: garbage in qC reply");
3734
3735 return result;
3736 }
3737 else
3738 return oldpid;
3739 }
3740
3741 /* List remote threads using the deprecated qL packet. */
3742
3743 int
3744 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3745 {
3746 if (remote_threadlist_iterator (remote_newthread_step, context,
3747 CRAZY_MAX_THREADS) >= 0)
3748 return 1;
3749
3750 return 0;
3751 }
3752
3753 #if defined(HAVE_LIBEXPAT)
3754
3755 static void
3756 start_thread (struct gdb_xml_parser *parser,
3757 const struct gdb_xml_element *element,
3758 void *user_data,
3759 std::vector<gdb_xml_value> &attributes)
3760 {
3761 struct threads_listing_context *data
3762 = (struct threads_listing_context *) user_data;
3763 struct gdb_xml_value *attr;
3764
3765 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3766 ptid_t ptid = read_ptid (id, NULL);
3767
3768 data->items.emplace_back (ptid);
3769 thread_item &item = data->items.back ();
3770
3771 attr = xml_find_attribute (attributes, "core");
3772 if (attr != NULL)
3773 item.core = *(ULONGEST *) attr->value.get ();
3774
3775 attr = xml_find_attribute (attributes, "name");
3776 if (attr != NULL)
3777 item.name = (const char *) attr->value.get ();
3778
3779 attr = xml_find_attribute (attributes, "handle");
3780 if (attr != NULL)
3781 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3782 }
3783
3784 static void
3785 end_thread (struct gdb_xml_parser *parser,
3786 const struct gdb_xml_element *element,
3787 void *user_data, const char *body_text)
3788 {
3789 struct threads_listing_context *data
3790 = (struct threads_listing_context *) user_data;
3791
3792 if (body_text != NULL && *body_text != '\0')
3793 data->items.back ().extra = body_text;
3794 }
3795
3796 const struct gdb_xml_attribute thread_attributes[] = {
3797 { "id", GDB_XML_AF_NONE, NULL, NULL },
3798 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3799 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3800 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3801 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3802 };
3803
3804 const struct gdb_xml_element thread_children[] = {
3805 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3806 };
3807
3808 const struct gdb_xml_element threads_children[] = {
3809 { "thread", thread_attributes, thread_children,
3810 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3811 start_thread, end_thread },
3812 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3813 };
3814
3815 const struct gdb_xml_element threads_elements[] = {
3816 { "threads", NULL, threads_children,
3817 GDB_XML_EF_NONE, NULL, NULL },
3818 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3819 };
3820
3821 #endif
3822
3823 /* List remote threads using qXfer:threads:read. */
3824
3825 int
3826 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3827 {
3828 #if defined(HAVE_LIBEXPAT)
3829 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3830 {
3831 gdb::optional<gdb::char_vector> xml
3832 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3833
3834 if (xml && (*xml)[0] != '\0')
3835 {
3836 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3837 threads_elements, xml->data (), context);
3838 }
3839
3840 return 1;
3841 }
3842 #endif
3843
3844 return 0;
3845 }
3846
3847 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3848
3849 int
3850 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3851 {
3852 struct remote_state *rs = get_remote_state ();
3853
3854 if (rs->use_threadinfo_query)
3855 {
3856 const char *bufp;
3857
3858 putpkt ("qfThreadInfo");
3859 getpkt (&rs->buf, 0);
3860 bufp = rs->buf.data ();
3861 if (bufp[0] != '\0') /* q packet recognized */
3862 {
3863 while (*bufp++ == 'm') /* reply contains one or more TID */
3864 {
3865 do
3866 {
3867 ptid_t ptid = read_ptid (bufp, &bufp);
3868 context->items.emplace_back (ptid);
3869 }
3870 while (*bufp++ == ','); /* comma-separated list */
3871 putpkt ("qsThreadInfo");
3872 getpkt (&rs->buf, 0);
3873 bufp = rs->buf.data ();
3874 }
3875 return 1;
3876 }
3877 else
3878 {
3879 /* Packet not recognized. */
3880 rs->use_threadinfo_query = 0;
3881 }
3882 }
3883
3884 return 0;
3885 }
3886
3887 /* Return true if INF only has one non-exited thread. */
3888
3889 static bool
3890 has_single_non_exited_thread (inferior *inf)
3891 {
3892 int count = 0;
3893 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3894 if (++count > 1)
3895 break;
3896 return count == 1;
3897 }
3898
3899 /* Implement the to_update_thread_list function for the remote
3900 targets. */
3901
3902 void
3903 remote_target::update_thread_list ()
3904 {
3905 struct threads_listing_context context;
3906 int got_list = 0;
3907
3908 /* We have a few different mechanisms to fetch the thread list. Try
3909 them all, starting with the most preferred one first, falling
3910 back to older methods. */
3911 if (remote_get_threads_with_qxfer (&context)
3912 || remote_get_threads_with_qthreadinfo (&context)
3913 || remote_get_threads_with_ql (&context))
3914 {
3915 got_list = 1;
3916
3917 if (context.items.empty ()
3918 && remote_thread_always_alive (inferior_ptid))
3919 {
3920 /* Some targets don't really support threads, but still
3921 reply an (empty) thread list in response to the thread
3922 listing packets, instead of replying "packet not
3923 supported". Exit early so we don't delete the main
3924 thread. */
3925 return;
3926 }
3927
3928 /* CONTEXT now holds the current thread list on the remote
3929 target end. Delete GDB-side threads no longer found on the
3930 target. */
3931 for (thread_info *tp : all_threads_safe ())
3932 {
3933 if (tp->inf->process_target () != this)
3934 continue;
3935
3936 if (!context.contains_thread (tp->ptid))
3937 {
3938 /* Do not remove the thread if it is the last thread in
3939 the inferior. This situation happens when we have a
3940 pending exit process status to process. Otherwise we
3941 may end up with a seemingly live inferior (i.e. pid
3942 != 0) that has no threads. */
3943 if (has_single_non_exited_thread (tp->inf))
3944 continue;
3945
3946 /* Not found. */
3947 delete_thread (tp);
3948 }
3949 }
3950
3951 /* Remove any unreported fork child threads from CONTEXT so
3952 that we don't interfere with follow fork, which is where
3953 creation of such threads is handled. */
3954 remove_new_fork_children (&context);
3955
3956 /* And now add threads we don't know about yet to our list. */
3957 for (thread_item &item : context.items)
3958 {
3959 if (item.ptid != null_ptid)
3960 {
3961 /* In non-stop mode, we assume new found threads are
3962 executing until proven otherwise with a stop reply.
3963 In all-stop, we can only get here if all threads are
3964 stopped. */
3965 bool executing = target_is_non_stop_p ();
3966
3967 remote_notice_new_inferior (item.ptid, executing);
3968
3969 thread_info *tp = find_thread_ptid (this, item.ptid);
3970 remote_thread_info *info = get_remote_thread_info (tp);
3971 info->core = item.core;
3972 info->extra = std::move (item.extra);
3973 info->name = std::move (item.name);
3974 info->thread_handle = std::move (item.thread_handle);
3975 }
3976 }
3977 }
3978
3979 if (!got_list)
3980 {
3981 /* If no thread listing method is supported, then query whether
3982 each known thread is alive, one by one, with the T packet.
3983 If the target doesn't support threads at all, then this is a
3984 no-op. See remote_thread_alive. */
3985 prune_threads ();
3986 }
3987 }
3988
3989 /*
3990 * Collect a descriptive string about the given thread.
3991 * The target may say anything it wants to about the thread
3992 * (typically info about its blocked / runnable state, name, etc.).
3993 * This string will appear in the info threads display.
3994 *
3995 * Optional: targets are not required to implement this function.
3996 */
3997
3998 const char *
3999 remote_target::extra_thread_info (thread_info *tp)
4000 {
4001 struct remote_state *rs = get_remote_state ();
4002 int set;
4003 threadref id;
4004 struct gdb_ext_thread_info threadinfo;
4005
4006 if (rs->remote_desc == 0) /* paranoia */
4007 internal_error (__FILE__, __LINE__,
4008 _("remote_threads_extra_info"));
4009
4010 if (tp->ptid == magic_null_ptid
4011 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4012 /* This is the main thread which was added by GDB. The remote
4013 server doesn't know about it. */
4014 return NULL;
4015
4016 std::string &extra = get_remote_thread_info (tp)->extra;
4017
4018 /* If already have cached info, use it. */
4019 if (!extra.empty ())
4020 return extra.c_str ();
4021
4022 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4023 {
4024 /* If we're using qXfer:threads:read, then the extra info is
4025 included in the XML. So if we didn't have anything cached,
4026 it's because there's really no extra info. */
4027 return NULL;
4028 }
4029
4030 if (rs->use_threadextra_query)
4031 {
4032 char *b = rs->buf.data ();
4033 char *endb = b + get_remote_packet_size ();
4034
4035 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4036 b += strlen (b);
4037 write_ptid (b, endb, tp->ptid);
4038
4039 putpkt (rs->buf);
4040 getpkt (&rs->buf, 0);
4041 if (rs->buf[0] != 0)
4042 {
4043 extra.resize (strlen (rs->buf.data ()) / 2);
4044 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4045 return extra.c_str ();
4046 }
4047 }
4048
4049 /* If the above query fails, fall back to the old method. */
4050 rs->use_threadextra_query = 0;
4051 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4052 | TAG_MOREDISPLAY | TAG_DISPLAY;
4053 int_to_threadref (&id, tp->ptid.lwp ());
4054 if (remote_get_threadinfo (&id, set, &threadinfo))
4055 if (threadinfo.active)
4056 {
4057 if (*threadinfo.shortname)
4058 string_appendf (extra, " Name: %s", threadinfo.shortname);
4059 if (*threadinfo.display)
4060 {
4061 if (!extra.empty ())
4062 extra += ',';
4063 string_appendf (extra, " State: %s", threadinfo.display);
4064 }
4065 if (*threadinfo.more_display)
4066 {
4067 if (!extra.empty ())
4068 extra += ',';
4069 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4070 }
4071 return extra.c_str ();
4072 }
4073 return NULL;
4074 }
4075 \f
4076
4077 bool
4078 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4079 struct static_tracepoint_marker *marker)
4080 {
4081 struct remote_state *rs = get_remote_state ();
4082 char *p = rs->buf.data ();
4083
4084 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4085 p += strlen (p);
4086 p += hexnumstr (p, addr);
4087 putpkt (rs->buf);
4088 getpkt (&rs->buf, 0);
4089 p = rs->buf.data ();
4090
4091 if (*p == 'E')
4092 error (_("Remote failure reply: %s"), p);
4093
4094 if (*p++ == 'm')
4095 {
4096 parse_static_tracepoint_marker_definition (p, NULL, marker);
4097 return true;
4098 }
4099
4100 return false;
4101 }
4102
4103 std::vector<static_tracepoint_marker>
4104 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4105 {
4106 struct remote_state *rs = get_remote_state ();
4107 std::vector<static_tracepoint_marker> markers;
4108 const char *p;
4109 static_tracepoint_marker marker;
4110
4111 /* Ask for a first packet of static tracepoint marker
4112 definition. */
4113 putpkt ("qTfSTM");
4114 getpkt (&rs->buf, 0);
4115 p = rs->buf.data ();
4116 if (*p == 'E')
4117 error (_("Remote failure reply: %s"), p);
4118
4119 while (*p++ == 'm')
4120 {
4121 do
4122 {
4123 parse_static_tracepoint_marker_definition (p, &p, &marker);
4124
4125 if (strid == NULL || marker.str_id == strid)
4126 markers.push_back (std::move (marker));
4127 }
4128 while (*p++ == ','); /* comma-separated list */
4129 /* Ask for another packet of static tracepoint definition. */
4130 putpkt ("qTsSTM");
4131 getpkt (&rs->buf, 0);
4132 p = rs->buf.data ();
4133 }
4134
4135 return markers;
4136 }
4137
4138 \f
4139 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4140
4141 ptid_t
4142 remote_target::get_ada_task_ptid (long lwp, long thread)
4143 {
4144 return ptid_t (inferior_ptid.pid (), lwp, 0);
4145 }
4146 \f
4147
4148 /* Restart the remote side; this is an extended protocol operation. */
4149
4150 void
4151 remote_target::extended_remote_restart ()
4152 {
4153 struct remote_state *rs = get_remote_state ();
4154
4155 /* Send the restart command; for reasons I don't understand the
4156 remote side really expects a number after the "R". */
4157 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4158 putpkt (rs->buf);
4159
4160 remote_fileio_reset ();
4161 }
4162 \f
4163 /* Clean up connection to a remote debugger. */
4164
4165 void
4166 remote_target::close ()
4167 {
4168 /* Make sure we leave stdin registered in the event loop. */
4169 terminal_ours ();
4170
4171 trace_reset_local_state ();
4172
4173 delete this;
4174 }
4175
4176 remote_target::~remote_target ()
4177 {
4178 struct remote_state *rs = get_remote_state ();
4179
4180 /* Check for NULL because we may get here with a partially
4181 constructed target/connection. */
4182 if (rs->remote_desc == nullptr)
4183 return;
4184
4185 serial_close (rs->remote_desc);
4186
4187 /* We are destroying the remote target, so we should discard
4188 everything of this target. */
4189 discard_pending_stop_replies_in_queue ();
4190
4191 if (rs->remote_async_inferior_event_token)
4192 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4193
4194 delete rs->notif_state;
4195 }
4196
4197 /* Query the remote side for the text, data and bss offsets. */
4198
4199 void
4200 remote_target::get_offsets ()
4201 {
4202 struct remote_state *rs = get_remote_state ();
4203 char *buf;
4204 char *ptr;
4205 int lose, num_segments = 0, do_sections, do_segments;
4206 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4207
4208 if (current_program_space->symfile_object_file == NULL)
4209 return;
4210
4211 putpkt ("qOffsets");
4212 getpkt (&rs->buf, 0);
4213 buf = rs->buf.data ();
4214
4215 if (buf[0] == '\000')
4216 return; /* Return silently. Stub doesn't support
4217 this command. */
4218 if (buf[0] == 'E')
4219 {
4220 warning (_("Remote failure reply: %s"), buf);
4221 return;
4222 }
4223
4224 /* Pick up each field in turn. This used to be done with scanf, but
4225 scanf will make trouble if CORE_ADDR size doesn't match
4226 conversion directives correctly. The following code will work
4227 with any size of CORE_ADDR. */
4228 text_addr = data_addr = bss_addr = 0;
4229 ptr = buf;
4230 lose = 0;
4231
4232 if (startswith (ptr, "Text="))
4233 {
4234 ptr += 5;
4235 /* Don't use strtol, could lose on big values. */
4236 while (*ptr && *ptr != ';')
4237 text_addr = (text_addr << 4) + fromhex (*ptr++);
4238
4239 if (startswith (ptr, ";Data="))
4240 {
4241 ptr += 6;
4242 while (*ptr && *ptr != ';')
4243 data_addr = (data_addr << 4) + fromhex (*ptr++);
4244 }
4245 else
4246 lose = 1;
4247
4248 if (!lose && startswith (ptr, ";Bss="))
4249 {
4250 ptr += 5;
4251 while (*ptr && *ptr != ';')
4252 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4253
4254 if (bss_addr != data_addr)
4255 warning (_("Target reported unsupported offsets: %s"), buf);
4256 }
4257 else
4258 lose = 1;
4259 }
4260 else if (startswith (ptr, "TextSeg="))
4261 {
4262 ptr += 8;
4263 /* Don't use strtol, could lose on big values. */
4264 while (*ptr && *ptr != ';')
4265 text_addr = (text_addr << 4) + fromhex (*ptr++);
4266 num_segments = 1;
4267
4268 if (startswith (ptr, ";DataSeg="))
4269 {
4270 ptr += 9;
4271 while (*ptr && *ptr != ';')
4272 data_addr = (data_addr << 4) + fromhex (*ptr++);
4273 num_segments++;
4274 }
4275 }
4276 else
4277 lose = 1;
4278
4279 if (lose)
4280 error (_("Malformed response to offset query, %s"), buf);
4281 else if (*ptr != '\0')
4282 warning (_("Target reported unsupported offsets: %s"), buf);
4283
4284 objfile *objf = current_program_space->symfile_object_file;
4285 section_offsets offs = objf->section_offsets;
4286
4287 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4288 do_segments = (data != NULL);
4289 do_sections = num_segments == 0;
4290
4291 if (num_segments > 0)
4292 {
4293 segments[0] = text_addr;
4294 segments[1] = data_addr;
4295 }
4296 /* If we have two segments, we can still try to relocate everything
4297 by assuming that the .text and .data offsets apply to the whole
4298 text and data segments. Convert the offsets given in the packet
4299 to base addresses for symfile_map_offsets_to_segments. */
4300 else if (data != nullptr && data->segments.size () == 2)
4301 {
4302 segments[0] = data->segments[0].base + text_addr;
4303 segments[1] = data->segments[1].base + data_addr;
4304 num_segments = 2;
4305 }
4306 /* If the object file has only one segment, assume that it is text
4307 rather than data; main programs with no writable data are rare,
4308 but programs with no code are useless. Of course the code might
4309 have ended up in the data segment... to detect that we would need
4310 the permissions here. */
4311 else if (data && data->segments.size () == 1)
4312 {
4313 segments[0] = data->segments[0].base + text_addr;
4314 num_segments = 1;
4315 }
4316 /* There's no way to relocate by segment. */
4317 else
4318 do_segments = 0;
4319
4320 if (do_segments)
4321 {
4322 int ret = symfile_map_offsets_to_segments (objf->obfd,
4323 data.get (), offs,
4324 num_segments, segments);
4325
4326 if (ret == 0 && !do_sections)
4327 error (_("Can not handle qOffsets TextSeg "
4328 "response with this symbol file"));
4329
4330 if (ret > 0)
4331 do_sections = 0;
4332 }
4333
4334 if (do_sections)
4335 {
4336 offs[SECT_OFF_TEXT (objf)] = text_addr;
4337
4338 /* This is a temporary kludge to force data and bss to use the
4339 same offsets because that's what nlmconv does now. The real
4340 solution requires changes to the stub and remote.c that I
4341 don't have time to do right now. */
4342
4343 offs[SECT_OFF_DATA (objf)] = data_addr;
4344 offs[SECT_OFF_BSS (objf)] = data_addr;
4345 }
4346
4347 objfile_relocate (objf, offs);
4348 }
4349
4350 /* Send interrupt_sequence to remote target. */
4351
4352 void
4353 remote_target::send_interrupt_sequence ()
4354 {
4355 struct remote_state *rs = get_remote_state ();
4356
4357 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4358 remote_serial_write ("\x03", 1);
4359 else if (interrupt_sequence_mode == interrupt_sequence_break)
4360 serial_send_break (rs->remote_desc);
4361 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4362 {
4363 serial_send_break (rs->remote_desc);
4364 remote_serial_write ("g", 1);
4365 }
4366 else
4367 internal_error (__FILE__, __LINE__,
4368 _("Invalid value for interrupt_sequence_mode: %s."),
4369 interrupt_sequence_mode);
4370 }
4371
4372
4373 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4374 and extract the PTID. Returns NULL_PTID if not found. */
4375
4376 static ptid_t
4377 stop_reply_extract_thread (const char *stop_reply)
4378 {
4379 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4380 {
4381 const char *p;
4382
4383 /* Txx r:val ; r:val (...) */
4384 p = &stop_reply[3];
4385
4386 /* Look for "register" named "thread". */
4387 while (*p != '\0')
4388 {
4389 const char *p1;
4390
4391 p1 = strchr (p, ':');
4392 if (p1 == NULL)
4393 return null_ptid;
4394
4395 if (strncmp (p, "thread", p1 - p) == 0)
4396 return read_ptid (++p1, &p);
4397
4398 p1 = strchr (p, ';');
4399 if (p1 == NULL)
4400 return null_ptid;
4401 p1++;
4402
4403 p = p1;
4404 }
4405 }
4406
4407 return null_ptid;
4408 }
4409
4410 /* Determine the remote side's current thread. If we have a stop
4411 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4412 "thread" register we can extract the current thread from. If not,
4413 ask the remote which is the current thread with qC. The former
4414 method avoids a roundtrip. */
4415
4416 ptid_t
4417 remote_target::get_current_thread (const char *wait_status)
4418 {
4419 ptid_t ptid = null_ptid;
4420
4421 /* Note we don't use remote_parse_stop_reply as that makes use of
4422 the target architecture, which we haven't yet fully determined at
4423 this point. */
4424 if (wait_status != NULL)
4425 ptid = stop_reply_extract_thread (wait_status);
4426 if (ptid == null_ptid)
4427 ptid = remote_current_thread (inferior_ptid);
4428
4429 return ptid;
4430 }
4431
4432 /* Query the remote target for which is the current thread/process,
4433 add it to our tables, and update INFERIOR_PTID. The caller is
4434 responsible for setting the state such that the remote end is ready
4435 to return the current thread.
4436
4437 This function is called after handling the '?' or 'vRun' packets,
4438 whose response is a stop reply from which we can also try
4439 extracting the thread. If the target doesn't support the explicit
4440 qC query, we infer the current thread from that stop reply, passed
4441 in in WAIT_STATUS, which may be NULL.
4442
4443 The function returns pointer to the main thread of the inferior. */
4444
4445 thread_info *
4446 remote_target::add_current_inferior_and_thread (const char *wait_status)
4447 {
4448 struct remote_state *rs = get_remote_state ();
4449 bool fake_pid_p = false;
4450
4451 switch_to_no_thread ();
4452
4453 /* Now, if we have thread information, update the current thread's
4454 ptid. */
4455 ptid_t curr_ptid = get_current_thread (wait_status);
4456
4457 if (curr_ptid != null_ptid)
4458 {
4459 if (!remote_multi_process_p (rs))
4460 fake_pid_p = true;
4461 }
4462 else
4463 {
4464 /* Without this, some commands which require an active target
4465 (such as kill) won't work. This variable serves (at least)
4466 double duty as both the pid of the target process (if it has
4467 such), and as a flag indicating that a target is active. */
4468 curr_ptid = magic_null_ptid;
4469 fake_pid_p = true;
4470 }
4471
4472 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4473
4474 /* Add the main thread and switch to it. Don't try reading
4475 registers yet, since we haven't fetched the target description
4476 yet. */
4477 thread_info *tp = add_thread_silent (this, curr_ptid);
4478 switch_to_thread_no_regs (tp);
4479
4480 return tp;
4481 }
4482
4483 /* Print info about a thread that was found already stopped on
4484 connection. */
4485
4486 static void
4487 print_one_stopped_thread (struct thread_info *thread)
4488 {
4489 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4490
4491 switch_to_thread (thread);
4492 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4493 set_current_sal_from_frame (get_current_frame ());
4494
4495 thread->suspend.waitstatus_pending_p = 0;
4496
4497 if (ws->kind == TARGET_WAITKIND_STOPPED)
4498 {
4499 enum gdb_signal sig = ws->value.sig;
4500
4501 if (signal_print_state (sig))
4502 gdb::observers::signal_received.notify (sig);
4503 }
4504 gdb::observers::normal_stop.notify (NULL, 1);
4505 }
4506
4507 /* Process all initial stop replies the remote side sent in response
4508 to the ? packet. These indicate threads that were already stopped
4509 on initial connection. We mark these threads as stopped and print
4510 their current frame before giving the user the prompt. */
4511
4512 void
4513 remote_target::process_initial_stop_replies (int from_tty)
4514 {
4515 int pending_stop_replies = stop_reply_queue_length ();
4516 struct thread_info *selected = NULL;
4517 struct thread_info *lowest_stopped = NULL;
4518 struct thread_info *first = NULL;
4519
4520 /* Consume the initial pending events. */
4521 while (pending_stop_replies-- > 0)
4522 {
4523 ptid_t waiton_ptid = minus_one_ptid;
4524 ptid_t event_ptid;
4525 struct target_waitstatus ws;
4526 int ignore_event = 0;
4527
4528 memset (&ws, 0, sizeof (ws));
4529 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4530 if (remote_debug)
4531 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4532
4533 switch (ws.kind)
4534 {
4535 case TARGET_WAITKIND_IGNORE:
4536 case TARGET_WAITKIND_NO_RESUMED:
4537 case TARGET_WAITKIND_SIGNALLED:
4538 case TARGET_WAITKIND_EXITED:
4539 /* We shouldn't see these, but if we do, just ignore. */
4540 remote_debug_printf ("event ignored");
4541 ignore_event = 1;
4542 break;
4543
4544 case TARGET_WAITKIND_EXECD:
4545 xfree (ws.value.execd_pathname);
4546 break;
4547 default:
4548 break;
4549 }
4550
4551 if (ignore_event)
4552 continue;
4553
4554 thread_info *evthread = find_thread_ptid (this, event_ptid);
4555
4556 if (ws.kind == TARGET_WAITKIND_STOPPED)
4557 {
4558 enum gdb_signal sig = ws.value.sig;
4559
4560 /* Stubs traditionally report SIGTRAP as initial signal,
4561 instead of signal 0. Suppress it. */
4562 if (sig == GDB_SIGNAL_TRAP)
4563 sig = GDB_SIGNAL_0;
4564 evthread->suspend.stop_signal = sig;
4565 ws.value.sig = sig;
4566 }
4567
4568 evthread->suspend.waitstatus = ws;
4569
4570 if (ws.kind != TARGET_WAITKIND_STOPPED
4571 || ws.value.sig != GDB_SIGNAL_0)
4572 evthread->suspend.waitstatus_pending_p = 1;
4573
4574 set_executing (this, event_ptid, false);
4575 set_running (this, event_ptid, false);
4576 get_remote_thread_info (evthread)->set_not_resumed ();
4577 }
4578
4579 /* "Notice" the new inferiors before anything related to
4580 registers/memory. */
4581 for (inferior *inf : all_non_exited_inferiors (this))
4582 {
4583 inf->needs_setup = 1;
4584
4585 if (non_stop)
4586 {
4587 thread_info *thread = any_live_thread_of_inferior (inf);
4588 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4589 from_tty);
4590 }
4591 }
4592
4593 /* If all-stop on top of non-stop, pause all threads. Note this
4594 records the threads' stop pc, so must be done after "noticing"
4595 the inferiors. */
4596 if (!non_stop)
4597 {
4598 stop_all_threads ("remote connect in all-stop");
4599
4600 /* If all threads of an inferior were already stopped, we
4601 haven't setup the inferior yet. */
4602 for (inferior *inf : all_non_exited_inferiors (this))
4603 {
4604 if (inf->needs_setup)
4605 {
4606 thread_info *thread = any_live_thread_of_inferior (inf);
4607 switch_to_thread_no_regs (thread);
4608 setup_inferior (0);
4609 }
4610 }
4611 }
4612
4613 /* Now go over all threads that are stopped, and print their current
4614 frame. If all-stop, then if there's a signalled thread, pick
4615 that as current. */
4616 for (thread_info *thread : all_non_exited_threads (this))
4617 {
4618 if (first == NULL)
4619 first = thread;
4620
4621 if (!non_stop)
4622 thread->set_running (false);
4623 else if (thread->state != THREAD_STOPPED)
4624 continue;
4625
4626 if (selected == NULL
4627 && thread->suspend.waitstatus_pending_p)
4628 selected = thread;
4629
4630 if (lowest_stopped == NULL
4631 || thread->inf->num < lowest_stopped->inf->num
4632 || thread->per_inf_num < lowest_stopped->per_inf_num)
4633 lowest_stopped = thread;
4634
4635 if (non_stop)
4636 print_one_stopped_thread (thread);
4637 }
4638
4639 /* In all-stop, we only print the status of one thread, and leave
4640 others with their status pending. */
4641 if (!non_stop)
4642 {
4643 thread_info *thread = selected;
4644 if (thread == NULL)
4645 thread = lowest_stopped;
4646 if (thread == NULL)
4647 thread = first;
4648
4649 print_one_stopped_thread (thread);
4650 }
4651
4652 /* For "info program". */
4653 thread_info *thread = inferior_thread ();
4654 if (thread->state == THREAD_STOPPED)
4655 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4656 }
4657
4658 /* Start the remote connection and sync state. */
4659
4660 void
4661 remote_target::start_remote (int from_tty, int extended_p)
4662 {
4663 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4664
4665 struct remote_state *rs = get_remote_state ();
4666 struct packet_config *noack_config;
4667
4668 /* Signal other parts that we're going through the initial setup,
4669 and so things may not be stable yet. E.g., we don't try to
4670 install tracepoints until we've relocated symbols. Also, a
4671 Ctrl-C before we're connected and synced up can't interrupt the
4672 target. Instead, it offers to drop the (potentially wedged)
4673 connection. */
4674 rs->starting_up = true;
4675
4676 QUIT;
4677
4678 if (interrupt_on_connect)
4679 send_interrupt_sequence ();
4680
4681 /* Ack any packet which the remote side has already sent. */
4682 remote_serial_write ("+", 1);
4683
4684 /* The first packet we send to the target is the optional "supported
4685 packets" request. If the target can answer this, it will tell us
4686 which later probes to skip. */
4687 remote_query_supported ();
4688
4689 /* If the stub wants to get a QAllow, compose one and send it. */
4690 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4691 set_permissions ();
4692
4693 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4694 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4695 as a reply to known packet. For packet "vFile:setfs:" it is an
4696 invalid reply and GDB would return error in
4697 remote_hostio_set_filesystem, making remote files access impossible.
4698 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4699 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4700 {
4701 const char v_mustreplyempty[] = "vMustReplyEmpty";
4702
4703 putpkt (v_mustreplyempty);
4704 getpkt (&rs->buf, 0);
4705 if (strcmp (rs->buf.data (), "OK") == 0)
4706 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4707 else if (strcmp (rs->buf.data (), "") != 0)
4708 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4709 rs->buf.data ());
4710 }
4711
4712 /* Next, we possibly activate noack mode.
4713
4714 If the QStartNoAckMode packet configuration is set to AUTO,
4715 enable noack mode if the stub reported a wish for it with
4716 qSupported.
4717
4718 If set to TRUE, then enable noack mode even if the stub didn't
4719 report it in qSupported. If the stub doesn't reply OK, the
4720 session ends with an error.
4721
4722 If FALSE, then don't activate noack mode, regardless of what the
4723 stub claimed should be the default with qSupported. */
4724
4725 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4726 if (packet_config_support (noack_config) != PACKET_DISABLE)
4727 {
4728 putpkt ("QStartNoAckMode");
4729 getpkt (&rs->buf, 0);
4730 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4731 rs->noack_mode = 1;
4732 }
4733
4734 if (extended_p)
4735 {
4736 /* Tell the remote that we are using the extended protocol. */
4737 putpkt ("!");
4738 getpkt (&rs->buf, 0);
4739 }
4740
4741 /* Let the target know which signals it is allowed to pass down to
4742 the program. */
4743 update_signals_program_target ();
4744
4745 /* Next, if the target can specify a description, read it. We do
4746 this before anything involving memory or registers. */
4747 target_find_description ();
4748
4749 /* Next, now that we know something about the target, update the
4750 address spaces in the program spaces. */
4751 update_address_spaces ();
4752
4753 /* On OSs where the list of libraries is global to all
4754 processes, we fetch them early. */
4755 if (gdbarch_has_global_solist (target_gdbarch ()))
4756 solib_add (NULL, from_tty, auto_solib_add);
4757
4758 if (target_is_non_stop_p ())
4759 {
4760 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4761 error (_("Non-stop mode requested, but remote "
4762 "does not support non-stop"));
4763
4764 putpkt ("QNonStop:1");
4765 getpkt (&rs->buf, 0);
4766
4767 if (strcmp (rs->buf.data (), "OK") != 0)
4768 error (_("Remote refused setting non-stop mode with: %s"),
4769 rs->buf.data ());
4770
4771 /* Find about threads and processes the stub is already
4772 controlling. We default to adding them in the running state.
4773 The '?' query below will then tell us about which threads are
4774 stopped. */
4775 this->update_thread_list ();
4776 }
4777 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4778 {
4779 /* Don't assume that the stub can operate in all-stop mode.
4780 Request it explicitly. */
4781 putpkt ("QNonStop:0");
4782 getpkt (&rs->buf, 0);
4783
4784 if (strcmp (rs->buf.data (), "OK") != 0)
4785 error (_("Remote refused setting all-stop mode with: %s"),
4786 rs->buf.data ());
4787 }
4788
4789 /* Upload TSVs regardless of whether the target is running or not. The
4790 remote stub, such as GDBserver, may have some predefined or builtin
4791 TSVs, even if the target is not running. */
4792 if (get_trace_status (current_trace_status ()) != -1)
4793 {
4794 struct uploaded_tsv *uploaded_tsvs = NULL;
4795
4796 upload_trace_state_variables (&uploaded_tsvs);
4797 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4798 }
4799
4800 /* Check whether the target is running now. */
4801 putpkt ("?");
4802 getpkt (&rs->buf, 0);
4803
4804 if (!target_is_non_stop_p ())
4805 {
4806 char *wait_status = NULL;
4807
4808 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4809 {
4810 if (!extended_p)
4811 error (_("The target is not running (try extended-remote?)"));
4812
4813 /* We're connected, but not running. Drop out before we
4814 call start_remote. */
4815 rs->starting_up = false;
4816 return;
4817 }
4818 else
4819 {
4820 /* Save the reply for later. */
4821 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4822 strcpy (wait_status, rs->buf.data ());
4823 }
4824
4825 /* Fetch thread list. */
4826 target_update_thread_list ();
4827
4828 /* Let the stub know that we want it to return the thread. */
4829 set_continue_thread (minus_one_ptid);
4830
4831 if (thread_count (this) == 0)
4832 {
4833 /* Target has no concept of threads at all. GDB treats
4834 non-threaded target as single-threaded; add a main
4835 thread. */
4836 thread_info *tp = add_current_inferior_and_thread (wait_status);
4837 get_remote_thread_info (tp)->set_resumed ();
4838 }
4839 else
4840 {
4841 /* We have thread information; select the thread the target
4842 says should be current. If we're reconnecting to a
4843 multi-threaded program, this will ideally be the thread
4844 that last reported an event before GDB disconnected. */
4845 ptid_t curr_thread = get_current_thread (wait_status);
4846 if (curr_thread == null_ptid)
4847 {
4848 /* Odd... The target was able to list threads, but not
4849 tell us which thread was current (no "thread"
4850 register in T stop reply?). Just pick the first
4851 thread in the thread list then. */
4852
4853 remote_debug_printf ("warning: couldn't determine remote "
4854 "current thread; picking first in list.");
4855
4856 for (thread_info *tp : all_non_exited_threads (this,
4857 minus_one_ptid))
4858 {
4859 switch_to_thread (tp);
4860 break;
4861 }
4862 }
4863 else
4864 switch_to_thread (find_thread_ptid (this, curr_thread));
4865 }
4866
4867 /* init_wait_for_inferior should be called before get_offsets in order
4868 to manage `inserted' flag in bp loc in a correct state.
4869 breakpoint_init_inferior, called from init_wait_for_inferior, set
4870 `inserted' flag to 0, while before breakpoint_re_set, called from
4871 start_remote, set `inserted' flag to 1. In the initialization of
4872 inferior, breakpoint_init_inferior should be called first, and then
4873 breakpoint_re_set can be called. If this order is broken, state of
4874 `inserted' flag is wrong, and cause some problems on breakpoint
4875 manipulation. */
4876 init_wait_for_inferior ();
4877
4878 get_offsets (); /* Get text, data & bss offsets. */
4879
4880 /* If we could not find a description using qXfer, and we know
4881 how to do it some other way, try again. This is not
4882 supported for non-stop; it could be, but it is tricky if
4883 there are no stopped threads when we connect. */
4884 if (remote_read_description_p (this)
4885 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4886 {
4887 target_clear_description ();
4888 target_find_description ();
4889 }
4890
4891 /* Use the previously fetched status. */
4892 gdb_assert (wait_status != NULL);
4893 strcpy (rs->buf.data (), wait_status);
4894 rs->cached_wait_status = 1;
4895
4896 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4897 }
4898 else
4899 {
4900 /* Clear WFI global state. Do this before finding about new
4901 threads and inferiors, and setting the current inferior.
4902 Otherwise we would clear the proceed status of the current
4903 inferior when we want its stop_soon state to be preserved
4904 (see notice_new_inferior). */
4905 init_wait_for_inferior ();
4906
4907 /* In non-stop, we will either get an "OK", meaning that there
4908 are no stopped threads at this time; or, a regular stop
4909 reply. In the latter case, there may be more than one thread
4910 stopped --- we pull them all out using the vStopped
4911 mechanism. */
4912 if (strcmp (rs->buf.data (), "OK") != 0)
4913 {
4914 struct notif_client *notif = &notif_client_stop;
4915
4916 /* remote_notif_get_pending_replies acks this one, and gets
4917 the rest out. */
4918 rs->notif_state->pending_event[notif_client_stop.id]
4919 = remote_notif_parse (this, notif, rs->buf.data ());
4920 remote_notif_get_pending_events (notif);
4921 }
4922
4923 if (thread_count (this) == 0)
4924 {
4925 if (!extended_p)
4926 error (_("The target is not running (try extended-remote?)"));
4927
4928 /* We're connected, but not running. Drop out before we
4929 call start_remote. */
4930 rs->starting_up = false;
4931 return;
4932 }
4933
4934 /* Report all signals during attach/startup. */
4935 pass_signals ({});
4936
4937 /* If there are already stopped threads, mark them stopped and
4938 report their stops before giving the prompt to the user. */
4939 process_initial_stop_replies (from_tty);
4940
4941 if (target_can_async_p ())
4942 target_async (1);
4943 }
4944
4945 /* If we connected to a live target, do some additional setup. */
4946 if (target_has_execution ())
4947 {
4948 /* No use without a symbol-file. */
4949 if (current_program_space->symfile_object_file)
4950 remote_check_symbols ();
4951 }
4952
4953 /* Possibly the target has been engaged in a trace run started
4954 previously; find out where things are at. */
4955 if (get_trace_status (current_trace_status ()) != -1)
4956 {
4957 struct uploaded_tp *uploaded_tps = NULL;
4958
4959 if (current_trace_status ()->running)
4960 printf_filtered (_("Trace is already running on the target.\n"));
4961
4962 upload_tracepoints (&uploaded_tps);
4963
4964 merge_uploaded_tracepoints (&uploaded_tps);
4965 }
4966
4967 /* Possibly the target has been engaged in a btrace record started
4968 previously; find out where things are at. */
4969 remote_btrace_maybe_reopen ();
4970
4971 /* The thread and inferior lists are now synchronized with the
4972 target, our symbols have been relocated, and we're merged the
4973 target's tracepoints with ours. We're done with basic start
4974 up. */
4975 rs->starting_up = false;
4976
4977 /* Maybe breakpoints are global and need to be inserted now. */
4978 if (breakpoints_should_be_inserted_now ())
4979 insert_breakpoints ();
4980 }
4981
4982 const char *
4983 remote_target::connection_string ()
4984 {
4985 remote_state *rs = get_remote_state ();
4986
4987 if (rs->remote_desc->name != NULL)
4988 return rs->remote_desc->name;
4989 else
4990 return NULL;
4991 }
4992
4993 /* Open a connection to a remote debugger.
4994 NAME is the filename used for communication. */
4995
4996 void
4997 remote_target::open (const char *name, int from_tty)
4998 {
4999 open_1 (name, from_tty, 0);
5000 }
5001
5002 /* Open a connection to a remote debugger using the extended
5003 remote gdb protocol. NAME is the filename used for communication. */
5004
5005 void
5006 extended_remote_target::open (const char *name, int from_tty)
5007 {
5008 open_1 (name, from_tty, 1 /*extended_p */);
5009 }
5010
5011 /* Reset all packets back to "unknown support". Called when opening a
5012 new connection to a remote target. */
5013
5014 static void
5015 reset_all_packet_configs_support (void)
5016 {
5017 int i;
5018
5019 for (i = 0; i < PACKET_MAX; i++)
5020 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5021 }
5022
5023 /* Initialize all packet configs. */
5024
5025 static void
5026 init_all_packet_configs (void)
5027 {
5028 int i;
5029
5030 for (i = 0; i < PACKET_MAX; i++)
5031 {
5032 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5033 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5034 }
5035 }
5036
5037 /* Symbol look-up. */
5038
5039 void
5040 remote_target::remote_check_symbols ()
5041 {
5042 char *tmp;
5043 int end;
5044
5045 /* The remote side has no concept of inferiors that aren't running
5046 yet, it only knows about running processes. If we're connected
5047 but our current inferior is not running, we should not invite the
5048 remote target to request symbol lookups related to its
5049 (unrelated) current process. */
5050 if (!target_has_execution ())
5051 return;
5052
5053 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5054 return;
5055
5056 /* Make sure the remote is pointing at the right process. Note
5057 there's no way to select "no process". */
5058 set_general_process ();
5059
5060 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5061 because we need both at the same time. */
5062 gdb::char_vector msg (get_remote_packet_size ());
5063 gdb::char_vector reply (get_remote_packet_size ());
5064
5065 /* Invite target to request symbol lookups. */
5066
5067 putpkt ("qSymbol::");
5068 getpkt (&reply, 0);
5069 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5070
5071 while (startswith (reply.data (), "qSymbol:"))
5072 {
5073 struct bound_minimal_symbol sym;
5074
5075 tmp = &reply[8];
5076 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5077 strlen (tmp) / 2);
5078 msg[end] = '\0';
5079 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5080 if (sym.minsym == NULL)
5081 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5082 &reply[8]);
5083 else
5084 {
5085 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5086 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5087
5088 /* If this is a function address, return the start of code
5089 instead of any data function descriptor. */
5090 sym_addr = gdbarch_convert_from_func_ptr_addr
5091 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5092
5093 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5094 phex_nz (sym_addr, addr_size), &reply[8]);
5095 }
5096
5097 putpkt (msg.data ());
5098 getpkt (&reply, 0);
5099 }
5100 }
5101
5102 static struct serial *
5103 remote_serial_open (const char *name)
5104 {
5105 static int udp_warning = 0;
5106
5107 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5108 of in ser-tcp.c, because it is the remote protocol assuming that the
5109 serial connection is reliable and not the serial connection promising
5110 to be. */
5111 if (!udp_warning && startswith (name, "udp:"))
5112 {
5113 warning (_("The remote protocol may be unreliable over UDP.\n"
5114 "Some events may be lost, rendering further debugging "
5115 "impossible."));
5116 udp_warning = 1;
5117 }
5118
5119 return serial_open (name);
5120 }
5121
5122 /* Inform the target of our permission settings. The permission flags
5123 work without this, but if the target knows the settings, it can do
5124 a couple things. First, it can add its own check, to catch cases
5125 that somehow manage to get by the permissions checks in target
5126 methods. Second, if the target is wired to disallow particular
5127 settings (for instance, a system in the field that is not set up to
5128 be able to stop at a breakpoint), it can object to any unavailable
5129 permissions. */
5130
5131 void
5132 remote_target::set_permissions ()
5133 {
5134 struct remote_state *rs = get_remote_state ();
5135
5136 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5137 "WriteReg:%x;WriteMem:%x;"
5138 "InsertBreak:%x;InsertTrace:%x;"
5139 "InsertFastTrace:%x;Stop:%x",
5140 may_write_registers, may_write_memory,
5141 may_insert_breakpoints, may_insert_tracepoints,
5142 may_insert_fast_tracepoints, may_stop);
5143 putpkt (rs->buf);
5144 getpkt (&rs->buf, 0);
5145
5146 /* If the target didn't like the packet, warn the user. Do not try
5147 to undo the user's settings, that would just be maddening. */
5148 if (strcmp (rs->buf.data (), "OK") != 0)
5149 warning (_("Remote refused setting permissions with: %s"),
5150 rs->buf.data ());
5151 }
5152
5153 /* This type describes each known response to the qSupported
5154 packet. */
5155 struct protocol_feature
5156 {
5157 /* The name of this protocol feature. */
5158 const char *name;
5159
5160 /* The default for this protocol feature. */
5161 enum packet_support default_support;
5162
5163 /* The function to call when this feature is reported, or after
5164 qSupported processing if the feature is not supported.
5165 The first argument points to this structure. The second
5166 argument indicates whether the packet requested support be
5167 enabled, disabled, or probed (or the default, if this function
5168 is being called at the end of processing and this feature was
5169 not reported). The third argument may be NULL; if not NULL, it
5170 is a NUL-terminated string taken from the packet following
5171 this feature's name and an equals sign. */
5172 void (*func) (remote_target *remote, const struct protocol_feature *,
5173 enum packet_support, const char *);
5174
5175 /* The corresponding packet for this feature. Only used if
5176 FUNC is remote_supported_packet. */
5177 int packet;
5178 };
5179
5180 static void
5181 remote_supported_packet (remote_target *remote,
5182 const struct protocol_feature *feature,
5183 enum packet_support support,
5184 const char *argument)
5185 {
5186 if (argument)
5187 {
5188 warning (_("Remote qSupported response supplied an unexpected value for"
5189 " \"%s\"."), feature->name);
5190 return;
5191 }
5192
5193 remote_protocol_packets[feature->packet].support = support;
5194 }
5195
5196 void
5197 remote_target::remote_packet_size (const protocol_feature *feature,
5198 enum packet_support support, const char *value)
5199 {
5200 struct remote_state *rs = get_remote_state ();
5201
5202 int packet_size;
5203 char *value_end;
5204
5205 if (support != PACKET_ENABLE)
5206 return;
5207
5208 if (value == NULL || *value == '\0')
5209 {
5210 warning (_("Remote target reported \"%s\" without a size."),
5211 feature->name);
5212 return;
5213 }
5214
5215 errno = 0;
5216 packet_size = strtol (value, &value_end, 16);
5217 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5218 {
5219 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5220 feature->name, value);
5221 return;
5222 }
5223
5224 /* Record the new maximum packet size. */
5225 rs->explicit_packet_size = packet_size;
5226 }
5227
5228 static void
5229 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5230 enum packet_support support, const char *value)
5231 {
5232 remote->remote_packet_size (feature, support, value);
5233 }
5234
5235 static const struct protocol_feature remote_protocol_features[] = {
5236 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5237 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_qXfer_auxv },
5239 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5240 PACKET_qXfer_exec_file },
5241 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_qXfer_features },
5243 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5244 PACKET_qXfer_libraries },
5245 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_libraries_svr4 },
5247 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5248 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5249 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_memory_map },
5251 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_osdata },
5253 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_qXfer_threads },
5255 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_qXfer_traceframe_info },
5257 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_QPassSignals },
5259 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_QCatchSyscalls },
5261 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_QProgramSignals },
5263 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_QSetWorkingDir },
5265 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QStartupWithShell },
5267 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_QEnvironmentHexEncoded },
5269 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QEnvironmentReset },
5271 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_QEnvironmentUnset },
5273 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_QStartNoAckMode },
5275 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_multiprocess_feature },
5277 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5278 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_qXfer_siginfo_read },
5280 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_qXfer_siginfo_write },
5282 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_ConditionalTracepoints },
5284 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_ConditionalBreakpoints },
5286 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_BreakpointCommands },
5288 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_FastTracepoints },
5290 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_StaticTracepoints },
5292 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_InstallInTrace},
5294 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_DisconnectedTracing_feature },
5296 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_bc },
5298 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_bs },
5300 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_TracepointSource },
5302 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_QAllow },
5304 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_EnableDisableTracepoints_feature },
5306 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_qXfer_fdpic },
5308 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5309 PACKET_qXfer_uib },
5310 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5311 PACKET_QDisableRandomization },
5312 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5313 { "QTBuffer:size", PACKET_DISABLE,
5314 remote_supported_packet, PACKET_QTBuffer_size},
5315 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5316 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5317 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5318 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5319 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5320 PACKET_qXfer_btrace },
5321 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5322 PACKET_qXfer_btrace_conf },
5323 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5324 PACKET_Qbtrace_conf_bts_size },
5325 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5326 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5327 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5328 PACKET_fork_event_feature },
5329 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5330 PACKET_vfork_event_feature },
5331 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5332 PACKET_exec_event_feature },
5333 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5334 PACKET_Qbtrace_conf_pt_size },
5335 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5336 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5337 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5338 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5339 PACKET_memory_tagging_feature },
5340 };
5341
5342 static char *remote_support_xml;
5343
5344 /* Register string appended to "xmlRegisters=" in qSupported query. */
5345
5346 void
5347 register_remote_support_xml (const char *xml)
5348 {
5349 #if defined(HAVE_LIBEXPAT)
5350 if (remote_support_xml == NULL)
5351 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5352 else
5353 {
5354 char *copy = xstrdup (remote_support_xml + 13);
5355 char *saveptr;
5356 char *p = strtok_r (copy, ",", &saveptr);
5357
5358 do
5359 {
5360 if (strcmp (p, xml) == 0)
5361 {
5362 /* already there */
5363 xfree (copy);
5364 return;
5365 }
5366 }
5367 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5368 xfree (copy);
5369
5370 remote_support_xml = reconcat (remote_support_xml,
5371 remote_support_xml, ",", xml,
5372 (char *) NULL);
5373 }
5374 #endif
5375 }
5376
5377 static void
5378 remote_query_supported_append (std::string *msg, const char *append)
5379 {
5380 if (!msg->empty ())
5381 msg->append (";");
5382 msg->append (append);
5383 }
5384
5385 void
5386 remote_target::remote_query_supported ()
5387 {
5388 struct remote_state *rs = get_remote_state ();
5389 char *next;
5390 int i;
5391 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5392
5393 /* The packet support flags are handled differently for this packet
5394 than for most others. We treat an error, a disabled packet, and
5395 an empty response identically: any features which must be reported
5396 to be used will be automatically disabled. An empty buffer
5397 accomplishes this, since that is also the representation for a list
5398 containing no features. */
5399
5400 rs->buf[0] = 0;
5401 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5402 {
5403 std::string q;
5404
5405 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5406 remote_query_supported_append (&q, "multiprocess+");
5407
5408 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5409 remote_query_supported_append (&q, "swbreak+");
5410 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5411 remote_query_supported_append (&q, "hwbreak+");
5412
5413 remote_query_supported_append (&q, "qRelocInsn+");
5414
5415 if (packet_set_cmd_state (PACKET_fork_event_feature)
5416 != AUTO_BOOLEAN_FALSE)
5417 remote_query_supported_append (&q, "fork-events+");
5418 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5419 != AUTO_BOOLEAN_FALSE)
5420 remote_query_supported_append (&q, "vfork-events+");
5421 if (packet_set_cmd_state (PACKET_exec_event_feature)
5422 != AUTO_BOOLEAN_FALSE)
5423 remote_query_supported_append (&q, "exec-events+");
5424
5425 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5426 remote_query_supported_append (&q, "vContSupported+");
5427
5428 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5429 remote_query_supported_append (&q, "QThreadEvents+");
5430
5431 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5432 remote_query_supported_append (&q, "no-resumed+");
5433
5434 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5435 != AUTO_BOOLEAN_FALSE)
5436 remote_query_supported_append (&q, "memory-tagging+");
5437
5438 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5439 the qSupported:xmlRegisters=i386 handling. */
5440 if (remote_support_xml != NULL
5441 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5442 remote_query_supported_append (&q, remote_support_xml);
5443
5444 q = "qSupported:" + q;
5445 putpkt (q.c_str ());
5446
5447 getpkt (&rs->buf, 0);
5448
5449 /* If an error occured, warn, but do not return - just reset the
5450 buffer to empty and go on to disable features. */
5451 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5452 == PACKET_ERROR)
5453 {
5454 warning (_("Remote failure reply: %s"), rs->buf.data ());
5455 rs->buf[0] = 0;
5456 }
5457 }
5458
5459 memset (seen, 0, sizeof (seen));
5460
5461 next = rs->buf.data ();
5462 while (*next)
5463 {
5464 enum packet_support is_supported;
5465 char *p, *end, *name_end, *value;
5466
5467 /* First separate out this item from the rest of the packet. If
5468 there's another item after this, we overwrite the separator
5469 (terminated strings are much easier to work with). */
5470 p = next;
5471 end = strchr (p, ';');
5472 if (end == NULL)
5473 {
5474 end = p + strlen (p);
5475 next = end;
5476 }
5477 else
5478 {
5479 *end = '\0';
5480 next = end + 1;
5481
5482 if (end == p)
5483 {
5484 warning (_("empty item in \"qSupported\" response"));
5485 continue;
5486 }
5487 }
5488
5489 name_end = strchr (p, '=');
5490 if (name_end)
5491 {
5492 /* This is a name=value entry. */
5493 is_supported = PACKET_ENABLE;
5494 value = name_end + 1;
5495 *name_end = '\0';
5496 }
5497 else
5498 {
5499 value = NULL;
5500 switch (end[-1])
5501 {
5502 case '+':
5503 is_supported = PACKET_ENABLE;
5504 break;
5505
5506 case '-':
5507 is_supported = PACKET_DISABLE;
5508 break;
5509
5510 case '?':
5511 is_supported = PACKET_SUPPORT_UNKNOWN;
5512 break;
5513
5514 default:
5515 warning (_("unrecognized item \"%s\" "
5516 "in \"qSupported\" response"), p);
5517 continue;
5518 }
5519 end[-1] = '\0';
5520 }
5521
5522 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5523 if (strcmp (remote_protocol_features[i].name, p) == 0)
5524 {
5525 const struct protocol_feature *feature;
5526
5527 seen[i] = 1;
5528 feature = &remote_protocol_features[i];
5529 feature->func (this, feature, is_supported, value);
5530 break;
5531 }
5532 }
5533
5534 /* If we increased the packet size, make sure to increase the global
5535 buffer size also. We delay this until after parsing the entire
5536 qSupported packet, because this is the same buffer we were
5537 parsing. */
5538 if (rs->buf.size () < rs->explicit_packet_size)
5539 rs->buf.resize (rs->explicit_packet_size);
5540
5541 /* Handle the defaults for unmentioned features. */
5542 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5543 if (!seen[i])
5544 {
5545 const struct protocol_feature *feature;
5546
5547 feature = &remote_protocol_features[i];
5548 feature->func (this, feature, feature->default_support, NULL);
5549 }
5550 }
5551
5552 /* Serial QUIT handler for the remote serial descriptor.
5553
5554 Defers handling a Ctrl-C until we're done with the current
5555 command/response packet sequence, unless:
5556
5557 - We're setting up the connection. Don't send a remote interrupt
5558 request, as we're not fully synced yet. Quit immediately
5559 instead.
5560
5561 - The target has been resumed in the foreground
5562 (target_terminal::is_ours is false) with a synchronous resume
5563 packet, and we're blocked waiting for the stop reply, thus a
5564 Ctrl-C should be immediately sent to the target.
5565
5566 - We get a second Ctrl-C while still within the same serial read or
5567 write. In that case the serial is seemingly wedged --- offer to
5568 quit/disconnect.
5569
5570 - We see a second Ctrl-C without target response, after having
5571 previously interrupted the target. In that case the target/stub
5572 is probably wedged --- offer to quit/disconnect.
5573 */
5574
5575 void
5576 remote_target::remote_serial_quit_handler ()
5577 {
5578 struct remote_state *rs = get_remote_state ();
5579
5580 if (check_quit_flag ())
5581 {
5582 /* If we're starting up, we're not fully synced yet. Quit
5583 immediately. */
5584 if (rs->starting_up)
5585 quit ();
5586 else if (rs->got_ctrlc_during_io)
5587 {
5588 if (query (_("The target is not responding to GDB commands.\n"
5589 "Stop debugging it? ")))
5590 remote_unpush_and_throw (this);
5591 }
5592 /* If ^C has already been sent once, offer to disconnect. */
5593 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5594 interrupt_query ();
5595 /* All-stop protocol, and blocked waiting for stop reply. Send
5596 an interrupt request. */
5597 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5598 target_interrupt ();
5599 else
5600 rs->got_ctrlc_during_io = 1;
5601 }
5602 }
5603
5604 /* The remote_target that is current while the quit handler is
5605 overridden with remote_serial_quit_handler. */
5606 static remote_target *curr_quit_handler_target;
5607
5608 static void
5609 remote_serial_quit_handler ()
5610 {
5611 curr_quit_handler_target->remote_serial_quit_handler ();
5612 }
5613
5614 /* Remove the remote target from the target stack of each inferior
5615 that is using it. Upper targets depend on it so remove them
5616 first. */
5617
5618 static void
5619 remote_unpush_target (remote_target *target)
5620 {
5621 /* We have to unpush the target from all inferiors, even those that
5622 aren't running. */
5623 scoped_restore_current_inferior restore_current_inferior;
5624
5625 for (inferior *inf : all_inferiors (target))
5626 {
5627 switch_to_inferior_no_thread (inf);
5628 pop_all_targets_at_and_above (process_stratum);
5629 generic_mourn_inferior ();
5630 }
5631
5632 /* Don't rely on target_close doing this when the target is popped
5633 from the last remote inferior above, because something may be
5634 holding a reference to the target higher up on the stack, meaning
5635 target_close won't be called yet. We lost the connection to the
5636 target, so clear these now, otherwise we may later throw
5637 TARGET_CLOSE_ERROR while trying to tell the remote target to
5638 close the file. */
5639 fileio_handles_invalidate_target (target);
5640 }
5641
5642 static void
5643 remote_unpush_and_throw (remote_target *target)
5644 {
5645 remote_unpush_target (target);
5646 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5647 }
5648
5649 void
5650 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5651 {
5652 remote_target *curr_remote = get_current_remote_target ();
5653
5654 if (name == 0)
5655 error (_("To open a remote debug connection, you need to specify what\n"
5656 "serial device is attached to the remote system\n"
5657 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5658
5659 /* If we're connected to a running target, target_preopen will kill it.
5660 Ask this question first, before target_preopen has a chance to kill
5661 anything. */
5662 if (curr_remote != NULL && !target_has_execution ())
5663 {
5664 if (from_tty
5665 && !query (_("Already connected to a remote target. Disconnect? ")))
5666 error (_("Still connected."));
5667 }
5668
5669 /* Here the possibly existing remote target gets unpushed. */
5670 target_preopen (from_tty);
5671
5672 remote_fileio_reset ();
5673 reopen_exec_file ();
5674 reread_symbols ();
5675
5676 remote_target *remote
5677 = (extended_p ? new extended_remote_target () : new remote_target ());
5678 target_ops_up target_holder (remote);
5679
5680 remote_state *rs = remote->get_remote_state ();
5681
5682 /* See FIXME above. */
5683 if (!target_async_permitted)
5684 rs->wait_forever_enabled_p = 1;
5685
5686 rs->remote_desc = remote_serial_open (name);
5687 if (!rs->remote_desc)
5688 perror_with_name (name);
5689
5690 if (baud_rate != -1)
5691 {
5692 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5693 {
5694 /* The requested speed could not be set. Error out to
5695 top level after closing remote_desc. Take care to
5696 set remote_desc to NULL to avoid closing remote_desc
5697 more than once. */
5698 serial_close (rs->remote_desc);
5699 rs->remote_desc = NULL;
5700 perror_with_name (name);
5701 }
5702 }
5703
5704 serial_setparity (rs->remote_desc, serial_parity);
5705 serial_raw (rs->remote_desc);
5706
5707 /* If there is something sitting in the buffer we might take it as a
5708 response to a command, which would be bad. */
5709 serial_flush_input (rs->remote_desc);
5710
5711 if (from_tty)
5712 {
5713 puts_filtered ("Remote debugging using ");
5714 puts_filtered (name);
5715 puts_filtered ("\n");
5716 }
5717
5718 /* Switch to using the remote target now. */
5719 current_inferior ()->push_target (std::move (target_holder));
5720
5721 /* Register extra event sources in the event loop. */
5722 rs->remote_async_inferior_event_token
5723 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5724 "remote");
5725 rs->notif_state = remote_notif_state_allocate (remote);
5726
5727 /* Reset the target state; these things will be queried either by
5728 remote_query_supported or as they are needed. */
5729 reset_all_packet_configs_support ();
5730 rs->cached_wait_status = 0;
5731 rs->explicit_packet_size = 0;
5732 rs->noack_mode = 0;
5733 rs->extended = extended_p;
5734 rs->waiting_for_stop_reply = 0;
5735 rs->ctrlc_pending_p = 0;
5736 rs->got_ctrlc_during_io = 0;
5737
5738 rs->general_thread = not_sent_ptid;
5739 rs->continue_thread = not_sent_ptid;
5740 rs->remote_traceframe_number = -1;
5741
5742 rs->last_resume_exec_dir = EXEC_FORWARD;
5743
5744 /* Probe for ability to use "ThreadInfo" query, as required. */
5745 rs->use_threadinfo_query = 1;
5746 rs->use_threadextra_query = 1;
5747
5748 rs->readahead_cache.invalidate ();
5749
5750 if (target_async_permitted)
5751 {
5752 /* FIXME: cagney/1999-09-23: During the initial connection it is
5753 assumed that the target is already ready and able to respond to
5754 requests. Unfortunately remote_start_remote() eventually calls
5755 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5756 around this. Eventually a mechanism that allows
5757 wait_for_inferior() to expect/get timeouts will be
5758 implemented. */
5759 rs->wait_forever_enabled_p = 0;
5760 }
5761
5762 /* First delete any symbols previously loaded from shared libraries. */
5763 no_shared_libraries (NULL, 0);
5764
5765 /* Start the remote connection. If error() or QUIT, discard this
5766 target (we'd otherwise be in an inconsistent state) and then
5767 propogate the error on up the exception chain. This ensures that
5768 the caller doesn't stumble along blindly assuming that the
5769 function succeeded. The CLI doesn't have this problem but other
5770 UI's, such as MI do.
5771
5772 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5773 this function should return an error indication letting the
5774 caller restore the previous state. Unfortunately the command
5775 ``target remote'' is directly wired to this function making that
5776 impossible. On a positive note, the CLI side of this problem has
5777 been fixed - the function set_cmd_context() makes it possible for
5778 all the ``target ....'' commands to share a common callback
5779 function. See cli-dump.c. */
5780 {
5781
5782 try
5783 {
5784 remote->start_remote (from_tty, extended_p);
5785 }
5786 catch (const gdb_exception &ex)
5787 {
5788 /* Pop the partially set up target - unless something else did
5789 already before throwing the exception. */
5790 if (ex.error != TARGET_CLOSE_ERROR)
5791 remote_unpush_target (remote);
5792 throw;
5793 }
5794 }
5795
5796 remote_btrace_reset (rs);
5797
5798 if (target_async_permitted)
5799 rs->wait_forever_enabled_p = 1;
5800 }
5801
5802 /* Detach the specified process. */
5803
5804 void
5805 remote_target::remote_detach_pid (int pid)
5806 {
5807 struct remote_state *rs = get_remote_state ();
5808
5809 /* This should not be necessary, but the handling for D;PID in
5810 GDBserver versions prior to 8.2 incorrectly assumes that the
5811 selected process points to the same process we're detaching,
5812 leading to misbehavior (and possibly GDBserver crashing) when it
5813 does not. Since it's easy and cheap, work around it by forcing
5814 GDBserver to select GDB's current process. */
5815 set_general_process ();
5816
5817 if (remote_multi_process_p (rs))
5818 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5819 else
5820 strcpy (rs->buf.data (), "D");
5821
5822 putpkt (rs->buf);
5823 getpkt (&rs->buf, 0);
5824
5825 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5826 ;
5827 else if (rs->buf[0] == '\0')
5828 error (_("Remote doesn't know how to detach"));
5829 else
5830 error (_("Can't detach process."));
5831 }
5832
5833 /* This detaches a program to which we previously attached, using
5834 inferior_ptid to identify the process. After this is done, GDB
5835 can be used to debug some other program. We better not have left
5836 any breakpoints in the target program or it'll die when it hits
5837 one. */
5838
5839 void
5840 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5841 {
5842 int pid = inferior_ptid.pid ();
5843 struct remote_state *rs = get_remote_state ();
5844 int is_fork_parent;
5845
5846 if (!target_has_execution ())
5847 error (_("No process to detach from."));
5848
5849 target_announce_detach (from_tty);
5850
5851 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5852 {
5853 /* If we're in breakpoints-always-inserted mode, or the inferior
5854 is running, we have to remove breakpoints before detaching.
5855 We don't do this in common code instead because not all
5856 targets support removing breakpoints while the target is
5857 running. The remote target / gdbserver does, though. */
5858 remove_breakpoints_inf (current_inferior ());
5859 }
5860
5861 /* Tell the remote target to detach. */
5862 remote_detach_pid (pid);
5863
5864 /* Exit only if this is the only active inferior. */
5865 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5866 puts_filtered (_("Ending remote debugging.\n"));
5867
5868 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5869
5870 /* Check to see if we are detaching a fork parent. Note that if we
5871 are detaching a fork child, tp == NULL. */
5872 is_fork_parent = (tp != NULL
5873 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5874
5875 /* If doing detach-on-fork, we don't mourn, because that will delete
5876 breakpoints that should be available for the followed inferior. */
5877 if (!is_fork_parent)
5878 {
5879 /* Save the pid as a string before mourning, since that will
5880 unpush the remote target, and we need the string after. */
5881 std::string infpid = target_pid_to_str (ptid_t (pid));
5882
5883 target_mourn_inferior (inferior_ptid);
5884 if (print_inferior_events)
5885 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5886 inf->num, infpid.c_str ());
5887 }
5888 else
5889 {
5890 switch_to_no_thread ();
5891 detach_inferior (current_inferior ());
5892 }
5893 }
5894
5895 void
5896 remote_target::detach (inferior *inf, int from_tty)
5897 {
5898 remote_detach_1 (inf, from_tty);
5899 }
5900
5901 void
5902 extended_remote_target::detach (inferior *inf, int from_tty)
5903 {
5904 remote_detach_1 (inf, from_tty);
5905 }
5906
5907 /* Target follow-fork function for remote targets. On entry, and
5908 at return, the current inferior is the fork parent.
5909
5910 Note that although this is currently only used for extended-remote,
5911 it is named remote_follow_fork in anticipation of using it for the
5912 remote target as well. */
5913
5914 void
5915 remote_target::follow_fork (bool follow_child, bool detach_fork)
5916 {
5917 struct remote_state *rs = get_remote_state ();
5918 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5919
5920 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5921 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5922 {
5923 /* When following the parent and detaching the child, we detach
5924 the child here. For the case of following the child and
5925 detaching the parent, the detach is done in the target-
5926 independent follow fork code in infrun.c. We can't use
5927 target_detach when detaching an unfollowed child because
5928 the client side doesn't know anything about the child. */
5929 if (detach_fork && !follow_child)
5930 {
5931 /* Detach the fork child. */
5932 ptid_t child_ptid;
5933 pid_t child_pid;
5934
5935 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5936 child_pid = child_ptid.pid ();
5937
5938 remote_detach_pid (child_pid);
5939 }
5940 }
5941 }
5942
5943 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5944 in the program space of the new inferior. */
5945
5946 void
5947 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5948 const char *execd_pathname)
5949 {
5950 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5951
5952 /* We know that this is a target file name, so if it has the "target:"
5953 prefix we strip it off before saving it in the program space. */
5954 if (is_target_filename (execd_pathname))
5955 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5956
5957 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5958 }
5959
5960 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5961
5962 void
5963 remote_target::disconnect (const char *args, int from_tty)
5964 {
5965 if (args)
5966 error (_("Argument given to \"disconnect\" when remotely debugging."));
5967
5968 /* Make sure we unpush even the extended remote targets. Calling
5969 target_mourn_inferior won't unpush, and
5970 remote_target::mourn_inferior won't unpush if there is more than
5971 one inferior left. */
5972 remote_unpush_target (this);
5973
5974 if (from_tty)
5975 puts_filtered ("Ending remote debugging.\n");
5976 }
5977
5978 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5979 be chatty about it. */
5980
5981 void
5982 extended_remote_target::attach (const char *args, int from_tty)
5983 {
5984 struct remote_state *rs = get_remote_state ();
5985 int pid;
5986 char *wait_status = NULL;
5987
5988 pid = parse_pid_to_attach (args);
5989
5990 /* Remote PID can be freely equal to getpid, do not check it here the same
5991 way as in other targets. */
5992
5993 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5994 error (_("This target does not support attaching to a process"));
5995
5996 if (from_tty)
5997 {
5998 const char *exec_file = get_exec_file (0);
5999
6000 if (exec_file)
6001 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6002 target_pid_to_str (ptid_t (pid)).c_str ());
6003 else
6004 printf_unfiltered (_("Attaching to %s\n"),
6005 target_pid_to_str (ptid_t (pid)).c_str ());
6006 }
6007
6008 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6009 putpkt (rs->buf);
6010 getpkt (&rs->buf, 0);
6011
6012 switch (packet_ok (rs->buf,
6013 &remote_protocol_packets[PACKET_vAttach]))
6014 {
6015 case PACKET_OK:
6016 if (!target_is_non_stop_p ())
6017 {
6018 /* Save the reply for later. */
6019 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6020 strcpy (wait_status, rs->buf.data ());
6021 }
6022 else if (strcmp (rs->buf.data (), "OK") != 0)
6023 error (_("Attaching to %s failed with: %s"),
6024 target_pid_to_str (ptid_t (pid)).c_str (),
6025 rs->buf.data ());
6026 break;
6027 case PACKET_UNKNOWN:
6028 error (_("This target does not support attaching to a process"));
6029 default:
6030 error (_("Attaching to %s failed"),
6031 target_pid_to_str (ptid_t (pid)).c_str ());
6032 }
6033
6034 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6035
6036 inferior_ptid = ptid_t (pid);
6037
6038 if (target_is_non_stop_p ())
6039 {
6040 /* Get list of threads. */
6041 update_thread_list ();
6042
6043 thread_info *thread = first_thread_of_inferior (current_inferior ());
6044 if (thread != nullptr)
6045 switch_to_thread (thread);
6046
6047 /* Invalidate our notion of the remote current thread. */
6048 record_currthread (rs, minus_one_ptid);
6049 }
6050 else
6051 {
6052 /* Now, if we have thread information, update the main thread's
6053 ptid. */
6054 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6055
6056 /* Add the main thread to the thread list. We add the thread
6057 silently in this case (the final true parameter). */
6058 thread_info *thr = remote_add_thread (curr_ptid, true, true, true);
6059
6060 switch_to_thread (thr);
6061 }
6062
6063 /* Next, if the target can specify a description, read it. We do
6064 this before anything involving memory or registers. */
6065 target_find_description ();
6066
6067 if (!target_is_non_stop_p ())
6068 {
6069 /* Use the previously fetched status. */
6070 gdb_assert (wait_status != NULL);
6071
6072 if (target_can_async_p ())
6073 {
6074 struct notif_event *reply
6075 = remote_notif_parse (this, &notif_client_stop, wait_status);
6076
6077 push_stop_reply ((struct stop_reply *) reply);
6078
6079 target_async (1);
6080 }
6081 else
6082 {
6083 gdb_assert (wait_status != NULL);
6084 strcpy (rs->buf.data (), wait_status);
6085 rs->cached_wait_status = 1;
6086 }
6087 }
6088 else
6089 {
6090 gdb_assert (wait_status == NULL);
6091
6092 gdb_assert (target_can_async_p ());
6093 target_async (1);
6094 }
6095 }
6096
6097 /* Implementation of the to_post_attach method. */
6098
6099 void
6100 extended_remote_target::post_attach (int pid)
6101 {
6102 /* Get text, data & bss offsets. */
6103 get_offsets ();
6104
6105 /* In certain cases GDB might not have had the chance to start
6106 symbol lookup up until now. This could happen if the debugged
6107 binary is not using shared libraries, the vsyscall page is not
6108 present (on Linux) and the binary itself hadn't changed since the
6109 debugging process was started. */
6110 if (current_program_space->symfile_object_file != NULL)
6111 remote_check_symbols();
6112 }
6113
6114 \f
6115 /* Check for the availability of vCont. This function should also check
6116 the response. */
6117
6118 void
6119 remote_target::remote_vcont_probe ()
6120 {
6121 remote_state *rs = get_remote_state ();
6122 char *buf;
6123
6124 strcpy (rs->buf.data (), "vCont?");
6125 putpkt (rs->buf);
6126 getpkt (&rs->buf, 0);
6127 buf = rs->buf.data ();
6128
6129 /* Make sure that the features we assume are supported. */
6130 if (startswith (buf, "vCont"))
6131 {
6132 char *p = &buf[5];
6133 int support_c, support_C;
6134
6135 rs->supports_vCont.s = 0;
6136 rs->supports_vCont.S = 0;
6137 support_c = 0;
6138 support_C = 0;
6139 rs->supports_vCont.t = 0;
6140 rs->supports_vCont.r = 0;
6141 while (p && *p == ';')
6142 {
6143 p++;
6144 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6145 rs->supports_vCont.s = 1;
6146 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6147 rs->supports_vCont.S = 1;
6148 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6149 support_c = 1;
6150 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6151 support_C = 1;
6152 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6153 rs->supports_vCont.t = 1;
6154 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6155 rs->supports_vCont.r = 1;
6156
6157 p = strchr (p, ';');
6158 }
6159
6160 /* If c, and C are not all supported, we can't use vCont. Clearing
6161 BUF will make packet_ok disable the packet. */
6162 if (!support_c || !support_C)
6163 buf[0] = 0;
6164 }
6165
6166 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6167 rs->supports_vCont_probed = true;
6168 }
6169
6170 /* Helper function for building "vCont" resumptions. Write a
6171 resumption to P. ENDP points to one-passed-the-end of the buffer
6172 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6173 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6174 resumed thread should be single-stepped and/or signalled. If PTID
6175 equals minus_one_ptid, then all threads are resumed; if PTID
6176 represents a process, then all threads of the process are resumed;
6177 the thread to be stepped and/or signalled is given in the global
6178 INFERIOR_PTID. */
6179
6180 char *
6181 remote_target::append_resumption (char *p, char *endp,
6182 ptid_t ptid, int step, gdb_signal siggnal)
6183 {
6184 struct remote_state *rs = get_remote_state ();
6185
6186 if (step && siggnal != GDB_SIGNAL_0)
6187 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6188 else if (step
6189 /* GDB is willing to range step. */
6190 && use_range_stepping
6191 /* Target supports range stepping. */
6192 && rs->supports_vCont.r
6193 /* We don't currently support range stepping multiple
6194 threads with a wildcard (though the protocol allows it,
6195 so stubs shouldn't make an active effort to forbid
6196 it). */
6197 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6198 {
6199 struct thread_info *tp;
6200
6201 if (ptid == minus_one_ptid)
6202 {
6203 /* If we don't know about the target thread's tid, then
6204 we're resuming magic_null_ptid (see caller). */
6205 tp = find_thread_ptid (this, magic_null_ptid);
6206 }
6207 else
6208 tp = find_thread_ptid (this, ptid);
6209 gdb_assert (tp != NULL);
6210
6211 if (tp->control.may_range_step)
6212 {
6213 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6214
6215 p += xsnprintf (p, endp - p, ";r%s,%s",
6216 phex_nz (tp->control.step_range_start,
6217 addr_size),
6218 phex_nz (tp->control.step_range_end,
6219 addr_size));
6220 }
6221 else
6222 p += xsnprintf (p, endp - p, ";s");
6223 }
6224 else if (step)
6225 p += xsnprintf (p, endp - p, ";s");
6226 else if (siggnal != GDB_SIGNAL_0)
6227 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6228 else
6229 p += xsnprintf (p, endp - p, ";c");
6230
6231 if (remote_multi_process_p (rs) && ptid.is_pid ())
6232 {
6233 ptid_t nptid;
6234
6235 /* All (-1) threads of process. */
6236 nptid = ptid_t (ptid.pid (), -1, 0);
6237
6238 p += xsnprintf (p, endp - p, ":");
6239 p = write_ptid (p, endp, nptid);
6240 }
6241 else if (ptid != minus_one_ptid)
6242 {
6243 p += xsnprintf (p, endp - p, ":");
6244 p = write_ptid (p, endp, ptid);
6245 }
6246
6247 return p;
6248 }
6249
6250 /* Clear the thread's private info on resume. */
6251
6252 static void
6253 resume_clear_thread_private_info (struct thread_info *thread)
6254 {
6255 if (thread->priv != NULL)
6256 {
6257 remote_thread_info *priv = get_remote_thread_info (thread);
6258
6259 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6260 priv->watch_data_address = 0;
6261 }
6262 }
6263
6264 /* Append a vCont continue-with-signal action for threads that have a
6265 non-zero stop signal. */
6266
6267 char *
6268 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6269 ptid_t ptid)
6270 {
6271 for (thread_info *thread : all_non_exited_threads (this, ptid))
6272 if (inferior_ptid != thread->ptid
6273 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6274 {
6275 p = append_resumption (p, endp, thread->ptid,
6276 0, thread->suspend.stop_signal);
6277 thread->suspend.stop_signal = GDB_SIGNAL_0;
6278 resume_clear_thread_private_info (thread);
6279 }
6280
6281 return p;
6282 }
6283
6284 /* Set the target running, using the packets that use Hc
6285 (c/s/C/S). */
6286
6287 void
6288 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6289 gdb_signal siggnal)
6290 {
6291 struct remote_state *rs = get_remote_state ();
6292 char *buf;
6293
6294 rs->last_sent_signal = siggnal;
6295 rs->last_sent_step = step;
6296
6297 /* The c/s/C/S resume packets use Hc, so set the continue
6298 thread. */
6299 if (ptid == minus_one_ptid)
6300 set_continue_thread (any_thread_ptid);
6301 else
6302 set_continue_thread (ptid);
6303
6304 for (thread_info *thread : all_non_exited_threads (this))
6305 resume_clear_thread_private_info (thread);
6306
6307 buf = rs->buf.data ();
6308 if (::execution_direction == EXEC_REVERSE)
6309 {
6310 /* We don't pass signals to the target in reverse exec mode. */
6311 if (info_verbose && siggnal != GDB_SIGNAL_0)
6312 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6313 siggnal);
6314
6315 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6316 error (_("Remote reverse-step not supported."));
6317 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6318 error (_("Remote reverse-continue not supported."));
6319
6320 strcpy (buf, step ? "bs" : "bc");
6321 }
6322 else if (siggnal != GDB_SIGNAL_0)
6323 {
6324 buf[0] = step ? 'S' : 'C';
6325 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6326 buf[2] = tohex (((int) siggnal) & 0xf);
6327 buf[3] = '\0';
6328 }
6329 else
6330 strcpy (buf, step ? "s" : "c");
6331
6332 putpkt (buf);
6333 }
6334
6335 /* Resume the remote inferior by using a "vCont" packet. The thread
6336 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6337 resumed thread should be single-stepped and/or signalled. If PTID
6338 equals minus_one_ptid, then all threads are resumed; the thread to
6339 be stepped and/or signalled is given in the global INFERIOR_PTID.
6340 This function returns non-zero iff it resumes the inferior.
6341
6342 This function issues a strict subset of all possible vCont commands
6343 at the moment. */
6344
6345 int
6346 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6347 enum gdb_signal siggnal)
6348 {
6349 struct remote_state *rs = get_remote_state ();
6350 char *p;
6351 char *endp;
6352
6353 /* No reverse execution actions defined for vCont. */
6354 if (::execution_direction == EXEC_REVERSE)
6355 return 0;
6356
6357 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6358 remote_vcont_probe ();
6359
6360 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6361 return 0;
6362
6363 p = rs->buf.data ();
6364 endp = p + get_remote_packet_size ();
6365
6366 /* If we could generate a wider range of packets, we'd have to worry
6367 about overflowing BUF. Should there be a generic
6368 "multi-part-packet" packet? */
6369
6370 p += xsnprintf (p, endp - p, "vCont");
6371
6372 if (ptid == magic_null_ptid)
6373 {
6374 /* MAGIC_NULL_PTID means that we don't have any active threads,
6375 so we don't have any TID numbers the inferior will
6376 understand. Make sure to only send forms that do not specify
6377 a TID. */
6378 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6379 }
6380 else if (ptid == minus_one_ptid || ptid.is_pid ())
6381 {
6382 /* Resume all threads (of all processes, or of a single
6383 process), with preference for INFERIOR_PTID. This assumes
6384 inferior_ptid belongs to the set of all threads we are about
6385 to resume. */
6386 if (step || siggnal != GDB_SIGNAL_0)
6387 {
6388 /* Step inferior_ptid, with or without signal. */
6389 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6390 }
6391
6392 /* Also pass down any pending signaled resumption for other
6393 threads not the current. */
6394 p = append_pending_thread_resumptions (p, endp, ptid);
6395
6396 /* And continue others without a signal. */
6397 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6398 }
6399 else
6400 {
6401 /* Scheduler locking; resume only PTID. */
6402 append_resumption (p, endp, ptid, step, siggnal);
6403 }
6404
6405 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6406 putpkt (rs->buf);
6407
6408 if (target_is_non_stop_p ())
6409 {
6410 /* In non-stop, the stub replies to vCont with "OK". The stop
6411 reply will be reported asynchronously by means of a `%Stop'
6412 notification. */
6413 getpkt (&rs->buf, 0);
6414 if (strcmp (rs->buf.data (), "OK") != 0)
6415 error (_("Unexpected vCont reply in non-stop mode: %s"),
6416 rs->buf.data ());
6417 }
6418
6419 return 1;
6420 }
6421
6422 /* Tell the remote machine to resume. */
6423
6424 void
6425 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6426 {
6427 struct remote_state *rs = get_remote_state ();
6428
6429 /* When connected in non-stop mode, the core resumes threads
6430 individually. Resuming remote threads directly in target_resume
6431 would thus result in sending one packet per thread. Instead, to
6432 minimize roundtrip latency, here we just store the resume
6433 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6434 resumption will be done in remote_target::commit_resume, where we'll be
6435 able to do vCont action coalescing. */
6436 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6437 {
6438 remote_thread_info *remote_thr;
6439
6440 if (minus_one_ptid == ptid || ptid.is_pid ())
6441 remote_thr = get_remote_thread_info (this, inferior_ptid);
6442 else
6443 remote_thr = get_remote_thread_info (this, ptid);
6444
6445 /* We don't expect the core to ask to resume an already resumed (from
6446 its point of view) thread. */
6447 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6448
6449 remote_thr->set_resumed_pending_vcont (step, siggnal);
6450 return;
6451 }
6452
6453 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6454 (explained in remote-notif.c:handle_notification) so
6455 remote_notif_process is not called. We need find a place where
6456 it is safe to start a 'vNotif' sequence. It is good to do it
6457 before resuming inferior, because inferior was stopped and no RSP
6458 traffic at that moment. */
6459 if (!target_is_non_stop_p ())
6460 remote_notif_process (rs->notif_state, &notif_client_stop);
6461
6462 rs->last_resume_exec_dir = ::execution_direction;
6463
6464 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6465 if (!remote_resume_with_vcont (ptid, step, siggnal))
6466 remote_resume_with_hc (ptid, step, siggnal);
6467
6468 /* Update resumed state tracked by the remote target. */
6469 for (thread_info *tp : all_non_exited_threads (this, ptid))
6470 get_remote_thread_info (tp)->set_resumed ();
6471
6472 /* We are about to start executing the inferior, let's register it
6473 with the event loop. NOTE: this is the one place where all the
6474 execution commands end up. We could alternatively do this in each
6475 of the execution commands in infcmd.c. */
6476 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6477 into infcmd.c in order to allow inferior function calls to work
6478 NOT asynchronously. */
6479 if (target_can_async_p ())
6480 target_async (1);
6481
6482 /* We've just told the target to resume. The remote server will
6483 wait for the inferior to stop, and then send a stop reply. In
6484 the mean time, we can't start another command/query ourselves
6485 because the stub wouldn't be ready to process it. This applies
6486 only to the base all-stop protocol, however. In non-stop (which
6487 only supports vCont), the stub replies with an "OK", and is
6488 immediate able to process further serial input. */
6489 if (!target_is_non_stop_p ())
6490 rs->waiting_for_stop_reply = 1;
6491 }
6492
6493 static int is_pending_fork_parent_thread (struct thread_info *thread);
6494
6495 /* Private per-inferior info for target remote processes. */
6496
6497 struct remote_inferior : public private_inferior
6498 {
6499 /* Whether we can send a wildcard vCont for this process. */
6500 bool may_wildcard_vcont = true;
6501 };
6502
6503 /* Get the remote private inferior data associated to INF. */
6504
6505 static remote_inferior *
6506 get_remote_inferior (inferior *inf)
6507 {
6508 if (inf->priv == NULL)
6509 inf->priv.reset (new remote_inferior);
6510
6511 return static_cast<remote_inferior *> (inf->priv.get ());
6512 }
6513
6514 struct stop_reply : public notif_event
6515 {
6516 ~stop_reply ();
6517
6518 /* The identifier of the thread about this event */
6519 ptid_t ptid;
6520
6521 /* The remote state this event is associated with. When the remote
6522 connection, represented by a remote_state object, is closed,
6523 all the associated stop_reply events should be released. */
6524 struct remote_state *rs;
6525
6526 struct target_waitstatus ws;
6527
6528 /* The architecture associated with the expedited registers. */
6529 gdbarch *arch;
6530
6531 /* Expedited registers. This makes remote debugging a bit more
6532 efficient for those targets that provide critical registers as
6533 part of their normal status mechanism (as another roundtrip to
6534 fetch them is avoided). */
6535 std::vector<cached_reg_t> regcache;
6536
6537 enum target_stop_reason stop_reason;
6538
6539 CORE_ADDR watch_data_address;
6540
6541 int core;
6542 };
6543
6544 /* Class used to track the construction of a vCont packet in the
6545 outgoing packet buffer. This is used to send multiple vCont
6546 packets if we have more actions than would fit a single packet. */
6547
6548 class vcont_builder
6549 {
6550 public:
6551 explicit vcont_builder (remote_target *remote)
6552 : m_remote (remote)
6553 {
6554 restart ();
6555 }
6556
6557 void flush ();
6558 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6559
6560 private:
6561 void restart ();
6562
6563 /* The remote target. */
6564 remote_target *m_remote;
6565
6566 /* Pointer to the first action. P points here if no action has been
6567 appended yet. */
6568 char *m_first_action;
6569
6570 /* Where the next action will be appended. */
6571 char *m_p;
6572
6573 /* The end of the buffer. Must never write past this. */
6574 char *m_endp;
6575 };
6576
6577 /* Prepare the outgoing buffer for a new vCont packet. */
6578
6579 void
6580 vcont_builder::restart ()
6581 {
6582 struct remote_state *rs = m_remote->get_remote_state ();
6583
6584 m_p = rs->buf.data ();
6585 m_endp = m_p + m_remote->get_remote_packet_size ();
6586 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6587 m_first_action = m_p;
6588 }
6589
6590 /* If the vCont packet being built has any action, send it to the
6591 remote end. */
6592
6593 void
6594 vcont_builder::flush ()
6595 {
6596 struct remote_state *rs;
6597
6598 if (m_p == m_first_action)
6599 return;
6600
6601 rs = m_remote->get_remote_state ();
6602 m_remote->putpkt (rs->buf);
6603 m_remote->getpkt (&rs->buf, 0);
6604 if (strcmp (rs->buf.data (), "OK") != 0)
6605 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6606 }
6607
6608 /* The largest action is range-stepping, with its two addresses. This
6609 is more than sufficient. If a new, bigger action is created, it'll
6610 quickly trigger a failed assertion in append_resumption (and we'll
6611 just bump this). */
6612 #define MAX_ACTION_SIZE 200
6613
6614 /* Append a new vCont action in the outgoing packet being built. If
6615 the action doesn't fit the packet along with previous actions, push
6616 what we've got so far to the remote end and start over a new vCont
6617 packet (with the new action). */
6618
6619 void
6620 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6621 {
6622 char buf[MAX_ACTION_SIZE + 1];
6623
6624 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6625 ptid, step, siggnal);
6626
6627 /* Check whether this new action would fit in the vCont packet along
6628 with previous actions. If not, send what we've got so far and
6629 start a new vCont packet. */
6630 size_t rsize = endp - buf;
6631 if (rsize > m_endp - m_p)
6632 {
6633 flush ();
6634 restart ();
6635
6636 /* Should now fit. */
6637 gdb_assert (rsize <= m_endp - m_p);
6638 }
6639
6640 memcpy (m_p, buf, rsize);
6641 m_p += rsize;
6642 *m_p = '\0';
6643 }
6644
6645 /* to_commit_resume implementation. */
6646
6647 void
6648 remote_target::commit_resumed ()
6649 {
6650 /* If connected in all-stop mode, we'd send the remote resume
6651 request directly from remote_resume. Likewise if
6652 reverse-debugging, as there are no defined vCont actions for
6653 reverse execution. */
6654 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6655 return;
6656
6657 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6658 instead of resuming all threads of each process individually.
6659 However, if any thread of a process must remain halted, we can't
6660 send wildcard resumes and must send one action per thread.
6661
6662 Care must be taken to not resume threads/processes the server
6663 side already told us are stopped, but the core doesn't know about
6664 yet, because the events are still in the vStopped notification
6665 queue. For example:
6666
6667 #1 => vCont s:p1.1;c
6668 #2 <= OK
6669 #3 <= %Stopped T05 p1.1
6670 #4 => vStopped
6671 #5 <= T05 p1.2
6672 #6 => vStopped
6673 #7 <= OK
6674 #8 (infrun handles the stop for p1.1 and continues stepping)
6675 #9 => vCont s:p1.1;c
6676
6677 The last vCont above would resume thread p1.2 by mistake, because
6678 the server has no idea that the event for p1.2 had not been
6679 handled yet.
6680
6681 The server side must similarly ignore resume actions for the
6682 thread that has a pending %Stopped notification (and any other
6683 threads with events pending), until GDB acks the notification
6684 with vStopped. Otherwise, e.g., the following case is
6685 mishandled:
6686
6687 #1 => g (or any other packet)
6688 #2 <= [registers]
6689 #3 <= %Stopped T05 p1.2
6690 #4 => vCont s:p1.1;c
6691 #5 <= OK
6692
6693 Above, the server must not resume thread p1.2. GDB can't know
6694 that p1.2 stopped until it acks the %Stopped notification, and
6695 since from GDB's perspective all threads should be running, it
6696 sends a "c" action.
6697
6698 Finally, special care must also be given to handling fork/vfork
6699 events. A (v)fork event actually tells us that two processes
6700 stopped -- the parent and the child. Until we follow the fork,
6701 we must not resume the child. Therefore, if we have a pending
6702 fork follow, we must not send a global wildcard resume action
6703 (vCont;c). We can still send process-wide wildcards though. */
6704
6705 /* Start by assuming a global wildcard (vCont;c) is possible. */
6706 bool may_global_wildcard_vcont = true;
6707
6708 /* And assume every process is individually wildcard-able too. */
6709 for (inferior *inf : all_non_exited_inferiors (this))
6710 {
6711 remote_inferior *priv = get_remote_inferior (inf);
6712
6713 priv->may_wildcard_vcont = true;
6714 }
6715
6716 /* Check for any pending events (not reported or processed yet) and
6717 disable process and global wildcard resumes appropriately. */
6718 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6719
6720 bool any_pending_vcont_resume = false;
6721
6722 for (thread_info *tp : all_non_exited_threads (this))
6723 {
6724 remote_thread_info *priv = get_remote_thread_info (tp);
6725
6726 /* If a thread of a process is not meant to be resumed, then we
6727 can't wildcard that process. */
6728 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6729 {
6730 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6731
6732 /* And if we can't wildcard a process, we can't wildcard
6733 everything either. */
6734 may_global_wildcard_vcont = false;
6735 continue;
6736 }
6737
6738 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6739 any_pending_vcont_resume = true;
6740
6741 /* If a thread is the parent of an unfollowed fork, then we
6742 can't do a global wildcard, as that would resume the fork
6743 child. */
6744 if (is_pending_fork_parent_thread (tp))
6745 may_global_wildcard_vcont = false;
6746 }
6747
6748 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6749 do. */
6750 if (!any_pending_vcont_resume)
6751 return;
6752
6753 /* Now let's build the vCont packet(s). Actions must be appended
6754 from narrower to wider scopes (thread -> process -> global). If
6755 we end up with too many actions for a single packet vcont_builder
6756 flushes the current vCont packet to the remote side and starts a
6757 new one. */
6758 struct vcont_builder vcont_builder (this);
6759
6760 /* Threads first. */
6761 for (thread_info *tp : all_non_exited_threads (this))
6762 {
6763 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6764
6765 /* If the thread was previously vCont-resumed, no need to send a specific
6766 action for it. If we didn't receive a resume request for it, don't
6767 send an action for it either. */
6768 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6769 continue;
6770
6771 gdb_assert (!thread_is_in_step_over_chain (tp));
6772
6773 /* We should never be commit-resuming a thread that has a stop reply.
6774 Otherwise, we would end up reporting a stop event for a thread while
6775 it is running on the remote target. */
6776 remote_state *rs = get_remote_state ();
6777 for (const auto &stop_reply : rs->stop_reply_queue)
6778 gdb_assert (stop_reply->ptid != tp->ptid);
6779
6780 const resumed_pending_vcont_info &info
6781 = remote_thr->resumed_pending_vcont_info ();
6782
6783 /* Check if we need to send a specific action for this thread. If not,
6784 it will be included in a wildcard resume instead. */
6785 if (info.step || info.sig != GDB_SIGNAL_0
6786 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6787 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6788
6789 remote_thr->set_resumed ();
6790 }
6791
6792 /* Now check whether we can send any process-wide wildcard. This is
6793 to avoid sending a global wildcard in the case nothing is
6794 supposed to be resumed. */
6795 bool any_process_wildcard = false;
6796
6797 for (inferior *inf : all_non_exited_inferiors (this))
6798 {
6799 if (get_remote_inferior (inf)->may_wildcard_vcont)
6800 {
6801 any_process_wildcard = true;
6802 break;
6803 }
6804 }
6805
6806 if (any_process_wildcard)
6807 {
6808 /* If all processes are wildcard-able, then send a single "c"
6809 action, otherwise, send an "all (-1) threads of process"
6810 continue action for each running process, if any. */
6811 if (may_global_wildcard_vcont)
6812 {
6813 vcont_builder.push_action (minus_one_ptid,
6814 false, GDB_SIGNAL_0);
6815 }
6816 else
6817 {
6818 for (inferior *inf : all_non_exited_inferiors (this))
6819 {
6820 if (get_remote_inferior (inf)->may_wildcard_vcont)
6821 {
6822 vcont_builder.push_action (ptid_t (inf->pid),
6823 false, GDB_SIGNAL_0);
6824 }
6825 }
6826 }
6827 }
6828
6829 vcont_builder.flush ();
6830 }
6831
6832 /* Implementation of target_has_pending_events. */
6833
6834 bool
6835 remote_target::has_pending_events ()
6836 {
6837 if (target_can_async_p ())
6838 {
6839 remote_state *rs = get_remote_state ();
6840
6841 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6842 return true;
6843
6844 /* Note that BUFCNT can be negative, indicating sticky
6845 error. */
6846 if (rs->remote_desc->bufcnt != 0)
6847 return true;
6848 }
6849 return false;
6850 }
6851
6852 \f
6853
6854 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6855 thread, all threads of a remote process, or all threads of all
6856 processes. */
6857
6858 void
6859 remote_target::remote_stop_ns (ptid_t ptid)
6860 {
6861 struct remote_state *rs = get_remote_state ();
6862 char *p = rs->buf.data ();
6863 char *endp = p + get_remote_packet_size ();
6864
6865 /* If any thread that needs to stop was resumed but pending a vCont
6866 resume, generate a phony stop_reply. However, first check
6867 whether the thread wasn't resumed with a signal. Generating a
6868 phony stop in that case would result in losing the signal. */
6869 bool needs_commit = false;
6870 for (thread_info *tp : all_non_exited_threads (this, ptid))
6871 {
6872 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6873
6874 if (remote_thr->get_resume_state ()
6875 == resume_state::RESUMED_PENDING_VCONT)
6876 {
6877 const resumed_pending_vcont_info &info
6878 = remote_thr->resumed_pending_vcont_info ();
6879 if (info.sig != GDB_SIGNAL_0)
6880 {
6881 /* This signal must be forwarded to the inferior. We
6882 could commit-resume just this thread, but its simpler
6883 to just commit-resume everything. */
6884 needs_commit = true;
6885 break;
6886 }
6887 }
6888 }
6889
6890 if (needs_commit)
6891 commit_resumed ();
6892 else
6893 for (thread_info *tp : all_non_exited_threads (this, ptid))
6894 {
6895 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6896
6897 if (remote_thr->get_resume_state ()
6898 == resume_state::RESUMED_PENDING_VCONT)
6899 {
6900 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6901 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6902 tp->ptid.lwp (), tp->ptid.tid ());
6903
6904 /* Check that the thread wasn't resumed with a signal.
6905 Generating a phony stop would result in losing the
6906 signal. */
6907 const resumed_pending_vcont_info &info
6908 = remote_thr->resumed_pending_vcont_info ();
6909 gdb_assert (info.sig == GDB_SIGNAL_0);
6910
6911 stop_reply *sr = new stop_reply ();
6912 sr->ptid = tp->ptid;
6913 sr->rs = rs;
6914 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6915 sr->ws.value.sig = GDB_SIGNAL_0;
6916 sr->arch = tp->inf->gdbarch;
6917 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6918 sr->watch_data_address = 0;
6919 sr->core = 0;
6920 this->push_stop_reply (sr);
6921
6922 /* Pretend that this thread was actually resumed on the
6923 remote target, then stopped. If we leave it in the
6924 RESUMED_PENDING_VCONT state and the commit_resumed
6925 method is called while the stop reply is still in the
6926 queue, we'll end up reporting a stop event to the core
6927 for that thread while it is running on the remote
6928 target... that would be bad. */
6929 remote_thr->set_resumed ();
6930 }
6931 }
6932
6933 /* FIXME: This supports_vCont_probed check is a workaround until
6934 packet_support is per-connection. */
6935 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6936 || !rs->supports_vCont_probed)
6937 remote_vcont_probe ();
6938
6939 if (!rs->supports_vCont.t)
6940 error (_("Remote server does not support stopping threads"));
6941
6942 if (ptid == minus_one_ptid
6943 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6944 p += xsnprintf (p, endp - p, "vCont;t");
6945 else
6946 {
6947 ptid_t nptid;
6948
6949 p += xsnprintf (p, endp - p, "vCont;t:");
6950
6951 if (ptid.is_pid ())
6952 /* All (-1) threads of process. */
6953 nptid = ptid_t (ptid.pid (), -1, 0);
6954 else
6955 {
6956 /* Small optimization: if we already have a stop reply for
6957 this thread, no use in telling the stub we want this
6958 stopped. */
6959 if (peek_stop_reply (ptid))
6960 return;
6961
6962 nptid = ptid;
6963 }
6964
6965 write_ptid (p, endp, nptid);
6966 }
6967
6968 /* In non-stop, we get an immediate OK reply. The stop reply will
6969 come in asynchronously by notification. */
6970 putpkt (rs->buf);
6971 getpkt (&rs->buf, 0);
6972 if (strcmp (rs->buf.data (), "OK") != 0)
6973 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6974 rs->buf.data ());
6975 }
6976
6977 /* All-stop version of target_interrupt. Sends a break or a ^C to
6978 interrupt the remote target. It is undefined which thread of which
6979 process reports the interrupt. */
6980
6981 void
6982 remote_target::remote_interrupt_as ()
6983 {
6984 struct remote_state *rs = get_remote_state ();
6985
6986 rs->ctrlc_pending_p = 1;
6987
6988 /* If the inferior is stopped already, but the core didn't know
6989 about it yet, just ignore the request. The cached wait status
6990 will be collected in remote_wait. */
6991 if (rs->cached_wait_status)
6992 return;
6993
6994 /* Send interrupt_sequence to remote target. */
6995 send_interrupt_sequence ();
6996 }
6997
6998 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6999 the remote target. It is undefined which thread of which process
7000 reports the interrupt. Throws an error if the packet is not
7001 supported by the server. */
7002
7003 void
7004 remote_target::remote_interrupt_ns ()
7005 {
7006 struct remote_state *rs = get_remote_state ();
7007 char *p = rs->buf.data ();
7008 char *endp = p + get_remote_packet_size ();
7009
7010 xsnprintf (p, endp - p, "vCtrlC");
7011
7012 /* In non-stop, we get an immediate OK reply. The stop reply will
7013 come in asynchronously by notification. */
7014 putpkt (rs->buf);
7015 getpkt (&rs->buf, 0);
7016
7017 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7018 {
7019 case PACKET_OK:
7020 break;
7021 case PACKET_UNKNOWN:
7022 error (_("No support for interrupting the remote target."));
7023 case PACKET_ERROR:
7024 error (_("Interrupting target failed: %s"), rs->buf.data ());
7025 }
7026 }
7027
7028 /* Implement the to_stop function for the remote targets. */
7029
7030 void
7031 remote_target::stop (ptid_t ptid)
7032 {
7033 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7034
7035 if (target_is_non_stop_p ())
7036 remote_stop_ns (ptid);
7037 else
7038 {
7039 /* We don't currently have a way to transparently pause the
7040 remote target in all-stop mode. Interrupt it instead. */
7041 remote_interrupt_as ();
7042 }
7043 }
7044
7045 /* Implement the to_interrupt function for the remote targets. */
7046
7047 void
7048 remote_target::interrupt ()
7049 {
7050 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7051
7052 if (target_is_non_stop_p ())
7053 remote_interrupt_ns ();
7054 else
7055 remote_interrupt_as ();
7056 }
7057
7058 /* Implement the to_pass_ctrlc function for the remote targets. */
7059
7060 void
7061 remote_target::pass_ctrlc ()
7062 {
7063 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7064
7065 struct remote_state *rs = get_remote_state ();
7066
7067 /* If we're starting up, we're not fully synced yet. Quit
7068 immediately. */
7069 if (rs->starting_up)
7070 quit ();
7071 /* If ^C has already been sent once, offer to disconnect. */
7072 else if (rs->ctrlc_pending_p)
7073 interrupt_query ();
7074 else
7075 target_interrupt ();
7076 }
7077
7078 /* Ask the user what to do when an interrupt is received. */
7079
7080 void
7081 remote_target::interrupt_query ()
7082 {
7083 struct remote_state *rs = get_remote_state ();
7084
7085 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7086 {
7087 if (query (_("The target is not responding to interrupt requests.\n"
7088 "Stop debugging it? ")))
7089 {
7090 remote_unpush_target (this);
7091 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7092 }
7093 }
7094 else
7095 {
7096 if (query (_("Interrupted while waiting for the program.\n"
7097 "Give up waiting? ")))
7098 quit ();
7099 }
7100 }
7101
7102 /* Enable/disable target terminal ownership. Most targets can use
7103 terminal groups to control terminal ownership. Remote targets are
7104 different in that explicit transfer of ownership to/from GDB/target
7105 is required. */
7106
7107 void
7108 remote_target::terminal_inferior ()
7109 {
7110 /* NOTE: At this point we could also register our selves as the
7111 recipient of all input. Any characters typed could then be
7112 passed on down to the target. */
7113 }
7114
7115 void
7116 remote_target::terminal_ours ()
7117 {
7118 }
7119
7120 static void
7121 remote_console_output (const char *msg)
7122 {
7123 const char *p;
7124
7125 for (p = msg; p[0] && p[1]; p += 2)
7126 {
7127 char tb[2];
7128 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7129
7130 tb[0] = c;
7131 tb[1] = 0;
7132 gdb_stdtarg->puts (tb);
7133 }
7134 gdb_stdtarg->flush ();
7135 }
7136
7137 /* Return the length of the stop reply queue. */
7138
7139 int
7140 remote_target::stop_reply_queue_length ()
7141 {
7142 remote_state *rs = get_remote_state ();
7143 return rs->stop_reply_queue.size ();
7144 }
7145
7146 static void
7147 remote_notif_stop_parse (remote_target *remote,
7148 struct notif_client *self, const char *buf,
7149 struct notif_event *event)
7150 {
7151 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7152 }
7153
7154 static void
7155 remote_notif_stop_ack (remote_target *remote,
7156 struct notif_client *self, const char *buf,
7157 struct notif_event *event)
7158 {
7159 struct stop_reply *stop_reply = (struct stop_reply *) event;
7160
7161 /* acknowledge */
7162 putpkt (remote, self->ack_command);
7163
7164 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7165 the notification. It was left in the queue because we need to
7166 acknowledge it and pull the rest of the notifications out. */
7167 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7168 remote->push_stop_reply (stop_reply);
7169 }
7170
7171 static int
7172 remote_notif_stop_can_get_pending_events (remote_target *remote,
7173 struct notif_client *self)
7174 {
7175 /* We can't get pending events in remote_notif_process for
7176 notification stop, and we have to do this in remote_wait_ns
7177 instead. If we fetch all queued events from stub, remote stub
7178 may exit and we have no chance to process them back in
7179 remote_wait_ns. */
7180 remote_state *rs = remote->get_remote_state ();
7181 mark_async_event_handler (rs->remote_async_inferior_event_token);
7182 return 0;
7183 }
7184
7185 stop_reply::~stop_reply ()
7186 {
7187 for (cached_reg_t &reg : regcache)
7188 xfree (reg.data);
7189 }
7190
7191 static notif_event_up
7192 remote_notif_stop_alloc_reply ()
7193 {
7194 return notif_event_up (new struct stop_reply ());
7195 }
7196
7197 /* A client of notification Stop. */
7198
7199 struct notif_client notif_client_stop =
7200 {
7201 "Stop",
7202 "vStopped",
7203 remote_notif_stop_parse,
7204 remote_notif_stop_ack,
7205 remote_notif_stop_can_get_pending_events,
7206 remote_notif_stop_alloc_reply,
7207 REMOTE_NOTIF_STOP,
7208 };
7209
7210 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7211 the pid of the process that owns the threads we want to check, or
7212 -1 if we want to check all threads. */
7213
7214 static int
7215 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7216 ptid_t thread_ptid)
7217 {
7218 if (ws->kind == TARGET_WAITKIND_FORKED
7219 || ws->kind == TARGET_WAITKIND_VFORKED)
7220 {
7221 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7222 return 1;
7223 }
7224
7225 return 0;
7226 }
7227
7228 /* Return the thread's pending status used to determine whether the
7229 thread is a fork parent stopped at a fork event. */
7230
7231 static struct target_waitstatus *
7232 thread_pending_fork_status (struct thread_info *thread)
7233 {
7234 if (thread->suspend.waitstatus_pending_p)
7235 return &thread->suspend.waitstatus;
7236 else
7237 return &thread->pending_follow;
7238 }
7239
7240 /* Determine if THREAD is a pending fork parent thread. */
7241
7242 static int
7243 is_pending_fork_parent_thread (struct thread_info *thread)
7244 {
7245 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7246 int pid = -1;
7247
7248 return is_pending_fork_parent (ws, pid, thread->ptid);
7249 }
7250
7251 /* If CONTEXT contains any fork child threads that have not been
7252 reported yet, remove them from the CONTEXT list. If such a
7253 thread exists it is because we are stopped at a fork catchpoint
7254 and have not yet called follow_fork, which will set up the
7255 host-side data structures for the new process. */
7256
7257 void
7258 remote_target::remove_new_fork_children (threads_listing_context *context)
7259 {
7260 int pid = -1;
7261 struct notif_client *notif = &notif_client_stop;
7262
7263 /* For any threads stopped at a fork event, remove the corresponding
7264 fork child threads from the CONTEXT list. */
7265 for (thread_info *thread : all_non_exited_threads (this))
7266 {
7267 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7268
7269 if (is_pending_fork_parent (ws, pid, thread->ptid))
7270 context->remove_thread (ws->value.related_pid);
7271 }
7272
7273 /* Check for any pending fork events (not reported or processed yet)
7274 in process PID and remove those fork child threads from the
7275 CONTEXT list as well. */
7276 remote_notif_get_pending_events (notif);
7277 for (auto &event : get_remote_state ()->stop_reply_queue)
7278 if (event->ws.kind == TARGET_WAITKIND_FORKED
7279 || event->ws.kind == TARGET_WAITKIND_VFORKED
7280 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7281 context->remove_thread (event->ws.value.related_pid);
7282 }
7283
7284 /* Check whether any event pending in the vStopped queue would prevent a
7285 global or process wildcard vCont action. Set *may_global_wildcard to
7286 false if we can't do a global wildcard (vCont;c), and clear the event
7287 inferior's may_wildcard_vcont flag if we can't do a process-wide
7288 wildcard resume (vCont;c:pPID.-1). */
7289
7290 void
7291 remote_target::check_pending_events_prevent_wildcard_vcont
7292 (bool *may_global_wildcard)
7293 {
7294 struct notif_client *notif = &notif_client_stop;
7295
7296 remote_notif_get_pending_events (notif);
7297 for (auto &event : get_remote_state ()->stop_reply_queue)
7298 {
7299 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7300 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7301 continue;
7302
7303 if (event->ws.kind == TARGET_WAITKIND_FORKED
7304 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7305 *may_global_wildcard = false;
7306
7307 /* This may be the first time we heard about this process.
7308 Regardless, we must not do a global wildcard resume, otherwise
7309 we'd resume this process too. */
7310 *may_global_wildcard = false;
7311 if (event->ptid != null_ptid)
7312 {
7313 inferior *inf = find_inferior_ptid (this, event->ptid);
7314 if (inf != NULL)
7315 get_remote_inferior (inf)->may_wildcard_vcont = false;
7316 }
7317 }
7318 }
7319
7320 /* Discard all pending stop replies of inferior INF. */
7321
7322 void
7323 remote_target::discard_pending_stop_replies (struct inferior *inf)
7324 {
7325 struct stop_reply *reply;
7326 struct remote_state *rs = get_remote_state ();
7327 struct remote_notif_state *rns = rs->notif_state;
7328
7329 /* This function can be notified when an inferior exists. When the
7330 target is not remote, the notification state is NULL. */
7331 if (rs->remote_desc == NULL)
7332 return;
7333
7334 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7335
7336 /* Discard the in-flight notification. */
7337 if (reply != NULL && reply->ptid.pid () == inf->pid)
7338 {
7339 /* Leave the notification pending, since the server expects that
7340 we acknowledge it with vStopped. But clear its contents, so
7341 that later on when we acknowledge it, we also discard it. */
7342 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7343
7344 if (remote_debug)
7345 fprintf_unfiltered (gdb_stdlog,
7346 "discarded in-flight notification\n");
7347 }
7348
7349 /* Discard the stop replies we have already pulled with
7350 vStopped. */
7351 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7352 rs->stop_reply_queue.end (),
7353 [=] (const stop_reply_up &event)
7354 {
7355 return event->ptid.pid () == inf->pid;
7356 });
7357 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7358 }
7359
7360 /* Discard the stop replies for RS in stop_reply_queue. */
7361
7362 void
7363 remote_target::discard_pending_stop_replies_in_queue ()
7364 {
7365 remote_state *rs = get_remote_state ();
7366
7367 /* Discard the stop replies we have already pulled with
7368 vStopped. */
7369 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7370 rs->stop_reply_queue.end (),
7371 [=] (const stop_reply_up &event)
7372 {
7373 return event->rs == rs;
7374 });
7375 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7376 }
7377
7378 /* Remove the first reply in 'stop_reply_queue' which matches
7379 PTID. */
7380
7381 struct stop_reply *
7382 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7383 {
7384 remote_state *rs = get_remote_state ();
7385
7386 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7387 rs->stop_reply_queue.end (),
7388 [=] (const stop_reply_up &event)
7389 {
7390 return event->ptid.matches (ptid);
7391 });
7392 struct stop_reply *result;
7393 if (iter == rs->stop_reply_queue.end ())
7394 result = nullptr;
7395 else
7396 {
7397 result = iter->release ();
7398 rs->stop_reply_queue.erase (iter);
7399 }
7400
7401 if (notif_debug)
7402 fprintf_unfiltered (gdb_stdlog,
7403 "notif: discard queued event: 'Stop' in %s\n",
7404 target_pid_to_str (ptid).c_str ());
7405
7406 return result;
7407 }
7408
7409 /* Look for a queued stop reply belonging to PTID. If one is found,
7410 remove it from the queue, and return it. Returns NULL if none is
7411 found. If there are still queued events left to process, tell the
7412 event loop to get back to target_wait soon. */
7413
7414 struct stop_reply *
7415 remote_target::queued_stop_reply (ptid_t ptid)
7416 {
7417 remote_state *rs = get_remote_state ();
7418 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7419
7420 if (!rs->stop_reply_queue.empty ())
7421 {
7422 /* There's still at least an event left. */
7423 mark_async_event_handler (rs->remote_async_inferior_event_token);
7424 }
7425
7426 return r;
7427 }
7428
7429 /* Push a fully parsed stop reply in the stop reply queue. Since we
7430 know that we now have at least one queued event left to pass to the
7431 core side, tell the event loop to get back to target_wait soon. */
7432
7433 void
7434 remote_target::push_stop_reply (struct stop_reply *new_event)
7435 {
7436 remote_state *rs = get_remote_state ();
7437 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7438
7439 if (notif_debug)
7440 fprintf_unfiltered (gdb_stdlog,
7441 "notif: push 'Stop' %s to queue %d\n",
7442 target_pid_to_str (new_event->ptid).c_str (),
7443 int (rs->stop_reply_queue.size ()));
7444
7445 mark_async_event_handler (rs->remote_async_inferior_event_token);
7446 }
7447
7448 /* Returns true if we have a stop reply for PTID. */
7449
7450 int
7451 remote_target::peek_stop_reply (ptid_t ptid)
7452 {
7453 remote_state *rs = get_remote_state ();
7454 for (auto &event : rs->stop_reply_queue)
7455 if (ptid == event->ptid
7456 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7457 return 1;
7458 return 0;
7459 }
7460
7461 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7462 starting with P and ending with PEND matches PREFIX. */
7463
7464 static int
7465 strprefix (const char *p, const char *pend, const char *prefix)
7466 {
7467 for ( ; p < pend; p++, prefix++)
7468 if (*p != *prefix)
7469 return 0;
7470 return *prefix == '\0';
7471 }
7472
7473 /* Parse the stop reply in BUF. Either the function succeeds, and the
7474 result is stored in EVENT, or throws an error. */
7475
7476 void
7477 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7478 {
7479 remote_arch_state *rsa = NULL;
7480 ULONGEST addr;
7481 const char *p;
7482 int skipregs = 0;
7483
7484 event->ptid = null_ptid;
7485 event->rs = get_remote_state ();
7486 event->ws.kind = TARGET_WAITKIND_IGNORE;
7487 event->ws.value.integer = 0;
7488 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7489 event->regcache.clear ();
7490 event->core = -1;
7491
7492 switch (buf[0])
7493 {
7494 case 'T': /* Status with PC, SP, FP, ... */
7495 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7496 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7497 ss = signal number
7498 n... = register number
7499 r... = register contents
7500 */
7501
7502 p = &buf[3]; /* after Txx */
7503 while (*p)
7504 {
7505 const char *p1;
7506 int fieldsize;
7507
7508 p1 = strchr (p, ':');
7509 if (p1 == NULL)
7510 error (_("Malformed packet(a) (missing colon): %s\n\
7511 Packet: '%s'\n"),
7512 p, buf);
7513 if (p == p1)
7514 error (_("Malformed packet(a) (missing register number): %s\n\
7515 Packet: '%s'\n"),
7516 p, buf);
7517
7518 /* Some "registers" are actually extended stop information.
7519 Note if you're adding a new entry here: GDB 7.9 and
7520 earlier assume that all register "numbers" that start
7521 with an hex digit are real register numbers. Make sure
7522 the server only sends such a packet if it knows the
7523 client understands it. */
7524
7525 if (strprefix (p, p1, "thread"))
7526 event->ptid = read_ptid (++p1, &p);
7527 else if (strprefix (p, p1, "syscall_entry"))
7528 {
7529 ULONGEST sysno;
7530
7531 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7532 p = unpack_varlen_hex (++p1, &sysno);
7533 event->ws.value.syscall_number = (int) sysno;
7534 }
7535 else if (strprefix (p, p1, "syscall_return"))
7536 {
7537 ULONGEST sysno;
7538
7539 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7540 p = unpack_varlen_hex (++p1, &sysno);
7541 event->ws.value.syscall_number = (int) sysno;
7542 }
7543 else if (strprefix (p, p1, "watch")
7544 || strprefix (p, p1, "rwatch")
7545 || strprefix (p, p1, "awatch"))
7546 {
7547 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7548 p = unpack_varlen_hex (++p1, &addr);
7549 event->watch_data_address = (CORE_ADDR) addr;
7550 }
7551 else if (strprefix (p, p1, "swbreak"))
7552 {
7553 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7554
7555 /* Make sure the stub doesn't forget to indicate support
7556 with qSupported. */
7557 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7558 error (_("Unexpected swbreak stop reason"));
7559
7560 /* The value part is documented as "must be empty",
7561 though we ignore it, in case we ever decide to make
7562 use of it in a backward compatible way. */
7563 p = strchrnul (p1 + 1, ';');
7564 }
7565 else if (strprefix (p, p1, "hwbreak"))
7566 {
7567 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7568
7569 /* Make sure the stub doesn't forget to indicate support
7570 with qSupported. */
7571 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7572 error (_("Unexpected hwbreak stop reason"));
7573
7574 /* See above. */
7575 p = strchrnul (p1 + 1, ';');
7576 }
7577 else if (strprefix (p, p1, "library"))
7578 {
7579 event->ws.kind = TARGET_WAITKIND_LOADED;
7580 p = strchrnul (p1 + 1, ';');
7581 }
7582 else if (strprefix (p, p1, "replaylog"))
7583 {
7584 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7585 /* p1 will indicate "begin" or "end", but it makes
7586 no difference for now, so ignore it. */
7587 p = strchrnul (p1 + 1, ';');
7588 }
7589 else if (strprefix (p, p1, "core"))
7590 {
7591 ULONGEST c;
7592
7593 p = unpack_varlen_hex (++p1, &c);
7594 event->core = c;
7595 }
7596 else if (strprefix (p, p1, "fork"))
7597 {
7598 event->ws.value.related_pid = read_ptid (++p1, &p);
7599 event->ws.kind = TARGET_WAITKIND_FORKED;
7600 }
7601 else if (strprefix (p, p1, "vfork"))
7602 {
7603 event->ws.value.related_pid = read_ptid (++p1, &p);
7604 event->ws.kind = TARGET_WAITKIND_VFORKED;
7605 }
7606 else if (strprefix (p, p1, "vforkdone"))
7607 {
7608 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7609 p = strchrnul (p1 + 1, ';');
7610 }
7611 else if (strprefix (p, p1, "exec"))
7612 {
7613 ULONGEST ignored;
7614 int pathlen;
7615
7616 /* Determine the length of the execd pathname. */
7617 p = unpack_varlen_hex (++p1, &ignored);
7618 pathlen = (p - p1) / 2;
7619
7620 /* Save the pathname for event reporting and for
7621 the next run command. */
7622 gdb::unique_xmalloc_ptr<char[]> pathname
7623 ((char *) xmalloc (pathlen + 1));
7624 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7625 pathname[pathlen] = '\0';
7626
7627 /* This is freed during event handling. */
7628 event->ws.value.execd_pathname = pathname.release ();
7629 event->ws.kind = TARGET_WAITKIND_EXECD;
7630
7631 /* Skip the registers included in this packet, since
7632 they may be for an architecture different from the
7633 one used by the original program. */
7634 skipregs = 1;
7635 }
7636 else if (strprefix (p, p1, "create"))
7637 {
7638 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7639 p = strchrnul (p1 + 1, ';');
7640 }
7641 else
7642 {
7643 ULONGEST pnum;
7644 const char *p_temp;
7645
7646 if (skipregs)
7647 {
7648 p = strchrnul (p1 + 1, ';');
7649 p++;
7650 continue;
7651 }
7652
7653 /* Maybe a real ``P'' register number. */
7654 p_temp = unpack_varlen_hex (p, &pnum);
7655 /* If the first invalid character is the colon, we got a
7656 register number. Otherwise, it's an unknown stop
7657 reason. */
7658 if (p_temp == p1)
7659 {
7660 /* If we haven't parsed the event's thread yet, find
7661 it now, in order to find the architecture of the
7662 reported expedited registers. */
7663 if (event->ptid == null_ptid)
7664 {
7665 /* If there is no thread-id information then leave
7666 the event->ptid as null_ptid. Later in
7667 process_stop_reply we will pick a suitable
7668 thread. */
7669 const char *thr = strstr (p1 + 1, ";thread:");
7670 if (thr != NULL)
7671 event->ptid = read_ptid (thr + strlen (";thread:"),
7672 NULL);
7673 }
7674
7675 if (rsa == NULL)
7676 {
7677 inferior *inf
7678 = (event->ptid == null_ptid
7679 ? NULL
7680 : find_inferior_ptid (this, event->ptid));
7681 /* If this is the first time we learn anything
7682 about this process, skip the registers
7683 included in this packet, since we don't yet
7684 know which architecture to use to parse them.
7685 We'll determine the architecture later when
7686 we process the stop reply and retrieve the
7687 target description, via
7688 remote_notice_new_inferior ->
7689 post_create_inferior. */
7690 if (inf == NULL)
7691 {
7692 p = strchrnul (p1 + 1, ';');
7693 p++;
7694 continue;
7695 }
7696
7697 event->arch = inf->gdbarch;
7698 rsa = event->rs->get_remote_arch_state (event->arch);
7699 }
7700
7701 packet_reg *reg
7702 = packet_reg_from_pnum (event->arch, rsa, pnum);
7703 cached_reg_t cached_reg;
7704
7705 if (reg == NULL)
7706 error (_("Remote sent bad register number %s: %s\n\
7707 Packet: '%s'\n"),
7708 hex_string (pnum), p, buf);
7709
7710 cached_reg.num = reg->regnum;
7711 cached_reg.data = (gdb_byte *)
7712 xmalloc (register_size (event->arch, reg->regnum));
7713
7714 p = p1 + 1;
7715 fieldsize = hex2bin (p, cached_reg.data,
7716 register_size (event->arch, reg->regnum));
7717 p += 2 * fieldsize;
7718 if (fieldsize < register_size (event->arch, reg->regnum))
7719 warning (_("Remote reply is too short: %s"), buf);
7720
7721 event->regcache.push_back (cached_reg);
7722 }
7723 else
7724 {
7725 /* Not a number. Silently skip unknown optional
7726 info. */
7727 p = strchrnul (p1 + 1, ';');
7728 }
7729 }
7730
7731 if (*p != ';')
7732 error (_("Remote register badly formatted: %s\nhere: %s"),
7733 buf, p);
7734 ++p;
7735 }
7736
7737 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7738 break;
7739
7740 /* fall through */
7741 case 'S': /* Old style status, just signal only. */
7742 {
7743 int sig;
7744
7745 event->ws.kind = TARGET_WAITKIND_STOPPED;
7746 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7747 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7748 event->ws.value.sig = (enum gdb_signal) sig;
7749 else
7750 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7751 }
7752 break;
7753 case 'w': /* Thread exited. */
7754 {
7755 ULONGEST value;
7756
7757 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7758 p = unpack_varlen_hex (&buf[1], &value);
7759 event->ws.value.integer = value;
7760 if (*p != ';')
7761 error (_("stop reply packet badly formatted: %s"), buf);
7762 event->ptid = read_ptid (++p, NULL);
7763 break;
7764 }
7765 case 'W': /* Target exited. */
7766 case 'X':
7767 {
7768 ULONGEST value;
7769
7770 /* GDB used to accept only 2 hex chars here. Stubs should
7771 only send more if they detect GDB supports multi-process
7772 support. */
7773 p = unpack_varlen_hex (&buf[1], &value);
7774
7775 if (buf[0] == 'W')
7776 {
7777 /* The remote process exited. */
7778 event->ws.kind = TARGET_WAITKIND_EXITED;
7779 event->ws.value.integer = value;
7780 }
7781 else
7782 {
7783 /* The remote process exited with a signal. */
7784 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7785 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7786 event->ws.value.sig = (enum gdb_signal) value;
7787 else
7788 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7789 }
7790
7791 /* If no process is specified, return null_ptid, and let the
7792 caller figure out the right process to use. */
7793 int pid = 0;
7794 if (*p == '\0')
7795 ;
7796 else if (*p == ';')
7797 {
7798 p++;
7799
7800 if (*p == '\0')
7801 ;
7802 else if (startswith (p, "process:"))
7803 {
7804 ULONGEST upid;
7805
7806 p += sizeof ("process:") - 1;
7807 unpack_varlen_hex (p, &upid);
7808 pid = upid;
7809 }
7810 else
7811 error (_("unknown stop reply packet: %s"), buf);
7812 }
7813 else
7814 error (_("unknown stop reply packet: %s"), buf);
7815 event->ptid = ptid_t (pid);
7816 }
7817 break;
7818 case 'N':
7819 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7820 event->ptid = minus_one_ptid;
7821 break;
7822 }
7823 }
7824
7825 /* When the stub wants to tell GDB about a new notification reply, it
7826 sends a notification (%Stop, for example). Those can come it at
7827 any time, hence, we have to make sure that any pending
7828 putpkt/getpkt sequence we're making is finished, before querying
7829 the stub for more events with the corresponding ack command
7830 (vStopped, for example). E.g., if we started a vStopped sequence
7831 immediately upon receiving the notification, something like this
7832 could happen:
7833
7834 1.1) --> Hg 1
7835 1.2) <-- OK
7836 1.3) --> g
7837 1.4) <-- %Stop
7838 1.5) --> vStopped
7839 1.6) <-- (registers reply to step #1.3)
7840
7841 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7842 query.
7843
7844 To solve this, whenever we parse a %Stop notification successfully,
7845 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7846 doing whatever we were doing:
7847
7848 2.1) --> Hg 1
7849 2.2) <-- OK
7850 2.3) --> g
7851 2.4) <-- %Stop
7852 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7853 2.5) <-- (registers reply to step #2.3)
7854
7855 Eventually after step #2.5, we return to the event loop, which
7856 notices there's an event on the
7857 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7858 associated callback --- the function below. At this point, we're
7859 always safe to start a vStopped sequence. :
7860
7861 2.6) --> vStopped
7862 2.7) <-- T05 thread:2
7863 2.8) --> vStopped
7864 2.9) --> OK
7865 */
7866
7867 void
7868 remote_target::remote_notif_get_pending_events (notif_client *nc)
7869 {
7870 struct remote_state *rs = get_remote_state ();
7871
7872 if (rs->notif_state->pending_event[nc->id] != NULL)
7873 {
7874 if (notif_debug)
7875 fprintf_unfiltered (gdb_stdlog,
7876 "notif: process: '%s' ack pending event\n",
7877 nc->name);
7878
7879 /* acknowledge */
7880 nc->ack (this, nc, rs->buf.data (),
7881 rs->notif_state->pending_event[nc->id]);
7882 rs->notif_state->pending_event[nc->id] = NULL;
7883
7884 while (1)
7885 {
7886 getpkt (&rs->buf, 0);
7887 if (strcmp (rs->buf.data (), "OK") == 0)
7888 break;
7889 else
7890 remote_notif_ack (this, nc, rs->buf.data ());
7891 }
7892 }
7893 else
7894 {
7895 if (notif_debug)
7896 fprintf_unfiltered (gdb_stdlog,
7897 "notif: process: '%s' no pending reply\n",
7898 nc->name);
7899 }
7900 }
7901
7902 /* Wrapper around remote_target::remote_notif_get_pending_events to
7903 avoid having to export the whole remote_target class. */
7904
7905 void
7906 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7907 {
7908 remote->remote_notif_get_pending_events (nc);
7909 }
7910
7911 /* Called from process_stop_reply when the stop packet we are responding
7912 to didn't include a process-id or thread-id. STATUS is the stop event
7913 we are responding to.
7914
7915 It is the task of this function to select a suitable thread (or process)
7916 and return its ptid, this is the thread (or process) we will assume the
7917 stop event came from.
7918
7919 In some cases there isn't really any choice about which thread (or
7920 process) is selected, a basic remote with a single process containing a
7921 single thread might choose not to send any process-id or thread-id in
7922 its stop packets, this function will select and return the one and only
7923 thread.
7924
7925 However, if a target supports multiple threads (or processes) and still
7926 doesn't include a thread-id (or process-id) in its stop packet then
7927 first, this is a badly behaving target, and second, we're going to have
7928 to select a thread (or process) at random and use that. This function
7929 will print a warning to the user if it detects that there is the
7930 possibility that GDB is guessing which thread (or process) to
7931 report.
7932
7933 Note that this is called before GDB fetches the updated thread list from the
7934 target. So it's possible for the stop reply to be ambiguous and for GDB to
7935 not realize it. For example, if there's initially one thread, the target
7936 spawns a second thread, and then sends a stop reply without an id that
7937 concerns the first thread. GDB will assume the stop reply is about the
7938 first thread - the only thread it knows about - without printing a warning.
7939 Anyway, if the remote meant for the stop reply to be about the second thread,
7940 then it would be really broken, because GDB doesn't know about that thread
7941 yet. */
7942
7943 ptid_t
7944 remote_target::select_thread_for_ambiguous_stop_reply
7945 (const struct target_waitstatus *status)
7946 {
7947 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7948
7949 /* Some stop events apply to all threads in an inferior, while others
7950 only apply to a single thread. */
7951 bool process_wide_stop
7952 = (status->kind == TARGET_WAITKIND_EXITED
7953 || status->kind == TARGET_WAITKIND_SIGNALLED);
7954
7955 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7956
7957 thread_info *first_resumed_thread = nullptr;
7958 bool ambiguous = false;
7959
7960 /* Consider all non-exited threads of the target, find the first resumed
7961 one. */
7962 for (thread_info *thr : all_non_exited_threads (this))
7963 {
7964 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7965
7966 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7967 continue;
7968
7969 if (first_resumed_thread == nullptr)
7970 first_resumed_thread = thr;
7971 else if (!process_wide_stop
7972 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7973 ambiguous = true;
7974 }
7975
7976 gdb_assert (first_resumed_thread != nullptr);
7977
7978 remote_debug_printf ("first resumed thread is %s",
7979 pid_to_str (first_resumed_thread->ptid).c_str ());
7980 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7981
7982 /* Warn if the remote target is sending ambiguous stop replies. */
7983 if (ambiguous)
7984 {
7985 static bool warned = false;
7986
7987 if (!warned)
7988 {
7989 /* If you are seeing this warning then the remote target has
7990 stopped without specifying a thread-id, but the target
7991 does have multiple threads (or inferiors), and so GDB is
7992 having to guess which thread stopped.
7993
7994 Examples of what might cause this are the target sending
7995 and 'S' stop packet, or a 'T' stop packet and not
7996 including a thread-id.
7997
7998 Additionally, the target might send a 'W' or 'X packet
7999 without including a process-id, when the target has
8000 multiple running inferiors. */
8001 if (process_wide_stop)
8002 warning (_("multi-inferior target stopped without "
8003 "sending a process-id, using first "
8004 "non-exited inferior"));
8005 else
8006 warning (_("multi-threaded target stopped without "
8007 "sending a thread-id, using first "
8008 "non-exited thread"));
8009 warned = true;
8010 }
8011 }
8012
8013 /* If this is a stop for all threads then don't use a particular threads
8014 ptid, instead create a new ptid where only the pid field is set. */
8015 if (process_wide_stop)
8016 return ptid_t (first_resumed_thread->ptid.pid ());
8017 else
8018 return first_resumed_thread->ptid;
8019 }
8020
8021 /* Called when it is decided that STOP_REPLY holds the info of the
8022 event that is to be returned to the core. This function always
8023 destroys STOP_REPLY. */
8024
8025 ptid_t
8026 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8027 struct target_waitstatus *status)
8028 {
8029 *status = stop_reply->ws;
8030 ptid_t ptid = stop_reply->ptid;
8031
8032 /* If no thread/process was reported by the stub then select a suitable
8033 thread/process. */
8034 if (ptid == null_ptid)
8035 ptid = select_thread_for_ambiguous_stop_reply (status);
8036 gdb_assert (ptid != null_ptid);
8037
8038 if (status->kind != TARGET_WAITKIND_EXITED
8039 && status->kind != TARGET_WAITKIND_SIGNALLED
8040 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8041 {
8042 /* Expedited registers. */
8043 if (!stop_reply->regcache.empty ())
8044 {
8045 struct regcache *regcache
8046 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8047
8048 for (cached_reg_t &reg : stop_reply->regcache)
8049 {
8050 regcache->raw_supply (reg.num, reg.data);
8051 xfree (reg.data);
8052 }
8053
8054 stop_reply->regcache.clear ();
8055 }
8056
8057 remote_notice_new_inferior (ptid, false);
8058 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8059 remote_thr->core = stop_reply->core;
8060 remote_thr->stop_reason = stop_reply->stop_reason;
8061 remote_thr->watch_data_address = stop_reply->watch_data_address;
8062
8063 if (target_is_non_stop_p ())
8064 {
8065 /* If the target works in non-stop mode, a stop-reply indicates that
8066 only this thread stopped. */
8067 remote_thr->set_not_resumed ();
8068 }
8069 else
8070 {
8071 /* If the target works in all-stop mode, a stop-reply indicates that
8072 all the target's threads stopped. */
8073 for (thread_info *tp : all_non_exited_threads (this))
8074 get_remote_thread_info (tp)->set_not_resumed ();
8075 }
8076 }
8077
8078 delete stop_reply;
8079 return ptid;
8080 }
8081
8082 /* The non-stop mode version of target_wait. */
8083
8084 ptid_t
8085 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8086 target_wait_flags options)
8087 {
8088 struct remote_state *rs = get_remote_state ();
8089 struct stop_reply *stop_reply;
8090 int ret;
8091 int is_notif = 0;
8092
8093 /* If in non-stop mode, get out of getpkt even if a
8094 notification is received. */
8095
8096 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8097 while (1)
8098 {
8099 if (ret != -1 && !is_notif)
8100 switch (rs->buf[0])
8101 {
8102 case 'E': /* Error of some sort. */
8103 /* We're out of sync with the target now. Did it continue
8104 or not? We can't tell which thread it was in non-stop,
8105 so just ignore this. */
8106 warning (_("Remote failure reply: %s"), rs->buf.data ());
8107 break;
8108 case 'O': /* Console output. */
8109 remote_console_output (&rs->buf[1]);
8110 break;
8111 default:
8112 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8113 break;
8114 }
8115
8116 /* Acknowledge a pending stop reply that may have arrived in the
8117 mean time. */
8118 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8119 remote_notif_get_pending_events (&notif_client_stop);
8120
8121 /* If indeed we noticed a stop reply, we're done. */
8122 stop_reply = queued_stop_reply (ptid);
8123 if (stop_reply != NULL)
8124 return process_stop_reply (stop_reply, status);
8125
8126 /* Still no event. If we're just polling for an event, then
8127 return to the event loop. */
8128 if (options & TARGET_WNOHANG)
8129 {
8130 status->kind = TARGET_WAITKIND_IGNORE;
8131 return minus_one_ptid;
8132 }
8133
8134 /* Otherwise do a blocking wait. */
8135 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8136 }
8137 }
8138
8139 /* Return the first resumed thread. */
8140
8141 static ptid_t
8142 first_remote_resumed_thread (remote_target *target)
8143 {
8144 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8145 if (tp->resumed)
8146 return tp->ptid;
8147 return null_ptid;
8148 }
8149
8150 /* Wait until the remote machine stops, then return, storing status in
8151 STATUS just as `wait' would. */
8152
8153 ptid_t
8154 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8155 target_wait_flags options)
8156 {
8157 struct remote_state *rs = get_remote_state ();
8158 ptid_t event_ptid = null_ptid;
8159 char *buf;
8160 struct stop_reply *stop_reply;
8161
8162 again:
8163
8164 status->kind = TARGET_WAITKIND_IGNORE;
8165 status->value.integer = 0;
8166
8167 stop_reply = queued_stop_reply (ptid);
8168 if (stop_reply != NULL)
8169 return process_stop_reply (stop_reply, status);
8170
8171 if (rs->cached_wait_status)
8172 /* Use the cached wait status, but only once. */
8173 rs->cached_wait_status = 0;
8174 else
8175 {
8176 int ret;
8177 int is_notif;
8178 int forever = ((options & TARGET_WNOHANG) == 0
8179 && rs->wait_forever_enabled_p);
8180
8181 if (!rs->waiting_for_stop_reply)
8182 {
8183 status->kind = TARGET_WAITKIND_NO_RESUMED;
8184 return minus_one_ptid;
8185 }
8186
8187 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8188 _never_ wait for ever -> test on target_is_async_p().
8189 However, before we do that we need to ensure that the caller
8190 knows how to take the target into/out of async mode. */
8191 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8192
8193 /* GDB gets a notification. Return to core as this event is
8194 not interesting. */
8195 if (ret != -1 && is_notif)
8196 return minus_one_ptid;
8197
8198 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8199 return minus_one_ptid;
8200 }
8201
8202 buf = rs->buf.data ();
8203
8204 /* Assume that the target has acknowledged Ctrl-C unless we receive
8205 an 'F' or 'O' packet. */
8206 if (buf[0] != 'F' && buf[0] != 'O')
8207 rs->ctrlc_pending_p = 0;
8208
8209 switch (buf[0])
8210 {
8211 case 'E': /* Error of some sort. */
8212 /* We're out of sync with the target now. Did it continue or
8213 not? Not is more likely, so report a stop. */
8214 rs->waiting_for_stop_reply = 0;
8215
8216 warning (_("Remote failure reply: %s"), buf);
8217 status->kind = TARGET_WAITKIND_STOPPED;
8218 status->value.sig = GDB_SIGNAL_0;
8219 break;
8220 case 'F': /* File-I/O request. */
8221 /* GDB may access the inferior memory while handling the File-I/O
8222 request, but we don't want GDB accessing memory while waiting
8223 for a stop reply. See the comments in putpkt_binary. Set
8224 waiting_for_stop_reply to 0 temporarily. */
8225 rs->waiting_for_stop_reply = 0;
8226 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8227 rs->ctrlc_pending_p = 0;
8228 /* GDB handled the File-I/O request, and the target is running
8229 again. Keep waiting for events. */
8230 rs->waiting_for_stop_reply = 1;
8231 break;
8232 case 'N': case 'T': case 'S': case 'X': case 'W':
8233 {
8234 /* There is a stop reply to handle. */
8235 rs->waiting_for_stop_reply = 0;
8236
8237 stop_reply
8238 = (struct stop_reply *) remote_notif_parse (this,
8239 &notif_client_stop,
8240 rs->buf.data ());
8241
8242 event_ptid = process_stop_reply (stop_reply, status);
8243 break;
8244 }
8245 case 'O': /* Console output. */
8246 remote_console_output (buf + 1);
8247 break;
8248 case '\0':
8249 if (rs->last_sent_signal != GDB_SIGNAL_0)
8250 {
8251 /* Zero length reply means that we tried 'S' or 'C' and the
8252 remote system doesn't support it. */
8253 target_terminal::ours_for_output ();
8254 printf_filtered
8255 ("Can't send signals to this remote system. %s not sent.\n",
8256 gdb_signal_to_name (rs->last_sent_signal));
8257 rs->last_sent_signal = GDB_SIGNAL_0;
8258 target_terminal::inferior ();
8259
8260 strcpy (buf, rs->last_sent_step ? "s" : "c");
8261 putpkt (buf);
8262 break;
8263 }
8264 /* fallthrough */
8265 default:
8266 warning (_("Invalid remote reply: %s"), buf);
8267 break;
8268 }
8269
8270 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8271 return minus_one_ptid;
8272 else if (status->kind == TARGET_WAITKIND_IGNORE)
8273 {
8274 /* Nothing interesting happened. If we're doing a non-blocking
8275 poll, we're done. Otherwise, go back to waiting. */
8276 if (options & TARGET_WNOHANG)
8277 return minus_one_ptid;
8278 else
8279 goto again;
8280 }
8281 else if (status->kind != TARGET_WAITKIND_EXITED
8282 && status->kind != TARGET_WAITKIND_SIGNALLED)
8283 {
8284 if (event_ptid != null_ptid)
8285 record_currthread (rs, event_ptid);
8286 else
8287 event_ptid = first_remote_resumed_thread (this);
8288 }
8289 else
8290 {
8291 /* A process exit. Invalidate our notion of current thread. */
8292 record_currthread (rs, minus_one_ptid);
8293 /* It's possible that the packet did not include a pid. */
8294 if (event_ptid == null_ptid)
8295 event_ptid = first_remote_resumed_thread (this);
8296 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8297 if (event_ptid == null_ptid)
8298 event_ptid = magic_null_ptid;
8299 }
8300
8301 return event_ptid;
8302 }
8303
8304 /* Wait until the remote machine stops, then return, storing status in
8305 STATUS just as `wait' would. */
8306
8307 ptid_t
8308 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8309 target_wait_flags options)
8310 {
8311 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8312
8313 remote_state *rs = get_remote_state ();
8314
8315 /* Start by clearing the flag that asks for our wait method to be called,
8316 we'll mark it again at the end if needed. */
8317 if (target_is_async_p ())
8318 clear_async_event_handler (rs->remote_async_inferior_event_token);
8319
8320 ptid_t event_ptid;
8321
8322 if (target_is_non_stop_p ())
8323 event_ptid = wait_ns (ptid, status, options);
8324 else
8325 event_ptid = wait_as (ptid, status, options);
8326
8327 if (target_is_async_p ())
8328 {
8329 /* If there are events left in the queue, or unacknowledged
8330 notifications, then tell the event loop to call us again. */
8331 if (!rs->stop_reply_queue.empty ()
8332 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8333 mark_async_event_handler (rs->remote_async_inferior_event_token);
8334 }
8335
8336 return event_ptid;
8337 }
8338
8339 /* Fetch a single register using a 'p' packet. */
8340
8341 int
8342 remote_target::fetch_register_using_p (struct regcache *regcache,
8343 packet_reg *reg)
8344 {
8345 struct gdbarch *gdbarch = regcache->arch ();
8346 struct remote_state *rs = get_remote_state ();
8347 char *buf, *p;
8348 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8349 int i;
8350
8351 if (packet_support (PACKET_p) == PACKET_DISABLE)
8352 return 0;
8353
8354 if (reg->pnum == -1)
8355 return 0;
8356
8357 p = rs->buf.data ();
8358 *p++ = 'p';
8359 p += hexnumstr (p, reg->pnum);
8360 *p++ = '\0';
8361 putpkt (rs->buf);
8362 getpkt (&rs->buf, 0);
8363
8364 buf = rs->buf.data ();
8365
8366 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8367 {
8368 case PACKET_OK:
8369 break;
8370 case PACKET_UNKNOWN:
8371 return 0;
8372 case PACKET_ERROR:
8373 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8374 gdbarch_register_name (regcache->arch (),
8375 reg->regnum),
8376 buf);
8377 }
8378
8379 /* If this register is unfetchable, tell the regcache. */
8380 if (buf[0] == 'x')
8381 {
8382 regcache->raw_supply (reg->regnum, NULL);
8383 return 1;
8384 }
8385
8386 /* Otherwise, parse and supply the value. */
8387 p = buf;
8388 i = 0;
8389 while (p[0] != 0)
8390 {
8391 if (p[1] == 0)
8392 error (_("fetch_register_using_p: early buf termination"));
8393
8394 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8395 p += 2;
8396 }
8397 regcache->raw_supply (reg->regnum, regp);
8398 return 1;
8399 }
8400
8401 /* Fetch the registers included in the target's 'g' packet. */
8402
8403 int
8404 remote_target::send_g_packet ()
8405 {
8406 struct remote_state *rs = get_remote_state ();
8407 int buf_len;
8408
8409 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8410 putpkt (rs->buf);
8411 getpkt (&rs->buf, 0);
8412 if (packet_check_result (rs->buf) == PACKET_ERROR)
8413 error (_("Could not read registers; remote failure reply '%s'"),
8414 rs->buf.data ());
8415
8416 /* We can get out of synch in various cases. If the first character
8417 in the buffer is not a hex character, assume that has happened
8418 and try to fetch another packet to read. */
8419 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8420 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8421 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8422 && rs->buf[0] != 'x') /* New: unavailable register value. */
8423 {
8424 remote_debug_printf ("Bad register packet; fetching a new packet");
8425 getpkt (&rs->buf, 0);
8426 }
8427
8428 buf_len = strlen (rs->buf.data ());
8429
8430 /* Sanity check the received packet. */
8431 if (buf_len % 2 != 0)
8432 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8433
8434 return buf_len / 2;
8435 }
8436
8437 void
8438 remote_target::process_g_packet (struct regcache *regcache)
8439 {
8440 struct gdbarch *gdbarch = regcache->arch ();
8441 struct remote_state *rs = get_remote_state ();
8442 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8443 int i, buf_len;
8444 char *p;
8445 char *regs;
8446
8447 buf_len = strlen (rs->buf.data ());
8448
8449 /* Further sanity checks, with knowledge of the architecture. */
8450 if (buf_len > 2 * rsa->sizeof_g_packet)
8451 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8452 "bytes): %s"),
8453 rsa->sizeof_g_packet, buf_len / 2,
8454 rs->buf.data ());
8455
8456 /* Save the size of the packet sent to us by the target. It is used
8457 as a heuristic when determining the max size of packets that the
8458 target can safely receive. */
8459 if (rsa->actual_register_packet_size == 0)
8460 rsa->actual_register_packet_size = buf_len;
8461
8462 /* If this is smaller than we guessed the 'g' packet would be,
8463 update our records. A 'g' reply that doesn't include a register's
8464 value implies either that the register is not available, or that
8465 the 'p' packet must be used. */
8466 if (buf_len < 2 * rsa->sizeof_g_packet)
8467 {
8468 long sizeof_g_packet = buf_len / 2;
8469
8470 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8471 {
8472 long offset = rsa->regs[i].offset;
8473 long reg_size = register_size (gdbarch, i);
8474
8475 if (rsa->regs[i].pnum == -1)
8476 continue;
8477
8478 if (offset >= sizeof_g_packet)
8479 rsa->regs[i].in_g_packet = 0;
8480 else if (offset + reg_size > sizeof_g_packet)
8481 error (_("Truncated register %d in remote 'g' packet"), i);
8482 else
8483 rsa->regs[i].in_g_packet = 1;
8484 }
8485
8486 /* Looks valid enough, we can assume this is the correct length
8487 for a 'g' packet. It's important not to adjust
8488 rsa->sizeof_g_packet if we have truncated registers otherwise
8489 this "if" won't be run the next time the method is called
8490 with a packet of the same size and one of the internal errors
8491 below will trigger instead. */
8492 rsa->sizeof_g_packet = sizeof_g_packet;
8493 }
8494
8495 regs = (char *) alloca (rsa->sizeof_g_packet);
8496
8497 /* Unimplemented registers read as all bits zero. */
8498 memset (regs, 0, rsa->sizeof_g_packet);
8499
8500 /* Reply describes registers byte by byte, each byte encoded as two
8501 hex characters. Suck them all up, then supply them to the
8502 register cacheing/storage mechanism. */
8503
8504 p = rs->buf.data ();
8505 for (i = 0; i < rsa->sizeof_g_packet; i++)
8506 {
8507 if (p[0] == 0 || p[1] == 0)
8508 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8509 internal_error (__FILE__, __LINE__,
8510 _("unexpected end of 'g' packet reply"));
8511
8512 if (p[0] == 'x' && p[1] == 'x')
8513 regs[i] = 0; /* 'x' */
8514 else
8515 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8516 p += 2;
8517 }
8518
8519 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8520 {
8521 struct packet_reg *r = &rsa->regs[i];
8522 long reg_size = register_size (gdbarch, i);
8523
8524 if (r->in_g_packet)
8525 {
8526 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8527 /* This shouldn't happen - we adjusted in_g_packet above. */
8528 internal_error (__FILE__, __LINE__,
8529 _("unexpected end of 'g' packet reply"));
8530 else if (rs->buf[r->offset * 2] == 'x')
8531 {
8532 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8533 /* The register isn't available, mark it as such (at
8534 the same time setting the value to zero). */
8535 regcache->raw_supply (r->regnum, NULL);
8536 }
8537 else
8538 regcache->raw_supply (r->regnum, regs + r->offset);
8539 }
8540 }
8541 }
8542
8543 void
8544 remote_target::fetch_registers_using_g (struct regcache *regcache)
8545 {
8546 send_g_packet ();
8547 process_g_packet (regcache);
8548 }
8549
8550 /* Make the remote selected traceframe match GDB's selected
8551 traceframe. */
8552
8553 void
8554 remote_target::set_remote_traceframe ()
8555 {
8556 int newnum;
8557 struct remote_state *rs = get_remote_state ();
8558
8559 if (rs->remote_traceframe_number == get_traceframe_number ())
8560 return;
8561
8562 /* Avoid recursion, remote_trace_find calls us again. */
8563 rs->remote_traceframe_number = get_traceframe_number ();
8564
8565 newnum = target_trace_find (tfind_number,
8566 get_traceframe_number (), 0, 0, NULL);
8567
8568 /* Should not happen. If it does, all bets are off. */
8569 if (newnum != get_traceframe_number ())
8570 warning (_("could not set remote traceframe"));
8571 }
8572
8573 void
8574 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8575 {
8576 struct gdbarch *gdbarch = regcache->arch ();
8577 struct remote_state *rs = get_remote_state ();
8578 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8579 int i;
8580
8581 set_remote_traceframe ();
8582 set_general_thread (regcache->ptid ());
8583
8584 if (regnum >= 0)
8585 {
8586 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8587
8588 gdb_assert (reg != NULL);
8589
8590 /* If this register might be in the 'g' packet, try that first -
8591 we are likely to read more than one register. If this is the
8592 first 'g' packet, we might be overly optimistic about its
8593 contents, so fall back to 'p'. */
8594 if (reg->in_g_packet)
8595 {
8596 fetch_registers_using_g (regcache);
8597 if (reg->in_g_packet)
8598 return;
8599 }
8600
8601 if (fetch_register_using_p (regcache, reg))
8602 return;
8603
8604 /* This register is not available. */
8605 regcache->raw_supply (reg->regnum, NULL);
8606
8607 return;
8608 }
8609
8610 fetch_registers_using_g (regcache);
8611
8612 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8613 if (!rsa->regs[i].in_g_packet)
8614 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8615 {
8616 /* This register is not available. */
8617 regcache->raw_supply (i, NULL);
8618 }
8619 }
8620
8621 /* Prepare to store registers. Since we may send them all (using a
8622 'G' request), we have to read out the ones we don't want to change
8623 first. */
8624
8625 void
8626 remote_target::prepare_to_store (struct regcache *regcache)
8627 {
8628 struct remote_state *rs = get_remote_state ();
8629 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8630 int i;
8631
8632 /* Make sure the entire registers array is valid. */
8633 switch (packet_support (PACKET_P))
8634 {
8635 case PACKET_DISABLE:
8636 case PACKET_SUPPORT_UNKNOWN:
8637 /* Make sure all the necessary registers are cached. */
8638 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8639 if (rsa->regs[i].in_g_packet)
8640 regcache->raw_update (rsa->regs[i].regnum);
8641 break;
8642 case PACKET_ENABLE:
8643 break;
8644 }
8645 }
8646
8647 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8648 packet was not recognized. */
8649
8650 int
8651 remote_target::store_register_using_P (const struct regcache *regcache,
8652 packet_reg *reg)
8653 {
8654 struct gdbarch *gdbarch = regcache->arch ();
8655 struct remote_state *rs = get_remote_state ();
8656 /* Try storing a single register. */
8657 char *buf = rs->buf.data ();
8658 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8659 char *p;
8660
8661 if (packet_support (PACKET_P) == PACKET_DISABLE)
8662 return 0;
8663
8664 if (reg->pnum == -1)
8665 return 0;
8666
8667 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8668 p = buf + strlen (buf);
8669 regcache->raw_collect (reg->regnum, regp);
8670 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8671 putpkt (rs->buf);
8672 getpkt (&rs->buf, 0);
8673
8674 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8675 {
8676 case PACKET_OK:
8677 return 1;
8678 case PACKET_ERROR:
8679 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8680 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8681 case PACKET_UNKNOWN:
8682 return 0;
8683 default:
8684 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8685 }
8686 }
8687
8688 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8689 contents of the register cache buffer. FIXME: ignores errors. */
8690
8691 void
8692 remote_target::store_registers_using_G (const struct regcache *regcache)
8693 {
8694 struct remote_state *rs = get_remote_state ();
8695 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8696 gdb_byte *regs;
8697 char *p;
8698
8699 /* Extract all the registers in the regcache copying them into a
8700 local buffer. */
8701 {
8702 int i;
8703
8704 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8705 memset (regs, 0, rsa->sizeof_g_packet);
8706 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8707 {
8708 struct packet_reg *r = &rsa->regs[i];
8709
8710 if (r->in_g_packet)
8711 regcache->raw_collect (r->regnum, regs + r->offset);
8712 }
8713 }
8714
8715 /* Command describes registers byte by byte,
8716 each byte encoded as two hex characters. */
8717 p = rs->buf.data ();
8718 *p++ = 'G';
8719 bin2hex (regs, p, rsa->sizeof_g_packet);
8720 putpkt (rs->buf);
8721 getpkt (&rs->buf, 0);
8722 if (packet_check_result (rs->buf) == PACKET_ERROR)
8723 error (_("Could not write registers; remote failure reply '%s'"),
8724 rs->buf.data ());
8725 }
8726
8727 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8728 of the register cache buffer. FIXME: ignores errors. */
8729
8730 void
8731 remote_target::store_registers (struct regcache *regcache, int regnum)
8732 {
8733 struct gdbarch *gdbarch = regcache->arch ();
8734 struct remote_state *rs = get_remote_state ();
8735 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8736 int i;
8737
8738 set_remote_traceframe ();
8739 set_general_thread (regcache->ptid ());
8740
8741 if (regnum >= 0)
8742 {
8743 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8744
8745 gdb_assert (reg != NULL);
8746
8747 /* Always prefer to store registers using the 'P' packet if
8748 possible; we often change only a small number of registers.
8749 Sometimes we change a larger number; we'd need help from a
8750 higher layer to know to use 'G'. */
8751 if (store_register_using_P (regcache, reg))
8752 return;
8753
8754 /* For now, don't complain if we have no way to write the
8755 register. GDB loses track of unavailable registers too
8756 easily. Some day, this may be an error. We don't have
8757 any way to read the register, either... */
8758 if (!reg->in_g_packet)
8759 return;
8760
8761 store_registers_using_G (regcache);
8762 return;
8763 }
8764
8765 store_registers_using_G (regcache);
8766
8767 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8768 if (!rsa->regs[i].in_g_packet)
8769 if (!store_register_using_P (regcache, &rsa->regs[i]))
8770 /* See above for why we do not issue an error here. */
8771 continue;
8772 }
8773 \f
8774
8775 /* Return the number of hex digits in num. */
8776
8777 static int
8778 hexnumlen (ULONGEST num)
8779 {
8780 int i;
8781
8782 for (i = 0; num != 0; i++)
8783 num >>= 4;
8784
8785 return std::max (i, 1);
8786 }
8787
8788 /* Set BUF to the minimum number of hex digits representing NUM. */
8789
8790 static int
8791 hexnumstr (char *buf, ULONGEST num)
8792 {
8793 int len = hexnumlen (num);
8794
8795 return hexnumnstr (buf, num, len);
8796 }
8797
8798
8799 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8800
8801 static int
8802 hexnumnstr (char *buf, ULONGEST num, int width)
8803 {
8804 int i;
8805
8806 buf[width] = '\0';
8807
8808 for (i = width - 1; i >= 0; i--)
8809 {
8810 buf[i] = "0123456789abcdef"[(num & 0xf)];
8811 num >>= 4;
8812 }
8813
8814 return width;
8815 }
8816
8817 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8818
8819 static CORE_ADDR
8820 remote_address_masked (CORE_ADDR addr)
8821 {
8822 unsigned int address_size = remote_address_size;
8823
8824 /* If "remoteaddresssize" was not set, default to target address size. */
8825 if (!address_size)
8826 address_size = gdbarch_addr_bit (target_gdbarch ());
8827
8828 if (address_size > 0
8829 && address_size < (sizeof (ULONGEST) * 8))
8830 {
8831 /* Only create a mask when that mask can safely be constructed
8832 in a ULONGEST variable. */
8833 ULONGEST mask = 1;
8834
8835 mask = (mask << address_size) - 1;
8836 addr &= mask;
8837 }
8838 return addr;
8839 }
8840
8841 /* Determine whether the remote target supports binary downloading.
8842 This is accomplished by sending a no-op memory write of zero length
8843 to the target at the specified address. It does not suffice to send
8844 the whole packet, since many stubs strip the eighth bit and
8845 subsequently compute a wrong checksum, which causes real havoc with
8846 remote_write_bytes.
8847
8848 NOTE: This can still lose if the serial line is not eight-bit
8849 clean. In cases like this, the user should clear "remote
8850 X-packet". */
8851
8852 void
8853 remote_target::check_binary_download (CORE_ADDR addr)
8854 {
8855 struct remote_state *rs = get_remote_state ();
8856
8857 switch (packet_support (PACKET_X))
8858 {
8859 case PACKET_DISABLE:
8860 break;
8861 case PACKET_ENABLE:
8862 break;
8863 case PACKET_SUPPORT_UNKNOWN:
8864 {
8865 char *p;
8866
8867 p = rs->buf.data ();
8868 *p++ = 'X';
8869 p += hexnumstr (p, (ULONGEST) addr);
8870 *p++ = ',';
8871 p += hexnumstr (p, (ULONGEST) 0);
8872 *p++ = ':';
8873 *p = '\0';
8874
8875 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8876 getpkt (&rs->buf, 0);
8877
8878 if (rs->buf[0] == '\0')
8879 {
8880 remote_debug_printf ("binary downloading NOT supported by target");
8881 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8882 }
8883 else
8884 {
8885 remote_debug_printf ("binary downloading supported by target");
8886 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8887 }
8888 break;
8889 }
8890 }
8891 }
8892
8893 /* Helper function to resize the payload in order to try to get a good
8894 alignment. We try to write an amount of data such that the next write will
8895 start on an address aligned on REMOTE_ALIGN_WRITES. */
8896
8897 static int
8898 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8899 {
8900 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8901 }
8902
8903 /* Write memory data directly to the remote machine.
8904 This does not inform the data cache; the data cache uses this.
8905 HEADER is the starting part of the packet.
8906 MEMADDR is the address in the remote memory space.
8907 MYADDR is the address of the buffer in our space.
8908 LEN_UNITS is the number of addressable units to write.
8909 UNIT_SIZE is the length in bytes of an addressable unit.
8910 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8911 should send data as binary ('X'), or hex-encoded ('M').
8912
8913 The function creates packet of the form
8914 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8915
8916 where encoding of <DATA> is terminated by PACKET_FORMAT.
8917
8918 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8919 are omitted.
8920
8921 Return the transferred status, error or OK (an
8922 'enum target_xfer_status' value). Save the number of addressable units
8923 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8924
8925 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8926 exchange between gdb and the stub could look like (?? in place of the
8927 checksum):
8928
8929 -> $m1000,4#??
8930 <- aaaabbbbccccdddd
8931
8932 -> $M1000,3:eeeeffffeeee#??
8933 <- OK
8934
8935 -> $m1000,4#??
8936 <- eeeeffffeeeedddd */
8937
8938 target_xfer_status
8939 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8940 const gdb_byte *myaddr,
8941 ULONGEST len_units,
8942 int unit_size,
8943 ULONGEST *xfered_len_units,
8944 char packet_format, int use_length)
8945 {
8946 struct remote_state *rs = get_remote_state ();
8947 char *p;
8948 char *plen = NULL;
8949 int plenlen = 0;
8950 int todo_units;
8951 int units_written;
8952 int payload_capacity_bytes;
8953 int payload_length_bytes;
8954
8955 if (packet_format != 'X' && packet_format != 'M')
8956 internal_error (__FILE__, __LINE__,
8957 _("remote_write_bytes_aux: bad packet format"));
8958
8959 if (len_units == 0)
8960 return TARGET_XFER_EOF;
8961
8962 payload_capacity_bytes = get_memory_write_packet_size ();
8963
8964 /* The packet buffer will be large enough for the payload;
8965 get_memory_packet_size ensures this. */
8966 rs->buf[0] = '\0';
8967
8968 /* Compute the size of the actual payload by subtracting out the
8969 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8970
8971 payload_capacity_bytes -= strlen ("$,:#NN");
8972 if (!use_length)
8973 /* The comma won't be used. */
8974 payload_capacity_bytes += 1;
8975 payload_capacity_bytes -= strlen (header);
8976 payload_capacity_bytes -= hexnumlen (memaddr);
8977
8978 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8979
8980 strcat (rs->buf.data (), header);
8981 p = rs->buf.data () + strlen (header);
8982
8983 /* Compute a best guess of the number of bytes actually transfered. */
8984 if (packet_format == 'X')
8985 {
8986 /* Best guess at number of bytes that will fit. */
8987 todo_units = std::min (len_units,
8988 (ULONGEST) payload_capacity_bytes / unit_size);
8989 if (use_length)
8990 payload_capacity_bytes -= hexnumlen (todo_units);
8991 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8992 }
8993 else
8994 {
8995 /* Number of bytes that will fit. */
8996 todo_units
8997 = std::min (len_units,
8998 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8999 if (use_length)
9000 payload_capacity_bytes -= hexnumlen (todo_units);
9001 todo_units = std::min (todo_units,
9002 (payload_capacity_bytes / unit_size) / 2);
9003 }
9004
9005 if (todo_units <= 0)
9006 internal_error (__FILE__, __LINE__,
9007 _("minimum packet size too small to write data"));
9008
9009 /* If we already need another packet, then try to align the end
9010 of this packet to a useful boundary. */
9011 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9012 todo_units = align_for_efficient_write (todo_units, memaddr);
9013
9014 /* Append "<memaddr>". */
9015 memaddr = remote_address_masked (memaddr);
9016 p += hexnumstr (p, (ULONGEST) memaddr);
9017
9018 if (use_length)
9019 {
9020 /* Append ",". */
9021 *p++ = ',';
9022
9023 /* Append the length and retain its location and size. It may need to be
9024 adjusted once the packet body has been created. */
9025 plen = p;
9026 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9027 p += plenlen;
9028 }
9029
9030 /* Append ":". */
9031 *p++ = ':';
9032 *p = '\0';
9033
9034 /* Append the packet body. */
9035 if (packet_format == 'X')
9036 {
9037 /* Binary mode. Send target system values byte by byte, in
9038 increasing byte addresses. Only escape certain critical
9039 characters. */
9040 payload_length_bytes =
9041 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9042 &units_written, payload_capacity_bytes);
9043
9044 /* If not all TODO units fit, then we'll need another packet. Make
9045 a second try to keep the end of the packet aligned. Don't do
9046 this if the packet is tiny. */
9047 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9048 {
9049 int new_todo_units;
9050
9051 new_todo_units = align_for_efficient_write (units_written, memaddr);
9052
9053 if (new_todo_units != units_written)
9054 payload_length_bytes =
9055 remote_escape_output (myaddr, new_todo_units, unit_size,
9056 (gdb_byte *) p, &units_written,
9057 payload_capacity_bytes);
9058 }
9059
9060 p += payload_length_bytes;
9061 if (use_length && units_written < todo_units)
9062 {
9063 /* Escape chars have filled up the buffer prematurely,
9064 and we have actually sent fewer units than planned.
9065 Fix-up the length field of the packet. Use the same
9066 number of characters as before. */
9067 plen += hexnumnstr (plen, (ULONGEST) units_written,
9068 plenlen);
9069 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9070 }
9071 }
9072 else
9073 {
9074 /* Normal mode: Send target system values byte by byte, in
9075 increasing byte addresses. Each byte is encoded as a two hex
9076 value. */
9077 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9078 units_written = todo_units;
9079 }
9080
9081 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9082 getpkt (&rs->buf, 0);
9083
9084 if (rs->buf[0] == 'E')
9085 return TARGET_XFER_E_IO;
9086
9087 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9088 send fewer units than we'd planned. */
9089 *xfered_len_units = (ULONGEST) units_written;
9090 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9091 }
9092
9093 /* Write memory data directly to the remote machine.
9094 This does not inform the data cache; the data cache uses this.
9095 MEMADDR is the address in the remote memory space.
9096 MYADDR is the address of the buffer in our space.
9097 LEN is the number of bytes.
9098
9099 Return the transferred status, error or OK (an
9100 'enum target_xfer_status' value). Save the number of bytes
9101 transferred in *XFERED_LEN. Only transfer a single packet. */
9102
9103 target_xfer_status
9104 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9105 ULONGEST len, int unit_size,
9106 ULONGEST *xfered_len)
9107 {
9108 const char *packet_format = NULL;
9109
9110 /* Check whether the target supports binary download. */
9111 check_binary_download (memaddr);
9112
9113 switch (packet_support (PACKET_X))
9114 {
9115 case PACKET_ENABLE:
9116 packet_format = "X";
9117 break;
9118 case PACKET_DISABLE:
9119 packet_format = "M";
9120 break;
9121 case PACKET_SUPPORT_UNKNOWN:
9122 internal_error (__FILE__, __LINE__,
9123 _("remote_write_bytes: bad internal state"));
9124 default:
9125 internal_error (__FILE__, __LINE__, _("bad switch"));
9126 }
9127
9128 return remote_write_bytes_aux (packet_format,
9129 memaddr, myaddr, len, unit_size, xfered_len,
9130 packet_format[0], 1);
9131 }
9132
9133 /* Read memory data directly from the remote machine.
9134 This does not use the data cache; the data cache uses this.
9135 MEMADDR is the address in the remote memory space.
9136 MYADDR is the address of the buffer in our space.
9137 LEN_UNITS is the number of addressable memory units to read..
9138 UNIT_SIZE is the length in bytes of an addressable unit.
9139
9140 Return the transferred status, error or OK (an
9141 'enum target_xfer_status' value). Save the number of bytes
9142 transferred in *XFERED_LEN_UNITS.
9143
9144 See the comment of remote_write_bytes_aux for an example of
9145 memory read/write exchange between gdb and the stub. */
9146
9147 target_xfer_status
9148 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9149 ULONGEST len_units,
9150 int unit_size, ULONGEST *xfered_len_units)
9151 {
9152 struct remote_state *rs = get_remote_state ();
9153 int buf_size_bytes; /* Max size of packet output buffer. */
9154 char *p;
9155 int todo_units;
9156 int decoded_bytes;
9157
9158 buf_size_bytes = get_memory_read_packet_size ();
9159 /* The packet buffer will be large enough for the payload;
9160 get_memory_packet_size ensures this. */
9161
9162 /* Number of units that will fit. */
9163 todo_units = std::min (len_units,
9164 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9165
9166 /* Construct "m"<memaddr>","<len>". */
9167 memaddr = remote_address_masked (memaddr);
9168 p = rs->buf.data ();
9169 *p++ = 'm';
9170 p += hexnumstr (p, (ULONGEST) memaddr);
9171 *p++ = ',';
9172 p += hexnumstr (p, (ULONGEST) todo_units);
9173 *p = '\0';
9174 putpkt (rs->buf);
9175 getpkt (&rs->buf, 0);
9176 if (rs->buf[0] == 'E'
9177 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9178 && rs->buf[3] == '\0')
9179 return TARGET_XFER_E_IO;
9180 /* Reply describes memory byte by byte, each byte encoded as two hex
9181 characters. */
9182 p = rs->buf.data ();
9183 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9184 /* Return what we have. Let higher layers handle partial reads. */
9185 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9186 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9187 }
9188
9189 /* Using the set of read-only target sections of remote, read live
9190 read-only memory.
9191
9192 For interface/parameters/return description see target.h,
9193 to_xfer_partial. */
9194
9195 target_xfer_status
9196 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9197 ULONGEST memaddr,
9198 ULONGEST len,
9199 int unit_size,
9200 ULONGEST *xfered_len)
9201 {
9202 const struct target_section *secp;
9203
9204 secp = target_section_by_addr (this, memaddr);
9205 if (secp != NULL
9206 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9207 {
9208 ULONGEST memend = memaddr + len;
9209
9210 const target_section_table *table = target_get_section_table (this);
9211 for (const target_section &p : *table)
9212 {
9213 if (memaddr >= p.addr)
9214 {
9215 if (memend <= p.endaddr)
9216 {
9217 /* Entire transfer is within this section. */
9218 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9219 xfered_len);
9220 }
9221 else if (memaddr >= p.endaddr)
9222 {
9223 /* This section ends before the transfer starts. */
9224 continue;
9225 }
9226 else
9227 {
9228 /* This section overlaps the transfer. Just do half. */
9229 len = p.endaddr - memaddr;
9230 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9231 xfered_len);
9232 }
9233 }
9234 }
9235 }
9236
9237 return TARGET_XFER_EOF;
9238 }
9239
9240 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9241 first if the requested memory is unavailable in traceframe.
9242 Otherwise, fall back to remote_read_bytes_1. */
9243
9244 target_xfer_status
9245 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9246 gdb_byte *myaddr, ULONGEST len, int unit_size,
9247 ULONGEST *xfered_len)
9248 {
9249 if (len == 0)
9250 return TARGET_XFER_EOF;
9251
9252 if (get_traceframe_number () != -1)
9253 {
9254 std::vector<mem_range> available;
9255
9256 /* If we fail to get the set of available memory, then the
9257 target does not support querying traceframe info, and so we
9258 attempt reading from the traceframe anyway (assuming the
9259 target implements the old QTro packet then). */
9260 if (traceframe_available_memory (&available, memaddr, len))
9261 {
9262 if (available.empty () || available[0].start != memaddr)
9263 {
9264 enum target_xfer_status res;
9265
9266 /* Don't read into the traceframe's available
9267 memory. */
9268 if (!available.empty ())
9269 {
9270 LONGEST oldlen = len;
9271
9272 len = available[0].start - memaddr;
9273 gdb_assert (len <= oldlen);
9274 }
9275
9276 /* This goes through the topmost target again. */
9277 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9278 len, unit_size, xfered_len);
9279 if (res == TARGET_XFER_OK)
9280 return TARGET_XFER_OK;
9281 else
9282 {
9283 /* No use trying further, we know some memory starting
9284 at MEMADDR isn't available. */
9285 *xfered_len = len;
9286 return (*xfered_len != 0) ?
9287 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9288 }
9289 }
9290
9291 /* Don't try to read more than how much is available, in
9292 case the target implements the deprecated QTro packet to
9293 cater for older GDBs (the target's knowledge of read-only
9294 sections may be outdated by now). */
9295 len = available[0].length;
9296 }
9297 }
9298
9299 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9300 }
9301
9302 \f
9303
9304 /* Sends a packet with content determined by the printf format string
9305 FORMAT and the remaining arguments, then gets the reply. Returns
9306 whether the packet was a success, a failure, or unknown. */
9307
9308 packet_result
9309 remote_target::remote_send_printf (const char *format, ...)
9310 {
9311 struct remote_state *rs = get_remote_state ();
9312 int max_size = get_remote_packet_size ();
9313 va_list ap;
9314
9315 va_start (ap, format);
9316
9317 rs->buf[0] = '\0';
9318 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9319
9320 va_end (ap);
9321
9322 if (size >= max_size)
9323 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9324
9325 if (putpkt (rs->buf) < 0)
9326 error (_("Communication problem with target."));
9327
9328 rs->buf[0] = '\0';
9329 getpkt (&rs->buf, 0);
9330
9331 return packet_check_result (rs->buf);
9332 }
9333
9334 /* Flash writing can take quite some time. We'll set
9335 effectively infinite timeout for flash operations.
9336 In future, we'll need to decide on a better approach. */
9337 static const int remote_flash_timeout = 1000;
9338
9339 void
9340 remote_target::flash_erase (ULONGEST address, LONGEST length)
9341 {
9342 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9343 enum packet_result ret;
9344 scoped_restore restore_timeout
9345 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9346
9347 ret = remote_send_printf ("vFlashErase:%s,%s",
9348 phex (address, addr_size),
9349 phex (length, 4));
9350 switch (ret)
9351 {
9352 case PACKET_UNKNOWN:
9353 error (_("Remote target does not support flash erase"));
9354 case PACKET_ERROR:
9355 error (_("Error erasing flash with vFlashErase packet"));
9356 default:
9357 break;
9358 }
9359 }
9360
9361 target_xfer_status
9362 remote_target::remote_flash_write (ULONGEST address,
9363 ULONGEST length, ULONGEST *xfered_len,
9364 const gdb_byte *data)
9365 {
9366 scoped_restore restore_timeout
9367 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9368 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9369 xfered_len,'X', 0);
9370 }
9371
9372 void
9373 remote_target::flash_done ()
9374 {
9375 int ret;
9376
9377 scoped_restore restore_timeout
9378 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9379
9380 ret = remote_send_printf ("vFlashDone");
9381
9382 switch (ret)
9383 {
9384 case PACKET_UNKNOWN:
9385 error (_("Remote target does not support vFlashDone"));
9386 case PACKET_ERROR:
9387 error (_("Error finishing flash operation"));
9388 default:
9389 break;
9390 }
9391 }
9392
9393 void
9394 remote_target::files_info ()
9395 {
9396 puts_filtered ("Debugging a target over a serial line.\n");
9397 }
9398 \f
9399 /* Stuff for dealing with the packets which are part of this protocol.
9400 See comment at top of file for details. */
9401
9402 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9403 error to higher layers. Called when a serial error is detected.
9404 The exception message is STRING, followed by a colon and a blank,
9405 the system error message for errno at function entry and final dot
9406 for output compatibility with throw_perror_with_name. */
9407
9408 static void
9409 unpush_and_perror (remote_target *target, const char *string)
9410 {
9411 int saved_errno = errno;
9412
9413 remote_unpush_target (target);
9414 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9415 safe_strerror (saved_errno));
9416 }
9417
9418 /* Read a single character from the remote end. The current quit
9419 handler is overridden to avoid quitting in the middle of packet
9420 sequence, as that would break communication with the remote server.
9421 See remote_serial_quit_handler for more detail. */
9422
9423 int
9424 remote_target::readchar (int timeout)
9425 {
9426 int ch;
9427 struct remote_state *rs = get_remote_state ();
9428
9429 {
9430 scoped_restore restore_quit_target
9431 = make_scoped_restore (&curr_quit_handler_target, this);
9432 scoped_restore restore_quit
9433 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9434
9435 rs->got_ctrlc_during_io = 0;
9436
9437 ch = serial_readchar (rs->remote_desc, timeout);
9438
9439 if (rs->got_ctrlc_during_io)
9440 set_quit_flag ();
9441 }
9442
9443 if (ch >= 0)
9444 return ch;
9445
9446 switch ((enum serial_rc) ch)
9447 {
9448 case SERIAL_EOF:
9449 remote_unpush_target (this);
9450 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9451 /* no return */
9452 case SERIAL_ERROR:
9453 unpush_and_perror (this, _("Remote communication error. "
9454 "Target disconnected."));
9455 /* no return */
9456 case SERIAL_TIMEOUT:
9457 break;
9458 }
9459 return ch;
9460 }
9461
9462 /* Wrapper for serial_write that closes the target and throws if
9463 writing fails. The current quit handler is overridden to avoid
9464 quitting in the middle of packet sequence, as that would break
9465 communication with the remote server. See
9466 remote_serial_quit_handler for more detail. */
9467
9468 void
9469 remote_target::remote_serial_write (const char *str, int len)
9470 {
9471 struct remote_state *rs = get_remote_state ();
9472
9473 scoped_restore restore_quit_target
9474 = make_scoped_restore (&curr_quit_handler_target, this);
9475 scoped_restore restore_quit
9476 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9477
9478 rs->got_ctrlc_during_io = 0;
9479
9480 if (serial_write (rs->remote_desc, str, len))
9481 {
9482 unpush_and_perror (this, _("Remote communication error. "
9483 "Target disconnected."));
9484 }
9485
9486 if (rs->got_ctrlc_during_io)
9487 set_quit_flag ();
9488 }
9489
9490 /* Return a string representing an escaped version of BUF, of len N.
9491 E.g. \n is converted to \\n, \t to \\t, etc. */
9492
9493 static std::string
9494 escape_buffer (const char *buf, int n)
9495 {
9496 string_file stb;
9497
9498 stb.putstrn (buf, n, '\\');
9499 return std::move (stb.string ());
9500 }
9501
9502 /* Display a null-terminated packet on stdout, for debugging, using C
9503 string notation. */
9504
9505 static void
9506 print_packet (const char *buf)
9507 {
9508 puts_filtered ("\"");
9509 fputstr_filtered (buf, '"', gdb_stdout);
9510 puts_filtered ("\"");
9511 }
9512
9513 int
9514 remote_target::putpkt (const char *buf)
9515 {
9516 return putpkt_binary (buf, strlen (buf));
9517 }
9518
9519 /* Wrapper around remote_target::putpkt to avoid exporting
9520 remote_target. */
9521
9522 int
9523 putpkt (remote_target *remote, const char *buf)
9524 {
9525 return remote->putpkt (buf);
9526 }
9527
9528 /* Send a packet to the remote machine, with error checking. The data
9529 of the packet is in BUF. The string in BUF can be at most
9530 get_remote_packet_size () - 5 to account for the $, # and checksum,
9531 and for a possible /0 if we are debugging (remote_debug) and want
9532 to print the sent packet as a string. */
9533
9534 int
9535 remote_target::putpkt_binary (const char *buf, int cnt)
9536 {
9537 struct remote_state *rs = get_remote_state ();
9538 int i;
9539 unsigned char csum = 0;
9540 gdb::def_vector<char> data (cnt + 6);
9541 char *buf2 = data.data ();
9542
9543 int ch;
9544 int tcount = 0;
9545 char *p;
9546
9547 /* Catch cases like trying to read memory or listing threads while
9548 we're waiting for a stop reply. The remote server wouldn't be
9549 ready to handle this request, so we'd hang and timeout. We don't
9550 have to worry about this in synchronous mode, because in that
9551 case it's not possible to issue a command while the target is
9552 running. This is not a problem in non-stop mode, because in that
9553 case, the stub is always ready to process serial input. */
9554 if (!target_is_non_stop_p ()
9555 && target_is_async_p ()
9556 && rs->waiting_for_stop_reply)
9557 {
9558 error (_("Cannot execute this command while the target is running.\n"
9559 "Use the \"interrupt\" command to stop the target\n"
9560 "and then try again."));
9561 }
9562
9563 /* We're sending out a new packet. Make sure we don't look at a
9564 stale cached response. */
9565 rs->cached_wait_status = 0;
9566
9567 /* Copy the packet into buffer BUF2, encapsulating it
9568 and giving it a checksum. */
9569
9570 p = buf2;
9571 *p++ = '$';
9572
9573 for (i = 0; i < cnt; i++)
9574 {
9575 csum += buf[i];
9576 *p++ = buf[i];
9577 }
9578 *p++ = '#';
9579 *p++ = tohex ((csum >> 4) & 0xf);
9580 *p++ = tohex (csum & 0xf);
9581
9582 /* Send it over and over until we get a positive ack. */
9583
9584 while (1)
9585 {
9586 if (remote_debug)
9587 {
9588 *p = '\0';
9589
9590 int len = (int) (p - buf2);
9591 int max_chars;
9592
9593 if (remote_packet_max_chars < 0)
9594 max_chars = len;
9595 else
9596 max_chars = remote_packet_max_chars;
9597
9598 std::string str
9599 = escape_buffer (buf2, std::min (len, max_chars));
9600
9601 if (len > max_chars)
9602 remote_debug_printf_nofunc
9603 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9604 len - max_chars);
9605 else
9606 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9607 }
9608 remote_serial_write (buf2, p - buf2);
9609
9610 /* If this is a no acks version of the remote protocol, send the
9611 packet and move on. */
9612 if (rs->noack_mode)
9613 break;
9614
9615 /* Read until either a timeout occurs (-2) or '+' is read.
9616 Handle any notification that arrives in the mean time. */
9617 while (1)
9618 {
9619 ch = readchar (remote_timeout);
9620
9621 switch (ch)
9622 {
9623 case '+':
9624 remote_debug_printf_nofunc ("Received Ack");
9625 return 1;
9626 case '-':
9627 remote_debug_printf_nofunc ("Received Nak");
9628 /* FALLTHROUGH */
9629 case SERIAL_TIMEOUT:
9630 tcount++;
9631 if (tcount > 3)
9632 return 0;
9633 break; /* Retransmit buffer. */
9634 case '$':
9635 {
9636 remote_debug_printf ("Packet instead of Ack, ignoring it");
9637 /* It's probably an old response sent because an ACK
9638 was lost. Gobble up the packet and ack it so it
9639 doesn't get retransmitted when we resend this
9640 packet. */
9641 skip_frame ();
9642 remote_serial_write ("+", 1);
9643 continue; /* Now, go look for +. */
9644 }
9645
9646 case '%':
9647 {
9648 int val;
9649
9650 /* If we got a notification, handle it, and go back to looking
9651 for an ack. */
9652 /* We've found the start of a notification. Now
9653 collect the data. */
9654 val = read_frame (&rs->buf);
9655 if (val >= 0)
9656 {
9657 remote_debug_printf_nofunc
9658 (" Notification received: %s",
9659 escape_buffer (rs->buf.data (), val).c_str ());
9660
9661 handle_notification (rs->notif_state, rs->buf.data ());
9662 /* We're in sync now, rewait for the ack. */
9663 tcount = 0;
9664 }
9665 else
9666 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9667 rs->buf.data ());
9668 continue;
9669 }
9670 /* fall-through */
9671 default:
9672 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9673 rs->buf.data ());
9674 continue;
9675 }
9676 break; /* Here to retransmit. */
9677 }
9678
9679 #if 0
9680 /* This is wrong. If doing a long backtrace, the user should be
9681 able to get out next time we call QUIT, without anything as
9682 violent as interrupt_query. If we want to provide a way out of
9683 here without getting to the next QUIT, it should be based on
9684 hitting ^C twice as in remote_wait. */
9685 if (quit_flag)
9686 {
9687 quit_flag = 0;
9688 interrupt_query ();
9689 }
9690 #endif
9691 }
9692
9693 return 0;
9694 }
9695
9696 /* Come here after finding the start of a frame when we expected an
9697 ack. Do our best to discard the rest of this packet. */
9698
9699 void
9700 remote_target::skip_frame ()
9701 {
9702 int c;
9703
9704 while (1)
9705 {
9706 c = readchar (remote_timeout);
9707 switch (c)
9708 {
9709 case SERIAL_TIMEOUT:
9710 /* Nothing we can do. */
9711 return;
9712 case '#':
9713 /* Discard the two bytes of checksum and stop. */
9714 c = readchar (remote_timeout);
9715 if (c >= 0)
9716 c = readchar (remote_timeout);
9717
9718 return;
9719 case '*': /* Run length encoding. */
9720 /* Discard the repeat count. */
9721 c = readchar (remote_timeout);
9722 if (c < 0)
9723 return;
9724 break;
9725 default:
9726 /* A regular character. */
9727 break;
9728 }
9729 }
9730 }
9731
9732 /* Come here after finding the start of the frame. Collect the rest
9733 into *BUF, verifying the checksum, length, and handling run-length
9734 compression. NUL terminate the buffer. If there is not enough room,
9735 expand *BUF.
9736
9737 Returns -1 on error, number of characters in buffer (ignoring the
9738 trailing NULL) on success. (could be extended to return one of the
9739 SERIAL status indications). */
9740
9741 long
9742 remote_target::read_frame (gdb::char_vector *buf_p)
9743 {
9744 unsigned char csum;
9745 long bc;
9746 int c;
9747 char *buf = buf_p->data ();
9748 struct remote_state *rs = get_remote_state ();
9749
9750 csum = 0;
9751 bc = 0;
9752
9753 while (1)
9754 {
9755 c = readchar (remote_timeout);
9756 switch (c)
9757 {
9758 case SERIAL_TIMEOUT:
9759 remote_debug_printf ("Timeout in mid-packet, retrying");
9760 return -1;
9761
9762 case '$':
9763 remote_debug_printf ("Saw new packet start in middle of old one");
9764 return -1; /* Start a new packet, count retries. */
9765
9766 case '#':
9767 {
9768 unsigned char pktcsum;
9769 int check_0 = 0;
9770 int check_1 = 0;
9771
9772 buf[bc] = '\0';
9773
9774 check_0 = readchar (remote_timeout);
9775 if (check_0 >= 0)
9776 check_1 = readchar (remote_timeout);
9777
9778 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9779 {
9780 remote_debug_printf ("Timeout in checksum, retrying");
9781 return -1;
9782 }
9783 else if (check_0 < 0 || check_1 < 0)
9784 {
9785 remote_debug_printf ("Communication error in checksum");
9786 return -1;
9787 }
9788
9789 /* Don't recompute the checksum; with no ack packets we
9790 don't have any way to indicate a packet retransmission
9791 is necessary. */
9792 if (rs->noack_mode)
9793 return bc;
9794
9795 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9796 if (csum == pktcsum)
9797 return bc;
9798
9799 remote_debug_printf
9800 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9801 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9802
9803 /* Number of characters in buffer ignoring trailing
9804 NULL. */
9805 return -1;
9806 }
9807 case '*': /* Run length encoding. */
9808 {
9809 int repeat;
9810
9811 csum += c;
9812 c = readchar (remote_timeout);
9813 csum += c;
9814 repeat = c - ' ' + 3; /* Compute repeat count. */
9815
9816 /* The character before ``*'' is repeated. */
9817
9818 if (repeat > 0 && repeat <= 255 && bc > 0)
9819 {
9820 if (bc + repeat - 1 >= buf_p->size () - 1)
9821 {
9822 /* Make some more room in the buffer. */
9823 buf_p->resize (buf_p->size () + repeat);
9824 buf = buf_p->data ();
9825 }
9826
9827 memset (&buf[bc], buf[bc - 1], repeat);
9828 bc += repeat;
9829 continue;
9830 }
9831
9832 buf[bc] = '\0';
9833 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9834 return -1;
9835 }
9836 default:
9837 if (bc >= buf_p->size () - 1)
9838 {
9839 /* Make some more room in the buffer. */
9840 buf_p->resize (buf_p->size () * 2);
9841 buf = buf_p->data ();
9842 }
9843
9844 buf[bc++] = c;
9845 csum += c;
9846 continue;
9847 }
9848 }
9849 }
9850
9851 /* Set this to the maximum number of seconds to wait instead of waiting forever
9852 in target_wait(). If this timer times out, then it generates an error and
9853 the command is aborted. This replaces most of the need for timeouts in the
9854 GDB test suite, and makes it possible to distinguish between a hung target
9855 and one with slow communications. */
9856
9857 static int watchdog = 0;
9858 static void
9859 show_watchdog (struct ui_file *file, int from_tty,
9860 struct cmd_list_element *c, const char *value)
9861 {
9862 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9863 }
9864
9865 /* Read a packet from the remote machine, with error checking, and
9866 store it in *BUF. Resize *BUF if necessary to hold the result. If
9867 FOREVER, wait forever rather than timing out; this is used (in
9868 synchronous mode) to wait for a target that is is executing user
9869 code to stop. */
9870 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9871 don't have to change all the calls to getpkt to deal with the
9872 return value, because at the moment I don't know what the right
9873 thing to do it for those. */
9874
9875 void
9876 remote_target::getpkt (gdb::char_vector *buf, int forever)
9877 {
9878 getpkt_sane (buf, forever);
9879 }
9880
9881
9882 /* Read a packet from the remote machine, with error checking, and
9883 store it in *BUF. Resize *BUF if necessary to hold the result. If
9884 FOREVER, wait forever rather than timing out; this is used (in
9885 synchronous mode) to wait for a target that is is executing user
9886 code to stop. If FOREVER == 0, this function is allowed to time
9887 out gracefully and return an indication of this to the caller.
9888 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9889 consider receiving a notification enough reason to return to the
9890 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9891 holds a notification or not (a regular packet). */
9892
9893 int
9894 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9895 int forever, int expecting_notif,
9896 int *is_notif)
9897 {
9898 struct remote_state *rs = get_remote_state ();
9899 int c;
9900 int tries;
9901 int timeout;
9902 int val = -1;
9903
9904 /* We're reading a new response. Make sure we don't look at a
9905 previously cached response. */
9906 rs->cached_wait_status = 0;
9907
9908 strcpy (buf->data (), "timeout");
9909
9910 if (forever)
9911 timeout = watchdog > 0 ? watchdog : -1;
9912 else if (expecting_notif)
9913 timeout = 0; /* There should already be a char in the buffer. If
9914 not, bail out. */
9915 else
9916 timeout = remote_timeout;
9917
9918 #define MAX_TRIES 3
9919
9920 /* Process any number of notifications, and then return when
9921 we get a packet. */
9922 for (;;)
9923 {
9924 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9925 times. */
9926 for (tries = 1; tries <= MAX_TRIES; tries++)
9927 {
9928 /* This can loop forever if the remote side sends us
9929 characters continuously, but if it pauses, we'll get
9930 SERIAL_TIMEOUT from readchar because of timeout. Then
9931 we'll count that as a retry.
9932
9933 Note that even when forever is set, we will only wait
9934 forever prior to the start of a packet. After that, we
9935 expect characters to arrive at a brisk pace. They should
9936 show up within remote_timeout intervals. */
9937 do
9938 c = readchar (timeout);
9939 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9940
9941 if (c == SERIAL_TIMEOUT)
9942 {
9943 if (expecting_notif)
9944 return -1; /* Don't complain, it's normal to not get
9945 anything in this case. */
9946
9947 if (forever) /* Watchdog went off? Kill the target. */
9948 {
9949 remote_unpush_target (this);
9950 throw_error (TARGET_CLOSE_ERROR,
9951 _("Watchdog timeout has expired. "
9952 "Target detached."));
9953 }
9954
9955 remote_debug_printf ("Timed out.");
9956 }
9957 else
9958 {
9959 /* We've found the start of a packet or notification.
9960 Now collect the data. */
9961 val = read_frame (buf);
9962 if (val >= 0)
9963 break;
9964 }
9965
9966 remote_serial_write ("-", 1);
9967 }
9968
9969 if (tries > MAX_TRIES)
9970 {
9971 /* We have tried hard enough, and just can't receive the
9972 packet/notification. Give up. */
9973 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9974
9975 /* Skip the ack char if we're in no-ack mode. */
9976 if (!rs->noack_mode)
9977 remote_serial_write ("+", 1);
9978 return -1;
9979 }
9980
9981 /* If we got an ordinary packet, return that to our caller. */
9982 if (c == '$')
9983 {
9984 if (remote_debug)
9985 {
9986 int max_chars;
9987
9988 if (remote_packet_max_chars < 0)
9989 max_chars = val;
9990 else
9991 max_chars = remote_packet_max_chars;
9992
9993 std::string str
9994 = escape_buffer (buf->data (),
9995 std::min (val, max_chars));
9996
9997 if (val > max_chars)
9998 remote_debug_printf_nofunc
9999 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10000 val - max_chars);
10001 else
10002 remote_debug_printf_nofunc ("Packet received: %s",
10003 str.c_str ());
10004 }
10005
10006 /* Skip the ack char if we're in no-ack mode. */
10007 if (!rs->noack_mode)
10008 remote_serial_write ("+", 1);
10009 if (is_notif != NULL)
10010 *is_notif = 0;
10011 return val;
10012 }
10013
10014 /* If we got a notification, handle it, and go back to looking
10015 for a packet. */
10016 else
10017 {
10018 gdb_assert (c == '%');
10019
10020 remote_debug_printf_nofunc
10021 (" Notification received: %s",
10022 escape_buffer (buf->data (), val).c_str ());
10023
10024 if (is_notif != NULL)
10025 *is_notif = 1;
10026
10027 handle_notification (rs->notif_state, buf->data ());
10028
10029 /* Notifications require no acknowledgement. */
10030
10031 if (expecting_notif)
10032 return val;
10033 }
10034 }
10035 }
10036
10037 int
10038 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10039 {
10040 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10041 }
10042
10043 int
10044 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10045 int *is_notif)
10046 {
10047 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10048 }
10049
10050 /* Kill any new fork children of process PID that haven't been
10051 processed by follow_fork. */
10052
10053 void
10054 remote_target::kill_new_fork_children (int pid)
10055 {
10056 remote_state *rs = get_remote_state ();
10057 struct notif_client *notif = &notif_client_stop;
10058
10059 /* Kill the fork child threads of any threads in process PID
10060 that are stopped at a fork event. */
10061 for (thread_info *thread : all_non_exited_threads (this))
10062 {
10063 struct target_waitstatus *ws = &thread->pending_follow;
10064
10065 if (is_pending_fork_parent (ws, pid, thread->ptid))
10066 {
10067 int child_pid = ws->value.related_pid.pid ();
10068 int res;
10069
10070 res = remote_vkill (child_pid);
10071 if (res != 0)
10072 error (_("Can't kill fork child process %d"), child_pid);
10073 }
10074 }
10075
10076 /* Check for any pending fork events (not reported or processed yet)
10077 in process PID and kill those fork child threads as well. */
10078 remote_notif_get_pending_events (notif);
10079 for (auto &event : rs->stop_reply_queue)
10080 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10081 {
10082 int child_pid = event->ws.value.related_pid.pid ();
10083 int res;
10084
10085 res = remote_vkill (child_pid);
10086 if (res != 0)
10087 error (_("Can't kill fork child process %d"), child_pid);
10088 }
10089 }
10090
10091 \f
10092 /* Target hook to kill the current inferior. */
10093
10094 void
10095 remote_target::kill ()
10096 {
10097 int res = -1;
10098 int pid = inferior_ptid.pid ();
10099 struct remote_state *rs = get_remote_state ();
10100
10101 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10102 {
10103 /* If we're stopped while forking and we haven't followed yet,
10104 kill the child task. We need to do this before killing the
10105 parent task because if this is a vfork then the parent will
10106 be sleeping. */
10107 kill_new_fork_children (pid);
10108
10109 res = remote_vkill (pid);
10110 if (res == 0)
10111 {
10112 target_mourn_inferior (inferior_ptid);
10113 return;
10114 }
10115 }
10116
10117 /* If we are in 'target remote' mode and we are killing the only
10118 inferior, then we will tell gdbserver to exit and unpush the
10119 target. */
10120 if (res == -1 && !remote_multi_process_p (rs)
10121 && number_of_live_inferiors (this) == 1)
10122 {
10123 remote_kill_k ();
10124
10125 /* We've killed the remote end, we get to mourn it. If we are
10126 not in extended mode, mourning the inferior also unpushes
10127 remote_ops from the target stack, which closes the remote
10128 connection. */
10129 target_mourn_inferior (inferior_ptid);
10130
10131 return;
10132 }
10133
10134 error (_("Can't kill process"));
10135 }
10136
10137 /* Send a kill request to the target using the 'vKill' packet. */
10138
10139 int
10140 remote_target::remote_vkill (int pid)
10141 {
10142 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10143 return -1;
10144
10145 remote_state *rs = get_remote_state ();
10146
10147 /* Tell the remote target to detach. */
10148 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10149 putpkt (rs->buf);
10150 getpkt (&rs->buf, 0);
10151
10152 switch (packet_ok (rs->buf,
10153 &remote_protocol_packets[PACKET_vKill]))
10154 {
10155 case PACKET_OK:
10156 return 0;
10157 case PACKET_ERROR:
10158 return 1;
10159 case PACKET_UNKNOWN:
10160 return -1;
10161 default:
10162 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10163 }
10164 }
10165
10166 /* Send a kill request to the target using the 'k' packet. */
10167
10168 void
10169 remote_target::remote_kill_k ()
10170 {
10171 /* Catch errors so the user can quit from gdb even when we
10172 aren't on speaking terms with the remote system. */
10173 try
10174 {
10175 putpkt ("k");
10176 }
10177 catch (const gdb_exception_error &ex)
10178 {
10179 if (ex.error == TARGET_CLOSE_ERROR)
10180 {
10181 /* If we got an (EOF) error that caused the target
10182 to go away, then we're done, that's what we wanted.
10183 "k" is susceptible to cause a premature EOF, given
10184 that the remote server isn't actually required to
10185 reply to "k", and it can happen that it doesn't
10186 even get to reply ACK to the "k". */
10187 return;
10188 }
10189
10190 /* Otherwise, something went wrong. We didn't actually kill
10191 the target. Just propagate the exception, and let the
10192 user or higher layers decide what to do. */
10193 throw;
10194 }
10195 }
10196
10197 void
10198 remote_target::mourn_inferior ()
10199 {
10200 struct remote_state *rs = get_remote_state ();
10201
10202 /* We're no longer interested in notification events of an inferior
10203 that exited or was killed/detached. */
10204 discard_pending_stop_replies (current_inferior ());
10205
10206 /* In 'target remote' mode with one inferior, we close the connection. */
10207 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10208 {
10209 remote_unpush_target (this);
10210 return;
10211 }
10212
10213 /* In case we got here due to an error, but we're going to stay
10214 connected. */
10215 rs->waiting_for_stop_reply = 0;
10216
10217 /* If the current general thread belonged to the process we just
10218 detached from or has exited, the remote side current general
10219 thread becomes undefined. Considering a case like this:
10220
10221 - We just got here due to a detach.
10222 - The process that we're detaching from happens to immediately
10223 report a global breakpoint being hit in non-stop mode, in the
10224 same thread we had selected before.
10225 - GDB attaches to this process again.
10226 - This event happens to be the next event we handle.
10227
10228 GDB would consider that the current general thread didn't need to
10229 be set on the stub side (with Hg), since for all it knew,
10230 GENERAL_THREAD hadn't changed.
10231
10232 Notice that although in all-stop mode, the remote server always
10233 sets the current thread to the thread reporting the stop event,
10234 that doesn't happen in non-stop mode; in non-stop, the stub *must
10235 not* change the current thread when reporting a breakpoint hit,
10236 due to the decoupling of event reporting and event handling.
10237
10238 To keep things simple, we always invalidate our notion of the
10239 current thread. */
10240 record_currthread (rs, minus_one_ptid);
10241
10242 /* Call common code to mark the inferior as not running. */
10243 generic_mourn_inferior ();
10244 }
10245
10246 bool
10247 extended_remote_target::supports_disable_randomization ()
10248 {
10249 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10250 }
10251
10252 void
10253 remote_target::extended_remote_disable_randomization (int val)
10254 {
10255 struct remote_state *rs = get_remote_state ();
10256 char *reply;
10257
10258 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10259 "QDisableRandomization:%x", val);
10260 putpkt (rs->buf);
10261 reply = remote_get_noisy_reply ();
10262 if (*reply == '\0')
10263 error (_("Target does not support QDisableRandomization."));
10264 if (strcmp (reply, "OK") != 0)
10265 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10266 }
10267
10268 int
10269 remote_target::extended_remote_run (const std::string &args)
10270 {
10271 struct remote_state *rs = get_remote_state ();
10272 int len;
10273 const char *remote_exec_file = get_remote_exec_file ();
10274
10275 /* If the user has disabled vRun support, or we have detected that
10276 support is not available, do not try it. */
10277 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10278 return -1;
10279
10280 strcpy (rs->buf.data (), "vRun;");
10281 len = strlen (rs->buf.data ());
10282
10283 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10284 error (_("Remote file name too long for run packet"));
10285 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10286 strlen (remote_exec_file));
10287
10288 if (!args.empty ())
10289 {
10290 int i;
10291
10292 gdb_argv argv (args.c_str ());
10293 for (i = 0; argv[i] != NULL; i++)
10294 {
10295 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10296 error (_("Argument list too long for run packet"));
10297 rs->buf[len++] = ';';
10298 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10299 strlen (argv[i]));
10300 }
10301 }
10302
10303 rs->buf[len++] = '\0';
10304
10305 putpkt (rs->buf);
10306 getpkt (&rs->buf, 0);
10307
10308 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10309 {
10310 case PACKET_OK:
10311 /* We have a wait response. All is well. */
10312 return 0;
10313 case PACKET_UNKNOWN:
10314 return -1;
10315 case PACKET_ERROR:
10316 if (remote_exec_file[0] == '\0')
10317 error (_("Running the default executable on the remote target failed; "
10318 "try \"set remote exec-file\"?"));
10319 else
10320 error (_("Running \"%s\" on the remote target failed"),
10321 remote_exec_file);
10322 default:
10323 gdb_assert_not_reached (_("bad switch"));
10324 }
10325 }
10326
10327 /* Helper function to send set/unset environment packets. ACTION is
10328 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10329 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10330 sent. */
10331
10332 void
10333 remote_target::send_environment_packet (const char *action,
10334 const char *packet,
10335 const char *value)
10336 {
10337 remote_state *rs = get_remote_state ();
10338
10339 /* Convert the environment variable to an hex string, which
10340 is the best format to be transmitted over the wire. */
10341 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10342 strlen (value));
10343
10344 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10345 "%s:%s", packet, encoded_value.c_str ());
10346
10347 putpkt (rs->buf);
10348 getpkt (&rs->buf, 0);
10349 if (strcmp (rs->buf.data (), "OK") != 0)
10350 warning (_("Unable to %s environment variable '%s' on remote."),
10351 action, value);
10352 }
10353
10354 /* Helper function to handle the QEnvironment* packets. */
10355
10356 void
10357 remote_target::extended_remote_environment_support ()
10358 {
10359 remote_state *rs = get_remote_state ();
10360
10361 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10362 {
10363 putpkt ("QEnvironmentReset");
10364 getpkt (&rs->buf, 0);
10365 if (strcmp (rs->buf.data (), "OK") != 0)
10366 warning (_("Unable to reset environment on remote."));
10367 }
10368
10369 gdb_environ *e = &current_inferior ()->environment;
10370
10371 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10372 for (const std::string &el : e->user_set_env ())
10373 send_environment_packet ("set", "QEnvironmentHexEncoded",
10374 el.c_str ());
10375
10376 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10377 for (const std::string &el : e->user_unset_env ())
10378 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10379 }
10380
10381 /* Helper function to set the current working directory for the
10382 inferior in the remote target. */
10383
10384 void
10385 remote_target::extended_remote_set_inferior_cwd ()
10386 {
10387 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10388 {
10389 const char *inferior_cwd = get_inferior_cwd ();
10390 remote_state *rs = get_remote_state ();
10391
10392 if (inferior_cwd != NULL)
10393 {
10394 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10395 strlen (inferior_cwd));
10396
10397 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10398 "QSetWorkingDir:%s", hexpath.c_str ());
10399 }
10400 else
10401 {
10402 /* An empty inferior_cwd means that the user wants us to
10403 reset the remote server's inferior's cwd. */
10404 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10405 "QSetWorkingDir:");
10406 }
10407
10408 putpkt (rs->buf);
10409 getpkt (&rs->buf, 0);
10410 if (packet_ok (rs->buf,
10411 &remote_protocol_packets[PACKET_QSetWorkingDir])
10412 != PACKET_OK)
10413 error (_("\
10414 Remote replied unexpectedly while setting the inferior's working\n\
10415 directory: %s"),
10416 rs->buf.data ());
10417
10418 }
10419 }
10420
10421 /* In the extended protocol we want to be able to do things like
10422 "run" and have them basically work as expected. So we need
10423 a special create_inferior function. We support changing the
10424 executable file and the command line arguments, but not the
10425 environment. */
10426
10427 void
10428 extended_remote_target::create_inferior (const char *exec_file,
10429 const std::string &args,
10430 char **env, int from_tty)
10431 {
10432 int run_worked;
10433 char *stop_reply;
10434 struct remote_state *rs = get_remote_state ();
10435 const char *remote_exec_file = get_remote_exec_file ();
10436
10437 /* If running asynchronously, register the target file descriptor
10438 with the event loop. */
10439 if (target_can_async_p ())
10440 target_async (1);
10441
10442 /* Disable address space randomization if requested (and supported). */
10443 if (supports_disable_randomization ())
10444 extended_remote_disable_randomization (disable_randomization);
10445
10446 /* If startup-with-shell is on, we inform gdbserver to start the
10447 remote inferior using a shell. */
10448 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10449 {
10450 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10451 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10452 putpkt (rs->buf);
10453 getpkt (&rs->buf, 0);
10454 if (strcmp (rs->buf.data (), "OK") != 0)
10455 error (_("\
10456 Remote replied unexpectedly while setting startup-with-shell: %s"),
10457 rs->buf.data ());
10458 }
10459
10460 extended_remote_environment_support ();
10461
10462 extended_remote_set_inferior_cwd ();
10463
10464 /* Now restart the remote server. */
10465 run_worked = extended_remote_run (args) != -1;
10466 if (!run_worked)
10467 {
10468 /* vRun was not supported. Fail if we need it to do what the
10469 user requested. */
10470 if (remote_exec_file[0])
10471 error (_("Remote target does not support \"set remote exec-file\""));
10472 if (!args.empty ())
10473 error (_("Remote target does not support \"set args\" or run ARGS"));
10474
10475 /* Fall back to "R". */
10476 extended_remote_restart ();
10477 }
10478
10479 /* vRun's success return is a stop reply. */
10480 stop_reply = run_worked ? rs->buf.data () : NULL;
10481 add_current_inferior_and_thread (stop_reply);
10482
10483 /* Get updated offsets, if the stub uses qOffsets. */
10484 get_offsets ();
10485 }
10486 \f
10487
10488 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10489 the list of conditions (in agent expression bytecode format), if any, the
10490 target needs to evaluate. The output is placed into the packet buffer
10491 started from BUF and ended at BUF_END. */
10492
10493 static int
10494 remote_add_target_side_condition (struct gdbarch *gdbarch,
10495 struct bp_target_info *bp_tgt, char *buf,
10496 char *buf_end)
10497 {
10498 if (bp_tgt->conditions.empty ())
10499 return 0;
10500
10501 buf += strlen (buf);
10502 xsnprintf (buf, buf_end - buf, "%s", ";");
10503 buf++;
10504
10505 /* Send conditions to the target. */
10506 for (agent_expr *aexpr : bp_tgt->conditions)
10507 {
10508 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10509 buf += strlen (buf);
10510 for (int i = 0; i < aexpr->len; ++i)
10511 buf = pack_hex_byte (buf, aexpr->buf[i]);
10512 *buf = '\0';
10513 }
10514 return 0;
10515 }
10516
10517 static void
10518 remote_add_target_side_commands (struct gdbarch *gdbarch,
10519 struct bp_target_info *bp_tgt, char *buf)
10520 {
10521 if (bp_tgt->tcommands.empty ())
10522 return;
10523
10524 buf += strlen (buf);
10525
10526 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10527 buf += strlen (buf);
10528
10529 /* Concatenate all the agent expressions that are commands into the
10530 cmds parameter. */
10531 for (agent_expr *aexpr : bp_tgt->tcommands)
10532 {
10533 sprintf (buf, "X%x,", aexpr->len);
10534 buf += strlen (buf);
10535 for (int i = 0; i < aexpr->len; ++i)
10536 buf = pack_hex_byte (buf, aexpr->buf[i]);
10537 *buf = '\0';
10538 }
10539 }
10540
10541 /* Insert a breakpoint. On targets that have software breakpoint
10542 support, we ask the remote target to do the work; on targets
10543 which don't, we insert a traditional memory breakpoint. */
10544
10545 int
10546 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10547 struct bp_target_info *bp_tgt)
10548 {
10549 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10550 If it succeeds, then set the support to PACKET_ENABLE. If it
10551 fails, and the user has explicitly requested the Z support then
10552 report an error, otherwise, mark it disabled and go on. */
10553
10554 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10555 {
10556 CORE_ADDR addr = bp_tgt->reqstd_address;
10557 struct remote_state *rs;
10558 char *p, *endbuf;
10559
10560 /* Make sure the remote is pointing at the right process, if
10561 necessary. */
10562 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10563 set_general_process ();
10564
10565 rs = get_remote_state ();
10566 p = rs->buf.data ();
10567 endbuf = p + get_remote_packet_size ();
10568
10569 *(p++) = 'Z';
10570 *(p++) = '0';
10571 *(p++) = ',';
10572 addr = (ULONGEST) remote_address_masked (addr);
10573 p += hexnumstr (p, addr);
10574 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10575
10576 if (supports_evaluation_of_breakpoint_conditions ())
10577 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10578
10579 if (can_run_breakpoint_commands ())
10580 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10581
10582 putpkt (rs->buf);
10583 getpkt (&rs->buf, 0);
10584
10585 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10586 {
10587 case PACKET_ERROR:
10588 return -1;
10589 case PACKET_OK:
10590 return 0;
10591 case PACKET_UNKNOWN:
10592 break;
10593 }
10594 }
10595
10596 /* If this breakpoint has target-side commands but this stub doesn't
10597 support Z0 packets, throw error. */
10598 if (!bp_tgt->tcommands.empty ())
10599 throw_error (NOT_SUPPORTED_ERROR, _("\
10600 Target doesn't support breakpoints that have target side commands."));
10601
10602 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10603 }
10604
10605 int
10606 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10607 struct bp_target_info *bp_tgt,
10608 enum remove_bp_reason reason)
10609 {
10610 CORE_ADDR addr = bp_tgt->placed_address;
10611 struct remote_state *rs = get_remote_state ();
10612
10613 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10614 {
10615 char *p = rs->buf.data ();
10616 char *endbuf = p + get_remote_packet_size ();
10617
10618 /* Make sure the remote is pointing at the right process, if
10619 necessary. */
10620 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10621 set_general_process ();
10622
10623 *(p++) = 'z';
10624 *(p++) = '0';
10625 *(p++) = ',';
10626
10627 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10628 p += hexnumstr (p, addr);
10629 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10630
10631 putpkt (rs->buf);
10632 getpkt (&rs->buf, 0);
10633
10634 return (rs->buf[0] == 'E');
10635 }
10636
10637 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10638 }
10639
10640 static enum Z_packet_type
10641 watchpoint_to_Z_packet (int type)
10642 {
10643 switch (type)
10644 {
10645 case hw_write:
10646 return Z_PACKET_WRITE_WP;
10647 break;
10648 case hw_read:
10649 return Z_PACKET_READ_WP;
10650 break;
10651 case hw_access:
10652 return Z_PACKET_ACCESS_WP;
10653 break;
10654 default:
10655 internal_error (__FILE__, __LINE__,
10656 _("hw_bp_to_z: bad watchpoint type %d"), type);
10657 }
10658 }
10659
10660 int
10661 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10662 enum target_hw_bp_type type, struct expression *cond)
10663 {
10664 struct remote_state *rs = get_remote_state ();
10665 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10666 char *p;
10667 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10668
10669 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10670 return 1;
10671
10672 /* Make sure the remote is pointing at the right process, if
10673 necessary. */
10674 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10675 set_general_process ();
10676
10677 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10678 p = strchr (rs->buf.data (), '\0');
10679 addr = remote_address_masked (addr);
10680 p += hexnumstr (p, (ULONGEST) addr);
10681 xsnprintf (p, endbuf - p, ",%x", len);
10682
10683 putpkt (rs->buf);
10684 getpkt (&rs->buf, 0);
10685
10686 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10687 {
10688 case PACKET_ERROR:
10689 return -1;
10690 case PACKET_UNKNOWN:
10691 return 1;
10692 case PACKET_OK:
10693 return 0;
10694 }
10695 internal_error (__FILE__, __LINE__,
10696 _("remote_insert_watchpoint: reached end of function"));
10697 }
10698
10699 bool
10700 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10701 CORE_ADDR start, int length)
10702 {
10703 CORE_ADDR diff = remote_address_masked (addr - start);
10704
10705 return diff < length;
10706 }
10707
10708
10709 int
10710 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10711 enum target_hw_bp_type type, struct expression *cond)
10712 {
10713 struct remote_state *rs = get_remote_state ();
10714 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10715 char *p;
10716 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10717
10718 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10719 return -1;
10720
10721 /* Make sure the remote is pointing at the right process, if
10722 necessary. */
10723 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10724 set_general_process ();
10725
10726 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10727 p = strchr (rs->buf.data (), '\0');
10728 addr = remote_address_masked (addr);
10729 p += hexnumstr (p, (ULONGEST) addr);
10730 xsnprintf (p, endbuf - p, ",%x", len);
10731 putpkt (rs->buf);
10732 getpkt (&rs->buf, 0);
10733
10734 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10735 {
10736 case PACKET_ERROR:
10737 case PACKET_UNKNOWN:
10738 return -1;
10739 case PACKET_OK:
10740 return 0;
10741 }
10742 internal_error (__FILE__, __LINE__,
10743 _("remote_remove_watchpoint: reached end of function"));
10744 }
10745
10746
10747 static int remote_hw_watchpoint_limit = -1;
10748 static int remote_hw_watchpoint_length_limit = -1;
10749 static int remote_hw_breakpoint_limit = -1;
10750
10751 int
10752 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10753 {
10754 if (remote_hw_watchpoint_length_limit == 0)
10755 return 0;
10756 else if (remote_hw_watchpoint_length_limit < 0)
10757 return 1;
10758 else if (len <= remote_hw_watchpoint_length_limit)
10759 return 1;
10760 else
10761 return 0;
10762 }
10763
10764 int
10765 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10766 {
10767 if (type == bp_hardware_breakpoint)
10768 {
10769 if (remote_hw_breakpoint_limit == 0)
10770 return 0;
10771 else if (remote_hw_breakpoint_limit < 0)
10772 return 1;
10773 else if (cnt <= remote_hw_breakpoint_limit)
10774 return 1;
10775 }
10776 else
10777 {
10778 if (remote_hw_watchpoint_limit == 0)
10779 return 0;
10780 else if (remote_hw_watchpoint_limit < 0)
10781 return 1;
10782 else if (ot)
10783 return -1;
10784 else if (cnt <= remote_hw_watchpoint_limit)
10785 return 1;
10786 }
10787 return -1;
10788 }
10789
10790 /* The to_stopped_by_sw_breakpoint method of target remote. */
10791
10792 bool
10793 remote_target::stopped_by_sw_breakpoint ()
10794 {
10795 struct thread_info *thread = inferior_thread ();
10796
10797 return (thread->priv != NULL
10798 && (get_remote_thread_info (thread)->stop_reason
10799 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10800 }
10801
10802 /* The to_supports_stopped_by_sw_breakpoint method of target
10803 remote. */
10804
10805 bool
10806 remote_target::supports_stopped_by_sw_breakpoint ()
10807 {
10808 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10809 }
10810
10811 /* The to_stopped_by_hw_breakpoint method of target remote. */
10812
10813 bool
10814 remote_target::stopped_by_hw_breakpoint ()
10815 {
10816 struct thread_info *thread = inferior_thread ();
10817
10818 return (thread->priv != NULL
10819 && (get_remote_thread_info (thread)->stop_reason
10820 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10821 }
10822
10823 /* The to_supports_stopped_by_hw_breakpoint method of target
10824 remote. */
10825
10826 bool
10827 remote_target::supports_stopped_by_hw_breakpoint ()
10828 {
10829 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10830 }
10831
10832 bool
10833 remote_target::stopped_by_watchpoint ()
10834 {
10835 struct thread_info *thread = inferior_thread ();
10836
10837 return (thread->priv != NULL
10838 && (get_remote_thread_info (thread)->stop_reason
10839 == TARGET_STOPPED_BY_WATCHPOINT));
10840 }
10841
10842 bool
10843 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10844 {
10845 struct thread_info *thread = inferior_thread ();
10846
10847 if (thread->priv != NULL
10848 && (get_remote_thread_info (thread)->stop_reason
10849 == TARGET_STOPPED_BY_WATCHPOINT))
10850 {
10851 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10852 return true;
10853 }
10854
10855 return false;
10856 }
10857
10858
10859 int
10860 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10861 struct bp_target_info *bp_tgt)
10862 {
10863 CORE_ADDR addr = bp_tgt->reqstd_address;
10864 struct remote_state *rs;
10865 char *p, *endbuf;
10866 char *message;
10867
10868 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10869 return -1;
10870
10871 /* Make sure the remote is pointing at the right process, if
10872 necessary. */
10873 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10874 set_general_process ();
10875
10876 rs = get_remote_state ();
10877 p = rs->buf.data ();
10878 endbuf = p + get_remote_packet_size ();
10879
10880 *(p++) = 'Z';
10881 *(p++) = '1';
10882 *(p++) = ',';
10883
10884 addr = remote_address_masked (addr);
10885 p += hexnumstr (p, (ULONGEST) addr);
10886 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10887
10888 if (supports_evaluation_of_breakpoint_conditions ())
10889 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10890
10891 if (can_run_breakpoint_commands ())
10892 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10893
10894 putpkt (rs->buf);
10895 getpkt (&rs->buf, 0);
10896
10897 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10898 {
10899 case PACKET_ERROR:
10900 if (rs->buf[1] == '.')
10901 {
10902 message = strchr (&rs->buf[2], '.');
10903 if (message)
10904 error (_("Remote failure reply: %s"), message + 1);
10905 }
10906 return -1;
10907 case PACKET_UNKNOWN:
10908 return -1;
10909 case PACKET_OK:
10910 return 0;
10911 }
10912 internal_error (__FILE__, __LINE__,
10913 _("remote_insert_hw_breakpoint: reached end of function"));
10914 }
10915
10916
10917 int
10918 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10919 struct bp_target_info *bp_tgt)
10920 {
10921 CORE_ADDR addr;
10922 struct remote_state *rs = get_remote_state ();
10923 char *p = rs->buf.data ();
10924 char *endbuf = p + get_remote_packet_size ();
10925
10926 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10927 return -1;
10928
10929 /* Make sure the remote is pointing at the right process, if
10930 necessary. */
10931 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10932 set_general_process ();
10933
10934 *(p++) = 'z';
10935 *(p++) = '1';
10936 *(p++) = ',';
10937
10938 addr = remote_address_masked (bp_tgt->placed_address);
10939 p += hexnumstr (p, (ULONGEST) addr);
10940 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10941
10942 putpkt (rs->buf);
10943 getpkt (&rs->buf, 0);
10944
10945 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10946 {
10947 case PACKET_ERROR:
10948 case PACKET_UNKNOWN:
10949 return -1;
10950 case PACKET_OK:
10951 return 0;
10952 }
10953 internal_error (__FILE__, __LINE__,
10954 _("remote_remove_hw_breakpoint: reached end of function"));
10955 }
10956
10957 /* Verify memory using the "qCRC:" request. */
10958
10959 int
10960 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10961 {
10962 struct remote_state *rs = get_remote_state ();
10963 unsigned long host_crc, target_crc;
10964 char *tmp;
10965
10966 /* It doesn't make sense to use qCRC if the remote target is
10967 connected but not running. */
10968 if (target_has_execution ()
10969 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10970 {
10971 enum packet_result result;
10972
10973 /* Make sure the remote is pointing at the right process. */
10974 set_general_process ();
10975
10976 /* FIXME: assumes lma can fit into long. */
10977 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10978 (long) lma, (long) size);
10979 putpkt (rs->buf);
10980
10981 /* Be clever; compute the host_crc before waiting for target
10982 reply. */
10983 host_crc = xcrc32 (data, size, 0xffffffff);
10984
10985 getpkt (&rs->buf, 0);
10986
10987 result = packet_ok (rs->buf,
10988 &remote_protocol_packets[PACKET_qCRC]);
10989 if (result == PACKET_ERROR)
10990 return -1;
10991 else if (result == PACKET_OK)
10992 {
10993 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10994 target_crc = target_crc * 16 + fromhex (*tmp);
10995
10996 return (host_crc == target_crc);
10997 }
10998 }
10999
11000 return simple_verify_memory (this, data, lma, size);
11001 }
11002
11003 /* compare-sections command
11004
11005 With no arguments, compares each loadable section in the exec bfd
11006 with the same memory range on the target, and reports mismatches.
11007 Useful for verifying the image on the target against the exec file. */
11008
11009 static void
11010 compare_sections_command (const char *args, int from_tty)
11011 {
11012 asection *s;
11013 const char *sectname;
11014 bfd_size_type size;
11015 bfd_vma lma;
11016 int matched = 0;
11017 int mismatched = 0;
11018 int res;
11019 int read_only = 0;
11020
11021 if (!current_program_space->exec_bfd ())
11022 error (_("command cannot be used without an exec file"));
11023
11024 if (args != NULL && strcmp (args, "-r") == 0)
11025 {
11026 read_only = 1;
11027 args = NULL;
11028 }
11029
11030 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11031 {
11032 if (!(s->flags & SEC_LOAD))
11033 continue; /* Skip non-loadable section. */
11034
11035 if (read_only && (s->flags & SEC_READONLY) == 0)
11036 continue; /* Skip writeable sections */
11037
11038 size = bfd_section_size (s);
11039 if (size == 0)
11040 continue; /* Skip zero-length section. */
11041
11042 sectname = bfd_section_name (s);
11043 if (args && strcmp (args, sectname) != 0)
11044 continue; /* Not the section selected by user. */
11045
11046 matched = 1; /* Do this section. */
11047 lma = s->lma;
11048
11049 gdb::byte_vector sectdata (size);
11050 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11051 sectdata.data (), 0, size);
11052
11053 res = target_verify_memory (sectdata.data (), lma, size);
11054
11055 if (res == -1)
11056 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11057 paddress (target_gdbarch (), lma),
11058 paddress (target_gdbarch (), lma + size));
11059
11060 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11061 paddress (target_gdbarch (), lma),
11062 paddress (target_gdbarch (), lma + size));
11063 if (res)
11064 printf_filtered ("matched.\n");
11065 else
11066 {
11067 printf_filtered ("MIS-MATCHED!\n");
11068 mismatched++;
11069 }
11070 }
11071 if (mismatched > 0)
11072 warning (_("One or more sections of the target image does not match\n\
11073 the loaded file\n"));
11074 if (args && !matched)
11075 printf_filtered (_("No loaded section named '%s'.\n"), args);
11076 }
11077
11078 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11079 into remote target. The number of bytes written to the remote
11080 target is returned, or -1 for error. */
11081
11082 target_xfer_status
11083 remote_target::remote_write_qxfer (const char *object_name,
11084 const char *annex, const gdb_byte *writebuf,
11085 ULONGEST offset, LONGEST len,
11086 ULONGEST *xfered_len,
11087 struct packet_config *packet)
11088 {
11089 int i, buf_len;
11090 ULONGEST n;
11091 struct remote_state *rs = get_remote_state ();
11092 int max_size = get_memory_write_packet_size ();
11093
11094 if (packet_config_support (packet) == PACKET_DISABLE)
11095 return TARGET_XFER_E_IO;
11096
11097 /* Insert header. */
11098 i = snprintf (rs->buf.data (), max_size,
11099 "qXfer:%s:write:%s:%s:",
11100 object_name, annex ? annex : "",
11101 phex_nz (offset, sizeof offset));
11102 max_size -= (i + 1);
11103
11104 /* Escape as much data as fits into rs->buf. */
11105 buf_len = remote_escape_output
11106 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11107
11108 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11109 || getpkt_sane (&rs->buf, 0) < 0
11110 || packet_ok (rs->buf, packet) != PACKET_OK)
11111 return TARGET_XFER_E_IO;
11112
11113 unpack_varlen_hex (rs->buf.data (), &n);
11114
11115 *xfered_len = n;
11116 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11117 }
11118
11119 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11120 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11121 number of bytes read is returned, or 0 for EOF, or -1 for error.
11122 The number of bytes read may be less than LEN without indicating an
11123 EOF. PACKET is checked and updated to indicate whether the remote
11124 target supports this object. */
11125
11126 target_xfer_status
11127 remote_target::remote_read_qxfer (const char *object_name,
11128 const char *annex,
11129 gdb_byte *readbuf, ULONGEST offset,
11130 LONGEST len,
11131 ULONGEST *xfered_len,
11132 struct packet_config *packet)
11133 {
11134 struct remote_state *rs = get_remote_state ();
11135 LONGEST i, n, packet_len;
11136
11137 if (packet_config_support (packet) == PACKET_DISABLE)
11138 return TARGET_XFER_E_IO;
11139
11140 /* Check whether we've cached an end-of-object packet that matches
11141 this request. */
11142 if (rs->finished_object)
11143 {
11144 if (strcmp (object_name, rs->finished_object) == 0
11145 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11146 && offset == rs->finished_offset)
11147 return TARGET_XFER_EOF;
11148
11149
11150 /* Otherwise, we're now reading something different. Discard
11151 the cache. */
11152 xfree (rs->finished_object);
11153 xfree (rs->finished_annex);
11154 rs->finished_object = NULL;
11155 rs->finished_annex = NULL;
11156 }
11157
11158 /* Request only enough to fit in a single packet. The actual data
11159 may not, since we don't know how much of it will need to be escaped;
11160 the target is free to respond with slightly less data. We subtract
11161 five to account for the response type and the protocol frame. */
11162 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11163 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11164 "qXfer:%s:read:%s:%s,%s",
11165 object_name, annex ? annex : "",
11166 phex_nz (offset, sizeof offset),
11167 phex_nz (n, sizeof n));
11168 i = putpkt (rs->buf);
11169 if (i < 0)
11170 return TARGET_XFER_E_IO;
11171
11172 rs->buf[0] = '\0';
11173 packet_len = getpkt_sane (&rs->buf, 0);
11174 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11175 return TARGET_XFER_E_IO;
11176
11177 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11178 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11179
11180 /* 'm' means there is (or at least might be) more data after this
11181 batch. That does not make sense unless there's at least one byte
11182 of data in this reply. */
11183 if (rs->buf[0] == 'm' && packet_len == 1)
11184 error (_("Remote qXfer reply contained no data."));
11185
11186 /* Got some data. */
11187 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11188 packet_len - 1, readbuf, n);
11189
11190 /* 'l' is an EOF marker, possibly including a final block of data,
11191 or possibly empty. If we have the final block of a non-empty
11192 object, record this fact to bypass a subsequent partial read. */
11193 if (rs->buf[0] == 'l' && offset + i > 0)
11194 {
11195 rs->finished_object = xstrdup (object_name);
11196 rs->finished_annex = xstrdup (annex ? annex : "");
11197 rs->finished_offset = offset + i;
11198 }
11199
11200 if (i == 0)
11201 return TARGET_XFER_EOF;
11202 else
11203 {
11204 *xfered_len = i;
11205 return TARGET_XFER_OK;
11206 }
11207 }
11208
11209 enum target_xfer_status
11210 remote_target::xfer_partial (enum target_object object,
11211 const char *annex, gdb_byte *readbuf,
11212 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11213 ULONGEST *xfered_len)
11214 {
11215 struct remote_state *rs;
11216 int i;
11217 char *p2;
11218 char query_type;
11219 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11220
11221 set_remote_traceframe ();
11222 set_general_thread (inferior_ptid);
11223
11224 rs = get_remote_state ();
11225
11226 /* Handle memory using the standard memory routines. */
11227 if (object == TARGET_OBJECT_MEMORY)
11228 {
11229 /* If the remote target is connected but not running, we should
11230 pass this request down to a lower stratum (e.g. the executable
11231 file). */
11232 if (!target_has_execution ())
11233 return TARGET_XFER_EOF;
11234
11235 if (writebuf != NULL)
11236 return remote_write_bytes (offset, writebuf, len, unit_size,
11237 xfered_len);
11238 else
11239 return remote_read_bytes (offset, readbuf, len, unit_size,
11240 xfered_len);
11241 }
11242
11243 /* Handle extra signal info using qxfer packets. */
11244 if (object == TARGET_OBJECT_SIGNAL_INFO)
11245 {
11246 if (readbuf)
11247 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11248 xfered_len, &remote_protocol_packets
11249 [PACKET_qXfer_siginfo_read]);
11250 else
11251 return remote_write_qxfer ("siginfo", annex,
11252 writebuf, offset, len, xfered_len,
11253 &remote_protocol_packets
11254 [PACKET_qXfer_siginfo_write]);
11255 }
11256
11257 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11258 {
11259 if (readbuf)
11260 return remote_read_qxfer ("statictrace", annex,
11261 readbuf, offset, len, xfered_len,
11262 &remote_protocol_packets
11263 [PACKET_qXfer_statictrace_read]);
11264 else
11265 return TARGET_XFER_E_IO;
11266 }
11267
11268 /* Only handle flash writes. */
11269 if (writebuf != NULL)
11270 {
11271 switch (object)
11272 {
11273 case TARGET_OBJECT_FLASH:
11274 return remote_flash_write (offset, len, xfered_len,
11275 writebuf);
11276
11277 default:
11278 return TARGET_XFER_E_IO;
11279 }
11280 }
11281
11282 /* Map pre-existing objects onto letters. DO NOT do this for new
11283 objects!!! Instead specify new query packets. */
11284 switch (object)
11285 {
11286 case TARGET_OBJECT_AVR:
11287 query_type = 'R';
11288 break;
11289
11290 case TARGET_OBJECT_AUXV:
11291 gdb_assert (annex == NULL);
11292 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11293 xfered_len,
11294 &remote_protocol_packets[PACKET_qXfer_auxv]);
11295
11296 case TARGET_OBJECT_AVAILABLE_FEATURES:
11297 return remote_read_qxfer
11298 ("features", annex, readbuf, offset, len, xfered_len,
11299 &remote_protocol_packets[PACKET_qXfer_features]);
11300
11301 case TARGET_OBJECT_LIBRARIES:
11302 return remote_read_qxfer
11303 ("libraries", annex, readbuf, offset, len, xfered_len,
11304 &remote_protocol_packets[PACKET_qXfer_libraries]);
11305
11306 case TARGET_OBJECT_LIBRARIES_SVR4:
11307 return remote_read_qxfer
11308 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11309 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11310
11311 case TARGET_OBJECT_MEMORY_MAP:
11312 gdb_assert (annex == NULL);
11313 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11314 xfered_len,
11315 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11316
11317 case TARGET_OBJECT_OSDATA:
11318 /* Should only get here if we're connected. */
11319 gdb_assert (rs->remote_desc);
11320 return remote_read_qxfer
11321 ("osdata", annex, readbuf, offset, len, xfered_len,
11322 &remote_protocol_packets[PACKET_qXfer_osdata]);
11323
11324 case TARGET_OBJECT_THREADS:
11325 gdb_assert (annex == NULL);
11326 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11327 xfered_len,
11328 &remote_protocol_packets[PACKET_qXfer_threads]);
11329
11330 case TARGET_OBJECT_TRACEFRAME_INFO:
11331 gdb_assert (annex == NULL);
11332 return remote_read_qxfer
11333 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11334 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11335
11336 case TARGET_OBJECT_FDPIC:
11337 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11338 xfered_len,
11339 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11340
11341 case TARGET_OBJECT_OPENVMS_UIB:
11342 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11343 xfered_len,
11344 &remote_protocol_packets[PACKET_qXfer_uib]);
11345
11346 case TARGET_OBJECT_BTRACE:
11347 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11348 xfered_len,
11349 &remote_protocol_packets[PACKET_qXfer_btrace]);
11350
11351 case TARGET_OBJECT_BTRACE_CONF:
11352 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11353 len, xfered_len,
11354 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11355
11356 case TARGET_OBJECT_EXEC_FILE:
11357 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11358 len, xfered_len,
11359 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11360
11361 default:
11362 return TARGET_XFER_E_IO;
11363 }
11364
11365 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11366 large enough let the caller deal with it. */
11367 if (len < get_remote_packet_size ())
11368 return TARGET_XFER_E_IO;
11369 len = get_remote_packet_size ();
11370
11371 /* Except for querying the minimum buffer size, target must be open. */
11372 if (!rs->remote_desc)
11373 error (_("remote query is only available after target open"));
11374
11375 gdb_assert (annex != NULL);
11376 gdb_assert (readbuf != NULL);
11377
11378 p2 = rs->buf.data ();
11379 *p2++ = 'q';
11380 *p2++ = query_type;
11381
11382 /* We used one buffer char for the remote protocol q command and
11383 another for the query type. As the remote protocol encapsulation
11384 uses 4 chars plus one extra in case we are debugging
11385 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11386 string. */
11387 i = 0;
11388 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11389 {
11390 /* Bad caller may have sent forbidden characters. */
11391 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11392 *p2++ = annex[i];
11393 i++;
11394 }
11395 *p2 = '\0';
11396 gdb_assert (annex[i] == '\0');
11397
11398 i = putpkt (rs->buf);
11399 if (i < 0)
11400 return TARGET_XFER_E_IO;
11401
11402 getpkt (&rs->buf, 0);
11403 strcpy ((char *) readbuf, rs->buf.data ());
11404
11405 *xfered_len = strlen ((char *) readbuf);
11406 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11407 }
11408
11409 /* Implementation of to_get_memory_xfer_limit. */
11410
11411 ULONGEST
11412 remote_target::get_memory_xfer_limit ()
11413 {
11414 return get_memory_write_packet_size ();
11415 }
11416
11417 int
11418 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11419 const gdb_byte *pattern, ULONGEST pattern_len,
11420 CORE_ADDR *found_addrp)
11421 {
11422 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11423 struct remote_state *rs = get_remote_state ();
11424 int max_size = get_memory_write_packet_size ();
11425 struct packet_config *packet =
11426 &remote_protocol_packets[PACKET_qSearch_memory];
11427 /* Number of packet bytes used to encode the pattern;
11428 this could be more than PATTERN_LEN due to escape characters. */
11429 int escaped_pattern_len;
11430 /* Amount of pattern that was encodable in the packet. */
11431 int used_pattern_len;
11432 int i;
11433 int found;
11434 ULONGEST found_addr;
11435
11436 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11437 {
11438 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11439 == len);
11440 };
11441
11442 /* Don't go to the target if we don't have to. This is done before
11443 checking packet_config_support to avoid the possibility that a
11444 success for this edge case means the facility works in
11445 general. */
11446 if (pattern_len > search_space_len)
11447 return 0;
11448 if (pattern_len == 0)
11449 {
11450 *found_addrp = start_addr;
11451 return 1;
11452 }
11453
11454 /* If we already know the packet isn't supported, fall back to the simple
11455 way of searching memory. */
11456
11457 if (packet_config_support (packet) == PACKET_DISABLE)
11458 {
11459 /* Target doesn't provided special support, fall back and use the
11460 standard support (copy memory and do the search here). */
11461 return simple_search_memory (read_memory, start_addr, search_space_len,
11462 pattern, pattern_len, found_addrp);
11463 }
11464
11465 /* Make sure the remote is pointing at the right process. */
11466 set_general_process ();
11467
11468 /* Insert header. */
11469 i = snprintf (rs->buf.data (), max_size,
11470 "qSearch:memory:%s;%s;",
11471 phex_nz (start_addr, addr_size),
11472 phex_nz (search_space_len, sizeof (search_space_len)));
11473 max_size -= (i + 1);
11474
11475 /* Escape as much data as fits into rs->buf. */
11476 escaped_pattern_len =
11477 remote_escape_output (pattern, pattern_len, 1,
11478 (gdb_byte *) rs->buf.data () + i,
11479 &used_pattern_len, max_size);
11480
11481 /* Bail if the pattern is too large. */
11482 if (used_pattern_len != pattern_len)
11483 error (_("Pattern is too large to transmit to remote target."));
11484
11485 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11486 || getpkt_sane (&rs->buf, 0) < 0
11487 || packet_ok (rs->buf, packet) != PACKET_OK)
11488 {
11489 /* The request may not have worked because the command is not
11490 supported. If so, fall back to the simple way. */
11491 if (packet_config_support (packet) == PACKET_DISABLE)
11492 {
11493 return simple_search_memory (read_memory, start_addr, search_space_len,
11494 pattern, pattern_len, found_addrp);
11495 }
11496 return -1;
11497 }
11498
11499 if (rs->buf[0] == '0')
11500 found = 0;
11501 else if (rs->buf[0] == '1')
11502 {
11503 found = 1;
11504 if (rs->buf[1] != ',')
11505 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11506 unpack_varlen_hex (&rs->buf[2], &found_addr);
11507 *found_addrp = found_addr;
11508 }
11509 else
11510 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11511
11512 return found;
11513 }
11514
11515 void
11516 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11517 {
11518 struct remote_state *rs = get_remote_state ();
11519 char *p = rs->buf.data ();
11520
11521 if (!rs->remote_desc)
11522 error (_("remote rcmd is only available after target open"));
11523
11524 /* Send a NULL command across as an empty command. */
11525 if (command == NULL)
11526 command = "";
11527
11528 /* The query prefix. */
11529 strcpy (rs->buf.data (), "qRcmd,");
11530 p = strchr (rs->buf.data (), '\0');
11531
11532 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11533 > get_remote_packet_size ())
11534 error (_("\"monitor\" command ``%s'' is too long."), command);
11535
11536 /* Encode the actual command. */
11537 bin2hex ((const gdb_byte *) command, p, strlen (command));
11538
11539 if (putpkt (rs->buf) < 0)
11540 error (_("Communication problem with target."));
11541
11542 /* get/display the response */
11543 while (1)
11544 {
11545 char *buf;
11546
11547 /* XXX - see also remote_get_noisy_reply(). */
11548 QUIT; /* Allow user to bail out with ^C. */
11549 rs->buf[0] = '\0';
11550 if (getpkt_sane (&rs->buf, 0) == -1)
11551 {
11552 /* Timeout. Continue to (try to) read responses.
11553 This is better than stopping with an error, assuming the stub
11554 is still executing the (long) monitor command.
11555 If needed, the user can interrupt gdb using C-c, obtaining
11556 an effect similar to stop on timeout. */
11557 continue;
11558 }
11559 buf = rs->buf.data ();
11560 if (buf[0] == '\0')
11561 error (_("Target does not support this command."));
11562 if (buf[0] == 'O' && buf[1] != 'K')
11563 {
11564 remote_console_output (buf + 1); /* 'O' message from stub. */
11565 continue;
11566 }
11567 if (strcmp (buf, "OK") == 0)
11568 break;
11569 if (strlen (buf) == 3 && buf[0] == 'E'
11570 && isdigit (buf[1]) && isdigit (buf[2]))
11571 {
11572 error (_("Protocol error with Rcmd"));
11573 }
11574 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11575 {
11576 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11577
11578 fputc_unfiltered (c, outbuf);
11579 }
11580 break;
11581 }
11582 }
11583
11584 std::vector<mem_region>
11585 remote_target::memory_map ()
11586 {
11587 std::vector<mem_region> result;
11588 gdb::optional<gdb::char_vector> text
11589 = target_read_stralloc (current_inferior ()->top_target (),
11590 TARGET_OBJECT_MEMORY_MAP, NULL);
11591
11592 if (text)
11593 result = parse_memory_map (text->data ());
11594
11595 return result;
11596 }
11597
11598 static void
11599 packet_command (const char *args, int from_tty)
11600 {
11601 remote_target *remote = get_current_remote_target ();
11602
11603 if (remote == nullptr)
11604 error (_("command can only be used with remote target"));
11605
11606 remote->packet_command (args, from_tty);
11607 }
11608
11609 void
11610 remote_target::packet_command (const char *args, int from_tty)
11611 {
11612 if (!args)
11613 error (_("remote-packet command requires packet text as argument"));
11614
11615 puts_filtered ("sending: ");
11616 print_packet (args);
11617 puts_filtered ("\n");
11618 putpkt (args);
11619
11620 remote_state *rs = get_remote_state ();
11621
11622 getpkt (&rs->buf, 0);
11623 puts_filtered ("received: ");
11624 print_packet (rs->buf.data ());
11625 puts_filtered ("\n");
11626 }
11627
11628 #if 0
11629 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11630
11631 static void display_thread_info (struct gdb_ext_thread_info *info);
11632
11633 static void threadset_test_cmd (char *cmd, int tty);
11634
11635 static void threadalive_test (char *cmd, int tty);
11636
11637 static void threadlist_test_cmd (char *cmd, int tty);
11638
11639 int get_and_display_threadinfo (threadref *ref);
11640
11641 static void threadinfo_test_cmd (char *cmd, int tty);
11642
11643 static int thread_display_step (threadref *ref, void *context);
11644
11645 static void threadlist_update_test_cmd (char *cmd, int tty);
11646
11647 static void init_remote_threadtests (void);
11648
11649 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11650
11651 static void
11652 threadset_test_cmd (const char *cmd, int tty)
11653 {
11654 int sample_thread = SAMPLE_THREAD;
11655
11656 printf_filtered (_("Remote threadset test\n"));
11657 set_general_thread (sample_thread);
11658 }
11659
11660
11661 static void
11662 threadalive_test (const char *cmd, int tty)
11663 {
11664 int sample_thread = SAMPLE_THREAD;
11665 int pid = inferior_ptid.pid ();
11666 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11667
11668 if (remote_thread_alive (ptid))
11669 printf_filtered ("PASS: Thread alive test\n");
11670 else
11671 printf_filtered ("FAIL: Thread alive test\n");
11672 }
11673
11674 void output_threadid (char *title, threadref *ref);
11675
11676 void
11677 output_threadid (char *title, threadref *ref)
11678 {
11679 char hexid[20];
11680
11681 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11682 hexid[16] = 0;
11683 printf_filtered ("%s %s\n", title, (&hexid[0]));
11684 }
11685
11686 static void
11687 threadlist_test_cmd (const char *cmd, int tty)
11688 {
11689 int startflag = 1;
11690 threadref nextthread;
11691 int done, result_count;
11692 threadref threadlist[3];
11693
11694 printf_filtered ("Remote Threadlist test\n");
11695 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11696 &result_count, &threadlist[0]))
11697 printf_filtered ("FAIL: threadlist test\n");
11698 else
11699 {
11700 threadref *scan = threadlist;
11701 threadref *limit = scan + result_count;
11702
11703 while (scan < limit)
11704 output_threadid (" thread ", scan++);
11705 }
11706 }
11707
11708 void
11709 display_thread_info (struct gdb_ext_thread_info *info)
11710 {
11711 output_threadid ("Threadid: ", &info->threadid);
11712 printf_filtered ("Name: %s\n ", info->shortname);
11713 printf_filtered ("State: %s\n", info->display);
11714 printf_filtered ("other: %s\n\n", info->more_display);
11715 }
11716
11717 int
11718 get_and_display_threadinfo (threadref *ref)
11719 {
11720 int result;
11721 int set;
11722 struct gdb_ext_thread_info threadinfo;
11723
11724 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11725 | TAG_MOREDISPLAY | TAG_DISPLAY;
11726 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11727 display_thread_info (&threadinfo);
11728 return result;
11729 }
11730
11731 static void
11732 threadinfo_test_cmd (const char *cmd, int tty)
11733 {
11734 int athread = SAMPLE_THREAD;
11735 threadref thread;
11736 int set;
11737
11738 int_to_threadref (&thread, athread);
11739 printf_filtered ("Remote Threadinfo test\n");
11740 if (!get_and_display_threadinfo (&thread))
11741 printf_filtered ("FAIL cannot get thread info\n");
11742 }
11743
11744 static int
11745 thread_display_step (threadref *ref, void *context)
11746 {
11747 /* output_threadid(" threadstep ",ref); *//* simple test */
11748 return get_and_display_threadinfo (ref);
11749 }
11750
11751 static void
11752 threadlist_update_test_cmd (const char *cmd, int tty)
11753 {
11754 printf_filtered ("Remote Threadlist update test\n");
11755 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11756 }
11757
11758 static void
11759 init_remote_threadtests (void)
11760 {
11761 add_com ("tlist", class_obscure, threadlist_test_cmd,
11762 _("Fetch and print the remote list of "
11763 "thread identifiers, one pkt only."));
11764 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11765 _("Fetch and display info about one thread."));
11766 add_com ("tset", class_obscure, threadset_test_cmd,
11767 _("Test setting to a different thread."));
11768 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11769 _("Iterate through updating all remote thread info."));
11770 add_com ("talive", class_obscure, threadalive_test,
11771 _("Remote thread alive test."));
11772 }
11773
11774 #endif /* 0 */
11775
11776 /* Convert a thread ID to a string. */
11777
11778 std::string
11779 remote_target::pid_to_str (ptid_t ptid)
11780 {
11781 struct remote_state *rs = get_remote_state ();
11782
11783 if (ptid == null_ptid)
11784 return normal_pid_to_str (ptid);
11785 else if (ptid.is_pid ())
11786 {
11787 /* Printing an inferior target id. */
11788
11789 /* When multi-process extensions are off, there's no way in the
11790 remote protocol to know the remote process id, if there's any
11791 at all. There's one exception --- when we're connected with
11792 target extended-remote, and we manually attached to a process
11793 with "attach PID". We don't record anywhere a flag that
11794 allows us to distinguish that case from the case of
11795 connecting with extended-remote and the stub already being
11796 attached to a process, and reporting yes to qAttached, hence
11797 no smart special casing here. */
11798 if (!remote_multi_process_p (rs))
11799 return "Remote target";
11800
11801 return normal_pid_to_str (ptid);
11802 }
11803 else
11804 {
11805 if (magic_null_ptid == ptid)
11806 return "Thread <main>";
11807 else if (remote_multi_process_p (rs))
11808 if (ptid.lwp () == 0)
11809 return normal_pid_to_str (ptid);
11810 else
11811 return string_printf ("Thread %d.%ld",
11812 ptid.pid (), ptid.lwp ());
11813 else
11814 return string_printf ("Thread %ld", ptid.lwp ());
11815 }
11816 }
11817
11818 /* Get the address of the thread local variable in OBJFILE which is
11819 stored at OFFSET within the thread local storage for thread PTID. */
11820
11821 CORE_ADDR
11822 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11823 CORE_ADDR offset)
11824 {
11825 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11826 {
11827 struct remote_state *rs = get_remote_state ();
11828 char *p = rs->buf.data ();
11829 char *endp = p + get_remote_packet_size ();
11830 enum packet_result result;
11831
11832 strcpy (p, "qGetTLSAddr:");
11833 p += strlen (p);
11834 p = write_ptid (p, endp, ptid);
11835 *p++ = ',';
11836 p += hexnumstr (p, offset);
11837 *p++ = ',';
11838 p += hexnumstr (p, lm);
11839 *p++ = '\0';
11840
11841 putpkt (rs->buf);
11842 getpkt (&rs->buf, 0);
11843 result = packet_ok (rs->buf,
11844 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11845 if (result == PACKET_OK)
11846 {
11847 ULONGEST addr;
11848
11849 unpack_varlen_hex (rs->buf.data (), &addr);
11850 return addr;
11851 }
11852 else if (result == PACKET_UNKNOWN)
11853 throw_error (TLS_GENERIC_ERROR,
11854 _("Remote target doesn't support qGetTLSAddr packet"));
11855 else
11856 throw_error (TLS_GENERIC_ERROR,
11857 _("Remote target failed to process qGetTLSAddr request"));
11858 }
11859 else
11860 throw_error (TLS_GENERIC_ERROR,
11861 _("TLS not supported or disabled on this target"));
11862 /* Not reached. */
11863 return 0;
11864 }
11865
11866 /* Provide thread local base, i.e. Thread Information Block address.
11867 Returns 1 if ptid is found and thread_local_base is non zero. */
11868
11869 bool
11870 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11871 {
11872 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11873 {
11874 struct remote_state *rs = get_remote_state ();
11875 char *p = rs->buf.data ();
11876 char *endp = p + get_remote_packet_size ();
11877 enum packet_result result;
11878
11879 strcpy (p, "qGetTIBAddr:");
11880 p += strlen (p);
11881 p = write_ptid (p, endp, ptid);
11882 *p++ = '\0';
11883
11884 putpkt (rs->buf);
11885 getpkt (&rs->buf, 0);
11886 result = packet_ok (rs->buf,
11887 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11888 if (result == PACKET_OK)
11889 {
11890 ULONGEST val;
11891 unpack_varlen_hex (rs->buf.data (), &val);
11892 if (addr)
11893 *addr = (CORE_ADDR) val;
11894 return true;
11895 }
11896 else if (result == PACKET_UNKNOWN)
11897 error (_("Remote target doesn't support qGetTIBAddr packet"));
11898 else
11899 error (_("Remote target failed to process qGetTIBAddr request"));
11900 }
11901 else
11902 error (_("qGetTIBAddr not supported or disabled on this target"));
11903 /* Not reached. */
11904 return false;
11905 }
11906
11907 /* Support for inferring a target description based on the current
11908 architecture and the size of a 'g' packet. While the 'g' packet
11909 can have any size (since optional registers can be left off the
11910 end), some sizes are easily recognizable given knowledge of the
11911 approximate architecture. */
11912
11913 struct remote_g_packet_guess
11914 {
11915 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11916 : bytes (bytes_),
11917 tdesc (tdesc_)
11918 {
11919 }
11920
11921 int bytes;
11922 const struct target_desc *tdesc;
11923 };
11924
11925 struct remote_g_packet_data : public allocate_on_obstack
11926 {
11927 std::vector<remote_g_packet_guess> guesses;
11928 };
11929
11930 static struct gdbarch_data *remote_g_packet_data_handle;
11931
11932 static void *
11933 remote_g_packet_data_init (struct obstack *obstack)
11934 {
11935 return new (obstack) remote_g_packet_data;
11936 }
11937
11938 void
11939 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11940 const struct target_desc *tdesc)
11941 {
11942 struct remote_g_packet_data *data
11943 = ((struct remote_g_packet_data *)
11944 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11945
11946 gdb_assert (tdesc != NULL);
11947
11948 for (const remote_g_packet_guess &guess : data->guesses)
11949 if (guess.bytes == bytes)
11950 internal_error (__FILE__, __LINE__,
11951 _("Duplicate g packet description added for size %d"),
11952 bytes);
11953
11954 data->guesses.emplace_back (bytes, tdesc);
11955 }
11956
11957 /* Return true if remote_read_description would do anything on this target
11958 and architecture, false otherwise. */
11959
11960 static bool
11961 remote_read_description_p (struct target_ops *target)
11962 {
11963 struct remote_g_packet_data *data
11964 = ((struct remote_g_packet_data *)
11965 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11966
11967 return !data->guesses.empty ();
11968 }
11969
11970 const struct target_desc *
11971 remote_target::read_description ()
11972 {
11973 struct remote_g_packet_data *data
11974 = ((struct remote_g_packet_data *)
11975 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11976
11977 /* Do not try this during initial connection, when we do not know
11978 whether there is a running but stopped thread. */
11979 if (!target_has_execution () || inferior_ptid == null_ptid)
11980 return beneath ()->read_description ();
11981
11982 if (!data->guesses.empty ())
11983 {
11984 int bytes = send_g_packet ();
11985
11986 for (const remote_g_packet_guess &guess : data->guesses)
11987 if (guess.bytes == bytes)
11988 return guess.tdesc;
11989
11990 /* We discard the g packet. A minor optimization would be to
11991 hold on to it, and fill the register cache once we have selected
11992 an architecture, but it's too tricky to do safely. */
11993 }
11994
11995 return beneath ()->read_description ();
11996 }
11997
11998 /* Remote file transfer support. This is host-initiated I/O, not
11999 target-initiated; for target-initiated, see remote-fileio.c. */
12000
12001 /* If *LEFT is at least the length of STRING, copy STRING to
12002 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12003 decrease *LEFT. Otherwise raise an error. */
12004
12005 static void
12006 remote_buffer_add_string (char **buffer, int *left, const char *string)
12007 {
12008 int len = strlen (string);
12009
12010 if (len > *left)
12011 error (_("Packet too long for target."));
12012
12013 memcpy (*buffer, string, len);
12014 *buffer += len;
12015 *left -= len;
12016
12017 /* NUL-terminate the buffer as a convenience, if there is
12018 room. */
12019 if (*left)
12020 **buffer = '\0';
12021 }
12022
12023 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12024 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12025 decrease *LEFT. Otherwise raise an error. */
12026
12027 static void
12028 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12029 int len)
12030 {
12031 if (2 * len > *left)
12032 error (_("Packet too long for target."));
12033
12034 bin2hex (bytes, *buffer, len);
12035 *buffer += 2 * len;
12036 *left -= 2 * len;
12037
12038 /* NUL-terminate the buffer as a convenience, if there is
12039 room. */
12040 if (*left)
12041 **buffer = '\0';
12042 }
12043
12044 /* If *LEFT is large enough, convert VALUE to hex and add it to
12045 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12046 decrease *LEFT. Otherwise raise an error. */
12047
12048 static void
12049 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12050 {
12051 int len = hexnumlen (value);
12052
12053 if (len > *left)
12054 error (_("Packet too long for target."));
12055
12056 hexnumstr (*buffer, value);
12057 *buffer += len;
12058 *left -= len;
12059
12060 /* NUL-terminate the buffer as a convenience, if there is
12061 room. */
12062 if (*left)
12063 **buffer = '\0';
12064 }
12065
12066 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12067 value, *REMOTE_ERRNO to the remote error number or zero if none
12068 was included, and *ATTACHMENT to point to the start of the annex
12069 if any. The length of the packet isn't needed here; there may
12070 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12071
12072 Return 0 if the packet could be parsed, -1 if it could not. If
12073 -1 is returned, the other variables may not be initialized. */
12074
12075 static int
12076 remote_hostio_parse_result (const char *buffer, int *retcode,
12077 int *remote_errno, const char **attachment)
12078 {
12079 char *p, *p2;
12080
12081 *remote_errno = 0;
12082 *attachment = NULL;
12083
12084 if (buffer[0] != 'F')
12085 return -1;
12086
12087 errno = 0;
12088 *retcode = strtol (&buffer[1], &p, 16);
12089 if (errno != 0 || p == &buffer[1])
12090 return -1;
12091
12092 /* Check for ",errno". */
12093 if (*p == ',')
12094 {
12095 errno = 0;
12096 *remote_errno = strtol (p + 1, &p2, 16);
12097 if (errno != 0 || p + 1 == p2)
12098 return -1;
12099 p = p2;
12100 }
12101
12102 /* Check for ";attachment". If there is no attachment, the
12103 packet should end here. */
12104 if (*p == ';')
12105 {
12106 *attachment = p + 1;
12107 return 0;
12108 }
12109 else if (*p == '\0')
12110 return 0;
12111 else
12112 return -1;
12113 }
12114
12115 /* Send a prepared I/O packet to the target and read its response.
12116 The prepared packet is in the global RS->BUF before this function
12117 is called, and the answer is there when we return.
12118
12119 COMMAND_BYTES is the length of the request to send, which may include
12120 binary data. WHICH_PACKET is the packet configuration to check
12121 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12122 is set to the error number and -1 is returned. Otherwise the value
12123 returned by the function is returned.
12124
12125 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12126 attachment is expected; an error will be reported if there's a
12127 mismatch. If one is found, *ATTACHMENT will be set to point into
12128 the packet buffer and *ATTACHMENT_LEN will be set to the
12129 attachment's length. */
12130
12131 int
12132 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12133 int *remote_errno, const char **attachment,
12134 int *attachment_len)
12135 {
12136 struct remote_state *rs = get_remote_state ();
12137 int ret, bytes_read;
12138 const char *attachment_tmp;
12139
12140 if (packet_support (which_packet) == PACKET_DISABLE)
12141 {
12142 *remote_errno = FILEIO_ENOSYS;
12143 return -1;
12144 }
12145
12146 putpkt_binary (rs->buf.data (), command_bytes);
12147 bytes_read = getpkt_sane (&rs->buf, 0);
12148
12149 /* If it timed out, something is wrong. Don't try to parse the
12150 buffer. */
12151 if (bytes_read < 0)
12152 {
12153 *remote_errno = FILEIO_EINVAL;
12154 return -1;
12155 }
12156
12157 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12158 {
12159 case PACKET_ERROR:
12160 *remote_errno = FILEIO_EINVAL;
12161 return -1;
12162 case PACKET_UNKNOWN:
12163 *remote_errno = FILEIO_ENOSYS;
12164 return -1;
12165 case PACKET_OK:
12166 break;
12167 }
12168
12169 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12170 &attachment_tmp))
12171 {
12172 *remote_errno = FILEIO_EINVAL;
12173 return -1;
12174 }
12175
12176 /* Make sure we saw an attachment if and only if we expected one. */
12177 if ((attachment_tmp == NULL && attachment != NULL)
12178 || (attachment_tmp != NULL && attachment == NULL))
12179 {
12180 *remote_errno = FILEIO_EINVAL;
12181 return -1;
12182 }
12183
12184 /* If an attachment was found, it must point into the packet buffer;
12185 work out how many bytes there were. */
12186 if (attachment_tmp != NULL)
12187 {
12188 *attachment = attachment_tmp;
12189 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12190 }
12191
12192 return ret;
12193 }
12194
12195 /* See declaration.h. */
12196
12197 void
12198 readahead_cache::invalidate ()
12199 {
12200 this->fd = -1;
12201 }
12202
12203 /* See declaration.h. */
12204
12205 void
12206 readahead_cache::invalidate_fd (int fd)
12207 {
12208 if (this->fd == fd)
12209 this->fd = -1;
12210 }
12211
12212 /* Set the filesystem remote_hostio functions that take FILENAME
12213 arguments will use. Return 0 on success, or -1 if an error
12214 occurs (and set *REMOTE_ERRNO). */
12215
12216 int
12217 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12218 int *remote_errno)
12219 {
12220 struct remote_state *rs = get_remote_state ();
12221 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12222 char *p = rs->buf.data ();
12223 int left = get_remote_packet_size () - 1;
12224 char arg[9];
12225 int ret;
12226
12227 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12228 return 0;
12229
12230 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12231 return 0;
12232
12233 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12234
12235 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12236 remote_buffer_add_string (&p, &left, arg);
12237
12238 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12239 remote_errno, NULL, NULL);
12240
12241 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12242 return 0;
12243
12244 if (ret == 0)
12245 rs->fs_pid = required_pid;
12246
12247 return ret;
12248 }
12249
12250 /* Implementation of to_fileio_open. */
12251
12252 int
12253 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12254 int flags, int mode, int warn_if_slow,
12255 int *remote_errno)
12256 {
12257 struct remote_state *rs = get_remote_state ();
12258 char *p = rs->buf.data ();
12259 int left = get_remote_packet_size () - 1;
12260
12261 if (warn_if_slow)
12262 {
12263 static int warning_issued = 0;
12264
12265 printf_unfiltered (_("Reading %s from remote target...\n"),
12266 filename);
12267
12268 if (!warning_issued)
12269 {
12270 warning (_("File transfers from remote targets can be slow."
12271 " Use \"set sysroot\" to access files locally"
12272 " instead."));
12273 warning_issued = 1;
12274 }
12275 }
12276
12277 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12278 return -1;
12279
12280 remote_buffer_add_string (&p, &left, "vFile:open:");
12281
12282 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12283 strlen (filename));
12284 remote_buffer_add_string (&p, &left, ",");
12285
12286 remote_buffer_add_int (&p, &left, flags);
12287 remote_buffer_add_string (&p, &left, ",");
12288
12289 remote_buffer_add_int (&p, &left, mode);
12290
12291 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12292 remote_errno, NULL, NULL);
12293 }
12294
12295 int
12296 remote_target::fileio_open (struct inferior *inf, const char *filename,
12297 int flags, int mode, int warn_if_slow,
12298 int *remote_errno)
12299 {
12300 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12301 remote_errno);
12302 }
12303
12304 /* Implementation of to_fileio_pwrite. */
12305
12306 int
12307 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12308 ULONGEST offset, int *remote_errno)
12309 {
12310 struct remote_state *rs = get_remote_state ();
12311 char *p = rs->buf.data ();
12312 int left = get_remote_packet_size ();
12313 int out_len;
12314
12315 rs->readahead_cache.invalidate_fd (fd);
12316
12317 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12318
12319 remote_buffer_add_int (&p, &left, fd);
12320 remote_buffer_add_string (&p, &left, ",");
12321
12322 remote_buffer_add_int (&p, &left, offset);
12323 remote_buffer_add_string (&p, &left, ",");
12324
12325 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12326 (get_remote_packet_size ()
12327 - (p - rs->buf.data ())));
12328
12329 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12330 remote_errno, NULL, NULL);
12331 }
12332
12333 int
12334 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12335 ULONGEST offset, int *remote_errno)
12336 {
12337 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12338 }
12339
12340 /* Helper for the implementation of to_fileio_pread. Read the file
12341 from the remote side with vFile:pread. */
12342
12343 int
12344 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12345 ULONGEST offset, int *remote_errno)
12346 {
12347 struct remote_state *rs = get_remote_state ();
12348 char *p = rs->buf.data ();
12349 const char *attachment;
12350 int left = get_remote_packet_size ();
12351 int ret, attachment_len;
12352 int read_len;
12353
12354 remote_buffer_add_string (&p, &left, "vFile:pread:");
12355
12356 remote_buffer_add_int (&p, &left, fd);
12357 remote_buffer_add_string (&p, &left, ",");
12358
12359 remote_buffer_add_int (&p, &left, len);
12360 remote_buffer_add_string (&p, &left, ",");
12361
12362 remote_buffer_add_int (&p, &left, offset);
12363
12364 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12365 remote_errno, &attachment,
12366 &attachment_len);
12367
12368 if (ret < 0)
12369 return ret;
12370
12371 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12372 read_buf, len);
12373 if (read_len != ret)
12374 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12375
12376 return ret;
12377 }
12378
12379 /* See declaration.h. */
12380
12381 int
12382 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12383 ULONGEST offset)
12384 {
12385 if (this->fd == fd
12386 && this->offset <= offset
12387 && offset < this->offset + this->bufsize)
12388 {
12389 ULONGEST max = this->offset + this->bufsize;
12390
12391 if (offset + len > max)
12392 len = max - offset;
12393
12394 memcpy (read_buf, this->buf + offset - this->offset, len);
12395 return len;
12396 }
12397
12398 return 0;
12399 }
12400
12401 /* Implementation of to_fileio_pread. */
12402
12403 int
12404 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12405 ULONGEST offset, int *remote_errno)
12406 {
12407 int ret;
12408 struct remote_state *rs = get_remote_state ();
12409 readahead_cache *cache = &rs->readahead_cache;
12410
12411 ret = cache->pread (fd, read_buf, len, offset);
12412 if (ret > 0)
12413 {
12414 cache->hit_count++;
12415
12416 remote_debug_printf ("readahead cache hit %s",
12417 pulongest (cache->hit_count));
12418 return ret;
12419 }
12420
12421 cache->miss_count++;
12422
12423 remote_debug_printf ("readahead cache miss %s",
12424 pulongest (cache->miss_count));
12425
12426 cache->fd = fd;
12427 cache->offset = offset;
12428 cache->bufsize = get_remote_packet_size ();
12429 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12430
12431 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12432 cache->offset, remote_errno);
12433 if (ret <= 0)
12434 {
12435 cache->invalidate_fd (fd);
12436 return ret;
12437 }
12438
12439 cache->bufsize = ret;
12440 return cache->pread (fd, read_buf, len, offset);
12441 }
12442
12443 int
12444 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12445 ULONGEST offset, int *remote_errno)
12446 {
12447 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12448 }
12449
12450 /* Implementation of to_fileio_close. */
12451
12452 int
12453 remote_target::remote_hostio_close (int fd, int *remote_errno)
12454 {
12455 struct remote_state *rs = get_remote_state ();
12456 char *p = rs->buf.data ();
12457 int left = get_remote_packet_size () - 1;
12458
12459 rs->readahead_cache.invalidate_fd (fd);
12460
12461 remote_buffer_add_string (&p, &left, "vFile:close:");
12462
12463 remote_buffer_add_int (&p, &left, fd);
12464
12465 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12466 remote_errno, NULL, NULL);
12467 }
12468
12469 int
12470 remote_target::fileio_close (int fd, int *remote_errno)
12471 {
12472 return remote_hostio_close (fd, remote_errno);
12473 }
12474
12475 /* Implementation of to_fileio_unlink. */
12476
12477 int
12478 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12479 int *remote_errno)
12480 {
12481 struct remote_state *rs = get_remote_state ();
12482 char *p = rs->buf.data ();
12483 int left = get_remote_packet_size () - 1;
12484
12485 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12486 return -1;
12487
12488 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12489
12490 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12491 strlen (filename));
12492
12493 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12494 remote_errno, NULL, NULL);
12495 }
12496
12497 int
12498 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12499 int *remote_errno)
12500 {
12501 return remote_hostio_unlink (inf, filename, remote_errno);
12502 }
12503
12504 /* Implementation of to_fileio_readlink. */
12505
12506 gdb::optional<std::string>
12507 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12508 int *remote_errno)
12509 {
12510 struct remote_state *rs = get_remote_state ();
12511 char *p = rs->buf.data ();
12512 const char *attachment;
12513 int left = get_remote_packet_size ();
12514 int len, attachment_len;
12515 int read_len;
12516
12517 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12518 return {};
12519
12520 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12521
12522 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12523 strlen (filename));
12524
12525 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12526 remote_errno, &attachment,
12527 &attachment_len);
12528
12529 if (len < 0)
12530 return {};
12531
12532 std::string ret (len, '\0');
12533
12534 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12535 (gdb_byte *) &ret[0], len);
12536 if (read_len != len)
12537 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12538
12539 return ret;
12540 }
12541
12542 /* Implementation of to_fileio_fstat. */
12543
12544 int
12545 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12546 {
12547 struct remote_state *rs = get_remote_state ();
12548 char *p = rs->buf.data ();
12549 int left = get_remote_packet_size ();
12550 int attachment_len, ret;
12551 const char *attachment;
12552 struct fio_stat fst;
12553 int read_len;
12554
12555 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12556
12557 remote_buffer_add_int (&p, &left, fd);
12558
12559 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12560 remote_errno, &attachment,
12561 &attachment_len);
12562 if (ret < 0)
12563 {
12564 if (*remote_errno != FILEIO_ENOSYS)
12565 return ret;
12566
12567 /* Strictly we should return -1, ENOSYS here, but when
12568 "set sysroot remote:" was implemented in August 2008
12569 BFD's need for a stat function was sidestepped with
12570 this hack. This was not remedied until March 2015
12571 so we retain the previous behavior to avoid breaking
12572 compatibility.
12573
12574 Note that the memset is a March 2015 addition; older
12575 GDBs set st_size *and nothing else* so the structure
12576 would have garbage in all other fields. This might
12577 break something but retaining the previous behavior
12578 here would be just too wrong. */
12579
12580 memset (st, 0, sizeof (struct stat));
12581 st->st_size = INT_MAX;
12582 return 0;
12583 }
12584
12585 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12586 (gdb_byte *) &fst, sizeof (fst));
12587
12588 if (read_len != ret)
12589 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12590
12591 if (read_len != sizeof (fst))
12592 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12593 read_len, (int) sizeof (fst));
12594
12595 remote_fileio_to_host_stat (&fst, st);
12596
12597 return 0;
12598 }
12599
12600 /* Implementation of to_filesystem_is_local. */
12601
12602 bool
12603 remote_target::filesystem_is_local ()
12604 {
12605 /* Valgrind GDB presents itself as a remote target but works
12606 on the local filesystem: it does not implement remote get
12607 and users are not expected to set a sysroot. To handle
12608 this case we treat the remote filesystem as local if the
12609 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12610 does not support vFile:open. */
12611 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12612 {
12613 enum packet_support ps = packet_support (PACKET_vFile_open);
12614
12615 if (ps == PACKET_SUPPORT_UNKNOWN)
12616 {
12617 int fd, remote_errno;
12618
12619 /* Try opening a file to probe support. The supplied
12620 filename is irrelevant, we only care about whether
12621 the stub recognizes the packet or not. */
12622 fd = remote_hostio_open (NULL, "just probing",
12623 FILEIO_O_RDONLY, 0700, 0,
12624 &remote_errno);
12625
12626 if (fd >= 0)
12627 remote_hostio_close (fd, &remote_errno);
12628
12629 ps = packet_support (PACKET_vFile_open);
12630 }
12631
12632 if (ps == PACKET_DISABLE)
12633 {
12634 static int warning_issued = 0;
12635
12636 if (!warning_issued)
12637 {
12638 warning (_("remote target does not support file"
12639 " transfer, attempting to access files"
12640 " from local filesystem."));
12641 warning_issued = 1;
12642 }
12643
12644 return true;
12645 }
12646 }
12647
12648 return false;
12649 }
12650
12651 static int
12652 remote_fileio_errno_to_host (int errnum)
12653 {
12654 switch (errnum)
12655 {
12656 case FILEIO_EPERM:
12657 return EPERM;
12658 case FILEIO_ENOENT:
12659 return ENOENT;
12660 case FILEIO_EINTR:
12661 return EINTR;
12662 case FILEIO_EIO:
12663 return EIO;
12664 case FILEIO_EBADF:
12665 return EBADF;
12666 case FILEIO_EACCES:
12667 return EACCES;
12668 case FILEIO_EFAULT:
12669 return EFAULT;
12670 case FILEIO_EBUSY:
12671 return EBUSY;
12672 case FILEIO_EEXIST:
12673 return EEXIST;
12674 case FILEIO_ENODEV:
12675 return ENODEV;
12676 case FILEIO_ENOTDIR:
12677 return ENOTDIR;
12678 case FILEIO_EISDIR:
12679 return EISDIR;
12680 case FILEIO_EINVAL:
12681 return EINVAL;
12682 case FILEIO_ENFILE:
12683 return ENFILE;
12684 case FILEIO_EMFILE:
12685 return EMFILE;
12686 case FILEIO_EFBIG:
12687 return EFBIG;
12688 case FILEIO_ENOSPC:
12689 return ENOSPC;
12690 case FILEIO_ESPIPE:
12691 return ESPIPE;
12692 case FILEIO_EROFS:
12693 return EROFS;
12694 case FILEIO_ENOSYS:
12695 return ENOSYS;
12696 case FILEIO_ENAMETOOLONG:
12697 return ENAMETOOLONG;
12698 }
12699 return -1;
12700 }
12701
12702 static char *
12703 remote_hostio_error (int errnum)
12704 {
12705 int host_error = remote_fileio_errno_to_host (errnum);
12706
12707 if (host_error == -1)
12708 error (_("Unknown remote I/O error %d"), errnum);
12709 else
12710 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12711 }
12712
12713 /* A RAII wrapper around a remote file descriptor. */
12714
12715 class scoped_remote_fd
12716 {
12717 public:
12718 scoped_remote_fd (remote_target *remote, int fd)
12719 : m_remote (remote), m_fd (fd)
12720 {
12721 }
12722
12723 ~scoped_remote_fd ()
12724 {
12725 if (m_fd != -1)
12726 {
12727 try
12728 {
12729 int remote_errno;
12730 m_remote->remote_hostio_close (m_fd, &remote_errno);
12731 }
12732 catch (...)
12733 {
12734 /* Swallow exception before it escapes the dtor. If
12735 something goes wrong, likely the connection is gone,
12736 and there's nothing else that can be done. */
12737 }
12738 }
12739 }
12740
12741 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12742
12743 /* Release ownership of the file descriptor, and return it. */
12744 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12745 {
12746 int fd = m_fd;
12747 m_fd = -1;
12748 return fd;
12749 }
12750
12751 /* Return the owned file descriptor. */
12752 int get () const noexcept
12753 {
12754 return m_fd;
12755 }
12756
12757 private:
12758 /* The remote target. */
12759 remote_target *m_remote;
12760
12761 /* The owned remote I/O file descriptor. */
12762 int m_fd;
12763 };
12764
12765 void
12766 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12767 {
12768 remote_target *remote = get_current_remote_target ();
12769
12770 if (remote == nullptr)
12771 error (_("command can only be used with remote target"));
12772
12773 remote->remote_file_put (local_file, remote_file, from_tty);
12774 }
12775
12776 void
12777 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12778 int from_tty)
12779 {
12780 int retcode, remote_errno, bytes, io_size;
12781 int bytes_in_buffer;
12782 int saw_eof;
12783 ULONGEST offset;
12784
12785 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12786 if (file == NULL)
12787 perror_with_name (local_file);
12788
12789 scoped_remote_fd fd
12790 (this, remote_hostio_open (NULL,
12791 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12792 | FILEIO_O_TRUNC),
12793 0700, 0, &remote_errno));
12794 if (fd.get () == -1)
12795 remote_hostio_error (remote_errno);
12796
12797 /* Send up to this many bytes at once. They won't all fit in the
12798 remote packet limit, so we'll transfer slightly fewer. */
12799 io_size = get_remote_packet_size ();
12800 gdb::byte_vector buffer (io_size);
12801
12802 bytes_in_buffer = 0;
12803 saw_eof = 0;
12804 offset = 0;
12805 while (bytes_in_buffer || !saw_eof)
12806 {
12807 if (!saw_eof)
12808 {
12809 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12810 io_size - bytes_in_buffer,
12811 file.get ());
12812 if (bytes == 0)
12813 {
12814 if (ferror (file.get ()))
12815 error (_("Error reading %s."), local_file);
12816 else
12817 {
12818 /* EOF. Unless there is something still in the
12819 buffer from the last iteration, we are done. */
12820 saw_eof = 1;
12821 if (bytes_in_buffer == 0)
12822 break;
12823 }
12824 }
12825 }
12826 else
12827 bytes = 0;
12828
12829 bytes += bytes_in_buffer;
12830 bytes_in_buffer = 0;
12831
12832 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12833 offset, &remote_errno);
12834
12835 if (retcode < 0)
12836 remote_hostio_error (remote_errno);
12837 else if (retcode == 0)
12838 error (_("Remote write of %d bytes returned 0!"), bytes);
12839 else if (retcode < bytes)
12840 {
12841 /* Short write. Save the rest of the read data for the next
12842 write. */
12843 bytes_in_buffer = bytes - retcode;
12844 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12845 }
12846
12847 offset += retcode;
12848 }
12849
12850 if (remote_hostio_close (fd.release (), &remote_errno))
12851 remote_hostio_error (remote_errno);
12852
12853 if (from_tty)
12854 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12855 }
12856
12857 void
12858 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12859 {
12860 remote_target *remote = get_current_remote_target ();
12861
12862 if (remote == nullptr)
12863 error (_("command can only be used with remote target"));
12864
12865 remote->remote_file_get (remote_file, local_file, from_tty);
12866 }
12867
12868 void
12869 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12870 int from_tty)
12871 {
12872 int remote_errno, bytes, io_size;
12873 ULONGEST offset;
12874
12875 scoped_remote_fd fd
12876 (this, remote_hostio_open (NULL,
12877 remote_file, FILEIO_O_RDONLY, 0, 0,
12878 &remote_errno));
12879 if (fd.get () == -1)
12880 remote_hostio_error (remote_errno);
12881
12882 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12883 if (file == NULL)
12884 perror_with_name (local_file);
12885
12886 /* Send up to this many bytes at once. They won't all fit in the
12887 remote packet limit, so we'll transfer slightly fewer. */
12888 io_size = get_remote_packet_size ();
12889 gdb::byte_vector buffer (io_size);
12890
12891 offset = 0;
12892 while (1)
12893 {
12894 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12895 &remote_errno);
12896 if (bytes == 0)
12897 /* Success, but no bytes, means end-of-file. */
12898 break;
12899 if (bytes == -1)
12900 remote_hostio_error (remote_errno);
12901
12902 offset += bytes;
12903
12904 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12905 if (bytes == 0)
12906 perror_with_name (local_file);
12907 }
12908
12909 if (remote_hostio_close (fd.release (), &remote_errno))
12910 remote_hostio_error (remote_errno);
12911
12912 if (from_tty)
12913 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12914 }
12915
12916 void
12917 remote_file_delete (const char *remote_file, int from_tty)
12918 {
12919 remote_target *remote = get_current_remote_target ();
12920
12921 if (remote == nullptr)
12922 error (_("command can only be used with remote target"));
12923
12924 remote->remote_file_delete (remote_file, from_tty);
12925 }
12926
12927 void
12928 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12929 {
12930 int retcode, remote_errno;
12931
12932 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12933 if (retcode == -1)
12934 remote_hostio_error (remote_errno);
12935
12936 if (from_tty)
12937 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12938 }
12939
12940 static void
12941 remote_put_command (const char *args, int from_tty)
12942 {
12943 if (args == NULL)
12944 error_no_arg (_("file to put"));
12945
12946 gdb_argv argv (args);
12947 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12948 error (_("Invalid parameters to remote put"));
12949
12950 remote_file_put (argv[0], argv[1], from_tty);
12951 }
12952
12953 static void
12954 remote_get_command (const char *args, int from_tty)
12955 {
12956 if (args == NULL)
12957 error_no_arg (_("file to get"));
12958
12959 gdb_argv argv (args);
12960 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12961 error (_("Invalid parameters to remote get"));
12962
12963 remote_file_get (argv[0], argv[1], from_tty);
12964 }
12965
12966 static void
12967 remote_delete_command (const char *args, int from_tty)
12968 {
12969 if (args == NULL)
12970 error_no_arg (_("file to delete"));
12971
12972 gdb_argv argv (args);
12973 if (argv[0] == NULL || argv[1] != NULL)
12974 error (_("Invalid parameters to remote delete"));
12975
12976 remote_file_delete (argv[0], from_tty);
12977 }
12978
12979 bool
12980 remote_target::can_execute_reverse ()
12981 {
12982 if (packet_support (PACKET_bs) == PACKET_ENABLE
12983 || packet_support (PACKET_bc) == PACKET_ENABLE)
12984 return true;
12985 else
12986 return false;
12987 }
12988
12989 bool
12990 remote_target::supports_non_stop ()
12991 {
12992 return true;
12993 }
12994
12995 bool
12996 remote_target::supports_disable_randomization ()
12997 {
12998 /* Only supported in extended mode. */
12999 return false;
13000 }
13001
13002 bool
13003 remote_target::supports_multi_process ()
13004 {
13005 struct remote_state *rs = get_remote_state ();
13006
13007 return remote_multi_process_p (rs);
13008 }
13009
13010 static int
13011 remote_supports_cond_tracepoints ()
13012 {
13013 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13014 }
13015
13016 bool
13017 remote_target::supports_evaluation_of_breakpoint_conditions ()
13018 {
13019 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13020 }
13021
13022 static int
13023 remote_supports_fast_tracepoints ()
13024 {
13025 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13026 }
13027
13028 static int
13029 remote_supports_static_tracepoints ()
13030 {
13031 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13032 }
13033
13034 static int
13035 remote_supports_install_in_trace ()
13036 {
13037 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13038 }
13039
13040 bool
13041 remote_target::supports_enable_disable_tracepoint ()
13042 {
13043 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13044 == PACKET_ENABLE);
13045 }
13046
13047 bool
13048 remote_target::supports_string_tracing ()
13049 {
13050 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13051 }
13052
13053 bool
13054 remote_target::can_run_breakpoint_commands ()
13055 {
13056 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13057 }
13058
13059 void
13060 remote_target::trace_init ()
13061 {
13062 struct remote_state *rs = get_remote_state ();
13063
13064 putpkt ("QTinit");
13065 remote_get_noisy_reply ();
13066 if (strcmp (rs->buf.data (), "OK") != 0)
13067 error (_("Target does not support this command."));
13068 }
13069
13070 /* Recursive routine to walk through command list including loops, and
13071 download packets for each command. */
13072
13073 void
13074 remote_target::remote_download_command_source (int num, ULONGEST addr,
13075 struct command_line *cmds)
13076 {
13077 struct remote_state *rs = get_remote_state ();
13078 struct command_line *cmd;
13079
13080 for (cmd = cmds; cmd; cmd = cmd->next)
13081 {
13082 QUIT; /* Allow user to bail out with ^C. */
13083 strcpy (rs->buf.data (), "QTDPsrc:");
13084 encode_source_string (num, addr, "cmd", cmd->line,
13085 rs->buf.data () + strlen (rs->buf.data ()),
13086 rs->buf.size () - strlen (rs->buf.data ()));
13087 putpkt (rs->buf);
13088 remote_get_noisy_reply ();
13089 if (strcmp (rs->buf.data (), "OK"))
13090 warning (_("Target does not support source download."));
13091
13092 if (cmd->control_type == while_control
13093 || cmd->control_type == while_stepping_control)
13094 {
13095 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13096
13097 QUIT; /* Allow user to bail out with ^C. */
13098 strcpy (rs->buf.data (), "QTDPsrc:");
13099 encode_source_string (num, addr, "cmd", "end",
13100 rs->buf.data () + strlen (rs->buf.data ()),
13101 rs->buf.size () - strlen (rs->buf.data ()));
13102 putpkt (rs->buf);
13103 remote_get_noisy_reply ();
13104 if (strcmp (rs->buf.data (), "OK"))
13105 warning (_("Target does not support source download."));
13106 }
13107 }
13108 }
13109
13110 void
13111 remote_target::download_tracepoint (struct bp_location *loc)
13112 {
13113 CORE_ADDR tpaddr;
13114 char addrbuf[40];
13115 std::vector<std::string> tdp_actions;
13116 std::vector<std::string> stepping_actions;
13117 char *pkt;
13118 struct breakpoint *b = loc->owner;
13119 struct tracepoint *t = (struct tracepoint *) b;
13120 struct remote_state *rs = get_remote_state ();
13121 int ret;
13122 const char *err_msg = _("Tracepoint packet too large for target.");
13123 size_t size_left;
13124
13125 /* We use a buffer other than rs->buf because we'll build strings
13126 across multiple statements, and other statements in between could
13127 modify rs->buf. */
13128 gdb::char_vector buf (get_remote_packet_size ());
13129
13130 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13131
13132 tpaddr = loc->address;
13133 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13134 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13135 b->number, addrbuf, /* address */
13136 (b->enable_state == bp_enabled ? 'E' : 'D'),
13137 t->step_count, t->pass_count);
13138
13139 if (ret < 0 || ret >= buf.size ())
13140 error ("%s", err_msg);
13141
13142 /* Fast tracepoints are mostly handled by the target, but we can
13143 tell the target how big of an instruction block should be moved
13144 around. */
13145 if (b->type == bp_fast_tracepoint)
13146 {
13147 /* Only test for support at download time; we may not know
13148 target capabilities at definition time. */
13149 if (remote_supports_fast_tracepoints ())
13150 {
13151 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13152 NULL))
13153 {
13154 size_left = buf.size () - strlen (buf.data ());
13155 ret = snprintf (buf.data () + strlen (buf.data ()),
13156 size_left, ":F%x",
13157 gdb_insn_length (loc->gdbarch, tpaddr));
13158
13159 if (ret < 0 || ret >= size_left)
13160 error ("%s", err_msg);
13161 }
13162 else
13163 /* If it passed validation at definition but fails now,
13164 something is very wrong. */
13165 internal_error (__FILE__, __LINE__,
13166 _("Fast tracepoint not "
13167 "valid during download"));
13168 }
13169 else
13170 /* Fast tracepoints are functionally identical to regular
13171 tracepoints, so don't take lack of support as a reason to
13172 give up on the trace run. */
13173 warning (_("Target does not support fast tracepoints, "
13174 "downloading %d as regular tracepoint"), b->number);
13175 }
13176 else if (b->type == bp_static_tracepoint)
13177 {
13178 /* Only test for support at download time; we may not know
13179 target capabilities at definition time. */
13180 if (remote_supports_static_tracepoints ())
13181 {
13182 struct static_tracepoint_marker marker;
13183
13184 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13185 {
13186 size_left = buf.size () - strlen (buf.data ());
13187 ret = snprintf (buf.data () + strlen (buf.data ()),
13188 size_left, ":S");
13189
13190 if (ret < 0 || ret >= size_left)
13191 error ("%s", err_msg);
13192 }
13193 else
13194 error (_("Static tracepoint not valid during download"));
13195 }
13196 else
13197 /* Fast tracepoints are functionally identical to regular
13198 tracepoints, so don't take lack of support as a reason
13199 to give up on the trace run. */
13200 error (_("Target does not support static tracepoints"));
13201 }
13202 /* If the tracepoint has a conditional, make it into an agent
13203 expression and append to the definition. */
13204 if (loc->cond)
13205 {
13206 /* Only test support at download time, we may not know target
13207 capabilities at definition time. */
13208 if (remote_supports_cond_tracepoints ())
13209 {
13210 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13211 loc->cond.get ());
13212
13213 size_left = buf.size () - strlen (buf.data ());
13214
13215 ret = snprintf (buf.data () + strlen (buf.data ()),
13216 size_left, ":X%x,", aexpr->len);
13217
13218 if (ret < 0 || ret >= size_left)
13219 error ("%s", err_msg);
13220
13221 size_left = buf.size () - strlen (buf.data ());
13222
13223 /* Two bytes to encode each aexpr byte, plus the terminating
13224 null byte. */
13225 if (aexpr->len * 2 + 1 > size_left)
13226 error ("%s", err_msg);
13227
13228 pkt = buf.data () + strlen (buf.data ());
13229
13230 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13231 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13232 *pkt = '\0';
13233 }
13234 else
13235 warning (_("Target does not support conditional tracepoints, "
13236 "ignoring tp %d cond"), b->number);
13237 }
13238
13239 if (b->commands || *default_collect)
13240 {
13241 size_left = buf.size () - strlen (buf.data ());
13242
13243 ret = snprintf (buf.data () + strlen (buf.data ()),
13244 size_left, "-");
13245
13246 if (ret < 0 || ret >= size_left)
13247 error ("%s", err_msg);
13248 }
13249
13250 putpkt (buf.data ());
13251 remote_get_noisy_reply ();
13252 if (strcmp (rs->buf.data (), "OK"))
13253 error (_("Target does not support tracepoints."));
13254
13255 /* do_single_steps (t); */
13256 for (auto action_it = tdp_actions.begin ();
13257 action_it != tdp_actions.end (); action_it++)
13258 {
13259 QUIT; /* Allow user to bail out with ^C. */
13260
13261 bool has_more = ((action_it + 1) != tdp_actions.end ()
13262 || !stepping_actions.empty ());
13263
13264 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13265 b->number, addrbuf, /* address */
13266 action_it->c_str (),
13267 has_more ? '-' : 0);
13268
13269 if (ret < 0 || ret >= buf.size ())
13270 error ("%s", err_msg);
13271
13272 putpkt (buf.data ());
13273 remote_get_noisy_reply ();
13274 if (strcmp (rs->buf.data (), "OK"))
13275 error (_("Error on target while setting tracepoints."));
13276 }
13277
13278 for (auto action_it = stepping_actions.begin ();
13279 action_it != stepping_actions.end (); action_it++)
13280 {
13281 QUIT; /* Allow user to bail out with ^C. */
13282
13283 bool is_first = action_it == stepping_actions.begin ();
13284 bool has_more = (action_it + 1) != stepping_actions.end ();
13285
13286 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13287 b->number, addrbuf, /* address */
13288 is_first ? "S" : "",
13289 action_it->c_str (),
13290 has_more ? "-" : "");
13291
13292 if (ret < 0 || ret >= buf.size ())
13293 error ("%s", err_msg);
13294
13295 putpkt (buf.data ());
13296 remote_get_noisy_reply ();
13297 if (strcmp (rs->buf.data (), "OK"))
13298 error (_("Error on target while setting tracepoints."));
13299 }
13300
13301 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13302 {
13303 if (b->location != NULL)
13304 {
13305 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13306
13307 if (ret < 0 || ret >= buf.size ())
13308 error ("%s", err_msg);
13309
13310 encode_source_string (b->number, loc->address, "at",
13311 event_location_to_string (b->location.get ()),
13312 buf.data () + strlen (buf.data ()),
13313 buf.size () - strlen (buf.data ()));
13314 putpkt (buf.data ());
13315 remote_get_noisy_reply ();
13316 if (strcmp (rs->buf.data (), "OK"))
13317 warning (_("Target does not support source download."));
13318 }
13319 if (b->cond_string)
13320 {
13321 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13322
13323 if (ret < 0 || ret >= buf.size ())
13324 error ("%s", err_msg);
13325
13326 encode_source_string (b->number, loc->address,
13327 "cond", b->cond_string,
13328 buf.data () + strlen (buf.data ()),
13329 buf.size () - strlen (buf.data ()));
13330 putpkt (buf.data ());
13331 remote_get_noisy_reply ();
13332 if (strcmp (rs->buf.data (), "OK"))
13333 warning (_("Target does not support source download."));
13334 }
13335 remote_download_command_source (b->number, loc->address,
13336 breakpoint_commands (b));
13337 }
13338 }
13339
13340 bool
13341 remote_target::can_download_tracepoint ()
13342 {
13343 struct remote_state *rs = get_remote_state ();
13344 struct trace_status *ts;
13345 int status;
13346
13347 /* Don't try to install tracepoints until we've relocated our
13348 symbols, and fetched and merged the target's tracepoint list with
13349 ours. */
13350 if (rs->starting_up)
13351 return false;
13352
13353 ts = current_trace_status ();
13354 status = get_trace_status (ts);
13355
13356 if (status == -1 || !ts->running_known || !ts->running)
13357 return false;
13358
13359 /* If we are in a tracing experiment, but remote stub doesn't support
13360 installing tracepoint in trace, we have to return. */
13361 if (!remote_supports_install_in_trace ())
13362 return false;
13363
13364 return true;
13365 }
13366
13367
13368 void
13369 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13370 {
13371 struct remote_state *rs = get_remote_state ();
13372 char *p;
13373
13374 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13375 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13376 tsv.builtin);
13377 p = rs->buf.data () + strlen (rs->buf.data ());
13378 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13379 >= get_remote_packet_size ())
13380 error (_("Trace state variable name too long for tsv definition packet"));
13381 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13382 *p++ = '\0';
13383 putpkt (rs->buf);
13384 remote_get_noisy_reply ();
13385 if (rs->buf[0] == '\0')
13386 error (_("Target does not support this command."));
13387 if (strcmp (rs->buf.data (), "OK") != 0)
13388 error (_("Error on target while downloading trace state variable."));
13389 }
13390
13391 void
13392 remote_target::enable_tracepoint (struct bp_location *location)
13393 {
13394 struct remote_state *rs = get_remote_state ();
13395
13396 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13397 location->owner->number,
13398 phex (location->address, sizeof (CORE_ADDR)));
13399 putpkt (rs->buf);
13400 remote_get_noisy_reply ();
13401 if (rs->buf[0] == '\0')
13402 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13403 if (strcmp (rs->buf.data (), "OK") != 0)
13404 error (_("Error on target while enabling tracepoint."));
13405 }
13406
13407 void
13408 remote_target::disable_tracepoint (struct bp_location *location)
13409 {
13410 struct remote_state *rs = get_remote_state ();
13411
13412 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13413 location->owner->number,
13414 phex (location->address, sizeof (CORE_ADDR)));
13415 putpkt (rs->buf);
13416 remote_get_noisy_reply ();
13417 if (rs->buf[0] == '\0')
13418 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13419 if (strcmp (rs->buf.data (), "OK") != 0)
13420 error (_("Error on target while disabling tracepoint."));
13421 }
13422
13423 void
13424 remote_target::trace_set_readonly_regions ()
13425 {
13426 asection *s;
13427 bfd_size_type size;
13428 bfd_vma vma;
13429 int anysecs = 0;
13430 int offset = 0;
13431
13432 if (!current_program_space->exec_bfd ())
13433 return; /* No information to give. */
13434
13435 struct remote_state *rs = get_remote_state ();
13436
13437 strcpy (rs->buf.data (), "QTro");
13438 offset = strlen (rs->buf.data ());
13439 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13440 {
13441 char tmp1[40], tmp2[40];
13442 int sec_length;
13443
13444 if ((s->flags & SEC_LOAD) == 0 ||
13445 /* (s->flags & SEC_CODE) == 0 || */
13446 (s->flags & SEC_READONLY) == 0)
13447 continue;
13448
13449 anysecs = 1;
13450 vma = bfd_section_vma (s);
13451 size = bfd_section_size (s);
13452 sprintf_vma (tmp1, vma);
13453 sprintf_vma (tmp2, vma + size);
13454 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13455 if (offset + sec_length + 1 > rs->buf.size ())
13456 {
13457 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13458 warning (_("\
13459 Too many sections for read-only sections definition packet."));
13460 break;
13461 }
13462 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13463 tmp1, tmp2);
13464 offset += sec_length;
13465 }
13466 if (anysecs)
13467 {
13468 putpkt (rs->buf);
13469 getpkt (&rs->buf, 0);
13470 }
13471 }
13472
13473 void
13474 remote_target::trace_start ()
13475 {
13476 struct remote_state *rs = get_remote_state ();
13477
13478 putpkt ("QTStart");
13479 remote_get_noisy_reply ();
13480 if (rs->buf[0] == '\0')
13481 error (_("Target does not support this command."));
13482 if (strcmp (rs->buf.data (), "OK") != 0)
13483 error (_("Bogus reply from target: %s"), rs->buf.data ());
13484 }
13485
13486 int
13487 remote_target::get_trace_status (struct trace_status *ts)
13488 {
13489 /* Initialize it just to avoid a GCC false warning. */
13490 char *p = NULL;
13491 enum packet_result result;
13492 struct remote_state *rs = get_remote_state ();
13493
13494 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13495 return -1;
13496
13497 /* FIXME we need to get register block size some other way. */
13498 trace_regblock_size
13499 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13500
13501 putpkt ("qTStatus");
13502
13503 try
13504 {
13505 p = remote_get_noisy_reply ();
13506 }
13507 catch (const gdb_exception_error &ex)
13508 {
13509 if (ex.error != TARGET_CLOSE_ERROR)
13510 {
13511 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13512 return -1;
13513 }
13514 throw;
13515 }
13516
13517 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13518
13519 /* If the remote target doesn't do tracing, flag it. */
13520 if (result == PACKET_UNKNOWN)
13521 return -1;
13522
13523 /* We're working with a live target. */
13524 ts->filename = NULL;
13525
13526 if (*p++ != 'T')
13527 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13528
13529 /* Function 'parse_trace_status' sets default value of each field of
13530 'ts' at first, so we don't have to do it here. */
13531 parse_trace_status (p, ts);
13532
13533 return ts->running;
13534 }
13535
13536 void
13537 remote_target::get_tracepoint_status (struct breakpoint *bp,
13538 struct uploaded_tp *utp)
13539 {
13540 struct remote_state *rs = get_remote_state ();
13541 char *reply;
13542 struct tracepoint *tp = (struct tracepoint *) bp;
13543 size_t size = get_remote_packet_size ();
13544
13545 if (tp)
13546 {
13547 tp->hit_count = 0;
13548 tp->traceframe_usage = 0;
13549 for (bp_location *loc : tp->locations ())
13550 {
13551 /* If the tracepoint was never downloaded, don't go asking for
13552 any status. */
13553 if (tp->number_on_target == 0)
13554 continue;
13555 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13556 phex_nz (loc->address, 0));
13557 putpkt (rs->buf);
13558 reply = remote_get_noisy_reply ();
13559 if (reply && *reply)
13560 {
13561 if (*reply == 'V')
13562 parse_tracepoint_status (reply + 1, bp, utp);
13563 }
13564 }
13565 }
13566 else if (utp)
13567 {
13568 utp->hit_count = 0;
13569 utp->traceframe_usage = 0;
13570 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13571 phex_nz (utp->addr, 0));
13572 putpkt (rs->buf);
13573 reply = remote_get_noisy_reply ();
13574 if (reply && *reply)
13575 {
13576 if (*reply == 'V')
13577 parse_tracepoint_status (reply + 1, bp, utp);
13578 }
13579 }
13580 }
13581
13582 void
13583 remote_target::trace_stop ()
13584 {
13585 struct remote_state *rs = get_remote_state ();
13586
13587 putpkt ("QTStop");
13588 remote_get_noisy_reply ();
13589 if (rs->buf[0] == '\0')
13590 error (_("Target does not support this command."));
13591 if (strcmp (rs->buf.data (), "OK") != 0)
13592 error (_("Bogus reply from target: %s"), rs->buf.data ());
13593 }
13594
13595 int
13596 remote_target::trace_find (enum trace_find_type type, int num,
13597 CORE_ADDR addr1, CORE_ADDR addr2,
13598 int *tpp)
13599 {
13600 struct remote_state *rs = get_remote_state ();
13601 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13602 char *p, *reply;
13603 int target_frameno = -1, target_tracept = -1;
13604
13605 /* Lookups other than by absolute frame number depend on the current
13606 trace selected, so make sure it is correct on the remote end
13607 first. */
13608 if (type != tfind_number)
13609 set_remote_traceframe ();
13610
13611 p = rs->buf.data ();
13612 strcpy (p, "QTFrame:");
13613 p = strchr (p, '\0');
13614 switch (type)
13615 {
13616 case tfind_number:
13617 xsnprintf (p, endbuf - p, "%x", num);
13618 break;
13619 case tfind_pc:
13620 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13621 break;
13622 case tfind_tp:
13623 xsnprintf (p, endbuf - p, "tdp:%x", num);
13624 break;
13625 case tfind_range:
13626 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13627 phex_nz (addr2, 0));
13628 break;
13629 case tfind_outside:
13630 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13631 phex_nz (addr2, 0));
13632 break;
13633 default:
13634 error (_("Unknown trace find type %d"), type);
13635 }
13636
13637 putpkt (rs->buf);
13638 reply = remote_get_noisy_reply ();
13639 if (*reply == '\0')
13640 error (_("Target does not support this command."));
13641
13642 while (reply && *reply)
13643 switch (*reply)
13644 {
13645 case 'F':
13646 p = ++reply;
13647 target_frameno = (int) strtol (p, &reply, 16);
13648 if (reply == p)
13649 error (_("Unable to parse trace frame number"));
13650 /* Don't update our remote traceframe number cache on failure
13651 to select a remote traceframe. */
13652 if (target_frameno == -1)
13653 return -1;
13654 break;
13655 case 'T':
13656 p = ++reply;
13657 target_tracept = (int) strtol (p, &reply, 16);
13658 if (reply == p)
13659 error (_("Unable to parse tracepoint number"));
13660 break;
13661 case 'O': /* "OK"? */
13662 if (reply[1] == 'K' && reply[2] == '\0')
13663 reply += 2;
13664 else
13665 error (_("Bogus reply from target: %s"), reply);
13666 break;
13667 default:
13668 error (_("Bogus reply from target: %s"), reply);
13669 }
13670 if (tpp)
13671 *tpp = target_tracept;
13672
13673 rs->remote_traceframe_number = target_frameno;
13674 return target_frameno;
13675 }
13676
13677 bool
13678 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13679 {
13680 struct remote_state *rs = get_remote_state ();
13681 char *reply;
13682 ULONGEST uval;
13683
13684 set_remote_traceframe ();
13685
13686 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13687 putpkt (rs->buf);
13688 reply = remote_get_noisy_reply ();
13689 if (reply && *reply)
13690 {
13691 if (*reply == 'V')
13692 {
13693 unpack_varlen_hex (reply + 1, &uval);
13694 *val = (LONGEST) uval;
13695 return true;
13696 }
13697 }
13698 return false;
13699 }
13700
13701 int
13702 remote_target::save_trace_data (const char *filename)
13703 {
13704 struct remote_state *rs = get_remote_state ();
13705 char *p, *reply;
13706
13707 p = rs->buf.data ();
13708 strcpy (p, "QTSave:");
13709 p += strlen (p);
13710 if ((p - rs->buf.data ()) + strlen (filename) * 2
13711 >= get_remote_packet_size ())
13712 error (_("Remote file name too long for trace save packet"));
13713 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13714 *p++ = '\0';
13715 putpkt (rs->buf);
13716 reply = remote_get_noisy_reply ();
13717 if (*reply == '\0')
13718 error (_("Target does not support this command."));
13719 if (strcmp (reply, "OK") != 0)
13720 error (_("Bogus reply from target: %s"), reply);
13721 return 0;
13722 }
13723
13724 /* This is basically a memory transfer, but needs to be its own packet
13725 because we don't know how the target actually organizes its trace
13726 memory, plus we want to be able to ask for as much as possible, but
13727 not be unhappy if we don't get as much as we ask for. */
13728
13729 LONGEST
13730 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13731 {
13732 struct remote_state *rs = get_remote_state ();
13733 char *reply;
13734 char *p;
13735 int rslt;
13736
13737 p = rs->buf.data ();
13738 strcpy (p, "qTBuffer:");
13739 p += strlen (p);
13740 p += hexnumstr (p, offset);
13741 *p++ = ',';
13742 p += hexnumstr (p, len);
13743 *p++ = '\0';
13744
13745 putpkt (rs->buf);
13746 reply = remote_get_noisy_reply ();
13747 if (reply && *reply)
13748 {
13749 /* 'l' by itself means we're at the end of the buffer and
13750 there is nothing more to get. */
13751 if (*reply == 'l')
13752 return 0;
13753
13754 /* Convert the reply into binary. Limit the number of bytes to
13755 convert according to our passed-in buffer size, rather than
13756 what was returned in the packet; if the target is
13757 unexpectedly generous and gives us a bigger reply than we
13758 asked for, we don't want to crash. */
13759 rslt = hex2bin (reply, buf, len);
13760 return rslt;
13761 }
13762
13763 /* Something went wrong, flag as an error. */
13764 return -1;
13765 }
13766
13767 void
13768 remote_target::set_disconnected_tracing (int val)
13769 {
13770 struct remote_state *rs = get_remote_state ();
13771
13772 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13773 {
13774 char *reply;
13775
13776 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13777 "QTDisconnected:%x", val);
13778 putpkt (rs->buf);
13779 reply = remote_get_noisy_reply ();
13780 if (*reply == '\0')
13781 error (_("Target does not support this command."));
13782 if (strcmp (reply, "OK") != 0)
13783 error (_("Bogus reply from target: %s"), reply);
13784 }
13785 else if (val)
13786 warning (_("Target does not support disconnected tracing."));
13787 }
13788
13789 int
13790 remote_target::core_of_thread (ptid_t ptid)
13791 {
13792 thread_info *info = find_thread_ptid (this, ptid);
13793
13794 if (info != NULL && info->priv != NULL)
13795 return get_remote_thread_info (info)->core;
13796
13797 return -1;
13798 }
13799
13800 void
13801 remote_target::set_circular_trace_buffer (int val)
13802 {
13803 struct remote_state *rs = get_remote_state ();
13804 char *reply;
13805
13806 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13807 "QTBuffer:circular:%x", val);
13808 putpkt (rs->buf);
13809 reply = remote_get_noisy_reply ();
13810 if (*reply == '\0')
13811 error (_("Target does not support this command."));
13812 if (strcmp (reply, "OK") != 0)
13813 error (_("Bogus reply from target: %s"), reply);
13814 }
13815
13816 traceframe_info_up
13817 remote_target::traceframe_info ()
13818 {
13819 gdb::optional<gdb::char_vector> text
13820 = target_read_stralloc (current_inferior ()->top_target (),
13821 TARGET_OBJECT_TRACEFRAME_INFO,
13822 NULL);
13823 if (text)
13824 return parse_traceframe_info (text->data ());
13825
13826 return NULL;
13827 }
13828
13829 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13830 instruction on which a fast tracepoint may be placed. Returns -1
13831 if the packet is not supported, and 0 if the minimum instruction
13832 length is unknown. */
13833
13834 int
13835 remote_target::get_min_fast_tracepoint_insn_len ()
13836 {
13837 struct remote_state *rs = get_remote_state ();
13838 char *reply;
13839
13840 /* If we're not debugging a process yet, the IPA can't be
13841 loaded. */
13842 if (!target_has_execution ())
13843 return 0;
13844
13845 /* Make sure the remote is pointing at the right process. */
13846 set_general_process ();
13847
13848 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13849 putpkt (rs->buf);
13850 reply = remote_get_noisy_reply ();
13851 if (*reply == '\0')
13852 return -1;
13853 else
13854 {
13855 ULONGEST min_insn_len;
13856
13857 unpack_varlen_hex (reply, &min_insn_len);
13858
13859 return (int) min_insn_len;
13860 }
13861 }
13862
13863 void
13864 remote_target::set_trace_buffer_size (LONGEST val)
13865 {
13866 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13867 {
13868 struct remote_state *rs = get_remote_state ();
13869 char *buf = rs->buf.data ();
13870 char *endbuf = buf + get_remote_packet_size ();
13871 enum packet_result result;
13872
13873 gdb_assert (val >= 0 || val == -1);
13874 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13875 /* Send -1 as literal "-1" to avoid host size dependency. */
13876 if (val < 0)
13877 {
13878 *buf++ = '-';
13879 buf += hexnumstr (buf, (ULONGEST) -val);
13880 }
13881 else
13882 buf += hexnumstr (buf, (ULONGEST) val);
13883
13884 putpkt (rs->buf);
13885 remote_get_noisy_reply ();
13886 result = packet_ok (rs->buf,
13887 &remote_protocol_packets[PACKET_QTBuffer_size]);
13888
13889 if (result != PACKET_OK)
13890 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13891 }
13892 }
13893
13894 bool
13895 remote_target::set_trace_notes (const char *user, const char *notes,
13896 const char *stop_notes)
13897 {
13898 struct remote_state *rs = get_remote_state ();
13899 char *reply;
13900 char *buf = rs->buf.data ();
13901 char *endbuf = buf + get_remote_packet_size ();
13902 int nbytes;
13903
13904 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13905 if (user)
13906 {
13907 buf += xsnprintf (buf, endbuf - buf, "user:");
13908 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13909 buf += 2 * nbytes;
13910 *buf++ = ';';
13911 }
13912 if (notes)
13913 {
13914 buf += xsnprintf (buf, endbuf - buf, "notes:");
13915 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13916 buf += 2 * nbytes;
13917 *buf++ = ';';
13918 }
13919 if (stop_notes)
13920 {
13921 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13922 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13923 buf += 2 * nbytes;
13924 *buf++ = ';';
13925 }
13926 /* Ensure the buffer is terminated. */
13927 *buf = '\0';
13928
13929 putpkt (rs->buf);
13930 reply = remote_get_noisy_reply ();
13931 if (*reply == '\0')
13932 return false;
13933
13934 if (strcmp (reply, "OK") != 0)
13935 error (_("Bogus reply from target: %s"), reply);
13936
13937 return true;
13938 }
13939
13940 bool
13941 remote_target::use_agent (bool use)
13942 {
13943 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13944 {
13945 struct remote_state *rs = get_remote_state ();
13946
13947 /* If the stub supports QAgent. */
13948 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13949 putpkt (rs->buf);
13950 getpkt (&rs->buf, 0);
13951
13952 if (strcmp (rs->buf.data (), "OK") == 0)
13953 {
13954 ::use_agent = use;
13955 return true;
13956 }
13957 }
13958
13959 return false;
13960 }
13961
13962 bool
13963 remote_target::can_use_agent ()
13964 {
13965 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13966 }
13967
13968 struct btrace_target_info
13969 {
13970 /* The ptid of the traced thread. */
13971 ptid_t ptid;
13972
13973 /* The obtained branch trace configuration. */
13974 struct btrace_config conf;
13975 };
13976
13977 /* Reset our idea of our target's btrace configuration. */
13978
13979 static void
13980 remote_btrace_reset (remote_state *rs)
13981 {
13982 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13983 }
13984
13985 /* Synchronize the configuration with the target. */
13986
13987 void
13988 remote_target::btrace_sync_conf (const btrace_config *conf)
13989 {
13990 struct packet_config *packet;
13991 struct remote_state *rs;
13992 char *buf, *pos, *endbuf;
13993
13994 rs = get_remote_state ();
13995 buf = rs->buf.data ();
13996 endbuf = buf + get_remote_packet_size ();
13997
13998 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13999 if (packet_config_support (packet) == PACKET_ENABLE
14000 && conf->bts.size != rs->btrace_config.bts.size)
14001 {
14002 pos = buf;
14003 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14004 conf->bts.size);
14005
14006 putpkt (buf);
14007 getpkt (&rs->buf, 0);
14008
14009 if (packet_ok (buf, packet) == PACKET_ERROR)
14010 {
14011 if (buf[0] == 'E' && buf[1] == '.')
14012 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14013 else
14014 error (_("Failed to configure the BTS buffer size."));
14015 }
14016
14017 rs->btrace_config.bts.size = conf->bts.size;
14018 }
14019
14020 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14021 if (packet_config_support (packet) == PACKET_ENABLE
14022 && conf->pt.size != rs->btrace_config.pt.size)
14023 {
14024 pos = buf;
14025 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14026 conf->pt.size);
14027
14028 putpkt (buf);
14029 getpkt (&rs->buf, 0);
14030
14031 if (packet_ok (buf, packet) == PACKET_ERROR)
14032 {
14033 if (buf[0] == 'E' && buf[1] == '.')
14034 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14035 else
14036 error (_("Failed to configure the trace buffer size."));
14037 }
14038
14039 rs->btrace_config.pt.size = conf->pt.size;
14040 }
14041 }
14042
14043 /* Read the current thread's btrace configuration from the target and
14044 store it into CONF. */
14045
14046 static void
14047 btrace_read_config (struct btrace_config *conf)
14048 {
14049 gdb::optional<gdb::char_vector> xml
14050 = target_read_stralloc (current_inferior ()->top_target (),
14051 TARGET_OBJECT_BTRACE_CONF, "");
14052 if (xml)
14053 parse_xml_btrace_conf (conf, xml->data ());
14054 }
14055
14056 /* Maybe reopen target btrace. */
14057
14058 void
14059 remote_target::remote_btrace_maybe_reopen ()
14060 {
14061 struct remote_state *rs = get_remote_state ();
14062 int btrace_target_pushed = 0;
14063 #if !defined (HAVE_LIBIPT)
14064 int warned = 0;
14065 #endif
14066
14067 /* Don't bother walking the entirety of the remote thread list when
14068 we know the feature isn't supported by the remote. */
14069 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14070 return;
14071
14072 scoped_restore_current_thread restore_thread;
14073
14074 for (thread_info *tp : all_non_exited_threads (this))
14075 {
14076 set_general_thread (tp->ptid);
14077
14078 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14079 btrace_read_config (&rs->btrace_config);
14080
14081 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14082 continue;
14083
14084 #if !defined (HAVE_LIBIPT)
14085 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14086 {
14087 if (!warned)
14088 {
14089 warned = 1;
14090 warning (_("Target is recording using Intel Processor Trace "
14091 "but support was disabled at compile time."));
14092 }
14093
14094 continue;
14095 }
14096 #endif /* !defined (HAVE_LIBIPT) */
14097
14098 /* Push target, once, but before anything else happens. This way our
14099 changes to the threads will be cleaned up by unpushing the target
14100 in case btrace_read_config () throws. */
14101 if (!btrace_target_pushed)
14102 {
14103 btrace_target_pushed = 1;
14104 record_btrace_push_target ();
14105 printf_filtered (_("Target is recording using %s.\n"),
14106 btrace_format_string (rs->btrace_config.format));
14107 }
14108
14109 tp->btrace.target = XCNEW (struct btrace_target_info);
14110 tp->btrace.target->ptid = tp->ptid;
14111 tp->btrace.target->conf = rs->btrace_config;
14112 }
14113 }
14114
14115 /* Enable branch tracing. */
14116
14117 struct btrace_target_info *
14118 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14119 {
14120 struct btrace_target_info *tinfo = NULL;
14121 struct packet_config *packet = NULL;
14122 struct remote_state *rs = get_remote_state ();
14123 char *buf = rs->buf.data ();
14124 char *endbuf = buf + get_remote_packet_size ();
14125
14126 switch (conf->format)
14127 {
14128 case BTRACE_FORMAT_BTS:
14129 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14130 break;
14131
14132 case BTRACE_FORMAT_PT:
14133 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14134 break;
14135 }
14136
14137 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14138 error (_("Target does not support branch tracing."));
14139
14140 btrace_sync_conf (conf);
14141
14142 set_general_thread (ptid);
14143
14144 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14145 putpkt (rs->buf);
14146 getpkt (&rs->buf, 0);
14147
14148 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14149 {
14150 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14151 error (_("Could not enable branch tracing for %s: %s"),
14152 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14153 else
14154 error (_("Could not enable branch tracing for %s."),
14155 target_pid_to_str (ptid).c_str ());
14156 }
14157
14158 tinfo = XCNEW (struct btrace_target_info);
14159 tinfo->ptid = ptid;
14160
14161 /* If we fail to read the configuration, we lose some information, but the
14162 tracing itself is not impacted. */
14163 try
14164 {
14165 btrace_read_config (&tinfo->conf);
14166 }
14167 catch (const gdb_exception_error &err)
14168 {
14169 if (err.message != NULL)
14170 warning ("%s", err.what ());
14171 }
14172
14173 return tinfo;
14174 }
14175
14176 /* Disable branch tracing. */
14177
14178 void
14179 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14180 {
14181 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14182 struct remote_state *rs = get_remote_state ();
14183 char *buf = rs->buf.data ();
14184 char *endbuf = buf + get_remote_packet_size ();
14185
14186 if (packet_config_support (packet) != PACKET_ENABLE)
14187 error (_("Target does not support branch tracing."));
14188
14189 set_general_thread (tinfo->ptid);
14190
14191 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14192 putpkt (rs->buf);
14193 getpkt (&rs->buf, 0);
14194
14195 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14196 {
14197 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14198 error (_("Could not disable branch tracing for %s: %s"),
14199 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14200 else
14201 error (_("Could not disable branch tracing for %s."),
14202 target_pid_to_str (tinfo->ptid).c_str ());
14203 }
14204
14205 xfree (tinfo);
14206 }
14207
14208 /* Teardown branch tracing. */
14209
14210 void
14211 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14212 {
14213 /* We must not talk to the target during teardown. */
14214 xfree (tinfo);
14215 }
14216
14217 /* Read the branch trace. */
14218
14219 enum btrace_error
14220 remote_target::read_btrace (struct btrace_data *btrace,
14221 struct btrace_target_info *tinfo,
14222 enum btrace_read_type type)
14223 {
14224 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14225 const char *annex;
14226
14227 if (packet_config_support (packet) != PACKET_ENABLE)
14228 error (_("Target does not support branch tracing."));
14229
14230 #if !defined(HAVE_LIBEXPAT)
14231 error (_("Cannot process branch tracing result. XML parsing not supported."));
14232 #endif
14233
14234 switch (type)
14235 {
14236 case BTRACE_READ_ALL:
14237 annex = "all";
14238 break;
14239 case BTRACE_READ_NEW:
14240 annex = "new";
14241 break;
14242 case BTRACE_READ_DELTA:
14243 annex = "delta";
14244 break;
14245 default:
14246 internal_error (__FILE__, __LINE__,
14247 _("Bad branch tracing read type: %u."),
14248 (unsigned int) type);
14249 }
14250
14251 gdb::optional<gdb::char_vector> xml
14252 = target_read_stralloc (current_inferior ()->top_target (),
14253 TARGET_OBJECT_BTRACE, annex);
14254 if (!xml)
14255 return BTRACE_ERR_UNKNOWN;
14256
14257 parse_xml_btrace (btrace, xml->data ());
14258
14259 return BTRACE_ERR_NONE;
14260 }
14261
14262 const struct btrace_config *
14263 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14264 {
14265 return &tinfo->conf;
14266 }
14267
14268 bool
14269 remote_target::augmented_libraries_svr4_read ()
14270 {
14271 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14272 == PACKET_ENABLE);
14273 }
14274
14275 /* Implementation of to_load. */
14276
14277 void
14278 remote_target::load (const char *name, int from_tty)
14279 {
14280 generic_load (name, from_tty);
14281 }
14282
14283 /* Accepts an integer PID; returns a string representing a file that
14284 can be opened on the remote side to get the symbols for the child
14285 process. Returns NULL if the operation is not supported. */
14286
14287 char *
14288 remote_target::pid_to_exec_file (int pid)
14289 {
14290 static gdb::optional<gdb::char_vector> filename;
14291 char *annex = NULL;
14292
14293 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14294 return NULL;
14295
14296 inferior *inf = find_inferior_pid (this, pid);
14297 if (inf == NULL)
14298 internal_error (__FILE__, __LINE__,
14299 _("not currently attached to process %d"), pid);
14300
14301 if (!inf->fake_pid_p)
14302 {
14303 const int annex_size = 9;
14304
14305 annex = (char *) alloca (annex_size);
14306 xsnprintf (annex, annex_size, "%x", pid);
14307 }
14308
14309 filename = target_read_stralloc (current_inferior ()->top_target (),
14310 TARGET_OBJECT_EXEC_FILE, annex);
14311
14312 return filename ? filename->data () : nullptr;
14313 }
14314
14315 /* Implement the to_can_do_single_step target_ops method. */
14316
14317 int
14318 remote_target::can_do_single_step ()
14319 {
14320 /* We can only tell whether target supports single step or not by
14321 supported s and S vCont actions if the stub supports vContSupported
14322 feature. If the stub doesn't support vContSupported feature,
14323 we have conservatively to think target doesn't supports single
14324 step. */
14325 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14326 {
14327 struct remote_state *rs = get_remote_state ();
14328
14329 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14330 remote_vcont_probe ();
14331
14332 return rs->supports_vCont.s && rs->supports_vCont.S;
14333 }
14334 else
14335 return 0;
14336 }
14337
14338 /* Implementation of the to_execution_direction method for the remote
14339 target. */
14340
14341 enum exec_direction_kind
14342 remote_target::execution_direction ()
14343 {
14344 struct remote_state *rs = get_remote_state ();
14345
14346 return rs->last_resume_exec_dir;
14347 }
14348
14349 /* Return pointer to the thread_info struct which corresponds to
14350 THREAD_HANDLE (having length HANDLE_LEN). */
14351
14352 thread_info *
14353 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14354 int handle_len,
14355 inferior *inf)
14356 {
14357 for (thread_info *tp : all_non_exited_threads (this))
14358 {
14359 remote_thread_info *priv = get_remote_thread_info (tp);
14360
14361 if (tp->inf == inf && priv != NULL)
14362 {
14363 if (handle_len != priv->thread_handle.size ())
14364 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14365 handle_len, priv->thread_handle.size ());
14366 if (memcmp (thread_handle, priv->thread_handle.data (),
14367 handle_len) == 0)
14368 return tp;
14369 }
14370 }
14371
14372 return NULL;
14373 }
14374
14375 gdb::byte_vector
14376 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14377 {
14378 remote_thread_info *priv = get_remote_thread_info (tp);
14379 return priv->thread_handle;
14380 }
14381
14382 bool
14383 remote_target::can_async_p ()
14384 {
14385 struct remote_state *rs = get_remote_state ();
14386
14387 /* We don't go async if the user has explicitly prevented it with the
14388 "maint set target-async" command. */
14389 if (!target_async_permitted)
14390 return false;
14391
14392 /* We're async whenever the serial device is. */
14393 return serial_can_async_p (rs->remote_desc);
14394 }
14395
14396 bool
14397 remote_target::is_async_p ()
14398 {
14399 struct remote_state *rs = get_remote_state ();
14400
14401 if (!target_async_permitted)
14402 /* We only enable async when the user specifically asks for it. */
14403 return false;
14404
14405 /* We're async whenever the serial device is. */
14406 return serial_is_async_p (rs->remote_desc);
14407 }
14408
14409 /* Pass the SERIAL event on and up to the client. One day this code
14410 will be able to delay notifying the client of an event until the
14411 point where an entire packet has been received. */
14412
14413 static serial_event_ftype remote_async_serial_handler;
14414
14415 static void
14416 remote_async_serial_handler (struct serial *scb, void *context)
14417 {
14418 /* Don't propogate error information up to the client. Instead let
14419 the client find out about the error by querying the target. */
14420 inferior_event_handler (INF_REG_EVENT);
14421 }
14422
14423 static void
14424 remote_async_inferior_event_handler (gdb_client_data data)
14425 {
14426 inferior_event_handler (INF_REG_EVENT);
14427 }
14428
14429 int
14430 remote_target::async_wait_fd ()
14431 {
14432 struct remote_state *rs = get_remote_state ();
14433 return rs->remote_desc->fd;
14434 }
14435
14436 void
14437 remote_target::async (int enable)
14438 {
14439 struct remote_state *rs = get_remote_state ();
14440
14441 if (enable)
14442 {
14443 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14444
14445 /* If there are pending events in the stop reply queue tell the
14446 event loop to process them. */
14447 if (!rs->stop_reply_queue.empty ())
14448 mark_async_event_handler (rs->remote_async_inferior_event_token);
14449 /* For simplicity, below we clear the pending events token
14450 without remembering whether it is marked, so here we always
14451 mark it. If there's actually no pending notification to
14452 process, this ends up being a no-op (other than a spurious
14453 event-loop wakeup). */
14454 if (target_is_non_stop_p ())
14455 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14456 }
14457 else
14458 {
14459 serial_async (rs->remote_desc, NULL, NULL);
14460 /* If the core is disabling async, it doesn't want to be
14461 disturbed with target events. Clear all async event sources
14462 too. */
14463 clear_async_event_handler (rs->remote_async_inferior_event_token);
14464 if (target_is_non_stop_p ())
14465 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14466 }
14467 }
14468
14469 /* Implementation of the to_thread_events method. */
14470
14471 void
14472 remote_target::thread_events (int enable)
14473 {
14474 struct remote_state *rs = get_remote_state ();
14475 size_t size = get_remote_packet_size ();
14476
14477 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14478 return;
14479
14480 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14481 putpkt (rs->buf);
14482 getpkt (&rs->buf, 0);
14483
14484 switch (packet_ok (rs->buf,
14485 &remote_protocol_packets[PACKET_QThreadEvents]))
14486 {
14487 case PACKET_OK:
14488 if (strcmp (rs->buf.data (), "OK") != 0)
14489 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14490 break;
14491 case PACKET_ERROR:
14492 warning (_("Remote failure reply: %s"), rs->buf.data ());
14493 break;
14494 case PACKET_UNKNOWN:
14495 break;
14496 }
14497 }
14498
14499 static void
14500 show_remote_cmd (const char *args, int from_tty)
14501 {
14502 /* We can't just use cmd_show_list here, because we want to skip
14503 the redundant "show remote Z-packet" and the legacy aliases. */
14504 struct cmd_list_element *list = remote_show_cmdlist;
14505 struct ui_out *uiout = current_uiout;
14506
14507 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14508 for (; list != NULL; list = list->next)
14509 if (strcmp (list->name, "Z-packet") == 0)
14510 continue;
14511 else if (list->type == not_set_cmd)
14512 /* Alias commands are exactly like the original, except they
14513 don't have the normal type. */
14514 continue;
14515 else
14516 {
14517 ui_out_emit_tuple option_emitter (uiout, "option");
14518
14519 uiout->field_string ("name", list->name);
14520 uiout->text (": ");
14521 if (list->type == show_cmd)
14522 do_show_command (NULL, from_tty, list);
14523 else
14524 cmd_func (list, NULL, from_tty);
14525 }
14526 }
14527
14528
14529 /* Function to be called whenever a new objfile (shlib) is detected. */
14530 static void
14531 remote_new_objfile (struct objfile *objfile)
14532 {
14533 remote_target *remote = get_current_remote_target ();
14534
14535 /* First, check whether the current inferior's process target is a remote
14536 target. */
14537 if (remote == nullptr)
14538 return;
14539
14540 /* When we are attaching or handling a fork child and the shared library
14541 subsystem reads the list of loaded libraries, we receive new objfile
14542 events in between each found library. The libraries are read in an
14543 undefined order, so if we gave the remote side a chance to look up
14544 symbols between each objfile, we might give it an inconsistent picture
14545 of the inferior. It could appear that a library A appears loaded but
14546 a library B does not, even though library A requires library B. That
14547 would present a state that couldn't normally exist in the inferior.
14548
14549 So, skip these events, we'll give the remote a chance to look up symbols
14550 once all the loaded libraries and their symbols are known to GDB. */
14551 if (current_inferior ()->in_initial_library_scan)
14552 return;
14553
14554 remote->remote_check_symbols ();
14555 }
14556
14557 /* Pull all the tracepoints defined on the target and create local
14558 data structures representing them. We don't want to create real
14559 tracepoints yet, we don't want to mess up the user's existing
14560 collection. */
14561
14562 int
14563 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14564 {
14565 struct remote_state *rs = get_remote_state ();
14566 char *p;
14567
14568 /* Ask for a first packet of tracepoint definition. */
14569 putpkt ("qTfP");
14570 getpkt (&rs->buf, 0);
14571 p = rs->buf.data ();
14572 while (*p && *p != 'l')
14573 {
14574 parse_tracepoint_definition (p, utpp);
14575 /* Ask for another packet of tracepoint definition. */
14576 putpkt ("qTsP");
14577 getpkt (&rs->buf, 0);
14578 p = rs->buf.data ();
14579 }
14580 return 0;
14581 }
14582
14583 int
14584 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14585 {
14586 struct remote_state *rs = get_remote_state ();
14587 char *p;
14588
14589 /* Ask for a first packet of variable definition. */
14590 putpkt ("qTfV");
14591 getpkt (&rs->buf, 0);
14592 p = rs->buf.data ();
14593 while (*p && *p != 'l')
14594 {
14595 parse_tsv_definition (p, utsvp);
14596 /* Ask for another packet of variable definition. */
14597 putpkt ("qTsV");
14598 getpkt (&rs->buf, 0);
14599 p = rs->buf.data ();
14600 }
14601 return 0;
14602 }
14603
14604 /* The "set/show range-stepping" show hook. */
14605
14606 static void
14607 show_range_stepping (struct ui_file *file, int from_tty,
14608 struct cmd_list_element *c,
14609 const char *value)
14610 {
14611 fprintf_filtered (file,
14612 _("Debugger's willingness to use range stepping "
14613 "is %s.\n"), value);
14614 }
14615
14616 /* Return true if the vCont;r action is supported by the remote
14617 stub. */
14618
14619 bool
14620 remote_target::vcont_r_supported ()
14621 {
14622 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14623 remote_vcont_probe ();
14624
14625 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14626 && get_remote_state ()->supports_vCont.r);
14627 }
14628
14629 /* The "set/show range-stepping" set hook. */
14630
14631 static void
14632 set_range_stepping (const char *ignore_args, int from_tty,
14633 struct cmd_list_element *c)
14634 {
14635 /* When enabling, check whether range stepping is actually supported
14636 by the target, and warn if not. */
14637 if (use_range_stepping)
14638 {
14639 remote_target *remote = get_current_remote_target ();
14640 if (remote == NULL
14641 || !remote->vcont_r_supported ())
14642 warning (_("Range stepping is not supported by the current target"));
14643 }
14644 }
14645
14646 static void
14647 show_remote_debug (struct ui_file *file, int from_tty,
14648 struct cmd_list_element *c, const char *value)
14649 {
14650 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14651 value);
14652 }
14653
14654 static void
14655 show_remote_timeout (struct ui_file *file, int from_tty,
14656 struct cmd_list_element *c, const char *value)
14657 {
14658 fprintf_filtered (file,
14659 _("Timeout limit to wait for target to respond is %s.\n"),
14660 value);
14661 }
14662
14663 /* Implement the "supports_memory_tagging" target_ops method. */
14664
14665 bool
14666 remote_target::supports_memory_tagging ()
14667 {
14668 return remote_memory_tagging_p ();
14669 }
14670
14671 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14672
14673 static void
14674 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14675 size_t len, int type)
14676 {
14677 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14678
14679 std::string request = string_printf ("qMemTags:%s,%s:%s",
14680 phex_nz (address, addr_size),
14681 phex_nz (len, sizeof (len)),
14682 phex_nz (type, sizeof (type)));
14683
14684 strcpy (packet.data (), request.c_str ());
14685 }
14686
14687 /* Parse the qMemTags packet reply into TAGS.
14688
14689 Return true if successful, false otherwise. */
14690
14691 static bool
14692 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14693 gdb::byte_vector &tags)
14694 {
14695 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14696 return false;
14697
14698 /* Copy the tag data. */
14699 tags = hex2bin (reply.data () + 1);
14700
14701 return true;
14702 }
14703
14704 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14705
14706 static void
14707 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14708 size_t len, int type,
14709 const gdb::byte_vector &tags)
14710 {
14711 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14712
14713 /* Put together the main packet, address and length. */
14714 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14715 phex_nz (address, addr_size),
14716 phex_nz (len, sizeof (len)),
14717 phex_nz (type, sizeof (type)));
14718 request += bin2hex (tags.data (), tags.size ());
14719
14720 /* Check if we have exceeded the maximum packet size. */
14721 if (packet.size () < request.length ())
14722 error (_("Contents too big for packet QMemTags."));
14723
14724 strcpy (packet.data (), request.c_str ());
14725 }
14726
14727 /* Implement the "fetch_memtags" target_ops method. */
14728
14729 bool
14730 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14731 gdb::byte_vector &tags, int type)
14732 {
14733 /* Make sure the qMemTags packet is supported. */
14734 if (!remote_memory_tagging_p ())
14735 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14736
14737 struct remote_state *rs = get_remote_state ();
14738
14739 create_fetch_memtags_request (rs->buf, address, len, type);
14740
14741 putpkt (rs->buf);
14742 getpkt (&rs->buf, 0);
14743
14744 return parse_fetch_memtags_reply (rs->buf, tags);
14745 }
14746
14747 /* Implement the "store_memtags" target_ops method. */
14748
14749 bool
14750 remote_target::store_memtags (CORE_ADDR address, size_t len,
14751 const gdb::byte_vector &tags, int type)
14752 {
14753 /* Make sure the QMemTags packet is supported. */
14754 if (!remote_memory_tagging_p ())
14755 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14756
14757 struct remote_state *rs = get_remote_state ();
14758
14759 create_store_memtags_request (rs->buf, address, len, type, tags);
14760
14761 putpkt (rs->buf);
14762 getpkt (&rs->buf, 0);
14763
14764 /* Verify if the request was successful. */
14765 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14766 }
14767
14768 /* Return true if remote target T is non-stop. */
14769
14770 bool
14771 remote_target_is_non_stop_p (remote_target *t)
14772 {
14773 scoped_restore_current_thread restore_thread;
14774 switch_to_target_no_thread (t);
14775
14776 return target_is_non_stop_p ();
14777 }
14778
14779 #if GDB_SELF_TEST
14780
14781 namespace selftests {
14782
14783 static void
14784 test_memory_tagging_functions ()
14785 {
14786 remote_target remote;
14787
14788 struct packet_config *config
14789 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14790
14791 scoped_restore restore_memtag_support_
14792 = make_scoped_restore (&config->support);
14793
14794 /* Test memory tagging packet support. */
14795 config->support = PACKET_SUPPORT_UNKNOWN;
14796 SELF_CHECK (remote.supports_memory_tagging () == false);
14797 config->support = PACKET_DISABLE;
14798 SELF_CHECK (remote.supports_memory_tagging () == false);
14799 config->support = PACKET_ENABLE;
14800 SELF_CHECK (remote.supports_memory_tagging () == true);
14801
14802 /* Setup testing. */
14803 gdb::char_vector packet;
14804 gdb::byte_vector tags, bv;
14805 std::string expected, reply;
14806 packet.resize (32000);
14807
14808 /* Test creating a qMemTags request. */
14809
14810 expected = "qMemTags:0,0:0";
14811 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14812 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14813
14814 expected = "qMemTags:deadbeef,10:1";
14815 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14816 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14817
14818 /* Test parsing a qMemTags reply. */
14819
14820 /* Error reply, tags vector unmodified. */
14821 reply = "E00";
14822 strcpy (packet.data (), reply.c_str ());
14823 tags.resize (0);
14824 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14825 SELF_CHECK (tags.size () == 0);
14826
14827 /* Valid reply, tags vector updated. */
14828 tags.resize (0);
14829 bv.resize (0);
14830
14831 for (int i = 0; i < 5; i++)
14832 bv.push_back (i);
14833
14834 reply = "m" + bin2hex (bv.data (), bv.size ());
14835 strcpy (packet.data (), reply.c_str ());
14836
14837 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14838 SELF_CHECK (tags.size () == 5);
14839
14840 for (int i = 0; i < 5; i++)
14841 SELF_CHECK (tags[i] == i);
14842
14843 /* Test creating a QMemTags request. */
14844
14845 /* Empty tag data. */
14846 tags.resize (0);
14847 expected = "QMemTags:0,0:0:";
14848 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14849 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14850 expected.length ()) == 0);
14851
14852 /* Non-empty tag data. */
14853 tags.resize (0);
14854 for (int i = 0; i < 5; i++)
14855 tags.push_back (i);
14856 expected = "QMemTags:deadbeef,ff:1:0001020304";
14857 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14858 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14859 expected.length ()) == 0);
14860 }
14861
14862 } // namespace selftests
14863 #endif /* GDB_SELF_TEST */
14864
14865 void _initialize_remote ();
14866 void
14867 _initialize_remote ()
14868 {
14869 /* architecture specific data */
14870 remote_g_packet_data_handle =
14871 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14872
14873 add_target (remote_target_info, remote_target::open);
14874 add_target (extended_remote_target_info, extended_remote_target::open);
14875
14876 /* Hook into new objfile notification. */
14877 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14878
14879 #if 0
14880 init_remote_threadtests ();
14881 #endif
14882
14883 /* set/show remote ... */
14884
14885 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14886 Remote protocol specific variables.\n\
14887 Configure various remote-protocol specific variables such as\n\
14888 the packets being used."),
14889 &remote_set_cmdlist,
14890 0 /* allow-unknown */, &setlist);
14891 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14892 Remote protocol specific variables.\n\
14893 Configure various remote-protocol specific variables such as\n\
14894 the packets being used."),
14895 &remote_show_cmdlist,
14896 0 /* allow-unknown */, &showlist);
14897
14898 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14899 Compare section data on target to the exec file.\n\
14900 Argument is a single section name (default: all loaded sections).\n\
14901 To compare only read-only loaded sections, specify the -r option."),
14902 &cmdlist);
14903
14904 add_cmd ("packet", class_maintenance, packet_command, _("\
14905 Send an arbitrary packet to a remote target.\n\
14906 maintenance packet TEXT\n\
14907 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14908 this command sends the string TEXT to the inferior, and displays the\n\
14909 response packet. GDB supplies the initial `$' character, and the\n\
14910 terminating `#' character and checksum."),
14911 &maintenancelist);
14912
14913 set_show_commands remotebreak_cmds
14914 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14915 Set whether to send break if interrupted."), _("\
14916 Show whether to send break if interrupted."), _("\
14917 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14918 set_remotebreak, show_remotebreak,
14919 &setlist, &showlist);
14920 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14921 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14922
14923 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14924 interrupt_sequence_modes, &interrupt_sequence_mode,
14925 _("\
14926 Set interrupt sequence to remote target."), _("\
14927 Show interrupt sequence to remote target."), _("\
14928 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14929 NULL, show_interrupt_sequence,
14930 &remote_set_cmdlist,
14931 &remote_show_cmdlist);
14932
14933 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14934 &interrupt_on_connect, _("\
14935 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14936 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14937 If set, interrupt sequence is sent to remote target."),
14938 NULL, NULL,
14939 &remote_set_cmdlist, &remote_show_cmdlist);
14940
14941 /* Install commands for configuring memory read/write packets. */
14942
14943 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14944 Set the maximum number of bytes per memory write packet (deprecated)."),
14945 &setlist);
14946 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14947 Show the maximum number of bytes per memory write packet (deprecated)."),
14948 &showlist);
14949 add_cmd ("memory-write-packet-size", no_class,
14950 set_memory_write_packet_size, _("\
14951 Set the maximum number of bytes per memory-write packet.\n\
14952 Specify the number of bytes in a packet or 0 (zero) for the\n\
14953 default packet size. The actual limit is further reduced\n\
14954 dependent on the target. Specify ``fixed'' to disable the\n\
14955 further restriction and ``limit'' to enable that restriction."),
14956 &remote_set_cmdlist);
14957 add_cmd ("memory-read-packet-size", no_class,
14958 set_memory_read_packet_size, _("\
14959 Set the maximum number of bytes per memory-read packet.\n\
14960 Specify the number of bytes in a packet or 0 (zero) for the\n\
14961 default packet size. The actual limit is further reduced\n\
14962 dependent on the target. Specify ``fixed'' to disable the\n\
14963 further restriction and ``limit'' to enable that restriction."),
14964 &remote_set_cmdlist);
14965 add_cmd ("memory-write-packet-size", no_class,
14966 show_memory_write_packet_size,
14967 _("Show the maximum number of bytes per memory-write packet."),
14968 &remote_show_cmdlist);
14969 add_cmd ("memory-read-packet-size", no_class,
14970 show_memory_read_packet_size,
14971 _("Show the maximum number of bytes per memory-read packet."),
14972 &remote_show_cmdlist);
14973
14974 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14975 &remote_hw_watchpoint_limit, _("\
14976 Set the maximum number of target hardware watchpoints."), _("\
14977 Show the maximum number of target hardware watchpoints."), _("\
14978 Specify \"unlimited\" for unlimited hardware watchpoints."),
14979 NULL, show_hardware_watchpoint_limit,
14980 &remote_set_cmdlist,
14981 &remote_show_cmdlist);
14982 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14983 no_class,
14984 &remote_hw_watchpoint_length_limit, _("\
14985 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14986 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14987 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14988 NULL, show_hardware_watchpoint_length_limit,
14989 &remote_set_cmdlist, &remote_show_cmdlist);
14990 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14991 &remote_hw_breakpoint_limit, _("\
14992 Set the maximum number of target hardware breakpoints."), _("\
14993 Show the maximum number of target hardware breakpoints."), _("\
14994 Specify \"unlimited\" for unlimited hardware breakpoints."),
14995 NULL, show_hardware_breakpoint_limit,
14996 &remote_set_cmdlist, &remote_show_cmdlist);
14997
14998 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14999 &remote_address_size, _("\
15000 Set the maximum size of the address (in bits) in a memory packet."), _("\
15001 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15002 NULL,
15003 NULL, /* FIXME: i18n: */
15004 &setlist, &showlist);
15005
15006 init_all_packet_configs ();
15007
15008 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15009 "X", "binary-download", 1);
15010
15011 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15012 "vCont", "verbose-resume", 0);
15013
15014 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15015 "QPassSignals", "pass-signals", 0);
15016
15017 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15018 "QCatchSyscalls", "catch-syscalls", 0);
15019
15020 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15021 "QProgramSignals", "program-signals", 0);
15022
15023 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15024 "QSetWorkingDir", "set-working-dir", 0);
15025
15026 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15027 "QStartupWithShell", "startup-with-shell", 0);
15028
15029 add_packet_config_cmd (&remote_protocol_packets
15030 [PACKET_QEnvironmentHexEncoded],
15031 "QEnvironmentHexEncoded", "environment-hex-encoded",
15032 0);
15033
15034 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15035 "QEnvironmentReset", "environment-reset",
15036 0);
15037
15038 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15039 "QEnvironmentUnset", "environment-unset",
15040 0);
15041
15042 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15043 "qSymbol", "symbol-lookup", 0);
15044
15045 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15046 "P", "set-register", 1);
15047
15048 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15049 "p", "fetch-register", 1);
15050
15051 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15052 "Z0", "software-breakpoint", 0);
15053
15054 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15055 "Z1", "hardware-breakpoint", 0);
15056
15057 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15058 "Z2", "write-watchpoint", 0);
15059
15060 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15061 "Z3", "read-watchpoint", 0);
15062
15063 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15064 "Z4", "access-watchpoint", 0);
15065
15066 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15067 "qXfer:auxv:read", "read-aux-vector", 0);
15068
15069 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15070 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15071
15072 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15073 "qXfer:features:read", "target-features", 0);
15074
15075 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15076 "qXfer:libraries:read", "library-info", 0);
15077
15078 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15079 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15080
15081 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15082 "qXfer:memory-map:read", "memory-map", 0);
15083
15084 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15085 "qXfer:osdata:read", "osdata", 0);
15086
15087 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15088 "qXfer:threads:read", "threads", 0);
15089
15090 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15091 "qXfer:siginfo:read", "read-siginfo-object", 0);
15092
15093 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15094 "qXfer:siginfo:write", "write-siginfo-object", 0);
15095
15096 add_packet_config_cmd
15097 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15098 "qXfer:traceframe-info:read", "traceframe-info", 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15101 "qXfer:uib:read", "unwind-info-block", 0);
15102
15103 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15104 "qGetTLSAddr", "get-thread-local-storage-address",
15105 0);
15106
15107 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15108 "qGetTIBAddr", "get-thread-information-block-address",
15109 0);
15110
15111 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15112 "bc", "reverse-continue", 0);
15113
15114 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15115 "bs", "reverse-step", 0);
15116
15117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15118 "qSupported", "supported-packets", 0);
15119
15120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15121 "qSearch:memory", "search-memory", 0);
15122
15123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15124 "qTStatus", "trace-status", 0);
15125
15126 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15127 "vFile:setfs", "hostio-setfs", 0);
15128
15129 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15130 "vFile:open", "hostio-open", 0);
15131
15132 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15133 "vFile:pread", "hostio-pread", 0);
15134
15135 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15136 "vFile:pwrite", "hostio-pwrite", 0);
15137
15138 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15139 "vFile:close", "hostio-close", 0);
15140
15141 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15142 "vFile:unlink", "hostio-unlink", 0);
15143
15144 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15145 "vFile:readlink", "hostio-readlink", 0);
15146
15147 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15148 "vFile:fstat", "hostio-fstat", 0);
15149
15150 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15151 "vAttach", "attach", 0);
15152
15153 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15154 "vRun", "run", 0);
15155
15156 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15157 "QStartNoAckMode", "noack", 0);
15158
15159 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15160 "vKill", "kill", 0);
15161
15162 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15163 "qAttached", "query-attached", 0);
15164
15165 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15166 "ConditionalTracepoints",
15167 "conditional-tracepoints", 0);
15168
15169 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15170 "ConditionalBreakpoints",
15171 "conditional-breakpoints", 0);
15172
15173 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15174 "BreakpointCommands",
15175 "breakpoint-commands", 0);
15176
15177 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15178 "FastTracepoints", "fast-tracepoints", 0);
15179
15180 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15181 "TracepointSource", "TracepointSource", 0);
15182
15183 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15184 "QAllow", "allow", 0);
15185
15186 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15187 "StaticTracepoints", "static-tracepoints", 0);
15188
15189 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15190 "InstallInTrace", "install-in-trace", 0);
15191
15192 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15193 "qXfer:statictrace:read", "read-sdata-object", 0);
15194
15195 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15196 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15197
15198 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15199 "QDisableRandomization", "disable-randomization", 0);
15200
15201 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15202 "QAgent", "agent", 0);
15203
15204 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15205 "QTBuffer:size", "trace-buffer-size", 0);
15206
15207 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15208 "Qbtrace:off", "disable-btrace", 0);
15209
15210 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15211 "Qbtrace:bts", "enable-btrace-bts", 0);
15212
15213 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15214 "Qbtrace:pt", "enable-btrace-pt", 0);
15215
15216 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15217 "qXfer:btrace", "read-btrace", 0);
15218
15219 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15220 "qXfer:btrace-conf", "read-btrace-conf", 0);
15221
15222 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15223 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15224
15225 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15226 "multiprocess-feature", "multiprocess-feature", 0);
15227
15228 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15229 "swbreak-feature", "swbreak-feature", 0);
15230
15231 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15232 "hwbreak-feature", "hwbreak-feature", 0);
15233
15234 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15235 "fork-event-feature", "fork-event-feature", 0);
15236
15237 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15238 "vfork-event-feature", "vfork-event-feature", 0);
15239
15240 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15241 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15242
15243 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15244 "vContSupported", "verbose-resume-supported", 0);
15245
15246 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15247 "exec-event-feature", "exec-event-feature", 0);
15248
15249 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15250 "vCtrlC", "ctrl-c", 0);
15251
15252 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15253 "QThreadEvents", "thread-events", 0);
15254
15255 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15256 "N stop reply", "no-resumed-stop-reply", 0);
15257
15258 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15259 "memory-tagging-feature", "memory-tagging-feature", 0);
15260
15261 /* Assert that we've registered "set remote foo-packet" commands
15262 for all packet configs. */
15263 {
15264 int i;
15265
15266 for (i = 0; i < PACKET_MAX; i++)
15267 {
15268 /* Ideally all configs would have a command associated. Some
15269 still don't though. */
15270 int excepted;
15271
15272 switch (i)
15273 {
15274 case PACKET_QNonStop:
15275 case PACKET_EnableDisableTracepoints_feature:
15276 case PACKET_tracenz_feature:
15277 case PACKET_DisconnectedTracing_feature:
15278 case PACKET_augmented_libraries_svr4_read_feature:
15279 case PACKET_qCRC:
15280 /* Additions to this list need to be well justified:
15281 pre-existing packets are OK; new packets are not. */
15282 excepted = 1;
15283 break;
15284 default:
15285 excepted = 0;
15286 break;
15287 }
15288
15289 /* This catches both forgetting to add a config command, and
15290 forgetting to remove a packet from the exception list. */
15291 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15292 }
15293 }
15294
15295 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15296 Z sub-packet has its own set and show commands, but users may
15297 have sets to this variable in their .gdbinit files (or in their
15298 documentation). */
15299 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15300 &remote_Z_packet_detect, _("\
15301 Set use of remote protocol `Z' packets."), _("\
15302 Show use of remote protocol `Z' packets."), _("\
15303 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15304 packets."),
15305 set_remote_protocol_Z_packet_cmd,
15306 show_remote_protocol_Z_packet_cmd,
15307 /* FIXME: i18n: Use of remote protocol
15308 `Z' packets is %s. */
15309 &remote_set_cmdlist, &remote_show_cmdlist);
15310
15311 add_basic_prefix_cmd ("remote", class_files, _("\
15312 Manipulate files on the remote system.\n\
15313 Transfer files to and from the remote target system."),
15314 &remote_cmdlist,
15315 0 /* allow-unknown */, &cmdlist);
15316
15317 add_cmd ("put", class_files, remote_put_command,
15318 _("Copy a local file to the remote system."),
15319 &remote_cmdlist);
15320
15321 add_cmd ("get", class_files, remote_get_command,
15322 _("Copy a remote file to the local system."),
15323 &remote_cmdlist);
15324
15325 add_cmd ("delete", class_files, remote_delete_command,
15326 _("Delete a remote file."),
15327 &remote_cmdlist);
15328
15329 add_setshow_string_noescape_cmd ("exec-file", class_files,
15330 &remote_exec_file_var, _("\
15331 Set the remote pathname for \"run\"."), _("\
15332 Show the remote pathname for \"run\"."), NULL,
15333 set_remote_exec_file,
15334 show_remote_exec_file,
15335 &remote_set_cmdlist,
15336 &remote_show_cmdlist);
15337
15338 add_setshow_boolean_cmd ("range-stepping", class_run,
15339 &use_range_stepping, _("\
15340 Enable or disable range stepping."), _("\
15341 Show whether target-assisted range stepping is enabled."), _("\
15342 If on, and the target supports it, when stepping a source line, GDB\n\
15343 tells the target to step the corresponding range of addresses itself instead\n\
15344 of issuing multiple single-steps. This speeds up source level\n\
15345 stepping. If off, GDB always issues single-steps, even if range\n\
15346 stepping is supported by the target. The default is on."),
15347 set_range_stepping,
15348 show_range_stepping,
15349 &setlist,
15350 &showlist);
15351
15352 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15353 Set watchdog timer."), _("\
15354 Show watchdog timer."), _("\
15355 When non-zero, this timeout is used instead of waiting forever for a target\n\
15356 to finish a low-level step or continue operation. If the specified amount\n\
15357 of time passes without a response from the target, an error occurs."),
15358 NULL,
15359 show_watchdog,
15360 &setlist, &showlist);
15361
15362 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15363 &remote_packet_max_chars, _("\
15364 Set the maximum number of characters to display for each remote packet."), _("\
15365 Show the maximum number of characters to display for each remote packet."), _("\
15366 Specify \"unlimited\" to display all the characters."),
15367 NULL, show_remote_packet_max_chars,
15368 &setdebuglist, &showdebuglist);
15369
15370 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15371 _("Set debugging of remote protocol."),
15372 _("Show debugging of remote protocol."),
15373 _("\
15374 When enabled, each packet sent or received with the remote target\n\
15375 is displayed."),
15376 NULL,
15377 show_remote_debug,
15378 &setdebuglist, &showdebuglist);
15379
15380 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15381 &remote_timeout, _("\
15382 Set timeout limit to wait for target to respond."), _("\
15383 Show timeout limit to wait for target to respond."), _("\
15384 This value is used to set the time limit for gdb to wait for a response\n\
15385 from the target."),
15386 NULL,
15387 show_remote_timeout,
15388 &setlist, &showlist);
15389
15390 /* Eventually initialize fileio. See fileio.c */
15391 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15392
15393 #if GDB_SELF_TEST
15394 selftests::register_test ("remote_memory_tagging",
15395 selftests::test_memory_tagging_functions);
15396 #endif
15397 }
This page took 0.45975 seconds and 4 git commands to generate.