gdb: remove iterate_over_breakpoints function
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 static void probes_table_remove_objfile_probes (struct objfile *objfile);
54 static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
58
59 /* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
67 static const char * const solib_break_names[] =
68 {
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
73 "__dl_rtld_db_dlactivity",
74 "_rtld_debug_state",
75
76 NULL
77 };
78
79 static const char * const bkpt_names[] =
80 {
81 "_start",
82 "__start",
83 "main",
84 NULL
85 };
86
87 static const char * const main_name_list[] =
88 {
89 "main_$main",
90 NULL
91 };
92
93 /* What to do when a probe stop occurs. */
94
95 enum probe_action
96 {
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112 };
113
114 /* A probe's name and its associated action. */
115
116 struct probe_info
117 {
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123 };
124
125 /* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129 static const struct probe_info probe_info[] =
130 {
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138 };
139
140 #define NUM_PROBES ARRAY_SIZE (probe_info)
141
142 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145 static int
146 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147 {
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
162 different locations. */
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172 }
173
174 static int
175 svr4_same (struct so_list *gdb, struct so_list *inferior)
176 {
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178 }
179
180 static std::unique_ptr<lm_info_svr4>
181 lm_info_read (CORE_ADDR lm_addr)
182 {
183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
184 std::unique_ptr<lm_info_svr4> lm_info;
185
186 gdb::byte_vector lm (lmo->link_map_size);
187
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
191 else
192 {
193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
194
195 lm_info.reset (new lm_info_svr4);
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
209 return lm_info;
210 }
211
212 static int
213 has_lm_dynamic_from_link_map (void)
214 {
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
217 return lmo->l_ld_offset >= 0;
218 }
219
220 static CORE_ADDR
221 lm_addr_check (const struct so_list *so, bfd *abfd)
222 {
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
226 {
227 struct bfd_section *dyninfo_sect;
228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
229
230 l_addr = li->l_addr_inferior;
231
232 if (! abfd || ! has_lm_dynamic_from_link_map ())
233 goto set_addr;
234
235 l_dynaddr = li->l_ld;
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
241 dynaddr = bfd_section_vma (dyninfo_sect);
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
245 CORE_ADDR align = 0x1000;
246 CORE_ADDR minpagesize = align;
247
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
288
289 l_addr = l_dynaddr - dynaddr;
290
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
293 {
294 if (info_verbose)
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
297 paddress (target_gdbarch (), l_addr),
298 so->so_name);
299 }
300 else
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
315 }
316
317 set_addr:
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
320 }
321
322 return li->l_addr;
323 }
324
325 /* Per pspace SVR4 specific data. */
326
327 struct svr4_info
328 {
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
334
335 /* Validity flag for debug_loader_offset. */
336 int debug_loader_offset_p = 0;
337
338 /* Load address for the dynamic linker, inferred. */
339 CORE_ADDR debug_loader_offset = 0;
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
342 char *debug_loader_name = nullptr;
343
344 /* Load map address for the main executable. */
345 CORE_ADDR main_lm_addr = 0;
346
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
354 int using_xfer = 0;
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
359 probe_and_action->prob->address. */
360 htab_up probes_table;
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
364 struct so_list *solib_list = nullptr;
365 };
366
367 /* Per-program-space data key. */
368 static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
369
370 /* Free the probes table. */
371
372 static void
373 free_probes_table (struct svr4_info *info)
374 {
375 info->probes_table.reset (nullptr);
376 }
377
378 /* Free the solib list. */
379
380 static void
381 free_solib_list (struct svr4_info *info)
382 {
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385 }
386
387 svr4_info::~svr4_info ()
388 {
389 free_solib_list (this);
390 }
391
392 /* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
394
395 static struct svr4_info *
396 get_svr4_info (program_space *pspace)
397 {
398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
399
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
402
403 return info;
404 }
405
406 /* Local function prototypes */
407
408 static int match_main (const char *);
409
410 /* Read program header TYPE from inferior memory. The header is found
411 by scanning the OS auxiliary vector.
412
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
420
421 static gdb::optional<gdb::byte_vector>
422 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
423 {
424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
428 int pt_phdr_p = 0;
429
430 /* Get required auxv elements from target. */
431 if (target_auxv_search (current_inferior ()->top_target (),
432 AT_PHDR, &at_phdr) <= 0)
433 return {};
434 if (target_auxv_search (current_inferior ()->top_target (),
435 AT_PHENT, &at_phent) <= 0)
436 return {};
437 if (target_auxv_search (current_inferior ()->top_target (),
438 AT_PHNUM, &at_phnum) <= 0)
439 return {};
440 if (!at_phdr || !at_phnum)
441 return {};
442
443 /* Determine ELF architecture type. */
444 if (at_phent == sizeof (Elf32_External_Phdr))
445 arch_size = 32;
446 else if (at_phent == sizeof (Elf64_External_Phdr))
447 arch_size = 64;
448 else
449 return {};
450
451 /* Find the requested segment. */
452 if (type == -1)
453 {
454 sect_addr = at_phdr;
455 sect_size = at_phent * at_phnum;
456 }
457 else if (arch_size == 32)
458 {
459 Elf32_External_Phdr phdr;
460 int i;
461
462 /* Search for requested PHDR. */
463 for (i = 0; i < at_phnum; i++)
464 {
465 int p_type;
466
467 if (target_read_memory (at_phdr + i * sizeof (phdr),
468 (gdb_byte *)&phdr, sizeof (phdr)))
469 return {};
470
471 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
472 4, byte_order);
473
474 if (p_type == PT_PHDR)
475 {
476 pt_phdr_p = 1;
477 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
478 4, byte_order);
479 }
480
481 if (p_type == type)
482 break;
483 }
484
485 if (i == at_phnum)
486 return {};
487
488 /* Retrieve address and size. */
489 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
490 4, byte_order);
491 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
492 4, byte_order);
493 }
494 else
495 {
496 Elf64_External_Phdr phdr;
497 int i;
498
499 /* Search for requested PHDR. */
500 for (i = 0; i < at_phnum; i++)
501 {
502 int p_type;
503
504 if (target_read_memory (at_phdr + i * sizeof (phdr),
505 (gdb_byte *)&phdr, sizeof (phdr)))
506 return {};
507
508 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
509 4, byte_order);
510
511 if (p_type == PT_PHDR)
512 {
513 pt_phdr_p = 1;
514 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
515 8, byte_order);
516 }
517
518 if (p_type == type)
519 break;
520 }
521
522 if (i == at_phnum)
523 return {};
524
525 /* Retrieve address and size. */
526 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
527 8, byte_order);
528 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
529 8, byte_order);
530 }
531
532 /* PT_PHDR is optional, but we really need it
533 for PIE to make this work in general. */
534
535 if (pt_phdr_p)
536 {
537 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
538 Relocation offset is the difference between the two. */
539 sect_addr = sect_addr + (at_phdr - pt_phdr);
540 }
541
542 /* Read in requested program header. */
543 gdb::byte_vector buf (sect_size);
544 if (target_read_memory (sect_addr, buf.data (), sect_size))
545 return {};
546
547 if (p_arch_size)
548 *p_arch_size = arch_size;
549 if (base_addr)
550 *base_addr = sect_addr;
551
552 return buf;
553 }
554
555
556 /* Return program interpreter string. */
557 static gdb::optional<gdb::byte_vector>
558 find_program_interpreter (void)
559 {
560 /* If we have a current exec_bfd, use its section table. */
561 if (current_program_space->exec_bfd ()
562 && (bfd_get_flavour (current_program_space->exec_bfd ())
563 == bfd_target_elf_flavour))
564 {
565 struct bfd_section *interp_sect;
566
567 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
568 ".interp");
569 if (interp_sect != NULL)
570 {
571 int sect_size = bfd_section_size (interp_sect);
572
573 gdb::byte_vector buf (sect_size);
574 bfd_get_section_contents (current_program_space->exec_bfd (),
575 interp_sect, buf.data (), 0, sect_size);
576 return buf;
577 }
578 }
579
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
582 }
583
584
585 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
586 found, 1 is returned and the corresponding PTR is set. */
587
588 static int
589 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 CORE_ADDR *ptr_addr)
591 {
592 int arch_size, step, sect_size;
593 long current_dyntag;
594 CORE_ADDR dyn_ptr, dyn_addr;
595 gdb_byte *bufend, *bufstart, *buf;
596 Elf32_External_Dyn *x_dynp_32;
597 Elf64_External_Dyn *x_dynp_64;
598 struct bfd_section *sect;
599
600 if (abfd == NULL)
601 return 0;
602
603 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
604 return 0;
605
606 arch_size = bfd_get_arch_size (abfd);
607 if (arch_size == -1)
608 return 0;
609
610 /* Find the start address of the .dynamic section. */
611 sect = bfd_get_section_by_name (abfd, ".dynamic");
612 if (sect == NULL)
613 return 0;
614
615 bool found = false;
616 for (const target_section &target_section
617 : current_program_space->target_sections ())
618 if (sect == target_section.the_bfd_section)
619 {
620 dyn_addr = target_section.addr;
621 found = true;
622 break;
623 }
624 if (!found)
625 {
626 /* ABFD may come from OBJFILE acting only as a symbol file without being
627 loaded into the target (see add_symbol_file_command). This case is
628 such fallback to the file VMA address without the possibility of
629 having the section relocated to its actual in-memory address. */
630
631 dyn_addr = bfd_section_vma (sect);
632 }
633
634 /* Read in .dynamic from the BFD. We will get the actual value
635 from memory later. */
636 sect_size = bfd_section_size (sect);
637 buf = bufstart = (gdb_byte *) alloca (sect_size);
638 if (!bfd_get_section_contents (abfd, sect,
639 buf, 0, sect_size))
640 return 0;
641
642 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
643 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
644 : sizeof (Elf64_External_Dyn);
645 for (bufend = buf + sect_size;
646 buf < bufend;
647 buf += step)
648 {
649 if (arch_size == 32)
650 {
651 x_dynp_32 = (Elf32_External_Dyn *) buf;
652 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
653 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
654 }
655 else
656 {
657 x_dynp_64 = (Elf64_External_Dyn *) buf;
658 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
659 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
660 }
661 if (current_dyntag == DT_NULL)
662 return 0;
663 if (current_dyntag == desired_dyntag)
664 {
665 /* If requested, try to read the runtime value of this .dynamic
666 entry. */
667 if (ptr)
668 {
669 struct type *ptr_type;
670 gdb_byte ptr_buf[8];
671 CORE_ADDR ptr_addr_1;
672
673 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
674 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
675 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
676 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
677 *ptr = dyn_ptr;
678 if (ptr_addr)
679 *ptr_addr = dyn_addr + (buf - bufstart);
680 }
681 return 1;
682 }
683 }
684
685 return 0;
686 }
687
688 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
689 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
690 is returned and the corresponding PTR is set. */
691
692 static int
693 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
694 CORE_ADDR *ptr_addr)
695 {
696 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
697 int arch_size, step;
698 long current_dyntag;
699 CORE_ADDR dyn_ptr;
700 CORE_ADDR base_addr;
701
702 /* Read in .dynamic section. */
703 gdb::optional<gdb::byte_vector> ph_data
704 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
705 if (!ph_data)
706 return 0;
707
708 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
709 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
710 : sizeof (Elf64_External_Dyn);
711 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
712 buf < bufend; buf += step)
713 {
714 if (arch_size == 32)
715 {
716 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
717
718 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
719 4, byte_order);
720 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
721 4, byte_order);
722 }
723 else
724 {
725 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
726
727 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
728 8, byte_order);
729 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
730 8, byte_order);
731 }
732 if (current_dyntag == DT_NULL)
733 break;
734
735 if (current_dyntag == desired_dyntag)
736 {
737 if (ptr)
738 *ptr = dyn_ptr;
739
740 if (ptr_addr)
741 *ptr_addr = base_addr + buf - ph_data->data ();
742
743 return 1;
744 }
745 }
746
747 return 0;
748 }
749
750 /* Locate the base address of dynamic linker structs for SVR4 elf
751 targets.
752
753 For SVR4 elf targets the address of the dynamic linker's runtime
754 structure is contained within the dynamic info section in the
755 executable file. The dynamic section is also mapped into the
756 inferior address space. Because the runtime loader fills in the
757 real address before starting the inferior, we have to read in the
758 dynamic info section from the inferior address space.
759 If there are any errors while trying to find the address, we
760 silently return 0, otherwise the found address is returned. */
761
762 static CORE_ADDR
763 elf_locate_base (void)
764 {
765 struct bound_minimal_symbol msymbol;
766 CORE_ADDR dyn_ptr, dyn_ptr_addr;
767
768 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
769 instead of DT_DEBUG, although they sometimes contain an unused
770 DT_DEBUG. */
771 if (scan_dyntag (DT_MIPS_RLD_MAP, current_program_space->exec_bfd (),
772 &dyn_ptr, NULL)
773 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
774 {
775 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
776 gdb_byte *pbuf;
777 int pbuf_size = TYPE_LENGTH (ptr_type);
778
779 pbuf = (gdb_byte *) alloca (pbuf_size);
780 /* DT_MIPS_RLD_MAP contains a pointer to the address
781 of the dynamic link structure. */
782 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
783 return 0;
784 return extract_typed_address (pbuf, ptr_type);
785 }
786
787 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
788 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
789 in non-PIE. */
790 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, current_program_space->exec_bfd (),
791 &dyn_ptr, &dyn_ptr_addr)
792 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
793 {
794 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
795 gdb_byte *pbuf;
796 int pbuf_size = TYPE_LENGTH (ptr_type);
797
798 pbuf = (gdb_byte *) alloca (pbuf_size);
799 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
800 DT slot to the address of the dynamic link structure. */
801 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
802 return 0;
803 return extract_typed_address (pbuf, ptr_type);
804 }
805
806 /* Find DT_DEBUG. */
807 if (scan_dyntag (DT_DEBUG, current_program_space->exec_bfd (), &dyn_ptr, NULL)
808 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
809 return dyn_ptr;
810
811 /* This may be a static executable. Look for the symbol
812 conventionally named _r_debug, as a last resort. */
813 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
814 current_program_space->symfile_object_file);
815 if (msymbol.minsym != NULL)
816 return BMSYMBOL_VALUE_ADDRESS (msymbol);
817
818 /* DT_DEBUG entry not found. */
819 return 0;
820 }
821
822 /* Locate the base address of dynamic linker structs.
823
824 For both the SunOS and SVR4 shared library implementations, if the
825 inferior executable has been linked dynamically, there is a single
826 address somewhere in the inferior's data space which is the key to
827 locating all of the dynamic linker's runtime structures. This
828 address is the value of the debug base symbol. The job of this
829 function is to find and return that address, or to return 0 if there
830 is no such address (the executable is statically linked for example).
831
832 For SunOS, the job is almost trivial, since the dynamic linker and
833 all of it's structures are statically linked to the executable at
834 link time. Thus the symbol for the address we are looking for has
835 already been added to the minimal symbol table for the executable's
836 objfile at the time the symbol file's symbols were read, and all we
837 have to do is look it up there. Note that we explicitly do NOT want
838 to find the copies in the shared library.
839
840 The SVR4 version is a bit more complicated because the address
841 is contained somewhere in the dynamic info section. We have to go
842 to a lot more work to discover the address of the debug base symbol.
843 Because of this complexity, we cache the value we find and return that
844 value on subsequent invocations. Note there is no copy in the
845 executable symbol tables. */
846
847 static CORE_ADDR
848 locate_base (struct svr4_info *info)
849 {
850 /* Check to see if we have a currently valid address, and if so, avoid
851 doing all this work again and just return the cached address. If
852 we have no cached address, try to locate it in the dynamic info
853 section for ELF executables. There's no point in doing any of this
854 though if we don't have some link map offsets to work with. */
855
856 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
857 info->debug_base = elf_locate_base ();
858 return info->debug_base;
859 }
860
861 /* Find the first element in the inferior's dynamic link map, and
862 return its address in the inferior. Return zero if the address
863 could not be determined.
864
865 FIXME: Perhaps we should validate the info somehow, perhaps by
866 checking r_version for a known version number, or r_state for
867 RT_CONSISTENT. */
868
869 static CORE_ADDR
870 solib_svr4_r_map (struct svr4_info *info)
871 {
872 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
873 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
874 CORE_ADDR addr = 0;
875
876 try
877 {
878 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
879 ptr_type);
880 }
881 catch (const gdb_exception_error &ex)
882 {
883 exception_print (gdb_stderr, ex);
884 }
885
886 return addr;
887 }
888
889 /* Find r_brk from the inferior's debug base. */
890
891 static CORE_ADDR
892 solib_svr4_r_brk (struct svr4_info *info)
893 {
894 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
895 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
896
897 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
898 ptr_type);
899 }
900
901 /* Find the link map for the dynamic linker (if it is not in the
902 normal list of loaded shared objects). */
903
904 static CORE_ADDR
905 solib_svr4_r_ldsomap (struct svr4_info *info)
906 {
907 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
908 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
909 enum bfd_endian byte_order = type_byte_order (ptr_type);
910 ULONGEST version = 0;
911
912 try
913 {
914 /* Check version, and return zero if `struct r_debug' doesn't have
915 the r_ldsomap member. */
916 version
917 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
918 lmo->r_version_size, byte_order);
919 }
920 catch (const gdb_exception_error &ex)
921 {
922 exception_print (gdb_stderr, ex);
923 }
924
925 if (version < 2 || lmo->r_ldsomap_offset == -1)
926 return 0;
927
928 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
929 ptr_type);
930 }
931
932 /* On Solaris systems with some versions of the dynamic linker,
933 ld.so's l_name pointer points to the SONAME in the string table
934 rather than into writable memory. So that GDB can find shared
935 libraries when loading a core file generated by gcore, ensure that
936 memory areas containing the l_name string are saved in the core
937 file. */
938
939 static int
940 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
941 {
942 struct svr4_info *info;
943 CORE_ADDR ldsomap;
944 CORE_ADDR name_lm;
945
946 info = get_svr4_info (current_program_space);
947
948 info->debug_base = 0;
949 locate_base (info);
950 if (!info->debug_base)
951 return 0;
952
953 ldsomap = solib_svr4_r_ldsomap (info);
954 if (!ldsomap)
955 return 0;
956
957 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
958 name_lm = li != NULL ? li->l_name : 0;
959
960 return (name_lm >= vaddr && name_lm < vaddr + size);
961 }
962
963 /* See solist.h. */
964
965 static int
966 open_symbol_file_object (int from_tty)
967 {
968 CORE_ADDR lm, l_name;
969 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
970 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
971 int l_name_size = TYPE_LENGTH (ptr_type);
972 gdb::byte_vector l_name_buf (l_name_size);
973 struct svr4_info *info = get_svr4_info (current_program_space);
974 symfile_add_flags add_flags = 0;
975
976 if (from_tty)
977 add_flags |= SYMFILE_VERBOSE;
978
979 if (current_program_space->symfile_object_file)
980 if (!query (_("Attempt to reload symbols from process? ")))
981 return 0;
982
983 /* Always locate the debug struct, in case it has moved. */
984 info->debug_base = 0;
985 if (locate_base (info) == 0)
986 return 0; /* failed somehow... */
987
988 /* First link map member should be the executable. */
989 lm = solib_svr4_r_map (info);
990 if (lm == 0)
991 return 0; /* failed somehow... */
992
993 /* Read address of name from target memory to GDB. */
994 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
995
996 /* Convert the address to host format. */
997 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
998
999 if (l_name == 0)
1000 return 0; /* No filename. */
1001
1002 /* Now fetch the filename from target memory. */
1003 gdb::unique_xmalloc_ptr<char> filename
1004 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
1005
1006 if (filename == nullptr)
1007 {
1008 warning (_("failed to read exec filename from attached file"));
1009 return 0;
1010 }
1011
1012 /* Have a pathname: read the symbol file. */
1013 symbol_file_add_main (filename.get (), add_flags);
1014
1015 return 1;
1016 }
1017
1018 /* Data exchange structure for the XML parser as returned by
1019 svr4_current_sos_via_xfer_libraries. */
1020
1021 struct svr4_library_list
1022 {
1023 struct so_list *head, **tailp;
1024
1025 /* Inferior address of struct link_map used for the main executable. It is
1026 NULL if not known. */
1027 CORE_ADDR main_lm;
1028 };
1029
1030 /* This module's 'free_objfile' observer. */
1031
1032 static void
1033 svr4_free_objfile_observer (struct objfile *objfile)
1034 {
1035 probes_table_remove_objfile_probes (objfile);
1036 }
1037
1038 /* Implementation for target_so_ops.free_so. */
1039
1040 static void
1041 svr4_free_so (struct so_list *so)
1042 {
1043 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1044
1045 delete li;
1046 }
1047
1048 /* Implement target_so_ops.clear_so. */
1049
1050 static void
1051 svr4_clear_so (struct so_list *so)
1052 {
1053 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1054
1055 if (li != NULL)
1056 li->l_addr_p = 0;
1057 }
1058
1059 /* Free so_list built so far (called via cleanup). */
1060
1061 static void
1062 svr4_free_library_list (void *p_list)
1063 {
1064 struct so_list *list = *(struct so_list **) p_list;
1065
1066 while (list != NULL)
1067 {
1068 struct so_list *next = list->next;
1069
1070 free_so (list);
1071 list = next;
1072 }
1073 }
1074
1075 /* Copy library list. */
1076
1077 static struct so_list *
1078 svr4_copy_library_list (struct so_list *src)
1079 {
1080 struct so_list *dst = NULL;
1081 struct so_list **link = &dst;
1082
1083 while (src != NULL)
1084 {
1085 struct so_list *newobj;
1086
1087 newobj = XNEW (struct so_list);
1088 memcpy (newobj, src, sizeof (struct so_list));
1089
1090 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1091 newobj->lm_info = new lm_info_svr4 (*src_li);
1092
1093 newobj->next = NULL;
1094 *link = newobj;
1095 link = &newobj->next;
1096
1097 src = src->next;
1098 }
1099
1100 return dst;
1101 }
1102
1103 #ifdef HAVE_LIBEXPAT
1104
1105 #include "xml-support.h"
1106
1107 /* Handle the start of a <library> element. Note: new elements are added
1108 at the tail of the list, keeping the list in order. */
1109
1110 static void
1111 library_list_start_library (struct gdb_xml_parser *parser,
1112 const struct gdb_xml_element *element,
1113 void *user_data,
1114 std::vector<gdb_xml_value> &attributes)
1115 {
1116 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1117 const char *name
1118 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1119 ULONGEST *lmp
1120 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1121 ULONGEST *l_addrp
1122 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1123 ULONGEST *l_ldp
1124 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1125 struct so_list *new_elem;
1126
1127 new_elem = XCNEW (struct so_list);
1128 lm_info_svr4 *li = new lm_info_svr4;
1129 new_elem->lm_info = li;
1130 li->lm_addr = *lmp;
1131 li->l_addr_inferior = *l_addrp;
1132 li->l_ld = *l_ldp;
1133
1134 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1135 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1136 strcpy (new_elem->so_original_name, new_elem->so_name);
1137
1138 *list->tailp = new_elem;
1139 list->tailp = &new_elem->next;
1140 }
1141
1142 /* Handle the start of a <library-list-svr4> element. */
1143
1144 static void
1145 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1146 const struct gdb_xml_element *element,
1147 void *user_data,
1148 std::vector<gdb_xml_value> &attributes)
1149 {
1150 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1151 const char *version
1152 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1153 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1154
1155 if (strcmp (version, "1.0") != 0)
1156 gdb_xml_error (parser,
1157 _("SVR4 Library list has unsupported version \"%s\""),
1158 version);
1159
1160 if (main_lm)
1161 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1162 }
1163
1164 /* The allowed elements and attributes for an XML library list.
1165 The root element is a <library-list>. */
1166
1167 static const struct gdb_xml_attribute svr4_library_attributes[] =
1168 {
1169 { "name", GDB_XML_AF_NONE, NULL, NULL },
1170 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1172 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1173 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1174 };
1175
1176 static const struct gdb_xml_element svr4_library_list_children[] =
1177 {
1178 {
1179 "library", svr4_library_attributes, NULL,
1180 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1181 library_list_start_library, NULL
1182 },
1183 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1184 };
1185
1186 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1187 {
1188 { "version", GDB_XML_AF_NONE, NULL, NULL },
1189 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1190 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1191 };
1192
1193 static const struct gdb_xml_element svr4_library_list_elements[] =
1194 {
1195 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1196 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1197 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1198 };
1199
1200 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1201
1202 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1203 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1204 empty, caller is responsible for freeing all its entries. */
1205
1206 static int
1207 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1208 {
1209 auto cleanup = make_scope_exit ([&] ()
1210 {
1211 svr4_free_library_list (&list->head);
1212 });
1213
1214 memset (list, 0, sizeof (*list));
1215 list->tailp = &list->head;
1216 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1217 svr4_library_list_elements, document, list) == 0)
1218 {
1219 /* Parsed successfully, keep the result. */
1220 cleanup.release ();
1221 return 1;
1222 }
1223
1224 return 0;
1225 }
1226
1227 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1228
1229 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1230 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1231 empty, caller is responsible for freeing all its entries.
1232
1233 Note that ANNEX must be NULL if the remote does not explicitly allow
1234 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1235 this can be checked using target_augmented_libraries_svr4_read (). */
1236
1237 static int
1238 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1239 const char *annex)
1240 {
1241 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1242
1243 /* Fetch the list of shared libraries. */
1244 gdb::optional<gdb::char_vector> svr4_library_document
1245 = target_read_stralloc (current_inferior ()->top_target (),
1246 TARGET_OBJECT_LIBRARIES_SVR4,
1247 annex);
1248 if (!svr4_library_document)
1249 return 0;
1250
1251 return svr4_parse_libraries (svr4_library_document->data (), list);
1252 }
1253
1254 #else
1255
1256 static int
1257 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1258 const char *annex)
1259 {
1260 return 0;
1261 }
1262
1263 #endif
1264
1265 /* If no shared library information is available from the dynamic
1266 linker, build a fallback list from other sources. */
1267
1268 static struct so_list *
1269 svr4_default_sos (svr4_info *info)
1270 {
1271 struct so_list *newobj;
1272
1273 if (!info->debug_loader_offset_p)
1274 return NULL;
1275
1276 newobj = XCNEW (struct so_list);
1277 lm_info_svr4 *li = new lm_info_svr4;
1278 newobj->lm_info = li;
1279
1280 /* Nothing will ever check the other fields if we set l_addr_p. */
1281 li->l_addr = info->debug_loader_offset;
1282 li->l_addr_p = 1;
1283
1284 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1285 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1286 strcpy (newobj->so_original_name, newobj->so_name);
1287
1288 return newobj;
1289 }
1290
1291 /* Read the whole inferior libraries chain starting at address LM.
1292 Expect the first entry in the chain's previous entry to be PREV_LM.
1293 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1294 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1295 to it. Returns nonzero upon success. If zero is returned the
1296 entries stored to LINK_PTR_PTR are still valid although they may
1297 represent only part of the inferior library list. */
1298
1299 static int
1300 svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
1301 struct so_list ***link_ptr_ptr, int ignore_first)
1302 {
1303 CORE_ADDR first_l_name = 0;
1304 CORE_ADDR next_lm;
1305
1306 for (; lm != 0; prev_lm = lm, lm = next_lm)
1307 {
1308 so_list_up newobj (XCNEW (struct so_list));
1309
1310 lm_info_svr4 *li = lm_info_read (lm).release ();
1311 newobj->lm_info = li;
1312 if (li == NULL)
1313 return 0;
1314
1315 next_lm = li->l_next;
1316
1317 if (li->l_prev != prev_lm)
1318 {
1319 warning (_("Corrupted shared library list: %s != %s"),
1320 paddress (target_gdbarch (), prev_lm),
1321 paddress (target_gdbarch (), li->l_prev));
1322 return 0;
1323 }
1324
1325 /* For SVR4 versions, the first entry in the link map is for the
1326 inferior executable, so we must ignore it. For some versions of
1327 SVR4, it has no name. For others (Solaris 2.3 for example), it
1328 does have a name, so we can no longer use a missing name to
1329 decide when to ignore it. */
1330 if (ignore_first && li->l_prev == 0)
1331 {
1332 first_l_name = li->l_name;
1333 info->main_lm_addr = li->lm_addr;
1334 continue;
1335 }
1336
1337 /* Extract this shared object's name. */
1338 gdb::unique_xmalloc_ptr<char> buffer
1339 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1340 if (buffer == nullptr)
1341 {
1342 /* If this entry's l_name address matches that of the
1343 inferior executable, then this is not a normal shared
1344 object, but (most likely) a vDSO. In this case, silently
1345 skip it; otherwise emit a warning. */
1346 if (first_l_name == 0 || li->l_name != first_l_name)
1347 warning (_("Can't read pathname for load map."));
1348 continue;
1349 }
1350
1351 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1352 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1353 strcpy (newobj->so_original_name, newobj->so_name);
1354
1355 /* If this entry has no name, or its name matches the name
1356 for the main executable, don't include it in the list. */
1357 if (! newobj->so_name[0] || match_main (newobj->so_name))
1358 continue;
1359
1360 newobj->next = 0;
1361 /* Don't free it now. */
1362 **link_ptr_ptr = newobj.release ();
1363 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1364 }
1365
1366 return 1;
1367 }
1368
1369 /* Read the full list of currently loaded shared objects directly
1370 from the inferior, without referring to any libraries read and
1371 stored by the probes interface. Handle special cases relating
1372 to the first elements of the list. */
1373
1374 static struct so_list *
1375 svr4_current_sos_direct (struct svr4_info *info)
1376 {
1377 CORE_ADDR lm;
1378 struct so_list *head = NULL;
1379 struct so_list **link_ptr = &head;
1380 int ignore_first;
1381 struct svr4_library_list library_list;
1382
1383 /* Fall back to manual examination of the target if the packet is not
1384 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1385 tests a case where gdbserver cannot find the shared libraries list while
1386 GDB itself is able to find it via SYMFILE_OBJFILE.
1387
1388 Unfortunately statically linked inferiors will also fall back through this
1389 suboptimal code path. */
1390
1391 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1392 NULL);
1393 if (info->using_xfer)
1394 {
1395 if (library_list.main_lm)
1396 info->main_lm_addr = library_list.main_lm;
1397
1398 return library_list.head ? library_list.head : svr4_default_sos (info);
1399 }
1400
1401 /* Always locate the debug struct, in case it has moved. */
1402 info->debug_base = 0;
1403 locate_base (info);
1404
1405 /* If we can't find the dynamic linker's base structure, this
1406 must not be a dynamically linked executable. Hmm. */
1407 if (! info->debug_base)
1408 return svr4_default_sos (info);
1409
1410 /* Assume that everything is a library if the dynamic loader was loaded
1411 late by a static executable. */
1412 if (current_program_space->exec_bfd ()
1413 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1414 ".dynamic") == NULL)
1415 ignore_first = 0;
1416 else
1417 ignore_first = 1;
1418
1419 auto cleanup = make_scope_exit ([&] ()
1420 {
1421 svr4_free_library_list (&head);
1422 });
1423
1424 /* Walk the inferior's link map list, and build our list of
1425 `struct so_list' nodes. */
1426 lm = solib_svr4_r_map (info);
1427 if (lm)
1428 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
1429
1430 /* On Solaris, the dynamic linker is not in the normal list of
1431 shared objects, so make sure we pick it up too. Having
1432 symbol information for the dynamic linker is quite crucial
1433 for skipping dynamic linker resolver code. */
1434 lm = solib_svr4_r_ldsomap (info);
1435 if (lm)
1436 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
1437
1438 cleanup.release ();
1439
1440 if (head == NULL)
1441 return svr4_default_sos (info);
1442
1443 return head;
1444 }
1445
1446 /* Implement the main part of the "current_sos" target_so_ops
1447 method. */
1448
1449 static struct so_list *
1450 svr4_current_sos_1 (svr4_info *info)
1451 {
1452 /* If the solib list has been read and stored by the probes
1453 interface then we return a copy of the stored list. */
1454 if (info->solib_list != NULL)
1455 return svr4_copy_library_list (info->solib_list);
1456
1457 /* Otherwise obtain the solib list directly from the inferior. */
1458 return svr4_current_sos_direct (info);
1459 }
1460
1461 /* Implement the "current_sos" target_so_ops method. */
1462
1463 static struct so_list *
1464 svr4_current_sos (void)
1465 {
1466 svr4_info *info = get_svr4_info (current_program_space);
1467 struct so_list *so_head = svr4_current_sos_1 (info);
1468 struct mem_range vsyscall_range;
1469
1470 /* Filter out the vDSO module, if present. Its symbol file would
1471 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1472 managed by symfile-mem.c:add_vsyscall_page. */
1473 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1474 && vsyscall_range.length != 0)
1475 {
1476 struct so_list **sop;
1477
1478 sop = &so_head;
1479 while (*sop != NULL)
1480 {
1481 struct so_list *so = *sop;
1482
1483 /* We can't simply match the vDSO by starting address alone,
1484 because lm_info->l_addr_inferior (and also l_addr) do not
1485 necessarily represent the real starting address of the
1486 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1487 field (the ".dynamic" section of the shared object)
1488 always points at the absolute/resolved address though.
1489 So check whether that address is inside the vDSO's
1490 mapping instead.
1491
1492 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1493 0-based ELF, and we see:
1494
1495 (gdb) info auxv
1496 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1497 (gdb) p/x *_r_debug.r_map.l_next
1498 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1499
1500 And on Linux 2.6.32 (x86_64) we see:
1501
1502 (gdb) info auxv
1503 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1504 (gdb) p/x *_r_debug.r_map.l_next
1505 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1506
1507 Dumping that vDSO shows:
1508
1509 (gdb) info proc mappings
1510 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1511 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1512 # readelf -Wa vdso.bin
1513 [...]
1514 Entry point address: 0xffffffffff700700
1515 [...]
1516 Section Headers:
1517 [Nr] Name Type Address Off Size
1518 [ 0] NULL 0000000000000000 000000 000000
1519 [ 1] .hash HASH ffffffffff700120 000120 000038
1520 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1521 [...]
1522 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1523 */
1524
1525 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1526
1527 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1528 {
1529 *sop = so->next;
1530 free_so (so);
1531 break;
1532 }
1533
1534 sop = &so->next;
1535 }
1536 }
1537
1538 return so_head;
1539 }
1540
1541 /* Get the address of the link_map for a given OBJFILE. */
1542
1543 CORE_ADDR
1544 svr4_fetch_objfile_link_map (struct objfile *objfile)
1545 {
1546 struct svr4_info *info = get_svr4_info (objfile->pspace);
1547
1548 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1549 if (info->main_lm_addr == 0)
1550 solib_add (NULL, 0, auto_solib_add);
1551
1552 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1553 if (objfile == current_program_space->symfile_object_file)
1554 return info->main_lm_addr;
1555
1556 /* If OBJFILE is a separate debug object file, look for the
1557 original object file. */
1558 if (objfile->separate_debug_objfile_backlink != NULL)
1559 objfile = objfile->separate_debug_objfile_backlink;
1560
1561 /* The other link map addresses may be found by examining the list
1562 of shared libraries. */
1563 for (struct so_list *so : current_program_space->solibs ())
1564 if (so->objfile == objfile)
1565 {
1566 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1567
1568 return li->lm_addr;
1569 }
1570
1571 /* Not found! */
1572 return 0;
1573 }
1574
1575 /* On some systems, the only way to recognize the link map entry for
1576 the main executable file is by looking at its name. Return
1577 non-zero iff SONAME matches one of the known main executable names. */
1578
1579 static int
1580 match_main (const char *soname)
1581 {
1582 const char * const *mainp;
1583
1584 for (mainp = main_name_list; *mainp != NULL; mainp++)
1585 {
1586 if (strcmp (soname, *mainp) == 0)
1587 return (1);
1588 }
1589
1590 return (0);
1591 }
1592
1593 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1594 SVR4 run time loader. */
1595
1596 int
1597 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1598 {
1599 struct svr4_info *info = get_svr4_info (current_program_space);
1600
1601 return ((pc >= info->interp_text_sect_low
1602 && pc < info->interp_text_sect_high)
1603 || (pc >= info->interp_plt_sect_low
1604 && pc < info->interp_plt_sect_high)
1605 || in_plt_section (pc)
1606 || in_gnu_ifunc_stub (pc));
1607 }
1608
1609 /* Given an executable's ABFD and target, compute the entry-point
1610 address. */
1611
1612 static CORE_ADDR
1613 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1614 {
1615 CORE_ADDR addr;
1616
1617 /* KevinB wrote ... for most targets, the address returned by
1618 bfd_get_start_address() is the entry point for the start
1619 function. But, for some targets, bfd_get_start_address() returns
1620 the address of a function descriptor from which the entry point
1621 address may be extracted. This address is extracted by
1622 gdbarch_convert_from_func_ptr_addr(). The method
1623 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1624 function for targets which don't use function descriptors. */
1625 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1626 bfd_get_start_address (abfd),
1627 targ);
1628 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1629 }
1630
1631 /* A probe and its associated action. */
1632
1633 struct probe_and_action
1634 {
1635 /* The probe. */
1636 probe *prob;
1637
1638 /* The relocated address of the probe. */
1639 CORE_ADDR address;
1640
1641 /* The action. */
1642 enum probe_action action;
1643
1644 /* The objfile where this probe was found. */
1645 struct objfile *objfile;
1646 };
1647
1648 /* Returns a hash code for the probe_and_action referenced by p. */
1649
1650 static hashval_t
1651 hash_probe_and_action (const void *p)
1652 {
1653 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1654
1655 return (hashval_t) pa->address;
1656 }
1657
1658 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1659 are equal. */
1660
1661 static int
1662 equal_probe_and_action (const void *p1, const void *p2)
1663 {
1664 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1665 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1666
1667 return pa1->address == pa2->address;
1668 }
1669
1670 /* Traversal function for probes_table_remove_objfile_probes. */
1671
1672 static int
1673 probes_table_htab_remove_objfile_probes (void **slot, void *info)
1674 {
1675 probe_and_action *pa = (probe_and_action *) *slot;
1676 struct objfile *objfile = (struct objfile *) info;
1677
1678 if (pa->objfile == objfile)
1679 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1680 slot);
1681
1682 return 1;
1683 }
1684
1685 /* Remove all probes that belong to OBJFILE from the probes table. */
1686
1687 static void
1688 probes_table_remove_objfile_probes (struct objfile *objfile)
1689 {
1690 svr4_info *info = get_svr4_info (objfile->pspace);
1691 if (info->probes_table != nullptr)
1692 htab_traverse_noresize (info->probes_table.get (),
1693 probes_table_htab_remove_objfile_probes, objfile);
1694 }
1695
1696 /* Register a solib event probe and its associated action in the
1697 probes table. */
1698
1699 static void
1700 register_solib_event_probe (svr4_info *info, struct objfile *objfile,
1701 probe *prob, CORE_ADDR address,
1702 enum probe_action action)
1703 {
1704 struct probe_and_action lookup, *pa;
1705 void **slot;
1706
1707 /* Create the probes table, if necessary. */
1708 if (info->probes_table == NULL)
1709 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1710 equal_probe_and_action,
1711 xfree, xcalloc, xfree));
1712
1713 lookup.address = address;
1714 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
1715 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1716
1717 pa = XCNEW (struct probe_and_action);
1718 pa->prob = prob;
1719 pa->address = address;
1720 pa->action = action;
1721 pa->objfile = objfile;
1722
1723 *slot = pa;
1724 }
1725
1726 /* Get the solib event probe at the specified location, and the
1727 action associated with it. Returns NULL if no solib event probe
1728 was found. */
1729
1730 static struct probe_and_action *
1731 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1732 {
1733 struct probe_and_action lookup;
1734 void **slot;
1735
1736 lookup.address = address;
1737 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
1738
1739 if (slot == NULL)
1740 return NULL;
1741
1742 return (struct probe_and_action *) *slot;
1743 }
1744
1745 /* Decide what action to take when the specified solib event probe is
1746 hit. */
1747
1748 static enum probe_action
1749 solib_event_probe_action (struct probe_and_action *pa)
1750 {
1751 enum probe_action action;
1752 unsigned probe_argc = 0;
1753 struct frame_info *frame = get_current_frame ();
1754
1755 action = pa->action;
1756 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1757 return action;
1758
1759 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1760
1761 /* Check that an appropriate number of arguments has been supplied.
1762 We expect:
1763 arg0: Lmid_t lmid (mandatory)
1764 arg1: struct r_debug *debug_base (mandatory)
1765 arg2: struct link_map *new (optional, for incremental updates) */
1766 try
1767 {
1768 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
1769 }
1770 catch (const gdb_exception_error &ex)
1771 {
1772 exception_print (gdb_stderr, ex);
1773 probe_argc = 0;
1774 }
1775
1776 /* If get_argument_count throws an exception, probe_argc will be set
1777 to zero. However, if pa->prob does not have arguments, then
1778 get_argument_count will succeed but probe_argc will also be zero.
1779 Both cases happen because of different things, but they are
1780 treated equally here: action will be set to
1781 PROBES_INTERFACE_FAILED. */
1782 if (probe_argc == 2)
1783 action = FULL_RELOAD;
1784 else if (probe_argc < 2)
1785 action = PROBES_INTERFACE_FAILED;
1786
1787 return action;
1788 }
1789
1790 /* Populate the shared object list by reading the entire list of
1791 shared objects from the inferior. Handle special cases relating
1792 to the first elements of the list. Returns nonzero on success. */
1793
1794 static int
1795 solist_update_full (struct svr4_info *info)
1796 {
1797 free_solib_list (info);
1798 info->solib_list = svr4_current_sos_direct (info);
1799
1800 return 1;
1801 }
1802
1803 /* Update the shared object list starting from the link-map entry
1804 passed by the linker in the probe's third argument. Returns
1805 nonzero if the list was successfully updated, or zero to indicate
1806 failure. */
1807
1808 static int
1809 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1810 {
1811 struct so_list *tail;
1812 CORE_ADDR prev_lm;
1813
1814 /* svr4_current_sos_direct contains logic to handle a number of
1815 special cases relating to the first elements of the list. To
1816 avoid duplicating this logic we defer to solist_update_full
1817 if the list is empty. */
1818 if (info->solib_list == NULL)
1819 return 0;
1820
1821 /* Fall back to a full update if we are using a remote target
1822 that does not support incremental transfers. */
1823 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1824 return 0;
1825
1826 /* Walk to the end of the list. */
1827 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1828 /* Nothing. */;
1829
1830 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1831 prev_lm = li->lm_addr;
1832
1833 /* Read the new objects. */
1834 if (info->using_xfer)
1835 {
1836 struct svr4_library_list library_list;
1837 char annex[64];
1838
1839 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1840 phex_nz (lm, sizeof (lm)),
1841 phex_nz (prev_lm, sizeof (prev_lm)));
1842 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1843 return 0;
1844
1845 tail->next = library_list.head;
1846 }
1847 else
1848 {
1849 struct so_list **link = &tail->next;
1850
1851 /* IGNORE_FIRST may safely be set to zero here because the
1852 above check and deferral to solist_update_full ensures
1853 that this call to svr4_read_so_list will never see the
1854 first element. */
1855 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
1856 return 0;
1857 }
1858
1859 return 1;
1860 }
1861
1862 /* Disable the probes-based linker interface and revert to the
1863 original interface. We don't reset the breakpoints as the
1864 ones set up for the probes-based interface are adequate. */
1865
1866 static void
1867 disable_probes_interface (svr4_info *info)
1868 {
1869 warning (_("Probes-based dynamic linker interface failed.\n"
1870 "Reverting to original interface."));
1871
1872 free_probes_table (info);
1873 free_solib_list (info);
1874 }
1875
1876 /* Update the solib list as appropriate when using the
1877 probes-based linker interface. Do nothing if using the
1878 standard interface. */
1879
1880 static void
1881 svr4_handle_solib_event (void)
1882 {
1883 struct svr4_info *info = get_svr4_info (current_program_space);
1884 struct probe_and_action *pa;
1885 enum probe_action action;
1886 struct value *val = NULL;
1887 CORE_ADDR pc, debug_base, lm = 0;
1888 struct frame_info *frame = get_current_frame ();
1889
1890 /* Do nothing if not using the probes interface. */
1891 if (info->probes_table == NULL)
1892 return;
1893
1894 /* If anything goes wrong we revert to the original linker
1895 interface. */
1896 auto cleanup = make_scope_exit ([info] ()
1897 {
1898 disable_probes_interface (info);
1899 });
1900
1901 pc = regcache_read_pc (get_current_regcache ());
1902 pa = solib_event_probe_at (info, pc);
1903 if (pa == NULL)
1904 return;
1905
1906 action = solib_event_probe_action (pa);
1907 if (action == PROBES_INTERFACE_FAILED)
1908 return;
1909
1910 if (action == DO_NOTHING)
1911 {
1912 cleanup.release ();
1913 return;
1914 }
1915
1916 /* evaluate_argument looks up symbols in the dynamic linker
1917 using find_pc_section. find_pc_section is accelerated by a cache
1918 called the section map. The section map is invalidated every
1919 time a shared library is loaded or unloaded, and if the inferior
1920 is generating a lot of shared library events then the section map
1921 will be updated every time svr4_handle_solib_event is called.
1922 We called find_pc_section in svr4_create_solib_event_breakpoints,
1923 so we can guarantee that the dynamic linker's sections are in the
1924 section map. We can therefore inhibit section map updates across
1925 these calls to evaluate_argument and save a lot of time. */
1926 {
1927 scoped_restore inhibit_updates
1928 = inhibit_section_map_updates (current_program_space);
1929
1930 try
1931 {
1932 val = pa->prob->evaluate_argument (1, frame);
1933 }
1934 catch (const gdb_exception_error &ex)
1935 {
1936 exception_print (gdb_stderr, ex);
1937 val = NULL;
1938 }
1939
1940 if (val == NULL)
1941 return;
1942
1943 debug_base = value_as_address (val);
1944 if (debug_base == 0)
1945 return;
1946
1947 /* Always locate the debug struct, in case it moved. */
1948 info->debug_base = 0;
1949 if (locate_base (info) == 0)
1950 {
1951 /* It's possible for the reloc_complete probe to be triggered before
1952 the linker has set the DT_DEBUG pointer (for example, when the
1953 linker has finished relocating an LD_AUDIT library or its
1954 dependencies). Since we can't yet handle libraries from other link
1955 namespaces, we don't lose anything by ignoring them here. */
1956 struct value *link_map_id_val;
1957 try
1958 {
1959 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1960 }
1961 catch (const gdb_exception_error)
1962 {
1963 link_map_id_val = NULL;
1964 }
1965 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1966 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1967 action = DO_NOTHING;
1968 else
1969 return;
1970 }
1971
1972 /* GDB does not currently support libraries loaded via dlmopen
1973 into namespaces other than the initial one. We must ignore
1974 any namespace other than the initial namespace here until
1975 support for this is added to GDB. */
1976 if (debug_base != info->debug_base)
1977 action = DO_NOTHING;
1978
1979 if (action == UPDATE_OR_RELOAD)
1980 {
1981 try
1982 {
1983 val = pa->prob->evaluate_argument (2, frame);
1984 }
1985 catch (const gdb_exception_error &ex)
1986 {
1987 exception_print (gdb_stderr, ex);
1988 return;
1989 }
1990
1991 if (val != NULL)
1992 lm = value_as_address (val);
1993
1994 if (lm == 0)
1995 action = FULL_RELOAD;
1996 }
1997
1998 /* Resume section map updates. Closing the scope is
1999 sufficient. */
2000 }
2001
2002 if (action == UPDATE_OR_RELOAD)
2003 {
2004 if (!solist_update_incremental (info, lm))
2005 action = FULL_RELOAD;
2006 }
2007
2008 if (action == FULL_RELOAD)
2009 {
2010 if (!solist_update_full (info))
2011 return;
2012 }
2013
2014 cleanup.release ();
2015 }
2016
2017 /* Helper function for svr4_update_solib_event_breakpoints. */
2018
2019 static bool
2020 svr4_update_solib_event_breakpoint (struct breakpoint *b)
2021 {
2022 if (b->type != bp_shlib_event)
2023 {
2024 /* Continue iterating. */
2025 return false;
2026 }
2027
2028 for (bp_location *loc : b->locations ())
2029 {
2030 struct svr4_info *info;
2031 struct probe_and_action *pa;
2032
2033 info = solib_svr4_pspace_data.get (loc->pspace);
2034 if (info == NULL || info->probes_table == NULL)
2035 continue;
2036
2037 pa = solib_event_probe_at (info, loc->address);
2038 if (pa == NULL)
2039 continue;
2040
2041 if (pa->action == DO_NOTHING)
2042 {
2043 if (b->enable_state == bp_disabled && stop_on_solib_events)
2044 enable_breakpoint (b);
2045 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2046 disable_breakpoint (b);
2047 }
2048
2049 break;
2050 }
2051
2052 /* Continue iterating. */
2053 return false;
2054 }
2055
2056 /* Enable or disable optional solib event breakpoints as appropriate.
2057 Called whenever stop_on_solib_events is changed. */
2058
2059 static void
2060 svr4_update_solib_event_breakpoints (void)
2061 {
2062 for (breakpoint *bp : all_breakpoints_safe ())
2063 svr4_update_solib_event_breakpoint (bp);
2064 }
2065
2066 /* Create and register solib event breakpoints. PROBES is an array
2067 of NUM_PROBES elements, each of which is vector of probes. A
2068 solib event breakpoint will be created and registered for each
2069 probe. */
2070
2071 static void
2072 svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2073 const std::vector<probe *> *probes,
2074 struct objfile *objfile)
2075 {
2076 for (int i = 0; i < NUM_PROBES; i++)
2077 {
2078 enum probe_action action = probe_info[i].action;
2079
2080 for (probe *p : probes[i])
2081 {
2082 CORE_ADDR address = p->get_relocated_address (objfile);
2083
2084 create_solib_event_breakpoint (gdbarch, address);
2085 register_solib_event_probe (info, objfile, p, address, action);
2086 }
2087 }
2088
2089 svr4_update_solib_event_breakpoints ();
2090 }
2091
2092 /* Find all the glibc named probes. Only if all of the probes are found, then
2093 create them and return true. Otherwise return false. If WITH_PREFIX is set
2094 then add "rtld" to the front of the probe names. */
2095 static bool
2096 svr4_find_and_create_probe_breakpoints (svr4_info *info,
2097 struct gdbarch *gdbarch,
2098 struct obj_section *os,
2099 bool with_prefix)
2100 {
2101 std::vector<probe *> probes[NUM_PROBES];
2102
2103 for (int i = 0; i < NUM_PROBES; i++)
2104 {
2105 const char *name = probe_info[i].name;
2106 char buf[32];
2107
2108 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2109 version of the probes code in which the probes' names were prefixed
2110 with "rtld_" and the "map_failed" probe did not exist. The locations
2111 of the probes are otherwise the same, so we check for probes with
2112 prefixed names if probes with unprefixed names are not present. */
2113 if (with_prefix)
2114 {
2115 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2116 name = buf;
2117 }
2118
2119 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2120
2121 /* The "map_failed" probe did not exist in early
2122 versions of the probes code in which the probes'
2123 names were prefixed with "rtld_". */
2124 if (with_prefix && streq (name, "rtld_map_failed"))
2125 continue;
2126
2127 /* Ensure at least one probe for the current name was found. */
2128 if (probes[i].empty ())
2129 return false;
2130
2131 /* Ensure probe arguments can be evaluated. */
2132 for (probe *p : probes[i])
2133 {
2134 if (!p->can_evaluate_arguments ())
2135 return false;
2136 /* This will fail if the probe is invalid. This has been seen on Arm
2137 due to references to symbols that have been resolved away. */
2138 try
2139 {
2140 p->get_argument_count (gdbarch);
2141 }
2142 catch (const gdb_exception_error &ex)
2143 {
2144 exception_print (gdb_stderr, ex);
2145 warning (_("Initializing probes-based dynamic linker interface "
2146 "failed.\nReverting to original interface."));
2147 return false;
2148 }
2149 }
2150 }
2151
2152 /* All probes found. Now create them. */
2153 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2154 return true;
2155 }
2156
2157 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2158 before and after mapping and unmapping shared libraries. The sole
2159 purpose of this method is to allow debuggers to set a breakpoint so
2160 they can track these changes.
2161
2162 Some versions of the glibc dynamic linker contain named probes
2163 to allow more fine grained stopping. Given the address of the
2164 original marker function, this function attempts to find these
2165 probes, and if found, sets breakpoints on those instead. If the
2166 probes aren't found, a single breakpoint is set on the original
2167 marker function. */
2168
2169 static void
2170 svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2171 CORE_ADDR address)
2172 {
2173 struct obj_section *os = find_pc_section (address);
2174
2175 if (os == nullptr
2176 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2177 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2178 create_solib_event_breakpoint (gdbarch, address);
2179 }
2180
2181 /* Helper function for gdb_bfd_lookup_symbol. */
2182
2183 static int
2184 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2185 {
2186 return (strcmp (sym->name, (const char *) data) == 0
2187 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2188 }
2189 /* Arrange for dynamic linker to hit breakpoint.
2190
2191 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2192 debugger interface, support for arranging for the inferior to hit
2193 a breakpoint after mapping in the shared libraries. This function
2194 enables that breakpoint.
2195
2196 For SunOS, there is a special flag location (in_debugger) which we
2197 set to 1. When the dynamic linker sees this flag set, it will set
2198 a breakpoint at a location known only to itself, after saving the
2199 original contents of that place and the breakpoint address itself,
2200 in it's own internal structures. When we resume the inferior, it
2201 will eventually take a SIGTRAP when it runs into the breakpoint.
2202 We handle this (in a different place) by restoring the contents of
2203 the breakpointed location (which is only known after it stops),
2204 chasing around to locate the shared libraries that have been
2205 loaded, then resuming.
2206
2207 For SVR4, the debugger interface structure contains a member (r_brk)
2208 which is statically initialized at the time the shared library is
2209 built, to the offset of a function (_r_debug_state) which is guaran-
2210 teed to be called once before mapping in a library, and again when
2211 the mapping is complete. At the time we are examining this member,
2212 it contains only the unrelocated offset of the function, so we have
2213 to do our own relocation. Later, when the dynamic linker actually
2214 runs, it relocates r_brk to be the actual address of _r_debug_state().
2215
2216 The debugger interface structure also contains an enumeration which
2217 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2218 depending upon whether or not the library is being mapped or unmapped,
2219 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2220
2221 static int
2222 enable_break (struct svr4_info *info, int from_tty)
2223 {
2224 struct bound_minimal_symbol msymbol;
2225 const char * const *bkpt_namep;
2226 asection *interp_sect;
2227 CORE_ADDR sym_addr;
2228
2229 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2230 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2231
2232 /* If we already have a shared library list in the target, and
2233 r_debug contains r_brk, set the breakpoint there - this should
2234 mean r_brk has already been relocated. Assume the dynamic linker
2235 is the object containing r_brk. */
2236
2237 solib_add (NULL, from_tty, auto_solib_add);
2238 sym_addr = 0;
2239 if (info->debug_base && solib_svr4_r_map (info) != 0)
2240 sym_addr = solib_svr4_r_brk (info);
2241
2242 if (sym_addr != 0)
2243 {
2244 struct obj_section *os;
2245
2246 sym_addr = gdbarch_addr_bits_remove
2247 (target_gdbarch (),
2248 gdbarch_convert_from_func_ptr_addr
2249 (target_gdbarch (), sym_addr, current_inferior ()->top_target ()));
2250
2251 /* On at least some versions of Solaris there's a dynamic relocation
2252 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2253 we get control before the dynamic linker has self-relocated.
2254 Check if SYM_ADDR is in a known section, if it is assume we can
2255 trust its value. This is just a heuristic though, it could go away
2256 or be replaced if it's getting in the way.
2257
2258 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2259 however it's spelled in your particular system) is ARM or Thumb.
2260 That knowledge is encoded in the address, if it's Thumb the low bit
2261 is 1. However, we've stripped that info above and it's not clear
2262 what all the consequences are of passing a non-addr_bits_remove'd
2263 address to svr4_create_solib_event_breakpoints. The call to
2264 find_pc_section verifies we know about the address and have some
2265 hope of computing the right kind of breakpoint to use (via
2266 symbol info). It does mean that GDB needs to be pointed at a
2267 non-stripped version of the dynamic linker in order to obtain
2268 information it already knows about. Sigh. */
2269
2270 os = find_pc_section (sym_addr);
2271 if (os != NULL)
2272 {
2273 /* Record the relocated start and end address of the dynamic linker
2274 text and plt section for svr4_in_dynsym_resolve_code. */
2275 bfd *tmp_bfd;
2276 CORE_ADDR load_addr;
2277
2278 tmp_bfd = os->objfile->obfd;
2279 load_addr = os->objfile->text_section_offset ();
2280
2281 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2282 if (interp_sect)
2283 {
2284 info->interp_text_sect_low
2285 = bfd_section_vma (interp_sect) + load_addr;
2286 info->interp_text_sect_high
2287 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2288 }
2289 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2290 if (interp_sect)
2291 {
2292 info->interp_plt_sect_low
2293 = bfd_section_vma (interp_sect) + load_addr;
2294 info->interp_plt_sect_high
2295 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2296 }
2297
2298 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
2299 return 1;
2300 }
2301 }
2302
2303 /* Find the program interpreter; if not found, warn the user and drop
2304 into the old breakpoint at symbol code. */
2305 gdb::optional<gdb::byte_vector> interp_name_holder
2306 = find_program_interpreter ();
2307 if (interp_name_holder)
2308 {
2309 const char *interp_name = (const char *) interp_name_holder->data ();
2310 CORE_ADDR load_addr = 0;
2311 int load_addr_found = 0;
2312 int loader_found_in_list = 0;
2313 struct target_ops *tmp_bfd_target;
2314
2315 sym_addr = 0;
2316
2317 /* Now we need to figure out where the dynamic linker was
2318 loaded so that we can load its symbols and place a breakpoint
2319 in the dynamic linker itself.
2320
2321 This address is stored on the stack. However, I've been unable
2322 to find any magic formula to find it for Solaris (appears to
2323 be trivial on GNU/Linux). Therefore, we have to try an alternate
2324 mechanism to find the dynamic linker's base address. */
2325
2326 gdb_bfd_ref_ptr tmp_bfd;
2327 try
2328 {
2329 tmp_bfd = solib_bfd_open (interp_name);
2330 }
2331 catch (const gdb_exception &ex)
2332 {
2333 }
2334
2335 if (tmp_bfd == NULL)
2336 goto bkpt_at_symbol;
2337
2338 /* Now convert the TMP_BFD into a target. That way target, as
2339 well as BFD operations can be used. */
2340 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2341
2342 /* On a running target, we can get the dynamic linker's base
2343 address from the shared library table. */
2344 for (struct so_list *so : current_program_space->solibs ())
2345 {
2346 if (svr4_same_1 (interp_name, so->so_original_name))
2347 {
2348 load_addr_found = 1;
2349 loader_found_in_list = 1;
2350 load_addr = lm_addr_check (so, tmp_bfd.get ());
2351 break;
2352 }
2353 }
2354
2355 /* If we were not able to find the base address of the loader
2356 from our so_list, then try using the AT_BASE auxilliary entry. */
2357 if (!load_addr_found)
2358 if (target_auxv_search (current_inferior ()->top_target (),
2359 AT_BASE, &load_addr) > 0)
2360 {
2361 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2362
2363 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2364 that `+ load_addr' will overflow CORE_ADDR width not creating
2365 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2366 GDB. */
2367
2368 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2369 {
2370 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2371 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2372 tmp_bfd_target);
2373
2374 gdb_assert (load_addr < space_size);
2375
2376 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2377 64bit ld.so with 32bit executable, it should not happen. */
2378
2379 if (tmp_entry_point < space_size
2380 && tmp_entry_point + load_addr >= space_size)
2381 load_addr -= space_size;
2382 }
2383
2384 load_addr_found = 1;
2385 }
2386
2387 /* Otherwise we find the dynamic linker's base address by examining
2388 the current pc (which should point at the entry point for the
2389 dynamic linker) and subtracting the offset of the entry point.
2390
2391 This is more fragile than the previous approaches, but is a good
2392 fallback method because it has actually been working well in
2393 most cases. */
2394 if (!load_addr_found)
2395 {
2396 struct regcache *regcache
2397 = get_thread_arch_regcache (current_inferior ()->process_target (),
2398 inferior_ptid, target_gdbarch ());
2399
2400 load_addr = (regcache_read_pc (regcache)
2401 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2402 }
2403
2404 if (!loader_found_in_list)
2405 {
2406 info->debug_loader_name = xstrdup (interp_name);
2407 info->debug_loader_offset_p = 1;
2408 info->debug_loader_offset = load_addr;
2409 solib_add (NULL, from_tty, auto_solib_add);
2410 }
2411
2412 /* Record the relocated start and end address of the dynamic linker
2413 text and plt section for svr4_in_dynsym_resolve_code. */
2414 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2415 if (interp_sect)
2416 {
2417 info->interp_text_sect_low
2418 = bfd_section_vma (interp_sect) + load_addr;
2419 info->interp_text_sect_high
2420 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2421 }
2422 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2423 if (interp_sect)
2424 {
2425 info->interp_plt_sect_low
2426 = bfd_section_vma (interp_sect) + load_addr;
2427 info->interp_plt_sect_high
2428 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2429 }
2430
2431 /* Now try to set a breakpoint in the dynamic linker. */
2432 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2433 {
2434 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2435 cmp_name_and_sec_flags,
2436 *bkpt_namep);
2437 if (sym_addr != 0)
2438 break;
2439 }
2440
2441 if (sym_addr != 0)
2442 /* Convert 'sym_addr' from a function pointer to an address.
2443 Because we pass tmp_bfd_target instead of the current
2444 target, this will always produce an unrelocated value. */
2445 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2446 sym_addr,
2447 tmp_bfd_target);
2448
2449 /* We're done with both the temporary bfd and target. Closing
2450 the target closes the underlying bfd, because it holds the
2451 only remaining reference. */
2452 target_close (tmp_bfd_target);
2453
2454 if (sym_addr != 0)
2455 {
2456 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2457 load_addr + sym_addr);
2458 return 1;
2459 }
2460
2461 /* For whatever reason we couldn't set a breakpoint in the dynamic
2462 linker. Warn and drop into the old code. */
2463 bkpt_at_symbol:
2464 warning (_("Unable to find dynamic linker breakpoint function.\n"
2465 "GDB will be unable to debug shared library initializers\n"
2466 "and track explicitly loaded dynamic code."));
2467 }
2468
2469 /* Scan through the lists of symbols, trying to look up the symbol and
2470 set a breakpoint there. Terminate loop when we/if we succeed. */
2471
2472 objfile *objf = current_program_space->symfile_object_file;
2473 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2474 {
2475 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2476 if ((msymbol.minsym != NULL)
2477 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2478 {
2479 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2480 sym_addr = gdbarch_convert_from_func_ptr_addr
2481 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
2482 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2483 sym_addr);
2484 return 1;
2485 }
2486 }
2487
2488 if (interp_name_holder && !current_inferior ()->attach_flag)
2489 {
2490 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2491 {
2492 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2493 if ((msymbol.minsym != NULL)
2494 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2495 {
2496 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2497 sym_addr = gdbarch_convert_from_func_ptr_addr
2498 (target_gdbarch (), sym_addr,
2499 current_inferior ()->top_target ());
2500 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2501 sym_addr);
2502 return 1;
2503 }
2504 }
2505 }
2506 return 0;
2507 }
2508
2509 /* Read the ELF program headers from ABFD. */
2510
2511 static gdb::optional<gdb::byte_vector>
2512 read_program_headers_from_bfd (bfd *abfd)
2513 {
2514 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2515 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2516 if (phdrs_size == 0)
2517 return {};
2518
2519 gdb::byte_vector buf (phdrs_size);
2520 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2521 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2522 return {};
2523
2524 return buf;
2525 }
2526
2527 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2528 exec_bfd. Otherwise return 0.
2529
2530 We relocate all of the sections by the same amount. This
2531 behavior is mandated by recent editions of the System V ABI.
2532 According to the System V Application Binary Interface,
2533 Edition 4.1, page 5-5:
2534
2535 ... Though the system chooses virtual addresses for
2536 individual processes, it maintains the segments' relative
2537 positions. Because position-independent code uses relative
2538 addressing between segments, the difference between
2539 virtual addresses in memory must match the difference
2540 between virtual addresses in the file. The difference
2541 between the virtual address of any segment in memory and
2542 the corresponding virtual address in the file is thus a
2543 single constant value for any one executable or shared
2544 object in a given process. This difference is the base
2545 address. One use of the base address is to relocate the
2546 memory image of the program during dynamic linking.
2547
2548 The same language also appears in Edition 4.0 of the System V
2549 ABI and is left unspecified in some of the earlier editions.
2550
2551 Decide if the objfile needs to be relocated. As indicated above, we will
2552 only be here when execution is stopped. But during attachment PC can be at
2553 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2554 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2555 regcache_read_pc would point to the interpreter and not the main executable.
2556
2557 So, to summarize, relocations are necessary when the start address obtained
2558 from the executable is different from the address in auxv AT_ENTRY entry.
2559
2560 [ The astute reader will note that we also test to make sure that
2561 the executable in question has the DYNAMIC flag set. It is my
2562 opinion that this test is unnecessary (undesirable even). It
2563 was added to avoid inadvertent relocation of an executable
2564 whose e_type member in the ELF header is not ET_DYN. There may
2565 be a time in the future when it is desirable to do relocations
2566 on other types of files as well in which case this condition
2567 should either be removed or modified to accomodate the new file
2568 type. - Kevin, Nov 2000. ] */
2569
2570 static int
2571 svr4_exec_displacement (CORE_ADDR *displacementp)
2572 {
2573 /* ENTRY_POINT is a possible function descriptor - before
2574 a call to gdbarch_convert_from_func_ptr_addr. */
2575 CORE_ADDR entry_point, exec_displacement;
2576
2577 if (current_program_space->exec_bfd () == NULL)
2578 return 0;
2579
2580 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2581 being executed themselves and PIE (Position Independent Executable)
2582 executables are ET_DYN. */
2583
2584 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
2585 return 0;
2586
2587 if (target_auxv_search (current_inferior ()->top_target (),
2588 AT_ENTRY, &entry_point) <= 0)
2589 return 0;
2590
2591 exec_displacement
2592 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
2593
2594 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2595 alignment. It is cheaper than the program headers comparison below. */
2596
2597 if (bfd_get_flavour (current_program_space->exec_bfd ())
2598 == bfd_target_elf_flavour)
2599 {
2600 const struct elf_backend_data *elf
2601 = get_elf_backend_data (current_program_space->exec_bfd ());
2602
2603 /* p_align of PT_LOAD segments does not specify any alignment but
2604 only congruency of addresses:
2605 p_offset % p_align == p_vaddr % p_align
2606 Kernel is free to load the executable with lower alignment. */
2607
2608 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2609 return 0;
2610 }
2611
2612 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2613 comparing their program headers. If the program headers in the auxilliary
2614 vector do not match the program headers in the executable, then we are
2615 looking at a different file than the one used by the kernel - for
2616 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2617
2618 if (bfd_get_flavour (current_program_space->exec_bfd ())
2619 == bfd_target_elf_flavour)
2620 {
2621 /* Be optimistic and return 0 only if GDB was able to verify the headers
2622 really do not match. */
2623 int arch_size;
2624
2625 gdb::optional<gdb::byte_vector> phdrs_target
2626 = read_program_header (-1, &arch_size, NULL);
2627 gdb::optional<gdb::byte_vector> phdrs_binary
2628 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
2629 if (phdrs_target && phdrs_binary)
2630 {
2631 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2632
2633 /* We are dealing with three different addresses. EXEC_BFD
2634 represents current address in on-disk file. target memory content
2635 may be different from EXEC_BFD as the file may have been prelinked
2636 to a different address after the executable has been loaded.
2637 Moreover the address of placement in target memory can be
2638 different from what the program headers in target memory say -
2639 this is the goal of PIE.
2640
2641 Detected DISPLACEMENT covers both the offsets of PIE placement and
2642 possible new prelink performed after start of the program. Here
2643 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2644 content offset for the verification purpose. */
2645
2646 if (phdrs_target->size () != phdrs_binary->size ()
2647 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
2648 return 0;
2649 else if (arch_size == 32
2650 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2651 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2652 {
2653 Elf_Internal_Ehdr *ehdr2
2654 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2655 Elf_Internal_Phdr *phdr2
2656 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2657 CORE_ADDR displacement = 0;
2658 int i;
2659
2660 /* DISPLACEMENT could be found more easily by the difference of
2661 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2662 already have enough information to compute that displacement
2663 with what we've read. */
2664
2665 for (i = 0; i < ehdr2->e_phnum; i++)
2666 if (phdr2[i].p_type == PT_LOAD)
2667 {
2668 Elf32_External_Phdr *phdrp;
2669 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2670 CORE_ADDR vaddr, paddr;
2671 CORE_ADDR displacement_vaddr = 0;
2672 CORE_ADDR displacement_paddr = 0;
2673
2674 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2675 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2676 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2677
2678 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2679 byte_order);
2680 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2681
2682 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2683 byte_order);
2684 displacement_paddr = paddr - phdr2[i].p_paddr;
2685
2686 if (displacement_vaddr == displacement_paddr)
2687 displacement = displacement_vaddr;
2688
2689 break;
2690 }
2691
2692 /* Now compare program headers from the target and the binary
2693 with optional DISPLACEMENT. */
2694
2695 for (i = 0;
2696 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2697 i++)
2698 {
2699 Elf32_External_Phdr *phdrp;
2700 Elf32_External_Phdr *phdr2p;
2701 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2702 CORE_ADDR vaddr, paddr;
2703 asection *plt2_asect;
2704
2705 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2706 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2707 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2708 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2709
2710 /* PT_GNU_STACK is an exception by being never relocated by
2711 prelink as its addresses are always zero. */
2712
2713 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2714 continue;
2715
2716 /* Check also other adjustment combinations - PR 11786. */
2717
2718 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2719 byte_order);
2720 vaddr -= displacement;
2721 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2722
2723 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2724 byte_order);
2725 paddr -= displacement;
2726 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2727
2728 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2729 continue;
2730
2731 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2732 CentOS-5 has problems with filesz, memsz as well.
2733 Strip also modifies memsz of PT_TLS.
2734 See PR 11786. */
2735 if (phdr2[i].p_type == PT_GNU_RELRO
2736 || phdr2[i].p_type == PT_TLS)
2737 {
2738 Elf32_External_Phdr tmp_phdr = *phdrp;
2739 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2740
2741 memset (tmp_phdr.p_filesz, 0, 4);
2742 memset (tmp_phdr.p_memsz, 0, 4);
2743 memset (tmp_phdr.p_flags, 0, 4);
2744 memset (tmp_phdr.p_align, 0, 4);
2745 memset (tmp_phdr2.p_filesz, 0, 4);
2746 memset (tmp_phdr2.p_memsz, 0, 4);
2747 memset (tmp_phdr2.p_flags, 0, 4);
2748 memset (tmp_phdr2.p_align, 0, 4);
2749
2750 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2751 == 0)
2752 continue;
2753 }
2754
2755 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2756 bfd *exec_bfd = current_program_space->exec_bfd ();
2757 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2758 if (plt2_asect)
2759 {
2760 int content2;
2761 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2762 CORE_ADDR filesz;
2763
2764 content2 = (bfd_section_flags (plt2_asect)
2765 & SEC_HAS_CONTENTS) != 0;
2766
2767 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2768 byte_order);
2769
2770 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2771 FILESZ is from the in-memory image. */
2772 if (content2)
2773 filesz += bfd_section_size (plt2_asect);
2774 else
2775 filesz -= bfd_section_size (plt2_asect);
2776
2777 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2778 filesz);
2779
2780 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2781 continue;
2782 }
2783
2784 return 0;
2785 }
2786 }
2787 else if (arch_size == 64
2788 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2789 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2790 {
2791 Elf_Internal_Ehdr *ehdr2
2792 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2793 Elf_Internal_Phdr *phdr2
2794 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2795 CORE_ADDR displacement = 0;
2796 int i;
2797
2798 /* DISPLACEMENT could be found more easily by the difference of
2799 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2800 already have enough information to compute that displacement
2801 with what we've read. */
2802
2803 for (i = 0; i < ehdr2->e_phnum; i++)
2804 if (phdr2[i].p_type == PT_LOAD)
2805 {
2806 Elf64_External_Phdr *phdrp;
2807 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2808 CORE_ADDR vaddr, paddr;
2809 CORE_ADDR displacement_vaddr = 0;
2810 CORE_ADDR displacement_paddr = 0;
2811
2812 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2813 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2814 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2815
2816 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2817 byte_order);
2818 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2819
2820 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2821 byte_order);
2822 displacement_paddr = paddr - phdr2[i].p_paddr;
2823
2824 if (displacement_vaddr == displacement_paddr)
2825 displacement = displacement_vaddr;
2826
2827 break;
2828 }
2829
2830 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2831
2832 for (i = 0;
2833 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2834 i++)
2835 {
2836 Elf64_External_Phdr *phdrp;
2837 Elf64_External_Phdr *phdr2p;
2838 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2839 CORE_ADDR vaddr, paddr;
2840 asection *plt2_asect;
2841
2842 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2843 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2844 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2845 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2846
2847 /* PT_GNU_STACK is an exception by being never relocated by
2848 prelink as its addresses are always zero. */
2849
2850 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2851 continue;
2852
2853 /* Check also other adjustment combinations - PR 11786. */
2854
2855 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2856 byte_order);
2857 vaddr -= displacement;
2858 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2859
2860 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2861 byte_order);
2862 paddr -= displacement;
2863 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2864
2865 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2866 continue;
2867
2868 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2869 CentOS-5 has problems with filesz, memsz as well.
2870 Strip also modifies memsz of PT_TLS.
2871 See PR 11786. */
2872 if (phdr2[i].p_type == PT_GNU_RELRO
2873 || phdr2[i].p_type == PT_TLS)
2874 {
2875 Elf64_External_Phdr tmp_phdr = *phdrp;
2876 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2877
2878 memset (tmp_phdr.p_filesz, 0, 8);
2879 memset (tmp_phdr.p_memsz, 0, 8);
2880 memset (tmp_phdr.p_flags, 0, 4);
2881 memset (tmp_phdr.p_align, 0, 8);
2882 memset (tmp_phdr2.p_filesz, 0, 8);
2883 memset (tmp_phdr2.p_memsz, 0, 8);
2884 memset (tmp_phdr2.p_flags, 0, 4);
2885 memset (tmp_phdr2.p_align, 0, 8);
2886
2887 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2888 == 0)
2889 continue;
2890 }
2891
2892 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2893 plt2_asect
2894 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2895 ".plt");
2896 if (plt2_asect)
2897 {
2898 int content2;
2899 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2900 CORE_ADDR filesz;
2901
2902 content2 = (bfd_section_flags (plt2_asect)
2903 & SEC_HAS_CONTENTS) != 0;
2904
2905 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2906 byte_order);
2907
2908 /* PLT2_ASECT is from on-disk file (current
2909 exec_bfd) while FILESZ is from the in-memory
2910 image. */
2911 if (content2)
2912 filesz += bfd_section_size (plt2_asect);
2913 else
2914 filesz -= bfd_section_size (plt2_asect);
2915
2916 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2917 filesz);
2918
2919 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2920 continue;
2921 }
2922
2923 return 0;
2924 }
2925 }
2926 else
2927 return 0;
2928 }
2929 }
2930
2931 if (info_verbose)
2932 {
2933 /* It can be printed repeatedly as there is no easy way to check
2934 the executable symbols/file has been already relocated to
2935 displacement. */
2936
2937 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2938 "displacement %s for \"%s\".\n"),
2939 paddress (target_gdbarch (), exec_displacement),
2940 bfd_get_filename (current_program_space->exec_bfd ()));
2941 }
2942
2943 *displacementp = exec_displacement;
2944 return 1;
2945 }
2946
2947 /* Relocate the main executable. This function should be called upon
2948 stopping the inferior process at the entry point to the program.
2949 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2950 different, the main executable is relocated by the proper amount. */
2951
2952 static void
2953 svr4_relocate_main_executable (void)
2954 {
2955 CORE_ADDR displacement;
2956
2957 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2958 probably contains the offsets computed using the PIE displacement
2959 from the previous run, which of course are irrelevant for this run.
2960 So we need to determine the new PIE displacement and recompute the
2961 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2962 already contains pre-computed offsets.
2963
2964 If we cannot compute the PIE displacement, either:
2965
2966 - The executable is not PIE.
2967
2968 - SYMFILE_OBJFILE does not match the executable started in the target.
2969 This can happen for main executable symbols loaded at the host while
2970 `ld.so --ld-args main-executable' is loaded in the target.
2971
2972 Then we leave the section offsets untouched and use them as is for
2973 this run. Either:
2974
2975 - These section offsets were properly reset earlier, and thus
2976 already contain the correct values. This can happen for instance
2977 when reconnecting via the remote protocol to a target that supports
2978 the `qOffsets' packet.
2979
2980 - The section offsets were not reset earlier, and the best we can
2981 hope is that the old offsets are still applicable to the new run. */
2982
2983 if (! svr4_exec_displacement (&displacement))
2984 return;
2985
2986 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2987 addresses. */
2988
2989 objfile *objf = current_program_space->symfile_object_file;
2990 if (objf)
2991 {
2992 section_offsets new_offsets (objf->section_offsets.size (),
2993 displacement);
2994 objfile_relocate (objf, new_offsets);
2995 }
2996 else if (current_program_space->exec_bfd ())
2997 {
2998 asection *asect;
2999
3000 bfd *exec_bfd = current_program_space->exec_bfd ();
3001 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3002 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3003 bfd_section_vma (asect) + displacement);
3004 }
3005 }
3006
3007 /* Implement the "create_inferior_hook" target_solib_ops method.
3008
3009 For SVR4 executables, this first instruction is either the first
3010 instruction in the dynamic linker (for dynamically linked
3011 executables) or the instruction at "start" for statically linked
3012 executables. For dynamically linked executables, the system
3013 first exec's /lib/libc.so.N, which contains the dynamic linker,
3014 and starts it running. The dynamic linker maps in any needed
3015 shared libraries, maps in the actual user executable, and then
3016 jumps to "start" in the user executable.
3017
3018 We can arrange to cooperate with the dynamic linker to discover the
3019 names of shared libraries that are dynamically linked, and the base
3020 addresses to which they are linked.
3021
3022 This function is responsible for discovering those names and
3023 addresses, and saving sufficient information about them to allow
3024 their symbols to be read at a later time. */
3025
3026 static void
3027 svr4_solib_create_inferior_hook (int from_tty)
3028 {
3029 struct svr4_info *info;
3030
3031 info = get_svr4_info (current_program_space);
3032
3033 /* Clear the probes-based interface's state. */
3034 free_probes_table (info);
3035 free_solib_list (info);
3036
3037 /* Relocate the main executable if necessary. */
3038 svr4_relocate_main_executable ();
3039
3040 /* No point setting a breakpoint in the dynamic linker if we can't
3041 hit it (e.g., a core file, or a trace file). */
3042 if (!target_has_execution ())
3043 return;
3044
3045 if (!svr4_have_link_map_offsets ())
3046 return;
3047
3048 if (!enable_break (info, from_tty))
3049 return;
3050 }
3051
3052 static void
3053 svr4_clear_solib (void)
3054 {
3055 struct svr4_info *info;
3056
3057 info = get_svr4_info (current_program_space);
3058 info->debug_base = 0;
3059 info->debug_loader_offset_p = 0;
3060 info->debug_loader_offset = 0;
3061 xfree (info->debug_loader_name);
3062 info->debug_loader_name = NULL;
3063 }
3064
3065 /* Clear any bits of ADDR that wouldn't fit in a target-format
3066 data pointer. "Data pointer" here refers to whatever sort of
3067 address the dynamic linker uses to manage its sections. At the
3068 moment, we don't support shared libraries on any processors where
3069 code and data pointers are different sizes.
3070
3071 This isn't really the right solution. What we really need here is
3072 a way to do arithmetic on CORE_ADDR values that respects the
3073 natural pointer/address correspondence. (For example, on the MIPS,
3074 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3075 sign-extend the value. There, simply truncating the bits above
3076 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3077 be a new gdbarch method or something. */
3078 static CORE_ADDR
3079 svr4_truncate_ptr (CORE_ADDR addr)
3080 {
3081 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3082 /* We don't need to truncate anything, and the bit twiddling below
3083 will fail due to overflow problems. */
3084 return addr;
3085 else
3086 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3087 }
3088
3089
3090 static void
3091 svr4_relocate_section_addresses (struct so_list *so,
3092 struct target_section *sec)
3093 {
3094 bfd *abfd = sec->the_bfd_section->owner;
3095
3096 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3097 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3098 }
3099 \f
3100
3101 /* Architecture-specific operations. */
3102
3103 /* Per-architecture data key. */
3104 static struct gdbarch_data *solib_svr4_data;
3105
3106 struct solib_svr4_ops
3107 {
3108 /* Return a description of the layout of `struct link_map'. */
3109 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3110 };
3111
3112 /* Return a default for the architecture-specific operations. */
3113
3114 static void *
3115 solib_svr4_init (struct obstack *obstack)
3116 {
3117 struct solib_svr4_ops *ops;
3118
3119 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3120 ops->fetch_link_map_offsets = NULL;
3121 return ops;
3122 }
3123
3124 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3125 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3126
3127 void
3128 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3129 struct link_map_offsets *(*flmo) (void))
3130 {
3131 struct solib_svr4_ops *ops
3132 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3133
3134 ops->fetch_link_map_offsets = flmo;
3135
3136 set_solib_ops (gdbarch, &svr4_so_ops);
3137 set_gdbarch_iterate_over_objfiles_in_search_order
3138 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
3139 }
3140
3141 /* Fetch a link_map_offsets structure using the architecture-specific
3142 `struct link_map_offsets' fetcher. */
3143
3144 static struct link_map_offsets *
3145 svr4_fetch_link_map_offsets (void)
3146 {
3147 struct solib_svr4_ops *ops
3148 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3149 solib_svr4_data);
3150
3151 gdb_assert (ops->fetch_link_map_offsets);
3152 return ops->fetch_link_map_offsets ();
3153 }
3154
3155 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3156
3157 static int
3158 svr4_have_link_map_offsets (void)
3159 {
3160 struct solib_svr4_ops *ops
3161 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3162 solib_svr4_data);
3163
3164 return (ops->fetch_link_map_offsets != NULL);
3165 }
3166 \f
3167
3168 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3169 `struct r_debug' and a `struct link_map' that are binary compatible
3170 with the original SVR4 implementation. */
3171
3172 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3173 for an ILP32 SVR4 system. */
3174
3175 struct link_map_offsets *
3176 svr4_ilp32_fetch_link_map_offsets (void)
3177 {
3178 static struct link_map_offsets lmo;
3179 static struct link_map_offsets *lmp = NULL;
3180
3181 if (lmp == NULL)
3182 {
3183 lmp = &lmo;
3184
3185 lmo.r_version_offset = 0;
3186 lmo.r_version_size = 4;
3187 lmo.r_map_offset = 4;
3188 lmo.r_brk_offset = 8;
3189 lmo.r_ldsomap_offset = 20;
3190
3191 /* Everything we need is in the first 20 bytes. */
3192 lmo.link_map_size = 20;
3193 lmo.l_addr_offset = 0;
3194 lmo.l_name_offset = 4;
3195 lmo.l_ld_offset = 8;
3196 lmo.l_next_offset = 12;
3197 lmo.l_prev_offset = 16;
3198 }
3199
3200 return lmp;
3201 }
3202
3203 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3204 for an LP64 SVR4 system. */
3205
3206 struct link_map_offsets *
3207 svr4_lp64_fetch_link_map_offsets (void)
3208 {
3209 static struct link_map_offsets lmo;
3210 static struct link_map_offsets *lmp = NULL;
3211
3212 if (lmp == NULL)
3213 {
3214 lmp = &lmo;
3215
3216 lmo.r_version_offset = 0;
3217 lmo.r_version_size = 4;
3218 lmo.r_map_offset = 8;
3219 lmo.r_brk_offset = 16;
3220 lmo.r_ldsomap_offset = 40;
3221
3222 /* Everything we need is in the first 40 bytes. */
3223 lmo.link_map_size = 40;
3224 lmo.l_addr_offset = 0;
3225 lmo.l_name_offset = 8;
3226 lmo.l_ld_offset = 16;
3227 lmo.l_next_offset = 24;
3228 lmo.l_prev_offset = 32;
3229 }
3230
3231 return lmp;
3232 }
3233 \f
3234
3235 struct target_so_ops svr4_so_ops;
3236
3237 /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3238 different rule for symbol lookup. The lookup begins here in the DSO, not in
3239 the main executable. */
3240
3241 static void
3242 svr4_iterate_over_objfiles_in_search_order
3243 (struct gdbarch *gdbarch,
3244 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3245 void *cb_data, struct objfile *current_objfile)
3246 {
3247 bool checked_current_objfile = false;
3248 if (current_objfile != nullptr)
3249 {
3250 bfd *abfd;
3251
3252 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3253 current_objfile = current_objfile->separate_debug_objfile_backlink;
3254
3255 if (current_objfile == current_program_space->symfile_object_file)
3256 abfd = current_program_space->exec_bfd ();
3257 else
3258 abfd = current_objfile->obfd;
3259
3260 if (abfd != nullptr
3261 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
3262 {
3263 checked_current_objfile = true;
3264 if (cb (current_objfile, cb_data) != 0)
3265 return;
3266 }
3267 }
3268
3269 for (objfile *objfile : current_program_space->objfiles ())
3270 {
3271 if (checked_current_objfile && objfile == current_objfile)
3272 continue;
3273 if (cb (objfile, cb_data) != 0)
3274 return;
3275 }
3276 }
3277
3278 void _initialize_svr4_solib ();
3279 void
3280 _initialize_svr4_solib ()
3281 {
3282 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3283
3284 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3285 svr4_so_ops.free_so = svr4_free_so;
3286 svr4_so_ops.clear_so = svr4_clear_so;
3287 svr4_so_ops.clear_solib = svr4_clear_solib;
3288 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3289 svr4_so_ops.current_sos = svr4_current_sos;
3290 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3291 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3292 svr4_so_ops.bfd_open = solib_bfd_open;
3293 svr4_so_ops.same = svr4_same;
3294 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3295 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3296 svr4_so_ops.handle_event = svr4_handle_solib_event;
3297
3298 gdb::observers::free_objfile.attach (svr4_free_objfile_observer,
3299 "solib-svr4");
3300 }
This page took 0.105748 seconds and 4 git commands to generate.