Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306 }
307
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314 }
315
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328 }
329
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 return se->parent;
333 }
334
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365 }
366
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
368
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 return container_of(se, struct task_struct, se);
372 }
373
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 return container_of(cfs_rq, struct rq, cfs);
377 }
378
379 #define entity_is_task(se) 1
380
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 return &task_rq(p)->cfs;
387 }
388
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395 }
396
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 return NULL;
401 }
402
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 return NULL;
417 }
418
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
425
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440 }
441
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449 }
450
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453 {
454 return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602 }
603
604 /*
605 * The idea is to set a period in which each task runs once.
606 *
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618 }
619
620 /*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
624 * s = p*P[w/rw]
625 */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646 }
647
648 /*
649 * We calculate the vruntime slice of a to-be-inserted task.
650 *
651 * vs = s/w
652 */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661
662 /*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
666 */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 struct sched_avg *sa = &se->avg;
675
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691 }
692
693 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694 static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
695 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
696 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
697
698 /*
699 * With new tasks being created, their initial util_avgs are extrapolated
700 * based on the cfs_rq's current util_avg:
701 *
702 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
703 *
704 * However, in many cases, the above util_avg does not give a desired
705 * value. Moreover, the sum of the util_avgs may be divergent, such
706 * as when the series is a harmonic series.
707 *
708 * To solve this problem, we also cap the util_avg of successive tasks to
709 * only 1/2 of the left utilization budget:
710 *
711 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
712 *
713 * where n denotes the nth task.
714 *
715 * For example, a simplest series from the beginning would be like:
716 *
717 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
718 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
719 *
720 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
721 * if util_avg > util_avg_cap.
722 */
723 void post_init_entity_util_avg(struct sched_entity *se)
724 {
725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
726 struct sched_avg *sa = &se->avg;
727 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
728 u64 now = cfs_rq_clock_task(cfs_rq);
729 int tg_update;
730
731 if (cap > 0) {
732 if (cfs_rq->avg.util_avg != 0) {
733 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
734 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
735
736 if (sa->util_avg > cap)
737 sa->util_avg = cap;
738 } else {
739 sa->util_avg = cap;
740 }
741 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
742 }
743
744 if (entity_is_task(se)) {
745 struct task_struct *p = task_of(se);
746 if (p->sched_class != &fair_sched_class) {
747 /*
748 * For !fair tasks do:
749 *
750 update_cfs_rq_load_avg(now, cfs_rq, false);
751 attach_entity_load_avg(cfs_rq, se);
752 switched_from_fair(rq, p);
753 *
754 * such that the next switched_to_fair() has the
755 * expected state.
756 */
757 se->avg.last_update_time = now;
758 return;
759 }
760 }
761
762 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
763 attach_entity_load_avg(cfs_rq, se);
764 if (tg_update)
765 update_tg_load_avg(cfs_rq, false);
766 }
767
768 #else /* !CONFIG_SMP */
769 void init_entity_runnable_average(struct sched_entity *se)
770 {
771 }
772 void post_init_entity_util_avg(struct sched_entity *se)
773 {
774 }
775 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
776 {
777 }
778 #endif /* CONFIG_SMP */
779
780 /*
781 * Update the current task's runtime statistics.
782 */
783 static void update_curr(struct cfs_rq *cfs_rq)
784 {
785 struct sched_entity *curr = cfs_rq->curr;
786 u64 now = rq_clock_task(rq_of(cfs_rq));
787 u64 delta_exec;
788
789 if (unlikely(!curr))
790 return;
791
792 delta_exec = now - curr->exec_start;
793 if (unlikely((s64)delta_exec <= 0))
794 return;
795
796 curr->exec_start = now;
797
798 schedstat_set(curr->statistics.exec_max,
799 max(delta_exec, curr->statistics.exec_max));
800
801 curr->sum_exec_runtime += delta_exec;
802 schedstat_add(cfs_rq, exec_clock, delta_exec);
803
804 curr->vruntime += calc_delta_fair(delta_exec, curr);
805 update_min_vruntime(cfs_rq);
806
807 if (entity_is_task(curr)) {
808 struct task_struct *curtask = task_of(curr);
809
810 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
811 cpuacct_charge(curtask, delta_exec);
812 account_group_exec_runtime(curtask, delta_exec);
813 }
814
815 account_cfs_rq_runtime(cfs_rq, delta_exec);
816 }
817
818 static void update_curr_fair(struct rq *rq)
819 {
820 update_curr(cfs_rq_of(&rq->curr->se));
821 }
822
823 #ifdef CONFIG_SCHEDSTATS
824 static inline void
825 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 u64 wait_start = rq_clock(rq_of(cfs_rq));
828
829 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
830 likely(wait_start > se->statistics.wait_start))
831 wait_start -= se->statistics.wait_start;
832
833 se->statistics.wait_start = wait_start;
834 }
835
836 static void
837 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 struct task_struct *p;
840 u64 delta;
841
842 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
843
844 if (entity_is_task(se)) {
845 p = task_of(se);
846 if (task_on_rq_migrating(p)) {
847 /*
848 * Preserve migrating task's wait time so wait_start
849 * time stamp can be adjusted to accumulate wait time
850 * prior to migration.
851 */
852 se->statistics.wait_start = delta;
853 return;
854 }
855 trace_sched_stat_wait(p, delta);
856 }
857
858 se->statistics.wait_max = max(se->statistics.wait_max, delta);
859 se->statistics.wait_count++;
860 se->statistics.wait_sum += delta;
861 se->statistics.wait_start = 0;
862 }
863
864 /*
865 * Task is being enqueued - update stats:
866 */
867 static inline void
868 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
869 {
870 /*
871 * Are we enqueueing a waiting task? (for current tasks
872 * a dequeue/enqueue event is a NOP)
873 */
874 if (se != cfs_rq->curr)
875 update_stats_wait_start(cfs_rq, se);
876 }
877
878 static inline void
879 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
880 {
881 /*
882 * Mark the end of the wait period if dequeueing a
883 * waiting task:
884 */
885 if (se != cfs_rq->curr)
886 update_stats_wait_end(cfs_rq, se);
887
888 if (flags & DEQUEUE_SLEEP) {
889 if (entity_is_task(se)) {
890 struct task_struct *tsk = task_of(se);
891
892 if (tsk->state & TASK_INTERRUPTIBLE)
893 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
894 if (tsk->state & TASK_UNINTERRUPTIBLE)
895 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
896 }
897 }
898
899 }
900 #else
901 static inline void
902 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
903 {
904 }
905
906 static inline void
907 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 }
910
911 static inline void
912 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
913 {
914 }
915
916 static inline void
917 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
918 {
919 }
920 #endif
921
922 /*
923 * We are picking a new current task - update its stats:
924 */
925 static inline void
926 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
927 {
928 /*
929 * We are starting a new run period:
930 */
931 se->exec_start = rq_clock_task(rq_of(cfs_rq));
932 }
933
934 /**************************************************
935 * Scheduling class queueing methods:
936 */
937
938 #ifdef CONFIG_NUMA_BALANCING
939 /*
940 * Approximate time to scan a full NUMA task in ms. The task scan period is
941 * calculated based on the tasks virtual memory size and
942 * numa_balancing_scan_size.
943 */
944 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
945 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
946
947 /* Portion of address space to scan in MB */
948 unsigned int sysctl_numa_balancing_scan_size = 256;
949
950 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
951 unsigned int sysctl_numa_balancing_scan_delay = 1000;
952
953 static unsigned int task_nr_scan_windows(struct task_struct *p)
954 {
955 unsigned long rss = 0;
956 unsigned long nr_scan_pages;
957
958 /*
959 * Calculations based on RSS as non-present and empty pages are skipped
960 * by the PTE scanner and NUMA hinting faults should be trapped based
961 * on resident pages
962 */
963 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
964 rss = get_mm_rss(p->mm);
965 if (!rss)
966 rss = nr_scan_pages;
967
968 rss = round_up(rss, nr_scan_pages);
969 return rss / nr_scan_pages;
970 }
971
972 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
973 #define MAX_SCAN_WINDOW 2560
974
975 static unsigned int task_scan_min(struct task_struct *p)
976 {
977 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
978 unsigned int scan, floor;
979 unsigned int windows = 1;
980
981 if (scan_size < MAX_SCAN_WINDOW)
982 windows = MAX_SCAN_WINDOW / scan_size;
983 floor = 1000 / windows;
984
985 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
986 return max_t(unsigned int, floor, scan);
987 }
988
989 static unsigned int task_scan_max(struct task_struct *p)
990 {
991 unsigned int smin = task_scan_min(p);
992 unsigned int smax;
993
994 /* Watch for min being lower than max due to floor calculations */
995 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
996 return max(smin, smax);
997 }
998
999 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1000 {
1001 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1002 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1003 }
1004
1005 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1006 {
1007 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1008 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1009 }
1010
1011 struct numa_group {
1012 atomic_t refcount;
1013
1014 spinlock_t lock; /* nr_tasks, tasks */
1015 int nr_tasks;
1016 pid_t gid;
1017 int active_nodes;
1018
1019 struct rcu_head rcu;
1020 unsigned long total_faults;
1021 unsigned long max_faults_cpu;
1022 /*
1023 * Faults_cpu is used to decide whether memory should move
1024 * towards the CPU. As a consequence, these stats are weighted
1025 * more by CPU use than by memory faults.
1026 */
1027 unsigned long *faults_cpu;
1028 unsigned long faults[0];
1029 };
1030
1031 /* Shared or private faults. */
1032 #define NR_NUMA_HINT_FAULT_TYPES 2
1033
1034 /* Memory and CPU locality */
1035 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1036
1037 /* Averaged statistics, and temporary buffers. */
1038 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1039
1040 pid_t task_numa_group_id(struct task_struct *p)
1041 {
1042 return p->numa_group ? p->numa_group->gid : 0;
1043 }
1044
1045 /*
1046 * The averaged statistics, shared & private, memory & cpu,
1047 * occupy the first half of the array. The second half of the
1048 * array is for current counters, which are averaged into the
1049 * first set by task_numa_placement.
1050 */
1051 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1052 {
1053 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1054 }
1055
1056 static inline unsigned long task_faults(struct task_struct *p, int nid)
1057 {
1058 if (!p->numa_faults)
1059 return 0;
1060
1061 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1062 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1063 }
1064
1065 static inline unsigned long group_faults(struct task_struct *p, int nid)
1066 {
1067 if (!p->numa_group)
1068 return 0;
1069
1070 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1071 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1072 }
1073
1074 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1075 {
1076 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1077 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1078 }
1079
1080 /*
1081 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1082 * considered part of a numa group's pseudo-interleaving set. Migrations
1083 * between these nodes are slowed down, to allow things to settle down.
1084 */
1085 #define ACTIVE_NODE_FRACTION 3
1086
1087 static bool numa_is_active_node(int nid, struct numa_group *ng)
1088 {
1089 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1090 }
1091
1092 /* Handle placement on systems where not all nodes are directly connected. */
1093 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1094 int maxdist, bool task)
1095 {
1096 unsigned long score = 0;
1097 int node;
1098
1099 /*
1100 * All nodes are directly connected, and the same distance
1101 * from each other. No need for fancy placement algorithms.
1102 */
1103 if (sched_numa_topology_type == NUMA_DIRECT)
1104 return 0;
1105
1106 /*
1107 * This code is called for each node, introducing N^2 complexity,
1108 * which should be ok given the number of nodes rarely exceeds 8.
1109 */
1110 for_each_online_node(node) {
1111 unsigned long faults;
1112 int dist = node_distance(nid, node);
1113
1114 /*
1115 * The furthest away nodes in the system are not interesting
1116 * for placement; nid was already counted.
1117 */
1118 if (dist == sched_max_numa_distance || node == nid)
1119 continue;
1120
1121 /*
1122 * On systems with a backplane NUMA topology, compare groups
1123 * of nodes, and move tasks towards the group with the most
1124 * memory accesses. When comparing two nodes at distance
1125 * "hoplimit", only nodes closer by than "hoplimit" are part
1126 * of each group. Skip other nodes.
1127 */
1128 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1129 dist > maxdist)
1130 continue;
1131
1132 /* Add up the faults from nearby nodes. */
1133 if (task)
1134 faults = task_faults(p, node);
1135 else
1136 faults = group_faults(p, node);
1137
1138 /*
1139 * On systems with a glueless mesh NUMA topology, there are
1140 * no fixed "groups of nodes". Instead, nodes that are not
1141 * directly connected bounce traffic through intermediate
1142 * nodes; a numa_group can occupy any set of nodes.
1143 * The further away a node is, the less the faults count.
1144 * This seems to result in good task placement.
1145 */
1146 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1147 faults *= (sched_max_numa_distance - dist);
1148 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1149 }
1150
1151 score += faults;
1152 }
1153
1154 return score;
1155 }
1156
1157 /*
1158 * These return the fraction of accesses done by a particular task, or
1159 * task group, on a particular numa node. The group weight is given a
1160 * larger multiplier, in order to group tasks together that are almost
1161 * evenly spread out between numa nodes.
1162 */
1163 static inline unsigned long task_weight(struct task_struct *p, int nid,
1164 int dist)
1165 {
1166 unsigned long faults, total_faults;
1167
1168 if (!p->numa_faults)
1169 return 0;
1170
1171 total_faults = p->total_numa_faults;
1172
1173 if (!total_faults)
1174 return 0;
1175
1176 faults = task_faults(p, nid);
1177 faults += score_nearby_nodes(p, nid, dist, true);
1178
1179 return 1000 * faults / total_faults;
1180 }
1181
1182 static inline unsigned long group_weight(struct task_struct *p, int nid,
1183 int dist)
1184 {
1185 unsigned long faults, total_faults;
1186
1187 if (!p->numa_group)
1188 return 0;
1189
1190 total_faults = p->numa_group->total_faults;
1191
1192 if (!total_faults)
1193 return 0;
1194
1195 faults = group_faults(p, nid);
1196 faults += score_nearby_nodes(p, nid, dist, false);
1197
1198 return 1000 * faults / total_faults;
1199 }
1200
1201 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1202 int src_nid, int dst_cpu)
1203 {
1204 struct numa_group *ng = p->numa_group;
1205 int dst_nid = cpu_to_node(dst_cpu);
1206 int last_cpupid, this_cpupid;
1207
1208 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1209
1210 /*
1211 * Multi-stage node selection is used in conjunction with a periodic
1212 * migration fault to build a temporal task<->page relation. By using
1213 * a two-stage filter we remove short/unlikely relations.
1214 *
1215 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1216 * a task's usage of a particular page (n_p) per total usage of this
1217 * page (n_t) (in a given time-span) to a probability.
1218 *
1219 * Our periodic faults will sample this probability and getting the
1220 * same result twice in a row, given these samples are fully
1221 * independent, is then given by P(n)^2, provided our sample period
1222 * is sufficiently short compared to the usage pattern.
1223 *
1224 * This quadric squishes small probabilities, making it less likely we
1225 * act on an unlikely task<->page relation.
1226 */
1227 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1228 if (!cpupid_pid_unset(last_cpupid) &&
1229 cpupid_to_nid(last_cpupid) != dst_nid)
1230 return false;
1231
1232 /* Always allow migrate on private faults */
1233 if (cpupid_match_pid(p, last_cpupid))
1234 return true;
1235
1236 /* A shared fault, but p->numa_group has not been set up yet. */
1237 if (!ng)
1238 return true;
1239
1240 /*
1241 * Destination node is much more heavily used than the source
1242 * node? Allow migration.
1243 */
1244 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1245 ACTIVE_NODE_FRACTION)
1246 return true;
1247
1248 /*
1249 * Distribute memory according to CPU & memory use on each node,
1250 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1251 *
1252 * faults_cpu(dst) 3 faults_cpu(src)
1253 * --------------- * - > ---------------
1254 * faults_mem(dst) 4 faults_mem(src)
1255 */
1256 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1257 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1258 }
1259
1260 static unsigned long weighted_cpuload(const int cpu);
1261 static unsigned long source_load(int cpu, int type);
1262 static unsigned long target_load(int cpu, int type);
1263 static unsigned long capacity_of(int cpu);
1264 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1265
1266 /* Cached statistics for all CPUs within a node */
1267 struct numa_stats {
1268 unsigned long nr_running;
1269 unsigned long load;
1270
1271 /* Total compute capacity of CPUs on a node */
1272 unsigned long compute_capacity;
1273
1274 /* Approximate capacity in terms of runnable tasks on a node */
1275 unsigned long task_capacity;
1276 int has_free_capacity;
1277 };
1278
1279 /*
1280 * XXX borrowed from update_sg_lb_stats
1281 */
1282 static void update_numa_stats(struct numa_stats *ns, int nid)
1283 {
1284 int smt, cpu, cpus = 0;
1285 unsigned long capacity;
1286
1287 memset(ns, 0, sizeof(*ns));
1288 for_each_cpu(cpu, cpumask_of_node(nid)) {
1289 struct rq *rq = cpu_rq(cpu);
1290
1291 ns->nr_running += rq->nr_running;
1292 ns->load += weighted_cpuload(cpu);
1293 ns->compute_capacity += capacity_of(cpu);
1294
1295 cpus++;
1296 }
1297
1298 /*
1299 * If we raced with hotplug and there are no CPUs left in our mask
1300 * the @ns structure is NULL'ed and task_numa_compare() will
1301 * not find this node attractive.
1302 *
1303 * We'll either bail at !has_free_capacity, or we'll detect a huge
1304 * imbalance and bail there.
1305 */
1306 if (!cpus)
1307 return;
1308
1309 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1310 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1311 capacity = cpus / smt; /* cores */
1312
1313 ns->task_capacity = min_t(unsigned, capacity,
1314 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1315 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1316 }
1317
1318 struct task_numa_env {
1319 struct task_struct *p;
1320
1321 int src_cpu, src_nid;
1322 int dst_cpu, dst_nid;
1323
1324 struct numa_stats src_stats, dst_stats;
1325
1326 int imbalance_pct;
1327 int dist;
1328
1329 struct task_struct *best_task;
1330 long best_imp;
1331 int best_cpu;
1332 };
1333
1334 static void task_numa_assign(struct task_numa_env *env,
1335 struct task_struct *p, long imp)
1336 {
1337 if (env->best_task)
1338 put_task_struct(env->best_task);
1339 if (p)
1340 get_task_struct(p);
1341
1342 env->best_task = p;
1343 env->best_imp = imp;
1344 env->best_cpu = env->dst_cpu;
1345 }
1346
1347 static bool load_too_imbalanced(long src_load, long dst_load,
1348 struct task_numa_env *env)
1349 {
1350 long imb, old_imb;
1351 long orig_src_load, orig_dst_load;
1352 long src_capacity, dst_capacity;
1353
1354 /*
1355 * The load is corrected for the CPU capacity available on each node.
1356 *
1357 * src_load dst_load
1358 * ------------ vs ---------
1359 * src_capacity dst_capacity
1360 */
1361 src_capacity = env->src_stats.compute_capacity;
1362 dst_capacity = env->dst_stats.compute_capacity;
1363
1364 /* We care about the slope of the imbalance, not the direction. */
1365 if (dst_load < src_load)
1366 swap(dst_load, src_load);
1367
1368 /* Is the difference below the threshold? */
1369 imb = dst_load * src_capacity * 100 -
1370 src_load * dst_capacity * env->imbalance_pct;
1371 if (imb <= 0)
1372 return false;
1373
1374 /*
1375 * The imbalance is above the allowed threshold.
1376 * Compare it with the old imbalance.
1377 */
1378 orig_src_load = env->src_stats.load;
1379 orig_dst_load = env->dst_stats.load;
1380
1381 if (orig_dst_load < orig_src_load)
1382 swap(orig_dst_load, orig_src_load);
1383
1384 old_imb = orig_dst_load * src_capacity * 100 -
1385 orig_src_load * dst_capacity * env->imbalance_pct;
1386
1387 /* Would this change make things worse? */
1388 return (imb > old_imb);
1389 }
1390
1391 /*
1392 * This checks if the overall compute and NUMA accesses of the system would
1393 * be improved if the source tasks was migrated to the target dst_cpu taking
1394 * into account that it might be best if task running on the dst_cpu should
1395 * be exchanged with the source task
1396 */
1397 static void task_numa_compare(struct task_numa_env *env,
1398 long taskimp, long groupimp)
1399 {
1400 struct rq *src_rq = cpu_rq(env->src_cpu);
1401 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1402 struct task_struct *cur;
1403 long src_load, dst_load;
1404 long load;
1405 long imp = env->p->numa_group ? groupimp : taskimp;
1406 long moveimp = imp;
1407 int dist = env->dist;
1408
1409 rcu_read_lock();
1410 cur = task_rcu_dereference(&dst_rq->curr);
1411 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1412 cur = NULL;
1413
1414 /*
1415 * Because we have preemption enabled we can get migrated around and
1416 * end try selecting ourselves (current == env->p) as a swap candidate.
1417 */
1418 if (cur == env->p)
1419 goto unlock;
1420
1421 /*
1422 * "imp" is the fault differential for the source task between the
1423 * source and destination node. Calculate the total differential for
1424 * the source task and potential destination task. The more negative
1425 * the value is, the more rmeote accesses that would be expected to
1426 * be incurred if the tasks were swapped.
1427 */
1428 if (cur) {
1429 /* Skip this swap candidate if cannot move to the source cpu */
1430 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1431 goto unlock;
1432
1433 /*
1434 * If dst and source tasks are in the same NUMA group, or not
1435 * in any group then look only at task weights.
1436 */
1437 if (cur->numa_group == env->p->numa_group) {
1438 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1439 task_weight(cur, env->dst_nid, dist);
1440 /*
1441 * Add some hysteresis to prevent swapping the
1442 * tasks within a group over tiny differences.
1443 */
1444 if (cur->numa_group)
1445 imp -= imp/16;
1446 } else {
1447 /*
1448 * Compare the group weights. If a task is all by
1449 * itself (not part of a group), use the task weight
1450 * instead.
1451 */
1452 if (cur->numa_group)
1453 imp += group_weight(cur, env->src_nid, dist) -
1454 group_weight(cur, env->dst_nid, dist);
1455 else
1456 imp += task_weight(cur, env->src_nid, dist) -
1457 task_weight(cur, env->dst_nid, dist);
1458 }
1459 }
1460
1461 if (imp <= env->best_imp && moveimp <= env->best_imp)
1462 goto unlock;
1463
1464 if (!cur) {
1465 /* Is there capacity at our destination? */
1466 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1467 !env->dst_stats.has_free_capacity)
1468 goto unlock;
1469
1470 goto balance;
1471 }
1472
1473 /* Balance doesn't matter much if we're running a task per cpu */
1474 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1475 dst_rq->nr_running == 1)
1476 goto assign;
1477
1478 /*
1479 * In the overloaded case, try and keep the load balanced.
1480 */
1481 balance:
1482 load = task_h_load(env->p);
1483 dst_load = env->dst_stats.load + load;
1484 src_load = env->src_stats.load - load;
1485
1486 if (moveimp > imp && moveimp > env->best_imp) {
1487 /*
1488 * If the improvement from just moving env->p direction is
1489 * better than swapping tasks around, check if a move is
1490 * possible. Store a slightly smaller score than moveimp,
1491 * so an actually idle CPU will win.
1492 */
1493 if (!load_too_imbalanced(src_load, dst_load, env)) {
1494 imp = moveimp - 1;
1495 cur = NULL;
1496 goto assign;
1497 }
1498 }
1499
1500 if (imp <= env->best_imp)
1501 goto unlock;
1502
1503 if (cur) {
1504 load = task_h_load(cur);
1505 dst_load -= load;
1506 src_load += load;
1507 }
1508
1509 if (load_too_imbalanced(src_load, dst_load, env))
1510 goto unlock;
1511
1512 /*
1513 * One idle CPU per node is evaluated for a task numa move.
1514 * Call select_idle_sibling to maybe find a better one.
1515 */
1516 if (!cur)
1517 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1518
1519 assign:
1520 task_numa_assign(env, cur, imp);
1521 unlock:
1522 rcu_read_unlock();
1523 }
1524
1525 static void task_numa_find_cpu(struct task_numa_env *env,
1526 long taskimp, long groupimp)
1527 {
1528 int cpu;
1529
1530 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1531 /* Skip this CPU if the source task cannot migrate */
1532 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1533 continue;
1534
1535 env->dst_cpu = cpu;
1536 task_numa_compare(env, taskimp, groupimp);
1537 }
1538 }
1539
1540 /* Only move tasks to a NUMA node less busy than the current node. */
1541 static bool numa_has_capacity(struct task_numa_env *env)
1542 {
1543 struct numa_stats *src = &env->src_stats;
1544 struct numa_stats *dst = &env->dst_stats;
1545
1546 if (src->has_free_capacity && !dst->has_free_capacity)
1547 return false;
1548
1549 /*
1550 * Only consider a task move if the source has a higher load
1551 * than the destination, corrected for CPU capacity on each node.
1552 *
1553 * src->load dst->load
1554 * --------------------- vs ---------------------
1555 * src->compute_capacity dst->compute_capacity
1556 */
1557 if (src->load * dst->compute_capacity * env->imbalance_pct >
1558
1559 dst->load * src->compute_capacity * 100)
1560 return true;
1561
1562 return false;
1563 }
1564
1565 static int task_numa_migrate(struct task_struct *p)
1566 {
1567 struct task_numa_env env = {
1568 .p = p,
1569
1570 .src_cpu = task_cpu(p),
1571 .src_nid = task_node(p),
1572
1573 .imbalance_pct = 112,
1574
1575 .best_task = NULL,
1576 .best_imp = 0,
1577 .best_cpu = -1,
1578 };
1579 struct sched_domain *sd;
1580 unsigned long taskweight, groupweight;
1581 int nid, ret, dist;
1582 long taskimp, groupimp;
1583
1584 /*
1585 * Pick the lowest SD_NUMA domain, as that would have the smallest
1586 * imbalance and would be the first to start moving tasks about.
1587 *
1588 * And we want to avoid any moving of tasks about, as that would create
1589 * random movement of tasks -- counter the numa conditions we're trying
1590 * to satisfy here.
1591 */
1592 rcu_read_lock();
1593 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1594 if (sd)
1595 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1596 rcu_read_unlock();
1597
1598 /*
1599 * Cpusets can break the scheduler domain tree into smaller
1600 * balance domains, some of which do not cross NUMA boundaries.
1601 * Tasks that are "trapped" in such domains cannot be migrated
1602 * elsewhere, so there is no point in (re)trying.
1603 */
1604 if (unlikely(!sd)) {
1605 p->numa_preferred_nid = task_node(p);
1606 return -EINVAL;
1607 }
1608
1609 env.dst_nid = p->numa_preferred_nid;
1610 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1611 taskweight = task_weight(p, env.src_nid, dist);
1612 groupweight = group_weight(p, env.src_nid, dist);
1613 update_numa_stats(&env.src_stats, env.src_nid);
1614 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1615 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1616 update_numa_stats(&env.dst_stats, env.dst_nid);
1617
1618 /* Try to find a spot on the preferred nid. */
1619 if (numa_has_capacity(&env))
1620 task_numa_find_cpu(&env, taskimp, groupimp);
1621
1622 /*
1623 * Look at other nodes in these cases:
1624 * - there is no space available on the preferred_nid
1625 * - the task is part of a numa_group that is interleaved across
1626 * multiple NUMA nodes; in order to better consolidate the group,
1627 * we need to check other locations.
1628 */
1629 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1630 for_each_online_node(nid) {
1631 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1632 continue;
1633
1634 dist = node_distance(env.src_nid, env.dst_nid);
1635 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1636 dist != env.dist) {
1637 taskweight = task_weight(p, env.src_nid, dist);
1638 groupweight = group_weight(p, env.src_nid, dist);
1639 }
1640
1641 /* Only consider nodes where both task and groups benefit */
1642 taskimp = task_weight(p, nid, dist) - taskweight;
1643 groupimp = group_weight(p, nid, dist) - groupweight;
1644 if (taskimp < 0 && groupimp < 0)
1645 continue;
1646
1647 env.dist = dist;
1648 env.dst_nid = nid;
1649 update_numa_stats(&env.dst_stats, env.dst_nid);
1650 if (numa_has_capacity(&env))
1651 task_numa_find_cpu(&env, taskimp, groupimp);
1652 }
1653 }
1654
1655 /*
1656 * If the task is part of a workload that spans multiple NUMA nodes,
1657 * and is migrating into one of the workload's active nodes, remember
1658 * this node as the task's preferred numa node, so the workload can
1659 * settle down.
1660 * A task that migrated to a second choice node will be better off
1661 * trying for a better one later. Do not set the preferred node here.
1662 */
1663 if (p->numa_group) {
1664 struct numa_group *ng = p->numa_group;
1665
1666 if (env.best_cpu == -1)
1667 nid = env.src_nid;
1668 else
1669 nid = env.dst_nid;
1670
1671 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1672 sched_setnuma(p, env.dst_nid);
1673 }
1674
1675 /* No better CPU than the current one was found. */
1676 if (env.best_cpu == -1)
1677 return -EAGAIN;
1678
1679 /*
1680 * Reset the scan period if the task is being rescheduled on an
1681 * alternative node to recheck if the tasks is now properly placed.
1682 */
1683 p->numa_scan_period = task_scan_min(p);
1684
1685 if (env.best_task == NULL) {
1686 ret = migrate_task_to(p, env.best_cpu);
1687 if (ret != 0)
1688 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1689 return ret;
1690 }
1691
1692 ret = migrate_swap(p, env.best_task);
1693 if (ret != 0)
1694 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1695 put_task_struct(env.best_task);
1696 return ret;
1697 }
1698
1699 /* Attempt to migrate a task to a CPU on the preferred node. */
1700 static void numa_migrate_preferred(struct task_struct *p)
1701 {
1702 unsigned long interval = HZ;
1703
1704 /* This task has no NUMA fault statistics yet */
1705 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1706 return;
1707
1708 /* Periodically retry migrating the task to the preferred node */
1709 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1710 p->numa_migrate_retry = jiffies + interval;
1711
1712 /* Success if task is already running on preferred CPU */
1713 if (task_node(p) == p->numa_preferred_nid)
1714 return;
1715
1716 /* Otherwise, try migrate to a CPU on the preferred node */
1717 task_numa_migrate(p);
1718 }
1719
1720 /*
1721 * Find out how many nodes on the workload is actively running on. Do this by
1722 * tracking the nodes from which NUMA hinting faults are triggered. This can
1723 * be different from the set of nodes where the workload's memory is currently
1724 * located.
1725 */
1726 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1727 {
1728 unsigned long faults, max_faults = 0;
1729 int nid, active_nodes = 0;
1730
1731 for_each_online_node(nid) {
1732 faults = group_faults_cpu(numa_group, nid);
1733 if (faults > max_faults)
1734 max_faults = faults;
1735 }
1736
1737 for_each_online_node(nid) {
1738 faults = group_faults_cpu(numa_group, nid);
1739 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1740 active_nodes++;
1741 }
1742
1743 numa_group->max_faults_cpu = max_faults;
1744 numa_group->active_nodes = active_nodes;
1745 }
1746
1747 /*
1748 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1749 * increments. The more local the fault statistics are, the higher the scan
1750 * period will be for the next scan window. If local/(local+remote) ratio is
1751 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1752 * the scan period will decrease. Aim for 70% local accesses.
1753 */
1754 #define NUMA_PERIOD_SLOTS 10
1755 #define NUMA_PERIOD_THRESHOLD 7
1756
1757 /*
1758 * Increase the scan period (slow down scanning) if the majority of
1759 * our memory is already on our local node, or if the majority of
1760 * the page accesses are shared with other processes.
1761 * Otherwise, decrease the scan period.
1762 */
1763 static void update_task_scan_period(struct task_struct *p,
1764 unsigned long shared, unsigned long private)
1765 {
1766 unsigned int period_slot;
1767 int ratio;
1768 int diff;
1769
1770 unsigned long remote = p->numa_faults_locality[0];
1771 unsigned long local = p->numa_faults_locality[1];
1772
1773 /*
1774 * If there were no record hinting faults then either the task is
1775 * completely idle or all activity is areas that are not of interest
1776 * to automatic numa balancing. Related to that, if there were failed
1777 * migration then it implies we are migrating too quickly or the local
1778 * node is overloaded. In either case, scan slower
1779 */
1780 if (local + shared == 0 || p->numa_faults_locality[2]) {
1781 p->numa_scan_period = min(p->numa_scan_period_max,
1782 p->numa_scan_period << 1);
1783
1784 p->mm->numa_next_scan = jiffies +
1785 msecs_to_jiffies(p->numa_scan_period);
1786
1787 return;
1788 }
1789
1790 /*
1791 * Prepare to scale scan period relative to the current period.
1792 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1793 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1794 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1795 */
1796 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1797 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1798 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1799 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1800 if (!slot)
1801 slot = 1;
1802 diff = slot * period_slot;
1803 } else {
1804 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1805
1806 /*
1807 * Scale scan rate increases based on sharing. There is an
1808 * inverse relationship between the degree of sharing and
1809 * the adjustment made to the scanning period. Broadly
1810 * speaking the intent is that there is little point
1811 * scanning faster if shared accesses dominate as it may
1812 * simply bounce migrations uselessly
1813 */
1814 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1815 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1816 }
1817
1818 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1819 task_scan_min(p), task_scan_max(p));
1820 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1821 }
1822
1823 /*
1824 * Get the fraction of time the task has been running since the last
1825 * NUMA placement cycle. The scheduler keeps similar statistics, but
1826 * decays those on a 32ms period, which is orders of magnitude off
1827 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1828 * stats only if the task is so new there are no NUMA statistics yet.
1829 */
1830 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1831 {
1832 u64 runtime, delta, now;
1833 /* Use the start of this time slice to avoid calculations. */
1834 now = p->se.exec_start;
1835 runtime = p->se.sum_exec_runtime;
1836
1837 if (p->last_task_numa_placement) {
1838 delta = runtime - p->last_sum_exec_runtime;
1839 *period = now - p->last_task_numa_placement;
1840 } else {
1841 delta = p->se.avg.load_sum / p->se.load.weight;
1842 *period = LOAD_AVG_MAX;
1843 }
1844
1845 p->last_sum_exec_runtime = runtime;
1846 p->last_task_numa_placement = now;
1847
1848 return delta;
1849 }
1850
1851 /*
1852 * Determine the preferred nid for a task in a numa_group. This needs to
1853 * be done in a way that produces consistent results with group_weight,
1854 * otherwise workloads might not converge.
1855 */
1856 static int preferred_group_nid(struct task_struct *p, int nid)
1857 {
1858 nodemask_t nodes;
1859 int dist;
1860
1861 /* Direct connections between all NUMA nodes. */
1862 if (sched_numa_topology_type == NUMA_DIRECT)
1863 return nid;
1864
1865 /*
1866 * On a system with glueless mesh NUMA topology, group_weight
1867 * scores nodes according to the number of NUMA hinting faults on
1868 * both the node itself, and on nearby nodes.
1869 */
1870 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1871 unsigned long score, max_score = 0;
1872 int node, max_node = nid;
1873
1874 dist = sched_max_numa_distance;
1875
1876 for_each_online_node(node) {
1877 score = group_weight(p, node, dist);
1878 if (score > max_score) {
1879 max_score = score;
1880 max_node = node;
1881 }
1882 }
1883 return max_node;
1884 }
1885
1886 /*
1887 * Finding the preferred nid in a system with NUMA backplane
1888 * interconnect topology is more involved. The goal is to locate
1889 * tasks from numa_groups near each other in the system, and
1890 * untangle workloads from different sides of the system. This requires
1891 * searching down the hierarchy of node groups, recursively searching
1892 * inside the highest scoring group of nodes. The nodemask tricks
1893 * keep the complexity of the search down.
1894 */
1895 nodes = node_online_map;
1896 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1897 unsigned long max_faults = 0;
1898 nodemask_t max_group = NODE_MASK_NONE;
1899 int a, b;
1900
1901 /* Are there nodes at this distance from each other? */
1902 if (!find_numa_distance(dist))
1903 continue;
1904
1905 for_each_node_mask(a, nodes) {
1906 unsigned long faults = 0;
1907 nodemask_t this_group;
1908 nodes_clear(this_group);
1909
1910 /* Sum group's NUMA faults; includes a==b case. */
1911 for_each_node_mask(b, nodes) {
1912 if (node_distance(a, b) < dist) {
1913 faults += group_faults(p, b);
1914 node_set(b, this_group);
1915 node_clear(b, nodes);
1916 }
1917 }
1918
1919 /* Remember the top group. */
1920 if (faults > max_faults) {
1921 max_faults = faults;
1922 max_group = this_group;
1923 /*
1924 * subtle: at the smallest distance there is
1925 * just one node left in each "group", the
1926 * winner is the preferred nid.
1927 */
1928 nid = a;
1929 }
1930 }
1931 /* Next round, evaluate the nodes within max_group. */
1932 if (!max_faults)
1933 break;
1934 nodes = max_group;
1935 }
1936 return nid;
1937 }
1938
1939 static void task_numa_placement(struct task_struct *p)
1940 {
1941 int seq, nid, max_nid = -1, max_group_nid = -1;
1942 unsigned long max_faults = 0, max_group_faults = 0;
1943 unsigned long fault_types[2] = { 0, 0 };
1944 unsigned long total_faults;
1945 u64 runtime, period;
1946 spinlock_t *group_lock = NULL;
1947
1948 /*
1949 * The p->mm->numa_scan_seq field gets updated without
1950 * exclusive access. Use READ_ONCE() here to ensure
1951 * that the field is read in a single access:
1952 */
1953 seq = READ_ONCE(p->mm->numa_scan_seq);
1954 if (p->numa_scan_seq == seq)
1955 return;
1956 p->numa_scan_seq = seq;
1957 p->numa_scan_period_max = task_scan_max(p);
1958
1959 total_faults = p->numa_faults_locality[0] +
1960 p->numa_faults_locality[1];
1961 runtime = numa_get_avg_runtime(p, &period);
1962
1963 /* If the task is part of a group prevent parallel updates to group stats */
1964 if (p->numa_group) {
1965 group_lock = &p->numa_group->lock;
1966 spin_lock_irq(group_lock);
1967 }
1968
1969 /* Find the node with the highest number of faults */
1970 for_each_online_node(nid) {
1971 /* Keep track of the offsets in numa_faults array */
1972 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1973 unsigned long faults = 0, group_faults = 0;
1974 int priv;
1975
1976 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1977 long diff, f_diff, f_weight;
1978
1979 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1980 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1981 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1982 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1983
1984 /* Decay existing window, copy faults since last scan */
1985 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1986 fault_types[priv] += p->numa_faults[membuf_idx];
1987 p->numa_faults[membuf_idx] = 0;
1988
1989 /*
1990 * Normalize the faults_from, so all tasks in a group
1991 * count according to CPU use, instead of by the raw
1992 * number of faults. Tasks with little runtime have
1993 * little over-all impact on throughput, and thus their
1994 * faults are less important.
1995 */
1996 f_weight = div64_u64(runtime << 16, period + 1);
1997 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1998 (total_faults + 1);
1999 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2000 p->numa_faults[cpubuf_idx] = 0;
2001
2002 p->numa_faults[mem_idx] += diff;
2003 p->numa_faults[cpu_idx] += f_diff;
2004 faults += p->numa_faults[mem_idx];
2005 p->total_numa_faults += diff;
2006 if (p->numa_group) {
2007 /*
2008 * safe because we can only change our own group
2009 *
2010 * mem_idx represents the offset for a given
2011 * nid and priv in a specific region because it
2012 * is at the beginning of the numa_faults array.
2013 */
2014 p->numa_group->faults[mem_idx] += diff;
2015 p->numa_group->faults_cpu[mem_idx] += f_diff;
2016 p->numa_group->total_faults += diff;
2017 group_faults += p->numa_group->faults[mem_idx];
2018 }
2019 }
2020
2021 if (faults > max_faults) {
2022 max_faults = faults;
2023 max_nid = nid;
2024 }
2025
2026 if (group_faults > max_group_faults) {
2027 max_group_faults = group_faults;
2028 max_group_nid = nid;
2029 }
2030 }
2031
2032 update_task_scan_period(p, fault_types[0], fault_types[1]);
2033
2034 if (p->numa_group) {
2035 numa_group_count_active_nodes(p->numa_group);
2036 spin_unlock_irq(group_lock);
2037 max_nid = preferred_group_nid(p, max_group_nid);
2038 }
2039
2040 if (max_faults) {
2041 /* Set the new preferred node */
2042 if (max_nid != p->numa_preferred_nid)
2043 sched_setnuma(p, max_nid);
2044
2045 if (task_node(p) != p->numa_preferred_nid)
2046 numa_migrate_preferred(p);
2047 }
2048 }
2049
2050 static inline int get_numa_group(struct numa_group *grp)
2051 {
2052 return atomic_inc_not_zero(&grp->refcount);
2053 }
2054
2055 static inline void put_numa_group(struct numa_group *grp)
2056 {
2057 if (atomic_dec_and_test(&grp->refcount))
2058 kfree_rcu(grp, rcu);
2059 }
2060
2061 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2062 int *priv)
2063 {
2064 struct numa_group *grp, *my_grp;
2065 struct task_struct *tsk;
2066 bool join = false;
2067 int cpu = cpupid_to_cpu(cpupid);
2068 int i;
2069
2070 if (unlikely(!p->numa_group)) {
2071 unsigned int size = sizeof(struct numa_group) +
2072 4*nr_node_ids*sizeof(unsigned long);
2073
2074 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2075 if (!grp)
2076 return;
2077
2078 atomic_set(&grp->refcount, 1);
2079 grp->active_nodes = 1;
2080 grp->max_faults_cpu = 0;
2081 spin_lock_init(&grp->lock);
2082 grp->gid = p->pid;
2083 /* Second half of the array tracks nids where faults happen */
2084 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2085 nr_node_ids;
2086
2087 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2088 grp->faults[i] = p->numa_faults[i];
2089
2090 grp->total_faults = p->total_numa_faults;
2091
2092 grp->nr_tasks++;
2093 rcu_assign_pointer(p->numa_group, grp);
2094 }
2095
2096 rcu_read_lock();
2097 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2098
2099 if (!cpupid_match_pid(tsk, cpupid))
2100 goto no_join;
2101
2102 grp = rcu_dereference(tsk->numa_group);
2103 if (!grp)
2104 goto no_join;
2105
2106 my_grp = p->numa_group;
2107 if (grp == my_grp)
2108 goto no_join;
2109
2110 /*
2111 * Only join the other group if its bigger; if we're the bigger group,
2112 * the other task will join us.
2113 */
2114 if (my_grp->nr_tasks > grp->nr_tasks)
2115 goto no_join;
2116
2117 /*
2118 * Tie-break on the grp address.
2119 */
2120 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2121 goto no_join;
2122
2123 /* Always join threads in the same process. */
2124 if (tsk->mm == current->mm)
2125 join = true;
2126
2127 /* Simple filter to avoid false positives due to PID collisions */
2128 if (flags & TNF_SHARED)
2129 join = true;
2130
2131 /* Update priv based on whether false sharing was detected */
2132 *priv = !join;
2133
2134 if (join && !get_numa_group(grp))
2135 goto no_join;
2136
2137 rcu_read_unlock();
2138
2139 if (!join)
2140 return;
2141
2142 BUG_ON(irqs_disabled());
2143 double_lock_irq(&my_grp->lock, &grp->lock);
2144
2145 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2146 my_grp->faults[i] -= p->numa_faults[i];
2147 grp->faults[i] += p->numa_faults[i];
2148 }
2149 my_grp->total_faults -= p->total_numa_faults;
2150 grp->total_faults += p->total_numa_faults;
2151
2152 my_grp->nr_tasks--;
2153 grp->nr_tasks++;
2154
2155 spin_unlock(&my_grp->lock);
2156 spin_unlock_irq(&grp->lock);
2157
2158 rcu_assign_pointer(p->numa_group, grp);
2159
2160 put_numa_group(my_grp);
2161 return;
2162
2163 no_join:
2164 rcu_read_unlock();
2165 return;
2166 }
2167
2168 void task_numa_free(struct task_struct *p)
2169 {
2170 struct numa_group *grp = p->numa_group;
2171 void *numa_faults = p->numa_faults;
2172 unsigned long flags;
2173 int i;
2174
2175 if (grp) {
2176 spin_lock_irqsave(&grp->lock, flags);
2177 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2178 grp->faults[i] -= p->numa_faults[i];
2179 grp->total_faults -= p->total_numa_faults;
2180
2181 grp->nr_tasks--;
2182 spin_unlock_irqrestore(&grp->lock, flags);
2183 RCU_INIT_POINTER(p->numa_group, NULL);
2184 put_numa_group(grp);
2185 }
2186
2187 p->numa_faults = NULL;
2188 kfree(numa_faults);
2189 }
2190
2191 /*
2192 * Got a PROT_NONE fault for a page on @node.
2193 */
2194 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2195 {
2196 struct task_struct *p = current;
2197 bool migrated = flags & TNF_MIGRATED;
2198 int cpu_node = task_node(current);
2199 int local = !!(flags & TNF_FAULT_LOCAL);
2200 struct numa_group *ng;
2201 int priv;
2202
2203 if (!static_branch_likely(&sched_numa_balancing))
2204 return;
2205
2206 /* for example, ksmd faulting in a user's mm */
2207 if (!p->mm)
2208 return;
2209
2210 /* Allocate buffer to track faults on a per-node basis */
2211 if (unlikely(!p->numa_faults)) {
2212 int size = sizeof(*p->numa_faults) *
2213 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2214
2215 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2216 if (!p->numa_faults)
2217 return;
2218
2219 p->total_numa_faults = 0;
2220 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2221 }
2222
2223 /*
2224 * First accesses are treated as private, otherwise consider accesses
2225 * to be private if the accessing pid has not changed
2226 */
2227 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2228 priv = 1;
2229 } else {
2230 priv = cpupid_match_pid(p, last_cpupid);
2231 if (!priv && !(flags & TNF_NO_GROUP))
2232 task_numa_group(p, last_cpupid, flags, &priv);
2233 }
2234
2235 /*
2236 * If a workload spans multiple NUMA nodes, a shared fault that
2237 * occurs wholly within the set of nodes that the workload is
2238 * actively using should be counted as local. This allows the
2239 * scan rate to slow down when a workload has settled down.
2240 */
2241 ng = p->numa_group;
2242 if (!priv && !local && ng && ng->active_nodes > 1 &&
2243 numa_is_active_node(cpu_node, ng) &&
2244 numa_is_active_node(mem_node, ng))
2245 local = 1;
2246
2247 task_numa_placement(p);
2248
2249 /*
2250 * Retry task to preferred node migration periodically, in case it
2251 * case it previously failed, or the scheduler moved us.
2252 */
2253 if (time_after(jiffies, p->numa_migrate_retry))
2254 numa_migrate_preferred(p);
2255
2256 if (migrated)
2257 p->numa_pages_migrated += pages;
2258 if (flags & TNF_MIGRATE_FAIL)
2259 p->numa_faults_locality[2] += pages;
2260
2261 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2262 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2263 p->numa_faults_locality[local] += pages;
2264 }
2265
2266 static void reset_ptenuma_scan(struct task_struct *p)
2267 {
2268 /*
2269 * We only did a read acquisition of the mmap sem, so
2270 * p->mm->numa_scan_seq is written to without exclusive access
2271 * and the update is not guaranteed to be atomic. That's not
2272 * much of an issue though, since this is just used for
2273 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2274 * expensive, to avoid any form of compiler optimizations:
2275 */
2276 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2277 p->mm->numa_scan_offset = 0;
2278 }
2279
2280 /*
2281 * The expensive part of numa migration is done from task_work context.
2282 * Triggered from task_tick_numa().
2283 */
2284 void task_numa_work(struct callback_head *work)
2285 {
2286 unsigned long migrate, next_scan, now = jiffies;
2287 struct task_struct *p = current;
2288 struct mm_struct *mm = p->mm;
2289 u64 runtime = p->se.sum_exec_runtime;
2290 struct vm_area_struct *vma;
2291 unsigned long start, end;
2292 unsigned long nr_pte_updates = 0;
2293 long pages, virtpages;
2294
2295 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2296
2297 work->next = work; /* protect against double add */
2298 /*
2299 * Who cares about NUMA placement when they're dying.
2300 *
2301 * NOTE: make sure not to dereference p->mm before this check,
2302 * exit_task_work() happens _after_ exit_mm() so we could be called
2303 * without p->mm even though we still had it when we enqueued this
2304 * work.
2305 */
2306 if (p->flags & PF_EXITING)
2307 return;
2308
2309 if (!mm->numa_next_scan) {
2310 mm->numa_next_scan = now +
2311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2312 }
2313
2314 /*
2315 * Enforce maximal scan/migration frequency..
2316 */
2317 migrate = mm->numa_next_scan;
2318 if (time_before(now, migrate))
2319 return;
2320
2321 if (p->numa_scan_period == 0) {
2322 p->numa_scan_period_max = task_scan_max(p);
2323 p->numa_scan_period = task_scan_min(p);
2324 }
2325
2326 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2327 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2328 return;
2329
2330 /*
2331 * Delay this task enough that another task of this mm will likely win
2332 * the next time around.
2333 */
2334 p->node_stamp += 2 * TICK_NSEC;
2335
2336 start = mm->numa_scan_offset;
2337 pages = sysctl_numa_balancing_scan_size;
2338 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2339 virtpages = pages * 8; /* Scan up to this much virtual space */
2340 if (!pages)
2341 return;
2342
2343
2344 down_read(&mm->mmap_sem);
2345 vma = find_vma(mm, start);
2346 if (!vma) {
2347 reset_ptenuma_scan(p);
2348 start = 0;
2349 vma = mm->mmap;
2350 }
2351 for (; vma; vma = vma->vm_next) {
2352 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2353 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2354 continue;
2355 }
2356
2357 /*
2358 * Shared library pages mapped by multiple processes are not
2359 * migrated as it is expected they are cache replicated. Avoid
2360 * hinting faults in read-only file-backed mappings or the vdso
2361 * as migrating the pages will be of marginal benefit.
2362 */
2363 if (!vma->vm_mm ||
2364 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2365 continue;
2366
2367 /*
2368 * Skip inaccessible VMAs to avoid any confusion between
2369 * PROT_NONE and NUMA hinting ptes
2370 */
2371 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2372 continue;
2373
2374 do {
2375 start = max(start, vma->vm_start);
2376 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2377 end = min(end, vma->vm_end);
2378 nr_pte_updates = change_prot_numa(vma, start, end);
2379
2380 /*
2381 * Try to scan sysctl_numa_balancing_size worth of
2382 * hpages that have at least one present PTE that
2383 * is not already pte-numa. If the VMA contains
2384 * areas that are unused or already full of prot_numa
2385 * PTEs, scan up to virtpages, to skip through those
2386 * areas faster.
2387 */
2388 if (nr_pte_updates)
2389 pages -= (end - start) >> PAGE_SHIFT;
2390 virtpages -= (end - start) >> PAGE_SHIFT;
2391
2392 start = end;
2393 if (pages <= 0 || virtpages <= 0)
2394 goto out;
2395
2396 cond_resched();
2397 } while (end != vma->vm_end);
2398 }
2399
2400 out:
2401 /*
2402 * It is possible to reach the end of the VMA list but the last few
2403 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2404 * would find the !migratable VMA on the next scan but not reset the
2405 * scanner to the start so check it now.
2406 */
2407 if (vma)
2408 mm->numa_scan_offset = start;
2409 else
2410 reset_ptenuma_scan(p);
2411 up_read(&mm->mmap_sem);
2412
2413 /*
2414 * Make sure tasks use at least 32x as much time to run other code
2415 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2416 * Usually update_task_scan_period slows down scanning enough; on an
2417 * overloaded system we need to limit overhead on a per task basis.
2418 */
2419 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2420 u64 diff = p->se.sum_exec_runtime - runtime;
2421 p->node_stamp += 32 * diff;
2422 }
2423 }
2424
2425 /*
2426 * Drive the periodic memory faults..
2427 */
2428 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2429 {
2430 struct callback_head *work = &curr->numa_work;
2431 u64 period, now;
2432
2433 /*
2434 * We don't care about NUMA placement if we don't have memory.
2435 */
2436 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2437 return;
2438
2439 /*
2440 * Using runtime rather than walltime has the dual advantage that
2441 * we (mostly) drive the selection from busy threads and that the
2442 * task needs to have done some actual work before we bother with
2443 * NUMA placement.
2444 */
2445 now = curr->se.sum_exec_runtime;
2446 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2447
2448 if (now > curr->node_stamp + period) {
2449 if (!curr->node_stamp)
2450 curr->numa_scan_period = task_scan_min(curr);
2451 curr->node_stamp += period;
2452
2453 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2454 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2455 task_work_add(curr, work, true);
2456 }
2457 }
2458 }
2459 #else
2460 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2461 {
2462 }
2463
2464 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2465 {
2466 }
2467
2468 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2469 {
2470 }
2471 #endif /* CONFIG_NUMA_BALANCING */
2472
2473 static void
2474 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2475 {
2476 update_load_add(&cfs_rq->load, se->load.weight);
2477 if (!parent_entity(se))
2478 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2479 #ifdef CONFIG_SMP
2480 if (entity_is_task(se)) {
2481 struct rq *rq = rq_of(cfs_rq);
2482
2483 account_numa_enqueue(rq, task_of(se));
2484 list_add(&se->group_node, &rq->cfs_tasks);
2485 }
2486 #endif
2487 cfs_rq->nr_running++;
2488 }
2489
2490 static void
2491 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2492 {
2493 update_load_sub(&cfs_rq->load, se->load.weight);
2494 if (!parent_entity(se))
2495 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2496 #ifdef CONFIG_SMP
2497 if (entity_is_task(se)) {
2498 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2499 list_del_init(&se->group_node);
2500 }
2501 #endif
2502 cfs_rq->nr_running--;
2503 }
2504
2505 #ifdef CONFIG_FAIR_GROUP_SCHED
2506 # ifdef CONFIG_SMP
2507 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2508 {
2509 long tg_weight, load, shares;
2510
2511 /*
2512 * This really should be: cfs_rq->avg.load_avg, but instead we use
2513 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2514 * the shares for small weight interactive tasks.
2515 */
2516 load = scale_load_down(cfs_rq->load.weight);
2517
2518 tg_weight = atomic_long_read(&tg->load_avg);
2519
2520 /* Ensure tg_weight >= load */
2521 tg_weight -= cfs_rq->tg_load_avg_contrib;
2522 tg_weight += load;
2523
2524 shares = (tg->shares * load);
2525 if (tg_weight)
2526 shares /= tg_weight;
2527
2528 if (shares < MIN_SHARES)
2529 shares = MIN_SHARES;
2530 if (shares > tg->shares)
2531 shares = tg->shares;
2532
2533 return shares;
2534 }
2535 # else /* CONFIG_SMP */
2536 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2537 {
2538 return tg->shares;
2539 }
2540 # endif /* CONFIG_SMP */
2541
2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544 {
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2549 account_entity_dequeue(cfs_rq, se);
2550 }
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556 }
2557
2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
2560 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2561 {
2562 struct task_group *tg;
2563 struct sched_entity *se;
2564 long shares;
2565
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
2568 if (!se || throttled_hierarchy(cfs_rq))
2569 return;
2570 #ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573 #endif
2574 shares = calc_cfs_shares(cfs_rq, tg);
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577 }
2578 #else /* CONFIG_FAIR_GROUP_SCHED */
2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2580 {
2581 }
2582 #endif /* CONFIG_FAIR_GROUP_SCHED */
2583
2584 #ifdef CONFIG_SMP
2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2586 static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593 };
2594
2595 /*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599 static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603 };
2604
2605 /*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610 static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613 };
2614
2615 /*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619 static __always_inline u64 decay_load(u64 val, u64 n)
2620 {
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
2641 }
2642
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
2645 }
2646
2647 /*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654 static u32 __compute_runnable_contrib(u64 n)
2655 {
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
2668 }
2669
2670 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2671
2672 /*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
2700 static __always_inline int
2701 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2703 {
2704 u64 delta, scaled_delta, periods;
2705 u32 contrib;
2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
2707 unsigned long scale_freq, scale_cpu;
2708
2709 delta = now - sa->last_update_time;
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
2715 sa->last_update_time = now;
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
2726 sa->last_update_time = now;
2727
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
2731 /* delta_w is the amount already accumulated against our next period */
2732 delta_w = sa->period_contrib;
2733 if (delta + delta_w >= 1024) {
2734 decayed = 1;
2735
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
2746 if (weight) {
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
2752 }
2753 if (running)
2754 sa->util_sum += scaled_delta_w * scale_cpu;
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2770 contrib = __compute_runnable_contrib(periods);
2771 contrib = cap_scale(contrib, scale_freq);
2772 if (weight) {
2773 sa->load_sum += weight * contrib;
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
2777 if (running)
2778 sa->util_sum += contrib * scale_cpu;
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
2782 scaled_delta = cap_scale(delta, scale_freq);
2783 if (weight) {
2784 sa->load_sum += weight * scaled_delta;
2785 if (cfs_rq)
2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
2787 }
2788 if (running)
2789 sa->util_sum += scaled_delta * scale_cpu;
2790
2791 sa->period_contrib += delta;
2792
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2800 }
2801
2802 return decayed;
2803 }
2804
2805 #ifdef CONFIG_FAIR_GROUP_SCHED
2806 /*
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
2809 */
2810 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2811 {
2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2813
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2823 }
2824 }
2825
2826 /*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831 void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833 {
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848 #ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863 #else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866 #endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871 }
2872 #else /* CONFIG_FAIR_GROUP_SCHED */
2873 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2874 #endif /* CONFIG_FAIR_GROUP_SCHED */
2875
2876 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2877 {
2878 if (&this_rq()->cfs == cfs_rq) {
2879 /*
2880 * There are a few boundary cases this might miss but it should
2881 * get called often enough that that should (hopefully) not be
2882 * a real problem -- added to that it only calls on the local
2883 * CPU, so if we enqueue remotely we'll miss an update, but
2884 * the next tick/schedule should update.
2885 *
2886 * It will not get called when we go idle, because the idle
2887 * thread is a different class (!fair), nor will the utilization
2888 * number include things like RT tasks.
2889 *
2890 * As is, the util number is not freq-invariant (we'd have to
2891 * implement arch_scale_freq_capacity() for that).
2892 *
2893 * See cpu_util().
2894 */
2895 cpufreq_update_util(rq_of(cfs_rq), 0);
2896 }
2897 }
2898
2899 /*
2900 * Unsigned subtract and clamp on underflow.
2901 *
2902 * Explicitly do a load-store to ensure the intermediate value never hits
2903 * memory. This allows lockless observations without ever seeing the negative
2904 * values.
2905 */
2906 #define sub_positive(_ptr, _val) do { \
2907 typeof(_ptr) ptr = (_ptr); \
2908 typeof(*ptr) val = (_val); \
2909 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2910 res = var - val; \
2911 if (res > var) \
2912 res = 0; \
2913 WRITE_ONCE(*ptr, res); \
2914 } while (0)
2915
2916 /**
2917 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2918 * @now: current time, as per cfs_rq_clock_task()
2919 * @cfs_rq: cfs_rq to update
2920 * @update_freq: should we call cfs_rq_util_change() or will the call do so
2921 *
2922 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2923 * avg. The immediate corollary is that all (fair) tasks must be attached, see
2924 * post_init_entity_util_avg().
2925 *
2926 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2927 *
2928 * Returns true if the load decayed or we removed utilization. It is expected
2929 * that one calls update_tg_load_avg() on this condition, but after you've
2930 * modified the cfs_rq avg (attach/detach), such that we propagate the new
2931 * avg up.
2932 */
2933 static inline int
2934 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2935 {
2936 struct sched_avg *sa = &cfs_rq->avg;
2937 int decayed, removed_load = 0, removed_util = 0;
2938
2939 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2940 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2941 sub_positive(&sa->load_avg, r);
2942 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2943 removed_load = 1;
2944 }
2945
2946 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2947 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2948 sub_positive(&sa->util_avg, r);
2949 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2950 removed_util = 1;
2951 }
2952
2953 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2954 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2955
2956 #ifndef CONFIG_64BIT
2957 smp_wmb();
2958 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2959 #endif
2960
2961 if (update_freq && (decayed || removed_util))
2962 cfs_rq_util_change(cfs_rq);
2963
2964 return decayed || removed_load;
2965 }
2966
2967 /* Update task and its cfs_rq load average */
2968 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2969 {
2970 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2971 u64 now = cfs_rq_clock_task(cfs_rq);
2972 struct rq *rq = rq_of(cfs_rq);
2973 int cpu = cpu_of(rq);
2974
2975 /*
2976 * Track task load average for carrying it to new CPU after migrated, and
2977 * track group sched_entity load average for task_h_load calc in migration
2978 */
2979 __update_load_avg(now, cpu, &se->avg,
2980 se->on_rq * scale_load_down(se->load.weight),
2981 cfs_rq->curr == se, NULL);
2982
2983 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2984 update_tg_load_avg(cfs_rq, 0);
2985 }
2986
2987 /**
2988 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
2989 * @cfs_rq: cfs_rq to attach to
2990 * @se: sched_entity to attach
2991 *
2992 * Must call update_cfs_rq_load_avg() before this, since we rely on
2993 * cfs_rq->avg.last_update_time being current.
2994 */
2995 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2996 {
2997 if (!sched_feat(ATTACH_AGE_LOAD))
2998 goto skip_aging;
2999
3000 /*
3001 * If we got migrated (either between CPUs or between cgroups) we'll
3002 * have aged the average right before clearing @last_update_time.
3003 *
3004 * Or we're fresh through post_init_entity_util_avg().
3005 */
3006 if (se->avg.last_update_time) {
3007 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3008 &se->avg, 0, 0, NULL);
3009
3010 /*
3011 * XXX: we could have just aged the entire load away if we've been
3012 * absent from the fair class for too long.
3013 */
3014 }
3015
3016 skip_aging:
3017 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3018 cfs_rq->avg.load_avg += se->avg.load_avg;
3019 cfs_rq->avg.load_sum += se->avg.load_sum;
3020 cfs_rq->avg.util_avg += se->avg.util_avg;
3021 cfs_rq->avg.util_sum += se->avg.util_sum;
3022
3023 cfs_rq_util_change(cfs_rq);
3024 }
3025
3026 /**
3027 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3028 * @cfs_rq: cfs_rq to detach from
3029 * @se: sched_entity to detach
3030 *
3031 * Must call update_cfs_rq_load_avg() before this, since we rely on
3032 * cfs_rq->avg.last_update_time being current.
3033 */
3034 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3035 {
3036 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3037 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3038 cfs_rq->curr == se, NULL);
3039
3040 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3041 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3042 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3043 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3044
3045 cfs_rq_util_change(cfs_rq);
3046 }
3047
3048 /* Add the load generated by se into cfs_rq's load average */
3049 static inline void
3050 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3051 {
3052 struct sched_avg *sa = &se->avg;
3053 u64 now = cfs_rq_clock_task(cfs_rq);
3054 int migrated, decayed;
3055
3056 migrated = !sa->last_update_time;
3057 if (!migrated) {
3058 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3059 se->on_rq * scale_load_down(se->load.weight),
3060 cfs_rq->curr == se, NULL);
3061 }
3062
3063 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3064
3065 cfs_rq->runnable_load_avg += sa->load_avg;
3066 cfs_rq->runnable_load_sum += sa->load_sum;
3067
3068 if (migrated)
3069 attach_entity_load_avg(cfs_rq, se);
3070
3071 if (decayed || migrated)
3072 update_tg_load_avg(cfs_rq, 0);
3073 }
3074
3075 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3076 static inline void
3077 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078 {
3079 update_load_avg(se, 1);
3080
3081 cfs_rq->runnable_load_avg =
3082 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3083 cfs_rq->runnable_load_sum =
3084 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3085 }
3086
3087 #ifndef CONFIG_64BIT
3088 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3089 {
3090 u64 last_update_time_copy;
3091 u64 last_update_time;
3092
3093 do {
3094 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3095 smp_rmb();
3096 last_update_time = cfs_rq->avg.last_update_time;
3097 } while (last_update_time != last_update_time_copy);
3098
3099 return last_update_time;
3100 }
3101 #else
3102 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3103 {
3104 return cfs_rq->avg.last_update_time;
3105 }
3106 #endif
3107
3108 /*
3109 * Task first catches up with cfs_rq, and then subtract
3110 * itself from the cfs_rq (task must be off the queue now).
3111 */
3112 void remove_entity_load_avg(struct sched_entity *se)
3113 {
3114 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3115 u64 last_update_time;
3116
3117 /*
3118 * tasks cannot exit without having gone through wake_up_new_task() ->
3119 * post_init_entity_util_avg() which will have added things to the
3120 * cfs_rq, so we can remove unconditionally.
3121 *
3122 * Similarly for groups, they will have passed through
3123 * post_init_entity_util_avg() before unregister_sched_fair_group()
3124 * calls this.
3125 */
3126
3127 last_update_time = cfs_rq_last_update_time(cfs_rq);
3128
3129 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3130 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3131 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3132 }
3133
3134 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3135 {
3136 return cfs_rq->runnable_load_avg;
3137 }
3138
3139 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3140 {
3141 return cfs_rq->avg.load_avg;
3142 }
3143
3144 static int idle_balance(struct rq *this_rq);
3145
3146 #else /* CONFIG_SMP */
3147
3148 static inline int
3149 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3150 {
3151 return 0;
3152 }
3153
3154 static inline void update_load_avg(struct sched_entity *se, int not_used)
3155 {
3156 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3157 }
3158
3159 static inline void
3160 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3161 static inline void
3162 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3163 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3164
3165 static inline void
3166 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3167 static inline void
3168 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3169
3170 static inline int idle_balance(struct rq *rq)
3171 {
3172 return 0;
3173 }
3174
3175 #endif /* CONFIG_SMP */
3176
3177 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3178 {
3179 #ifdef CONFIG_SCHEDSTATS
3180 struct task_struct *tsk = NULL;
3181
3182 if (entity_is_task(se))
3183 tsk = task_of(se);
3184
3185 if (se->statistics.sleep_start) {
3186 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3187
3188 if ((s64)delta < 0)
3189 delta = 0;
3190
3191 if (unlikely(delta > se->statistics.sleep_max))
3192 se->statistics.sleep_max = delta;
3193
3194 se->statistics.sleep_start = 0;
3195 se->statistics.sum_sleep_runtime += delta;
3196
3197 if (tsk) {
3198 account_scheduler_latency(tsk, delta >> 10, 1);
3199 trace_sched_stat_sleep(tsk, delta);
3200 }
3201 }
3202 if (se->statistics.block_start) {
3203 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3204
3205 if ((s64)delta < 0)
3206 delta = 0;
3207
3208 if (unlikely(delta > se->statistics.block_max))
3209 se->statistics.block_max = delta;
3210
3211 se->statistics.block_start = 0;
3212 se->statistics.sum_sleep_runtime += delta;
3213
3214 if (tsk) {
3215 if (tsk->in_iowait) {
3216 se->statistics.iowait_sum += delta;
3217 se->statistics.iowait_count++;
3218 trace_sched_stat_iowait(tsk, delta);
3219 }
3220
3221 trace_sched_stat_blocked(tsk, delta);
3222
3223 /*
3224 * Blocking time is in units of nanosecs, so shift by
3225 * 20 to get a milliseconds-range estimation of the
3226 * amount of time that the task spent sleeping:
3227 */
3228 if (unlikely(prof_on == SLEEP_PROFILING)) {
3229 profile_hits(SLEEP_PROFILING,
3230 (void *)get_wchan(tsk),
3231 delta >> 20);
3232 }
3233 account_scheduler_latency(tsk, delta >> 10, 0);
3234 }
3235 }
3236 #endif
3237 }
3238
3239 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3240 {
3241 #ifdef CONFIG_SCHED_DEBUG
3242 s64 d = se->vruntime - cfs_rq->min_vruntime;
3243
3244 if (d < 0)
3245 d = -d;
3246
3247 if (d > 3*sysctl_sched_latency)
3248 schedstat_inc(cfs_rq, nr_spread_over);
3249 #endif
3250 }
3251
3252 static void
3253 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3254 {
3255 u64 vruntime = cfs_rq->min_vruntime;
3256
3257 /*
3258 * The 'current' period is already promised to the current tasks,
3259 * however the extra weight of the new task will slow them down a
3260 * little, place the new task so that it fits in the slot that
3261 * stays open at the end.
3262 */
3263 if (initial && sched_feat(START_DEBIT))
3264 vruntime += sched_vslice(cfs_rq, se);
3265
3266 /* sleeps up to a single latency don't count. */
3267 if (!initial) {
3268 unsigned long thresh = sysctl_sched_latency;
3269
3270 /*
3271 * Halve their sleep time's effect, to allow
3272 * for a gentler effect of sleepers:
3273 */
3274 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3275 thresh >>= 1;
3276
3277 vruntime -= thresh;
3278 }
3279
3280 /* ensure we never gain time by being placed backwards. */
3281 se->vruntime = max_vruntime(se->vruntime, vruntime);
3282 }
3283
3284 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3285
3286 static inline void check_schedstat_required(void)
3287 {
3288 #ifdef CONFIG_SCHEDSTATS
3289 if (schedstat_enabled())
3290 return;
3291
3292 /* Force schedstat enabled if a dependent tracepoint is active */
3293 if (trace_sched_stat_wait_enabled() ||
3294 trace_sched_stat_sleep_enabled() ||
3295 trace_sched_stat_iowait_enabled() ||
3296 trace_sched_stat_blocked_enabled() ||
3297 trace_sched_stat_runtime_enabled()) {
3298 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3299 "stat_blocked and stat_runtime require the "
3300 "kernel parameter schedstats=enabled or "
3301 "kernel.sched_schedstats=1\n");
3302 }
3303 #endif
3304 }
3305
3306
3307 /*
3308 * MIGRATION
3309 *
3310 * dequeue
3311 * update_curr()
3312 * update_min_vruntime()
3313 * vruntime -= min_vruntime
3314 *
3315 * enqueue
3316 * update_curr()
3317 * update_min_vruntime()
3318 * vruntime += min_vruntime
3319 *
3320 * this way the vruntime transition between RQs is done when both
3321 * min_vruntime are up-to-date.
3322 *
3323 * WAKEUP (remote)
3324 *
3325 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3326 * vruntime -= min_vruntime
3327 *
3328 * enqueue
3329 * update_curr()
3330 * update_min_vruntime()
3331 * vruntime += min_vruntime
3332 *
3333 * this way we don't have the most up-to-date min_vruntime on the originating
3334 * CPU and an up-to-date min_vruntime on the destination CPU.
3335 */
3336
3337 static void
3338 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3339 {
3340 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3341 bool curr = cfs_rq->curr == se;
3342
3343 /*
3344 * If we're the current task, we must renormalise before calling
3345 * update_curr().
3346 */
3347 if (renorm && curr)
3348 se->vruntime += cfs_rq->min_vruntime;
3349
3350 update_curr(cfs_rq);
3351
3352 /*
3353 * Otherwise, renormalise after, such that we're placed at the current
3354 * moment in time, instead of some random moment in the past. Being
3355 * placed in the past could significantly boost this task to the
3356 * fairness detriment of existing tasks.
3357 */
3358 if (renorm && !curr)
3359 se->vruntime += cfs_rq->min_vruntime;
3360
3361 enqueue_entity_load_avg(cfs_rq, se);
3362 account_entity_enqueue(cfs_rq, se);
3363 update_cfs_shares(cfs_rq);
3364
3365 if (flags & ENQUEUE_WAKEUP) {
3366 place_entity(cfs_rq, se, 0);
3367 if (schedstat_enabled())
3368 enqueue_sleeper(cfs_rq, se);
3369 }
3370
3371 check_schedstat_required();
3372 if (schedstat_enabled()) {
3373 update_stats_enqueue(cfs_rq, se);
3374 check_spread(cfs_rq, se);
3375 }
3376 if (!curr)
3377 __enqueue_entity(cfs_rq, se);
3378 se->on_rq = 1;
3379
3380 if (cfs_rq->nr_running == 1) {
3381 list_add_leaf_cfs_rq(cfs_rq);
3382 check_enqueue_throttle(cfs_rq);
3383 }
3384 }
3385
3386 static void __clear_buddies_last(struct sched_entity *se)
3387 {
3388 for_each_sched_entity(se) {
3389 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3390 if (cfs_rq->last != se)
3391 break;
3392
3393 cfs_rq->last = NULL;
3394 }
3395 }
3396
3397 static void __clear_buddies_next(struct sched_entity *se)
3398 {
3399 for_each_sched_entity(se) {
3400 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3401 if (cfs_rq->next != se)
3402 break;
3403
3404 cfs_rq->next = NULL;
3405 }
3406 }
3407
3408 static void __clear_buddies_skip(struct sched_entity *se)
3409 {
3410 for_each_sched_entity(se) {
3411 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3412 if (cfs_rq->skip != se)
3413 break;
3414
3415 cfs_rq->skip = NULL;
3416 }
3417 }
3418
3419 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3420 {
3421 if (cfs_rq->last == se)
3422 __clear_buddies_last(se);
3423
3424 if (cfs_rq->next == se)
3425 __clear_buddies_next(se);
3426
3427 if (cfs_rq->skip == se)
3428 __clear_buddies_skip(se);
3429 }
3430
3431 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3432
3433 static void
3434 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3435 {
3436 /*
3437 * Update run-time statistics of the 'current'.
3438 */
3439 update_curr(cfs_rq);
3440 dequeue_entity_load_avg(cfs_rq, se);
3441
3442 if (schedstat_enabled())
3443 update_stats_dequeue(cfs_rq, se, flags);
3444
3445 clear_buddies(cfs_rq, se);
3446
3447 if (se != cfs_rq->curr)
3448 __dequeue_entity(cfs_rq, se);
3449 se->on_rq = 0;
3450 account_entity_dequeue(cfs_rq, se);
3451
3452 /*
3453 * Normalize the entity after updating the min_vruntime because the
3454 * update can refer to the ->curr item and we need to reflect this
3455 * movement in our normalized position.
3456 */
3457 if (!(flags & DEQUEUE_SLEEP))
3458 se->vruntime -= cfs_rq->min_vruntime;
3459
3460 /* return excess runtime on last dequeue */
3461 return_cfs_rq_runtime(cfs_rq);
3462
3463 update_min_vruntime(cfs_rq);
3464 update_cfs_shares(cfs_rq);
3465 }
3466
3467 /*
3468 * Preempt the current task with a newly woken task if needed:
3469 */
3470 static void
3471 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3472 {
3473 unsigned long ideal_runtime, delta_exec;
3474 struct sched_entity *se;
3475 s64 delta;
3476
3477 ideal_runtime = sched_slice(cfs_rq, curr);
3478 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3479 if (delta_exec > ideal_runtime) {
3480 resched_curr(rq_of(cfs_rq));
3481 /*
3482 * The current task ran long enough, ensure it doesn't get
3483 * re-elected due to buddy favours.
3484 */
3485 clear_buddies(cfs_rq, curr);
3486 return;
3487 }
3488
3489 /*
3490 * Ensure that a task that missed wakeup preemption by a
3491 * narrow margin doesn't have to wait for a full slice.
3492 * This also mitigates buddy induced latencies under load.
3493 */
3494 if (delta_exec < sysctl_sched_min_granularity)
3495 return;
3496
3497 se = __pick_first_entity(cfs_rq);
3498 delta = curr->vruntime - se->vruntime;
3499
3500 if (delta < 0)
3501 return;
3502
3503 if (delta > ideal_runtime)
3504 resched_curr(rq_of(cfs_rq));
3505 }
3506
3507 static void
3508 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3509 {
3510 /* 'current' is not kept within the tree. */
3511 if (se->on_rq) {
3512 /*
3513 * Any task has to be enqueued before it get to execute on
3514 * a CPU. So account for the time it spent waiting on the
3515 * runqueue.
3516 */
3517 if (schedstat_enabled())
3518 update_stats_wait_end(cfs_rq, se);
3519 __dequeue_entity(cfs_rq, se);
3520 update_load_avg(se, 1);
3521 }
3522
3523 update_stats_curr_start(cfs_rq, se);
3524 cfs_rq->curr = se;
3525 #ifdef CONFIG_SCHEDSTATS
3526 /*
3527 * Track our maximum slice length, if the CPU's load is at
3528 * least twice that of our own weight (i.e. dont track it
3529 * when there are only lesser-weight tasks around):
3530 */
3531 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3532 se->statistics.slice_max = max(se->statistics.slice_max,
3533 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3534 }
3535 #endif
3536 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3537 }
3538
3539 static int
3540 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3541
3542 /*
3543 * Pick the next process, keeping these things in mind, in this order:
3544 * 1) keep things fair between processes/task groups
3545 * 2) pick the "next" process, since someone really wants that to run
3546 * 3) pick the "last" process, for cache locality
3547 * 4) do not run the "skip" process, if something else is available
3548 */
3549 static struct sched_entity *
3550 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3551 {
3552 struct sched_entity *left = __pick_first_entity(cfs_rq);
3553 struct sched_entity *se;
3554
3555 /*
3556 * If curr is set we have to see if its left of the leftmost entity
3557 * still in the tree, provided there was anything in the tree at all.
3558 */
3559 if (!left || (curr && entity_before(curr, left)))
3560 left = curr;
3561
3562 se = left; /* ideally we run the leftmost entity */
3563
3564 /*
3565 * Avoid running the skip buddy, if running something else can
3566 * be done without getting too unfair.
3567 */
3568 if (cfs_rq->skip == se) {
3569 struct sched_entity *second;
3570
3571 if (se == curr) {
3572 second = __pick_first_entity(cfs_rq);
3573 } else {
3574 second = __pick_next_entity(se);
3575 if (!second || (curr && entity_before(curr, second)))
3576 second = curr;
3577 }
3578
3579 if (second && wakeup_preempt_entity(second, left) < 1)
3580 se = second;
3581 }
3582
3583 /*
3584 * Prefer last buddy, try to return the CPU to a preempted task.
3585 */
3586 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3587 se = cfs_rq->last;
3588
3589 /*
3590 * Someone really wants this to run. If it's not unfair, run it.
3591 */
3592 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3593 se = cfs_rq->next;
3594
3595 clear_buddies(cfs_rq, se);
3596
3597 return se;
3598 }
3599
3600 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3601
3602 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3603 {
3604 /*
3605 * If still on the runqueue then deactivate_task()
3606 * was not called and update_curr() has to be done:
3607 */
3608 if (prev->on_rq)
3609 update_curr(cfs_rq);
3610
3611 /* throttle cfs_rqs exceeding runtime */
3612 check_cfs_rq_runtime(cfs_rq);
3613
3614 if (schedstat_enabled()) {
3615 check_spread(cfs_rq, prev);
3616 if (prev->on_rq)
3617 update_stats_wait_start(cfs_rq, prev);
3618 }
3619
3620 if (prev->on_rq) {
3621 /* Put 'current' back into the tree. */
3622 __enqueue_entity(cfs_rq, prev);
3623 /* in !on_rq case, update occurred at dequeue */
3624 update_load_avg(prev, 0);
3625 }
3626 cfs_rq->curr = NULL;
3627 }
3628
3629 static void
3630 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3631 {
3632 /*
3633 * Update run-time statistics of the 'current'.
3634 */
3635 update_curr(cfs_rq);
3636
3637 /*
3638 * Ensure that runnable average is periodically updated.
3639 */
3640 update_load_avg(curr, 1);
3641 update_cfs_shares(cfs_rq);
3642
3643 #ifdef CONFIG_SCHED_HRTICK
3644 /*
3645 * queued ticks are scheduled to match the slice, so don't bother
3646 * validating it and just reschedule.
3647 */
3648 if (queued) {
3649 resched_curr(rq_of(cfs_rq));
3650 return;
3651 }
3652 /*
3653 * don't let the period tick interfere with the hrtick preemption
3654 */
3655 if (!sched_feat(DOUBLE_TICK) &&
3656 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3657 return;
3658 #endif
3659
3660 if (cfs_rq->nr_running > 1)
3661 check_preempt_tick(cfs_rq, curr);
3662 }
3663
3664
3665 /**************************************************
3666 * CFS bandwidth control machinery
3667 */
3668
3669 #ifdef CONFIG_CFS_BANDWIDTH
3670
3671 #ifdef HAVE_JUMP_LABEL
3672 static struct static_key __cfs_bandwidth_used;
3673
3674 static inline bool cfs_bandwidth_used(void)
3675 {
3676 return static_key_false(&__cfs_bandwidth_used);
3677 }
3678
3679 void cfs_bandwidth_usage_inc(void)
3680 {
3681 static_key_slow_inc(&__cfs_bandwidth_used);
3682 }
3683
3684 void cfs_bandwidth_usage_dec(void)
3685 {
3686 static_key_slow_dec(&__cfs_bandwidth_used);
3687 }
3688 #else /* HAVE_JUMP_LABEL */
3689 static bool cfs_bandwidth_used(void)
3690 {
3691 return true;
3692 }
3693
3694 void cfs_bandwidth_usage_inc(void) {}
3695 void cfs_bandwidth_usage_dec(void) {}
3696 #endif /* HAVE_JUMP_LABEL */
3697
3698 /*
3699 * default period for cfs group bandwidth.
3700 * default: 0.1s, units: nanoseconds
3701 */
3702 static inline u64 default_cfs_period(void)
3703 {
3704 return 100000000ULL;
3705 }
3706
3707 static inline u64 sched_cfs_bandwidth_slice(void)
3708 {
3709 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3710 }
3711
3712 /*
3713 * Replenish runtime according to assigned quota and update expiration time.
3714 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3715 * additional synchronization around rq->lock.
3716 *
3717 * requires cfs_b->lock
3718 */
3719 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3720 {
3721 u64 now;
3722
3723 if (cfs_b->quota == RUNTIME_INF)
3724 return;
3725
3726 now = sched_clock_cpu(smp_processor_id());
3727 cfs_b->runtime = cfs_b->quota;
3728 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3729 }
3730
3731 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3732 {
3733 return &tg->cfs_bandwidth;
3734 }
3735
3736 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3737 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3738 {
3739 if (unlikely(cfs_rq->throttle_count))
3740 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3741
3742 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3743 }
3744
3745 /* returns 0 on failure to allocate runtime */
3746 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3747 {
3748 struct task_group *tg = cfs_rq->tg;
3749 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3750 u64 amount = 0, min_amount, expires;
3751
3752 /* note: this is a positive sum as runtime_remaining <= 0 */
3753 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3754
3755 raw_spin_lock(&cfs_b->lock);
3756 if (cfs_b->quota == RUNTIME_INF)
3757 amount = min_amount;
3758 else {
3759 start_cfs_bandwidth(cfs_b);
3760
3761 if (cfs_b->runtime > 0) {
3762 amount = min(cfs_b->runtime, min_amount);
3763 cfs_b->runtime -= amount;
3764 cfs_b->idle = 0;
3765 }
3766 }
3767 expires = cfs_b->runtime_expires;
3768 raw_spin_unlock(&cfs_b->lock);
3769
3770 cfs_rq->runtime_remaining += amount;
3771 /*
3772 * we may have advanced our local expiration to account for allowed
3773 * spread between our sched_clock and the one on which runtime was
3774 * issued.
3775 */
3776 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3777 cfs_rq->runtime_expires = expires;
3778
3779 return cfs_rq->runtime_remaining > 0;
3780 }
3781
3782 /*
3783 * Note: This depends on the synchronization provided by sched_clock and the
3784 * fact that rq->clock snapshots this value.
3785 */
3786 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3787 {
3788 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3789
3790 /* if the deadline is ahead of our clock, nothing to do */
3791 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3792 return;
3793
3794 if (cfs_rq->runtime_remaining < 0)
3795 return;
3796
3797 /*
3798 * If the local deadline has passed we have to consider the
3799 * possibility that our sched_clock is 'fast' and the global deadline
3800 * has not truly expired.
3801 *
3802 * Fortunately we can check determine whether this the case by checking
3803 * whether the global deadline has advanced. It is valid to compare
3804 * cfs_b->runtime_expires without any locks since we only care about
3805 * exact equality, so a partial write will still work.
3806 */
3807
3808 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3809 /* extend local deadline, drift is bounded above by 2 ticks */
3810 cfs_rq->runtime_expires += TICK_NSEC;
3811 } else {
3812 /* global deadline is ahead, expiration has passed */
3813 cfs_rq->runtime_remaining = 0;
3814 }
3815 }
3816
3817 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3818 {
3819 /* dock delta_exec before expiring quota (as it could span periods) */
3820 cfs_rq->runtime_remaining -= delta_exec;
3821 expire_cfs_rq_runtime(cfs_rq);
3822
3823 if (likely(cfs_rq->runtime_remaining > 0))
3824 return;
3825
3826 /*
3827 * if we're unable to extend our runtime we resched so that the active
3828 * hierarchy can be throttled
3829 */
3830 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3831 resched_curr(rq_of(cfs_rq));
3832 }
3833
3834 static __always_inline
3835 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3836 {
3837 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3838 return;
3839
3840 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3841 }
3842
3843 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3844 {
3845 return cfs_bandwidth_used() && cfs_rq->throttled;
3846 }
3847
3848 /* check whether cfs_rq, or any parent, is throttled */
3849 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3850 {
3851 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3852 }
3853
3854 /*
3855 * Ensure that neither of the group entities corresponding to src_cpu or
3856 * dest_cpu are members of a throttled hierarchy when performing group
3857 * load-balance operations.
3858 */
3859 static inline int throttled_lb_pair(struct task_group *tg,
3860 int src_cpu, int dest_cpu)
3861 {
3862 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3863
3864 src_cfs_rq = tg->cfs_rq[src_cpu];
3865 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3866
3867 return throttled_hierarchy(src_cfs_rq) ||
3868 throttled_hierarchy(dest_cfs_rq);
3869 }
3870
3871 /* updated child weight may affect parent so we have to do this bottom up */
3872 static int tg_unthrottle_up(struct task_group *tg, void *data)
3873 {
3874 struct rq *rq = data;
3875 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3876
3877 cfs_rq->throttle_count--;
3878 if (!cfs_rq->throttle_count) {
3879 /* adjust cfs_rq_clock_task() */
3880 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3881 cfs_rq->throttled_clock_task;
3882 }
3883
3884 return 0;
3885 }
3886
3887 static int tg_throttle_down(struct task_group *tg, void *data)
3888 {
3889 struct rq *rq = data;
3890 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3891
3892 /* group is entering throttled state, stop time */
3893 if (!cfs_rq->throttle_count)
3894 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3895 cfs_rq->throttle_count++;
3896
3897 return 0;
3898 }
3899
3900 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3901 {
3902 struct rq *rq = rq_of(cfs_rq);
3903 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3904 struct sched_entity *se;
3905 long task_delta, dequeue = 1;
3906 bool empty;
3907
3908 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3909
3910 /* freeze hierarchy runnable averages while throttled */
3911 rcu_read_lock();
3912 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3913 rcu_read_unlock();
3914
3915 task_delta = cfs_rq->h_nr_running;
3916 for_each_sched_entity(se) {
3917 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3918 /* throttled entity or throttle-on-deactivate */
3919 if (!se->on_rq)
3920 break;
3921
3922 if (dequeue)
3923 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3924 qcfs_rq->h_nr_running -= task_delta;
3925
3926 if (qcfs_rq->load.weight)
3927 dequeue = 0;
3928 }
3929
3930 if (!se)
3931 sub_nr_running(rq, task_delta);
3932
3933 cfs_rq->throttled = 1;
3934 cfs_rq->throttled_clock = rq_clock(rq);
3935 raw_spin_lock(&cfs_b->lock);
3936 empty = list_empty(&cfs_b->throttled_cfs_rq);
3937
3938 /*
3939 * Add to the _head_ of the list, so that an already-started
3940 * distribute_cfs_runtime will not see us
3941 */
3942 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3943
3944 /*
3945 * If we're the first throttled task, make sure the bandwidth
3946 * timer is running.
3947 */
3948 if (empty)
3949 start_cfs_bandwidth(cfs_b);
3950
3951 raw_spin_unlock(&cfs_b->lock);
3952 }
3953
3954 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3955 {
3956 struct rq *rq = rq_of(cfs_rq);
3957 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3958 struct sched_entity *se;
3959 int enqueue = 1;
3960 long task_delta;
3961
3962 se = cfs_rq->tg->se[cpu_of(rq)];
3963
3964 cfs_rq->throttled = 0;
3965
3966 update_rq_clock(rq);
3967
3968 raw_spin_lock(&cfs_b->lock);
3969 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3970 list_del_rcu(&cfs_rq->throttled_list);
3971 raw_spin_unlock(&cfs_b->lock);
3972
3973 /* update hierarchical throttle state */
3974 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3975
3976 if (!cfs_rq->load.weight)
3977 return;
3978
3979 task_delta = cfs_rq->h_nr_running;
3980 for_each_sched_entity(se) {
3981 if (se->on_rq)
3982 enqueue = 0;
3983
3984 cfs_rq = cfs_rq_of(se);
3985 if (enqueue)
3986 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3987 cfs_rq->h_nr_running += task_delta;
3988
3989 if (cfs_rq_throttled(cfs_rq))
3990 break;
3991 }
3992
3993 if (!se)
3994 add_nr_running(rq, task_delta);
3995
3996 /* determine whether we need to wake up potentially idle cpu */
3997 if (rq->curr == rq->idle && rq->cfs.nr_running)
3998 resched_curr(rq);
3999 }
4000
4001 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4002 u64 remaining, u64 expires)
4003 {
4004 struct cfs_rq *cfs_rq;
4005 u64 runtime;
4006 u64 starting_runtime = remaining;
4007
4008 rcu_read_lock();
4009 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4010 throttled_list) {
4011 struct rq *rq = rq_of(cfs_rq);
4012
4013 raw_spin_lock(&rq->lock);
4014 if (!cfs_rq_throttled(cfs_rq))
4015 goto next;
4016
4017 runtime = -cfs_rq->runtime_remaining + 1;
4018 if (runtime > remaining)
4019 runtime = remaining;
4020 remaining -= runtime;
4021
4022 cfs_rq->runtime_remaining += runtime;
4023 cfs_rq->runtime_expires = expires;
4024
4025 /* we check whether we're throttled above */
4026 if (cfs_rq->runtime_remaining > 0)
4027 unthrottle_cfs_rq(cfs_rq);
4028
4029 next:
4030 raw_spin_unlock(&rq->lock);
4031
4032 if (!remaining)
4033 break;
4034 }
4035 rcu_read_unlock();
4036
4037 return starting_runtime - remaining;
4038 }
4039
4040 /*
4041 * Responsible for refilling a task_group's bandwidth and unthrottling its
4042 * cfs_rqs as appropriate. If there has been no activity within the last
4043 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4044 * used to track this state.
4045 */
4046 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4047 {
4048 u64 runtime, runtime_expires;
4049 int throttled;
4050
4051 /* no need to continue the timer with no bandwidth constraint */
4052 if (cfs_b->quota == RUNTIME_INF)
4053 goto out_deactivate;
4054
4055 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4056 cfs_b->nr_periods += overrun;
4057
4058 /*
4059 * idle depends on !throttled (for the case of a large deficit), and if
4060 * we're going inactive then everything else can be deferred
4061 */
4062 if (cfs_b->idle && !throttled)
4063 goto out_deactivate;
4064
4065 __refill_cfs_bandwidth_runtime(cfs_b);
4066
4067 if (!throttled) {
4068 /* mark as potentially idle for the upcoming period */
4069 cfs_b->idle = 1;
4070 return 0;
4071 }
4072
4073 /* account preceding periods in which throttling occurred */
4074 cfs_b->nr_throttled += overrun;
4075
4076 runtime_expires = cfs_b->runtime_expires;
4077
4078 /*
4079 * This check is repeated as we are holding onto the new bandwidth while
4080 * we unthrottle. This can potentially race with an unthrottled group
4081 * trying to acquire new bandwidth from the global pool. This can result
4082 * in us over-using our runtime if it is all used during this loop, but
4083 * only by limited amounts in that extreme case.
4084 */
4085 while (throttled && cfs_b->runtime > 0) {
4086 runtime = cfs_b->runtime;
4087 raw_spin_unlock(&cfs_b->lock);
4088 /* we can't nest cfs_b->lock while distributing bandwidth */
4089 runtime = distribute_cfs_runtime(cfs_b, runtime,
4090 runtime_expires);
4091 raw_spin_lock(&cfs_b->lock);
4092
4093 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4094
4095 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4096 }
4097
4098 /*
4099 * While we are ensured activity in the period following an
4100 * unthrottle, this also covers the case in which the new bandwidth is
4101 * insufficient to cover the existing bandwidth deficit. (Forcing the
4102 * timer to remain active while there are any throttled entities.)
4103 */
4104 cfs_b->idle = 0;
4105
4106 return 0;
4107
4108 out_deactivate:
4109 return 1;
4110 }
4111
4112 /* a cfs_rq won't donate quota below this amount */
4113 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4114 /* minimum remaining period time to redistribute slack quota */
4115 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4116 /* how long we wait to gather additional slack before distributing */
4117 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4118
4119 /*
4120 * Are we near the end of the current quota period?
4121 *
4122 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4123 * hrtimer base being cleared by hrtimer_start. In the case of
4124 * migrate_hrtimers, base is never cleared, so we are fine.
4125 */
4126 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4127 {
4128 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4129 u64 remaining;
4130
4131 /* if the call-back is running a quota refresh is already occurring */
4132 if (hrtimer_callback_running(refresh_timer))
4133 return 1;
4134
4135 /* is a quota refresh about to occur? */
4136 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4137 if (remaining < min_expire)
4138 return 1;
4139
4140 return 0;
4141 }
4142
4143 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4144 {
4145 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4146
4147 /* if there's a quota refresh soon don't bother with slack */
4148 if (runtime_refresh_within(cfs_b, min_left))
4149 return;
4150
4151 hrtimer_start(&cfs_b->slack_timer,
4152 ns_to_ktime(cfs_bandwidth_slack_period),
4153 HRTIMER_MODE_REL);
4154 }
4155
4156 /* we know any runtime found here is valid as update_curr() precedes return */
4157 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4158 {
4159 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4160 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4161
4162 if (slack_runtime <= 0)
4163 return;
4164
4165 raw_spin_lock(&cfs_b->lock);
4166 if (cfs_b->quota != RUNTIME_INF &&
4167 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4168 cfs_b->runtime += slack_runtime;
4169
4170 /* we are under rq->lock, defer unthrottling using a timer */
4171 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4172 !list_empty(&cfs_b->throttled_cfs_rq))
4173 start_cfs_slack_bandwidth(cfs_b);
4174 }
4175 raw_spin_unlock(&cfs_b->lock);
4176
4177 /* even if it's not valid for return we don't want to try again */
4178 cfs_rq->runtime_remaining -= slack_runtime;
4179 }
4180
4181 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4182 {
4183 if (!cfs_bandwidth_used())
4184 return;
4185
4186 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4187 return;
4188
4189 __return_cfs_rq_runtime(cfs_rq);
4190 }
4191
4192 /*
4193 * This is done with a timer (instead of inline with bandwidth return) since
4194 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4195 */
4196 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4197 {
4198 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4199 u64 expires;
4200
4201 /* confirm we're still not at a refresh boundary */
4202 raw_spin_lock(&cfs_b->lock);
4203 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4204 raw_spin_unlock(&cfs_b->lock);
4205 return;
4206 }
4207
4208 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4209 runtime = cfs_b->runtime;
4210
4211 expires = cfs_b->runtime_expires;
4212 raw_spin_unlock(&cfs_b->lock);
4213
4214 if (!runtime)
4215 return;
4216
4217 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4218
4219 raw_spin_lock(&cfs_b->lock);
4220 if (expires == cfs_b->runtime_expires)
4221 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4222 raw_spin_unlock(&cfs_b->lock);
4223 }
4224
4225 /*
4226 * When a group wakes up we want to make sure that its quota is not already
4227 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4228 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4229 */
4230 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4231 {
4232 if (!cfs_bandwidth_used())
4233 return;
4234
4235 /* an active group must be handled by the update_curr()->put() path */
4236 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4237 return;
4238
4239 /* ensure the group is not already throttled */
4240 if (cfs_rq_throttled(cfs_rq))
4241 return;
4242
4243 /* update runtime allocation */
4244 account_cfs_rq_runtime(cfs_rq, 0);
4245 if (cfs_rq->runtime_remaining <= 0)
4246 throttle_cfs_rq(cfs_rq);
4247 }
4248
4249 static void sync_throttle(struct task_group *tg, int cpu)
4250 {
4251 struct cfs_rq *pcfs_rq, *cfs_rq;
4252
4253 if (!cfs_bandwidth_used())
4254 return;
4255
4256 if (!tg->parent)
4257 return;
4258
4259 cfs_rq = tg->cfs_rq[cpu];
4260 pcfs_rq = tg->parent->cfs_rq[cpu];
4261
4262 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4263 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4264 }
4265
4266 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4267 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4268 {
4269 if (!cfs_bandwidth_used())
4270 return false;
4271
4272 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4273 return false;
4274
4275 /*
4276 * it's possible for a throttled entity to be forced into a running
4277 * state (e.g. set_curr_task), in this case we're finished.
4278 */
4279 if (cfs_rq_throttled(cfs_rq))
4280 return true;
4281
4282 throttle_cfs_rq(cfs_rq);
4283 return true;
4284 }
4285
4286 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4287 {
4288 struct cfs_bandwidth *cfs_b =
4289 container_of(timer, struct cfs_bandwidth, slack_timer);
4290
4291 do_sched_cfs_slack_timer(cfs_b);
4292
4293 return HRTIMER_NORESTART;
4294 }
4295
4296 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4297 {
4298 struct cfs_bandwidth *cfs_b =
4299 container_of(timer, struct cfs_bandwidth, period_timer);
4300 int overrun;
4301 int idle = 0;
4302
4303 raw_spin_lock(&cfs_b->lock);
4304 for (;;) {
4305 overrun = hrtimer_forward_now(timer, cfs_b->period);
4306 if (!overrun)
4307 break;
4308
4309 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4310 }
4311 if (idle)
4312 cfs_b->period_active = 0;
4313 raw_spin_unlock(&cfs_b->lock);
4314
4315 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4316 }
4317
4318 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4319 {
4320 raw_spin_lock_init(&cfs_b->lock);
4321 cfs_b->runtime = 0;
4322 cfs_b->quota = RUNTIME_INF;
4323 cfs_b->period = ns_to_ktime(default_cfs_period());
4324
4325 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4326 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4327 cfs_b->period_timer.function = sched_cfs_period_timer;
4328 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4329 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4330 }
4331
4332 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4333 {
4334 cfs_rq->runtime_enabled = 0;
4335 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4336 }
4337
4338 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4339 {
4340 lockdep_assert_held(&cfs_b->lock);
4341
4342 if (!cfs_b->period_active) {
4343 cfs_b->period_active = 1;
4344 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4345 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4346 }
4347 }
4348
4349 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4350 {
4351 /* init_cfs_bandwidth() was not called */
4352 if (!cfs_b->throttled_cfs_rq.next)
4353 return;
4354
4355 hrtimer_cancel(&cfs_b->period_timer);
4356 hrtimer_cancel(&cfs_b->slack_timer);
4357 }
4358
4359 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4360 {
4361 struct cfs_rq *cfs_rq;
4362
4363 for_each_leaf_cfs_rq(rq, cfs_rq) {
4364 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4365
4366 raw_spin_lock(&cfs_b->lock);
4367 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4368 raw_spin_unlock(&cfs_b->lock);
4369 }
4370 }
4371
4372 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4373 {
4374 struct cfs_rq *cfs_rq;
4375
4376 for_each_leaf_cfs_rq(rq, cfs_rq) {
4377 if (!cfs_rq->runtime_enabled)
4378 continue;
4379
4380 /*
4381 * clock_task is not advancing so we just need to make sure
4382 * there's some valid quota amount
4383 */
4384 cfs_rq->runtime_remaining = 1;
4385 /*
4386 * Offline rq is schedulable till cpu is completely disabled
4387 * in take_cpu_down(), so we prevent new cfs throttling here.
4388 */
4389 cfs_rq->runtime_enabled = 0;
4390
4391 if (cfs_rq_throttled(cfs_rq))
4392 unthrottle_cfs_rq(cfs_rq);
4393 }
4394 }
4395
4396 #else /* CONFIG_CFS_BANDWIDTH */
4397 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4398 {
4399 return rq_clock_task(rq_of(cfs_rq));
4400 }
4401
4402 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4403 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4404 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4405 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4406 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4407
4408 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4409 {
4410 return 0;
4411 }
4412
4413 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4414 {
4415 return 0;
4416 }
4417
4418 static inline int throttled_lb_pair(struct task_group *tg,
4419 int src_cpu, int dest_cpu)
4420 {
4421 return 0;
4422 }
4423
4424 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4425
4426 #ifdef CONFIG_FAIR_GROUP_SCHED
4427 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4428 #endif
4429
4430 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4431 {
4432 return NULL;
4433 }
4434 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4435 static inline void update_runtime_enabled(struct rq *rq) {}
4436 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4437
4438 #endif /* CONFIG_CFS_BANDWIDTH */
4439
4440 /**************************************************
4441 * CFS operations on tasks:
4442 */
4443
4444 #ifdef CONFIG_SCHED_HRTICK
4445 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4446 {
4447 struct sched_entity *se = &p->se;
4448 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4449
4450 WARN_ON(task_rq(p) != rq);
4451
4452 if (cfs_rq->nr_running > 1) {
4453 u64 slice = sched_slice(cfs_rq, se);
4454 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4455 s64 delta = slice - ran;
4456
4457 if (delta < 0) {
4458 if (rq->curr == p)
4459 resched_curr(rq);
4460 return;
4461 }
4462 hrtick_start(rq, delta);
4463 }
4464 }
4465
4466 /*
4467 * called from enqueue/dequeue and updates the hrtick when the
4468 * current task is from our class and nr_running is low enough
4469 * to matter.
4470 */
4471 static void hrtick_update(struct rq *rq)
4472 {
4473 struct task_struct *curr = rq->curr;
4474
4475 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4476 return;
4477
4478 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4479 hrtick_start_fair(rq, curr);
4480 }
4481 #else /* !CONFIG_SCHED_HRTICK */
4482 static inline void
4483 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4484 {
4485 }
4486
4487 static inline void hrtick_update(struct rq *rq)
4488 {
4489 }
4490 #endif
4491
4492 /*
4493 * The enqueue_task method is called before nr_running is
4494 * increased. Here we update the fair scheduling stats and
4495 * then put the task into the rbtree:
4496 */
4497 static void
4498 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4499 {
4500 struct cfs_rq *cfs_rq;
4501 struct sched_entity *se = &p->se;
4502
4503 for_each_sched_entity(se) {
4504 if (se->on_rq)
4505 break;
4506 cfs_rq = cfs_rq_of(se);
4507 enqueue_entity(cfs_rq, se, flags);
4508
4509 /*
4510 * end evaluation on encountering a throttled cfs_rq
4511 *
4512 * note: in the case of encountering a throttled cfs_rq we will
4513 * post the final h_nr_running increment below.
4514 */
4515 if (cfs_rq_throttled(cfs_rq))
4516 break;
4517 cfs_rq->h_nr_running++;
4518
4519 flags = ENQUEUE_WAKEUP;
4520 }
4521
4522 for_each_sched_entity(se) {
4523 cfs_rq = cfs_rq_of(se);
4524 cfs_rq->h_nr_running++;
4525
4526 if (cfs_rq_throttled(cfs_rq))
4527 break;
4528
4529 update_load_avg(se, 1);
4530 update_cfs_shares(cfs_rq);
4531 }
4532
4533 if (!se)
4534 add_nr_running(rq, 1);
4535
4536 hrtick_update(rq);
4537 }
4538
4539 static void set_next_buddy(struct sched_entity *se);
4540
4541 /*
4542 * The dequeue_task method is called before nr_running is
4543 * decreased. We remove the task from the rbtree and
4544 * update the fair scheduling stats:
4545 */
4546 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4547 {
4548 struct cfs_rq *cfs_rq;
4549 struct sched_entity *se = &p->se;
4550 int task_sleep = flags & DEQUEUE_SLEEP;
4551
4552 for_each_sched_entity(se) {
4553 cfs_rq = cfs_rq_of(se);
4554 dequeue_entity(cfs_rq, se, flags);
4555
4556 /*
4557 * end evaluation on encountering a throttled cfs_rq
4558 *
4559 * note: in the case of encountering a throttled cfs_rq we will
4560 * post the final h_nr_running decrement below.
4561 */
4562 if (cfs_rq_throttled(cfs_rq))
4563 break;
4564 cfs_rq->h_nr_running--;
4565
4566 /* Don't dequeue parent if it has other entities besides us */
4567 if (cfs_rq->load.weight) {
4568 /* Avoid re-evaluating load for this entity: */
4569 se = parent_entity(se);
4570 /*
4571 * Bias pick_next to pick a task from this cfs_rq, as
4572 * p is sleeping when it is within its sched_slice.
4573 */
4574 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4575 set_next_buddy(se);
4576 break;
4577 }
4578 flags |= DEQUEUE_SLEEP;
4579 }
4580
4581 for_each_sched_entity(se) {
4582 cfs_rq = cfs_rq_of(se);
4583 cfs_rq->h_nr_running--;
4584
4585 if (cfs_rq_throttled(cfs_rq))
4586 break;
4587
4588 update_load_avg(se, 1);
4589 update_cfs_shares(cfs_rq);
4590 }
4591
4592 if (!se)
4593 sub_nr_running(rq, 1);
4594
4595 hrtick_update(rq);
4596 }
4597
4598 #ifdef CONFIG_SMP
4599 #ifdef CONFIG_NO_HZ_COMMON
4600 /*
4601 * per rq 'load' arrray crap; XXX kill this.
4602 */
4603
4604 /*
4605 * The exact cpuload calculated at every tick would be:
4606 *
4607 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4608 *
4609 * If a cpu misses updates for n ticks (as it was idle) and update gets
4610 * called on the n+1-th tick when cpu may be busy, then we have:
4611 *
4612 * load_n = (1 - 1/2^i)^n * load_0
4613 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4614 *
4615 * decay_load_missed() below does efficient calculation of
4616 *
4617 * load' = (1 - 1/2^i)^n * load
4618 *
4619 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4620 * This allows us to precompute the above in said factors, thereby allowing the
4621 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4622 * fixed_power_int())
4623 *
4624 * The calculation is approximated on a 128 point scale.
4625 */
4626 #define DEGRADE_SHIFT 7
4627
4628 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4629 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4630 { 0, 0, 0, 0, 0, 0, 0, 0 },
4631 { 64, 32, 8, 0, 0, 0, 0, 0 },
4632 { 96, 72, 40, 12, 1, 0, 0, 0 },
4633 { 112, 98, 75, 43, 15, 1, 0, 0 },
4634 { 120, 112, 98, 76, 45, 16, 2, 0 }
4635 };
4636
4637 /*
4638 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4639 * would be when CPU is idle and so we just decay the old load without
4640 * adding any new load.
4641 */
4642 static unsigned long
4643 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4644 {
4645 int j = 0;
4646
4647 if (!missed_updates)
4648 return load;
4649
4650 if (missed_updates >= degrade_zero_ticks[idx])
4651 return 0;
4652
4653 if (idx == 1)
4654 return load >> missed_updates;
4655
4656 while (missed_updates) {
4657 if (missed_updates % 2)
4658 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4659
4660 missed_updates >>= 1;
4661 j++;
4662 }
4663 return load;
4664 }
4665 #endif /* CONFIG_NO_HZ_COMMON */
4666
4667 /**
4668 * __cpu_load_update - update the rq->cpu_load[] statistics
4669 * @this_rq: The rq to update statistics for
4670 * @this_load: The current load
4671 * @pending_updates: The number of missed updates
4672 *
4673 * Update rq->cpu_load[] statistics. This function is usually called every
4674 * scheduler tick (TICK_NSEC).
4675 *
4676 * This function computes a decaying average:
4677 *
4678 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4679 *
4680 * Because of NOHZ it might not get called on every tick which gives need for
4681 * the @pending_updates argument.
4682 *
4683 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4684 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4685 * = A * (A * load[i]_n-2 + B) + B
4686 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4687 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4688 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4689 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4690 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4691 *
4692 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4693 * any change in load would have resulted in the tick being turned back on.
4694 *
4695 * For regular NOHZ, this reduces to:
4696 *
4697 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4698 *
4699 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4700 * term.
4701 */
4702 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4703 unsigned long pending_updates)
4704 {
4705 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4706 int i, scale;
4707
4708 this_rq->nr_load_updates++;
4709
4710 /* Update our load: */
4711 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4712 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4713 unsigned long old_load, new_load;
4714
4715 /* scale is effectively 1 << i now, and >> i divides by scale */
4716
4717 old_load = this_rq->cpu_load[i];
4718 #ifdef CONFIG_NO_HZ_COMMON
4719 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4720 if (tickless_load) {
4721 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4722 /*
4723 * old_load can never be a negative value because a
4724 * decayed tickless_load cannot be greater than the
4725 * original tickless_load.
4726 */
4727 old_load += tickless_load;
4728 }
4729 #endif
4730 new_load = this_load;
4731 /*
4732 * Round up the averaging division if load is increasing. This
4733 * prevents us from getting stuck on 9 if the load is 10, for
4734 * example.
4735 */
4736 if (new_load > old_load)
4737 new_load += scale - 1;
4738
4739 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4740 }
4741
4742 sched_avg_update(this_rq);
4743 }
4744
4745 /* Used instead of source_load when we know the type == 0 */
4746 static unsigned long weighted_cpuload(const int cpu)
4747 {
4748 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4749 }
4750
4751 #ifdef CONFIG_NO_HZ_COMMON
4752 /*
4753 * There is no sane way to deal with nohz on smp when using jiffies because the
4754 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4755 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4756 *
4757 * Therefore we need to avoid the delta approach from the regular tick when
4758 * possible since that would seriously skew the load calculation. This is why we
4759 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4760 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4761 * loop exit, nohz_idle_balance, nohz full exit...)
4762 *
4763 * This means we might still be one tick off for nohz periods.
4764 */
4765
4766 static void cpu_load_update_nohz(struct rq *this_rq,
4767 unsigned long curr_jiffies,
4768 unsigned long load)
4769 {
4770 unsigned long pending_updates;
4771
4772 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4773 if (pending_updates) {
4774 this_rq->last_load_update_tick = curr_jiffies;
4775 /*
4776 * In the regular NOHZ case, we were idle, this means load 0.
4777 * In the NOHZ_FULL case, we were non-idle, we should consider
4778 * its weighted load.
4779 */
4780 cpu_load_update(this_rq, load, pending_updates);
4781 }
4782 }
4783
4784 /*
4785 * Called from nohz_idle_balance() to update the load ratings before doing the
4786 * idle balance.
4787 */
4788 static void cpu_load_update_idle(struct rq *this_rq)
4789 {
4790 /*
4791 * bail if there's load or we're actually up-to-date.
4792 */
4793 if (weighted_cpuload(cpu_of(this_rq)))
4794 return;
4795
4796 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4797 }
4798
4799 /*
4800 * Record CPU load on nohz entry so we know the tickless load to account
4801 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4802 * than other cpu_load[idx] but it should be fine as cpu_load readers
4803 * shouldn't rely into synchronized cpu_load[*] updates.
4804 */
4805 void cpu_load_update_nohz_start(void)
4806 {
4807 struct rq *this_rq = this_rq();
4808
4809 /*
4810 * This is all lockless but should be fine. If weighted_cpuload changes
4811 * concurrently we'll exit nohz. And cpu_load write can race with
4812 * cpu_load_update_idle() but both updater would be writing the same.
4813 */
4814 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4815 }
4816
4817 /*
4818 * Account the tickless load in the end of a nohz frame.
4819 */
4820 void cpu_load_update_nohz_stop(void)
4821 {
4822 unsigned long curr_jiffies = READ_ONCE(jiffies);
4823 struct rq *this_rq = this_rq();
4824 unsigned long load;
4825
4826 if (curr_jiffies == this_rq->last_load_update_tick)
4827 return;
4828
4829 load = weighted_cpuload(cpu_of(this_rq));
4830 raw_spin_lock(&this_rq->lock);
4831 update_rq_clock(this_rq);
4832 cpu_load_update_nohz(this_rq, curr_jiffies, load);
4833 raw_spin_unlock(&this_rq->lock);
4834 }
4835 #else /* !CONFIG_NO_HZ_COMMON */
4836 static inline void cpu_load_update_nohz(struct rq *this_rq,
4837 unsigned long curr_jiffies,
4838 unsigned long load) { }
4839 #endif /* CONFIG_NO_HZ_COMMON */
4840
4841 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4842 {
4843 #ifdef CONFIG_NO_HZ_COMMON
4844 /* See the mess around cpu_load_update_nohz(). */
4845 this_rq->last_load_update_tick = READ_ONCE(jiffies);
4846 #endif
4847 cpu_load_update(this_rq, load, 1);
4848 }
4849
4850 /*
4851 * Called from scheduler_tick()
4852 */
4853 void cpu_load_update_active(struct rq *this_rq)
4854 {
4855 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4856
4857 if (tick_nohz_tick_stopped())
4858 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4859 else
4860 cpu_load_update_periodic(this_rq, load);
4861 }
4862
4863 /*
4864 * Return a low guess at the load of a migration-source cpu weighted
4865 * according to the scheduling class and "nice" value.
4866 *
4867 * We want to under-estimate the load of migration sources, to
4868 * balance conservatively.
4869 */
4870 static unsigned long source_load(int cpu, int type)
4871 {
4872 struct rq *rq = cpu_rq(cpu);
4873 unsigned long total = weighted_cpuload(cpu);
4874
4875 if (type == 0 || !sched_feat(LB_BIAS))
4876 return total;
4877
4878 return min(rq->cpu_load[type-1], total);
4879 }
4880
4881 /*
4882 * Return a high guess at the load of a migration-target cpu weighted
4883 * according to the scheduling class and "nice" value.
4884 */
4885 static unsigned long target_load(int cpu, int type)
4886 {
4887 struct rq *rq = cpu_rq(cpu);
4888 unsigned long total = weighted_cpuload(cpu);
4889
4890 if (type == 0 || !sched_feat(LB_BIAS))
4891 return total;
4892
4893 return max(rq->cpu_load[type-1], total);
4894 }
4895
4896 static unsigned long capacity_of(int cpu)
4897 {
4898 return cpu_rq(cpu)->cpu_capacity;
4899 }
4900
4901 static unsigned long capacity_orig_of(int cpu)
4902 {
4903 return cpu_rq(cpu)->cpu_capacity_orig;
4904 }
4905
4906 static unsigned long cpu_avg_load_per_task(int cpu)
4907 {
4908 struct rq *rq = cpu_rq(cpu);
4909 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4910 unsigned long load_avg = weighted_cpuload(cpu);
4911
4912 if (nr_running)
4913 return load_avg / nr_running;
4914
4915 return 0;
4916 }
4917
4918 #ifdef CONFIG_FAIR_GROUP_SCHED
4919 /*
4920 * effective_load() calculates the load change as seen from the root_task_group
4921 *
4922 * Adding load to a group doesn't make a group heavier, but can cause movement
4923 * of group shares between cpus. Assuming the shares were perfectly aligned one
4924 * can calculate the shift in shares.
4925 *
4926 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4927 * on this @cpu and results in a total addition (subtraction) of @wg to the
4928 * total group weight.
4929 *
4930 * Given a runqueue weight distribution (rw_i) we can compute a shares
4931 * distribution (s_i) using:
4932 *
4933 * s_i = rw_i / \Sum rw_j (1)
4934 *
4935 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4936 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4937 * shares distribution (s_i):
4938 *
4939 * rw_i = { 2, 4, 1, 0 }
4940 * s_i = { 2/7, 4/7, 1/7, 0 }
4941 *
4942 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4943 * task used to run on and the CPU the waker is running on), we need to
4944 * compute the effect of waking a task on either CPU and, in case of a sync
4945 * wakeup, compute the effect of the current task going to sleep.
4946 *
4947 * So for a change of @wl to the local @cpu with an overall group weight change
4948 * of @wl we can compute the new shares distribution (s'_i) using:
4949 *
4950 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4951 *
4952 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4953 * differences in waking a task to CPU 0. The additional task changes the
4954 * weight and shares distributions like:
4955 *
4956 * rw'_i = { 3, 4, 1, 0 }
4957 * s'_i = { 3/8, 4/8, 1/8, 0 }
4958 *
4959 * We can then compute the difference in effective weight by using:
4960 *
4961 * dw_i = S * (s'_i - s_i) (3)
4962 *
4963 * Where 'S' is the group weight as seen by its parent.
4964 *
4965 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4966 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4967 * 4/7) times the weight of the group.
4968 */
4969 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4970 {
4971 struct sched_entity *se = tg->se[cpu];
4972
4973 if (!tg->parent) /* the trivial, non-cgroup case */
4974 return wl;
4975
4976 for_each_sched_entity(se) {
4977 struct cfs_rq *cfs_rq = se->my_q;
4978 long W, w = cfs_rq_load_avg(cfs_rq);
4979
4980 tg = cfs_rq->tg;
4981
4982 /*
4983 * W = @wg + \Sum rw_j
4984 */
4985 W = wg + atomic_long_read(&tg->load_avg);
4986
4987 /* Ensure \Sum rw_j >= rw_i */
4988 W -= cfs_rq->tg_load_avg_contrib;
4989 W += w;
4990
4991 /*
4992 * w = rw_i + @wl
4993 */
4994 w += wl;
4995
4996 /*
4997 * wl = S * s'_i; see (2)
4998 */
4999 if (W > 0 && w < W)
5000 wl = (w * (long)tg->shares) / W;
5001 else
5002 wl = tg->shares;
5003
5004 /*
5005 * Per the above, wl is the new se->load.weight value; since
5006 * those are clipped to [MIN_SHARES, ...) do so now. See
5007 * calc_cfs_shares().
5008 */
5009 if (wl < MIN_SHARES)
5010 wl = MIN_SHARES;
5011
5012 /*
5013 * wl = dw_i = S * (s'_i - s_i); see (3)
5014 */
5015 wl -= se->avg.load_avg;
5016
5017 /*
5018 * Recursively apply this logic to all parent groups to compute
5019 * the final effective load change on the root group. Since
5020 * only the @tg group gets extra weight, all parent groups can
5021 * only redistribute existing shares. @wl is the shift in shares
5022 * resulting from this level per the above.
5023 */
5024 wg = 0;
5025 }
5026
5027 return wl;
5028 }
5029 #else
5030
5031 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5032 {
5033 return wl;
5034 }
5035
5036 #endif
5037
5038 static void record_wakee(struct task_struct *p)
5039 {
5040 /*
5041 * Only decay a single time; tasks that have less then 1 wakeup per
5042 * jiffy will not have built up many flips.
5043 */
5044 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5045 current->wakee_flips >>= 1;
5046 current->wakee_flip_decay_ts = jiffies;
5047 }
5048
5049 if (current->last_wakee != p) {
5050 current->last_wakee = p;
5051 current->wakee_flips++;
5052 }
5053 }
5054
5055 /*
5056 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5057 *
5058 * A waker of many should wake a different task than the one last awakened
5059 * at a frequency roughly N times higher than one of its wakees.
5060 *
5061 * In order to determine whether we should let the load spread vs consolidating
5062 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5063 * partner, and a factor of lls_size higher frequency in the other.
5064 *
5065 * With both conditions met, we can be relatively sure that the relationship is
5066 * non-monogamous, with partner count exceeding socket size.
5067 *
5068 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5069 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5070 * socket size.
5071 */
5072 static int wake_wide(struct task_struct *p)
5073 {
5074 unsigned int master = current->wakee_flips;
5075 unsigned int slave = p->wakee_flips;
5076 int factor = this_cpu_read(sd_llc_size);
5077
5078 if (master < slave)
5079 swap(master, slave);
5080 if (slave < factor || master < slave * factor)
5081 return 0;
5082 return 1;
5083 }
5084
5085 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5086 {
5087 s64 this_load, load;
5088 s64 this_eff_load, prev_eff_load;
5089 int idx, this_cpu, prev_cpu;
5090 struct task_group *tg;
5091 unsigned long weight;
5092 int balanced;
5093
5094 idx = sd->wake_idx;
5095 this_cpu = smp_processor_id();
5096 prev_cpu = task_cpu(p);
5097 load = source_load(prev_cpu, idx);
5098 this_load = target_load(this_cpu, idx);
5099
5100 /*
5101 * If sync wakeup then subtract the (maximum possible)
5102 * effect of the currently running task from the load
5103 * of the current CPU:
5104 */
5105 if (sync) {
5106 tg = task_group(current);
5107 weight = current->se.avg.load_avg;
5108
5109 this_load += effective_load(tg, this_cpu, -weight, -weight);
5110 load += effective_load(tg, prev_cpu, 0, -weight);
5111 }
5112
5113 tg = task_group(p);
5114 weight = p->se.avg.load_avg;
5115
5116 /*
5117 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5118 * due to the sync cause above having dropped this_load to 0, we'll
5119 * always have an imbalance, but there's really nothing you can do
5120 * about that, so that's good too.
5121 *
5122 * Otherwise check if either cpus are near enough in load to allow this
5123 * task to be woken on this_cpu.
5124 */
5125 this_eff_load = 100;
5126 this_eff_load *= capacity_of(prev_cpu);
5127
5128 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5129 prev_eff_load *= capacity_of(this_cpu);
5130
5131 if (this_load > 0) {
5132 this_eff_load *= this_load +
5133 effective_load(tg, this_cpu, weight, weight);
5134
5135 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5136 }
5137
5138 balanced = this_eff_load <= prev_eff_load;
5139
5140 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5141
5142 if (!balanced)
5143 return 0;
5144
5145 schedstat_inc(sd, ttwu_move_affine);
5146 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5147
5148 return 1;
5149 }
5150
5151 /*
5152 * find_idlest_group finds and returns the least busy CPU group within the
5153 * domain.
5154 */
5155 static struct sched_group *
5156 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5157 int this_cpu, int sd_flag)
5158 {
5159 struct sched_group *idlest = NULL, *group = sd->groups;
5160 unsigned long min_load = ULONG_MAX, this_load = 0;
5161 int load_idx = sd->forkexec_idx;
5162 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5163
5164 if (sd_flag & SD_BALANCE_WAKE)
5165 load_idx = sd->wake_idx;
5166
5167 do {
5168 unsigned long load, avg_load;
5169 int local_group;
5170 int i;
5171
5172 /* Skip over this group if it has no CPUs allowed */
5173 if (!cpumask_intersects(sched_group_cpus(group),
5174 tsk_cpus_allowed(p)))
5175 continue;
5176
5177 local_group = cpumask_test_cpu(this_cpu,
5178 sched_group_cpus(group));
5179
5180 /* Tally up the load of all CPUs in the group */
5181 avg_load = 0;
5182
5183 for_each_cpu(i, sched_group_cpus(group)) {
5184 /* Bias balancing toward cpus of our domain */
5185 if (local_group)
5186 load = source_load(i, load_idx);
5187 else
5188 load = target_load(i, load_idx);
5189
5190 avg_load += load;
5191 }
5192
5193 /* Adjust by relative CPU capacity of the group */
5194 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5195
5196 if (local_group) {
5197 this_load = avg_load;
5198 } else if (avg_load < min_load) {
5199 min_load = avg_load;
5200 idlest = group;
5201 }
5202 } while (group = group->next, group != sd->groups);
5203
5204 if (!idlest || 100*this_load < imbalance*min_load)
5205 return NULL;
5206 return idlest;
5207 }
5208
5209 /*
5210 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5211 */
5212 static int
5213 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5214 {
5215 unsigned long load, min_load = ULONG_MAX;
5216 unsigned int min_exit_latency = UINT_MAX;
5217 u64 latest_idle_timestamp = 0;
5218 int least_loaded_cpu = this_cpu;
5219 int shallowest_idle_cpu = -1;
5220 int i;
5221
5222 /* Traverse only the allowed CPUs */
5223 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5224 if (idle_cpu(i)) {
5225 struct rq *rq = cpu_rq(i);
5226 struct cpuidle_state *idle = idle_get_state(rq);
5227 if (idle && idle->exit_latency < min_exit_latency) {
5228 /*
5229 * We give priority to a CPU whose idle state
5230 * has the smallest exit latency irrespective
5231 * of any idle timestamp.
5232 */
5233 min_exit_latency = idle->exit_latency;
5234 latest_idle_timestamp = rq->idle_stamp;
5235 shallowest_idle_cpu = i;
5236 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5237 rq->idle_stamp > latest_idle_timestamp) {
5238 /*
5239 * If equal or no active idle state, then
5240 * the most recently idled CPU might have
5241 * a warmer cache.
5242 */
5243 latest_idle_timestamp = rq->idle_stamp;
5244 shallowest_idle_cpu = i;
5245 }
5246 } else if (shallowest_idle_cpu == -1) {
5247 load = weighted_cpuload(i);
5248 if (load < min_load || (load == min_load && i == this_cpu)) {
5249 min_load = load;
5250 least_loaded_cpu = i;
5251 }
5252 }
5253 }
5254
5255 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5256 }
5257
5258 /*
5259 * Try and locate an idle CPU in the sched_domain.
5260 */
5261 static int select_idle_sibling(struct task_struct *p, int target)
5262 {
5263 struct sched_domain *sd;
5264 struct sched_group *sg;
5265 int i = task_cpu(p);
5266
5267 if (idle_cpu(target))
5268 return target;
5269
5270 /*
5271 * If the prevous cpu is cache affine and idle, don't be stupid.
5272 */
5273 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5274 return i;
5275
5276 /*
5277 * Otherwise, iterate the domains and find an eligible idle cpu.
5278 *
5279 * A completely idle sched group at higher domains is more
5280 * desirable than an idle group at a lower level, because lower
5281 * domains have smaller groups and usually share hardware
5282 * resources which causes tasks to contend on them, e.g. x86
5283 * hyperthread siblings in the lowest domain (SMT) can contend
5284 * on the shared cpu pipeline.
5285 *
5286 * However, while we prefer idle groups at higher domains
5287 * finding an idle cpu at the lowest domain is still better than
5288 * returning 'target', which we've already established, isn't
5289 * idle.
5290 */
5291 sd = rcu_dereference(per_cpu(sd_llc, target));
5292 for_each_lower_domain(sd) {
5293 sg = sd->groups;
5294 do {
5295 if (!cpumask_intersects(sched_group_cpus(sg),
5296 tsk_cpus_allowed(p)))
5297 goto next;
5298
5299 /* Ensure the entire group is idle */
5300 for_each_cpu(i, sched_group_cpus(sg)) {
5301 if (i == target || !idle_cpu(i))
5302 goto next;
5303 }
5304
5305 /*
5306 * It doesn't matter which cpu we pick, the
5307 * whole group is idle.
5308 */
5309 target = cpumask_first_and(sched_group_cpus(sg),
5310 tsk_cpus_allowed(p));
5311 goto done;
5312 next:
5313 sg = sg->next;
5314 } while (sg != sd->groups);
5315 }
5316 done:
5317 return target;
5318 }
5319
5320 /*
5321 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5322 * tasks. The unit of the return value must be the one of capacity so we can
5323 * compare the utilization with the capacity of the CPU that is available for
5324 * CFS task (ie cpu_capacity).
5325 *
5326 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5327 * recent utilization of currently non-runnable tasks on a CPU. It represents
5328 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5329 * capacity_orig is the cpu_capacity available at the highest frequency
5330 * (arch_scale_freq_capacity()).
5331 * The utilization of a CPU converges towards a sum equal to or less than the
5332 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5333 * the running time on this CPU scaled by capacity_curr.
5334 *
5335 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5336 * higher than capacity_orig because of unfortunate rounding in
5337 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5338 * the average stabilizes with the new running time. We need to check that the
5339 * utilization stays within the range of [0..capacity_orig] and cap it if
5340 * necessary. Without utilization capping, a group could be seen as overloaded
5341 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5342 * available capacity. We allow utilization to overshoot capacity_curr (but not
5343 * capacity_orig) as it useful for predicting the capacity required after task
5344 * migrations (scheduler-driven DVFS).
5345 */
5346 static int cpu_util(int cpu)
5347 {
5348 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5349 unsigned long capacity = capacity_orig_of(cpu);
5350
5351 return (util >= capacity) ? capacity : util;
5352 }
5353
5354 /*
5355 * select_task_rq_fair: Select target runqueue for the waking task in domains
5356 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5357 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5358 *
5359 * Balances load by selecting the idlest cpu in the idlest group, or under
5360 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5361 *
5362 * Returns the target cpu number.
5363 *
5364 * preempt must be disabled.
5365 */
5366 static int
5367 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5368 {
5369 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5370 int cpu = smp_processor_id();
5371 int new_cpu = prev_cpu;
5372 int want_affine = 0;
5373 int sync = wake_flags & WF_SYNC;
5374
5375 if (sd_flag & SD_BALANCE_WAKE) {
5376 record_wakee(p);
5377 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5378 }
5379
5380 rcu_read_lock();
5381 for_each_domain(cpu, tmp) {
5382 if (!(tmp->flags & SD_LOAD_BALANCE))
5383 break;
5384
5385 /*
5386 * If both cpu and prev_cpu are part of this domain,
5387 * cpu is a valid SD_WAKE_AFFINE target.
5388 */
5389 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5390 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5391 affine_sd = tmp;
5392 break;
5393 }
5394
5395 if (tmp->flags & sd_flag)
5396 sd = tmp;
5397 else if (!want_affine)
5398 break;
5399 }
5400
5401 if (affine_sd) {
5402 sd = NULL; /* Prefer wake_affine over balance flags */
5403 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5404 new_cpu = cpu;
5405 }
5406
5407 if (!sd) {
5408 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5409 new_cpu = select_idle_sibling(p, new_cpu);
5410
5411 } else while (sd) {
5412 struct sched_group *group;
5413 int weight;
5414
5415 if (!(sd->flags & sd_flag)) {
5416 sd = sd->child;
5417 continue;
5418 }
5419
5420 group = find_idlest_group(sd, p, cpu, sd_flag);
5421 if (!group) {
5422 sd = sd->child;
5423 continue;
5424 }
5425
5426 new_cpu = find_idlest_cpu(group, p, cpu);
5427 if (new_cpu == -1 || new_cpu == cpu) {
5428 /* Now try balancing at a lower domain level of cpu */
5429 sd = sd->child;
5430 continue;
5431 }
5432
5433 /* Now try balancing at a lower domain level of new_cpu */
5434 cpu = new_cpu;
5435 weight = sd->span_weight;
5436 sd = NULL;
5437 for_each_domain(cpu, tmp) {
5438 if (weight <= tmp->span_weight)
5439 break;
5440 if (tmp->flags & sd_flag)
5441 sd = tmp;
5442 }
5443 /* while loop will break here if sd == NULL */
5444 }
5445 rcu_read_unlock();
5446
5447 return new_cpu;
5448 }
5449
5450 /*
5451 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5452 * cfs_rq_of(p) references at time of call are still valid and identify the
5453 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5454 */
5455 static void migrate_task_rq_fair(struct task_struct *p)
5456 {
5457 /*
5458 * As blocked tasks retain absolute vruntime the migration needs to
5459 * deal with this by subtracting the old and adding the new
5460 * min_vruntime -- the latter is done by enqueue_entity() when placing
5461 * the task on the new runqueue.
5462 */
5463 if (p->state == TASK_WAKING) {
5464 struct sched_entity *se = &p->se;
5465 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5466 u64 min_vruntime;
5467
5468 #ifndef CONFIG_64BIT
5469 u64 min_vruntime_copy;
5470
5471 do {
5472 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5473 smp_rmb();
5474 min_vruntime = cfs_rq->min_vruntime;
5475 } while (min_vruntime != min_vruntime_copy);
5476 #else
5477 min_vruntime = cfs_rq->min_vruntime;
5478 #endif
5479
5480 se->vruntime -= min_vruntime;
5481 }
5482
5483 /*
5484 * We are supposed to update the task to "current" time, then its up to date
5485 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5486 * what current time is, so simply throw away the out-of-date time. This
5487 * will result in the wakee task is less decayed, but giving the wakee more
5488 * load sounds not bad.
5489 */
5490 remove_entity_load_avg(&p->se);
5491
5492 /* Tell new CPU we are migrated */
5493 p->se.avg.last_update_time = 0;
5494
5495 /* We have migrated, no longer consider this task hot */
5496 p->se.exec_start = 0;
5497 }
5498
5499 static void task_dead_fair(struct task_struct *p)
5500 {
5501 remove_entity_load_avg(&p->se);
5502 }
5503 #endif /* CONFIG_SMP */
5504
5505 static unsigned long
5506 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5507 {
5508 unsigned long gran = sysctl_sched_wakeup_granularity;
5509
5510 /*
5511 * Since its curr running now, convert the gran from real-time
5512 * to virtual-time in his units.
5513 *
5514 * By using 'se' instead of 'curr' we penalize light tasks, so
5515 * they get preempted easier. That is, if 'se' < 'curr' then
5516 * the resulting gran will be larger, therefore penalizing the
5517 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5518 * be smaller, again penalizing the lighter task.
5519 *
5520 * This is especially important for buddies when the leftmost
5521 * task is higher priority than the buddy.
5522 */
5523 return calc_delta_fair(gran, se);
5524 }
5525
5526 /*
5527 * Should 'se' preempt 'curr'.
5528 *
5529 * |s1
5530 * |s2
5531 * |s3
5532 * g
5533 * |<--->|c
5534 *
5535 * w(c, s1) = -1
5536 * w(c, s2) = 0
5537 * w(c, s3) = 1
5538 *
5539 */
5540 static int
5541 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5542 {
5543 s64 gran, vdiff = curr->vruntime - se->vruntime;
5544
5545 if (vdiff <= 0)
5546 return -1;
5547
5548 gran = wakeup_gran(curr, se);
5549 if (vdiff > gran)
5550 return 1;
5551
5552 return 0;
5553 }
5554
5555 static void set_last_buddy(struct sched_entity *se)
5556 {
5557 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5558 return;
5559
5560 for_each_sched_entity(se)
5561 cfs_rq_of(se)->last = se;
5562 }
5563
5564 static void set_next_buddy(struct sched_entity *se)
5565 {
5566 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5567 return;
5568
5569 for_each_sched_entity(se)
5570 cfs_rq_of(se)->next = se;
5571 }
5572
5573 static void set_skip_buddy(struct sched_entity *se)
5574 {
5575 for_each_sched_entity(se)
5576 cfs_rq_of(se)->skip = se;
5577 }
5578
5579 /*
5580 * Preempt the current task with a newly woken task if needed:
5581 */
5582 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5583 {
5584 struct task_struct *curr = rq->curr;
5585 struct sched_entity *se = &curr->se, *pse = &p->se;
5586 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5587 int scale = cfs_rq->nr_running >= sched_nr_latency;
5588 int next_buddy_marked = 0;
5589
5590 if (unlikely(se == pse))
5591 return;
5592
5593 /*
5594 * This is possible from callers such as attach_tasks(), in which we
5595 * unconditionally check_prempt_curr() after an enqueue (which may have
5596 * lead to a throttle). This both saves work and prevents false
5597 * next-buddy nomination below.
5598 */
5599 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5600 return;
5601
5602 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5603 set_next_buddy(pse);
5604 next_buddy_marked = 1;
5605 }
5606
5607 /*
5608 * We can come here with TIF_NEED_RESCHED already set from new task
5609 * wake up path.
5610 *
5611 * Note: this also catches the edge-case of curr being in a throttled
5612 * group (e.g. via set_curr_task), since update_curr() (in the
5613 * enqueue of curr) will have resulted in resched being set. This
5614 * prevents us from potentially nominating it as a false LAST_BUDDY
5615 * below.
5616 */
5617 if (test_tsk_need_resched(curr))
5618 return;
5619
5620 /* Idle tasks are by definition preempted by non-idle tasks. */
5621 if (unlikely(curr->policy == SCHED_IDLE) &&
5622 likely(p->policy != SCHED_IDLE))
5623 goto preempt;
5624
5625 /*
5626 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5627 * is driven by the tick):
5628 */
5629 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5630 return;
5631
5632 find_matching_se(&se, &pse);
5633 update_curr(cfs_rq_of(se));
5634 BUG_ON(!pse);
5635 if (wakeup_preempt_entity(se, pse) == 1) {
5636 /*
5637 * Bias pick_next to pick the sched entity that is
5638 * triggering this preemption.
5639 */
5640 if (!next_buddy_marked)
5641 set_next_buddy(pse);
5642 goto preempt;
5643 }
5644
5645 return;
5646
5647 preempt:
5648 resched_curr(rq);
5649 /*
5650 * Only set the backward buddy when the current task is still
5651 * on the rq. This can happen when a wakeup gets interleaved
5652 * with schedule on the ->pre_schedule() or idle_balance()
5653 * point, either of which can * drop the rq lock.
5654 *
5655 * Also, during early boot the idle thread is in the fair class,
5656 * for obvious reasons its a bad idea to schedule back to it.
5657 */
5658 if (unlikely(!se->on_rq || curr == rq->idle))
5659 return;
5660
5661 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5662 set_last_buddy(se);
5663 }
5664
5665 static struct task_struct *
5666 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5667 {
5668 struct cfs_rq *cfs_rq = &rq->cfs;
5669 struct sched_entity *se;
5670 struct task_struct *p;
5671 int new_tasks;
5672
5673 again:
5674 #ifdef CONFIG_FAIR_GROUP_SCHED
5675 if (!cfs_rq->nr_running)
5676 goto idle;
5677
5678 if (prev->sched_class != &fair_sched_class)
5679 goto simple;
5680
5681 /*
5682 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5683 * likely that a next task is from the same cgroup as the current.
5684 *
5685 * Therefore attempt to avoid putting and setting the entire cgroup
5686 * hierarchy, only change the part that actually changes.
5687 */
5688
5689 do {
5690 struct sched_entity *curr = cfs_rq->curr;
5691
5692 /*
5693 * Since we got here without doing put_prev_entity() we also
5694 * have to consider cfs_rq->curr. If it is still a runnable
5695 * entity, update_curr() will update its vruntime, otherwise
5696 * forget we've ever seen it.
5697 */
5698 if (curr) {
5699 if (curr->on_rq)
5700 update_curr(cfs_rq);
5701 else
5702 curr = NULL;
5703
5704 /*
5705 * This call to check_cfs_rq_runtime() will do the
5706 * throttle and dequeue its entity in the parent(s).
5707 * Therefore the 'simple' nr_running test will indeed
5708 * be correct.
5709 */
5710 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5711 goto simple;
5712 }
5713
5714 se = pick_next_entity(cfs_rq, curr);
5715 cfs_rq = group_cfs_rq(se);
5716 } while (cfs_rq);
5717
5718 p = task_of(se);
5719
5720 /*
5721 * Since we haven't yet done put_prev_entity and if the selected task
5722 * is a different task than we started out with, try and touch the
5723 * least amount of cfs_rqs.
5724 */
5725 if (prev != p) {
5726 struct sched_entity *pse = &prev->se;
5727
5728 while (!(cfs_rq = is_same_group(se, pse))) {
5729 int se_depth = se->depth;
5730 int pse_depth = pse->depth;
5731
5732 if (se_depth <= pse_depth) {
5733 put_prev_entity(cfs_rq_of(pse), pse);
5734 pse = parent_entity(pse);
5735 }
5736 if (se_depth >= pse_depth) {
5737 set_next_entity(cfs_rq_of(se), se);
5738 se = parent_entity(se);
5739 }
5740 }
5741
5742 put_prev_entity(cfs_rq, pse);
5743 set_next_entity(cfs_rq, se);
5744 }
5745
5746 if (hrtick_enabled(rq))
5747 hrtick_start_fair(rq, p);
5748
5749 return p;
5750 simple:
5751 cfs_rq = &rq->cfs;
5752 #endif
5753
5754 if (!cfs_rq->nr_running)
5755 goto idle;
5756
5757 put_prev_task(rq, prev);
5758
5759 do {
5760 se = pick_next_entity(cfs_rq, NULL);
5761 set_next_entity(cfs_rq, se);
5762 cfs_rq = group_cfs_rq(se);
5763 } while (cfs_rq);
5764
5765 p = task_of(se);
5766
5767 if (hrtick_enabled(rq))
5768 hrtick_start_fair(rq, p);
5769
5770 return p;
5771
5772 idle:
5773 /*
5774 * This is OK, because current is on_cpu, which avoids it being picked
5775 * for load-balance and preemption/IRQs are still disabled avoiding
5776 * further scheduler activity on it and we're being very careful to
5777 * re-start the picking loop.
5778 */
5779 lockdep_unpin_lock(&rq->lock, cookie);
5780 new_tasks = idle_balance(rq);
5781 lockdep_repin_lock(&rq->lock, cookie);
5782 /*
5783 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5784 * possible for any higher priority task to appear. In that case we
5785 * must re-start the pick_next_entity() loop.
5786 */
5787 if (new_tasks < 0)
5788 return RETRY_TASK;
5789
5790 if (new_tasks > 0)
5791 goto again;
5792
5793 return NULL;
5794 }
5795
5796 /*
5797 * Account for a descheduled task:
5798 */
5799 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5800 {
5801 struct sched_entity *se = &prev->se;
5802 struct cfs_rq *cfs_rq;
5803
5804 for_each_sched_entity(se) {
5805 cfs_rq = cfs_rq_of(se);
5806 put_prev_entity(cfs_rq, se);
5807 }
5808 }
5809
5810 /*
5811 * sched_yield() is very simple
5812 *
5813 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5814 */
5815 static void yield_task_fair(struct rq *rq)
5816 {
5817 struct task_struct *curr = rq->curr;
5818 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5819 struct sched_entity *se = &curr->se;
5820
5821 /*
5822 * Are we the only task in the tree?
5823 */
5824 if (unlikely(rq->nr_running == 1))
5825 return;
5826
5827 clear_buddies(cfs_rq, se);
5828
5829 if (curr->policy != SCHED_BATCH) {
5830 update_rq_clock(rq);
5831 /*
5832 * Update run-time statistics of the 'current'.
5833 */
5834 update_curr(cfs_rq);
5835 /*
5836 * Tell update_rq_clock() that we've just updated,
5837 * so we don't do microscopic update in schedule()
5838 * and double the fastpath cost.
5839 */
5840 rq_clock_skip_update(rq, true);
5841 }
5842
5843 set_skip_buddy(se);
5844 }
5845
5846 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5847 {
5848 struct sched_entity *se = &p->se;
5849
5850 /* throttled hierarchies are not runnable */
5851 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5852 return false;
5853
5854 /* Tell the scheduler that we'd really like pse to run next. */
5855 set_next_buddy(se);
5856
5857 yield_task_fair(rq);
5858
5859 return true;
5860 }
5861
5862 #ifdef CONFIG_SMP
5863 /**************************************************
5864 * Fair scheduling class load-balancing methods.
5865 *
5866 * BASICS
5867 *
5868 * The purpose of load-balancing is to achieve the same basic fairness the
5869 * per-cpu scheduler provides, namely provide a proportional amount of compute
5870 * time to each task. This is expressed in the following equation:
5871 *
5872 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5873 *
5874 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5875 * W_i,0 is defined as:
5876 *
5877 * W_i,0 = \Sum_j w_i,j (2)
5878 *
5879 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5880 * is derived from the nice value as per sched_prio_to_weight[].
5881 *
5882 * The weight average is an exponential decay average of the instantaneous
5883 * weight:
5884 *
5885 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5886 *
5887 * C_i is the compute capacity of cpu i, typically it is the
5888 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5889 * can also include other factors [XXX].
5890 *
5891 * To achieve this balance we define a measure of imbalance which follows
5892 * directly from (1):
5893 *
5894 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5895 *
5896 * We them move tasks around to minimize the imbalance. In the continuous
5897 * function space it is obvious this converges, in the discrete case we get
5898 * a few fun cases generally called infeasible weight scenarios.
5899 *
5900 * [XXX expand on:
5901 * - infeasible weights;
5902 * - local vs global optima in the discrete case. ]
5903 *
5904 *
5905 * SCHED DOMAINS
5906 *
5907 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5908 * for all i,j solution, we create a tree of cpus that follows the hardware
5909 * topology where each level pairs two lower groups (or better). This results
5910 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5911 * tree to only the first of the previous level and we decrease the frequency
5912 * of load-balance at each level inv. proportional to the number of cpus in
5913 * the groups.
5914 *
5915 * This yields:
5916 *
5917 * log_2 n 1 n
5918 * \Sum { --- * --- * 2^i } = O(n) (5)
5919 * i = 0 2^i 2^i
5920 * `- size of each group
5921 * | | `- number of cpus doing load-balance
5922 * | `- freq
5923 * `- sum over all levels
5924 *
5925 * Coupled with a limit on how many tasks we can migrate every balance pass,
5926 * this makes (5) the runtime complexity of the balancer.
5927 *
5928 * An important property here is that each CPU is still (indirectly) connected
5929 * to every other cpu in at most O(log n) steps:
5930 *
5931 * The adjacency matrix of the resulting graph is given by:
5932 *
5933 * log_2 n
5934 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5935 * k = 0
5936 *
5937 * And you'll find that:
5938 *
5939 * A^(log_2 n)_i,j != 0 for all i,j (7)
5940 *
5941 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5942 * The task movement gives a factor of O(m), giving a convergence complexity
5943 * of:
5944 *
5945 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5946 *
5947 *
5948 * WORK CONSERVING
5949 *
5950 * In order to avoid CPUs going idle while there's still work to do, new idle
5951 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5952 * tree itself instead of relying on other CPUs to bring it work.
5953 *
5954 * This adds some complexity to both (5) and (8) but it reduces the total idle
5955 * time.
5956 *
5957 * [XXX more?]
5958 *
5959 *
5960 * CGROUPS
5961 *
5962 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5963 *
5964 * s_k,i
5965 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5966 * S_k
5967 *
5968 * Where
5969 *
5970 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5971 *
5972 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5973 *
5974 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5975 * property.
5976 *
5977 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5978 * rewrite all of this once again.]
5979 */
5980
5981 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5982
5983 enum fbq_type { regular, remote, all };
5984
5985 #define LBF_ALL_PINNED 0x01
5986 #define LBF_NEED_BREAK 0x02
5987 #define LBF_DST_PINNED 0x04
5988 #define LBF_SOME_PINNED 0x08
5989
5990 struct lb_env {
5991 struct sched_domain *sd;
5992
5993 struct rq *src_rq;
5994 int src_cpu;
5995
5996 int dst_cpu;
5997 struct rq *dst_rq;
5998
5999 struct cpumask *dst_grpmask;
6000 int new_dst_cpu;
6001 enum cpu_idle_type idle;
6002 long imbalance;
6003 /* The set of CPUs under consideration for load-balancing */
6004 struct cpumask *cpus;
6005
6006 unsigned int flags;
6007
6008 unsigned int loop;
6009 unsigned int loop_break;
6010 unsigned int loop_max;
6011
6012 enum fbq_type fbq_type;
6013 struct list_head tasks;
6014 };
6015
6016 /*
6017 * Is this task likely cache-hot:
6018 */
6019 static int task_hot(struct task_struct *p, struct lb_env *env)
6020 {
6021 s64 delta;
6022
6023 lockdep_assert_held(&env->src_rq->lock);
6024
6025 if (p->sched_class != &fair_sched_class)
6026 return 0;
6027
6028 if (unlikely(p->policy == SCHED_IDLE))
6029 return 0;
6030
6031 /*
6032 * Buddy candidates are cache hot:
6033 */
6034 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6035 (&p->se == cfs_rq_of(&p->se)->next ||
6036 &p->se == cfs_rq_of(&p->se)->last))
6037 return 1;
6038
6039 if (sysctl_sched_migration_cost == -1)
6040 return 1;
6041 if (sysctl_sched_migration_cost == 0)
6042 return 0;
6043
6044 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6045
6046 return delta < (s64)sysctl_sched_migration_cost;
6047 }
6048
6049 #ifdef CONFIG_NUMA_BALANCING
6050 /*
6051 * Returns 1, if task migration degrades locality
6052 * Returns 0, if task migration improves locality i.e migration preferred.
6053 * Returns -1, if task migration is not affected by locality.
6054 */
6055 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6056 {
6057 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6058 unsigned long src_faults, dst_faults;
6059 int src_nid, dst_nid;
6060
6061 if (!static_branch_likely(&sched_numa_balancing))
6062 return -1;
6063
6064 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6065 return -1;
6066
6067 src_nid = cpu_to_node(env->src_cpu);
6068 dst_nid = cpu_to_node(env->dst_cpu);
6069
6070 if (src_nid == dst_nid)
6071 return -1;
6072
6073 /* Migrating away from the preferred node is always bad. */
6074 if (src_nid == p->numa_preferred_nid) {
6075 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6076 return 1;
6077 else
6078 return -1;
6079 }
6080
6081 /* Encourage migration to the preferred node. */
6082 if (dst_nid == p->numa_preferred_nid)
6083 return 0;
6084
6085 if (numa_group) {
6086 src_faults = group_faults(p, src_nid);
6087 dst_faults = group_faults(p, dst_nid);
6088 } else {
6089 src_faults = task_faults(p, src_nid);
6090 dst_faults = task_faults(p, dst_nid);
6091 }
6092
6093 return dst_faults < src_faults;
6094 }
6095
6096 #else
6097 static inline int migrate_degrades_locality(struct task_struct *p,
6098 struct lb_env *env)
6099 {
6100 return -1;
6101 }
6102 #endif
6103
6104 /*
6105 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6106 */
6107 static
6108 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6109 {
6110 int tsk_cache_hot;
6111
6112 lockdep_assert_held(&env->src_rq->lock);
6113
6114 /*
6115 * We do not migrate tasks that are:
6116 * 1) throttled_lb_pair, or
6117 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6118 * 3) running (obviously), or
6119 * 4) are cache-hot on their current CPU.
6120 */
6121 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6122 return 0;
6123
6124 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6125 int cpu;
6126
6127 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6128
6129 env->flags |= LBF_SOME_PINNED;
6130
6131 /*
6132 * Remember if this task can be migrated to any other cpu in
6133 * our sched_group. We may want to revisit it if we couldn't
6134 * meet load balance goals by pulling other tasks on src_cpu.
6135 *
6136 * Also avoid computing new_dst_cpu if we have already computed
6137 * one in current iteration.
6138 */
6139 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6140 return 0;
6141
6142 /* Prevent to re-select dst_cpu via env's cpus */
6143 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6144 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6145 env->flags |= LBF_DST_PINNED;
6146 env->new_dst_cpu = cpu;
6147 break;
6148 }
6149 }
6150
6151 return 0;
6152 }
6153
6154 /* Record that we found atleast one task that could run on dst_cpu */
6155 env->flags &= ~LBF_ALL_PINNED;
6156
6157 if (task_running(env->src_rq, p)) {
6158 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6159 return 0;
6160 }
6161
6162 /*
6163 * Aggressive migration if:
6164 * 1) destination numa is preferred
6165 * 2) task is cache cold, or
6166 * 3) too many balance attempts have failed.
6167 */
6168 tsk_cache_hot = migrate_degrades_locality(p, env);
6169 if (tsk_cache_hot == -1)
6170 tsk_cache_hot = task_hot(p, env);
6171
6172 if (tsk_cache_hot <= 0 ||
6173 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6174 if (tsk_cache_hot == 1) {
6175 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6176 schedstat_inc(p, se.statistics.nr_forced_migrations);
6177 }
6178 return 1;
6179 }
6180
6181 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6182 return 0;
6183 }
6184
6185 /*
6186 * detach_task() -- detach the task for the migration specified in env
6187 */
6188 static void detach_task(struct task_struct *p, struct lb_env *env)
6189 {
6190 lockdep_assert_held(&env->src_rq->lock);
6191
6192 p->on_rq = TASK_ON_RQ_MIGRATING;
6193 deactivate_task(env->src_rq, p, 0);
6194 set_task_cpu(p, env->dst_cpu);
6195 }
6196
6197 /*
6198 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6199 * part of active balancing operations within "domain".
6200 *
6201 * Returns a task if successful and NULL otherwise.
6202 */
6203 static struct task_struct *detach_one_task(struct lb_env *env)
6204 {
6205 struct task_struct *p, *n;
6206
6207 lockdep_assert_held(&env->src_rq->lock);
6208
6209 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6210 if (!can_migrate_task(p, env))
6211 continue;
6212
6213 detach_task(p, env);
6214
6215 /*
6216 * Right now, this is only the second place where
6217 * lb_gained[env->idle] is updated (other is detach_tasks)
6218 * so we can safely collect stats here rather than
6219 * inside detach_tasks().
6220 */
6221 schedstat_inc(env->sd, lb_gained[env->idle]);
6222 return p;
6223 }
6224 return NULL;
6225 }
6226
6227 static const unsigned int sched_nr_migrate_break = 32;
6228
6229 /*
6230 * detach_tasks() -- tries to detach up to imbalance weighted load from
6231 * busiest_rq, as part of a balancing operation within domain "sd".
6232 *
6233 * Returns number of detached tasks if successful and 0 otherwise.
6234 */
6235 static int detach_tasks(struct lb_env *env)
6236 {
6237 struct list_head *tasks = &env->src_rq->cfs_tasks;
6238 struct task_struct *p;
6239 unsigned long load;
6240 int detached = 0;
6241
6242 lockdep_assert_held(&env->src_rq->lock);
6243
6244 if (env->imbalance <= 0)
6245 return 0;
6246
6247 while (!list_empty(tasks)) {
6248 /*
6249 * We don't want to steal all, otherwise we may be treated likewise,
6250 * which could at worst lead to a livelock crash.
6251 */
6252 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6253 break;
6254
6255 p = list_first_entry(tasks, struct task_struct, se.group_node);
6256
6257 env->loop++;
6258 /* We've more or less seen every task there is, call it quits */
6259 if (env->loop > env->loop_max)
6260 break;
6261
6262 /* take a breather every nr_migrate tasks */
6263 if (env->loop > env->loop_break) {
6264 env->loop_break += sched_nr_migrate_break;
6265 env->flags |= LBF_NEED_BREAK;
6266 break;
6267 }
6268
6269 if (!can_migrate_task(p, env))
6270 goto next;
6271
6272 load = task_h_load(p);
6273
6274 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6275 goto next;
6276
6277 if ((load / 2) > env->imbalance)
6278 goto next;
6279
6280 detach_task(p, env);
6281 list_add(&p->se.group_node, &env->tasks);
6282
6283 detached++;
6284 env->imbalance -= load;
6285
6286 #ifdef CONFIG_PREEMPT
6287 /*
6288 * NEWIDLE balancing is a source of latency, so preemptible
6289 * kernels will stop after the first task is detached to minimize
6290 * the critical section.
6291 */
6292 if (env->idle == CPU_NEWLY_IDLE)
6293 break;
6294 #endif
6295
6296 /*
6297 * We only want to steal up to the prescribed amount of
6298 * weighted load.
6299 */
6300 if (env->imbalance <= 0)
6301 break;
6302
6303 continue;
6304 next:
6305 list_move_tail(&p->se.group_node, tasks);
6306 }
6307
6308 /*
6309 * Right now, this is one of only two places we collect this stat
6310 * so we can safely collect detach_one_task() stats here rather
6311 * than inside detach_one_task().
6312 */
6313 schedstat_add(env->sd, lb_gained[env->idle], detached);
6314
6315 return detached;
6316 }
6317
6318 /*
6319 * attach_task() -- attach the task detached by detach_task() to its new rq.
6320 */
6321 static void attach_task(struct rq *rq, struct task_struct *p)
6322 {
6323 lockdep_assert_held(&rq->lock);
6324
6325 BUG_ON(task_rq(p) != rq);
6326 activate_task(rq, p, 0);
6327 p->on_rq = TASK_ON_RQ_QUEUED;
6328 check_preempt_curr(rq, p, 0);
6329 }
6330
6331 /*
6332 * attach_one_task() -- attaches the task returned from detach_one_task() to
6333 * its new rq.
6334 */
6335 static void attach_one_task(struct rq *rq, struct task_struct *p)
6336 {
6337 raw_spin_lock(&rq->lock);
6338 attach_task(rq, p);
6339 raw_spin_unlock(&rq->lock);
6340 }
6341
6342 /*
6343 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6344 * new rq.
6345 */
6346 static void attach_tasks(struct lb_env *env)
6347 {
6348 struct list_head *tasks = &env->tasks;
6349 struct task_struct *p;
6350
6351 raw_spin_lock(&env->dst_rq->lock);
6352
6353 while (!list_empty(tasks)) {
6354 p = list_first_entry(tasks, struct task_struct, se.group_node);
6355 list_del_init(&p->se.group_node);
6356
6357 attach_task(env->dst_rq, p);
6358 }
6359
6360 raw_spin_unlock(&env->dst_rq->lock);
6361 }
6362
6363 #ifdef CONFIG_FAIR_GROUP_SCHED
6364 static void update_blocked_averages(int cpu)
6365 {
6366 struct rq *rq = cpu_rq(cpu);
6367 struct cfs_rq *cfs_rq;
6368 unsigned long flags;
6369
6370 raw_spin_lock_irqsave(&rq->lock, flags);
6371 update_rq_clock(rq);
6372
6373 /*
6374 * Iterates the task_group tree in a bottom up fashion, see
6375 * list_add_leaf_cfs_rq() for details.
6376 */
6377 for_each_leaf_cfs_rq(rq, cfs_rq) {
6378 /* throttled entities do not contribute to load */
6379 if (throttled_hierarchy(cfs_rq))
6380 continue;
6381
6382 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6383 update_tg_load_avg(cfs_rq, 0);
6384 }
6385 raw_spin_unlock_irqrestore(&rq->lock, flags);
6386 }
6387
6388 /*
6389 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6390 * This needs to be done in a top-down fashion because the load of a child
6391 * group is a fraction of its parents load.
6392 */
6393 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6394 {
6395 struct rq *rq = rq_of(cfs_rq);
6396 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6397 unsigned long now = jiffies;
6398 unsigned long load;
6399
6400 if (cfs_rq->last_h_load_update == now)
6401 return;
6402
6403 cfs_rq->h_load_next = NULL;
6404 for_each_sched_entity(se) {
6405 cfs_rq = cfs_rq_of(se);
6406 cfs_rq->h_load_next = se;
6407 if (cfs_rq->last_h_load_update == now)
6408 break;
6409 }
6410
6411 if (!se) {
6412 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6413 cfs_rq->last_h_load_update = now;
6414 }
6415
6416 while ((se = cfs_rq->h_load_next) != NULL) {
6417 load = cfs_rq->h_load;
6418 load = div64_ul(load * se->avg.load_avg,
6419 cfs_rq_load_avg(cfs_rq) + 1);
6420 cfs_rq = group_cfs_rq(se);
6421 cfs_rq->h_load = load;
6422 cfs_rq->last_h_load_update = now;
6423 }
6424 }
6425
6426 static unsigned long task_h_load(struct task_struct *p)
6427 {
6428 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6429
6430 update_cfs_rq_h_load(cfs_rq);
6431 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6432 cfs_rq_load_avg(cfs_rq) + 1);
6433 }
6434 #else
6435 static inline void update_blocked_averages(int cpu)
6436 {
6437 struct rq *rq = cpu_rq(cpu);
6438 struct cfs_rq *cfs_rq = &rq->cfs;
6439 unsigned long flags;
6440
6441 raw_spin_lock_irqsave(&rq->lock, flags);
6442 update_rq_clock(rq);
6443 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6444 raw_spin_unlock_irqrestore(&rq->lock, flags);
6445 }
6446
6447 static unsigned long task_h_load(struct task_struct *p)
6448 {
6449 return p->se.avg.load_avg;
6450 }
6451 #endif
6452
6453 /********** Helpers for find_busiest_group ************************/
6454
6455 enum group_type {
6456 group_other = 0,
6457 group_imbalanced,
6458 group_overloaded,
6459 };
6460
6461 /*
6462 * sg_lb_stats - stats of a sched_group required for load_balancing
6463 */
6464 struct sg_lb_stats {
6465 unsigned long avg_load; /*Avg load across the CPUs of the group */
6466 unsigned long group_load; /* Total load over the CPUs of the group */
6467 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6468 unsigned long load_per_task;
6469 unsigned long group_capacity;
6470 unsigned long group_util; /* Total utilization of the group */
6471 unsigned int sum_nr_running; /* Nr tasks running in the group */
6472 unsigned int idle_cpus;
6473 unsigned int group_weight;
6474 enum group_type group_type;
6475 int group_no_capacity;
6476 #ifdef CONFIG_NUMA_BALANCING
6477 unsigned int nr_numa_running;
6478 unsigned int nr_preferred_running;
6479 #endif
6480 };
6481
6482 /*
6483 * sd_lb_stats - Structure to store the statistics of a sched_domain
6484 * during load balancing.
6485 */
6486 struct sd_lb_stats {
6487 struct sched_group *busiest; /* Busiest group in this sd */
6488 struct sched_group *local; /* Local group in this sd */
6489 unsigned long total_load; /* Total load of all groups in sd */
6490 unsigned long total_capacity; /* Total capacity of all groups in sd */
6491 unsigned long avg_load; /* Average load across all groups in sd */
6492
6493 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6494 struct sg_lb_stats local_stat; /* Statistics of the local group */
6495 };
6496
6497 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6498 {
6499 /*
6500 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6501 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6502 * We must however clear busiest_stat::avg_load because
6503 * update_sd_pick_busiest() reads this before assignment.
6504 */
6505 *sds = (struct sd_lb_stats){
6506 .busiest = NULL,
6507 .local = NULL,
6508 .total_load = 0UL,
6509 .total_capacity = 0UL,
6510 .busiest_stat = {
6511 .avg_load = 0UL,
6512 .sum_nr_running = 0,
6513 .group_type = group_other,
6514 },
6515 };
6516 }
6517
6518 /**
6519 * get_sd_load_idx - Obtain the load index for a given sched domain.
6520 * @sd: The sched_domain whose load_idx is to be obtained.
6521 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6522 *
6523 * Return: The load index.
6524 */
6525 static inline int get_sd_load_idx(struct sched_domain *sd,
6526 enum cpu_idle_type idle)
6527 {
6528 int load_idx;
6529
6530 switch (idle) {
6531 case CPU_NOT_IDLE:
6532 load_idx = sd->busy_idx;
6533 break;
6534
6535 case CPU_NEWLY_IDLE:
6536 load_idx = sd->newidle_idx;
6537 break;
6538 default:
6539 load_idx = sd->idle_idx;
6540 break;
6541 }
6542
6543 return load_idx;
6544 }
6545
6546 static unsigned long scale_rt_capacity(int cpu)
6547 {
6548 struct rq *rq = cpu_rq(cpu);
6549 u64 total, used, age_stamp, avg;
6550 s64 delta;
6551
6552 /*
6553 * Since we're reading these variables without serialization make sure
6554 * we read them once before doing sanity checks on them.
6555 */
6556 age_stamp = READ_ONCE(rq->age_stamp);
6557 avg = READ_ONCE(rq->rt_avg);
6558 delta = __rq_clock_broken(rq) - age_stamp;
6559
6560 if (unlikely(delta < 0))
6561 delta = 0;
6562
6563 total = sched_avg_period() + delta;
6564
6565 used = div_u64(avg, total);
6566
6567 if (likely(used < SCHED_CAPACITY_SCALE))
6568 return SCHED_CAPACITY_SCALE - used;
6569
6570 return 1;
6571 }
6572
6573 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6574 {
6575 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6576 struct sched_group *sdg = sd->groups;
6577
6578 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6579
6580 capacity *= scale_rt_capacity(cpu);
6581 capacity >>= SCHED_CAPACITY_SHIFT;
6582
6583 if (!capacity)
6584 capacity = 1;
6585
6586 cpu_rq(cpu)->cpu_capacity = capacity;
6587 sdg->sgc->capacity = capacity;
6588 }
6589
6590 void update_group_capacity(struct sched_domain *sd, int cpu)
6591 {
6592 struct sched_domain *child = sd->child;
6593 struct sched_group *group, *sdg = sd->groups;
6594 unsigned long capacity;
6595 unsigned long interval;
6596
6597 interval = msecs_to_jiffies(sd->balance_interval);
6598 interval = clamp(interval, 1UL, max_load_balance_interval);
6599 sdg->sgc->next_update = jiffies + interval;
6600
6601 if (!child) {
6602 update_cpu_capacity(sd, cpu);
6603 return;
6604 }
6605
6606 capacity = 0;
6607
6608 if (child->flags & SD_OVERLAP) {
6609 /*
6610 * SD_OVERLAP domains cannot assume that child groups
6611 * span the current group.
6612 */
6613
6614 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6615 struct sched_group_capacity *sgc;
6616 struct rq *rq = cpu_rq(cpu);
6617
6618 /*
6619 * build_sched_domains() -> init_sched_groups_capacity()
6620 * gets here before we've attached the domains to the
6621 * runqueues.
6622 *
6623 * Use capacity_of(), which is set irrespective of domains
6624 * in update_cpu_capacity().
6625 *
6626 * This avoids capacity from being 0 and
6627 * causing divide-by-zero issues on boot.
6628 */
6629 if (unlikely(!rq->sd)) {
6630 capacity += capacity_of(cpu);
6631 continue;
6632 }
6633
6634 sgc = rq->sd->groups->sgc;
6635 capacity += sgc->capacity;
6636 }
6637 } else {
6638 /*
6639 * !SD_OVERLAP domains can assume that child groups
6640 * span the current group.
6641 */
6642
6643 group = child->groups;
6644 do {
6645 capacity += group->sgc->capacity;
6646 group = group->next;
6647 } while (group != child->groups);
6648 }
6649
6650 sdg->sgc->capacity = capacity;
6651 }
6652
6653 /*
6654 * Check whether the capacity of the rq has been noticeably reduced by side
6655 * activity. The imbalance_pct is used for the threshold.
6656 * Return true is the capacity is reduced
6657 */
6658 static inline int
6659 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6660 {
6661 return ((rq->cpu_capacity * sd->imbalance_pct) <
6662 (rq->cpu_capacity_orig * 100));
6663 }
6664
6665 /*
6666 * Group imbalance indicates (and tries to solve) the problem where balancing
6667 * groups is inadequate due to tsk_cpus_allowed() constraints.
6668 *
6669 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6670 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6671 * Something like:
6672 *
6673 * { 0 1 2 3 } { 4 5 6 7 }
6674 * * * * *
6675 *
6676 * If we were to balance group-wise we'd place two tasks in the first group and
6677 * two tasks in the second group. Clearly this is undesired as it will overload
6678 * cpu 3 and leave one of the cpus in the second group unused.
6679 *
6680 * The current solution to this issue is detecting the skew in the first group
6681 * by noticing the lower domain failed to reach balance and had difficulty
6682 * moving tasks due to affinity constraints.
6683 *
6684 * When this is so detected; this group becomes a candidate for busiest; see
6685 * update_sd_pick_busiest(). And calculate_imbalance() and
6686 * find_busiest_group() avoid some of the usual balance conditions to allow it
6687 * to create an effective group imbalance.
6688 *
6689 * This is a somewhat tricky proposition since the next run might not find the
6690 * group imbalance and decide the groups need to be balanced again. A most
6691 * subtle and fragile situation.
6692 */
6693
6694 static inline int sg_imbalanced(struct sched_group *group)
6695 {
6696 return group->sgc->imbalance;
6697 }
6698
6699 /*
6700 * group_has_capacity returns true if the group has spare capacity that could
6701 * be used by some tasks.
6702 * We consider that a group has spare capacity if the * number of task is
6703 * smaller than the number of CPUs or if the utilization is lower than the
6704 * available capacity for CFS tasks.
6705 * For the latter, we use a threshold to stabilize the state, to take into
6706 * account the variance of the tasks' load and to return true if the available
6707 * capacity in meaningful for the load balancer.
6708 * As an example, an available capacity of 1% can appear but it doesn't make
6709 * any benefit for the load balance.
6710 */
6711 static inline bool
6712 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6713 {
6714 if (sgs->sum_nr_running < sgs->group_weight)
6715 return true;
6716
6717 if ((sgs->group_capacity * 100) >
6718 (sgs->group_util * env->sd->imbalance_pct))
6719 return true;
6720
6721 return false;
6722 }
6723
6724 /*
6725 * group_is_overloaded returns true if the group has more tasks than it can
6726 * handle.
6727 * group_is_overloaded is not equals to !group_has_capacity because a group
6728 * with the exact right number of tasks, has no more spare capacity but is not
6729 * overloaded so both group_has_capacity and group_is_overloaded return
6730 * false.
6731 */
6732 static inline bool
6733 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6734 {
6735 if (sgs->sum_nr_running <= sgs->group_weight)
6736 return false;
6737
6738 if ((sgs->group_capacity * 100) <
6739 (sgs->group_util * env->sd->imbalance_pct))
6740 return true;
6741
6742 return false;
6743 }
6744
6745 static inline enum
6746 group_type group_classify(struct sched_group *group,
6747 struct sg_lb_stats *sgs)
6748 {
6749 if (sgs->group_no_capacity)
6750 return group_overloaded;
6751
6752 if (sg_imbalanced(group))
6753 return group_imbalanced;
6754
6755 return group_other;
6756 }
6757
6758 /**
6759 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6760 * @env: The load balancing environment.
6761 * @group: sched_group whose statistics are to be updated.
6762 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6763 * @local_group: Does group contain this_cpu.
6764 * @sgs: variable to hold the statistics for this group.
6765 * @overload: Indicate more than one runnable task for any CPU.
6766 */
6767 static inline void update_sg_lb_stats(struct lb_env *env,
6768 struct sched_group *group, int load_idx,
6769 int local_group, struct sg_lb_stats *sgs,
6770 bool *overload)
6771 {
6772 unsigned long load;
6773 int i, nr_running;
6774
6775 memset(sgs, 0, sizeof(*sgs));
6776
6777 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6778 struct rq *rq = cpu_rq(i);
6779
6780 /* Bias balancing toward cpus of our domain */
6781 if (local_group)
6782 load = target_load(i, load_idx);
6783 else
6784 load = source_load(i, load_idx);
6785
6786 sgs->group_load += load;
6787 sgs->group_util += cpu_util(i);
6788 sgs->sum_nr_running += rq->cfs.h_nr_running;
6789
6790 nr_running = rq->nr_running;
6791 if (nr_running > 1)
6792 *overload = true;
6793
6794 #ifdef CONFIG_NUMA_BALANCING
6795 sgs->nr_numa_running += rq->nr_numa_running;
6796 sgs->nr_preferred_running += rq->nr_preferred_running;
6797 #endif
6798 sgs->sum_weighted_load += weighted_cpuload(i);
6799 /*
6800 * No need to call idle_cpu() if nr_running is not 0
6801 */
6802 if (!nr_running && idle_cpu(i))
6803 sgs->idle_cpus++;
6804 }
6805
6806 /* Adjust by relative CPU capacity of the group */
6807 sgs->group_capacity = group->sgc->capacity;
6808 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6809
6810 if (sgs->sum_nr_running)
6811 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6812
6813 sgs->group_weight = group->group_weight;
6814
6815 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6816 sgs->group_type = group_classify(group, sgs);
6817 }
6818
6819 /**
6820 * update_sd_pick_busiest - return 1 on busiest group
6821 * @env: The load balancing environment.
6822 * @sds: sched_domain statistics
6823 * @sg: sched_group candidate to be checked for being the busiest
6824 * @sgs: sched_group statistics
6825 *
6826 * Determine if @sg is a busier group than the previously selected
6827 * busiest group.
6828 *
6829 * Return: %true if @sg is a busier group than the previously selected
6830 * busiest group. %false otherwise.
6831 */
6832 static bool update_sd_pick_busiest(struct lb_env *env,
6833 struct sd_lb_stats *sds,
6834 struct sched_group *sg,
6835 struct sg_lb_stats *sgs)
6836 {
6837 struct sg_lb_stats *busiest = &sds->busiest_stat;
6838
6839 if (sgs->group_type > busiest->group_type)
6840 return true;
6841
6842 if (sgs->group_type < busiest->group_type)
6843 return false;
6844
6845 if (sgs->avg_load <= busiest->avg_load)
6846 return false;
6847
6848 /* This is the busiest node in its class. */
6849 if (!(env->sd->flags & SD_ASYM_PACKING))
6850 return true;
6851
6852 /* No ASYM_PACKING if target cpu is already busy */
6853 if (env->idle == CPU_NOT_IDLE)
6854 return true;
6855 /*
6856 * ASYM_PACKING needs to move all the work to the lowest
6857 * numbered CPUs in the group, therefore mark all groups
6858 * higher than ourself as busy.
6859 */
6860 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6861 if (!sds->busiest)
6862 return true;
6863
6864 /* Prefer to move from highest possible cpu's work */
6865 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6866 return true;
6867 }
6868
6869 return false;
6870 }
6871
6872 #ifdef CONFIG_NUMA_BALANCING
6873 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6874 {
6875 if (sgs->sum_nr_running > sgs->nr_numa_running)
6876 return regular;
6877 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6878 return remote;
6879 return all;
6880 }
6881
6882 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6883 {
6884 if (rq->nr_running > rq->nr_numa_running)
6885 return regular;
6886 if (rq->nr_running > rq->nr_preferred_running)
6887 return remote;
6888 return all;
6889 }
6890 #else
6891 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6892 {
6893 return all;
6894 }
6895
6896 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6897 {
6898 return regular;
6899 }
6900 #endif /* CONFIG_NUMA_BALANCING */
6901
6902 /**
6903 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6904 * @env: The load balancing environment.
6905 * @sds: variable to hold the statistics for this sched_domain.
6906 */
6907 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6908 {
6909 struct sched_domain *child = env->sd->child;
6910 struct sched_group *sg = env->sd->groups;
6911 struct sg_lb_stats tmp_sgs;
6912 int load_idx, prefer_sibling = 0;
6913 bool overload = false;
6914
6915 if (child && child->flags & SD_PREFER_SIBLING)
6916 prefer_sibling = 1;
6917
6918 load_idx = get_sd_load_idx(env->sd, env->idle);
6919
6920 do {
6921 struct sg_lb_stats *sgs = &tmp_sgs;
6922 int local_group;
6923
6924 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6925 if (local_group) {
6926 sds->local = sg;
6927 sgs = &sds->local_stat;
6928
6929 if (env->idle != CPU_NEWLY_IDLE ||
6930 time_after_eq(jiffies, sg->sgc->next_update))
6931 update_group_capacity(env->sd, env->dst_cpu);
6932 }
6933
6934 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6935 &overload);
6936
6937 if (local_group)
6938 goto next_group;
6939
6940 /*
6941 * In case the child domain prefers tasks go to siblings
6942 * first, lower the sg capacity so that we'll try
6943 * and move all the excess tasks away. We lower the capacity
6944 * of a group only if the local group has the capacity to fit
6945 * these excess tasks. The extra check prevents the case where
6946 * you always pull from the heaviest group when it is already
6947 * under-utilized (possible with a large weight task outweighs
6948 * the tasks on the system).
6949 */
6950 if (prefer_sibling && sds->local &&
6951 group_has_capacity(env, &sds->local_stat) &&
6952 (sgs->sum_nr_running > 1)) {
6953 sgs->group_no_capacity = 1;
6954 sgs->group_type = group_classify(sg, sgs);
6955 }
6956
6957 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6958 sds->busiest = sg;
6959 sds->busiest_stat = *sgs;
6960 }
6961
6962 next_group:
6963 /* Now, start updating sd_lb_stats */
6964 sds->total_load += sgs->group_load;
6965 sds->total_capacity += sgs->group_capacity;
6966
6967 sg = sg->next;
6968 } while (sg != env->sd->groups);
6969
6970 if (env->sd->flags & SD_NUMA)
6971 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6972
6973 if (!env->sd->parent) {
6974 /* update overload indicator if we are at root domain */
6975 if (env->dst_rq->rd->overload != overload)
6976 env->dst_rq->rd->overload = overload;
6977 }
6978
6979 }
6980
6981 /**
6982 * check_asym_packing - Check to see if the group is packed into the
6983 * sched doman.
6984 *
6985 * This is primarily intended to used at the sibling level. Some
6986 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6987 * case of POWER7, it can move to lower SMT modes only when higher
6988 * threads are idle. When in lower SMT modes, the threads will
6989 * perform better since they share less core resources. Hence when we
6990 * have idle threads, we want them to be the higher ones.
6991 *
6992 * This packing function is run on idle threads. It checks to see if
6993 * the busiest CPU in this domain (core in the P7 case) has a higher
6994 * CPU number than the packing function is being run on. Here we are
6995 * assuming lower CPU number will be equivalent to lower a SMT thread
6996 * number.
6997 *
6998 * Return: 1 when packing is required and a task should be moved to
6999 * this CPU. The amount of the imbalance is returned in *imbalance.
7000 *
7001 * @env: The load balancing environment.
7002 * @sds: Statistics of the sched_domain which is to be packed
7003 */
7004 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7005 {
7006 int busiest_cpu;
7007
7008 if (!(env->sd->flags & SD_ASYM_PACKING))
7009 return 0;
7010
7011 if (env->idle == CPU_NOT_IDLE)
7012 return 0;
7013
7014 if (!sds->busiest)
7015 return 0;
7016
7017 busiest_cpu = group_first_cpu(sds->busiest);
7018 if (env->dst_cpu > busiest_cpu)
7019 return 0;
7020
7021 env->imbalance = DIV_ROUND_CLOSEST(
7022 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7023 SCHED_CAPACITY_SCALE);
7024
7025 return 1;
7026 }
7027
7028 /**
7029 * fix_small_imbalance - Calculate the minor imbalance that exists
7030 * amongst the groups of a sched_domain, during
7031 * load balancing.
7032 * @env: The load balancing environment.
7033 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7034 */
7035 static inline
7036 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7037 {
7038 unsigned long tmp, capa_now = 0, capa_move = 0;
7039 unsigned int imbn = 2;
7040 unsigned long scaled_busy_load_per_task;
7041 struct sg_lb_stats *local, *busiest;
7042
7043 local = &sds->local_stat;
7044 busiest = &sds->busiest_stat;
7045
7046 if (!local->sum_nr_running)
7047 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7048 else if (busiest->load_per_task > local->load_per_task)
7049 imbn = 1;
7050
7051 scaled_busy_load_per_task =
7052 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7053 busiest->group_capacity;
7054
7055 if (busiest->avg_load + scaled_busy_load_per_task >=
7056 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7057 env->imbalance = busiest->load_per_task;
7058 return;
7059 }
7060
7061 /*
7062 * OK, we don't have enough imbalance to justify moving tasks,
7063 * however we may be able to increase total CPU capacity used by
7064 * moving them.
7065 */
7066
7067 capa_now += busiest->group_capacity *
7068 min(busiest->load_per_task, busiest->avg_load);
7069 capa_now += local->group_capacity *
7070 min(local->load_per_task, local->avg_load);
7071 capa_now /= SCHED_CAPACITY_SCALE;
7072
7073 /* Amount of load we'd subtract */
7074 if (busiest->avg_load > scaled_busy_load_per_task) {
7075 capa_move += busiest->group_capacity *
7076 min(busiest->load_per_task,
7077 busiest->avg_load - scaled_busy_load_per_task);
7078 }
7079
7080 /* Amount of load we'd add */
7081 if (busiest->avg_load * busiest->group_capacity <
7082 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7083 tmp = (busiest->avg_load * busiest->group_capacity) /
7084 local->group_capacity;
7085 } else {
7086 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7087 local->group_capacity;
7088 }
7089 capa_move += local->group_capacity *
7090 min(local->load_per_task, local->avg_load + tmp);
7091 capa_move /= SCHED_CAPACITY_SCALE;
7092
7093 /* Move if we gain throughput */
7094 if (capa_move > capa_now)
7095 env->imbalance = busiest->load_per_task;
7096 }
7097
7098 /**
7099 * calculate_imbalance - Calculate the amount of imbalance present within the
7100 * groups of a given sched_domain during load balance.
7101 * @env: load balance environment
7102 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7103 */
7104 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7105 {
7106 unsigned long max_pull, load_above_capacity = ~0UL;
7107 struct sg_lb_stats *local, *busiest;
7108
7109 local = &sds->local_stat;
7110 busiest = &sds->busiest_stat;
7111
7112 if (busiest->group_type == group_imbalanced) {
7113 /*
7114 * In the group_imb case we cannot rely on group-wide averages
7115 * to ensure cpu-load equilibrium, look at wider averages. XXX
7116 */
7117 busiest->load_per_task =
7118 min(busiest->load_per_task, sds->avg_load);
7119 }
7120
7121 /*
7122 * Avg load of busiest sg can be less and avg load of local sg can
7123 * be greater than avg load across all sgs of sd because avg load
7124 * factors in sg capacity and sgs with smaller group_type are
7125 * skipped when updating the busiest sg:
7126 */
7127 if (busiest->avg_load <= sds->avg_load ||
7128 local->avg_load >= sds->avg_load) {
7129 env->imbalance = 0;
7130 return fix_small_imbalance(env, sds);
7131 }
7132
7133 /*
7134 * If there aren't any idle cpus, avoid creating some.
7135 */
7136 if (busiest->group_type == group_overloaded &&
7137 local->group_type == group_overloaded) {
7138 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7139 if (load_above_capacity > busiest->group_capacity) {
7140 load_above_capacity -= busiest->group_capacity;
7141 load_above_capacity *= NICE_0_LOAD;
7142 load_above_capacity /= busiest->group_capacity;
7143 } else
7144 load_above_capacity = ~0UL;
7145 }
7146
7147 /*
7148 * We're trying to get all the cpus to the average_load, so we don't
7149 * want to push ourselves above the average load, nor do we wish to
7150 * reduce the max loaded cpu below the average load. At the same time,
7151 * we also don't want to reduce the group load below the group
7152 * capacity. Thus we look for the minimum possible imbalance.
7153 */
7154 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7155
7156 /* How much load to actually move to equalise the imbalance */
7157 env->imbalance = min(
7158 max_pull * busiest->group_capacity,
7159 (sds->avg_load - local->avg_load) * local->group_capacity
7160 ) / SCHED_CAPACITY_SCALE;
7161
7162 /*
7163 * if *imbalance is less than the average load per runnable task
7164 * there is no guarantee that any tasks will be moved so we'll have
7165 * a think about bumping its value to force at least one task to be
7166 * moved
7167 */
7168 if (env->imbalance < busiest->load_per_task)
7169 return fix_small_imbalance(env, sds);
7170 }
7171
7172 /******* find_busiest_group() helpers end here *********************/
7173
7174 /**
7175 * find_busiest_group - Returns the busiest group within the sched_domain
7176 * if there is an imbalance.
7177 *
7178 * Also calculates the amount of weighted load which should be moved
7179 * to restore balance.
7180 *
7181 * @env: The load balancing environment.
7182 *
7183 * Return: - The busiest group if imbalance exists.
7184 */
7185 static struct sched_group *find_busiest_group(struct lb_env *env)
7186 {
7187 struct sg_lb_stats *local, *busiest;
7188 struct sd_lb_stats sds;
7189
7190 init_sd_lb_stats(&sds);
7191
7192 /*
7193 * Compute the various statistics relavent for load balancing at
7194 * this level.
7195 */
7196 update_sd_lb_stats(env, &sds);
7197 local = &sds.local_stat;
7198 busiest = &sds.busiest_stat;
7199
7200 /* ASYM feature bypasses nice load balance check */
7201 if (check_asym_packing(env, &sds))
7202 return sds.busiest;
7203
7204 /* There is no busy sibling group to pull tasks from */
7205 if (!sds.busiest || busiest->sum_nr_running == 0)
7206 goto out_balanced;
7207
7208 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7209 / sds.total_capacity;
7210
7211 /*
7212 * If the busiest group is imbalanced the below checks don't
7213 * work because they assume all things are equal, which typically
7214 * isn't true due to cpus_allowed constraints and the like.
7215 */
7216 if (busiest->group_type == group_imbalanced)
7217 goto force_balance;
7218
7219 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7220 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7221 busiest->group_no_capacity)
7222 goto force_balance;
7223
7224 /*
7225 * If the local group is busier than the selected busiest group
7226 * don't try and pull any tasks.
7227 */
7228 if (local->avg_load >= busiest->avg_load)
7229 goto out_balanced;
7230
7231 /*
7232 * Don't pull any tasks if this group is already above the domain
7233 * average load.
7234 */
7235 if (local->avg_load >= sds.avg_load)
7236 goto out_balanced;
7237
7238 if (env->idle == CPU_IDLE) {
7239 /*
7240 * This cpu is idle. If the busiest group is not overloaded
7241 * and there is no imbalance between this and busiest group
7242 * wrt idle cpus, it is balanced. The imbalance becomes
7243 * significant if the diff is greater than 1 otherwise we
7244 * might end up to just move the imbalance on another group
7245 */
7246 if ((busiest->group_type != group_overloaded) &&
7247 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7248 goto out_balanced;
7249 } else {
7250 /*
7251 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7252 * imbalance_pct to be conservative.
7253 */
7254 if (100 * busiest->avg_load <=
7255 env->sd->imbalance_pct * local->avg_load)
7256 goto out_balanced;
7257 }
7258
7259 force_balance:
7260 /* Looks like there is an imbalance. Compute it */
7261 calculate_imbalance(env, &sds);
7262 return sds.busiest;
7263
7264 out_balanced:
7265 env->imbalance = 0;
7266 return NULL;
7267 }
7268
7269 /*
7270 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7271 */
7272 static struct rq *find_busiest_queue(struct lb_env *env,
7273 struct sched_group *group)
7274 {
7275 struct rq *busiest = NULL, *rq;
7276 unsigned long busiest_load = 0, busiest_capacity = 1;
7277 int i;
7278
7279 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7280 unsigned long capacity, wl;
7281 enum fbq_type rt;
7282
7283 rq = cpu_rq(i);
7284 rt = fbq_classify_rq(rq);
7285
7286 /*
7287 * We classify groups/runqueues into three groups:
7288 * - regular: there are !numa tasks
7289 * - remote: there are numa tasks that run on the 'wrong' node
7290 * - all: there is no distinction
7291 *
7292 * In order to avoid migrating ideally placed numa tasks,
7293 * ignore those when there's better options.
7294 *
7295 * If we ignore the actual busiest queue to migrate another
7296 * task, the next balance pass can still reduce the busiest
7297 * queue by moving tasks around inside the node.
7298 *
7299 * If we cannot move enough load due to this classification
7300 * the next pass will adjust the group classification and
7301 * allow migration of more tasks.
7302 *
7303 * Both cases only affect the total convergence complexity.
7304 */
7305 if (rt > env->fbq_type)
7306 continue;
7307
7308 capacity = capacity_of(i);
7309
7310 wl = weighted_cpuload(i);
7311
7312 /*
7313 * When comparing with imbalance, use weighted_cpuload()
7314 * which is not scaled with the cpu capacity.
7315 */
7316
7317 if (rq->nr_running == 1 && wl > env->imbalance &&
7318 !check_cpu_capacity(rq, env->sd))
7319 continue;
7320
7321 /*
7322 * For the load comparisons with the other cpu's, consider
7323 * the weighted_cpuload() scaled with the cpu capacity, so
7324 * that the load can be moved away from the cpu that is
7325 * potentially running at a lower capacity.
7326 *
7327 * Thus we're looking for max(wl_i / capacity_i), crosswise
7328 * multiplication to rid ourselves of the division works out
7329 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7330 * our previous maximum.
7331 */
7332 if (wl * busiest_capacity > busiest_load * capacity) {
7333 busiest_load = wl;
7334 busiest_capacity = capacity;
7335 busiest = rq;
7336 }
7337 }
7338
7339 return busiest;
7340 }
7341
7342 /*
7343 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7344 * so long as it is large enough.
7345 */
7346 #define MAX_PINNED_INTERVAL 512
7347
7348 /* Working cpumask for load_balance and load_balance_newidle. */
7349 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7350
7351 static int need_active_balance(struct lb_env *env)
7352 {
7353 struct sched_domain *sd = env->sd;
7354
7355 if (env->idle == CPU_NEWLY_IDLE) {
7356
7357 /*
7358 * ASYM_PACKING needs to force migrate tasks from busy but
7359 * higher numbered CPUs in order to pack all tasks in the
7360 * lowest numbered CPUs.
7361 */
7362 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7363 return 1;
7364 }
7365
7366 /*
7367 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7368 * It's worth migrating the task if the src_cpu's capacity is reduced
7369 * because of other sched_class or IRQs if more capacity stays
7370 * available on dst_cpu.
7371 */
7372 if ((env->idle != CPU_NOT_IDLE) &&
7373 (env->src_rq->cfs.h_nr_running == 1)) {
7374 if ((check_cpu_capacity(env->src_rq, sd)) &&
7375 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7376 return 1;
7377 }
7378
7379 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7380 }
7381
7382 static int active_load_balance_cpu_stop(void *data);
7383
7384 static int should_we_balance(struct lb_env *env)
7385 {
7386 struct sched_group *sg = env->sd->groups;
7387 struct cpumask *sg_cpus, *sg_mask;
7388 int cpu, balance_cpu = -1;
7389
7390 /*
7391 * In the newly idle case, we will allow all the cpu's
7392 * to do the newly idle load balance.
7393 */
7394 if (env->idle == CPU_NEWLY_IDLE)
7395 return 1;
7396
7397 sg_cpus = sched_group_cpus(sg);
7398 sg_mask = sched_group_mask(sg);
7399 /* Try to find first idle cpu */
7400 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7401 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7402 continue;
7403
7404 balance_cpu = cpu;
7405 break;
7406 }
7407
7408 if (balance_cpu == -1)
7409 balance_cpu = group_balance_cpu(sg);
7410
7411 /*
7412 * First idle cpu or the first cpu(busiest) in this sched group
7413 * is eligible for doing load balancing at this and above domains.
7414 */
7415 return balance_cpu == env->dst_cpu;
7416 }
7417
7418 /*
7419 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7420 * tasks if there is an imbalance.
7421 */
7422 static int load_balance(int this_cpu, struct rq *this_rq,
7423 struct sched_domain *sd, enum cpu_idle_type idle,
7424 int *continue_balancing)
7425 {
7426 int ld_moved, cur_ld_moved, active_balance = 0;
7427 struct sched_domain *sd_parent = sd->parent;
7428 struct sched_group *group;
7429 struct rq *busiest;
7430 unsigned long flags;
7431 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7432
7433 struct lb_env env = {
7434 .sd = sd,
7435 .dst_cpu = this_cpu,
7436 .dst_rq = this_rq,
7437 .dst_grpmask = sched_group_cpus(sd->groups),
7438 .idle = idle,
7439 .loop_break = sched_nr_migrate_break,
7440 .cpus = cpus,
7441 .fbq_type = all,
7442 .tasks = LIST_HEAD_INIT(env.tasks),
7443 };
7444
7445 /*
7446 * For NEWLY_IDLE load_balancing, we don't need to consider
7447 * other cpus in our group
7448 */
7449 if (idle == CPU_NEWLY_IDLE)
7450 env.dst_grpmask = NULL;
7451
7452 cpumask_copy(cpus, cpu_active_mask);
7453
7454 schedstat_inc(sd, lb_count[idle]);
7455
7456 redo:
7457 if (!should_we_balance(&env)) {
7458 *continue_balancing = 0;
7459 goto out_balanced;
7460 }
7461
7462 group = find_busiest_group(&env);
7463 if (!group) {
7464 schedstat_inc(sd, lb_nobusyg[idle]);
7465 goto out_balanced;
7466 }
7467
7468 busiest = find_busiest_queue(&env, group);
7469 if (!busiest) {
7470 schedstat_inc(sd, lb_nobusyq[idle]);
7471 goto out_balanced;
7472 }
7473
7474 BUG_ON(busiest == env.dst_rq);
7475
7476 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7477
7478 env.src_cpu = busiest->cpu;
7479 env.src_rq = busiest;
7480
7481 ld_moved = 0;
7482 if (busiest->nr_running > 1) {
7483 /*
7484 * Attempt to move tasks. If find_busiest_group has found
7485 * an imbalance but busiest->nr_running <= 1, the group is
7486 * still unbalanced. ld_moved simply stays zero, so it is
7487 * correctly treated as an imbalance.
7488 */
7489 env.flags |= LBF_ALL_PINNED;
7490 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7491
7492 more_balance:
7493 raw_spin_lock_irqsave(&busiest->lock, flags);
7494
7495 /*
7496 * cur_ld_moved - load moved in current iteration
7497 * ld_moved - cumulative load moved across iterations
7498 */
7499 cur_ld_moved = detach_tasks(&env);
7500
7501 /*
7502 * We've detached some tasks from busiest_rq. Every
7503 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7504 * unlock busiest->lock, and we are able to be sure
7505 * that nobody can manipulate the tasks in parallel.
7506 * See task_rq_lock() family for the details.
7507 */
7508
7509 raw_spin_unlock(&busiest->lock);
7510
7511 if (cur_ld_moved) {
7512 attach_tasks(&env);
7513 ld_moved += cur_ld_moved;
7514 }
7515
7516 local_irq_restore(flags);
7517
7518 if (env.flags & LBF_NEED_BREAK) {
7519 env.flags &= ~LBF_NEED_BREAK;
7520 goto more_balance;
7521 }
7522
7523 /*
7524 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7525 * us and move them to an alternate dst_cpu in our sched_group
7526 * where they can run. The upper limit on how many times we
7527 * iterate on same src_cpu is dependent on number of cpus in our
7528 * sched_group.
7529 *
7530 * This changes load balance semantics a bit on who can move
7531 * load to a given_cpu. In addition to the given_cpu itself
7532 * (or a ilb_cpu acting on its behalf where given_cpu is
7533 * nohz-idle), we now have balance_cpu in a position to move
7534 * load to given_cpu. In rare situations, this may cause
7535 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7536 * _independently_ and at _same_ time to move some load to
7537 * given_cpu) causing exceess load to be moved to given_cpu.
7538 * This however should not happen so much in practice and
7539 * moreover subsequent load balance cycles should correct the
7540 * excess load moved.
7541 */
7542 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7543
7544 /* Prevent to re-select dst_cpu via env's cpus */
7545 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7546
7547 env.dst_rq = cpu_rq(env.new_dst_cpu);
7548 env.dst_cpu = env.new_dst_cpu;
7549 env.flags &= ~LBF_DST_PINNED;
7550 env.loop = 0;
7551 env.loop_break = sched_nr_migrate_break;
7552
7553 /*
7554 * Go back to "more_balance" rather than "redo" since we
7555 * need to continue with same src_cpu.
7556 */
7557 goto more_balance;
7558 }
7559
7560 /*
7561 * We failed to reach balance because of affinity.
7562 */
7563 if (sd_parent) {
7564 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7565
7566 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7567 *group_imbalance = 1;
7568 }
7569
7570 /* All tasks on this runqueue were pinned by CPU affinity */
7571 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7572 cpumask_clear_cpu(cpu_of(busiest), cpus);
7573 if (!cpumask_empty(cpus)) {
7574 env.loop = 0;
7575 env.loop_break = sched_nr_migrate_break;
7576 goto redo;
7577 }
7578 goto out_all_pinned;
7579 }
7580 }
7581
7582 if (!ld_moved) {
7583 schedstat_inc(sd, lb_failed[idle]);
7584 /*
7585 * Increment the failure counter only on periodic balance.
7586 * We do not want newidle balance, which can be very
7587 * frequent, pollute the failure counter causing
7588 * excessive cache_hot migrations and active balances.
7589 */
7590 if (idle != CPU_NEWLY_IDLE)
7591 sd->nr_balance_failed++;
7592
7593 if (need_active_balance(&env)) {
7594 raw_spin_lock_irqsave(&busiest->lock, flags);
7595
7596 /* don't kick the active_load_balance_cpu_stop,
7597 * if the curr task on busiest cpu can't be
7598 * moved to this_cpu
7599 */
7600 if (!cpumask_test_cpu(this_cpu,
7601 tsk_cpus_allowed(busiest->curr))) {
7602 raw_spin_unlock_irqrestore(&busiest->lock,
7603 flags);
7604 env.flags |= LBF_ALL_PINNED;
7605 goto out_one_pinned;
7606 }
7607
7608 /*
7609 * ->active_balance synchronizes accesses to
7610 * ->active_balance_work. Once set, it's cleared
7611 * only after active load balance is finished.
7612 */
7613 if (!busiest->active_balance) {
7614 busiest->active_balance = 1;
7615 busiest->push_cpu = this_cpu;
7616 active_balance = 1;
7617 }
7618 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7619
7620 if (active_balance) {
7621 stop_one_cpu_nowait(cpu_of(busiest),
7622 active_load_balance_cpu_stop, busiest,
7623 &busiest->active_balance_work);
7624 }
7625
7626 /* We've kicked active balancing, force task migration. */
7627 sd->nr_balance_failed = sd->cache_nice_tries+1;
7628 }
7629 } else
7630 sd->nr_balance_failed = 0;
7631
7632 if (likely(!active_balance)) {
7633 /* We were unbalanced, so reset the balancing interval */
7634 sd->balance_interval = sd->min_interval;
7635 } else {
7636 /*
7637 * If we've begun active balancing, start to back off. This
7638 * case may not be covered by the all_pinned logic if there
7639 * is only 1 task on the busy runqueue (because we don't call
7640 * detach_tasks).
7641 */
7642 if (sd->balance_interval < sd->max_interval)
7643 sd->balance_interval *= 2;
7644 }
7645
7646 goto out;
7647
7648 out_balanced:
7649 /*
7650 * We reach balance although we may have faced some affinity
7651 * constraints. Clear the imbalance flag if it was set.
7652 */
7653 if (sd_parent) {
7654 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7655
7656 if (*group_imbalance)
7657 *group_imbalance = 0;
7658 }
7659
7660 out_all_pinned:
7661 /*
7662 * We reach balance because all tasks are pinned at this level so
7663 * we can't migrate them. Let the imbalance flag set so parent level
7664 * can try to migrate them.
7665 */
7666 schedstat_inc(sd, lb_balanced[idle]);
7667
7668 sd->nr_balance_failed = 0;
7669
7670 out_one_pinned:
7671 /* tune up the balancing interval */
7672 if (((env.flags & LBF_ALL_PINNED) &&
7673 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7674 (sd->balance_interval < sd->max_interval))
7675 sd->balance_interval *= 2;
7676
7677 ld_moved = 0;
7678 out:
7679 return ld_moved;
7680 }
7681
7682 static inline unsigned long
7683 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7684 {
7685 unsigned long interval = sd->balance_interval;
7686
7687 if (cpu_busy)
7688 interval *= sd->busy_factor;
7689
7690 /* scale ms to jiffies */
7691 interval = msecs_to_jiffies(interval);
7692 interval = clamp(interval, 1UL, max_load_balance_interval);
7693
7694 return interval;
7695 }
7696
7697 static inline void
7698 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7699 {
7700 unsigned long interval, next;
7701
7702 interval = get_sd_balance_interval(sd, cpu_busy);
7703 next = sd->last_balance + interval;
7704
7705 if (time_after(*next_balance, next))
7706 *next_balance = next;
7707 }
7708
7709 /*
7710 * idle_balance is called by schedule() if this_cpu is about to become
7711 * idle. Attempts to pull tasks from other CPUs.
7712 */
7713 static int idle_balance(struct rq *this_rq)
7714 {
7715 unsigned long next_balance = jiffies + HZ;
7716 int this_cpu = this_rq->cpu;
7717 struct sched_domain *sd;
7718 int pulled_task = 0;
7719 u64 curr_cost = 0;
7720
7721 /*
7722 * We must set idle_stamp _before_ calling idle_balance(), such that we
7723 * measure the duration of idle_balance() as idle time.
7724 */
7725 this_rq->idle_stamp = rq_clock(this_rq);
7726
7727 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7728 !this_rq->rd->overload) {
7729 rcu_read_lock();
7730 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7731 if (sd)
7732 update_next_balance(sd, 0, &next_balance);
7733 rcu_read_unlock();
7734
7735 goto out;
7736 }
7737
7738 raw_spin_unlock(&this_rq->lock);
7739
7740 update_blocked_averages(this_cpu);
7741 rcu_read_lock();
7742 for_each_domain(this_cpu, sd) {
7743 int continue_balancing = 1;
7744 u64 t0, domain_cost;
7745
7746 if (!(sd->flags & SD_LOAD_BALANCE))
7747 continue;
7748
7749 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7750 update_next_balance(sd, 0, &next_balance);
7751 break;
7752 }
7753
7754 if (sd->flags & SD_BALANCE_NEWIDLE) {
7755 t0 = sched_clock_cpu(this_cpu);
7756
7757 pulled_task = load_balance(this_cpu, this_rq,
7758 sd, CPU_NEWLY_IDLE,
7759 &continue_balancing);
7760
7761 domain_cost = sched_clock_cpu(this_cpu) - t0;
7762 if (domain_cost > sd->max_newidle_lb_cost)
7763 sd->max_newidle_lb_cost = domain_cost;
7764
7765 curr_cost += domain_cost;
7766 }
7767
7768 update_next_balance(sd, 0, &next_balance);
7769
7770 /*
7771 * Stop searching for tasks to pull if there are
7772 * now runnable tasks on this rq.
7773 */
7774 if (pulled_task || this_rq->nr_running > 0)
7775 break;
7776 }
7777 rcu_read_unlock();
7778
7779 raw_spin_lock(&this_rq->lock);
7780
7781 if (curr_cost > this_rq->max_idle_balance_cost)
7782 this_rq->max_idle_balance_cost = curr_cost;
7783
7784 /*
7785 * While browsing the domains, we released the rq lock, a task could
7786 * have been enqueued in the meantime. Since we're not going idle,
7787 * pretend we pulled a task.
7788 */
7789 if (this_rq->cfs.h_nr_running && !pulled_task)
7790 pulled_task = 1;
7791
7792 out:
7793 /* Move the next balance forward */
7794 if (time_after(this_rq->next_balance, next_balance))
7795 this_rq->next_balance = next_balance;
7796
7797 /* Is there a task of a high priority class? */
7798 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7799 pulled_task = -1;
7800
7801 if (pulled_task)
7802 this_rq->idle_stamp = 0;
7803
7804 return pulled_task;
7805 }
7806
7807 /*
7808 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7809 * running tasks off the busiest CPU onto idle CPUs. It requires at
7810 * least 1 task to be running on each physical CPU where possible, and
7811 * avoids physical / logical imbalances.
7812 */
7813 static int active_load_balance_cpu_stop(void *data)
7814 {
7815 struct rq *busiest_rq = data;
7816 int busiest_cpu = cpu_of(busiest_rq);
7817 int target_cpu = busiest_rq->push_cpu;
7818 struct rq *target_rq = cpu_rq(target_cpu);
7819 struct sched_domain *sd;
7820 struct task_struct *p = NULL;
7821
7822 raw_spin_lock_irq(&busiest_rq->lock);
7823
7824 /* make sure the requested cpu hasn't gone down in the meantime */
7825 if (unlikely(busiest_cpu != smp_processor_id() ||
7826 !busiest_rq->active_balance))
7827 goto out_unlock;
7828
7829 /* Is there any task to move? */
7830 if (busiest_rq->nr_running <= 1)
7831 goto out_unlock;
7832
7833 /*
7834 * This condition is "impossible", if it occurs
7835 * we need to fix it. Originally reported by
7836 * Bjorn Helgaas on a 128-cpu setup.
7837 */
7838 BUG_ON(busiest_rq == target_rq);
7839
7840 /* Search for an sd spanning us and the target CPU. */
7841 rcu_read_lock();
7842 for_each_domain(target_cpu, sd) {
7843 if ((sd->flags & SD_LOAD_BALANCE) &&
7844 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7845 break;
7846 }
7847
7848 if (likely(sd)) {
7849 struct lb_env env = {
7850 .sd = sd,
7851 .dst_cpu = target_cpu,
7852 .dst_rq = target_rq,
7853 .src_cpu = busiest_rq->cpu,
7854 .src_rq = busiest_rq,
7855 .idle = CPU_IDLE,
7856 };
7857
7858 schedstat_inc(sd, alb_count);
7859
7860 p = detach_one_task(&env);
7861 if (p) {
7862 schedstat_inc(sd, alb_pushed);
7863 /* Active balancing done, reset the failure counter. */
7864 sd->nr_balance_failed = 0;
7865 } else {
7866 schedstat_inc(sd, alb_failed);
7867 }
7868 }
7869 rcu_read_unlock();
7870 out_unlock:
7871 busiest_rq->active_balance = 0;
7872 raw_spin_unlock(&busiest_rq->lock);
7873
7874 if (p)
7875 attach_one_task(target_rq, p);
7876
7877 local_irq_enable();
7878
7879 return 0;
7880 }
7881
7882 static inline int on_null_domain(struct rq *rq)
7883 {
7884 return unlikely(!rcu_dereference_sched(rq->sd));
7885 }
7886
7887 #ifdef CONFIG_NO_HZ_COMMON
7888 /*
7889 * idle load balancing details
7890 * - When one of the busy CPUs notice that there may be an idle rebalancing
7891 * needed, they will kick the idle load balancer, which then does idle
7892 * load balancing for all the idle CPUs.
7893 */
7894 static struct {
7895 cpumask_var_t idle_cpus_mask;
7896 atomic_t nr_cpus;
7897 unsigned long next_balance; /* in jiffy units */
7898 } nohz ____cacheline_aligned;
7899
7900 static inline int find_new_ilb(void)
7901 {
7902 int ilb = cpumask_first(nohz.idle_cpus_mask);
7903
7904 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7905 return ilb;
7906
7907 return nr_cpu_ids;
7908 }
7909
7910 /*
7911 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7912 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7913 * CPU (if there is one).
7914 */
7915 static void nohz_balancer_kick(void)
7916 {
7917 int ilb_cpu;
7918
7919 nohz.next_balance++;
7920
7921 ilb_cpu = find_new_ilb();
7922
7923 if (ilb_cpu >= nr_cpu_ids)
7924 return;
7925
7926 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7927 return;
7928 /*
7929 * Use smp_send_reschedule() instead of resched_cpu().
7930 * This way we generate a sched IPI on the target cpu which
7931 * is idle. And the softirq performing nohz idle load balance
7932 * will be run before returning from the IPI.
7933 */
7934 smp_send_reschedule(ilb_cpu);
7935 return;
7936 }
7937
7938 void nohz_balance_exit_idle(unsigned int cpu)
7939 {
7940 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7941 /*
7942 * Completely isolated CPUs don't ever set, so we must test.
7943 */
7944 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7945 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7946 atomic_dec(&nohz.nr_cpus);
7947 }
7948 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7949 }
7950 }
7951
7952 static inline void set_cpu_sd_state_busy(void)
7953 {
7954 struct sched_domain *sd;
7955 int cpu = smp_processor_id();
7956
7957 rcu_read_lock();
7958 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7959
7960 if (!sd || !sd->nohz_idle)
7961 goto unlock;
7962 sd->nohz_idle = 0;
7963
7964 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7965 unlock:
7966 rcu_read_unlock();
7967 }
7968
7969 void set_cpu_sd_state_idle(void)
7970 {
7971 struct sched_domain *sd;
7972 int cpu = smp_processor_id();
7973
7974 rcu_read_lock();
7975 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7976
7977 if (!sd || sd->nohz_idle)
7978 goto unlock;
7979 sd->nohz_idle = 1;
7980
7981 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7982 unlock:
7983 rcu_read_unlock();
7984 }
7985
7986 /*
7987 * This routine will record that the cpu is going idle with tick stopped.
7988 * This info will be used in performing idle load balancing in the future.
7989 */
7990 void nohz_balance_enter_idle(int cpu)
7991 {
7992 /*
7993 * If this cpu is going down, then nothing needs to be done.
7994 */
7995 if (!cpu_active(cpu))
7996 return;
7997
7998 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7999 return;
8000
8001 /*
8002 * If we're a completely isolated CPU, we don't play.
8003 */
8004 if (on_null_domain(cpu_rq(cpu)))
8005 return;
8006
8007 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8008 atomic_inc(&nohz.nr_cpus);
8009 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8010 }
8011 #endif
8012
8013 static DEFINE_SPINLOCK(balancing);
8014
8015 /*
8016 * Scale the max load_balance interval with the number of CPUs in the system.
8017 * This trades load-balance latency on larger machines for less cross talk.
8018 */
8019 void update_max_interval(void)
8020 {
8021 max_load_balance_interval = HZ*num_online_cpus()/10;
8022 }
8023
8024 /*
8025 * It checks each scheduling domain to see if it is due to be balanced,
8026 * and initiates a balancing operation if so.
8027 *
8028 * Balancing parameters are set up in init_sched_domains.
8029 */
8030 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8031 {
8032 int continue_balancing = 1;
8033 int cpu = rq->cpu;
8034 unsigned long interval;
8035 struct sched_domain *sd;
8036 /* Earliest time when we have to do rebalance again */
8037 unsigned long next_balance = jiffies + 60*HZ;
8038 int update_next_balance = 0;
8039 int need_serialize, need_decay = 0;
8040 u64 max_cost = 0;
8041
8042 update_blocked_averages(cpu);
8043
8044 rcu_read_lock();
8045 for_each_domain(cpu, sd) {
8046 /*
8047 * Decay the newidle max times here because this is a regular
8048 * visit to all the domains. Decay ~1% per second.
8049 */
8050 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8051 sd->max_newidle_lb_cost =
8052 (sd->max_newidle_lb_cost * 253) / 256;
8053 sd->next_decay_max_lb_cost = jiffies + HZ;
8054 need_decay = 1;
8055 }
8056 max_cost += sd->max_newidle_lb_cost;
8057
8058 if (!(sd->flags & SD_LOAD_BALANCE))
8059 continue;
8060
8061 /*
8062 * Stop the load balance at this level. There is another
8063 * CPU in our sched group which is doing load balancing more
8064 * actively.
8065 */
8066 if (!continue_balancing) {
8067 if (need_decay)
8068 continue;
8069 break;
8070 }
8071
8072 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8073
8074 need_serialize = sd->flags & SD_SERIALIZE;
8075 if (need_serialize) {
8076 if (!spin_trylock(&balancing))
8077 goto out;
8078 }
8079
8080 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8081 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8082 /*
8083 * The LBF_DST_PINNED logic could have changed
8084 * env->dst_cpu, so we can't know our idle
8085 * state even if we migrated tasks. Update it.
8086 */
8087 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8088 }
8089 sd->last_balance = jiffies;
8090 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8091 }
8092 if (need_serialize)
8093 spin_unlock(&balancing);
8094 out:
8095 if (time_after(next_balance, sd->last_balance + interval)) {
8096 next_balance = sd->last_balance + interval;
8097 update_next_balance = 1;
8098 }
8099 }
8100 if (need_decay) {
8101 /*
8102 * Ensure the rq-wide value also decays but keep it at a
8103 * reasonable floor to avoid funnies with rq->avg_idle.
8104 */
8105 rq->max_idle_balance_cost =
8106 max((u64)sysctl_sched_migration_cost, max_cost);
8107 }
8108 rcu_read_unlock();
8109
8110 /*
8111 * next_balance will be updated only when there is a need.
8112 * When the cpu is attached to null domain for ex, it will not be
8113 * updated.
8114 */
8115 if (likely(update_next_balance)) {
8116 rq->next_balance = next_balance;
8117
8118 #ifdef CONFIG_NO_HZ_COMMON
8119 /*
8120 * If this CPU has been elected to perform the nohz idle
8121 * balance. Other idle CPUs have already rebalanced with
8122 * nohz_idle_balance() and nohz.next_balance has been
8123 * updated accordingly. This CPU is now running the idle load
8124 * balance for itself and we need to update the
8125 * nohz.next_balance accordingly.
8126 */
8127 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8128 nohz.next_balance = rq->next_balance;
8129 #endif
8130 }
8131 }
8132
8133 #ifdef CONFIG_NO_HZ_COMMON
8134 /*
8135 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8136 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8137 */
8138 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8139 {
8140 int this_cpu = this_rq->cpu;
8141 struct rq *rq;
8142 int balance_cpu;
8143 /* Earliest time when we have to do rebalance again */
8144 unsigned long next_balance = jiffies + 60*HZ;
8145 int update_next_balance = 0;
8146
8147 if (idle != CPU_IDLE ||
8148 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8149 goto end;
8150
8151 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8152 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8153 continue;
8154
8155 /*
8156 * If this cpu gets work to do, stop the load balancing
8157 * work being done for other cpus. Next load
8158 * balancing owner will pick it up.
8159 */
8160 if (need_resched())
8161 break;
8162
8163 rq = cpu_rq(balance_cpu);
8164
8165 /*
8166 * If time for next balance is due,
8167 * do the balance.
8168 */
8169 if (time_after_eq(jiffies, rq->next_balance)) {
8170 raw_spin_lock_irq(&rq->lock);
8171 update_rq_clock(rq);
8172 cpu_load_update_idle(rq);
8173 raw_spin_unlock_irq(&rq->lock);
8174 rebalance_domains(rq, CPU_IDLE);
8175 }
8176
8177 if (time_after(next_balance, rq->next_balance)) {
8178 next_balance = rq->next_balance;
8179 update_next_balance = 1;
8180 }
8181 }
8182
8183 /*
8184 * next_balance will be updated only when there is a need.
8185 * When the CPU is attached to null domain for ex, it will not be
8186 * updated.
8187 */
8188 if (likely(update_next_balance))
8189 nohz.next_balance = next_balance;
8190 end:
8191 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8192 }
8193
8194 /*
8195 * Current heuristic for kicking the idle load balancer in the presence
8196 * of an idle cpu in the system.
8197 * - This rq has more than one task.
8198 * - This rq has at least one CFS task and the capacity of the CPU is
8199 * significantly reduced because of RT tasks or IRQs.
8200 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8201 * multiple busy cpu.
8202 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8203 * domain span are idle.
8204 */
8205 static inline bool nohz_kick_needed(struct rq *rq)
8206 {
8207 unsigned long now = jiffies;
8208 struct sched_domain *sd;
8209 struct sched_group_capacity *sgc;
8210 int nr_busy, cpu = rq->cpu;
8211 bool kick = false;
8212
8213 if (unlikely(rq->idle_balance))
8214 return false;
8215
8216 /*
8217 * We may be recently in ticked or tickless idle mode. At the first
8218 * busy tick after returning from idle, we will update the busy stats.
8219 */
8220 set_cpu_sd_state_busy();
8221 nohz_balance_exit_idle(cpu);
8222
8223 /*
8224 * None are in tickless mode and hence no need for NOHZ idle load
8225 * balancing.
8226 */
8227 if (likely(!atomic_read(&nohz.nr_cpus)))
8228 return false;
8229
8230 if (time_before(now, nohz.next_balance))
8231 return false;
8232
8233 if (rq->nr_running >= 2)
8234 return true;
8235
8236 rcu_read_lock();
8237 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8238 if (sd) {
8239 sgc = sd->groups->sgc;
8240 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8241
8242 if (nr_busy > 1) {
8243 kick = true;
8244 goto unlock;
8245 }
8246
8247 }
8248
8249 sd = rcu_dereference(rq->sd);
8250 if (sd) {
8251 if ((rq->cfs.h_nr_running >= 1) &&
8252 check_cpu_capacity(rq, sd)) {
8253 kick = true;
8254 goto unlock;
8255 }
8256 }
8257
8258 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8259 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8260 sched_domain_span(sd)) < cpu)) {
8261 kick = true;
8262 goto unlock;
8263 }
8264
8265 unlock:
8266 rcu_read_unlock();
8267 return kick;
8268 }
8269 #else
8270 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8271 #endif
8272
8273 /*
8274 * run_rebalance_domains is triggered when needed from the scheduler tick.
8275 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8276 */
8277 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8278 {
8279 struct rq *this_rq = this_rq();
8280 enum cpu_idle_type idle = this_rq->idle_balance ?
8281 CPU_IDLE : CPU_NOT_IDLE;
8282
8283 /*
8284 * If this cpu has a pending nohz_balance_kick, then do the
8285 * balancing on behalf of the other idle cpus whose ticks are
8286 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8287 * give the idle cpus a chance to load balance. Else we may
8288 * load balance only within the local sched_domain hierarchy
8289 * and abort nohz_idle_balance altogether if we pull some load.
8290 */
8291 nohz_idle_balance(this_rq, idle);
8292 rebalance_domains(this_rq, idle);
8293 }
8294
8295 /*
8296 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8297 */
8298 void trigger_load_balance(struct rq *rq)
8299 {
8300 /* Don't need to rebalance while attached to NULL domain */
8301 if (unlikely(on_null_domain(rq)))
8302 return;
8303
8304 if (time_after_eq(jiffies, rq->next_balance))
8305 raise_softirq(SCHED_SOFTIRQ);
8306 #ifdef CONFIG_NO_HZ_COMMON
8307 if (nohz_kick_needed(rq))
8308 nohz_balancer_kick();
8309 #endif
8310 }
8311
8312 static void rq_online_fair(struct rq *rq)
8313 {
8314 update_sysctl();
8315
8316 update_runtime_enabled(rq);
8317 }
8318
8319 static void rq_offline_fair(struct rq *rq)
8320 {
8321 update_sysctl();
8322
8323 /* Ensure any throttled groups are reachable by pick_next_task */
8324 unthrottle_offline_cfs_rqs(rq);
8325 }
8326
8327 #endif /* CONFIG_SMP */
8328
8329 /*
8330 * scheduler tick hitting a task of our scheduling class:
8331 */
8332 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8333 {
8334 struct cfs_rq *cfs_rq;
8335 struct sched_entity *se = &curr->se;
8336
8337 for_each_sched_entity(se) {
8338 cfs_rq = cfs_rq_of(se);
8339 entity_tick(cfs_rq, se, queued);
8340 }
8341
8342 if (static_branch_unlikely(&sched_numa_balancing))
8343 task_tick_numa(rq, curr);
8344 }
8345
8346 /*
8347 * called on fork with the child task as argument from the parent's context
8348 * - child not yet on the tasklist
8349 * - preemption disabled
8350 */
8351 static void task_fork_fair(struct task_struct *p)
8352 {
8353 struct cfs_rq *cfs_rq;
8354 struct sched_entity *se = &p->se, *curr;
8355 struct rq *rq = this_rq();
8356
8357 raw_spin_lock(&rq->lock);
8358 update_rq_clock(rq);
8359
8360 cfs_rq = task_cfs_rq(current);
8361 curr = cfs_rq->curr;
8362 if (curr) {
8363 update_curr(cfs_rq);
8364 se->vruntime = curr->vruntime;
8365 }
8366 place_entity(cfs_rq, se, 1);
8367
8368 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8369 /*
8370 * Upon rescheduling, sched_class::put_prev_task() will place
8371 * 'current' within the tree based on its new key value.
8372 */
8373 swap(curr->vruntime, se->vruntime);
8374 resched_curr(rq);
8375 }
8376
8377 se->vruntime -= cfs_rq->min_vruntime;
8378 raw_spin_unlock(&rq->lock);
8379 }
8380
8381 /*
8382 * Priority of the task has changed. Check to see if we preempt
8383 * the current task.
8384 */
8385 static void
8386 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8387 {
8388 if (!task_on_rq_queued(p))
8389 return;
8390
8391 /*
8392 * Reschedule if we are currently running on this runqueue and
8393 * our priority decreased, or if we are not currently running on
8394 * this runqueue and our priority is higher than the current's
8395 */
8396 if (rq->curr == p) {
8397 if (p->prio > oldprio)
8398 resched_curr(rq);
8399 } else
8400 check_preempt_curr(rq, p, 0);
8401 }
8402
8403 static inline bool vruntime_normalized(struct task_struct *p)
8404 {
8405 struct sched_entity *se = &p->se;
8406
8407 /*
8408 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8409 * the dequeue_entity(.flags=0) will already have normalized the
8410 * vruntime.
8411 */
8412 if (p->on_rq)
8413 return true;
8414
8415 /*
8416 * When !on_rq, vruntime of the task has usually NOT been normalized.
8417 * But there are some cases where it has already been normalized:
8418 *
8419 * - A forked child which is waiting for being woken up by
8420 * wake_up_new_task().
8421 * - A task which has been woken up by try_to_wake_up() and
8422 * waiting for actually being woken up by sched_ttwu_pending().
8423 */
8424 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8425 return true;
8426
8427 return false;
8428 }
8429
8430 static void detach_task_cfs_rq(struct task_struct *p)
8431 {
8432 struct sched_entity *se = &p->se;
8433 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8434 u64 now = cfs_rq_clock_task(cfs_rq);
8435 int tg_update;
8436
8437 if (!vruntime_normalized(p)) {
8438 /*
8439 * Fix up our vruntime so that the current sleep doesn't
8440 * cause 'unlimited' sleep bonus.
8441 */
8442 place_entity(cfs_rq, se, 0);
8443 se->vruntime -= cfs_rq->min_vruntime;
8444 }
8445
8446 /* Catch up with the cfs_rq and remove our load when we leave */
8447 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8448 detach_entity_load_avg(cfs_rq, se);
8449 if (tg_update)
8450 update_tg_load_avg(cfs_rq, false);
8451 }
8452
8453 static void attach_task_cfs_rq(struct task_struct *p)
8454 {
8455 struct sched_entity *se = &p->se;
8456 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8457 u64 now = cfs_rq_clock_task(cfs_rq);
8458 int tg_update;
8459
8460 #ifdef CONFIG_FAIR_GROUP_SCHED
8461 /*
8462 * Since the real-depth could have been changed (only FAIR
8463 * class maintain depth value), reset depth properly.
8464 */
8465 se->depth = se->parent ? se->parent->depth + 1 : 0;
8466 #endif
8467
8468 /* Synchronize task with its cfs_rq */
8469 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8470 attach_entity_load_avg(cfs_rq, se);
8471 if (tg_update)
8472 update_tg_load_avg(cfs_rq, false);
8473
8474 if (!vruntime_normalized(p))
8475 se->vruntime += cfs_rq->min_vruntime;
8476 }
8477
8478 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8479 {
8480 detach_task_cfs_rq(p);
8481 }
8482
8483 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8484 {
8485 attach_task_cfs_rq(p);
8486
8487 if (task_on_rq_queued(p)) {
8488 /*
8489 * We were most likely switched from sched_rt, so
8490 * kick off the schedule if running, otherwise just see
8491 * if we can still preempt the current task.
8492 */
8493 if (rq->curr == p)
8494 resched_curr(rq);
8495 else
8496 check_preempt_curr(rq, p, 0);
8497 }
8498 }
8499
8500 /* Account for a task changing its policy or group.
8501 *
8502 * This routine is mostly called to set cfs_rq->curr field when a task
8503 * migrates between groups/classes.
8504 */
8505 static void set_curr_task_fair(struct rq *rq)
8506 {
8507 struct sched_entity *se = &rq->curr->se;
8508
8509 for_each_sched_entity(se) {
8510 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8511
8512 set_next_entity(cfs_rq, se);
8513 /* ensure bandwidth has been allocated on our new cfs_rq */
8514 account_cfs_rq_runtime(cfs_rq, 0);
8515 }
8516 }
8517
8518 void init_cfs_rq(struct cfs_rq *cfs_rq)
8519 {
8520 cfs_rq->tasks_timeline = RB_ROOT;
8521 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8522 #ifndef CONFIG_64BIT
8523 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8524 #endif
8525 #ifdef CONFIG_SMP
8526 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8527 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8528 #endif
8529 }
8530
8531 #ifdef CONFIG_FAIR_GROUP_SCHED
8532 static void task_set_group_fair(struct task_struct *p)
8533 {
8534 struct sched_entity *se = &p->se;
8535
8536 set_task_rq(p, task_cpu(p));
8537 se->depth = se->parent ? se->parent->depth + 1 : 0;
8538 }
8539
8540 static void task_move_group_fair(struct task_struct *p)
8541 {
8542 detach_task_cfs_rq(p);
8543 set_task_rq(p, task_cpu(p));
8544
8545 #ifdef CONFIG_SMP
8546 /* Tell se's cfs_rq has been changed -- migrated */
8547 p->se.avg.last_update_time = 0;
8548 #endif
8549 attach_task_cfs_rq(p);
8550 }
8551
8552 static void task_change_group_fair(struct task_struct *p, int type)
8553 {
8554 switch (type) {
8555 case TASK_SET_GROUP:
8556 task_set_group_fair(p);
8557 break;
8558
8559 case TASK_MOVE_GROUP:
8560 task_move_group_fair(p);
8561 break;
8562 }
8563 }
8564
8565 void free_fair_sched_group(struct task_group *tg)
8566 {
8567 int i;
8568
8569 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8570
8571 for_each_possible_cpu(i) {
8572 if (tg->cfs_rq)
8573 kfree(tg->cfs_rq[i]);
8574 if (tg->se)
8575 kfree(tg->se[i]);
8576 }
8577
8578 kfree(tg->cfs_rq);
8579 kfree(tg->se);
8580 }
8581
8582 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8583 {
8584 struct sched_entity *se;
8585 struct cfs_rq *cfs_rq;
8586 struct rq *rq;
8587 int i;
8588
8589 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8590 if (!tg->cfs_rq)
8591 goto err;
8592 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8593 if (!tg->se)
8594 goto err;
8595
8596 tg->shares = NICE_0_LOAD;
8597
8598 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8599
8600 for_each_possible_cpu(i) {
8601 rq = cpu_rq(i);
8602
8603 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8604 GFP_KERNEL, cpu_to_node(i));
8605 if (!cfs_rq)
8606 goto err;
8607
8608 se = kzalloc_node(sizeof(struct sched_entity),
8609 GFP_KERNEL, cpu_to_node(i));
8610 if (!se)
8611 goto err_free_rq;
8612
8613 init_cfs_rq(cfs_rq);
8614 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8615 init_entity_runnable_average(se);
8616 }
8617
8618 return 1;
8619
8620 err_free_rq:
8621 kfree(cfs_rq);
8622 err:
8623 return 0;
8624 }
8625
8626 void online_fair_sched_group(struct task_group *tg)
8627 {
8628 struct sched_entity *se;
8629 struct rq *rq;
8630 int i;
8631
8632 for_each_possible_cpu(i) {
8633 rq = cpu_rq(i);
8634 se = tg->se[i];
8635
8636 raw_spin_lock_irq(&rq->lock);
8637 post_init_entity_util_avg(se);
8638 sync_throttle(tg, i);
8639 raw_spin_unlock_irq(&rq->lock);
8640 }
8641 }
8642
8643 void unregister_fair_sched_group(struct task_group *tg)
8644 {
8645 unsigned long flags;
8646 struct rq *rq;
8647 int cpu;
8648
8649 for_each_possible_cpu(cpu) {
8650 if (tg->se[cpu])
8651 remove_entity_load_avg(tg->se[cpu]);
8652
8653 /*
8654 * Only empty task groups can be destroyed; so we can speculatively
8655 * check on_list without danger of it being re-added.
8656 */
8657 if (!tg->cfs_rq[cpu]->on_list)
8658 continue;
8659
8660 rq = cpu_rq(cpu);
8661
8662 raw_spin_lock_irqsave(&rq->lock, flags);
8663 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8664 raw_spin_unlock_irqrestore(&rq->lock, flags);
8665 }
8666 }
8667
8668 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8669 struct sched_entity *se, int cpu,
8670 struct sched_entity *parent)
8671 {
8672 struct rq *rq = cpu_rq(cpu);
8673
8674 cfs_rq->tg = tg;
8675 cfs_rq->rq = rq;
8676 init_cfs_rq_runtime(cfs_rq);
8677
8678 tg->cfs_rq[cpu] = cfs_rq;
8679 tg->se[cpu] = se;
8680
8681 /* se could be NULL for root_task_group */
8682 if (!se)
8683 return;
8684
8685 if (!parent) {
8686 se->cfs_rq = &rq->cfs;
8687 se->depth = 0;
8688 } else {
8689 se->cfs_rq = parent->my_q;
8690 se->depth = parent->depth + 1;
8691 }
8692
8693 se->my_q = cfs_rq;
8694 /* guarantee group entities always have weight */
8695 update_load_set(&se->load, NICE_0_LOAD);
8696 se->parent = parent;
8697 }
8698
8699 static DEFINE_MUTEX(shares_mutex);
8700
8701 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8702 {
8703 int i;
8704 unsigned long flags;
8705
8706 /*
8707 * We can't change the weight of the root cgroup.
8708 */
8709 if (!tg->se[0])
8710 return -EINVAL;
8711
8712 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8713
8714 mutex_lock(&shares_mutex);
8715 if (tg->shares == shares)
8716 goto done;
8717
8718 tg->shares = shares;
8719 for_each_possible_cpu(i) {
8720 struct rq *rq = cpu_rq(i);
8721 struct sched_entity *se;
8722
8723 se = tg->se[i];
8724 /* Propagate contribution to hierarchy */
8725 raw_spin_lock_irqsave(&rq->lock, flags);
8726
8727 /* Possible calls to update_curr() need rq clock */
8728 update_rq_clock(rq);
8729 for_each_sched_entity(se)
8730 update_cfs_shares(group_cfs_rq(se));
8731 raw_spin_unlock_irqrestore(&rq->lock, flags);
8732 }
8733
8734 done:
8735 mutex_unlock(&shares_mutex);
8736 return 0;
8737 }
8738 #else /* CONFIG_FAIR_GROUP_SCHED */
8739
8740 void free_fair_sched_group(struct task_group *tg) { }
8741
8742 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8743 {
8744 return 1;
8745 }
8746
8747 void online_fair_sched_group(struct task_group *tg) { }
8748
8749 void unregister_fair_sched_group(struct task_group *tg) { }
8750
8751 #endif /* CONFIG_FAIR_GROUP_SCHED */
8752
8753
8754 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8755 {
8756 struct sched_entity *se = &task->se;
8757 unsigned int rr_interval = 0;
8758
8759 /*
8760 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8761 * idle runqueue:
8762 */
8763 if (rq->cfs.load.weight)
8764 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8765
8766 return rr_interval;
8767 }
8768
8769 /*
8770 * All the scheduling class methods:
8771 */
8772 const struct sched_class fair_sched_class = {
8773 .next = &idle_sched_class,
8774 .enqueue_task = enqueue_task_fair,
8775 .dequeue_task = dequeue_task_fair,
8776 .yield_task = yield_task_fair,
8777 .yield_to_task = yield_to_task_fair,
8778
8779 .check_preempt_curr = check_preempt_wakeup,
8780
8781 .pick_next_task = pick_next_task_fair,
8782 .put_prev_task = put_prev_task_fair,
8783
8784 #ifdef CONFIG_SMP
8785 .select_task_rq = select_task_rq_fair,
8786 .migrate_task_rq = migrate_task_rq_fair,
8787
8788 .rq_online = rq_online_fair,
8789 .rq_offline = rq_offline_fair,
8790
8791 .task_dead = task_dead_fair,
8792 .set_cpus_allowed = set_cpus_allowed_common,
8793 #endif
8794
8795 .set_curr_task = set_curr_task_fair,
8796 .task_tick = task_tick_fair,
8797 .task_fork = task_fork_fair,
8798
8799 .prio_changed = prio_changed_fair,
8800 .switched_from = switched_from_fair,
8801 .switched_to = switched_to_fair,
8802
8803 .get_rr_interval = get_rr_interval_fair,
8804
8805 .update_curr = update_curr_fair,
8806
8807 #ifdef CONFIG_FAIR_GROUP_SCHED
8808 .task_change_group = task_change_group_fair,
8809 #endif
8810 };
8811
8812 #ifdef CONFIG_SCHED_DEBUG
8813 void print_cfs_stats(struct seq_file *m, int cpu)
8814 {
8815 struct cfs_rq *cfs_rq;
8816
8817 rcu_read_lock();
8818 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8819 print_cfs_rq(m, cpu, cfs_rq);
8820 rcu_read_unlock();
8821 }
8822
8823 #ifdef CONFIG_NUMA_BALANCING
8824 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8825 {
8826 int node;
8827 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8828
8829 for_each_online_node(node) {
8830 if (p->numa_faults) {
8831 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8832 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8833 }
8834 if (p->numa_group) {
8835 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8836 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8837 }
8838 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8839 }
8840 }
8841 #endif /* CONFIG_NUMA_BALANCING */
8842 #endif /* CONFIG_SCHED_DEBUG */
8843
8844 __init void init_sched_fair_class(void)
8845 {
8846 #ifdef CONFIG_SMP
8847 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8848
8849 #ifdef CONFIG_NO_HZ_COMMON
8850 nohz.next_balance = jiffies;
8851 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8852 #endif
8853 #endif /* SMP */
8854
8855 }
This page took 0.238146 seconds and 5 git commands to generate.