Restartable sequences: self-tests
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 struct page *page, *next;
53 unsigned long high_pfn = 0;
54
55 list_for_each_entry_safe(page, next, freelist, lru) {
56 unsigned long pfn = page_to_pfn(page);
57 list_del(&page->lru);
58 __free_page(page);
59 if (pfn > high_pfn)
60 high_pfn = pfn;
61 }
62
63 return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68 struct page *page;
69
70 list_for_each_entry(page, list, lru) {
71 arch_alloc_page(page, 0);
72 kernel_map_pages(page, 1, 1);
73 kasan_alloc_pages(page, 0);
74 }
75 }
76
77 static inline bool migrate_async_suitable(int migratetype)
78 {
79 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80 }
81
82 #ifdef CONFIG_COMPACTION
83
84 /* Do not skip compaction more than 64 times */
85 #define COMPACT_MAX_DEFER_SHIFT 6
86
87 /*
88 * Compaction is deferred when compaction fails to result in a page
89 * allocation success. 1 << compact_defer_limit compactions are skipped up
90 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
91 */
92 void defer_compaction(struct zone *zone, int order)
93 {
94 zone->compact_considered = 0;
95 zone->compact_defer_shift++;
96
97 if (order < zone->compact_order_failed)
98 zone->compact_order_failed = order;
99
100 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
101 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
102
103 trace_mm_compaction_defer_compaction(zone, order);
104 }
105
106 /* Returns true if compaction should be skipped this time */
107 bool compaction_deferred(struct zone *zone, int order)
108 {
109 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
110
111 if (order < zone->compact_order_failed)
112 return false;
113
114 /* Avoid possible overflow */
115 if (++zone->compact_considered > defer_limit)
116 zone->compact_considered = defer_limit;
117
118 if (zone->compact_considered >= defer_limit)
119 return false;
120
121 trace_mm_compaction_deferred(zone, order);
122
123 return true;
124 }
125
126 /*
127 * Update defer tracking counters after successful compaction of given order,
128 * which means an allocation either succeeded (alloc_success == true) or is
129 * expected to succeed.
130 */
131 void compaction_defer_reset(struct zone *zone, int order,
132 bool alloc_success)
133 {
134 if (alloc_success) {
135 zone->compact_considered = 0;
136 zone->compact_defer_shift = 0;
137 }
138 if (order >= zone->compact_order_failed)
139 zone->compact_order_failed = order + 1;
140
141 trace_mm_compaction_defer_reset(zone, order);
142 }
143
144 /* Returns true if restarting compaction after many failures */
145 bool compaction_restarting(struct zone *zone, int order)
146 {
147 if (order < zone->compact_order_failed)
148 return false;
149
150 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
151 zone->compact_considered >= 1UL << zone->compact_defer_shift;
152 }
153
154 /* Returns true if the pageblock should be scanned for pages to isolate. */
155 static inline bool isolation_suitable(struct compact_control *cc,
156 struct page *page)
157 {
158 if (cc->ignore_skip_hint)
159 return true;
160
161 return !get_pageblock_skip(page);
162 }
163
164 static void reset_cached_positions(struct zone *zone)
165 {
166 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
167 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
168 zone->compact_cached_free_pfn =
169 pageblock_start_pfn(zone_end_pfn(zone) - 1);
170 }
171
172 /*
173 * This function is called to clear all cached information on pageblocks that
174 * should be skipped for page isolation when the migrate and free page scanner
175 * meet.
176 */
177 static void __reset_isolation_suitable(struct zone *zone)
178 {
179 unsigned long start_pfn = zone->zone_start_pfn;
180 unsigned long end_pfn = zone_end_pfn(zone);
181 unsigned long pfn;
182
183 zone->compact_blockskip_flush = false;
184
185 /* Walk the zone and mark every pageblock as suitable for isolation */
186 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
187 struct page *page;
188
189 cond_resched();
190
191 if (!pfn_valid(pfn))
192 continue;
193
194 page = pfn_to_page(pfn);
195 if (zone != page_zone(page))
196 continue;
197
198 clear_pageblock_skip(page);
199 }
200
201 reset_cached_positions(zone);
202 }
203
204 void reset_isolation_suitable(pg_data_t *pgdat)
205 {
206 int zoneid;
207
208 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
209 struct zone *zone = &pgdat->node_zones[zoneid];
210 if (!populated_zone(zone))
211 continue;
212
213 /* Only flush if a full compaction finished recently */
214 if (zone->compact_blockskip_flush)
215 __reset_isolation_suitable(zone);
216 }
217 }
218
219 /*
220 * If no pages were isolated then mark this pageblock to be skipped in the
221 * future. The information is later cleared by __reset_isolation_suitable().
222 */
223 static void update_pageblock_skip(struct compact_control *cc,
224 struct page *page, unsigned long nr_isolated,
225 bool migrate_scanner)
226 {
227 struct zone *zone = cc->zone;
228 unsigned long pfn;
229
230 if (cc->ignore_skip_hint)
231 return;
232
233 if (!page)
234 return;
235
236 if (nr_isolated)
237 return;
238
239 set_pageblock_skip(page);
240
241 pfn = page_to_pfn(page);
242
243 /* Update where async and sync compaction should restart */
244 if (migrate_scanner) {
245 if (pfn > zone->compact_cached_migrate_pfn[0])
246 zone->compact_cached_migrate_pfn[0] = pfn;
247 if (cc->mode != MIGRATE_ASYNC &&
248 pfn > zone->compact_cached_migrate_pfn[1])
249 zone->compact_cached_migrate_pfn[1] = pfn;
250 } else {
251 if (pfn < zone->compact_cached_free_pfn)
252 zone->compact_cached_free_pfn = pfn;
253 }
254 }
255 #else
256 static inline bool isolation_suitable(struct compact_control *cc,
257 struct page *page)
258 {
259 return true;
260 }
261
262 static void update_pageblock_skip(struct compact_control *cc,
263 struct page *page, unsigned long nr_isolated,
264 bool migrate_scanner)
265 {
266 }
267 #endif /* CONFIG_COMPACTION */
268
269 /*
270 * Compaction requires the taking of some coarse locks that are potentially
271 * very heavily contended. For async compaction, back out if the lock cannot
272 * be taken immediately. For sync compaction, spin on the lock if needed.
273 *
274 * Returns true if the lock is held
275 * Returns false if the lock is not held and compaction should abort
276 */
277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
278 struct compact_control *cc)
279 {
280 if (cc->mode == MIGRATE_ASYNC) {
281 if (!spin_trylock_irqsave(lock, *flags)) {
282 cc->contended = COMPACT_CONTENDED_LOCK;
283 return false;
284 }
285 } else {
286 spin_lock_irqsave(lock, *flags);
287 }
288
289 return true;
290 }
291
292 /*
293 * Compaction requires the taking of some coarse locks that are potentially
294 * very heavily contended. The lock should be periodically unlocked to avoid
295 * having disabled IRQs for a long time, even when there is nobody waiting on
296 * the lock. It might also be that allowing the IRQs will result in
297 * need_resched() becoming true. If scheduling is needed, async compaction
298 * aborts. Sync compaction schedules.
299 * Either compaction type will also abort if a fatal signal is pending.
300 * In either case if the lock was locked, it is dropped and not regained.
301 *
302 * Returns true if compaction should abort due to fatal signal pending, or
303 * async compaction due to need_resched()
304 * Returns false when compaction can continue (sync compaction might have
305 * scheduled)
306 */
307 static bool compact_unlock_should_abort(spinlock_t *lock,
308 unsigned long flags, bool *locked, struct compact_control *cc)
309 {
310 if (*locked) {
311 spin_unlock_irqrestore(lock, flags);
312 *locked = false;
313 }
314
315 if (fatal_signal_pending(current)) {
316 cc->contended = COMPACT_CONTENDED_SCHED;
317 return true;
318 }
319
320 if (need_resched()) {
321 if (cc->mode == MIGRATE_ASYNC) {
322 cc->contended = COMPACT_CONTENDED_SCHED;
323 return true;
324 }
325 cond_resched();
326 }
327
328 return false;
329 }
330
331 /*
332 * Aside from avoiding lock contention, compaction also periodically checks
333 * need_resched() and either schedules in sync compaction or aborts async
334 * compaction. This is similar to what compact_unlock_should_abort() does, but
335 * is used where no lock is concerned.
336 *
337 * Returns false when no scheduling was needed, or sync compaction scheduled.
338 * Returns true when async compaction should abort.
339 */
340 static inline bool compact_should_abort(struct compact_control *cc)
341 {
342 /* async compaction aborts if contended */
343 if (need_resched()) {
344 if (cc->mode == MIGRATE_ASYNC) {
345 cc->contended = COMPACT_CONTENDED_SCHED;
346 return true;
347 }
348
349 cond_resched();
350 }
351
352 return false;
353 }
354
355 /*
356 * Isolate free pages onto a private freelist. If @strict is true, will abort
357 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
358 * (even though it may still end up isolating some pages).
359 */
360 static unsigned long isolate_freepages_block(struct compact_control *cc,
361 unsigned long *start_pfn,
362 unsigned long end_pfn,
363 struct list_head *freelist,
364 bool strict)
365 {
366 int nr_scanned = 0, total_isolated = 0;
367 struct page *cursor, *valid_page = NULL;
368 unsigned long flags = 0;
369 bool locked = false;
370 unsigned long blockpfn = *start_pfn;
371
372 cursor = pfn_to_page(blockpfn);
373
374 /* Isolate free pages. */
375 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
376 int isolated, i;
377 struct page *page = cursor;
378
379 /*
380 * Periodically drop the lock (if held) regardless of its
381 * contention, to give chance to IRQs. Abort if fatal signal
382 * pending or async compaction detects need_resched()
383 */
384 if (!(blockpfn % SWAP_CLUSTER_MAX)
385 && compact_unlock_should_abort(&cc->zone->lock, flags,
386 &locked, cc))
387 break;
388
389 nr_scanned++;
390 if (!pfn_valid_within(blockpfn))
391 goto isolate_fail;
392
393 if (!valid_page)
394 valid_page = page;
395
396 /*
397 * For compound pages such as THP and hugetlbfs, we can save
398 * potentially a lot of iterations if we skip them at once.
399 * The check is racy, but we can consider only valid values
400 * and the only danger is skipping too much.
401 */
402 if (PageCompound(page)) {
403 unsigned int comp_order = compound_order(page);
404
405 if (likely(comp_order < MAX_ORDER)) {
406 blockpfn += (1UL << comp_order) - 1;
407 cursor += (1UL << comp_order) - 1;
408 }
409
410 goto isolate_fail;
411 }
412
413 if (!PageBuddy(page))
414 goto isolate_fail;
415
416 /*
417 * If we already hold the lock, we can skip some rechecking.
418 * Note that if we hold the lock now, checked_pageblock was
419 * already set in some previous iteration (or strict is true),
420 * so it is correct to skip the suitable migration target
421 * recheck as well.
422 */
423 if (!locked) {
424 /*
425 * The zone lock must be held to isolate freepages.
426 * Unfortunately this is a very coarse lock and can be
427 * heavily contended if there are parallel allocations
428 * or parallel compactions. For async compaction do not
429 * spin on the lock and we acquire the lock as late as
430 * possible.
431 */
432 locked = compact_trylock_irqsave(&cc->zone->lock,
433 &flags, cc);
434 if (!locked)
435 break;
436
437 /* Recheck this is a buddy page under lock */
438 if (!PageBuddy(page))
439 goto isolate_fail;
440 }
441
442 /* Found a free page, break it into order-0 pages */
443 isolated = split_free_page(page);
444 if (!isolated)
445 break;
446
447 total_isolated += isolated;
448 cc->nr_freepages += isolated;
449 for (i = 0; i < isolated; i++) {
450 list_add(&page->lru, freelist);
451 page++;
452 }
453 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
454 blockpfn += isolated;
455 break;
456 }
457 /* Advance to the end of split page */
458 blockpfn += isolated - 1;
459 cursor += isolated - 1;
460 continue;
461
462 isolate_fail:
463 if (strict)
464 break;
465 else
466 continue;
467
468 }
469
470 if (locked)
471 spin_unlock_irqrestore(&cc->zone->lock, flags);
472
473 /*
474 * There is a tiny chance that we have read bogus compound_order(),
475 * so be careful to not go outside of the pageblock.
476 */
477 if (unlikely(blockpfn > end_pfn))
478 blockpfn = end_pfn;
479
480 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
481 nr_scanned, total_isolated);
482
483 /* Record how far we have got within the block */
484 *start_pfn = blockpfn;
485
486 /*
487 * If strict isolation is requested by CMA then check that all the
488 * pages requested were isolated. If there were any failures, 0 is
489 * returned and CMA will fail.
490 */
491 if (strict && blockpfn < end_pfn)
492 total_isolated = 0;
493
494 /* Update the pageblock-skip if the whole pageblock was scanned */
495 if (blockpfn == end_pfn)
496 update_pageblock_skip(cc, valid_page, total_isolated, false);
497
498 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
499 if (total_isolated)
500 count_compact_events(COMPACTISOLATED, total_isolated);
501 return total_isolated;
502 }
503
504 /**
505 * isolate_freepages_range() - isolate free pages.
506 * @start_pfn: The first PFN to start isolating.
507 * @end_pfn: The one-past-last PFN.
508 *
509 * Non-free pages, invalid PFNs, or zone boundaries within the
510 * [start_pfn, end_pfn) range are considered errors, cause function to
511 * undo its actions and return zero.
512 *
513 * Otherwise, function returns one-past-the-last PFN of isolated page
514 * (which may be greater then end_pfn if end fell in a middle of
515 * a free page).
516 */
517 unsigned long
518 isolate_freepages_range(struct compact_control *cc,
519 unsigned long start_pfn, unsigned long end_pfn)
520 {
521 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
522 LIST_HEAD(freelist);
523
524 pfn = start_pfn;
525 block_start_pfn = pageblock_start_pfn(pfn);
526 if (block_start_pfn < cc->zone->zone_start_pfn)
527 block_start_pfn = cc->zone->zone_start_pfn;
528 block_end_pfn = pageblock_end_pfn(pfn);
529
530 for (; pfn < end_pfn; pfn += isolated,
531 block_start_pfn = block_end_pfn,
532 block_end_pfn += pageblock_nr_pages) {
533 /* Protect pfn from changing by isolate_freepages_block */
534 unsigned long isolate_start_pfn = pfn;
535
536 block_end_pfn = min(block_end_pfn, end_pfn);
537
538 /*
539 * pfn could pass the block_end_pfn if isolated freepage
540 * is more than pageblock order. In this case, we adjust
541 * scanning range to right one.
542 */
543 if (pfn >= block_end_pfn) {
544 block_start_pfn = pageblock_start_pfn(pfn);
545 block_end_pfn = pageblock_end_pfn(pfn);
546 block_end_pfn = min(block_end_pfn, end_pfn);
547 }
548
549 if (!pageblock_pfn_to_page(block_start_pfn,
550 block_end_pfn, cc->zone))
551 break;
552
553 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
554 block_end_pfn, &freelist, true);
555
556 /*
557 * In strict mode, isolate_freepages_block() returns 0 if
558 * there are any holes in the block (ie. invalid PFNs or
559 * non-free pages).
560 */
561 if (!isolated)
562 break;
563
564 /*
565 * If we managed to isolate pages, it is always (1 << n) *
566 * pageblock_nr_pages for some non-negative n. (Max order
567 * page may span two pageblocks).
568 */
569 }
570
571 /* split_free_page does not map the pages */
572 map_pages(&freelist);
573
574 if (pfn < end_pfn) {
575 /* Loop terminated early, cleanup. */
576 release_freepages(&freelist);
577 return 0;
578 }
579
580 /* We don't use freelists for anything. */
581 return pfn;
582 }
583
584 /* Update the number of anon and file isolated pages in the zone */
585 static void acct_isolated(struct zone *zone, struct compact_control *cc)
586 {
587 struct page *page;
588 unsigned int count[2] = { 0, };
589
590 if (list_empty(&cc->migratepages))
591 return;
592
593 list_for_each_entry(page, &cc->migratepages, lru)
594 count[!!page_is_file_cache(page)]++;
595
596 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
597 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
598 }
599
600 /* Similar to reclaim, but different enough that they don't share logic */
601 static bool too_many_isolated(struct zone *zone)
602 {
603 unsigned long active, inactive, isolated;
604
605 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
606 zone_page_state(zone, NR_INACTIVE_ANON);
607 active = zone_page_state(zone, NR_ACTIVE_FILE) +
608 zone_page_state(zone, NR_ACTIVE_ANON);
609 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
610 zone_page_state(zone, NR_ISOLATED_ANON);
611
612 return isolated > (inactive + active) / 2;
613 }
614
615 /**
616 * isolate_migratepages_block() - isolate all migrate-able pages within
617 * a single pageblock
618 * @cc: Compaction control structure.
619 * @low_pfn: The first PFN to isolate
620 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
621 * @isolate_mode: Isolation mode to be used.
622 *
623 * Isolate all pages that can be migrated from the range specified by
624 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
625 * Returns zero if there is a fatal signal pending, otherwise PFN of the
626 * first page that was not scanned (which may be both less, equal to or more
627 * than end_pfn).
628 *
629 * The pages are isolated on cc->migratepages list (not required to be empty),
630 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
631 * is neither read nor updated.
632 */
633 static unsigned long
634 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
635 unsigned long end_pfn, isolate_mode_t isolate_mode)
636 {
637 struct zone *zone = cc->zone;
638 unsigned long nr_scanned = 0, nr_isolated = 0;
639 struct lruvec *lruvec;
640 unsigned long flags = 0;
641 bool locked = false;
642 struct page *page = NULL, *valid_page = NULL;
643 unsigned long start_pfn = low_pfn;
644 bool skip_on_failure = false;
645 unsigned long next_skip_pfn = 0;
646
647 /*
648 * Ensure that there are not too many pages isolated from the LRU
649 * list by either parallel reclaimers or compaction. If there are,
650 * delay for some time until fewer pages are isolated
651 */
652 while (unlikely(too_many_isolated(zone))) {
653 /* async migration should just abort */
654 if (cc->mode == MIGRATE_ASYNC)
655 return 0;
656
657 congestion_wait(BLK_RW_ASYNC, HZ/10);
658
659 if (fatal_signal_pending(current))
660 return 0;
661 }
662
663 if (compact_should_abort(cc))
664 return 0;
665
666 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
667 skip_on_failure = true;
668 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
669 }
670
671 /* Time to isolate some pages for migration */
672 for (; low_pfn < end_pfn; low_pfn++) {
673 bool is_lru;
674
675 if (skip_on_failure && low_pfn >= next_skip_pfn) {
676 /*
677 * We have isolated all migration candidates in the
678 * previous order-aligned block, and did not skip it due
679 * to failure. We should migrate the pages now and
680 * hopefully succeed compaction.
681 */
682 if (nr_isolated)
683 break;
684
685 /*
686 * We failed to isolate in the previous order-aligned
687 * block. Set the new boundary to the end of the
688 * current block. Note we can't simply increase
689 * next_skip_pfn by 1 << order, as low_pfn might have
690 * been incremented by a higher number due to skipping
691 * a compound or a high-order buddy page in the
692 * previous loop iteration.
693 */
694 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
695 }
696
697 /*
698 * Periodically drop the lock (if held) regardless of its
699 * contention, to give chance to IRQs. Abort async compaction
700 * if contended.
701 */
702 if (!(low_pfn % SWAP_CLUSTER_MAX)
703 && compact_unlock_should_abort(&zone->lru_lock, flags,
704 &locked, cc))
705 break;
706
707 if (!pfn_valid_within(low_pfn))
708 goto isolate_fail;
709 nr_scanned++;
710
711 page = pfn_to_page(low_pfn);
712
713 if (!valid_page)
714 valid_page = page;
715
716 /*
717 * Skip if free. We read page order here without zone lock
718 * which is generally unsafe, but the race window is small and
719 * the worst thing that can happen is that we skip some
720 * potential isolation targets.
721 */
722 if (PageBuddy(page)) {
723 unsigned long freepage_order = page_order_unsafe(page);
724
725 /*
726 * Without lock, we cannot be sure that what we got is
727 * a valid page order. Consider only values in the
728 * valid order range to prevent low_pfn overflow.
729 */
730 if (freepage_order > 0 && freepage_order < MAX_ORDER)
731 low_pfn += (1UL << freepage_order) - 1;
732 continue;
733 }
734
735 /*
736 * Check may be lockless but that's ok as we recheck later.
737 * It's possible to migrate LRU pages and balloon pages
738 * Skip any other type of page
739 */
740 is_lru = PageLRU(page);
741 if (!is_lru) {
742 if (unlikely(balloon_page_movable(page))) {
743 if (balloon_page_isolate(page)) {
744 /* Successfully isolated */
745 goto isolate_success;
746 }
747 }
748 }
749
750 /*
751 * Regardless of being on LRU, compound pages such as THP and
752 * hugetlbfs are not to be compacted. We can potentially save
753 * a lot of iterations if we skip them at once. The check is
754 * racy, but we can consider only valid values and the only
755 * danger is skipping too much.
756 */
757 if (PageCompound(page)) {
758 unsigned int comp_order = compound_order(page);
759
760 if (likely(comp_order < MAX_ORDER))
761 low_pfn += (1UL << comp_order) - 1;
762
763 goto isolate_fail;
764 }
765
766 if (!is_lru)
767 goto isolate_fail;
768
769 /*
770 * Migration will fail if an anonymous page is pinned in memory,
771 * so avoid taking lru_lock and isolating it unnecessarily in an
772 * admittedly racy check.
773 */
774 if (!page_mapping(page) &&
775 page_count(page) > page_mapcount(page))
776 goto isolate_fail;
777
778 /* If we already hold the lock, we can skip some rechecking */
779 if (!locked) {
780 locked = compact_trylock_irqsave(&zone->lru_lock,
781 &flags, cc);
782 if (!locked)
783 break;
784
785 /* Recheck PageLRU and PageCompound under lock */
786 if (!PageLRU(page))
787 goto isolate_fail;
788
789 /*
790 * Page become compound since the non-locked check,
791 * and it's on LRU. It can only be a THP so the order
792 * is safe to read and it's 0 for tail pages.
793 */
794 if (unlikely(PageCompound(page))) {
795 low_pfn += (1UL << compound_order(page)) - 1;
796 goto isolate_fail;
797 }
798 }
799
800 lruvec = mem_cgroup_page_lruvec(page, zone);
801
802 /* Try isolate the page */
803 if (__isolate_lru_page(page, isolate_mode) != 0)
804 goto isolate_fail;
805
806 VM_BUG_ON_PAGE(PageCompound(page), page);
807
808 /* Successfully isolated */
809 del_page_from_lru_list(page, lruvec, page_lru(page));
810
811 isolate_success:
812 list_add(&page->lru, &cc->migratepages);
813 cc->nr_migratepages++;
814 nr_isolated++;
815
816 /*
817 * Record where we could have freed pages by migration and not
818 * yet flushed them to buddy allocator.
819 * - this is the lowest page that was isolated and likely be
820 * then freed by migration.
821 */
822 if (!cc->last_migrated_pfn)
823 cc->last_migrated_pfn = low_pfn;
824
825 /* Avoid isolating too much */
826 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
827 ++low_pfn;
828 break;
829 }
830
831 continue;
832 isolate_fail:
833 if (!skip_on_failure)
834 continue;
835
836 /*
837 * We have isolated some pages, but then failed. Release them
838 * instead of migrating, as we cannot form the cc->order buddy
839 * page anyway.
840 */
841 if (nr_isolated) {
842 if (locked) {
843 spin_unlock_irqrestore(&zone->lru_lock, flags);
844 locked = false;
845 }
846 acct_isolated(zone, cc);
847 putback_movable_pages(&cc->migratepages);
848 cc->nr_migratepages = 0;
849 cc->last_migrated_pfn = 0;
850 nr_isolated = 0;
851 }
852
853 if (low_pfn < next_skip_pfn) {
854 low_pfn = next_skip_pfn - 1;
855 /*
856 * The check near the loop beginning would have updated
857 * next_skip_pfn too, but this is a bit simpler.
858 */
859 next_skip_pfn += 1UL << cc->order;
860 }
861 }
862
863 /*
864 * The PageBuddy() check could have potentially brought us outside
865 * the range to be scanned.
866 */
867 if (unlikely(low_pfn > end_pfn))
868 low_pfn = end_pfn;
869
870 if (locked)
871 spin_unlock_irqrestore(&zone->lru_lock, flags);
872
873 /*
874 * Update the pageblock-skip information and cached scanner pfn,
875 * if the whole pageblock was scanned without isolating any page.
876 */
877 if (low_pfn == end_pfn)
878 update_pageblock_skip(cc, valid_page, nr_isolated, true);
879
880 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
881 nr_scanned, nr_isolated);
882
883 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
884 if (nr_isolated)
885 count_compact_events(COMPACTISOLATED, nr_isolated);
886
887 return low_pfn;
888 }
889
890 /**
891 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
892 * @cc: Compaction control structure.
893 * @start_pfn: The first PFN to start isolating.
894 * @end_pfn: The one-past-last PFN.
895 *
896 * Returns zero if isolation fails fatally due to e.g. pending signal.
897 * Otherwise, function returns one-past-the-last PFN of isolated page
898 * (which may be greater than end_pfn if end fell in a middle of a THP page).
899 */
900 unsigned long
901 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
902 unsigned long end_pfn)
903 {
904 unsigned long pfn, block_start_pfn, block_end_pfn;
905
906 /* Scan block by block. First and last block may be incomplete */
907 pfn = start_pfn;
908 block_start_pfn = pageblock_start_pfn(pfn);
909 if (block_start_pfn < cc->zone->zone_start_pfn)
910 block_start_pfn = cc->zone->zone_start_pfn;
911 block_end_pfn = pageblock_end_pfn(pfn);
912
913 for (; pfn < end_pfn; pfn = block_end_pfn,
914 block_start_pfn = block_end_pfn,
915 block_end_pfn += pageblock_nr_pages) {
916
917 block_end_pfn = min(block_end_pfn, end_pfn);
918
919 if (!pageblock_pfn_to_page(block_start_pfn,
920 block_end_pfn, cc->zone))
921 continue;
922
923 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
924 ISOLATE_UNEVICTABLE);
925
926 if (!pfn)
927 break;
928
929 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
930 break;
931 }
932 acct_isolated(cc->zone, cc);
933
934 return pfn;
935 }
936
937 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
938 #ifdef CONFIG_COMPACTION
939
940 /* Returns true if the page is within a block suitable for migration to */
941 static bool suitable_migration_target(struct page *page)
942 {
943 /* If the page is a large free page, then disallow migration */
944 if (PageBuddy(page)) {
945 /*
946 * We are checking page_order without zone->lock taken. But
947 * the only small danger is that we skip a potentially suitable
948 * pageblock, so it's not worth to check order for valid range.
949 */
950 if (page_order_unsafe(page) >= pageblock_order)
951 return false;
952 }
953
954 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
955 if (migrate_async_suitable(get_pageblock_migratetype(page)))
956 return true;
957
958 /* Otherwise skip the block */
959 return false;
960 }
961
962 /*
963 * Test whether the free scanner has reached the same or lower pageblock than
964 * the migration scanner, and compaction should thus terminate.
965 */
966 static inline bool compact_scanners_met(struct compact_control *cc)
967 {
968 return (cc->free_pfn >> pageblock_order)
969 <= (cc->migrate_pfn >> pageblock_order);
970 }
971
972 /*
973 * Based on information in the current compact_control, find blocks
974 * suitable for isolating free pages from and then isolate them.
975 */
976 static void isolate_freepages(struct compact_control *cc)
977 {
978 struct zone *zone = cc->zone;
979 struct page *page;
980 unsigned long block_start_pfn; /* start of current pageblock */
981 unsigned long isolate_start_pfn; /* exact pfn we start at */
982 unsigned long block_end_pfn; /* end of current pageblock */
983 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
984 struct list_head *freelist = &cc->freepages;
985
986 /*
987 * Initialise the free scanner. The starting point is where we last
988 * successfully isolated from, zone-cached value, or the end of the
989 * zone when isolating for the first time. For looping we also need
990 * this pfn aligned down to the pageblock boundary, because we do
991 * block_start_pfn -= pageblock_nr_pages in the for loop.
992 * For ending point, take care when isolating in last pageblock of a
993 * a zone which ends in the middle of a pageblock.
994 * The low boundary is the end of the pageblock the migration scanner
995 * is using.
996 */
997 isolate_start_pfn = cc->free_pfn;
998 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
999 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1000 zone_end_pfn(zone));
1001 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1002
1003 /*
1004 * Isolate free pages until enough are available to migrate the
1005 * pages on cc->migratepages. We stop searching if the migrate
1006 * and free page scanners meet or enough free pages are isolated.
1007 */
1008 for (; block_start_pfn >= low_pfn;
1009 block_end_pfn = block_start_pfn,
1010 block_start_pfn -= pageblock_nr_pages,
1011 isolate_start_pfn = block_start_pfn) {
1012 unsigned long isolated;
1013
1014 /*
1015 * This can iterate a massively long zone without finding any
1016 * suitable migration targets, so periodically check if we need
1017 * to schedule, or even abort async compaction.
1018 */
1019 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1020 && compact_should_abort(cc))
1021 break;
1022
1023 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1024 zone);
1025 if (!page)
1026 continue;
1027
1028 /* Check the block is suitable for migration */
1029 if (!suitable_migration_target(page))
1030 continue;
1031
1032 /* If isolation recently failed, do not retry */
1033 if (!isolation_suitable(cc, page))
1034 continue;
1035
1036 /* Found a block suitable for isolating free pages from. */
1037 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1038 block_end_pfn, freelist, false);
1039 /* If isolation failed early, do not continue needlessly */
1040 if (!isolated && isolate_start_pfn < block_end_pfn &&
1041 cc->nr_migratepages > cc->nr_freepages)
1042 break;
1043
1044 /*
1045 * If we isolated enough freepages, or aborted due to async
1046 * compaction being contended, terminate the loop.
1047 * Remember where the free scanner should restart next time,
1048 * which is where isolate_freepages_block() left off.
1049 * But if it scanned the whole pageblock, isolate_start_pfn
1050 * now points at block_end_pfn, which is the start of the next
1051 * pageblock.
1052 * In that case we will however want to restart at the start
1053 * of the previous pageblock.
1054 */
1055 if ((cc->nr_freepages >= cc->nr_migratepages)
1056 || cc->contended) {
1057 if (isolate_start_pfn >= block_end_pfn)
1058 isolate_start_pfn =
1059 block_start_pfn - pageblock_nr_pages;
1060 break;
1061 } else {
1062 /*
1063 * isolate_freepages_block() should not terminate
1064 * prematurely unless contended, or isolated enough
1065 */
1066 VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1067 }
1068 }
1069
1070 /* split_free_page does not map the pages */
1071 map_pages(freelist);
1072
1073 /*
1074 * Record where the free scanner will restart next time. Either we
1075 * broke from the loop and set isolate_start_pfn based on the last
1076 * call to isolate_freepages_block(), or we met the migration scanner
1077 * and the loop terminated due to isolate_start_pfn < low_pfn
1078 */
1079 cc->free_pfn = isolate_start_pfn;
1080 }
1081
1082 /*
1083 * This is a migrate-callback that "allocates" freepages by taking pages
1084 * from the isolated freelists in the block we are migrating to.
1085 */
1086 static struct page *compaction_alloc(struct page *migratepage,
1087 unsigned long data,
1088 int **result)
1089 {
1090 struct compact_control *cc = (struct compact_control *)data;
1091 struct page *freepage;
1092
1093 /*
1094 * Isolate free pages if necessary, and if we are not aborting due to
1095 * contention.
1096 */
1097 if (list_empty(&cc->freepages)) {
1098 if (!cc->contended)
1099 isolate_freepages(cc);
1100
1101 if (list_empty(&cc->freepages))
1102 return NULL;
1103 }
1104
1105 freepage = list_entry(cc->freepages.next, struct page, lru);
1106 list_del(&freepage->lru);
1107 cc->nr_freepages--;
1108
1109 return freepage;
1110 }
1111
1112 /*
1113 * This is a migrate-callback that "frees" freepages back to the isolated
1114 * freelist. All pages on the freelist are from the same zone, so there is no
1115 * special handling needed for NUMA.
1116 */
1117 static void compaction_free(struct page *page, unsigned long data)
1118 {
1119 struct compact_control *cc = (struct compact_control *)data;
1120
1121 list_add(&page->lru, &cc->freepages);
1122 cc->nr_freepages++;
1123 }
1124
1125 /* possible outcome of isolate_migratepages */
1126 typedef enum {
1127 ISOLATE_ABORT, /* Abort compaction now */
1128 ISOLATE_NONE, /* No pages isolated, continue scanning */
1129 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1130 } isolate_migrate_t;
1131
1132 /*
1133 * Allow userspace to control policy on scanning the unevictable LRU for
1134 * compactable pages.
1135 */
1136 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1137
1138 /*
1139 * Isolate all pages that can be migrated from the first suitable block,
1140 * starting at the block pointed to by the migrate scanner pfn within
1141 * compact_control.
1142 */
1143 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1144 struct compact_control *cc)
1145 {
1146 unsigned long block_start_pfn;
1147 unsigned long block_end_pfn;
1148 unsigned long low_pfn;
1149 struct page *page;
1150 const isolate_mode_t isolate_mode =
1151 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1152 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1153
1154 /*
1155 * Start at where we last stopped, or beginning of the zone as
1156 * initialized by compact_zone()
1157 */
1158 low_pfn = cc->migrate_pfn;
1159 block_start_pfn = pageblock_start_pfn(low_pfn);
1160 if (block_start_pfn < zone->zone_start_pfn)
1161 block_start_pfn = zone->zone_start_pfn;
1162
1163 /* Only scan within a pageblock boundary */
1164 block_end_pfn = pageblock_end_pfn(low_pfn);
1165
1166 /*
1167 * Iterate over whole pageblocks until we find the first suitable.
1168 * Do not cross the free scanner.
1169 */
1170 for (; block_end_pfn <= cc->free_pfn;
1171 low_pfn = block_end_pfn,
1172 block_start_pfn = block_end_pfn,
1173 block_end_pfn += pageblock_nr_pages) {
1174
1175 /*
1176 * This can potentially iterate a massively long zone with
1177 * many pageblocks unsuitable, so periodically check if we
1178 * need to schedule, or even abort async compaction.
1179 */
1180 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1181 && compact_should_abort(cc))
1182 break;
1183
1184 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1185 zone);
1186 if (!page)
1187 continue;
1188
1189 /* If isolation recently failed, do not retry */
1190 if (!isolation_suitable(cc, page))
1191 continue;
1192
1193 /*
1194 * For async compaction, also only scan in MOVABLE blocks.
1195 * Async compaction is optimistic to see if the minimum amount
1196 * of work satisfies the allocation.
1197 */
1198 if (cc->mode == MIGRATE_ASYNC &&
1199 !migrate_async_suitable(get_pageblock_migratetype(page)))
1200 continue;
1201
1202 /* Perform the isolation */
1203 low_pfn = isolate_migratepages_block(cc, low_pfn,
1204 block_end_pfn, isolate_mode);
1205
1206 if (!low_pfn || cc->contended) {
1207 acct_isolated(zone, cc);
1208 return ISOLATE_ABORT;
1209 }
1210
1211 /*
1212 * Either we isolated something and proceed with migration. Or
1213 * we failed and compact_zone should decide if we should
1214 * continue or not.
1215 */
1216 break;
1217 }
1218
1219 acct_isolated(zone, cc);
1220 /* Record where migration scanner will be restarted. */
1221 cc->migrate_pfn = low_pfn;
1222
1223 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1224 }
1225
1226 /*
1227 * order == -1 is expected when compacting via
1228 * /proc/sys/vm/compact_memory
1229 */
1230 static inline bool is_via_compact_memory(int order)
1231 {
1232 return order == -1;
1233 }
1234
1235 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1236 const int migratetype)
1237 {
1238 unsigned int order;
1239 unsigned long watermark;
1240
1241 if (cc->contended || fatal_signal_pending(current))
1242 return COMPACT_CONTENDED;
1243
1244 /* Compaction run completes if the migrate and free scanner meet */
1245 if (compact_scanners_met(cc)) {
1246 /* Let the next compaction start anew. */
1247 reset_cached_positions(zone);
1248
1249 /*
1250 * Mark that the PG_migrate_skip information should be cleared
1251 * by kswapd when it goes to sleep. kcompactd does not set the
1252 * flag itself as the decision to be clear should be directly
1253 * based on an allocation request.
1254 */
1255 if (cc->direct_compaction)
1256 zone->compact_blockskip_flush = true;
1257
1258 if (cc->whole_zone)
1259 return COMPACT_COMPLETE;
1260 else
1261 return COMPACT_PARTIAL_SKIPPED;
1262 }
1263
1264 if (is_via_compact_memory(cc->order))
1265 return COMPACT_CONTINUE;
1266
1267 /* Compaction run is not finished if the watermark is not met */
1268 watermark = low_wmark_pages(zone);
1269
1270 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1271 cc->alloc_flags))
1272 return COMPACT_CONTINUE;
1273
1274 /* Direct compactor: Is a suitable page free? */
1275 for (order = cc->order; order < MAX_ORDER; order++) {
1276 struct free_area *area = &zone->free_area[order];
1277 bool can_steal;
1278
1279 /* Job done if page is free of the right migratetype */
1280 if (!list_empty(&area->free_list[migratetype]))
1281 return COMPACT_PARTIAL;
1282
1283 #ifdef CONFIG_CMA
1284 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1285 if (migratetype == MIGRATE_MOVABLE &&
1286 !list_empty(&area->free_list[MIGRATE_CMA]))
1287 return COMPACT_PARTIAL;
1288 #endif
1289 /*
1290 * Job done if allocation would steal freepages from
1291 * other migratetype buddy lists.
1292 */
1293 if (find_suitable_fallback(area, order, migratetype,
1294 true, &can_steal) != -1)
1295 return COMPACT_PARTIAL;
1296 }
1297
1298 return COMPACT_NO_SUITABLE_PAGE;
1299 }
1300
1301 static enum compact_result compact_finished(struct zone *zone,
1302 struct compact_control *cc,
1303 const int migratetype)
1304 {
1305 int ret;
1306
1307 ret = __compact_finished(zone, cc, migratetype);
1308 trace_mm_compaction_finished(zone, cc->order, ret);
1309 if (ret == COMPACT_NO_SUITABLE_PAGE)
1310 ret = COMPACT_CONTINUE;
1311
1312 return ret;
1313 }
1314
1315 /*
1316 * compaction_suitable: Is this suitable to run compaction on this zone now?
1317 * Returns
1318 * COMPACT_SKIPPED - If there are too few free pages for compaction
1319 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1320 * COMPACT_CONTINUE - If compaction should run now
1321 */
1322 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1323 unsigned int alloc_flags,
1324 int classzone_idx,
1325 unsigned long wmark_target)
1326 {
1327 int fragindex;
1328 unsigned long watermark;
1329
1330 if (is_via_compact_memory(order))
1331 return COMPACT_CONTINUE;
1332
1333 watermark = low_wmark_pages(zone);
1334 /*
1335 * If watermarks for high-order allocation are already met, there
1336 * should be no need for compaction at all.
1337 */
1338 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1339 alloc_flags))
1340 return COMPACT_PARTIAL;
1341
1342 /*
1343 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1344 * This is because during migration, copies of pages need to be
1345 * allocated and for a short time, the footprint is higher
1346 */
1347 watermark += (2UL << order);
1348 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1349 alloc_flags, wmark_target))
1350 return COMPACT_SKIPPED;
1351
1352 /*
1353 * fragmentation index determines if allocation failures are due to
1354 * low memory or external fragmentation
1355 *
1356 * index of -1000 would imply allocations might succeed depending on
1357 * watermarks, but we already failed the high-order watermark check
1358 * index towards 0 implies failure is due to lack of memory
1359 * index towards 1000 implies failure is due to fragmentation
1360 *
1361 * Only compact if a failure would be due to fragmentation.
1362 */
1363 fragindex = fragmentation_index(zone, order);
1364 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1365 return COMPACT_NOT_SUITABLE_ZONE;
1366
1367 return COMPACT_CONTINUE;
1368 }
1369
1370 enum compact_result compaction_suitable(struct zone *zone, int order,
1371 unsigned int alloc_flags,
1372 int classzone_idx)
1373 {
1374 enum compact_result ret;
1375
1376 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1377 zone_page_state(zone, NR_FREE_PAGES));
1378 trace_mm_compaction_suitable(zone, order, ret);
1379 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1380 ret = COMPACT_SKIPPED;
1381
1382 return ret;
1383 }
1384
1385 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1386 int alloc_flags)
1387 {
1388 struct zone *zone;
1389 struct zoneref *z;
1390
1391 /*
1392 * Make sure at least one zone would pass __compaction_suitable if we continue
1393 * retrying the reclaim.
1394 */
1395 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1396 ac->nodemask) {
1397 unsigned long available;
1398 enum compact_result compact_result;
1399
1400 /*
1401 * Do not consider all the reclaimable memory because we do not
1402 * want to trash just for a single high order allocation which
1403 * is even not guaranteed to appear even if __compaction_suitable
1404 * is happy about the watermark check.
1405 */
1406 available = zone_reclaimable_pages(zone) / order;
1407 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1408 compact_result = __compaction_suitable(zone, order, alloc_flags,
1409 ac_classzone_idx(ac), available);
1410 if (compact_result != COMPACT_SKIPPED &&
1411 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1412 return true;
1413 }
1414
1415 return false;
1416 }
1417
1418 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1419 {
1420 enum compact_result ret;
1421 unsigned long start_pfn = zone->zone_start_pfn;
1422 unsigned long end_pfn = zone_end_pfn(zone);
1423 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1424 const bool sync = cc->mode != MIGRATE_ASYNC;
1425
1426 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1427 cc->classzone_idx);
1428 /* Compaction is likely to fail */
1429 if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1430 return ret;
1431
1432 /* huh, compaction_suitable is returning something unexpected */
1433 VM_BUG_ON(ret != COMPACT_CONTINUE);
1434
1435 /*
1436 * Clear pageblock skip if there were failures recently and compaction
1437 * is about to be retried after being deferred.
1438 */
1439 if (compaction_restarting(zone, cc->order))
1440 __reset_isolation_suitable(zone);
1441
1442 /*
1443 * Setup to move all movable pages to the end of the zone. Used cached
1444 * information on where the scanners should start but check that it
1445 * is initialised by ensuring the values are within zone boundaries.
1446 */
1447 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1448 cc->free_pfn = zone->compact_cached_free_pfn;
1449 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1450 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1451 zone->compact_cached_free_pfn = cc->free_pfn;
1452 }
1453 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1454 cc->migrate_pfn = start_pfn;
1455 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1456 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1457 }
1458
1459 if (cc->migrate_pfn == start_pfn)
1460 cc->whole_zone = true;
1461
1462 cc->last_migrated_pfn = 0;
1463
1464 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1465 cc->free_pfn, end_pfn, sync);
1466
1467 migrate_prep_local();
1468
1469 while ((ret = compact_finished(zone, cc, migratetype)) ==
1470 COMPACT_CONTINUE) {
1471 int err;
1472
1473 switch (isolate_migratepages(zone, cc)) {
1474 case ISOLATE_ABORT:
1475 ret = COMPACT_CONTENDED;
1476 putback_movable_pages(&cc->migratepages);
1477 cc->nr_migratepages = 0;
1478 goto out;
1479 case ISOLATE_NONE:
1480 /*
1481 * We haven't isolated and migrated anything, but
1482 * there might still be unflushed migrations from
1483 * previous cc->order aligned block.
1484 */
1485 goto check_drain;
1486 case ISOLATE_SUCCESS:
1487 ;
1488 }
1489
1490 err = migrate_pages(&cc->migratepages, compaction_alloc,
1491 compaction_free, (unsigned long)cc, cc->mode,
1492 MR_COMPACTION);
1493
1494 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1495 &cc->migratepages);
1496
1497 /* All pages were either migrated or will be released */
1498 cc->nr_migratepages = 0;
1499 if (err) {
1500 putback_movable_pages(&cc->migratepages);
1501 /*
1502 * migrate_pages() may return -ENOMEM when scanners meet
1503 * and we want compact_finished() to detect it
1504 */
1505 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1506 ret = COMPACT_CONTENDED;
1507 goto out;
1508 }
1509 /*
1510 * We failed to migrate at least one page in the current
1511 * order-aligned block, so skip the rest of it.
1512 */
1513 if (cc->direct_compaction &&
1514 (cc->mode == MIGRATE_ASYNC)) {
1515 cc->migrate_pfn = block_end_pfn(
1516 cc->migrate_pfn - 1, cc->order);
1517 /* Draining pcplists is useless in this case */
1518 cc->last_migrated_pfn = 0;
1519
1520 }
1521 }
1522
1523 check_drain:
1524 /*
1525 * Has the migration scanner moved away from the previous
1526 * cc->order aligned block where we migrated from? If yes,
1527 * flush the pages that were freed, so that they can merge and
1528 * compact_finished() can detect immediately if allocation
1529 * would succeed.
1530 */
1531 if (cc->order > 0 && cc->last_migrated_pfn) {
1532 int cpu;
1533 unsigned long current_block_start =
1534 block_start_pfn(cc->migrate_pfn, cc->order);
1535
1536 if (cc->last_migrated_pfn < current_block_start) {
1537 cpu = get_cpu();
1538 lru_add_drain_cpu(cpu);
1539 drain_local_pages(zone);
1540 put_cpu();
1541 /* No more flushing until we migrate again */
1542 cc->last_migrated_pfn = 0;
1543 }
1544 }
1545
1546 }
1547
1548 out:
1549 /*
1550 * Release free pages and update where the free scanner should restart,
1551 * so we don't leave any returned pages behind in the next attempt.
1552 */
1553 if (cc->nr_freepages > 0) {
1554 unsigned long free_pfn = release_freepages(&cc->freepages);
1555
1556 cc->nr_freepages = 0;
1557 VM_BUG_ON(free_pfn == 0);
1558 /* The cached pfn is always the first in a pageblock */
1559 free_pfn = pageblock_start_pfn(free_pfn);
1560 /*
1561 * Only go back, not forward. The cached pfn might have been
1562 * already reset to zone end in compact_finished()
1563 */
1564 if (free_pfn > zone->compact_cached_free_pfn)
1565 zone->compact_cached_free_pfn = free_pfn;
1566 }
1567
1568 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1569 cc->free_pfn, end_pfn, sync, ret);
1570
1571 if (ret == COMPACT_CONTENDED)
1572 ret = COMPACT_PARTIAL;
1573
1574 return ret;
1575 }
1576
1577 static enum compact_result compact_zone_order(struct zone *zone, int order,
1578 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1579 unsigned int alloc_flags, int classzone_idx)
1580 {
1581 enum compact_result ret;
1582 struct compact_control cc = {
1583 .nr_freepages = 0,
1584 .nr_migratepages = 0,
1585 .order = order,
1586 .gfp_mask = gfp_mask,
1587 .zone = zone,
1588 .mode = mode,
1589 .alloc_flags = alloc_flags,
1590 .classzone_idx = classzone_idx,
1591 .direct_compaction = true,
1592 };
1593 INIT_LIST_HEAD(&cc.freepages);
1594 INIT_LIST_HEAD(&cc.migratepages);
1595
1596 ret = compact_zone(zone, &cc);
1597
1598 VM_BUG_ON(!list_empty(&cc.freepages));
1599 VM_BUG_ON(!list_empty(&cc.migratepages));
1600
1601 *contended = cc.contended;
1602 return ret;
1603 }
1604
1605 int sysctl_extfrag_threshold = 500;
1606
1607 /**
1608 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1609 * @gfp_mask: The GFP mask of the current allocation
1610 * @order: The order of the current allocation
1611 * @alloc_flags: The allocation flags of the current allocation
1612 * @ac: The context of current allocation
1613 * @mode: The migration mode for async, sync light, or sync migration
1614 * @contended: Return value that determines if compaction was aborted due to
1615 * need_resched() or lock contention
1616 *
1617 * This is the main entry point for direct page compaction.
1618 */
1619 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1620 unsigned int alloc_flags, const struct alloc_context *ac,
1621 enum migrate_mode mode, int *contended)
1622 {
1623 int may_enter_fs = gfp_mask & __GFP_FS;
1624 int may_perform_io = gfp_mask & __GFP_IO;
1625 struct zoneref *z;
1626 struct zone *zone;
1627 enum compact_result rc = COMPACT_SKIPPED;
1628 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1629
1630 *contended = COMPACT_CONTENDED_NONE;
1631
1632 /* Check if the GFP flags allow compaction */
1633 if (!order || !may_enter_fs || !may_perform_io)
1634 return COMPACT_SKIPPED;
1635
1636 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1637
1638 /* Compact each zone in the list */
1639 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1640 ac->nodemask) {
1641 enum compact_result status;
1642 int zone_contended;
1643
1644 if (compaction_deferred(zone, order)) {
1645 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1646 continue;
1647 }
1648
1649 status = compact_zone_order(zone, order, gfp_mask, mode,
1650 &zone_contended, alloc_flags,
1651 ac_classzone_idx(ac));
1652 rc = max(status, rc);
1653 /*
1654 * It takes at least one zone that wasn't lock contended
1655 * to clear all_zones_contended.
1656 */
1657 all_zones_contended &= zone_contended;
1658
1659 /* If a normal allocation would succeed, stop compacting */
1660 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1661 ac_classzone_idx(ac), alloc_flags)) {
1662 /*
1663 * We think the allocation will succeed in this zone,
1664 * but it is not certain, hence the false. The caller
1665 * will repeat this with true if allocation indeed
1666 * succeeds in this zone.
1667 */
1668 compaction_defer_reset(zone, order, false);
1669 /*
1670 * It is possible that async compaction aborted due to
1671 * need_resched() and the watermarks were ok thanks to
1672 * somebody else freeing memory. The allocation can
1673 * however still fail so we better signal the
1674 * need_resched() contention anyway (this will not
1675 * prevent the allocation attempt).
1676 */
1677 if (zone_contended == COMPACT_CONTENDED_SCHED)
1678 *contended = COMPACT_CONTENDED_SCHED;
1679
1680 goto break_loop;
1681 }
1682
1683 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1684 status == COMPACT_PARTIAL_SKIPPED)) {
1685 /*
1686 * We think that allocation won't succeed in this zone
1687 * so we defer compaction there. If it ends up
1688 * succeeding after all, it will be reset.
1689 */
1690 defer_compaction(zone, order);
1691 }
1692
1693 /*
1694 * We might have stopped compacting due to need_resched() in
1695 * async compaction, or due to a fatal signal detected. In that
1696 * case do not try further zones and signal need_resched()
1697 * contention.
1698 */
1699 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1700 || fatal_signal_pending(current)) {
1701 *contended = COMPACT_CONTENDED_SCHED;
1702 goto break_loop;
1703 }
1704
1705 continue;
1706 break_loop:
1707 /*
1708 * We might not have tried all the zones, so be conservative
1709 * and assume they are not all lock contended.
1710 */
1711 all_zones_contended = 0;
1712 break;
1713 }
1714
1715 /*
1716 * If at least one zone wasn't deferred or skipped, we report if all
1717 * zones that were tried were lock contended.
1718 */
1719 if (rc > COMPACT_INACTIVE && all_zones_contended)
1720 *contended = COMPACT_CONTENDED_LOCK;
1721
1722 return rc;
1723 }
1724
1725
1726 /* Compact all zones within a node */
1727 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1728 {
1729 int zoneid;
1730 struct zone *zone;
1731
1732 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1733
1734 zone = &pgdat->node_zones[zoneid];
1735 if (!populated_zone(zone))
1736 continue;
1737
1738 cc->nr_freepages = 0;
1739 cc->nr_migratepages = 0;
1740 cc->zone = zone;
1741 INIT_LIST_HEAD(&cc->freepages);
1742 INIT_LIST_HEAD(&cc->migratepages);
1743
1744 /*
1745 * When called via /proc/sys/vm/compact_memory
1746 * this makes sure we compact the whole zone regardless of
1747 * cached scanner positions.
1748 */
1749 if (is_via_compact_memory(cc->order))
1750 __reset_isolation_suitable(zone);
1751
1752 if (is_via_compact_memory(cc->order) ||
1753 !compaction_deferred(zone, cc->order))
1754 compact_zone(zone, cc);
1755
1756 VM_BUG_ON(!list_empty(&cc->freepages));
1757 VM_BUG_ON(!list_empty(&cc->migratepages));
1758
1759 if (is_via_compact_memory(cc->order))
1760 continue;
1761
1762 if (zone_watermark_ok(zone, cc->order,
1763 low_wmark_pages(zone), 0, 0))
1764 compaction_defer_reset(zone, cc->order, false);
1765 }
1766 }
1767
1768 void compact_pgdat(pg_data_t *pgdat, int order)
1769 {
1770 struct compact_control cc = {
1771 .order = order,
1772 .mode = MIGRATE_ASYNC,
1773 };
1774
1775 if (!order)
1776 return;
1777
1778 __compact_pgdat(pgdat, &cc);
1779 }
1780
1781 static void compact_node(int nid)
1782 {
1783 struct compact_control cc = {
1784 .order = -1,
1785 .mode = MIGRATE_SYNC,
1786 .ignore_skip_hint = true,
1787 };
1788
1789 __compact_pgdat(NODE_DATA(nid), &cc);
1790 }
1791
1792 /* Compact all nodes in the system */
1793 static void compact_nodes(void)
1794 {
1795 int nid;
1796
1797 /* Flush pending updates to the LRU lists */
1798 lru_add_drain_all();
1799
1800 for_each_online_node(nid)
1801 compact_node(nid);
1802 }
1803
1804 /* The written value is actually unused, all memory is compacted */
1805 int sysctl_compact_memory;
1806
1807 /*
1808 * This is the entry point for compacting all nodes via
1809 * /proc/sys/vm/compact_memory
1810 */
1811 int sysctl_compaction_handler(struct ctl_table *table, int write,
1812 void __user *buffer, size_t *length, loff_t *ppos)
1813 {
1814 if (write)
1815 compact_nodes();
1816
1817 return 0;
1818 }
1819
1820 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1821 void __user *buffer, size_t *length, loff_t *ppos)
1822 {
1823 proc_dointvec_minmax(table, write, buffer, length, ppos);
1824
1825 return 0;
1826 }
1827
1828 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1829 static ssize_t sysfs_compact_node(struct device *dev,
1830 struct device_attribute *attr,
1831 const char *buf, size_t count)
1832 {
1833 int nid = dev->id;
1834
1835 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1836 /* Flush pending updates to the LRU lists */
1837 lru_add_drain_all();
1838
1839 compact_node(nid);
1840 }
1841
1842 return count;
1843 }
1844 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1845
1846 int compaction_register_node(struct node *node)
1847 {
1848 return device_create_file(&node->dev, &dev_attr_compact);
1849 }
1850
1851 void compaction_unregister_node(struct node *node)
1852 {
1853 return device_remove_file(&node->dev, &dev_attr_compact);
1854 }
1855 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1856
1857 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1858 {
1859 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1860 }
1861
1862 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1863 {
1864 int zoneid;
1865 struct zone *zone;
1866 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1867
1868 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1869 zone = &pgdat->node_zones[zoneid];
1870
1871 if (!populated_zone(zone))
1872 continue;
1873
1874 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1875 classzone_idx) == COMPACT_CONTINUE)
1876 return true;
1877 }
1878
1879 return false;
1880 }
1881
1882 static void kcompactd_do_work(pg_data_t *pgdat)
1883 {
1884 /*
1885 * With no special task, compact all zones so that a page of requested
1886 * order is allocatable.
1887 */
1888 int zoneid;
1889 struct zone *zone;
1890 struct compact_control cc = {
1891 .order = pgdat->kcompactd_max_order,
1892 .classzone_idx = pgdat->kcompactd_classzone_idx,
1893 .mode = MIGRATE_SYNC_LIGHT,
1894 .ignore_skip_hint = true,
1895
1896 };
1897 bool success = false;
1898
1899 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1900 cc.classzone_idx);
1901 count_vm_event(KCOMPACTD_WAKE);
1902
1903 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1904 int status;
1905
1906 zone = &pgdat->node_zones[zoneid];
1907 if (!populated_zone(zone))
1908 continue;
1909
1910 if (compaction_deferred(zone, cc.order))
1911 continue;
1912
1913 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1914 COMPACT_CONTINUE)
1915 continue;
1916
1917 cc.nr_freepages = 0;
1918 cc.nr_migratepages = 0;
1919 cc.zone = zone;
1920 INIT_LIST_HEAD(&cc.freepages);
1921 INIT_LIST_HEAD(&cc.migratepages);
1922
1923 if (kthread_should_stop())
1924 return;
1925 status = compact_zone(zone, &cc);
1926
1927 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1928 cc.classzone_idx, 0)) {
1929 success = true;
1930 compaction_defer_reset(zone, cc.order, false);
1931 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1932 /*
1933 * We use sync migration mode here, so we defer like
1934 * sync direct compaction does.
1935 */
1936 defer_compaction(zone, cc.order);
1937 }
1938
1939 VM_BUG_ON(!list_empty(&cc.freepages));
1940 VM_BUG_ON(!list_empty(&cc.migratepages));
1941 }
1942
1943 /*
1944 * Regardless of success, we are done until woken up next. But remember
1945 * the requested order/classzone_idx in case it was higher/tighter than
1946 * our current ones
1947 */
1948 if (pgdat->kcompactd_max_order <= cc.order)
1949 pgdat->kcompactd_max_order = 0;
1950 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1951 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1952 }
1953
1954 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1955 {
1956 if (!order)
1957 return;
1958
1959 if (pgdat->kcompactd_max_order < order)
1960 pgdat->kcompactd_max_order = order;
1961
1962 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1963 pgdat->kcompactd_classzone_idx = classzone_idx;
1964
1965 if (!waitqueue_active(&pgdat->kcompactd_wait))
1966 return;
1967
1968 if (!kcompactd_node_suitable(pgdat))
1969 return;
1970
1971 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1972 classzone_idx);
1973 wake_up_interruptible(&pgdat->kcompactd_wait);
1974 }
1975
1976 /*
1977 * The background compaction daemon, started as a kernel thread
1978 * from the init process.
1979 */
1980 static int kcompactd(void *p)
1981 {
1982 pg_data_t *pgdat = (pg_data_t*)p;
1983 struct task_struct *tsk = current;
1984
1985 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1986
1987 if (!cpumask_empty(cpumask))
1988 set_cpus_allowed_ptr(tsk, cpumask);
1989
1990 set_freezable();
1991
1992 pgdat->kcompactd_max_order = 0;
1993 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1994
1995 while (!kthread_should_stop()) {
1996 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1997 wait_event_freezable(pgdat->kcompactd_wait,
1998 kcompactd_work_requested(pgdat));
1999
2000 kcompactd_do_work(pgdat);
2001 }
2002
2003 return 0;
2004 }
2005
2006 /*
2007 * This kcompactd start function will be called by init and node-hot-add.
2008 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2009 */
2010 int kcompactd_run(int nid)
2011 {
2012 pg_data_t *pgdat = NODE_DATA(nid);
2013 int ret = 0;
2014
2015 if (pgdat->kcompactd)
2016 return 0;
2017
2018 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2019 if (IS_ERR(pgdat->kcompactd)) {
2020 pr_err("Failed to start kcompactd on node %d\n", nid);
2021 ret = PTR_ERR(pgdat->kcompactd);
2022 pgdat->kcompactd = NULL;
2023 }
2024 return ret;
2025 }
2026
2027 /*
2028 * Called by memory hotplug when all memory in a node is offlined. Caller must
2029 * hold mem_hotplug_begin/end().
2030 */
2031 void kcompactd_stop(int nid)
2032 {
2033 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2034
2035 if (kcompactd) {
2036 kthread_stop(kcompactd);
2037 NODE_DATA(nid)->kcompactd = NULL;
2038 }
2039 }
2040
2041 /*
2042 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2043 * not required for correctness. So if the last cpu in a node goes
2044 * away, we get changed to run anywhere: as the first one comes back,
2045 * restore their cpu bindings.
2046 */
2047 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2048 void *hcpu)
2049 {
2050 int nid;
2051
2052 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2053 for_each_node_state(nid, N_MEMORY) {
2054 pg_data_t *pgdat = NODE_DATA(nid);
2055 const struct cpumask *mask;
2056
2057 mask = cpumask_of_node(pgdat->node_id);
2058
2059 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2060 /* One of our CPUs online: restore mask */
2061 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2062 }
2063 }
2064 return NOTIFY_OK;
2065 }
2066
2067 static int __init kcompactd_init(void)
2068 {
2069 int nid;
2070
2071 for_each_node_state(nid, N_MEMORY)
2072 kcompactd_run(nid);
2073 hotcpu_notifier(cpu_callback, 0);
2074 return 0;
2075 }
2076 subsys_initcall(kcompactd_init)
2077
2078 #endif /* CONFIG_COMPACTION */
This page took 0.079394 seconds and 5 git commands to generate.