Restartable sequences: self-tests
[deliverable/linux.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110 }
111
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122 }
123
124 /*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150
151 int hwpoison_filter(struct page *p)
152 {
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 return 0;
171 }
172 #endif
173
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176 /*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
183 {
184 struct siginfo si;
185 int ret;
186
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
191 si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194 #endif
195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196
197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 si.si_code = BUS_MCEERR_AR;
199 ret = force_sig_info(SIGBUS, &si, current);
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
210 if (ret < 0)
211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 t->comm, t->pid, ret);
213 return ret;
214 }
215
216 /*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
220 void shake_page(struct page *p, int access)
221 {
222 if (!PageSlab(p)) {
223 lru_add_drain_all();
224 if (PageLRU(p))
225 return;
226 drain_all_pages(page_zone(p));
227 if (PageLRU(p) || is_free_buddy_page(p))
228 return;
229 }
230
231 /*
232 * Only call shrink_node_slabs here (which would also shrink
233 * other caches) if access is not potentially fatal.
234 */
235 if (access)
236 drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239
240 /*
241 * Kill all processes that have a poisoned page mapped and then isolate
242 * the page.
243 *
244 * General strategy:
245 * Find all processes having the page mapped and kill them.
246 * But we keep a page reference around so that the page is not
247 * actually freed yet.
248 * Then stash the page away
249 *
250 * There's no convenient way to get back to mapped processes
251 * from the VMAs. So do a brute-force search over all
252 * running processes.
253 *
254 * Remember that machine checks are not common (or rather
255 * if they are common you have other problems), so this shouldn't
256 * be a performance issue.
257 *
258 * Also there are some races possible while we get from the
259 * error detection to actually handle it.
260 */
261
262 struct to_kill {
263 struct list_head nd;
264 struct task_struct *tsk;
265 unsigned long addr;
266 char addr_valid;
267 };
268
269 /*
270 * Failure handling: if we can't find or can't kill a process there's
271 * not much we can do. We just print a message and ignore otherwise.
272 */
273
274 /*
275 * Schedule a process for later kill.
276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277 * TBD would GFP_NOIO be enough?
278 */
279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 struct vm_area_struct *vma,
281 struct list_head *to_kill,
282 struct to_kill **tkc)
283 {
284 struct to_kill *tk;
285
286 if (*tkc) {
287 tk = *tkc;
288 *tkc = NULL;
289 } else {
290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 if (!tk) {
292 pr_err("Memory failure: Out of memory while machine check handling\n");
293 return;
294 }
295 }
296 tk->addr = page_address_in_vma(p, vma);
297 tk->addr_valid = 1;
298
299 /*
300 * In theory we don't have to kill when the page was
301 * munmaped. But it could be also a mremap. Since that's
302 * likely very rare kill anyways just out of paranoia, but use
303 * a SIGKILL because the error is not contained anymore.
304 */
305 if (tk->addr == -EFAULT) {
306 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
307 page_to_pfn(p), tsk->comm);
308 tk->addr_valid = 0;
309 }
310 get_task_struct(tsk);
311 tk->tsk = tsk;
312 list_add_tail(&tk->nd, to_kill);
313 }
314
315 /*
316 * Kill the processes that have been collected earlier.
317 *
318 * Only do anything when DOIT is set, otherwise just free the list
319 * (this is used for clean pages which do not need killing)
320 * Also when FAIL is set do a force kill because something went
321 * wrong earlier.
322 */
323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 int fail, struct page *page, unsigned long pfn,
325 int flags)
326 {
327 struct to_kill *tk, *next;
328
329 list_for_each_entry_safe (tk, next, to_kill, nd) {
330 if (forcekill) {
331 /*
332 * In case something went wrong with munmapping
333 * make sure the process doesn't catch the
334 * signal and then access the memory. Just kill it.
335 */
336 if (fail || tk->addr_valid == 0) {
337 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 pfn, tk->tsk->comm, tk->tsk->pid);
339 force_sig(SIGKILL, tk->tsk);
340 }
341
342 /*
343 * In theory the process could have mapped
344 * something else on the address in-between. We could
345 * check for that, but we need to tell the
346 * process anyways.
347 */
348 else if (kill_proc(tk->tsk, tk->addr, trapno,
349 pfn, page, flags) < 0)
350 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 pfn, tk->tsk->comm, tk->tsk->pid);
352 }
353 put_task_struct(tk->tsk);
354 kfree(tk);
355 }
356 }
357
358 /*
359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360 * on behalf of the thread group. Return task_struct of the (first found)
361 * dedicated thread if found, and return NULL otherwise.
362 *
363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364 * have to call rcu_read_lock/unlock() in this function.
365 */
366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
367 {
368 struct task_struct *t;
369
370 for_each_thread(tsk, t)
371 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 return t;
373 return NULL;
374 }
375
376 /*
377 * Determine whether a given process is "early kill" process which expects
378 * to be signaled when some page under the process is hwpoisoned.
379 * Return task_struct of the dedicated thread (main thread unless explicitly
380 * specified) if the process is "early kill," and otherwise returns NULL.
381 */
382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 int force_early)
384 {
385 struct task_struct *t;
386 if (!tsk->mm)
387 return NULL;
388 if (force_early)
389 return tsk;
390 t = find_early_kill_thread(tsk);
391 if (t)
392 return t;
393 if (sysctl_memory_failure_early_kill)
394 return tsk;
395 return NULL;
396 }
397
398 /*
399 * Collect processes when the error hit an anonymous page.
400 */
401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 struct to_kill **tkc, int force_early)
403 {
404 struct vm_area_struct *vma;
405 struct task_struct *tsk;
406 struct anon_vma *av;
407 pgoff_t pgoff;
408
409 av = page_lock_anon_vma_read(page);
410 if (av == NULL) /* Not actually mapped anymore */
411 return;
412
413 pgoff = page_to_pgoff(page);
414 read_lock(&tasklist_lock);
415 for_each_process (tsk) {
416 struct anon_vma_chain *vmac;
417 struct task_struct *t = task_early_kill(tsk, force_early);
418
419 if (!t)
420 continue;
421 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 pgoff, pgoff) {
423 vma = vmac->vma;
424 if (!page_mapped_in_vma(page, vma))
425 continue;
426 if (vma->vm_mm == t->mm)
427 add_to_kill(t, page, vma, to_kill, tkc);
428 }
429 }
430 read_unlock(&tasklist_lock);
431 page_unlock_anon_vma_read(av);
432 }
433
434 /*
435 * Collect processes when the error hit a file mapped page.
436 */
437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 struct to_kill **tkc, int force_early)
439 {
440 struct vm_area_struct *vma;
441 struct task_struct *tsk;
442 struct address_space *mapping = page->mapping;
443
444 i_mmap_lock_read(mapping);
445 read_lock(&tasklist_lock);
446 for_each_process(tsk) {
447 pgoff_t pgoff = page_to_pgoff(page);
448 struct task_struct *t = task_early_kill(tsk, force_early);
449
450 if (!t)
451 continue;
452 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 pgoff) {
454 /*
455 * Send early kill signal to tasks where a vma covers
456 * the page but the corrupted page is not necessarily
457 * mapped it in its pte.
458 * Assume applications who requested early kill want
459 * to be informed of all such data corruptions.
460 */
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
463 }
464 }
465 read_unlock(&tasklist_lock);
466 i_mmap_unlock_read(mapping);
467 }
468
469 /*
470 * Collect the processes who have the corrupted page mapped to kill.
471 * This is done in two steps for locking reasons.
472 * First preallocate one tokill structure outside the spin locks,
473 * so that we can kill at least one process reasonably reliable.
474 */
475 static void collect_procs(struct page *page, struct list_head *tokill,
476 int force_early)
477 {
478 struct to_kill *tk;
479
480 if (!page->mapping)
481 return;
482
483 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 if (!tk)
485 return;
486 if (PageAnon(page))
487 collect_procs_anon(page, tokill, &tk, force_early);
488 else
489 collect_procs_file(page, tokill, &tk, force_early);
490 kfree(tk);
491 }
492
493 static const char *action_name[] = {
494 [MF_IGNORED] = "Ignored",
495 [MF_FAILED] = "Failed",
496 [MF_DELAYED] = "Delayed",
497 [MF_RECOVERED] = "Recovered",
498 };
499
500 static const char * const action_page_types[] = {
501 [MF_MSG_KERNEL] = "reserved kernel page",
502 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
503 [MF_MSG_SLAB] = "kernel slab page",
504 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
505 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
506 [MF_MSG_HUGE] = "huge page",
507 [MF_MSG_FREE_HUGE] = "free huge page",
508 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
509 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
510 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
511 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
512 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
513 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
514 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
515 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
516 [MF_MSG_CLEAN_LRU] = "clean LRU page",
517 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
518 [MF_MSG_BUDDY] = "free buddy page",
519 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
520 [MF_MSG_UNKNOWN] = "unknown page",
521 };
522
523 /*
524 * XXX: It is possible that a page is isolated from LRU cache,
525 * and then kept in swap cache or failed to remove from page cache.
526 * The page count will stop it from being freed by unpoison.
527 * Stress tests should be aware of this memory leak problem.
528 */
529 static int delete_from_lru_cache(struct page *p)
530 {
531 if (!isolate_lru_page(p)) {
532 /*
533 * Clear sensible page flags, so that the buddy system won't
534 * complain when the page is unpoison-and-freed.
535 */
536 ClearPageActive(p);
537 ClearPageUnevictable(p);
538 /*
539 * drop the page count elevated by isolate_lru_page()
540 */
541 put_page(p);
542 return 0;
543 }
544 return -EIO;
545 }
546
547 /*
548 * Error hit kernel page.
549 * Do nothing, try to be lucky and not touch this instead. For a few cases we
550 * could be more sophisticated.
551 */
552 static int me_kernel(struct page *p, unsigned long pfn)
553 {
554 return MF_IGNORED;
555 }
556
557 /*
558 * Page in unknown state. Do nothing.
559 */
560 static int me_unknown(struct page *p, unsigned long pfn)
561 {
562 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
563 return MF_FAILED;
564 }
565
566 /*
567 * Clean (or cleaned) page cache page.
568 */
569 static int me_pagecache_clean(struct page *p, unsigned long pfn)
570 {
571 int err;
572 int ret = MF_FAILED;
573 struct address_space *mapping;
574
575 delete_from_lru_cache(p);
576
577 /*
578 * For anonymous pages we're done the only reference left
579 * should be the one m_f() holds.
580 */
581 if (PageAnon(p))
582 return MF_RECOVERED;
583
584 /*
585 * Now truncate the page in the page cache. This is really
586 * more like a "temporary hole punch"
587 * Don't do this for block devices when someone else
588 * has a reference, because it could be file system metadata
589 * and that's not safe to truncate.
590 */
591 mapping = page_mapping(p);
592 if (!mapping) {
593 /*
594 * Page has been teared down in the meanwhile
595 */
596 return MF_FAILED;
597 }
598
599 /*
600 * Truncation is a bit tricky. Enable it per file system for now.
601 *
602 * Open: to take i_mutex or not for this? Right now we don't.
603 */
604 if (mapping->a_ops->error_remove_page) {
605 err = mapping->a_ops->error_remove_page(mapping, p);
606 if (err != 0) {
607 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
608 pfn, err);
609 } else if (page_has_private(p) &&
610 !try_to_release_page(p, GFP_NOIO)) {
611 pr_info("Memory failure: %#lx: failed to release buffers\n",
612 pfn);
613 } else {
614 ret = MF_RECOVERED;
615 }
616 } else {
617 /*
618 * If the file system doesn't support it just invalidate
619 * This fails on dirty or anything with private pages
620 */
621 if (invalidate_inode_page(p))
622 ret = MF_RECOVERED;
623 else
624 pr_info("Memory failure: %#lx: Failed to invalidate\n",
625 pfn);
626 }
627 return ret;
628 }
629
630 /*
631 * Dirty pagecache page
632 * Issues: when the error hit a hole page the error is not properly
633 * propagated.
634 */
635 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
636 {
637 struct address_space *mapping = page_mapping(p);
638
639 SetPageError(p);
640 /* TBD: print more information about the file. */
641 if (mapping) {
642 /*
643 * IO error will be reported by write(), fsync(), etc.
644 * who check the mapping.
645 * This way the application knows that something went
646 * wrong with its dirty file data.
647 *
648 * There's one open issue:
649 *
650 * The EIO will be only reported on the next IO
651 * operation and then cleared through the IO map.
652 * Normally Linux has two mechanisms to pass IO error
653 * first through the AS_EIO flag in the address space
654 * and then through the PageError flag in the page.
655 * Since we drop pages on memory failure handling the
656 * only mechanism open to use is through AS_AIO.
657 *
658 * This has the disadvantage that it gets cleared on
659 * the first operation that returns an error, while
660 * the PageError bit is more sticky and only cleared
661 * when the page is reread or dropped. If an
662 * application assumes it will always get error on
663 * fsync, but does other operations on the fd before
664 * and the page is dropped between then the error
665 * will not be properly reported.
666 *
667 * This can already happen even without hwpoisoned
668 * pages: first on metadata IO errors (which only
669 * report through AS_EIO) or when the page is dropped
670 * at the wrong time.
671 *
672 * So right now we assume that the application DTRT on
673 * the first EIO, but we're not worse than other parts
674 * of the kernel.
675 */
676 mapping_set_error(mapping, EIO);
677 }
678
679 return me_pagecache_clean(p, pfn);
680 }
681
682 /*
683 * Clean and dirty swap cache.
684 *
685 * Dirty swap cache page is tricky to handle. The page could live both in page
686 * cache and swap cache(ie. page is freshly swapped in). So it could be
687 * referenced concurrently by 2 types of PTEs:
688 * normal PTEs and swap PTEs. We try to handle them consistently by calling
689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
690 * and then
691 * - clear dirty bit to prevent IO
692 * - remove from LRU
693 * - but keep in the swap cache, so that when we return to it on
694 * a later page fault, we know the application is accessing
695 * corrupted data and shall be killed (we installed simple
696 * interception code in do_swap_page to catch it).
697 *
698 * Clean swap cache pages can be directly isolated. A later page fault will
699 * bring in the known good data from disk.
700 */
701 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
702 {
703 ClearPageDirty(p);
704 /* Trigger EIO in shmem: */
705 ClearPageUptodate(p);
706
707 if (!delete_from_lru_cache(p))
708 return MF_DELAYED;
709 else
710 return MF_FAILED;
711 }
712
713 static int me_swapcache_clean(struct page *p, unsigned long pfn)
714 {
715 delete_from_swap_cache(p);
716
717 if (!delete_from_lru_cache(p))
718 return MF_RECOVERED;
719 else
720 return MF_FAILED;
721 }
722
723 /*
724 * Huge pages. Needs work.
725 * Issues:
726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
727 * To narrow down kill region to one page, we need to break up pmd.
728 */
729 static int me_huge_page(struct page *p, unsigned long pfn)
730 {
731 int res = 0;
732 struct page *hpage = compound_head(p);
733
734 if (!PageHuge(hpage))
735 return MF_DELAYED;
736
737 /*
738 * We can safely recover from error on free or reserved (i.e.
739 * not in-use) hugepage by dequeuing it from freelist.
740 * To check whether a hugepage is in-use or not, we can't use
741 * page->lru because it can be used in other hugepage operations,
742 * such as __unmap_hugepage_range() and gather_surplus_pages().
743 * So instead we use page_mapping() and PageAnon().
744 * We assume that this function is called with page lock held,
745 * so there is no race between isolation and mapping/unmapping.
746 */
747 if (!(page_mapping(hpage) || PageAnon(hpage))) {
748 res = dequeue_hwpoisoned_huge_page(hpage);
749 if (!res)
750 return MF_RECOVERED;
751 }
752 return MF_DELAYED;
753 }
754
755 /*
756 * Various page states we can handle.
757 *
758 * A page state is defined by its current page->flags bits.
759 * The table matches them in order and calls the right handler.
760 *
761 * This is quite tricky because we can access page at any time
762 * in its live cycle, so all accesses have to be extremely careful.
763 *
764 * This is not complete. More states could be added.
765 * For any missing state don't attempt recovery.
766 */
767
768 #define dirty (1UL << PG_dirty)
769 #define sc (1UL << PG_swapcache)
770 #define unevict (1UL << PG_unevictable)
771 #define mlock (1UL << PG_mlocked)
772 #define writeback (1UL << PG_writeback)
773 #define lru (1UL << PG_lru)
774 #define swapbacked (1UL << PG_swapbacked)
775 #define head (1UL << PG_head)
776 #define slab (1UL << PG_slab)
777 #define reserved (1UL << PG_reserved)
778
779 static struct page_state {
780 unsigned long mask;
781 unsigned long res;
782 enum mf_action_page_type type;
783 int (*action)(struct page *p, unsigned long pfn);
784 } error_states[] = {
785 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
786 /*
787 * free pages are specially detected outside this table:
788 * PG_buddy pages only make a small fraction of all free pages.
789 */
790
791 /*
792 * Could in theory check if slab page is free or if we can drop
793 * currently unused objects without touching them. But just
794 * treat it as standard kernel for now.
795 */
796 { slab, slab, MF_MSG_SLAB, me_kernel },
797
798 { head, head, MF_MSG_HUGE, me_huge_page },
799
800 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
801 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
802
803 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
804 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
805
806 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
807 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
808
809 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
810 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
811
812 /*
813 * Catchall entry: must be at end.
814 */
815 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
816 };
817
818 #undef dirty
819 #undef sc
820 #undef unevict
821 #undef mlock
822 #undef writeback
823 #undef lru
824 #undef swapbacked
825 #undef head
826 #undef slab
827 #undef reserved
828
829 /*
830 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
831 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
832 */
833 static void action_result(unsigned long pfn, enum mf_action_page_type type,
834 enum mf_result result)
835 {
836 trace_memory_failure_event(pfn, type, result);
837
838 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
839 pfn, action_page_types[type], action_name[result]);
840 }
841
842 static int page_action(struct page_state *ps, struct page *p,
843 unsigned long pfn)
844 {
845 int result;
846 int count;
847
848 result = ps->action(p, pfn);
849
850 count = page_count(p) - 1;
851 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
852 count--;
853 if (count != 0) {
854 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
855 pfn, action_page_types[ps->type], count);
856 result = MF_FAILED;
857 }
858 action_result(pfn, ps->type, result);
859
860 /* Could do more checks here if page looks ok */
861 /*
862 * Could adjust zone counters here to correct for the missing page.
863 */
864
865 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
866 }
867
868 /**
869 * get_hwpoison_page() - Get refcount for memory error handling:
870 * @page: raw error page (hit by memory error)
871 *
872 * Return: return 0 if failed to grab the refcount, otherwise true (some
873 * non-zero value.)
874 */
875 int get_hwpoison_page(struct page *page)
876 {
877 struct page *head = compound_head(page);
878
879 if (!PageHuge(head) && PageTransHuge(head)) {
880 /*
881 * Non anonymous thp exists only in allocation/free time. We
882 * can't handle such a case correctly, so let's give it up.
883 * This should be better than triggering BUG_ON when kernel
884 * tries to touch the "partially handled" page.
885 */
886 if (!PageAnon(head)) {
887 pr_err("Memory failure: %#lx: non anonymous thp\n",
888 page_to_pfn(page));
889 return 0;
890 }
891 }
892
893 if (get_page_unless_zero(head)) {
894 if (head == compound_head(page))
895 return 1;
896
897 pr_info("Memory failure: %#lx cannot catch tail\n",
898 page_to_pfn(page));
899 put_page(head);
900 }
901
902 return 0;
903 }
904 EXPORT_SYMBOL_GPL(get_hwpoison_page);
905
906 /*
907 * Do all that is necessary to remove user space mappings. Unmap
908 * the pages and send SIGBUS to the processes if the data was dirty.
909 */
910 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
911 int trapno, int flags, struct page **hpagep)
912 {
913 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
914 struct address_space *mapping;
915 LIST_HEAD(tokill);
916 int ret;
917 int kill = 1, forcekill;
918 struct page *hpage = *hpagep;
919
920 /*
921 * Here we are interested only in user-mapped pages, so skip any
922 * other types of pages.
923 */
924 if (PageReserved(p) || PageSlab(p))
925 return SWAP_SUCCESS;
926 if (!(PageLRU(hpage) || PageHuge(p)))
927 return SWAP_SUCCESS;
928
929 /*
930 * This check implies we don't kill processes if their pages
931 * are in the swap cache early. Those are always late kills.
932 */
933 if (!page_mapped(hpage))
934 return SWAP_SUCCESS;
935
936 if (PageKsm(p)) {
937 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
938 return SWAP_FAIL;
939 }
940
941 if (PageSwapCache(p)) {
942 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
943 pfn);
944 ttu |= TTU_IGNORE_HWPOISON;
945 }
946
947 /*
948 * Propagate the dirty bit from PTEs to struct page first, because we
949 * need this to decide if we should kill or just drop the page.
950 * XXX: the dirty test could be racy: set_page_dirty() may not always
951 * be called inside page lock (it's recommended but not enforced).
952 */
953 mapping = page_mapping(hpage);
954 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
955 mapping_cap_writeback_dirty(mapping)) {
956 if (page_mkclean(hpage)) {
957 SetPageDirty(hpage);
958 } else {
959 kill = 0;
960 ttu |= TTU_IGNORE_HWPOISON;
961 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
962 pfn);
963 }
964 }
965
966 /*
967 * First collect all the processes that have the page
968 * mapped in dirty form. This has to be done before try_to_unmap,
969 * because ttu takes the rmap data structures down.
970 *
971 * Error handling: We ignore errors here because
972 * there's nothing that can be done.
973 */
974 if (kill)
975 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
976
977 ret = try_to_unmap(hpage, ttu);
978 if (ret != SWAP_SUCCESS)
979 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
980 pfn, page_mapcount(hpage));
981
982 /*
983 * Now that the dirty bit has been propagated to the
984 * struct page and all unmaps done we can decide if
985 * killing is needed or not. Only kill when the page
986 * was dirty or the process is not restartable,
987 * otherwise the tokill list is merely
988 * freed. When there was a problem unmapping earlier
989 * use a more force-full uncatchable kill to prevent
990 * any accesses to the poisoned memory.
991 */
992 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
993 kill_procs(&tokill, forcekill, trapno,
994 ret != SWAP_SUCCESS, p, pfn, flags);
995
996 return ret;
997 }
998
999 static void set_page_hwpoison_huge_page(struct page *hpage)
1000 {
1001 int i;
1002 int nr_pages = 1 << compound_order(hpage);
1003 for (i = 0; i < nr_pages; i++)
1004 SetPageHWPoison(hpage + i);
1005 }
1006
1007 static void clear_page_hwpoison_huge_page(struct page *hpage)
1008 {
1009 int i;
1010 int nr_pages = 1 << compound_order(hpage);
1011 for (i = 0; i < nr_pages; i++)
1012 ClearPageHWPoison(hpage + i);
1013 }
1014
1015 /**
1016 * memory_failure - Handle memory failure of a page.
1017 * @pfn: Page Number of the corrupted page
1018 * @trapno: Trap number reported in the signal to user space.
1019 * @flags: fine tune action taken
1020 *
1021 * This function is called by the low level machine check code
1022 * of an architecture when it detects hardware memory corruption
1023 * of a page. It tries its best to recover, which includes
1024 * dropping pages, killing processes etc.
1025 *
1026 * The function is primarily of use for corruptions that
1027 * happen outside the current execution context (e.g. when
1028 * detected by a background scrubber)
1029 *
1030 * Must run in process context (e.g. a work queue) with interrupts
1031 * enabled and no spinlocks hold.
1032 */
1033 int memory_failure(unsigned long pfn, int trapno, int flags)
1034 {
1035 struct page_state *ps;
1036 struct page *p;
1037 struct page *hpage;
1038 struct page *orig_head;
1039 int res;
1040 unsigned int nr_pages;
1041 unsigned long page_flags;
1042
1043 if (!sysctl_memory_failure_recovery)
1044 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1045
1046 if (!pfn_valid(pfn)) {
1047 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1048 pfn);
1049 return -ENXIO;
1050 }
1051
1052 p = pfn_to_page(pfn);
1053 orig_head = hpage = compound_head(p);
1054 if (TestSetPageHWPoison(p)) {
1055 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1056 pfn);
1057 return 0;
1058 }
1059
1060 /*
1061 * Currently errors on hugetlbfs pages are measured in hugepage units,
1062 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1063 * transparent hugepages, they are supposed to be split and error
1064 * measurement is done in normal page units. So nr_pages should be one
1065 * in this case.
1066 */
1067 if (PageHuge(p))
1068 nr_pages = 1 << compound_order(hpage);
1069 else /* normal page or thp */
1070 nr_pages = 1;
1071 num_poisoned_pages_add(nr_pages);
1072
1073 /*
1074 * We need/can do nothing about count=0 pages.
1075 * 1) it's a free page, and therefore in safe hand:
1076 * prep_new_page() will be the gate keeper.
1077 * 2) it's a free hugepage, which is also safe:
1078 * an affected hugepage will be dequeued from hugepage freelist,
1079 * so there's no concern about reusing it ever after.
1080 * 3) it's part of a non-compound high order page.
1081 * Implies some kernel user: cannot stop them from
1082 * R/W the page; let's pray that the page has been
1083 * used and will be freed some time later.
1084 * In fact it's dangerous to directly bump up page count from 0,
1085 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1086 */
1087 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1088 if (is_free_buddy_page(p)) {
1089 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1090 return 0;
1091 } else if (PageHuge(hpage)) {
1092 /*
1093 * Check "filter hit" and "race with other subpage."
1094 */
1095 lock_page(hpage);
1096 if (PageHWPoison(hpage)) {
1097 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1098 || (p != hpage && TestSetPageHWPoison(hpage))) {
1099 num_poisoned_pages_sub(nr_pages);
1100 unlock_page(hpage);
1101 return 0;
1102 }
1103 }
1104 set_page_hwpoison_huge_page(hpage);
1105 res = dequeue_hwpoisoned_huge_page(hpage);
1106 action_result(pfn, MF_MSG_FREE_HUGE,
1107 res ? MF_IGNORED : MF_DELAYED);
1108 unlock_page(hpage);
1109 return res;
1110 } else {
1111 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1112 return -EBUSY;
1113 }
1114 }
1115
1116 if (!PageHuge(p) && PageTransHuge(hpage)) {
1117 lock_page(hpage);
1118 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1119 unlock_page(hpage);
1120 if (!PageAnon(hpage))
1121 pr_err("Memory failure: %#lx: non anonymous thp\n",
1122 pfn);
1123 else
1124 pr_err("Memory failure: %#lx: thp split failed\n",
1125 pfn);
1126 if (TestClearPageHWPoison(p))
1127 num_poisoned_pages_sub(nr_pages);
1128 put_hwpoison_page(p);
1129 return -EBUSY;
1130 }
1131 unlock_page(hpage);
1132 get_hwpoison_page(p);
1133 put_hwpoison_page(hpage);
1134 VM_BUG_ON_PAGE(!page_count(p), p);
1135 hpage = compound_head(p);
1136 }
1137
1138 /*
1139 * We ignore non-LRU pages for good reasons.
1140 * - PG_locked is only well defined for LRU pages and a few others
1141 * - to avoid races with __SetPageLocked()
1142 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1143 * The check (unnecessarily) ignores LRU pages being isolated and
1144 * walked by the page reclaim code, however that's not a big loss.
1145 */
1146 if (!PageHuge(p)) {
1147 if (!PageLRU(p))
1148 shake_page(p, 0);
1149 if (!PageLRU(p)) {
1150 /*
1151 * shake_page could have turned it free.
1152 */
1153 if (is_free_buddy_page(p)) {
1154 if (flags & MF_COUNT_INCREASED)
1155 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1156 else
1157 action_result(pfn, MF_MSG_BUDDY_2ND,
1158 MF_DELAYED);
1159 return 0;
1160 }
1161 }
1162 }
1163
1164 lock_page(hpage);
1165
1166 /*
1167 * The page could have changed compound pages during the locking.
1168 * If this happens just bail out.
1169 */
1170 if (PageCompound(p) && compound_head(p) != orig_head) {
1171 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1172 res = -EBUSY;
1173 goto out;
1174 }
1175
1176 /*
1177 * We use page flags to determine what action should be taken, but
1178 * the flags can be modified by the error containment action. One
1179 * example is an mlocked page, where PG_mlocked is cleared by
1180 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1181 * correctly, we save a copy of the page flags at this time.
1182 */
1183 page_flags = p->flags;
1184
1185 /*
1186 * unpoison always clear PG_hwpoison inside page lock
1187 */
1188 if (!PageHWPoison(p)) {
1189 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1190 num_poisoned_pages_sub(nr_pages);
1191 unlock_page(hpage);
1192 put_hwpoison_page(hpage);
1193 return 0;
1194 }
1195 if (hwpoison_filter(p)) {
1196 if (TestClearPageHWPoison(p))
1197 num_poisoned_pages_sub(nr_pages);
1198 unlock_page(hpage);
1199 put_hwpoison_page(hpage);
1200 return 0;
1201 }
1202
1203 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1204 goto identify_page_state;
1205
1206 /*
1207 * For error on the tail page, we should set PG_hwpoison
1208 * on the head page to show that the hugepage is hwpoisoned
1209 */
1210 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1211 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1212 unlock_page(hpage);
1213 put_hwpoison_page(hpage);
1214 return 0;
1215 }
1216 /*
1217 * Set PG_hwpoison on all pages in an error hugepage,
1218 * because containment is done in hugepage unit for now.
1219 * Since we have done TestSetPageHWPoison() for the head page with
1220 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1221 */
1222 if (PageHuge(p))
1223 set_page_hwpoison_huge_page(hpage);
1224
1225 /*
1226 * It's very difficult to mess with pages currently under IO
1227 * and in many cases impossible, so we just avoid it here.
1228 */
1229 wait_on_page_writeback(p);
1230
1231 /*
1232 * Now take care of user space mappings.
1233 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1234 *
1235 * When the raw error page is thp tail page, hpage points to the raw
1236 * page after thp split.
1237 */
1238 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1239 != SWAP_SUCCESS) {
1240 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1241 res = -EBUSY;
1242 goto out;
1243 }
1244
1245 /*
1246 * Torn down by someone else?
1247 */
1248 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1249 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1250 res = -EBUSY;
1251 goto out;
1252 }
1253
1254 identify_page_state:
1255 res = -EBUSY;
1256 /*
1257 * The first check uses the current page flags which may not have any
1258 * relevant information. The second check with the saved page flagss is
1259 * carried out only if the first check can't determine the page status.
1260 */
1261 for (ps = error_states;; ps++)
1262 if ((p->flags & ps->mask) == ps->res)
1263 break;
1264
1265 page_flags |= (p->flags & (1UL << PG_dirty));
1266
1267 if (!ps->mask)
1268 for (ps = error_states;; ps++)
1269 if ((page_flags & ps->mask) == ps->res)
1270 break;
1271 res = page_action(ps, p, pfn);
1272 out:
1273 unlock_page(hpage);
1274 return res;
1275 }
1276 EXPORT_SYMBOL_GPL(memory_failure);
1277
1278 #define MEMORY_FAILURE_FIFO_ORDER 4
1279 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1280
1281 struct memory_failure_entry {
1282 unsigned long pfn;
1283 int trapno;
1284 int flags;
1285 };
1286
1287 struct memory_failure_cpu {
1288 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1289 MEMORY_FAILURE_FIFO_SIZE);
1290 spinlock_t lock;
1291 struct work_struct work;
1292 };
1293
1294 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1295
1296 /**
1297 * memory_failure_queue - Schedule handling memory failure of a page.
1298 * @pfn: Page Number of the corrupted page
1299 * @trapno: Trap number reported in the signal to user space.
1300 * @flags: Flags for memory failure handling
1301 *
1302 * This function is called by the low level hardware error handler
1303 * when it detects hardware memory corruption of a page. It schedules
1304 * the recovering of error page, including dropping pages, killing
1305 * processes etc.
1306 *
1307 * The function is primarily of use for corruptions that
1308 * happen outside the current execution context (e.g. when
1309 * detected by a background scrubber)
1310 *
1311 * Can run in IRQ context.
1312 */
1313 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1314 {
1315 struct memory_failure_cpu *mf_cpu;
1316 unsigned long proc_flags;
1317 struct memory_failure_entry entry = {
1318 .pfn = pfn,
1319 .trapno = trapno,
1320 .flags = flags,
1321 };
1322
1323 mf_cpu = &get_cpu_var(memory_failure_cpu);
1324 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1325 if (kfifo_put(&mf_cpu->fifo, entry))
1326 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1327 else
1328 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1329 pfn);
1330 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1331 put_cpu_var(memory_failure_cpu);
1332 }
1333 EXPORT_SYMBOL_GPL(memory_failure_queue);
1334
1335 static void memory_failure_work_func(struct work_struct *work)
1336 {
1337 struct memory_failure_cpu *mf_cpu;
1338 struct memory_failure_entry entry = { 0, };
1339 unsigned long proc_flags;
1340 int gotten;
1341
1342 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1343 for (;;) {
1344 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1346 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1347 if (!gotten)
1348 break;
1349 if (entry.flags & MF_SOFT_OFFLINE)
1350 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1351 else
1352 memory_failure(entry.pfn, entry.trapno, entry.flags);
1353 }
1354 }
1355
1356 static int __init memory_failure_init(void)
1357 {
1358 struct memory_failure_cpu *mf_cpu;
1359 int cpu;
1360
1361 for_each_possible_cpu(cpu) {
1362 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1363 spin_lock_init(&mf_cpu->lock);
1364 INIT_KFIFO(mf_cpu->fifo);
1365 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1366 }
1367
1368 return 0;
1369 }
1370 core_initcall(memory_failure_init);
1371
1372 #define unpoison_pr_info(fmt, pfn, rs) \
1373 ({ \
1374 if (__ratelimit(rs)) \
1375 pr_info(fmt, pfn); \
1376 })
1377
1378 /**
1379 * unpoison_memory - Unpoison a previously poisoned page
1380 * @pfn: Page number of the to be unpoisoned page
1381 *
1382 * Software-unpoison a page that has been poisoned by
1383 * memory_failure() earlier.
1384 *
1385 * This is only done on the software-level, so it only works
1386 * for linux injected failures, not real hardware failures
1387 *
1388 * Returns 0 for success, otherwise -errno.
1389 */
1390 int unpoison_memory(unsigned long pfn)
1391 {
1392 struct page *page;
1393 struct page *p;
1394 int freeit = 0;
1395 unsigned int nr_pages;
1396 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1397 DEFAULT_RATELIMIT_BURST);
1398
1399 if (!pfn_valid(pfn))
1400 return -ENXIO;
1401
1402 p = pfn_to_page(pfn);
1403 page = compound_head(p);
1404
1405 if (!PageHWPoison(p)) {
1406 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1407 pfn, &unpoison_rs);
1408 return 0;
1409 }
1410
1411 if (page_count(page) > 1) {
1412 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1413 pfn, &unpoison_rs);
1414 return 0;
1415 }
1416
1417 if (page_mapped(page)) {
1418 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1419 pfn, &unpoison_rs);
1420 return 0;
1421 }
1422
1423 if (page_mapping(page)) {
1424 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1425 pfn, &unpoison_rs);
1426 return 0;
1427 }
1428
1429 /*
1430 * unpoison_memory() can encounter thp only when the thp is being
1431 * worked by memory_failure() and the page lock is not held yet.
1432 * In such case, we yield to memory_failure() and make unpoison fail.
1433 */
1434 if (!PageHuge(page) && PageTransHuge(page)) {
1435 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1436 pfn, &unpoison_rs);
1437 return 0;
1438 }
1439
1440 nr_pages = 1 << compound_order(page);
1441
1442 if (!get_hwpoison_page(p)) {
1443 /*
1444 * Since HWPoisoned hugepage should have non-zero refcount,
1445 * race between memory failure and unpoison seems to happen.
1446 * In such case unpoison fails and memory failure runs
1447 * to the end.
1448 */
1449 if (PageHuge(page)) {
1450 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1451 pfn, &unpoison_rs);
1452 return 0;
1453 }
1454 if (TestClearPageHWPoison(p))
1455 num_poisoned_pages_dec();
1456 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1457 pfn, &unpoison_rs);
1458 return 0;
1459 }
1460
1461 lock_page(page);
1462 /*
1463 * This test is racy because PG_hwpoison is set outside of page lock.
1464 * That's acceptable because that won't trigger kernel panic. Instead,
1465 * the PG_hwpoison page will be caught and isolated on the entrance to
1466 * the free buddy page pool.
1467 */
1468 if (TestClearPageHWPoison(page)) {
1469 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1470 pfn, &unpoison_rs);
1471 num_poisoned_pages_sub(nr_pages);
1472 freeit = 1;
1473 if (PageHuge(page))
1474 clear_page_hwpoison_huge_page(page);
1475 }
1476 unlock_page(page);
1477
1478 put_hwpoison_page(page);
1479 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1480 put_hwpoison_page(page);
1481
1482 return 0;
1483 }
1484 EXPORT_SYMBOL(unpoison_memory);
1485
1486 static struct page *new_page(struct page *p, unsigned long private, int **x)
1487 {
1488 int nid = page_to_nid(p);
1489 if (PageHuge(p))
1490 return alloc_huge_page_node(page_hstate(compound_head(p)),
1491 nid);
1492 else
1493 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1494 }
1495
1496 /*
1497 * Safely get reference count of an arbitrary page.
1498 * Returns 0 for a free page, -EIO for a zero refcount page
1499 * that is not free, and 1 for any other page type.
1500 * For 1 the page is returned with increased page count, otherwise not.
1501 */
1502 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1503 {
1504 int ret;
1505
1506 if (flags & MF_COUNT_INCREASED)
1507 return 1;
1508
1509 /*
1510 * When the target page is a free hugepage, just remove it
1511 * from free hugepage list.
1512 */
1513 if (!get_hwpoison_page(p)) {
1514 if (PageHuge(p)) {
1515 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1516 ret = 0;
1517 } else if (is_free_buddy_page(p)) {
1518 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1519 ret = 0;
1520 } else {
1521 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1522 __func__, pfn, p->flags);
1523 ret = -EIO;
1524 }
1525 } else {
1526 /* Not a free page */
1527 ret = 1;
1528 }
1529 return ret;
1530 }
1531
1532 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1533 {
1534 int ret = __get_any_page(page, pfn, flags);
1535
1536 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1537 /*
1538 * Try to free it.
1539 */
1540 put_hwpoison_page(page);
1541 shake_page(page, 1);
1542
1543 /*
1544 * Did it turn free?
1545 */
1546 ret = __get_any_page(page, pfn, 0);
1547 if (ret == 1 && !PageLRU(page)) {
1548 /* Drop page reference which is from __get_any_page() */
1549 put_hwpoison_page(page);
1550 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1551 pfn, page->flags);
1552 return -EIO;
1553 }
1554 }
1555 return ret;
1556 }
1557
1558 static int soft_offline_huge_page(struct page *page, int flags)
1559 {
1560 int ret;
1561 unsigned long pfn = page_to_pfn(page);
1562 struct page *hpage = compound_head(page);
1563 LIST_HEAD(pagelist);
1564
1565 /*
1566 * This double-check of PageHWPoison is to avoid the race with
1567 * memory_failure(). See also comment in __soft_offline_page().
1568 */
1569 lock_page(hpage);
1570 if (PageHWPoison(hpage)) {
1571 unlock_page(hpage);
1572 put_hwpoison_page(hpage);
1573 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1574 return -EBUSY;
1575 }
1576 unlock_page(hpage);
1577
1578 ret = isolate_huge_page(hpage, &pagelist);
1579 /*
1580 * get_any_page() and isolate_huge_page() takes a refcount each,
1581 * so need to drop one here.
1582 */
1583 put_hwpoison_page(hpage);
1584 if (!ret) {
1585 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1586 return -EBUSY;
1587 }
1588
1589 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1590 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1591 if (ret) {
1592 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1593 pfn, ret, page->flags);
1594 /*
1595 * We know that soft_offline_huge_page() tries to migrate
1596 * only one hugepage pointed to by hpage, so we need not
1597 * run through the pagelist here.
1598 */
1599 putback_active_hugepage(hpage);
1600 if (ret > 0)
1601 ret = -EIO;
1602 } else {
1603 /* overcommit hugetlb page will be freed to buddy */
1604 if (PageHuge(page)) {
1605 set_page_hwpoison_huge_page(hpage);
1606 dequeue_hwpoisoned_huge_page(hpage);
1607 num_poisoned_pages_add(1 << compound_order(hpage));
1608 } else {
1609 SetPageHWPoison(page);
1610 num_poisoned_pages_inc();
1611 }
1612 }
1613 return ret;
1614 }
1615
1616 static int __soft_offline_page(struct page *page, int flags)
1617 {
1618 int ret;
1619 unsigned long pfn = page_to_pfn(page);
1620
1621 /*
1622 * Check PageHWPoison again inside page lock because PageHWPoison
1623 * is set by memory_failure() outside page lock. Note that
1624 * memory_failure() also double-checks PageHWPoison inside page lock,
1625 * so there's no race between soft_offline_page() and memory_failure().
1626 */
1627 lock_page(page);
1628 wait_on_page_writeback(page);
1629 if (PageHWPoison(page)) {
1630 unlock_page(page);
1631 put_hwpoison_page(page);
1632 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1633 return -EBUSY;
1634 }
1635 /*
1636 * Try to invalidate first. This should work for
1637 * non dirty unmapped page cache pages.
1638 */
1639 ret = invalidate_inode_page(page);
1640 unlock_page(page);
1641 /*
1642 * RED-PEN would be better to keep it isolated here, but we
1643 * would need to fix isolation locking first.
1644 */
1645 if (ret == 1) {
1646 put_hwpoison_page(page);
1647 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1648 SetPageHWPoison(page);
1649 num_poisoned_pages_inc();
1650 return 0;
1651 }
1652
1653 /*
1654 * Simple invalidation didn't work.
1655 * Try to migrate to a new page instead. migrate.c
1656 * handles a large number of cases for us.
1657 */
1658 ret = isolate_lru_page(page);
1659 /*
1660 * Drop page reference which is came from get_any_page()
1661 * successful isolate_lru_page() already took another one.
1662 */
1663 put_hwpoison_page(page);
1664 if (!ret) {
1665 LIST_HEAD(pagelist);
1666 inc_zone_page_state(page, NR_ISOLATED_ANON +
1667 page_is_file_cache(page));
1668 list_add(&page->lru, &pagelist);
1669 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671 if (ret) {
1672 if (!list_empty(&pagelist)) {
1673 list_del(&page->lru);
1674 dec_zone_page_state(page, NR_ISOLATED_ANON +
1675 page_is_file_cache(page));
1676 putback_lru_page(page);
1677 }
1678
1679 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1680 pfn, ret, page->flags);
1681 if (ret > 0)
1682 ret = -EIO;
1683 }
1684 } else {
1685 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1686 pfn, ret, page_count(page), page->flags);
1687 }
1688 return ret;
1689 }
1690
1691 static int soft_offline_in_use_page(struct page *page, int flags)
1692 {
1693 int ret;
1694 struct page *hpage = compound_head(page);
1695
1696 if (!PageHuge(page) && PageTransHuge(hpage)) {
1697 lock_page(hpage);
1698 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1699 unlock_page(hpage);
1700 if (!PageAnon(hpage))
1701 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1702 else
1703 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1704 put_hwpoison_page(hpage);
1705 return -EBUSY;
1706 }
1707 unlock_page(hpage);
1708 get_hwpoison_page(page);
1709 put_hwpoison_page(hpage);
1710 }
1711
1712 if (PageHuge(page))
1713 ret = soft_offline_huge_page(page, flags);
1714 else
1715 ret = __soft_offline_page(page, flags);
1716
1717 return ret;
1718 }
1719
1720 static void soft_offline_free_page(struct page *page)
1721 {
1722 if (PageHuge(page)) {
1723 struct page *hpage = compound_head(page);
1724
1725 set_page_hwpoison_huge_page(hpage);
1726 if (!dequeue_hwpoisoned_huge_page(hpage))
1727 num_poisoned_pages_add(1 << compound_order(hpage));
1728 } else {
1729 if (!TestSetPageHWPoison(page))
1730 num_poisoned_pages_inc();
1731 }
1732 }
1733
1734 /**
1735 * soft_offline_page - Soft offline a page.
1736 * @page: page to offline
1737 * @flags: flags. Same as memory_failure().
1738 *
1739 * Returns 0 on success, otherwise negated errno.
1740 *
1741 * Soft offline a page, by migration or invalidation,
1742 * without killing anything. This is for the case when
1743 * a page is not corrupted yet (so it's still valid to access),
1744 * but has had a number of corrected errors and is better taken
1745 * out.
1746 *
1747 * The actual policy on when to do that is maintained by
1748 * user space.
1749 *
1750 * This should never impact any application or cause data loss,
1751 * however it might take some time.
1752 *
1753 * This is not a 100% solution for all memory, but tries to be
1754 * ``good enough'' for the majority of memory.
1755 */
1756 int soft_offline_page(struct page *page, int flags)
1757 {
1758 int ret;
1759 unsigned long pfn = page_to_pfn(page);
1760
1761 if (PageHWPoison(page)) {
1762 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1763 if (flags & MF_COUNT_INCREASED)
1764 put_hwpoison_page(page);
1765 return -EBUSY;
1766 }
1767
1768 get_online_mems();
1769 ret = get_any_page(page, pfn, flags);
1770 put_online_mems();
1771
1772 if (ret > 0)
1773 ret = soft_offline_in_use_page(page, flags);
1774 else if (ret == 0)
1775 soft_offline_free_page(page);
1776
1777 return ret;
1778 }
This page took 0.080166 seconds and 5 git commands to generate.