Restartable sequences: self-tests
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/page_owner.h>
42
43 #include <asm/tlbflush.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47
48 #include "internal.h"
49
50 /*
51 * migrate_prep() needs to be called before we start compiling a list of pages
52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53 * undesirable, use migrate_prep_local()
54 */
55 int migrate_prep(void)
56 {
57 /*
58 * Clear the LRU lists so pages can be isolated.
59 * Note that pages may be moved off the LRU after we have
60 * drained them. Those pages will fail to migrate like other
61 * pages that may be busy.
62 */
63 lru_add_drain_all();
64
65 return 0;
66 }
67
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
69 int migrate_prep_local(void)
70 {
71 lru_add_drain();
72
73 return 0;
74 }
75
76 /*
77 * Put previously isolated pages back onto the appropriate lists
78 * from where they were once taken off for compaction/migration.
79 *
80 * This function shall be used whenever the isolated pageset has been
81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82 * and isolate_huge_page().
83 */
84 void putback_movable_pages(struct list_head *l)
85 {
86 struct page *page;
87 struct page *page2;
88
89 list_for_each_entry_safe(page, page2, l, lru) {
90 if (unlikely(PageHuge(page))) {
91 putback_active_hugepage(page);
92 continue;
93 }
94 list_del(&page->lru);
95 dec_zone_page_state(page, NR_ISOLATED_ANON +
96 page_is_file_cache(page));
97 if (unlikely(isolated_balloon_page(page)))
98 balloon_page_putback(page);
99 else
100 putback_lru_page(page);
101 }
102 }
103
104 /*
105 * Restore a potential migration pte to a working pte entry
106 */
107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 unsigned long addr, void *old)
109 {
110 struct mm_struct *mm = vma->vm_mm;
111 swp_entry_t entry;
112 pmd_t *pmd;
113 pte_t *ptep, pte;
114 spinlock_t *ptl;
115
116 if (unlikely(PageHuge(new))) {
117 ptep = huge_pte_offset(mm, addr);
118 if (!ptep)
119 goto out;
120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 } else {
122 pmd = mm_find_pmd(mm, addr);
123 if (!pmd)
124 goto out;
125
126 ptep = pte_offset_map(pmd, addr);
127
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
132
133 ptl = pte_lockptr(mm, pmd);
134 }
135
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
139 goto unlock;
140
141 entry = pte_to_swp_entry(pte);
142
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
146
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
151
152 /* Recheck VMA as permissions can change since migration started */
153 if (is_write_migration_entry(entry))
154 pte = maybe_mkwrite(pte, vma);
155
156 #ifdef CONFIG_HUGETLB_PAGE
157 if (PageHuge(new)) {
158 pte = pte_mkhuge(pte);
159 pte = arch_make_huge_pte(pte, vma, new, 0);
160 }
161 #endif
162 flush_dcache_page(new);
163 set_pte_at(mm, addr, ptep, pte);
164
165 if (PageHuge(new)) {
166 if (PageAnon(new))
167 hugepage_add_anon_rmap(new, vma, addr);
168 else
169 page_dup_rmap(new, true);
170 } else if (PageAnon(new))
171 page_add_anon_rmap(new, vma, addr, false);
172 else
173 page_add_file_rmap(new);
174
175 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
176 mlock_vma_page(new);
177
178 /* No need to invalidate - it was non-present before */
179 update_mmu_cache(vma, addr, ptep);
180 unlock:
181 pte_unmap_unlock(ptep, ptl);
182 out:
183 return SWAP_AGAIN;
184 }
185
186 /*
187 * Get rid of all migration entries and replace them by
188 * references to the indicated page.
189 */
190 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
191 {
192 struct rmap_walk_control rwc = {
193 .rmap_one = remove_migration_pte,
194 .arg = old,
195 };
196
197 if (locked)
198 rmap_walk_locked(new, &rwc);
199 else
200 rmap_walk(new, &rwc);
201 }
202
203 /*
204 * Something used the pte of a page under migration. We need to
205 * get to the page and wait until migration is finished.
206 * When we return from this function the fault will be retried.
207 */
208 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
209 spinlock_t *ptl)
210 {
211 pte_t pte;
212 swp_entry_t entry;
213 struct page *page;
214
215 spin_lock(ptl);
216 pte = *ptep;
217 if (!is_swap_pte(pte))
218 goto out;
219
220 entry = pte_to_swp_entry(pte);
221 if (!is_migration_entry(entry))
222 goto out;
223
224 page = migration_entry_to_page(entry);
225
226 /*
227 * Once radix-tree replacement of page migration started, page_count
228 * *must* be zero. And, we don't want to call wait_on_page_locked()
229 * against a page without get_page().
230 * So, we use get_page_unless_zero(), here. Even failed, page fault
231 * will occur again.
232 */
233 if (!get_page_unless_zero(page))
234 goto out;
235 pte_unmap_unlock(ptep, ptl);
236 wait_on_page_locked(page);
237 put_page(page);
238 return;
239 out:
240 pte_unmap_unlock(ptep, ptl);
241 }
242
243 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
244 unsigned long address)
245 {
246 spinlock_t *ptl = pte_lockptr(mm, pmd);
247 pte_t *ptep = pte_offset_map(pmd, address);
248 __migration_entry_wait(mm, ptep, ptl);
249 }
250
251 void migration_entry_wait_huge(struct vm_area_struct *vma,
252 struct mm_struct *mm, pte_t *pte)
253 {
254 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
255 __migration_entry_wait(mm, pte, ptl);
256 }
257
258 #ifdef CONFIG_BLOCK
259 /* Returns true if all buffers are successfully locked */
260 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261 enum migrate_mode mode)
262 {
263 struct buffer_head *bh = head;
264
265 /* Simple case, sync compaction */
266 if (mode != MIGRATE_ASYNC) {
267 do {
268 get_bh(bh);
269 lock_buffer(bh);
270 bh = bh->b_this_page;
271
272 } while (bh != head);
273
274 return true;
275 }
276
277 /* async case, we cannot block on lock_buffer so use trylock_buffer */
278 do {
279 get_bh(bh);
280 if (!trylock_buffer(bh)) {
281 /*
282 * We failed to lock the buffer and cannot stall in
283 * async migration. Release the taken locks
284 */
285 struct buffer_head *failed_bh = bh;
286 put_bh(failed_bh);
287 bh = head;
288 while (bh != failed_bh) {
289 unlock_buffer(bh);
290 put_bh(bh);
291 bh = bh->b_this_page;
292 }
293 return false;
294 }
295
296 bh = bh->b_this_page;
297 } while (bh != head);
298 return true;
299 }
300 #else
301 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
302 enum migrate_mode mode)
303 {
304 return true;
305 }
306 #endif /* CONFIG_BLOCK */
307
308 /*
309 * Replace the page in the mapping.
310 *
311 * The number of remaining references must be:
312 * 1 for anonymous pages without a mapping
313 * 2 for pages with a mapping
314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
315 */
316 int migrate_page_move_mapping(struct address_space *mapping,
317 struct page *newpage, struct page *page,
318 struct buffer_head *head, enum migrate_mode mode,
319 int extra_count)
320 {
321 struct zone *oldzone, *newzone;
322 int dirty;
323 int expected_count = 1 + extra_count;
324 void **pslot;
325
326 if (!mapping) {
327 /* Anonymous page without mapping */
328 if (page_count(page) != expected_count)
329 return -EAGAIN;
330
331 /* No turning back from here */
332 newpage->index = page->index;
333 newpage->mapping = page->mapping;
334 if (PageSwapBacked(page))
335 __SetPageSwapBacked(newpage);
336
337 return MIGRATEPAGE_SUCCESS;
338 }
339
340 oldzone = page_zone(page);
341 newzone = page_zone(newpage);
342
343 spin_lock_irq(&mapping->tree_lock);
344
345 pslot = radix_tree_lookup_slot(&mapping->page_tree,
346 page_index(page));
347
348 expected_count += 1 + page_has_private(page);
349 if (page_count(page) != expected_count ||
350 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
351 spin_unlock_irq(&mapping->tree_lock);
352 return -EAGAIN;
353 }
354
355 if (!page_ref_freeze(page, expected_count)) {
356 spin_unlock_irq(&mapping->tree_lock);
357 return -EAGAIN;
358 }
359
360 /*
361 * In the async migration case of moving a page with buffers, lock the
362 * buffers using trylock before the mapping is moved. If the mapping
363 * was moved, we later failed to lock the buffers and could not move
364 * the mapping back due to an elevated page count, we would have to
365 * block waiting on other references to be dropped.
366 */
367 if (mode == MIGRATE_ASYNC && head &&
368 !buffer_migrate_lock_buffers(head, mode)) {
369 page_ref_unfreeze(page, expected_count);
370 spin_unlock_irq(&mapping->tree_lock);
371 return -EAGAIN;
372 }
373
374 /*
375 * Now we know that no one else is looking at the page:
376 * no turning back from here.
377 */
378 newpage->index = page->index;
379 newpage->mapping = page->mapping;
380 if (PageSwapBacked(page))
381 __SetPageSwapBacked(newpage);
382
383 get_page(newpage); /* add cache reference */
384 if (PageSwapCache(page)) {
385 SetPageSwapCache(newpage);
386 set_page_private(newpage, page_private(page));
387 }
388
389 /* Move dirty while page refs frozen and newpage not yet exposed */
390 dirty = PageDirty(page);
391 if (dirty) {
392 ClearPageDirty(page);
393 SetPageDirty(newpage);
394 }
395
396 radix_tree_replace_slot(pslot, newpage);
397
398 /*
399 * Drop cache reference from old page by unfreezing
400 * to one less reference.
401 * We know this isn't the last reference.
402 */
403 page_ref_unfreeze(page, expected_count - 1);
404
405 spin_unlock(&mapping->tree_lock);
406 /* Leave irq disabled to prevent preemption while updating stats */
407
408 /*
409 * If moved to a different zone then also account
410 * the page for that zone. Other VM counters will be
411 * taken care of when we establish references to the
412 * new page and drop references to the old page.
413 *
414 * Note that anonymous pages are accounted for
415 * via NR_FILE_PAGES and NR_ANON_PAGES if they
416 * are mapped to swap space.
417 */
418 if (newzone != oldzone) {
419 __dec_zone_state(oldzone, NR_FILE_PAGES);
420 __inc_zone_state(newzone, NR_FILE_PAGES);
421 if (PageSwapBacked(page) && !PageSwapCache(page)) {
422 __dec_zone_state(oldzone, NR_SHMEM);
423 __inc_zone_state(newzone, NR_SHMEM);
424 }
425 if (dirty && mapping_cap_account_dirty(mapping)) {
426 __dec_zone_state(oldzone, NR_FILE_DIRTY);
427 __inc_zone_state(newzone, NR_FILE_DIRTY);
428 }
429 }
430 local_irq_enable();
431
432 return MIGRATEPAGE_SUCCESS;
433 }
434 EXPORT_SYMBOL(migrate_page_move_mapping);
435
436 /*
437 * The expected number of remaining references is the same as that
438 * of migrate_page_move_mapping().
439 */
440 int migrate_huge_page_move_mapping(struct address_space *mapping,
441 struct page *newpage, struct page *page)
442 {
443 int expected_count;
444 void **pslot;
445
446 spin_lock_irq(&mapping->tree_lock);
447
448 pslot = radix_tree_lookup_slot(&mapping->page_tree,
449 page_index(page));
450
451 expected_count = 2 + page_has_private(page);
452 if (page_count(page) != expected_count ||
453 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
454 spin_unlock_irq(&mapping->tree_lock);
455 return -EAGAIN;
456 }
457
458 if (!page_ref_freeze(page, expected_count)) {
459 spin_unlock_irq(&mapping->tree_lock);
460 return -EAGAIN;
461 }
462
463 newpage->index = page->index;
464 newpage->mapping = page->mapping;
465
466 get_page(newpage);
467
468 radix_tree_replace_slot(pslot, newpage);
469
470 page_ref_unfreeze(page, expected_count - 1);
471
472 spin_unlock_irq(&mapping->tree_lock);
473
474 return MIGRATEPAGE_SUCCESS;
475 }
476
477 /*
478 * Gigantic pages are so large that we do not guarantee that page++ pointer
479 * arithmetic will work across the entire page. We need something more
480 * specialized.
481 */
482 static void __copy_gigantic_page(struct page *dst, struct page *src,
483 int nr_pages)
484 {
485 int i;
486 struct page *dst_base = dst;
487 struct page *src_base = src;
488
489 for (i = 0; i < nr_pages; ) {
490 cond_resched();
491 copy_highpage(dst, src);
492
493 i++;
494 dst = mem_map_next(dst, dst_base, i);
495 src = mem_map_next(src, src_base, i);
496 }
497 }
498
499 static void copy_huge_page(struct page *dst, struct page *src)
500 {
501 int i;
502 int nr_pages;
503
504 if (PageHuge(src)) {
505 /* hugetlbfs page */
506 struct hstate *h = page_hstate(src);
507 nr_pages = pages_per_huge_page(h);
508
509 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
510 __copy_gigantic_page(dst, src, nr_pages);
511 return;
512 }
513 } else {
514 /* thp page */
515 BUG_ON(!PageTransHuge(src));
516 nr_pages = hpage_nr_pages(src);
517 }
518
519 for (i = 0; i < nr_pages; i++) {
520 cond_resched();
521 copy_highpage(dst + i, src + i);
522 }
523 }
524
525 /*
526 * Copy the page to its new location
527 */
528 void migrate_page_copy(struct page *newpage, struct page *page)
529 {
530 int cpupid;
531
532 if (PageHuge(page) || PageTransHuge(page))
533 copy_huge_page(newpage, page);
534 else
535 copy_highpage(newpage, page);
536
537 if (PageError(page))
538 SetPageError(newpage);
539 if (PageReferenced(page))
540 SetPageReferenced(newpage);
541 if (PageUptodate(page))
542 SetPageUptodate(newpage);
543 if (TestClearPageActive(page)) {
544 VM_BUG_ON_PAGE(PageUnevictable(page), page);
545 SetPageActive(newpage);
546 } else if (TestClearPageUnevictable(page))
547 SetPageUnevictable(newpage);
548 if (PageChecked(page))
549 SetPageChecked(newpage);
550 if (PageMappedToDisk(page))
551 SetPageMappedToDisk(newpage);
552
553 /* Move dirty on pages not done by migrate_page_move_mapping() */
554 if (PageDirty(page))
555 SetPageDirty(newpage);
556
557 if (page_is_young(page))
558 set_page_young(newpage);
559 if (page_is_idle(page))
560 set_page_idle(newpage);
561
562 /*
563 * Copy NUMA information to the new page, to prevent over-eager
564 * future migrations of this same page.
565 */
566 cpupid = page_cpupid_xchg_last(page, -1);
567 page_cpupid_xchg_last(newpage, cpupid);
568
569 ksm_migrate_page(newpage, page);
570 /*
571 * Please do not reorder this without considering how mm/ksm.c's
572 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
573 */
574 if (PageSwapCache(page))
575 ClearPageSwapCache(page);
576 ClearPagePrivate(page);
577 set_page_private(page, 0);
578
579 /*
580 * If any waiters have accumulated on the new page then
581 * wake them up.
582 */
583 if (PageWriteback(newpage))
584 end_page_writeback(newpage);
585
586 copy_page_owner(page, newpage);
587
588 mem_cgroup_migrate(page, newpage);
589 }
590 EXPORT_SYMBOL(migrate_page_copy);
591
592 /************************************************************
593 * Migration functions
594 ***********************************************************/
595
596 /*
597 * Common logic to directly migrate a single page suitable for
598 * pages that do not use PagePrivate/PagePrivate2.
599 *
600 * Pages are locked upon entry and exit.
601 */
602 int migrate_page(struct address_space *mapping,
603 struct page *newpage, struct page *page,
604 enum migrate_mode mode)
605 {
606 int rc;
607
608 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
609
610 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
611
612 if (rc != MIGRATEPAGE_SUCCESS)
613 return rc;
614
615 migrate_page_copy(newpage, page);
616 return MIGRATEPAGE_SUCCESS;
617 }
618 EXPORT_SYMBOL(migrate_page);
619
620 #ifdef CONFIG_BLOCK
621 /*
622 * Migration function for pages with buffers. This function can only be used
623 * if the underlying filesystem guarantees that no other references to "page"
624 * exist.
625 */
626 int buffer_migrate_page(struct address_space *mapping,
627 struct page *newpage, struct page *page, enum migrate_mode mode)
628 {
629 struct buffer_head *bh, *head;
630 int rc;
631
632 if (!page_has_buffers(page))
633 return migrate_page(mapping, newpage, page, mode);
634
635 head = page_buffers(page);
636
637 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
638
639 if (rc != MIGRATEPAGE_SUCCESS)
640 return rc;
641
642 /*
643 * In the async case, migrate_page_move_mapping locked the buffers
644 * with an IRQ-safe spinlock held. In the sync case, the buffers
645 * need to be locked now
646 */
647 if (mode != MIGRATE_ASYNC)
648 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
649
650 ClearPagePrivate(page);
651 set_page_private(newpage, page_private(page));
652 set_page_private(page, 0);
653 put_page(page);
654 get_page(newpage);
655
656 bh = head;
657 do {
658 set_bh_page(bh, newpage, bh_offset(bh));
659 bh = bh->b_this_page;
660
661 } while (bh != head);
662
663 SetPagePrivate(newpage);
664
665 migrate_page_copy(newpage, page);
666
667 bh = head;
668 do {
669 unlock_buffer(bh);
670 put_bh(bh);
671 bh = bh->b_this_page;
672
673 } while (bh != head);
674
675 return MIGRATEPAGE_SUCCESS;
676 }
677 EXPORT_SYMBOL(buffer_migrate_page);
678 #endif
679
680 /*
681 * Writeback a page to clean the dirty state
682 */
683 static int writeout(struct address_space *mapping, struct page *page)
684 {
685 struct writeback_control wbc = {
686 .sync_mode = WB_SYNC_NONE,
687 .nr_to_write = 1,
688 .range_start = 0,
689 .range_end = LLONG_MAX,
690 .for_reclaim = 1
691 };
692 int rc;
693
694 if (!mapping->a_ops->writepage)
695 /* No write method for the address space */
696 return -EINVAL;
697
698 if (!clear_page_dirty_for_io(page))
699 /* Someone else already triggered a write */
700 return -EAGAIN;
701
702 /*
703 * A dirty page may imply that the underlying filesystem has
704 * the page on some queue. So the page must be clean for
705 * migration. Writeout may mean we loose the lock and the
706 * page state is no longer what we checked for earlier.
707 * At this point we know that the migration attempt cannot
708 * be successful.
709 */
710 remove_migration_ptes(page, page, false);
711
712 rc = mapping->a_ops->writepage(page, &wbc);
713
714 if (rc != AOP_WRITEPAGE_ACTIVATE)
715 /* unlocked. Relock */
716 lock_page(page);
717
718 return (rc < 0) ? -EIO : -EAGAIN;
719 }
720
721 /*
722 * Default handling if a filesystem does not provide a migration function.
723 */
724 static int fallback_migrate_page(struct address_space *mapping,
725 struct page *newpage, struct page *page, enum migrate_mode mode)
726 {
727 if (PageDirty(page)) {
728 /* Only writeback pages in full synchronous migration */
729 if (mode != MIGRATE_SYNC)
730 return -EBUSY;
731 return writeout(mapping, page);
732 }
733
734 /*
735 * Buffers may be managed in a filesystem specific way.
736 * We must have no buffers or drop them.
737 */
738 if (page_has_private(page) &&
739 !try_to_release_page(page, GFP_KERNEL))
740 return -EAGAIN;
741
742 return migrate_page(mapping, newpage, page, mode);
743 }
744
745 /*
746 * Move a page to a newly allocated page
747 * The page is locked and all ptes have been successfully removed.
748 *
749 * The new page will have replaced the old page if this function
750 * is successful.
751 *
752 * Return value:
753 * < 0 - error code
754 * MIGRATEPAGE_SUCCESS - success
755 */
756 static int move_to_new_page(struct page *newpage, struct page *page,
757 enum migrate_mode mode)
758 {
759 struct address_space *mapping;
760 int rc;
761
762 VM_BUG_ON_PAGE(!PageLocked(page), page);
763 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
764
765 mapping = page_mapping(page);
766 if (!mapping)
767 rc = migrate_page(mapping, newpage, page, mode);
768 else if (mapping->a_ops->migratepage)
769 /*
770 * Most pages have a mapping and most filesystems provide a
771 * migratepage callback. Anonymous pages are part of swap
772 * space which also has its own migratepage callback. This
773 * is the most common path for page migration.
774 */
775 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
776 else
777 rc = fallback_migrate_page(mapping, newpage, page, mode);
778
779 /*
780 * When successful, old pagecache page->mapping must be cleared before
781 * page is freed; but stats require that PageAnon be left as PageAnon.
782 */
783 if (rc == MIGRATEPAGE_SUCCESS) {
784 if (!PageAnon(page))
785 page->mapping = NULL;
786 }
787 return rc;
788 }
789
790 static int __unmap_and_move(struct page *page, struct page *newpage,
791 int force, enum migrate_mode mode)
792 {
793 int rc = -EAGAIN;
794 int page_was_mapped = 0;
795 struct anon_vma *anon_vma = NULL;
796
797 if (!trylock_page(page)) {
798 if (!force || mode == MIGRATE_ASYNC)
799 goto out;
800
801 /*
802 * It's not safe for direct compaction to call lock_page.
803 * For example, during page readahead pages are added locked
804 * to the LRU. Later, when the IO completes the pages are
805 * marked uptodate and unlocked. However, the queueing
806 * could be merging multiple pages for one bio (e.g.
807 * mpage_readpages). If an allocation happens for the
808 * second or third page, the process can end up locking
809 * the same page twice and deadlocking. Rather than
810 * trying to be clever about what pages can be locked,
811 * avoid the use of lock_page for direct compaction
812 * altogether.
813 */
814 if (current->flags & PF_MEMALLOC)
815 goto out;
816
817 lock_page(page);
818 }
819
820 if (PageWriteback(page)) {
821 /*
822 * Only in the case of a full synchronous migration is it
823 * necessary to wait for PageWriteback. In the async case,
824 * the retry loop is too short and in the sync-light case,
825 * the overhead of stalling is too much
826 */
827 if (mode != MIGRATE_SYNC) {
828 rc = -EBUSY;
829 goto out_unlock;
830 }
831 if (!force)
832 goto out_unlock;
833 wait_on_page_writeback(page);
834 }
835
836 /*
837 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
838 * we cannot notice that anon_vma is freed while we migrates a page.
839 * This get_anon_vma() delays freeing anon_vma pointer until the end
840 * of migration. File cache pages are no problem because of page_lock()
841 * File Caches may use write_page() or lock_page() in migration, then,
842 * just care Anon page here.
843 *
844 * Only page_get_anon_vma() understands the subtleties of
845 * getting a hold on an anon_vma from outside one of its mms.
846 * But if we cannot get anon_vma, then we won't need it anyway,
847 * because that implies that the anon page is no longer mapped
848 * (and cannot be remapped so long as we hold the page lock).
849 */
850 if (PageAnon(page) && !PageKsm(page))
851 anon_vma = page_get_anon_vma(page);
852
853 /*
854 * Block others from accessing the new page when we get around to
855 * establishing additional references. We are usually the only one
856 * holding a reference to newpage at this point. We used to have a BUG
857 * here if trylock_page(newpage) fails, but would like to allow for
858 * cases where there might be a race with the previous use of newpage.
859 * This is much like races on refcount of oldpage: just don't BUG().
860 */
861 if (unlikely(!trylock_page(newpage)))
862 goto out_unlock;
863
864 if (unlikely(isolated_balloon_page(page))) {
865 /*
866 * A ballooned page does not need any special attention from
867 * physical to virtual reverse mapping procedures.
868 * Skip any attempt to unmap PTEs or to remap swap cache,
869 * in order to avoid burning cycles at rmap level, and perform
870 * the page migration right away (proteced by page lock).
871 */
872 rc = balloon_page_migrate(newpage, page, mode);
873 goto out_unlock_both;
874 }
875
876 /*
877 * Corner case handling:
878 * 1. When a new swap-cache page is read into, it is added to the LRU
879 * and treated as swapcache but it has no rmap yet.
880 * Calling try_to_unmap() against a page->mapping==NULL page will
881 * trigger a BUG. So handle it here.
882 * 2. An orphaned page (see truncate_complete_page) might have
883 * fs-private metadata. The page can be picked up due to memory
884 * offlining. Everywhere else except page reclaim, the page is
885 * invisible to the vm, so the page can not be migrated. So try to
886 * free the metadata, so the page can be freed.
887 */
888 if (!page->mapping) {
889 VM_BUG_ON_PAGE(PageAnon(page), page);
890 if (page_has_private(page)) {
891 try_to_free_buffers(page);
892 goto out_unlock_both;
893 }
894 } else if (page_mapped(page)) {
895 /* Establish migration ptes */
896 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
897 page);
898 try_to_unmap(page,
899 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
900 page_was_mapped = 1;
901 }
902
903 if (!page_mapped(page))
904 rc = move_to_new_page(newpage, page, mode);
905
906 if (page_was_mapped)
907 remove_migration_ptes(page,
908 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
909
910 out_unlock_both:
911 unlock_page(newpage);
912 out_unlock:
913 /* Drop an anon_vma reference if we took one */
914 if (anon_vma)
915 put_anon_vma(anon_vma);
916 unlock_page(page);
917 out:
918 return rc;
919 }
920
921 /*
922 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
923 * around it.
924 */
925 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
926 #define ICE_noinline noinline
927 #else
928 #define ICE_noinline
929 #endif
930
931 /*
932 * Obtain the lock on page, remove all ptes and migrate the page
933 * to the newly allocated page in newpage.
934 */
935 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
936 free_page_t put_new_page,
937 unsigned long private, struct page *page,
938 int force, enum migrate_mode mode,
939 enum migrate_reason reason)
940 {
941 int rc = MIGRATEPAGE_SUCCESS;
942 int *result = NULL;
943 struct page *newpage;
944
945 newpage = get_new_page(page, private, &result);
946 if (!newpage)
947 return -ENOMEM;
948
949 if (page_count(page) == 1) {
950 /* page was freed from under us. So we are done. */
951 goto out;
952 }
953
954 if (unlikely(PageTransHuge(page))) {
955 lock_page(page);
956 rc = split_huge_page(page);
957 unlock_page(page);
958 if (rc)
959 goto out;
960 }
961
962 rc = __unmap_and_move(page, newpage, force, mode);
963 if (rc == MIGRATEPAGE_SUCCESS) {
964 put_new_page = NULL;
965 set_page_owner_migrate_reason(newpage, reason);
966 }
967
968 out:
969 if (rc != -EAGAIN) {
970 /*
971 * A page that has been migrated has all references
972 * removed and will be freed. A page that has not been
973 * migrated will have kepts its references and be
974 * restored.
975 */
976 list_del(&page->lru);
977 dec_zone_page_state(page, NR_ISOLATED_ANON +
978 page_is_file_cache(page));
979 /* Soft-offlined page shouldn't go through lru cache list */
980 if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
981 /*
982 * With this release, we free successfully migrated
983 * page and set PG_HWPoison on just freed page
984 * intentionally. Although it's rather weird, it's how
985 * HWPoison flag works at the moment.
986 */
987 put_page(page);
988 if (!test_set_page_hwpoison(page))
989 num_poisoned_pages_inc();
990 } else
991 putback_lru_page(page);
992 }
993
994 /*
995 * If migration was not successful and there's a freeing callback, use
996 * it. Otherwise, putback_lru_page() will drop the reference grabbed
997 * during isolation.
998 */
999 if (put_new_page)
1000 put_new_page(newpage, private);
1001 else if (unlikely(__is_movable_balloon_page(newpage))) {
1002 /* drop our reference, page already in the balloon */
1003 put_page(newpage);
1004 } else
1005 putback_lru_page(newpage);
1006
1007 if (result) {
1008 if (rc)
1009 *result = rc;
1010 else
1011 *result = page_to_nid(newpage);
1012 }
1013 return rc;
1014 }
1015
1016 /*
1017 * Counterpart of unmap_and_move_page() for hugepage migration.
1018 *
1019 * This function doesn't wait the completion of hugepage I/O
1020 * because there is no race between I/O and migration for hugepage.
1021 * Note that currently hugepage I/O occurs only in direct I/O
1022 * where no lock is held and PG_writeback is irrelevant,
1023 * and writeback status of all subpages are counted in the reference
1024 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1025 * under direct I/O, the reference of the head page is 512 and a bit more.)
1026 * This means that when we try to migrate hugepage whose subpages are
1027 * doing direct I/O, some references remain after try_to_unmap() and
1028 * hugepage migration fails without data corruption.
1029 *
1030 * There is also no race when direct I/O is issued on the page under migration,
1031 * because then pte is replaced with migration swap entry and direct I/O code
1032 * will wait in the page fault for migration to complete.
1033 */
1034 static int unmap_and_move_huge_page(new_page_t get_new_page,
1035 free_page_t put_new_page, unsigned long private,
1036 struct page *hpage, int force,
1037 enum migrate_mode mode, int reason)
1038 {
1039 int rc = -EAGAIN;
1040 int *result = NULL;
1041 int page_was_mapped = 0;
1042 struct page *new_hpage;
1043 struct anon_vma *anon_vma = NULL;
1044
1045 /*
1046 * Movability of hugepages depends on architectures and hugepage size.
1047 * This check is necessary because some callers of hugepage migration
1048 * like soft offline and memory hotremove don't walk through page
1049 * tables or check whether the hugepage is pmd-based or not before
1050 * kicking migration.
1051 */
1052 if (!hugepage_migration_supported(page_hstate(hpage))) {
1053 putback_active_hugepage(hpage);
1054 return -ENOSYS;
1055 }
1056
1057 new_hpage = get_new_page(hpage, private, &result);
1058 if (!new_hpage)
1059 return -ENOMEM;
1060
1061 if (!trylock_page(hpage)) {
1062 if (!force || mode != MIGRATE_SYNC)
1063 goto out;
1064 lock_page(hpage);
1065 }
1066
1067 if (PageAnon(hpage))
1068 anon_vma = page_get_anon_vma(hpage);
1069
1070 if (unlikely(!trylock_page(new_hpage)))
1071 goto put_anon;
1072
1073 if (page_mapped(hpage)) {
1074 try_to_unmap(hpage,
1075 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1076 page_was_mapped = 1;
1077 }
1078
1079 if (!page_mapped(hpage))
1080 rc = move_to_new_page(new_hpage, hpage, mode);
1081
1082 if (page_was_mapped)
1083 remove_migration_ptes(hpage,
1084 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1085
1086 unlock_page(new_hpage);
1087
1088 put_anon:
1089 if (anon_vma)
1090 put_anon_vma(anon_vma);
1091
1092 if (rc == MIGRATEPAGE_SUCCESS) {
1093 hugetlb_cgroup_migrate(hpage, new_hpage);
1094 put_new_page = NULL;
1095 set_page_owner_migrate_reason(new_hpage, reason);
1096 }
1097
1098 unlock_page(hpage);
1099 out:
1100 if (rc != -EAGAIN)
1101 putback_active_hugepage(hpage);
1102
1103 /*
1104 * If migration was not successful and there's a freeing callback, use
1105 * it. Otherwise, put_page() will drop the reference grabbed during
1106 * isolation.
1107 */
1108 if (put_new_page)
1109 put_new_page(new_hpage, private);
1110 else
1111 putback_active_hugepage(new_hpage);
1112
1113 if (result) {
1114 if (rc)
1115 *result = rc;
1116 else
1117 *result = page_to_nid(new_hpage);
1118 }
1119 return rc;
1120 }
1121
1122 /*
1123 * migrate_pages - migrate the pages specified in a list, to the free pages
1124 * supplied as the target for the page migration
1125 *
1126 * @from: The list of pages to be migrated.
1127 * @get_new_page: The function used to allocate free pages to be used
1128 * as the target of the page migration.
1129 * @put_new_page: The function used to free target pages if migration
1130 * fails, or NULL if no special handling is necessary.
1131 * @private: Private data to be passed on to get_new_page()
1132 * @mode: The migration mode that specifies the constraints for
1133 * page migration, if any.
1134 * @reason: The reason for page migration.
1135 *
1136 * The function returns after 10 attempts or if no pages are movable any more
1137 * because the list has become empty or no retryable pages exist any more.
1138 * The caller should call putback_movable_pages() to return pages to the LRU
1139 * or free list only if ret != 0.
1140 *
1141 * Returns the number of pages that were not migrated, or an error code.
1142 */
1143 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1144 free_page_t put_new_page, unsigned long private,
1145 enum migrate_mode mode, int reason)
1146 {
1147 int retry = 1;
1148 int nr_failed = 0;
1149 int nr_succeeded = 0;
1150 int pass = 0;
1151 struct page *page;
1152 struct page *page2;
1153 int swapwrite = current->flags & PF_SWAPWRITE;
1154 int rc;
1155
1156 if (!swapwrite)
1157 current->flags |= PF_SWAPWRITE;
1158
1159 for(pass = 0; pass < 10 && retry; pass++) {
1160 retry = 0;
1161
1162 list_for_each_entry_safe(page, page2, from, lru) {
1163 cond_resched();
1164
1165 if (PageHuge(page))
1166 rc = unmap_and_move_huge_page(get_new_page,
1167 put_new_page, private, page,
1168 pass > 2, mode, reason);
1169 else
1170 rc = unmap_and_move(get_new_page, put_new_page,
1171 private, page, pass > 2, mode,
1172 reason);
1173
1174 switch(rc) {
1175 case -ENOMEM:
1176 nr_failed++;
1177 goto out;
1178 case -EAGAIN:
1179 retry++;
1180 break;
1181 case MIGRATEPAGE_SUCCESS:
1182 nr_succeeded++;
1183 break;
1184 default:
1185 /*
1186 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1187 * unlike -EAGAIN case, the failed page is
1188 * removed from migration page list and not
1189 * retried in the next outer loop.
1190 */
1191 nr_failed++;
1192 break;
1193 }
1194 }
1195 }
1196 nr_failed += retry;
1197 rc = nr_failed;
1198 out:
1199 if (nr_succeeded)
1200 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1201 if (nr_failed)
1202 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1203 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1204
1205 if (!swapwrite)
1206 current->flags &= ~PF_SWAPWRITE;
1207
1208 return rc;
1209 }
1210
1211 #ifdef CONFIG_NUMA
1212 /*
1213 * Move a list of individual pages
1214 */
1215 struct page_to_node {
1216 unsigned long addr;
1217 struct page *page;
1218 int node;
1219 int status;
1220 };
1221
1222 static struct page *new_page_node(struct page *p, unsigned long private,
1223 int **result)
1224 {
1225 struct page_to_node *pm = (struct page_to_node *)private;
1226
1227 while (pm->node != MAX_NUMNODES && pm->page != p)
1228 pm++;
1229
1230 if (pm->node == MAX_NUMNODES)
1231 return NULL;
1232
1233 *result = &pm->status;
1234
1235 if (PageHuge(p))
1236 return alloc_huge_page_node(page_hstate(compound_head(p)),
1237 pm->node);
1238 else
1239 return __alloc_pages_node(pm->node,
1240 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1241 }
1242
1243 /*
1244 * Move a set of pages as indicated in the pm array. The addr
1245 * field must be set to the virtual address of the page to be moved
1246 * and the node number must contain a valid target node.
1247 * The pm array ends with node = MAX_NUMNODES.
1248 */
1249 static int do_move_page_to_node_array(struct mm_struct *mm,
1250 struct page_to_node *pm,
1251 int migrate_all)
1252 {
1253 int err;
1254 struct page_to_node *pp;
1255 LIST_HEAD(pagelist);
1256
1257 down_read(&mm->mmap_sem);
1258
1259 /*
1260 * Build a list of pages to migrate
1261 */
1262 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1263 struct vm_area_struct *vma;
1264 struct page *page;
1265
1266 err = -EFAULT;
1267 vma = find_vma(mm, pp->addr);
1268 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1269 goto set_status;
1270
1271 /* FOLL_DUMP to ignore special (like zero) pages */
1272 page = follow_page(vma, pp->addr,
1273 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1274
1275 err = PTR_ERR(page);
1276 if (IS_ERR(page))
1277 goto set_status;
1278
1279 err = -ENOENT;
1280 if (!page)
1281 goto set_status;
1282
1283 pp->page = page;
1284 err = page_to_nid(page);
1285
1286 if (err == pp->node)
1287 /*
1288 * Node already in the right place
1289 */
1290 goto put_and_set;
1291
1292 err = -EACCES;
1293 if (page_mapcount(page) > 1 &&
1294 !migrate_all)
1295 goto put_and_set;
1296
1297 if (PageHuge(page)) {
1298 if (PageHead(page))
1299 isolate_huge_page(page, &pagelist);
1300 goto put_and_set;
1301 }
1302
1303 err = isolate_lru_page(page);
1304 if (!err) {
1305 list_add_tail(&page->lru, &pagelist);
1306 inc_zone_page_state(page, NR_ISOLATED_ANON +
1307 page_is_file_cache(page));
1308 }
1309 put_and_set:
1310 /*
1311 * Either remove the duplicate refcount from
1312 * isolate_lru_page() or drop the page ref if it was
1313 * not isolated.
1314 */
1315 put_page(page);
1316 set_status:
1317 pp->status = err;
1318 }
1319
1320 err = 0;
1321 if (!list_empty(&pagelist)) {
1322 err = migrate_pages(&pagelist, new_page_node, NULL,
1323 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1324 if (err)
1325 putback_movable_pages(&pagelist);
1326 }
1327
1328 up_read(&mm->mmap_sem);
1329 return err;
1330 }
1331
1332 /*
1333 * Migrate an array of page address onto an array of nodes and fill
1334 * the corresponding array of status.
1335 */
1336 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1337 unsigned long nr_pages,
1338 const void __user * __user *pages,
1339 const int __user *nodes,
1340 int __user *status, int flags)
1341 {
1342 struct page_to_node *pm;
1343 unsigned long chunk_nr_pages;
1344 unsigned long chunk_start;
1345 int err;
1346
1347 err = -ENOMEM;
1348 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1349 if (!pm)
1350 goto out;
1351
1352 migrate_prep();
1353
1354 /*
1355 * Store a chunk of page_to_node array in a page,
1356 * but keep the last one as a marker
1357 */
1358 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1359
1360 for (chunk_start = 0;
1361 chunk_start < nr_pages;
1362 chunk_start += chunk_nr_pages) {
1363 int j;
1364
1365 if (chunk_start + chunk_nr_pages > nr_pages)
1366 chunk_nr_pages = nr_pages - chunk_start;
1367
1368 /* fill the chunk pm with addrs and nodes from user-space */
1369 for (j = 0; j < chunk_nr_pages; j++) {
1370 const void __user *p;
1371 int node;
1372
1373 err = -EFAULT;
1374 if (get_user(p, pages + j + chunk_start))
1375 goto out_pm;
1376 pm[j].addr = (unsigned long) p;
1377
1378 if (get_user(node, nodes + j + chunk_start))
1379 goto out_pm;
1380
1381 err = -ENODEV;
1382 if (node < 0 || node >= MAX_NUMNODES)
1383 goto out_pm;
1384
1385 if (!node_state(node, N_MEMORY))
1386 goto out_pm;
1387
1388 err = -EACCES;
1389 if (!node_isset(node, task_nodes))
1390 goto out_pm;
1391
1392 pm[j].node = node;
1393 }
1394
1395 /* End marker for this chunk */
1396 pm[chunk_nr_pages].node = MAX_NUMNODES;
1397
1398 /* Migrate this chunk */
1399 err = do_move_page_to_node_array(mm, pm,
1400 flags & MPOL_MF_MOVE_ALL);
1401 if (err < 0)
1402 goto out_pm;
1403
1404 /* Return status information */
1405 for (j = 0; j < chunk_nr_pages; j++)
1406 if (put_user(pm[j].status, status + j + chunk_start)) {
1407 err = -EFAULT;
1408 goto out_pm;
1409 }
1410 }
1411 err = 0;
1412
1413 out_pm:
1414 free_page((unsigned long)pm);
1415 out:
1416 return err;
1417 }
1418
1419 /*
1420 * Determine the nodes of an array of pages and store it in an array of status.
1421 */
1422 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1423 const void __user **pages, int *status)
1424 {
1425 unsigned long i;
1426
1427 down_read(&mm->mmap_sem);
1428
1429 for (i = 0; i < nr_pages; i++) {
1430 unsigned long addr = (unsigned long)(*pages);
1431 struct vm_area_struct *vma;
1432 struct page *page;
1433 int err = -EFAULT;
1434
1435 vma = find_vma(mm, addr);
1436 if (!vma || addr < vma->vm_start)
1437 goto set_status;
1438
1439 /* FOLL_DUMP to ignore special (like zero) pages */
1440 page = follow_page(vma, addr, FOLL_DUMP);
1441
1442 err = PTR_ERR(page);
1443 if (IS_ERR(page))
1444 goto set_status;
1445
1446 err = page ? page_to_nid(page) : -ENOENT;
1447 set_status:
1448 *status = err;
1449
1450 pages++;
1451 status++;
1452 }
1453
1454 up_read(&mm->mmap_sem);
1455 }
1456
1457 /*
1458 * Determine the nodes of a user array of pages and store it in
1459 * a user array of status.
1460 */
1461 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1462 const void __user * __user *pages,
1463 int __user *status)
1464 {
1465 #define DO_PAGES_STAT_CHUNK_NR 16
1466 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1467 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1468
1469 while (nr_pages) {
1470 unsigned long chunk_nr;
1471
1472 chunk_nr = nr_pages;
1473 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1474 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1475
1476 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1477 break;
1478
1479 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1480
1481 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1482 break;
1483
1484 pages += chunk_nr;
1485 status += chunk_nr;
1486 nr_pages -= chunk_nr;
1487 }
1488 return nr_pages ? -EFAULT : 0;
1489 }
1490
1491 /*
1492 * Move a list of pages in the address space of the currently executing
1493 * process.
1494 */
1495 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1496 const void __user * __user *, pages,
1497 const int __user *, nodes,
1498 int __user *, status, int, flags)
1499 {
1500 const struct cred *cred = current_cred(), *tcred;
1501 struct task_struct *task;
1502 struct mm_struct *mm;
1503 int err;
1504 nodemask_t task_nodes;
1505
1506 /* Check flags */
1507 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1508 return -EINVAL;
1509
1510 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1511 return -EPERM;
1512
1513 /* Find the mm_struct */
1514 rcu_read_lock();
1515 task = pid ? find_task_by_vpid(pid) : current;
1516 if (!task) {
1517 rcu_read_unlock();
1518 return -ESRCH;
1519 }
1520 get_task_struct(task);
1521
1522 /*
1523 * Check if this process has the right to modify the specified
1524 * process. The right exists if the process has administrative
1525 * capabilities, superuser privileges or the same
1526 * userid as the target process.
1527 */
1528 tcred = __task_cred(task);
1529 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1530 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1531 !capable(CAP_SYS_NICE)) {
1532 rcu_read_unlock();
1533 err = -EPERM;
1534 goto out;
1535 }
1536 rcu_read_unlock();
1537
1538 err = security_task_movememory(task);
1539 if (err)
1540 goto out;
1541
1542 task_nodes = cpuset_mems_allowed(task);
1543 mm = get_task_mm(task);
1544 put_task_struct(task);
1545
1546 if (!mm)
1547 return -EINVAL;
1548
1549 if (nodes)
1550 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1551 nodes, status, flags);
1552 else
1553 err = do_pages_stat(mm, nr_pages, pages, status);
1554
1555 mmput(mm);
1556 return err;
1557
1558 out:
1559 put_task_struct(task);
1560 return err;
1561 }
1562
1563 #ifdef CONFIG_NUMA_BALANCING
1564 /*
1565 * Returns true if this is a safe migration target node for misplaced NUMA
1566 * pages. Currently it only checks the watermarks which crude
1567 */
1568 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1569 unsigned long nr_migrate_pages)
1570 {
1571 int z;
1572 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1573 struct zone *zone = pgdat->node_zones + z;
1574
1575 if (!populated_zone(zone))
1576 continue;
1577
1578 if (!zone_reclaimable(zone))
1579 continue;
1580
1581 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1582 if (!zone_watermark_ok(zone, 0,
1583 high_wmark_pages(zone) +
1584 nr_migrate_pages,
1585 0, 0))
1586 continue;
1587 return true;
1588 }
1589 return false;
1590 }
1591
1592 static struct page *alloc_misplaced_dst_page(struct page *page,
1593 unsigned long data,
1594 int **result)
1595 {
1596 int nid = (int) data;
1597 struct page *newpage;
1598
1599 newpage = __alloc_pages_node(nid,
1600 (GFP_HIGHUSER_MOVABLE |
1601 __GFP_THISNODE | __GFP_NOMEMALLOC |
1602 __GFP_NORETRY | __GFP_NOWARN) &
1603 ~__GFP_RECLAIM, 0);
1604
1605 return newpage;
1606 }
1607
1608 /*
1609 * page migration rate limiting control.
1610 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1611 * window of time. Default here says do not migrate more than 1280M per second.
1612 */
1613 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1614 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1615
1616 /* Returns true if the node is migrate rate-limited after the update */
1617 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1618 unsigned long nr_pages)
1619 {
1620 /*
1621 * Rate-limit the amount of data that is being migrated to a node.
1622 * Optimal placement is no good if the memory bus is saturated and
1623 * all the time is being spent migrating!
1624 */
1625 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1626 spin_lock(&pgdat->numabalancing_migrate_lock);
1627 pgdat->numabalancing_migrate_nr_pages = 0;
1628 pgdat->numabalancing_migrate_next_window = jiffies +
1629 msecs_to_jiffies(migrate_interval_millisecs);
1630 spin_unlock(&pgdat->numabalancing_migrate_lock);
1631 }
1632 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1633 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1634 nr_pages);
1635 return true;
1636 }
1637
1638 /*
1639 * This is an unlocked non-atomic update so errors are possible.
1640 * The consequences are failing to migrate when we potentiall should
1641 * have which is not severe enough to warrant locking. If it is ever
1642 * a problem, it can be converted to a per-cpu counter.
1643 */
1644 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1645 return false;
1646 }
1647
1648 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1649 {
1650 int page_lru;
1651
1652 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1653
1654 /* Avoid migrating to a node that is nearly full */
1655 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1656 return 0;
1657
1658 if (isolate_lru_page(page))
1659 return 0;
1660
1661 /*
1662 * migrate_misplaced_transhuge_page() skips page migration's usual
1663 * check on page_count(), so we must do it here, now that the page
1664 * has been isolated: a GUP pin, or any other pin, prevents migration.
1665 * The expected page count is 3: 1 for page's mapcount and 1 for the
1666 * caller's pin and 1 for the reference taken by isolate_lru_page().
1667 */
1668 if (PageTransHuge(page) && page_count(page) != 3) {
1669 putback_lru_page(page);
1670 return 0;
1671 }
1672
1673 page_lru = page_is_file_cache(page);
1674 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1675 hpage_nr_pages(page));
1676
1677 /*
1678 * Isolating the page has taken another reference, so the
1679 * caller's reference can be safely dropped without the page
1680 * disappearing underneath us during migration.
1681 */
1682 put_page(page);
1683 return 1;
1684 }
1685
1686 bool pmd_trans_migrating(pmd_t pmd)
1687 {
1688 struct page *page = pmd_page(pmd);
1689 return PageLocked(page);
1690 }
1691
1692 /*
1693 * Attempt to migrate a misplaced page to the specified destination
1694 * node. Caller is expected to have an elevated reference count on
1695 * the page that will be dropped by this function before returning.
1696 */
1697 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1698 int node)
1699 {
1700 pg_data_t *pgdat = NODE_DATA(node);
1701 int isolated;
1702 int nr_remaining;
1703 LIST_HEAD(migratepages);
1704
1705 /*
1706 * Don't migrate file pages that are mapped in multiple processes
1707 * with execute permissions as they are probably shared libraries.
1708 */
1709 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1710 (vma->vm_flags & VM_EXEC))
1711 goto out;
1712
1713 /*
1714 * Rate-limit the amount of data that is being migrated to a node.
1715 * Optimal placement is no good if the memory bus is saturated and
1716 * all the time is being spent migrating!
1717 */
1718 if (numamigrate_update_ratelimit(pgdat, 1))
1719 goto out;
1720
1721 isolated = numamigrate_isolate_page(pgdat, page);
1722 if (!isolated)
1723 goto out;
1724
1725 list_add(&page->lru, &migratepages);
1726 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1727 NULL, node, MIGRATE_ASYNC,
1728 MR_NUMA_MISPLACED);
1729 if (nr_remaining) {
1730 if (!list_empty(&migratepages)) {
1731 list_del(&page->lru);
1732 dec_zone_page_state(page, NR_ISOLATED_ANON +
1733 page_is_file_cache(page));
1734 putback_lru_page(page);
1735 }
1736 isolated = 0;
1737 } else
1738 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1739 BUG_ON(!list_empty(&migratepages));
1740 return isolated;
1741
1742 out:
1743 put_page(page);
1744 return 0;
1745 }
1746 #endif /* CONFIG_NUMA_BALANCING */
1747
1748 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1749 /*
1750 * Migrates a THP to a given target node. page must be locked and is unlocked
1751 * before returning.
1752 */
1753 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1754 struct vm_area_struct *vma,
1755 pmd_t *pmd, pmd_t entry,
1756 unsigned long address,
1757 struct page *page, int node)
1758 {
1759 spinlock_t *ptl;
1760 pg_data_t *pgdat = NODE_DATA(node);
1761 int isolated = 0;
1762 struct page *new_page = NULL;
1763 int page_lru = page_is_file_cache(page);
1764 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1765 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1766 pmd_t orig_entry;
1767
1768 /*
1769 * Rate-limit the amount of data that is being migrated to a node.
1770 * Optimal placement is no good if the memory bus is saturated and
1771 * all the time is being spent migrating!
1772 */
1773 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1774 goto out_dropref;
1775
1776 new_page = alloc_pages_node(node,
1777 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1778 HPAGE_PMD_ORDER);
1779 if (!new_page)
1780 goto out_fail;
1781 prep_transhuge_page(new_page);
1782
1783 isolated = numamigrate_isolate_page(pgdat, page);
1784 if (!isolated) {
1785 put_page(new_page);
1786 goto out_fail;
1787 }
1788 /*
1789 * We are not sure a pending tlb flush here is for a huge page
1790 * mapping or not. Hence use the tlb range variant
1791 */
1792 if (mm_tlb_flush_pending(mm))
1793 flush_tlb_range(vma, mmun_start, mmun_end);
1794
1795 /* Prepare a page as a migration target */
1796 __SetPageLocked(new_page);
1797 __SetPageSwapBacked(new_page);
1798
1799 /* anon mapping, we can simply copy page->mapping to the new page: */
1800 new_page->mapping = page->mapping;
1801 new_page->index = page->index;
1802 migrate_page_copy(new_page, page);
1803 WARN_ON(PageLRU(new_page));
1804
1805 /* Recheck the target PMD */
1806 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1807 ptl = pmd_lock(mm, pmd);
1808 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1809 fail_putback:
1810 spin_unlock(ptl);
1811 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1812
1813 /* Reverse changes made by migrate_page_copy() */
1814 if (TestClearPageActive(new_page))
1815 SetPageActive(page);
1816 if (TestClearPageUnevictable(new_page))
1817 SetPageUnevictable(page);
1818
1819 unlock_page(new_page);
1820 put_page(new_page); /* Free it */
1821
1822 /* Retake the callers reference and putback on LRU */
1823 get_page(page);
1824 putback_lru_page(page);
1825 mod_zone_page_state(page_zone(page),
1826 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1827
1828 goto out_unlock;
1829 }
1830
1831 orig_entry = *pmd;
1832 entry = mk_pmd(new_page, vma->vm_page_prot);
1833 entry = pmd_mkhuge(entry);
1834 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1835
1836 /*
1837 * Clear the old entry under pagetable lock and establish the new PTE.
1838 * Any parallel GUP will either observe the old page blocking on the
1839 * page lock, block on the page table lock or observe the new page.
1840 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1841 * guarantee the copy is visible before the pagetable update.
1842 */
1843 flush_cache_range(vma, mmun_start, mmun_end);
1844 page_add_anon_rmap(new_page, vma, mmun_start, true);
1845 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1846 set_pmd_at(mm, mmun_start, pmd, entry);
1847 update_mmu_cache_pmd(vma, address, &entry);
1848
1849 if (page_count(page) != 2) {
1850 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1851 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
1852 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1853 update_mmu_cache_pmd(vma, address, &entry);
1854 page_remove_rmap(new_page, true);
1855 goto fail_putback;
1856 }
1857
1858 mlock_migrate_page(new_page, page);
1859 page_remove_rmap(page, true);
1860 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1861
1862 spin_unlock(ptl);
1863 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1864
1865 /* Take an "isolate" reference and put new page on the LRU. */
1866 get_page(new_page);
1867 putback_lru_page(new_page);
1868
1869 unlock_page(new_page);
1870 unlock_page(page);
1871 put_page(page); /* Drop the rmap reference */
1872 put_page(page); /* Drop the LRU isolation reference */
1873
1874 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1875 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1876
1877 mod_zone_page_state(page_zone(page),
1878 NR_ISOLATED_ANON + page_lru,
1879 -HPAGE_PMD_NR);
1880 return isolated;
1881
1882 out_fail:
1883 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1884 out_dropref:
1885 ptl = pmd_lock(mm, pmd);
1886 if (pmd_same(*pmd, entry)) {
1887 entry = pmd_modify(entry, vma->vm_page_prot);
1888 set_pmd_at(mm, mmun_start, pmd, entry);
1889 update_mmu_cache_pmd(vma, address, &entry);
1890 }
1891 spin_unlock(ptl);
1892
1893 out_unlock:
1894 unlock_page(page);
1895 put_page(page);
1896 return 0;
1897 }
1898 #endif /* CONFIG_NUMA_BALANCING */
1899
1900 #endif /* CONFIG_NUMA */
This page took 0.087405 seconds and 5 git commands to generate.