Restartable sequences: self-tests
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45 #include <linux/pkeys.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51
52 #include "internal.h"
53
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags) (0)
56 #endif
57
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
60 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
61 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
65 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
66 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
67 #endif
68
69 static bool ignore_rlimit_data;
70 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
71
72 static void unmap_region(struct mm_struct *mm,
73 struct vm_area_struct *vma, struct vm_area_struct *prev,
74 unsigned long start, unsigned long end);
75
76 /* description of effects of mapping type and prot in current implementation.
77 * this is due to the limited x86 page protection hardware. The expected
78 * behavior is in parens:
79 *
80 * map_type prot
81 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
82 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
83 * w: (no) no w: (no) no w: (yes) yes w: (no) no
84 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
85 *
86 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (copy) copy w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 *
90 */
91 pgprot_t protection_map[16] = {
92 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
93 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
94 };
95
96 pgprot_t vm_get_page_prot(unsigned long vm_flags)
97 {
98 return __pgprot(pgprot_val(protection_map[vm_flags &
99 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
100 pgprot_val(arch_vm_get_page_prot(vm_flags)));
101 }
102 EXPORT_SYMBOL(vm_get_page_prot);
103
104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
105 {
106 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
107 }
108
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
110 void vma_set_page_prot(struct vm_area_struct *vma)
111 {
112 unsigned long vm_flags = vma->vm_flags;
113
114 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
115 if (vma_wants_writenotify(vma)) {
116 vm_flags &= ~VM_SHARED;
117 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
118 vm_flags);
119 }
120 }
121
122 /*
123 * Requires inode->i_mapping->i_mmap_rwsem
124 */
125 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
126 struct file *file, struct address_space *mapping)
127 {
128 if (vma->vm_flags & VM_DENYWRITE)
129 atomic_inc(&file_inode(file)->i_writecount);
130 if (vma->vm_flags & VM_SHARED)
131 mapping_unmap_writable(mapping);
132
133 flush_dcache_mmap_lock(mapping);
134 vma_interval_tree_remove(vma, &mapping->i_mmap);
135 flush_dcache_mmap_unlock(mapping);
136 }
137
138 /*
139 * Unlink a file-based vm structure from its interval tree, to hide
140 * vma from rmap and vmtruncate before freeing its page tables.
141 */
142 void unlink_file_vma(struct vm_area_struct *vma)
143 {
144 struct file *file = vma->vm_file;
145
146 if (file) {
147 struct address_space *mapping = file->f_mapping;
148 i_mmap_lock_write(mapping);
149 __remove_shared_vm_struct(vma, file, mapping);
150 i_mmap_unlock_write(mapping);
151 }
152 }
153
154 /*
155 * Close a vm structure and free it, returning the next.
156 */
157 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
158 {
159 struct vm_area_struct *next = vma->vm_next;
160
161 might_sleep();
162 if (vma->vm_ops && vma->vm_ops->close)
163 vma->vm_ops->close(vma);
164 if (vma->vm_file)
165 fput(vma->vm_file);
166 mpol_put(vma_policy(vma));
167 kmem_cache_free(vm_area_cachep, vma);
168 return next;
169 }
170
171 static int do_brk(unsigned long addr, unsigned long len);
172
173 SYSCALL_DEFINE1(brk, unsigned long, brk)
174 {
175 unsigned long retval;
176 unsigned long newbrk, oldbrk;
177 struct mm_struct *mm = current->mm;
178 unsigned long min_brk;
179 bool populate;
180
181 if (down_write_killable(&mm->mmap_sem))
182 return -EINTR;
183
184 #ifdef CONFIG_COMPAT_BRK
185 /*
186 * CONFIG_COMPAT_BRK can still be overridden by setting
187 * randomize_va_space to 2, which will still cause mm->start_brk
188 * to be arbitrarily shifted
189 */
190 if (current->brk_randomized)
191 min_brk = mm->start_brk;
192 else
193 min_brk = mm->end_data;
194 #else
195 min_brk = mm->start_brk;
196 #endif
197 if (brk < min_brk)
198 goto out;
199
200 /*
201 * Check against rlimit here. If this check is done later after the test
202 * of oldbrk with newbrk then it can escape the test and let the data
203 * segment grow beyond its set limit the in case where the limit is
204 * not page aligned -Ram Gupta
205 */
206 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
207 mm->end_data, mm->start_data))
208 goto out;
209
210 newbrk = PAGE_ALIGN(brk);
211 oldbrk = PAGE_ALIGN(mm->brk);
212 if (oldbrk == newbrk)
213 goto set_brk;
214
215 /* Always allow shrinking brk. */
216 if (brk <= mm->brk) {
217 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
218 goto set_brk;
219 goto out;
220 }
221
222 /* Check against existing mmap mappings. */
223 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
224 goto out;
225
226 /* Ok, looks good - let it rip. */
227 if (do_brk(oldbrk, newbrk-oldbrk) < 0)
228 goto out;
229
230 set_brk:
231 mm->brk = brk;
232 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
233 up_write(&mm->mmap_sem);
234 if (populate)
235 mm_populate(oldbrk, newbrk - oldbrk);
236 return brk;
237
238 out:
239 retval = mm->brk;
240 up_write(&mm->mmap_sem);
241 return retval;
242 }
243
244 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
245 {
246 unsigned long max, subtree_gap;
247 max = vma->vm_start;
248 if (vma->vm_prev)
249 max -= vma->vm_prev->vm_end;
250 if (vma->vm_rb.rb_left) {
251 subtree_gap = rb_entry(vma->vm_rb.rb_left,
252 struct vm_area_struct, vm_rb)->rb_subtree_gap;
253 if (subtree_gap > max)
254 max = subtree_gap;
255 }
256 if (vma->vm_rb.rb_right) {
257 subtree_gap = rb_entry(vma->vm_rb.rb_right,
258 struct vm_area_struct, vm_rb)->rb_subtree_gap;
259 if (subtree_gap > max)
260 max = subtree_gap;
261 }
262 return max;
263 }
264
265 #ifdef CONFIG_DEBUG_VM_RB
266 static int browse_rb(struct mm_struct *mm)
267 {
268 struct rb_root *root = &mm->mm_rb;
269 int i = 0, j, bug = 0;
270 struct rb_node *nd, *pn = NULL;
271 unsigned long prev = 0, pend = 0;
272
273 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
274 struct vm_area_struct *vma;
275 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
276 if (vma->vm_start < prev) {
277 pr_emerg("vm_start %lx < prev %lx\n",
278 vma->vm_start, prev);
279 bug = 1;
280 }
281 if (vma->vm_start < pend) {
282 pr_emerg("vm_start %lx < pend %lx\n",
283 vma->vm_start, pend);
284 bug = 1;
285 }
286 if (vma->vm_start > vma->vm_end) {
287 pr_emerg("vm_start %lx > vm_end %lx\n",
288 vma->vm_start, vma->vm_end);
289 bug = 1;
290 }
291 spin_lock(&mm->page_table_lock);
292 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
293 pr_emerg("free gap %lx, correct %lx\n",
294 vma->rb_subtree_gap,
295 vma_compute_subtree_gap(vma));
296 bug = 1;
297 }
298 spin_unlock(&mm->page_table_lock);
299 i++;
300 pn = nd;
301 prev = vma->vm_start;
302 pend = vma->vm_end;
303 }
304 j = 0;
305 for (nd = pn; nd; nd = rb_prev(nd))
306 j++;
307 if (i != j) {
308 pr_emerg("backwards %d, forwards %d\n", j, i);
309 bug = 1;
310 }
311 return bug ? -1 : i;
312 }
313
314 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
315 {
316 struct rb_node *nd;
317
318 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
319 struct vm_area_struct *vma;
320 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
321 VM_BUG_ON_VMA(vma != ignore &&
322 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
323 vma);
324 }
325 }
326
327 static void validate_mm(struct mm_struct *mm)
328 {
329 int bug = 0;
330 int i = 0;
331 unsigned long highest_address = 0;
332 struct vm_area_struct *vma = mm->mmap;
333
334 while (vma) {
335 struct anon_vma *anon_vma = vma->anon_vma;
336 struct anon_vma_chain *avc;
337
338 if (anon_vma) {
339 anon_vma_lock_read(anon_vma);
340 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
341 anon_vma_interval_tree_verify(avc);
342 anon_vma_unlock_read(anon_vma);
343 }
344
345 highest_address = vma->vm_end;
346 vma = vma->vm_next;
347 i++;
348 }
349 if (i != mm->map_count) {
350 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
351 bug = 1;
352 }
353 if (highest_address != mm->highest_vm_end) {
354 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
355 mm->highest_vm_end, highest_address);
356 bug = 1;
357 }
358 i = browse_rb(mm);
359 if (i != mm->map_count) {
360 if (i != -1)
361 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
362 bug = 1;
363 }
364 VM_BUG_ON_MM(bug, mm);
365 }
366 #else
367 #define validate_mm_rb(root, ignore) do { } while (0)
368 #define validate_mm(mm) do { } while (0)
369 #endif
370
371 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
372 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
373
374 /*
375 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
376 * vma->vm_prev->vm_end values changed, without modifying the vma's position
377 * in the rbtree.
378 */
379 static void vma_gap_update(struct vm_area_struct *vma)
380 {
381 /*
382 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
383 * function that does exacltly what we want.
384 */
385 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
386 }
387
388 static inline void vma_rb_insert(struct vm_area_struct *vma,
389 struct rb_root *root)
390 {
391 /* All rb_subtree_gap values must be consistent prior to insertion */
392 validate_mm_rb(root, NULL);
393
394 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
395 }
396
397 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
398 {
399 /*
400 * All rb_subtree_gap values must be consistent prior to erase,
401 * with the possible exception of the vma being erased.
402 */
403 validate_mm_rb(root, vma);
404
405 /*
406 * Note rb_erase_augmented is a fairly large inline function,
407 * so make sure we instantiate it only once with our desired
408 * augmented rbtree callbacks.
409 */
410 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
411 }
412
413 /*
414 * vma has some anon_vma assigned, and is already inserted on that
415 * anon_vma's interval trees.
416 *
417 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
418 * vma must be removed from the anon_vma's interval trees using
419 * anon_vma_interval_tree_pre_update_vma().
420 *
421 * After the update, the vma will be reinserted using
422 * anon_vma_interval_tree_post_update_vma().
423 *
424 * The entire update must be protected by exclusive mmap_sem and by
425 * the root anon_vma's mutex.
426 */
427 static inline void
428 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
429 {
430 struct anon_vma_chain *avc;
431
432 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
433 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
434 }
435
436 static inline void
437 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
438 {
439 struct anon_vma_chain *avc;
440
441 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
442 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
443 }
444
445 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
446 unsigned long end, struct vm_area_struct **pprev,
447 struct rb_node ***rb_link, struct rb_node **rb_parent)
448 {
449 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
450
451 __rb_link = &mm->mm_rb.rb_node;
452 rb_prev = __rb_parent = NULL;
453
454 while (*__rb_link) {
455 struct vm_area_struct *vma_tmp;
456
457 __rb_parent = *__rb_link;
458 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
459
460 if (vma_tmp->vm_end > addr) {
461 /* Fail if an existing vma overlaps the area */
462 if (vma_tmp->vm_start < end)
463 return -ENOMEM;
464 __rb_link = &__rb_parent->rb_left;
465 } else {
466 rb_prev = __rb_parent;
467 __rb_link = &__rb_parent->rb_right;
468 }
469 }
470
471 *pprev = NULL;
472 if (rb_prev)
473 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
474 *rb_link = __rb_link;
475 *rb_parent = __rb_parent;
476 return 0;
477 }
478
479 static unsigned long count_vma_pages_range(struct mm_struct *mm,
480 unsigned long addr, unsigned long end)
481 {
482 unsigned long nr_pages = 0;
483 struct vm_area_struct *vma;
484
485 /* Find first overlaping mapping */
486 vma = find_vma_intersection(mm, addr, end);
487 if (!vma)
488 return 0;
489
490 nr_pages = (min(end, vma->vm_end) -
491 max(addr, vma->vm_start)) >> PAGE_SHIFT;
492
493 /* Iterate over the rest of the overlaps */
494 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
495 unsigned long overlap_len;
496
497 if (vma->vm_start > end)
498 break;
499
500 overlap_len = min(end, vma->vm_end) - vma->vm_start;
501 nr_pages += overlap_len >> PAGE_SHIFT;
502 }
503
504 return nr_pages;
505 }
506
507 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
508 struct rb_node **rb_link, struct rb_node *rb_parent)
509 {
510 /* Update tracking information for the gap following the new vma. */
511 if (vma->vm_next)
512 vma_gap_update(vma->vm_next);
513 else
514 mm->highest_vm_end = vma->vm_end;
515
516 /*
517 * vma->vm_prev wasn't known when we followed the rbtree to find the
518 * correct insertion point for that vma. As a result, we could not
519 * update the vma vm_rb parents rb_subtree_gap values on the way down.
520 * So, we first insert the vma with a zero rb_subtree_gap value
521 * (to be consistent with what we did on the way down), and then
522 * immediately update the gap to the correct value. Finally we
523 * rebalance the rbtree after all augmented values have been set.
524 */
525 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
526 vma->rb_subtree_gap = 0;
527 vma_gap_update(vma);
528 vma_rb_insert(vma, &mm->mm_rb);
529 }
530
531 static void __vma_link_file(struct vm_area_struct *vma)
532 {
533 struct file *file;
534
535 file = vma->vm_file;
536 if (file) {
537 struct address_space *mapping = file->f_mapping;
538
539 if (vma->vm_flags & VM_DENYWRITE)
540 atomic_dec(&file_inode(file)->i_writecount);
541 if (vma->vm_flags & VM_SHARED)
542 atomic_inc(&mapping->i_mmap_writable);
543
544 flush_dcache_mmap_lock(mapping);
545 vma_interval_tree_insert(vma, &mapping->i_mmap);
546 flush_dcache_mmap_unlock(mapping);
547 }
548 }
549
550 static void
551 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
552 struct vm_area_struct *prev, struct rb_node **rb_link,
553 struct rb_node *rb_parent)
554 {
555 __vma_link_list(mm, vma, prev, rb_parent);
556 __vma_link_rb(mm, vma, rb_link, rb_parent);
557 }
558
559 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
560 struct vm_area_struct *prev, struct rb_node **rb_link,
561 struct rb_node *rb_parent)
562 {
563 struct address_space *mapping = NULL;
564
565 if (vma->vm_file) {
566 mapping = vma->vm_file->f_mapping;
567 i_mmap_lock_write(mapping);
568 }
569
570 __vma_link(mm, vma, prev, rb_link, rb_parent);
571 __vma_link_file(vma);
572
573 if (mapping)
574 i_mmap_unlock_write(mapping);
575
576 mm->map_count++;
577 validate_mm(mm);
578 }
579
580 /*
581 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
582 * mm's list and rbtree. It has already been inserted into the interval tree.
583 */
584 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
585 {
586 struct vm_area_struct *prev;
587 struct rb_node **rb_link, *rb_parent;
588
589 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
590 &prev, &rb_link, &rb_parent))
591 BUG();
592 __vma_link(mm, vma, prev, rb_link, rb_parent);
593 mm->map_count++;
594 }
595
596 static inline void
597 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
598 struct vm_area_struct *prev)
599 {
600 struct vm_area_struct *next;
601
602 vma_rb_erase(vma, &mm->mm_rb);
603 prev->vm_next = next = vma->vm_next;
604 if (next)
605 next->vm_prev = prev;
606
607 /* Kill the cache */
608 vmacache_invalidate(mm);
609 }
610
611 /*
612 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
613 * is already present in an i_mmap tree without adjusting the tree.
614 * The following helper function should be used when such adjustments
615 * are necessary. The "insert" vma (if any) is to be inserted
616 * before we drop the necessary locks.
617 */
618 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
619 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
620 {
621 struct mm_struct *mm = vma->vm_mm;
622 struct vm_area_struct *next = vma->vm_next;
623 struct vm_area_struct *importer = NULL;
624 struct address_space *mapping = NULL;
625 struct rb_root *root = NULL;
626 struct anon_vma *anon_vma = NULL;
627 struct file *file = vma->vm_file;
628 bool start_changed = false, end_changed = false;
629 long adjust_next = 0;
630 int remove_next = 0;
631
632 if (next && !insert) {
633 struct vm_area_struct *exporter = NULL;
634
635 if (end >= next->vm_end) {
636 /*
637 * vma expands, overlapping all the next, and
638 * perhaps the one after too (mprotect case 6).
639 */
640 again: remove_next = 1 + (end > next->vm_end);
641 end = next->vm_end;
642 exporter = next;
643 importer = vma;
644 } else if (end > next->vm_start) {
645 /*
646 * vma expands, overlapping part of the next:
647 * mprotect case 5 shifting the boundary up.
648 */
649 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
650 exporter = next;
651 importer = vma;
652 } else if (end < vma->vm_end) {
653 /*
654 * vma shrinks, and !insert tells it's not
655 * split_vma inserting another: so it must be
656 * mprotect case 4 shifting the boundary down.
657 */
658 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
659 exporter = vma;
660 importer = next;
661 }
662
663 /*
664 * Easily overlooked: when mprotect shifts the boundary,
665 * make sure the expanding vma has anon_vma set if the
666 * shrinking vma had, to cover any anon pages imported.
667 */
668 if (exporter && exporter->anon_vma && !importer->anon_vma) {
669 int error;
670
671 importer->anon_vma = exporter->anon_vma;
672 error = anon_vma_clone(importer, exporter);
673 if (error)
674 return error;
675 }
676 }
677
678 if (file) {
679 mapping = file->f_mapping;
680 root = &mapping->i_mmap;
681 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
682
683 if (adjust_next)
684 uprobe_munmap(next, next->vm_start, next->vm_end);
685
686 i_mmap_lock_write(mapping);
687 if (insert) {
688 /*
689 * Put into interval tree now, so instantiated pages
690 * are visible to arm/parisc __flush_dcache_page
691 * throughout; but we cannot insert into address
692 * space until vma start or end is updated.
693 */
694 __vma_link_file(insert);
695 }
696 }
697
698 vma_adjust_trans_huge(vma, start, end, adjust_next);
699
700 anon_vma = vma->anon_vma;
701 if (!anon_vma && adjust_next)
702 anon_vma = next->anon_vma;
703 if (anon_vma) {
704 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
705 anon_vma != next->anon_vma, next);
706 anon_vma_lock_write(anon_vma);
707 anon_vma_interval_tree_pre_update_vma(vma);
708 if (adjust_next)
709 anon_vma_interval_tree_pre_update_vma(next);
710 }
711
712 if (root) {
713 flush_dcache_mmap_lock(mapping);
714 vma_interval_tree_remove(vma, root);
715 if (adjust_next)
716 vma_interval_tree_remove(next, root);
717 }
718
719 if (start != vma->vm_start) {
720 vma->vm_start = start;
721 start_changed = true;
722 }
723 if (end != vma->vm_end) {
724 vma->vm_end = end;
725 end_changed = true;
726 }
727 vma->vm_pgoff = pgoff;
728 if (adjust_next) {
729 next->vm_start += adjust_next << PAGE_SHIFT;
730 next->vm_pgoff += adjust_next;
731 }
732
733 if (root) {
734 if (adjust_next)
735 vma_interval_tree_insert(next, root);
736 vma_interval_tree_insert(vma, root);
737 flush_dcache_mmap_unlock(mapping);
738 }
739
740 if (remove_next) {
741 /*
742 * vma_merge has merged next into vma, and needs
743 * us to remove next before dropping the locks.
744 */
745 __vma_unlink(mm, next, vma);
746 if (file)
747 __remove_shared_vm_struct(next, file, mapping);
748 } else if (insert) {
749 /*
750 * split_vma has split insert from vma, and needs
751 * us to insert it before dropping the locks
752 * (it may either follow vma or precede it).
753 */
754 __insert_vm_struct(mm, insert);
755 } else {
756 if (start_changed)
757 vma_gap_update(vma);
758 if (end_changed) {
759 if (!next)
760 mm->highest_vm_end = end;
761 else if (!adjust_next)
762 vma_gap_update(next);
763 }
764 }
765
766 if (anon_vma) {
767 anon_vma_interval_tree_post_update_vma(vma);
768 if (adjust_next)
769 anon_vma_interval_tree_post_update_vma(next);
770 anon_vma_unlock_write(anon_vma);
771 }
772 if (mapping)
773 i_mmap_unlock_write(mapping);
774
775 if (root) {
776 uprobe_mmap(vma);
777
778 if (adjust_next)
779 uprobe_mmap(next);
780 }
781
782 if (remove_next) {
783 if (file) {
784 uprobe_munmap(next, next->vm_start, next->vm_end);
785 fput(file);
786 }
787 if (next->anon_vma)
788 anon_vma_merge(vma, next);
789 mm->map_count--;
790 mpol_put(vma_policy(next));
791 kmem_cache_free(vm_area_cachep, next);
792 /*
793 * In mprotect's case 6 (see comments on vma_merge),
794 * we must remove another next too. It would clutter
795 * up the code too much to do both in one go.
796 */
797 next = vma->vm_next;
798 if (remove_next == 2)
799 goto again;
800 else if (next)
801 vma_gap_update(next);
802 else
803 mm->highest_vm_end = end;
804 }
805 if (insert && file)
806 uprobe_mmap(insert);
807
808 validate_mm(mm);
809
810 return 0;
811 }
812
813 /*
814 * If the vma has a ->close operation then the driver probably needs to release
815 * per-vma resources, so we don't attempt to merge those.
816 */
817 static inline int is_mergeable_vma(struct vm_area_struct *vma,
818 struct file *file, unsigned long vm_flags,
819 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
820 {
821 /*
822 * VM_SOFTDIRTY should not prevent from VMA merging, if we
823 * match the flags but dirty bit -- the caller should mark
824 * merged VMA as dirty. If dirty bit won't be excluded from
825 * comparison, we increase pressue on the memory system forcing
826 * the kernel to generate new VMAs when old one could be
827 * extended instead.
828 */
829 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
830 return 0;
831 if (vma->vm_file != file)
832 return 0;
833 if (vma->vm_ops && vma->vm_ops->close)
834 return 0;
835 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
836 return 0;
837 return 1;
838 }
839
840 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
841 struct anon_vma *anon_vma2,
842 struct vm_area_struct *vma)
843 {
844 /*
845 * The list_is_singular() test is to avoid merging VMA cloned from
846 * parents. This can improve scalability caused by anon_vma lock.
847 */
848 if ((!anon_vma1 || !anon_vma2) && (!vma ||
849 list_is_singular(&vma->anon_vma_chain)))
850 return 1;
851 return anon_vma1 == anon_vma2;
852 }
853
854 /*
855 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
856 * in front of (at a lower virtual address and file offset than) the vma.
857 *
858 * We cannot merge two vmas if they have differently assigned (non-NULL)
859 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
860 *
861 * We don't check here for the merged mmap wrapping around the end of pagecache
862 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
863 * wrap, nor mmaps which cover the final page at index -1UL.
864 */
865 static int
866 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
867 struct anon_vma *anon_vma, struct file *file,
868 pgoff_t vm_pgoff,
869 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
870 {
871 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
872 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
873 if (vma->vm_pgoff == vm_pgoff)
874 return 1;
875 }
876 return 0;
877 }
878
879 /*
880 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
881 * beyond (at a higher virtual address and file offset than) the vma.
882 *
883 * We cannot merge two vmas if they have differently assigned (non-NULL)
884 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
885 */
886 static int
887 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
888 struct anon_vma *anon_vma, struct file *file,
889 pgoff_t vm_pgoff,
890 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
891 {
892 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
893 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
894 pgoff_t vm_pglen;
895 vm_pglen = vma_pages(vma);
896 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
897 return 1;
898 }
899 return 0;
900 }
901
902 /*
903 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
904 * whether that can be merged with its predecessor or its successor.
905 * Or both (it neatly fills a hole).
906 *
907 * In most cases - when called for mmap, brk or mremap - [addr,end) is
908 * certain not to be mapped by the time vma_merge is called; but when
909 * called for mprotect, it is certain to be already mapped (either at
910 * an offset within prev, or at the start of next), and the flags of
911 * this area are about to be changed to vm_flags - and the no-change
912 * case has already been eliminated.
913 *
914 * The following mprotect cases have to be considered, where AAAA is
915 * the area passed down from mprotect_fixup, never extending beyond one
916 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
917 *
918 * AAAA AAAA AAAA AAAA
919 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
920 * cannot merge might become might become might become
921 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
922 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
923 * mremap move: PPPPNNNNNNNN 8
924 * AAAA
925 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
926 * might become case 1 below case 2 below case 3 below
927 *
928 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
929 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
930 */
931 struct vm_area_struct *vma_merge(struct mm_struct *mm,
932 struct vm_area_struct *prev, unsigned long addr,
933 unsigned long end, unsigned long vm_flags,
934 struct anon_vma *anon_vma, struct file *file,
935 pgoff_t pgoff, struct mempolicy *policy,
936 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
937 {
938 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
939 struct vm_area_struct *area, *next;
940 int err;
941
942 /*
943 * We later require that vma->vm_flags == vm_flags,
944 * so this tests vma->vm_flags & VM_SPECIAL, too.
945 */
946 if (vm_flags & VM_SPECIAL)
947 return NULL;
948
949 if (prev)
950 next = prev->vm_next;
951 else
952 next = mm->mmap;
953 area = next;
954 if (next && next->vm_end == end) /* cases 6, 7, 8 */
955 next = next->vm_next;
956
957 /*
958 * Can it merge with the predecessor?
959 */
960 if (prev && prev->vm_end == addr &&
961 mpol_equal(vma_policy(prev), policy) &&
962 can_vma_merge_after(prev, vm_flags,
963 anon_vma, file, pgoff,
964 vm_userfaultfd_ctx)) {
965 /*
966 * OK, it can. Can we now merge in the successor as well?
967 */
968 if (next && end == next->vm_start &&
969 mpol_equal(policy, vma_policy(next)) &&
970 can_vma_merge_before(next, vm_flags,
971 anon_vma, file,
972 pgoff+pglen,
973 vm_userfaultfd_ctx) &&
974 is_mergeable_anon_vma(prev->anon_vma,
975 next->anon_vma, NULL)) {
976 /* cases 1, 6 */
977 err = vma_adjust(prev, prev->vm_start,
978 next->vm_end, prev->vm_pgoff, NULL);
979 } else /* cases 2, 5, 7 */
980 err = vma_adjust(prev, prev->vm_start,
981 end, prev->vm_pgoff, NULL);
982 if (err)
983 return NULL;
984 khugepaged_enter_vma_merge(prev, vm_flags);
985 return prev;
986 }
987
988 /*
989 * Can this new request be merged in front of next?
990 */
991 if (next && end == next->vm_start &&
992 mpol_equal(policy, vma_policy(next)) &&
993 can_vma_merge_before(next, vm_flags,
994 anon_vma, file, pgoff+pglen,
995 vm_userfaultfd_ctx)) {
996 if (prev && addr < prev->vm_end) /* case 4 */
997 err = vma_adjust(prev, prev->vm_start,
998 addr, prev->vm_pgoff, NULL);
999 else /* cases 3, 8 */
1000 err = vma_adjust(area, addr, next->vm_end,
1001 next->vm_pgoff - pglen, NULL);
1002 if (err)
1003 return NULL;
1004 khugepaged_enter_vma_merge(area, vm_flags);
1005 return area;
1006 }
1007
1008 return NULL;
1009 }
1010
1011 /*
1012 * Rough compatbility check to quickly see if it's even worth looking
1013 * at sharing an anon_vma.
1014 *
1015 * They need to have the same vm_file, and the flags can only differ
1016 * in things that mprotect may change.
1017 *
1018 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1019 * we can merge the two vma's. For example, we refuse to merge a vma if
1020 * there is a vm_ops->close() function, because that indicates that the
1021 * driver is doing some kind of reference counting. But that doesn't
1022 * really matter for the anon_vma sharing case.
1023 */
1024 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1025 {
1026 return a->vm_end == b->vm_start &&
1027 mpol_equal(vma_policy(a), vma_policy(b)) &&
1028 a->vm_file == b->vm_file &&
1029 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1030 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1031 }
1032
1033 /*
1034 * Do some basic sanity checking to see if we can re-use the anon_vma
1035 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1036 * the same as 'old', the other will be the new one that is trying
1037 * to share the anon_vma.
1038 *
1039 * NOTE! This runs with mm_sem held for reading, so it is possible that
1040 * the anon_vma of 'old' is concurrently in the process of being set up
1041 * by another page fault trying to merge _that_. But that's ok: if it
1042 * is being set up, that automatically means that it will be a singleton
1043 * acceptable for merging, so we can do all of this optimistically. But
1044 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1045 *
1046 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1047 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1048 * is to return an anon_vma that is "complex" due to having gone through
1049 * a fork).
1050 *
1051 * We also make sure that the two vma's are compatible (adjacent,
1052 * and with the same memory policies). That's all stable, even with just
1053 * a read lock on the mm_sem.
1054 */
1055 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1056 {
1057 if (anon_vma_compatible(a, b)) {
1058 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1059
1060 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1061 return anon_vma;
1062 }
1063 return NULL;
1064 }
1065
1066 /*
1067 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1068 * neighbouring vmas for a suitable anon_vma, before it goes off
1069 * to allocate a new anon_vma. It checks because a repetitive
1070 * sequence of mprotects and faults may otherwise lead to distinct
1071 * anon_vmas being allocated, preventing vma merge in subsequent
1072 * mprotect.
1073 */
1074 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1075 {
1076 struct anon_vma *anon_vma;
1077 struct vm_area_struct *near;
1078
1079 near = vma->vm_next;
1080 if (!near)
1081 goto try_prev;
1082
1083 anon_vma = reusable_anon_vma(near, vma, near);
1084 if (anon_vma)
1085 return anon_vma;
1086 try_prev:
1087 near = vma->vm_prev;
1088 if (!near)
1089 goto none;
1090
1091 anon_vma = reusable_anon_vma(near, near, vma);
1092 if (anon_vma)
1093 return anon_vma;
1094 none:
1095 /*
1096 * There's no absolute need to look only at touching neighbours:
1097 * we could search further afield for "compatible" anon_vmas.
1098 * But it would probably just be a waste of time searching,
1099 * or lead to too many vmas hanging off the same anon_vma.
1100 * We're trying to allow mprotect remerging later on,
1101 * not trying to minimize memory used for anon_vmas.
1102 */
1103 return NULL;
1104 }
1105
1106 /*
1107 * If a hint addr is less than mmap_min_addr change hint to be as
1108 * low as possible but still greater than mmap_min_addr
1109 */
1110 static inline unsigned long round_hint_to_min(unsigned long hint)
1111 {
1112 hint &= PAGE_MASK;
1113 if (((void *)hint != NULL) &&
1114 (hint < mmap_min_addr))
1115 return PAGE_ALIGN(mmap_min_addr);
1116 return hint;
1117 }
1118
1119 static inline int mlock_future_check(struct mm_struct *mm,
1120 unsigned long flags,
1121 unsigned long len)
1122 {
1123 unsigned long locked, lock_limit;
1124
1125 /* mlock MCL_FUTURE? */
1126 if (flags & VM_LOCKED) {
1127 locked = len >> PAGE_SHIFT;
1128 locked += mm->locked_vm;
1129 lock_limit = rlimit(RLIMIT_MEMLOCK);
1130 lock_limit >>= PAGE_SHIFT;
1131 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1132 return -EAGAIN;
1133 }
1134 return 0;
1135 }
1136
1137 /*
1138 * The caller must hold down_write(&current->mm->mmap_sem).
1139 */
1140 unsigned long do_mmap(struct file *file, unsigned long addr,
1141 unsigned long len, unsigned long prot,
1142 unsigned long flags, vm_flags_t vm_flags,
1143 unsigned long pgoff, unsigned long *populate)
1144 {
1145 struct mm_struct *mm = current->mm;
1146 int pkey = 0;
1147
1148 *populate = 0;
1149
1150 if (!len)
1151 return -EINVAL;
1152
1153 /*
1154 * Does the application expect PROT_READ to imply PROT_EXEC?
1155 *
1156 * (the exception is when the underlying filesystem is noexec
1157 * mounted, in which case we dont add PROT_EXEC.)
1158 */
1159 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1160 if (!(file && path_noexec(&file->f_path)))
1161 prot |= PROT_EXEC;
1162
1163 if (!(flags & MAP_FIXED))
1164 addr = round_hint_to_min(addr);
1165
1166 /* Careful about overflows.. */
1167 len = PAGE_ALIGN(len);
1168 if (!len)
1169 return -ENOMEM;
1170
1171 /* offset overflow? */
1172 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1173 return -EOVERFLOW;
1174
1175 /* Too many mappings? */
1176 if (mm->map_count > sysctl_max_map_count)
1177 return -ENOMEM;
1178
1179 /* Obtain the address to map to. we verify (or select) it and ensure
1180 * that it represents a valid section of the address space.
1181 */
1182 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1183 if (offset_in_page(addr))
1184 return addr;
1185
1186 if (prot == PROT_EXEC) {
1187 pkey = execute_only_pkey(mm);
1188 if (pkey < 0)
1189 pkey = 0;
1190 }
1191
1192 /* Do simple checking here so the lower-level routines won't have
1193 * to. we assume access permissions have been handled by the open
1194 * of the memory object, so we don't do any here.
1195 */
1196 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1197 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1198
1199 if (flags & MAP_LOCKED)
1200 if (!can_do_mlock())
1201 return -EPERM;
1202
1203 if (mlock_future_check(mm, vm_flags, len))
1204 return -EAGAIN;
1205
1206 if (file) {
1207 struct inode *inode = file_inode(file);
1208
1209 switch (flags & MAP_TYPE) {
1210 case MAP_SHARED:
1211 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1212 return -EACCES;
1213
1214 /*
1215 * Make sure we don't allow writing to an append-only
1216 * file..
1217 */
1218 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1219 return -EACCES;
1220
1221 /*
1222 * Make sure there are no mandatory locks on the file.
1223 */
1224 if (locks_verify_locked(file))
1225 return -EAGAIN;
1226
1227 vm_flags |= VM_SHARED | VM_MAYSHARE;
1228 if (!(file->f_mode & FMODE_WRITE))
1229 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1230
1231 /* fall through */
1232 case MAP_PRIVATE:
1233 if (!(file->f_mode & FMODE_READ))
1234 return -EACCES;
1235 if (path_noexec(&file->f_path)) {
1236 if (vm_flags & VM_EXEC)
1237 return -EPERM;
1238 vm_flags &= ~VM_MAYEXEC;
1239 }
1240
1241 if (!file->f_op->mmap)
1242 return -ENODEV;
1243 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1244 return -EINVAL;
1245 break;
1246
1247 default:
1248 return -EINVAL;
1249 }
1250 } else {
1251 switch (flags & MAP_TYPE) {
1252 case MAP_SHARED:
1253 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1254 return -EINVAL;
1255 /*
1256 * Ignore pgoff.
1257 */
1258 pgoff = 0;
1259 vm_flags |= VM_SHARED | VM_MAYSHARE;
1260 break;
1261 case MAP_PRIVATE:
1262 /*
1263 * Set pgoff according to addr for anon_vma.
1264 */
1265 pgoff = addr >> PAGE_SHIFT;
1266 break;
1267 default:
1268 return -EINVAL;
1269 }
1270 }
1271
1272 /*
1273 * Set 'VM_NORESERVE' if we should not account for the
1274 * memory use of this mapping.
1275 */
1276 if (flags & MAP_NORESERVE) {
1277 /* We honor MAP_NORESERVE if allowed to overcommit */
1278 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1279 vm_flags |= VM_NORESERVE;
1280
1281 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1282 if (file && is_file_hugepages(file))
1283 vm_flags |= VM_NORESERVE;
1284 }
1285
1286 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1287 if (!IS_ERR_VALUE(addr) &&
1288 ((vm_flags & VM_LOCKED) ||
1289 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1290 *populate = len;
1291 return addr;
1292 }
1293
1294 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1295 unsigned long, prot, unsigned long, flags,
1296 unsigned long, fd, unsigned long, pgoff)
1297 {
1298 struct file *file = NULL;
1299 unsigned long retval;
1300
1301 if (!(flags & MAP_ANONYMOUS)) {
1302 audit_mmap_fd(fd, flags);
1303 file = fget(fd);
1304 if (!file)
1305 return -EBADF;
1306 if (is_file_hugepages(file))
1307 len = ALIGN(len, huge_page_size(hstate_file(file)));
1308 retval = -EINVAL;
1309 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1310 goto out_fput;
1311 } else if (flags & MAP_HUGETLB) {
1312 struct user_struct *user = NULL;
1313 struct hstate *hs;
1314
1315 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1316 if (!hs)
1317 return -EINVAL;
1318
1319 len = ALIGN(len, huge_page_size(hs));
1320 /*
1321 * VM_NORESERVE is used because the reservations will be
1322 * taken when vm_ops->mmap() is called
1323 * A dummy user value is used because we are not locking
1324 * memory so no accounting is necessary
1325 */
1326 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1327 VM_NORESERVE,
1328 &user, HUGETLB_ANONHUGE_INODE,
1329 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1330 if (IS_ERR(file))
1331 return PTR_ERR(file);
1332 }
1333
1334 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1335
1336 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1337 out_fput:
1338 if (file)
1339 fput(file);
1340 return retval;
1341 }
1342
1343 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1344 struct mmap_arg_struct {
1345 unsigned long addr;
1346 unsigned long len;
1347 unsigned long prot;
1348 unsigned long flags;
1349 unsigned long fd;
1350 unsigned long offset;
1351 };
1352
1353 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1354 {
1355 struct mmap_arg_struct a;
1356
1357 if (copy_from_user(&a, arg, sizeof(a)))
1358 return -EFAULT;
1359 if (offset_in_page(a.offset))
1360 return -EINVAL;
1361
1362 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1363 a.offset >> PAGE_SHIFT);
1364 }
1365 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1366
1367 /*
1368 * Some shared mappigns will want the pages marked read-only
1369 * to track write events. If so, we'll downgrade vm_page_prot
1370 * to the private version (using protection_map[] without the
1371 * VM_SHARED bit).
1372 */
1373 int vma_wants_writenotify(struct vm_area_struct *vma)
1374 {
1375 vm_flags_t vm_flags = vma->vm_flags;
1376 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1377
1378 /* If it was private or non-writable, the write bit is already clear */
1379 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1380 return 0;
1381
1382 /* The backer wishes to know when pages are first written to? */
1383 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1384 return 1;
1385
1386 /* The open routine did something to the protections that pgprot_modify
1387 * won't preserve? */
1388 if (pgprot_val(vma->vm_page_prot) !=
1389 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1390 return 0;
1391
1392 /* Do we need to track softdirty? */
1393 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1394 return 1;
1395
1396 /* Specialty mapping? */
1397 if (vm_flags & VM_PFNMAP)
1398 return 0;
1399
1400 /* Can the mapping track the dirty pages? */
1401 return vma->vm_file && vma->vm_file->f_mapping &&
1402 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1403 }
1404
1405 /*
1406 * We account for memory if it's a private writeable mapping,
1407 * not hugepages and VM_NORESERVE wasn't set.
1408 */
1409 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1410 {
1411 /*
1412 * hugetlb has its own accounting separate from the core VM
1413 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1414 */
1415 if (file && is_file_hugepages(file))
1416 return 0;
1417
1418 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1419 }
1420
1421 unsigned long mmap_region(struct file *file, unsigned long addr,
1422 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1423 {
1424 struct mm_struct *mm = current->mm;
1425 struct vm_area_struct *vma, *prev;
1426 int error;
1427 struct rb_node **rb_link, *rb_parent;
1428 unsigned long charged = 0;
1429
1430 /* Check against address space limit. */
1431 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1432 unsigned long nr_pages;
1433
1434 /*
1435 * MAP_FIXED may remove pages of mappings that intersects with
1436 * requested mapping. Account for the pages it would unmap.
1437 */
1438 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1439
1440 if (!may_expand_vm(mm, vm_flags,
1441 (len >> PAGE_SHIFT) - nr_pages))
1442 return -ENOMEM;
1443 }
1444
1445 /* Clear old maps */
1446 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1447 &rb_parent)) {
1448 if (do_munmap(mm, addr, len))
1449 return -ENOMEM;
1450 }
1451
1452 /*
1453 * Private writable mapping: check memory availability
1454 */
1455 if (accountable_mapping(file, vm_flags)) {
1456 charged = len >> PAGE_SHIFT;
1457 if (security_vm_enough_memory_mm(mm, charged))
1458 return -ENOMEM;
1459 vm_flags |= VM_ACCOUNT;
1460 }
1461
1462 /*
1463 * Can we just expand an old mapping?
1464 */
1465 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1466 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1467 if (vma)
1468 goto out;
1469
1470 /*
1471 * Determine the object being mapped and call the appropriate
1472 * specific mapper. the address has already been validated, but
1473 * not unmapped, but the maps are removed from the list.
1474 */
1475 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1476 if (!vma) {
1477 error = -ENOMEM;
1478 goto unacct_error;
1479 }
1480
1481 vma->vm_mm = mm;
1482 vma->vm_start = addr;
1483 vma->vm_end = addr + len;
1484 vma->vm_flags = vm_flags;
1485 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1486 vma->vm_pgoff = pgoff;
1487 INIT_LIST_HEAD(&vma->anon_vma_chain);
1488
1489 if (file) {
1490 if (vm_flags & VM_DENYWRITE) {
1491 error = deny_write_access(file);
1492 if (error)
1493 goto free_vma;
1494 }
1495 if (vm_flags & VM_SHARED) {
1496 error = mapping_map_writable(file->f_mapping);
1497 if (error)
1498 goto allow_write_and_free_vma;
1499 }
1500
1501 /* ->mmap() can change vma->vm_file, but must guarantee that
1502 * vma_link() below can deny write-access if VM_DENYWRITE is set
1503 * and map writably if VM_SHARED is set. This usually means the
1504 * new file must not have been exposed to user-space, yet.
1505 */
1506 vma->vm_file = get_file(file);
1507 error = file->f_op->mmap(file, vma);
1508 if (error)
1509 goto unmap_and_free_vma;
1510
1511 /* Can addr have changed??
1512 *
1513 * Answer: Yes, several device drivers can do it in their
1514 * f_op->mmap method. -DaveM
1515 * Bug: If addr is changed, prev, rb_link, rb_parent should
1516 * be updated for vma_link()
1517 */
1518 WARN_ON_ONCE(addr != vma->vm_start);
1519
1520 addr = vma->vm_start;
1521 vm_flags = vma->vm_flags;
1522 } else if (vm_flags & VM_SHARED) {
1523 error = shmem_zero_setup(vma);
1524 if (error)
1525 goto free_vma;
1526 }
1527
1528 vma_link(mm, vma, prev, rb_link, rb_parent);
1529 /* Once vma denies write, undo our temporary denial count */
1530 if (file) {
1531 if (vm_flags & VM_SHARED)
1532 mapping_unmap_writable(file->f_mapping);
1533 if (vm_flags & VM_DENYWRITE)
1534 allow_write_access(file);
1535 }
1536 file = vma->vm_file;
1537 out:
1538 perf_event_mmap(vma);
1539
1540 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1541 if (vm_flags & VM_LOCKED) {
1542 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1543 vma == get_gate_vma(current->mm)))
1544 mm->locked_vm += (len >> PAGE_SHIFT);
1545 else
1546 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1547 }
1548
1549 if (file)
1550 uprobe_mmap(vma);
1551
1552 /*
1553 * New (or expanded) vma always get soft dirty status.
1554 * Otherwise user-space soft-dirty page tracker won't
1555 * be able to distinguish situation when vma area unmapped,
1556 * then new mapped in-place (which must be aimed as
1557 * a completely new data area).
1558 */
1559 vma->vm_flags |= VM_SOFTDIRTY;
1560
1561 vma_set_page_prot(vma);
1562
1563 return addr;
1564
1565 unmap_and_free_vma:
1566 vma->vm_file = NULL;
1567 fput(file);
1568
1569 /* Undo any partial mapping done by a device driver. */
1570 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1571 charged = 0;
1572 if (vm_flags & VM_SHARED)
1573 mapping_unmap_writable(file->f_mapping);
1574 allow_write_and_free_vma:
1575 if (vm_flags & VM_DENYWRITE)
1576 allow_write_access(file);
1577 free_vma:
1578 kmem_cache_free(vm_area_cachep, vma);
1579 unacct_error:
1580 if (charged)
1581 vm_unacct_memory(charged);
1582 return error;
1583 }
1584
1585 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1586 {
1587 /*
1588 * We implement the search by looking for an rbtree node that
1589 * immediately follows a suitable gap. That is,
1590 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1591 * - gap_end = vma->vm_start >= info->low_limit + length;
1592 * - gap_end - gap_start >= length
1593 */
1594
1595 struct mm_struct *mm = current->mm;
1596 struct vm_area_struct *vma;
1597 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1598
1599 /* Adjust search length to account for worst case alignment overhead */
1600 length = info->length + info->align_mask;
1601 if (length < info->length)
1602 return -ENOMEM;
1603
1604 /* Adjust search limits by the desired length */
1605 if (info->high_limit < length)
1606 return -ENOMEM;
1607 high_limit = info->high_limit - length;
1608
1609 if (info->low_limit > high_limit)
1610 return -ENOMEM;
1611 low_limit = info->low_limit + length;
1612
1613 /* Check if rbtree root looks promising */
1614 if (RB_EMPTY_ROOT(&mm->mm_rb))
1615 goto check_highest;
1616 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1617 if (vma->rb_subtree_gap < length)
1618 goto check_highest;
1619
1620 while (true) {
1621 /* Visit left subtree if it looks promising */
1622 gap_end = vma->vm_start;
1623 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1624 struct vm_area_struct *left =
1625 rb_entry(vma->vm_rb.rb_left,
1626 struct vm_area_struct, vm_rb);
1627 if (left->rb_subtree_gap >= length) {
1628 vma = left;
1629 continue;
1630 }
1631 }
1632
1633 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1634 check_current:
1635 /* Check if current node has a suitable gap */
1636 if (gap_start > high_limit)
1637 return -ENOMEM;
1638 if (gap_end >= low_limit && gap_end - gap_start >= length)
1639 goto found;
1640
1641 /* Visit right subtree if it looks promising */
1642 if (vma->vm_rb.rb_right) {
1643 struct vm_area_struct *right =
1644 rb_entry(vma->vm_rb.rb_right,
1645 struct vm_area_struct, vm_rb);
1646 if (right->rb_subtree_gap >= length) {
1647 vma = right;
1648 continue;
1649 }
1650 }
1651
1652 /* Go back up the rbtree to find next candidate node */
1653 while (true) {
1654 struct rb_node *prev = &vma->vm_rb;
1655 if (!rb_parent(prev))
1656 goto check_highest;
1657 vma = rb_entry(rb_parent(prev),
1658 struct vm_area_struct, vm_rb);
1659 if (prev == vma->vm_rb.rb_left) {
1660 gap_start = vma->vm_prev->vm_end;
1661 gap_end = vma->vm_start;
1662 goto check_current;
1663 }
1664 }
1665 }
1666
1667 check_highest:
1668 /* Check highest gap, which does not precede any rbtree node */
1669 gap_start = mm->highest_vm_end;
1670 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1671 if (gap_start > high_limit)
1672 return -ENOMEM;
1673
1674 found:
1675 /* We found a suitable gap. Clip it with the original low_limit. */
1676 if (gap_start < info->low_limit)
1677 gap_start = info->low_limit;
1678
1679 /* Adjust gap address to the desired alignment */
1680 gap_start += (info->align_offset - gap_start) & info->align_mask;
1681
1682 VM_BUG_ON(gap_start + info->length > info->high_limit);
1683 VM_BUG_ON(gap_start + info->length > gap_end);
1684 return gap_start;
1685 }
1686
1687 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1688 {
1689 struct mm_struct *mm = current->mm;
1690 struct vm_area_struct *vma;
1691 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1692
1693 /* Adjust search length to account for worst case alignment overhead */
1694 length = info->length + info->align_mask;
1695 if (length < info->length)
1696 return -ENOMEM;
1697
1698 /*
1699 * Adjust search limits by the desired length.
1700 * See implementation comment at top of unmapped_area().
1701 */
1702 gap_end = info->high_limit;
1703 if (gap_end < length)
1704 return -ENOMEM;
1705 high_limit = gap_end - length;
1706
1707 if (info->low_limit > high_limit)
1708 return -ENOMEM;
1709 low_limit = info->low_limit + length;
1710
1711 /* Check highest gap, which does not precede any rbtree node */
1712 gap_start = mm->highest_vm_end;
1713 if (gap_start <= high_limit)
1714 goto found_highest;
1715
1716 /* Check if rbtree root looks promising */
1717 if (RB_EMPTY_ROOT(&mm->mm_rb))
1718 return -ENOMEM;
1719 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1720 if (vma->rb_subtree_gap < length)
1721 return -ENOMEM;
1722
1723 while (true) {
1724 /* Visit right subtree if it looks promising */
1725 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1726 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1727 struct vm_area_struct *right =
1728 rb_entry(vma->vm_rb.rb_right,
1729 struct vm_area_struct, vm_rb);
1730 if (right->rb_subtree_gap >= length) {
1731 vma = right;
1732 continue;
1733 }
1734 }
1735
1736 check_current:
1737 /* Check if current node has a suitable gap */
1738 gap_end = vma->vm_start;
1739 if (gap_end < low_limit)
1740 return -ENOMEM;
1741 if (gap_start <= high_limit && gap_end - gap_start >= length)
1742 goto found;
1743
1744 /* Visit left subtree if it looks promising */
1745 if (vma->vm_rb.rb_left) {
1746 struct vm_area_struct *left =
1747 rb_entry(vma->vm_rb.rb_left,
1748 struct vm_area_struct, vm_rb);
1749 if (left->rb_subtree_gap >= length) {
1750 vma = left;
1751 continue;
1752 }
1753 }
1754
1755 /* Go back up the rbtree to find next candidate node */
1756 while (true) {
1757 struct rb_node *prev = &vma->vm_rb;
1758 if (!rb_parent(prev))
1759 return -ENOMEM;
1760 vma = rb_entry(rb_parent(prev),
1761 struct vm_area_struct, vm_rb);
1762 if (prev == vma->vm_rb.rb_right) {
1763 gap_start = vma->vm_prev ?
1764 vma->vm_prev->vm_end : 0;
1765 goto check_current;
1766 }
1767 }
1768 }
1769
1770 found:
1771 /* We found a suitable gap. Clip it with the original high_limit. */
1772 if (gap_end > info->high_limit)
1773 gap_end = info->high_limit;
1774
1775 found_highest:
1776 /* Compute highest gap address at the desired alignment */
1777 gap_end -= info->length;
1778 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1779
1780 VM_BUG_ON(gap_end < info->low_limit);
1781 VM_BUG_ON(gap_end < gap_start);
1782 return gap_end;
1783 }
1784
1785 /* Get an address range which is currently unmapped.
1786 * For shmat() with addr=0.
1787 *
1788 * Ugly calling convention alert:
1789 * Return value with the low bits set means error value,
1790 * ie
1791 * if (ret & ~PAGE_MASK)
1792 * error = ret;
1793 *
1794 * This function "knows" that -ENOMEM has the bits set.
1795 */
1796 #ifndef HAVE_ARCH_UNMAPPED_AREA
1797 unsigned long
1798 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1799 unsigned long len, unsigned long pgoff, unsigned long flags)
1800 {
1801 struct mm_struct *mm = current->mm;
1802 struct vm_area_struct *vma;
1803 struct vm_unmapped_area_info info;
1804
1805 if (len > TASK_SIZE - mmap_min_addr)
1806 return -ENOMEM;
1807
1808 if (flags & MAP_FIXED)
1809 return addr;
1810
1811 if (addr) {
1812 addr = PAGE_ALIGN(addr);
1813 vma = find_vma(mm, addr);
1814 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1815 (!vma || addr + len <= vma->vm_start))
1816 return addr;
1817 }
1818
1819 info.flags = 0;
1820 info.length = len;
1821 info.low_limit = mm->mmap_base;
1822 info.high_limit = TASK_SIZE;
1823 info.align_mask = 0;
1824 return vm_unmapped_area(&info);
1825 }
1826 #endif
1827
1828 /*
1829 * This mmap-allocator allocates new areas top-down from below the
1830 * stack's low limit (the base):
1831 */
1832 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1833 unsigned long
1834 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1835 const unsigned long len, const unsigned long pgoff,
1836 const unsigned long flags)
1837 {
1838 struct vm_area_struct *vma;
1839 struct mm_struct *mm = current->mm;
1840 unsigned long addr = addr0;
1841 struct vm_unmapped_area_info info;
1842
1843 /* requested length too big for entire address space */
1844 if (len > TASK_SIZE - mmap_min_addr)
1845 return -ENOMEM;
1846
1847 if (flags & MAP_FIXED)
1848 return addr;
1849
1850 /* requesting a specific address */
1851 if (addr) {
1852 addr = PAGE_ALIGN(addr);
1853 vma = find_vma(mm, addr);
1854 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1855 (!vma || addr + len <= vma->vm_start))
1856 return addr;
1857 }
1858
1859 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1860 info.length = len;
1861 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1862 info.high_limit = mm->mmap_base;
1863 info.align_mask = 0;
1864 addr = vm_unmapped_area(&info);
1865
1866 /*
1867 * A failed mmap() very likely causes application failure,
1868 * so fall back to the bottom-up function here. This scenario
1869 * can happen with large stack limits and large mmap()
1870 * allocations.
1871 */
1872 if (offset_in_page(addr)) {
1873 VM_BUG_ON(addr != -ENOMEM);
1874 info.flags = 0;
1875 info.low_limit = TASK_UNMAPPED_BASE;
1876 info.high_limit = TASK_SIZE;
1877 addr = vm_unmapped_area(&info);
1878 }
1879
1880 return addr;
1881 }
1882 #endif
1883
1884 unsigned long
1885 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1886 unsigned long pgoff, unsigned long flags)
1887 {
1888 unsigned long (*get_area)(struct file *, unsigned long,
1889 unsigned long, unsigned long, unsigned long);
1890
1891 unsigned long error = arch_mmap_check(addr, len, flags);
1892 if (error)
1893 return error;
1894
1895 /* Careful about overflows.. */
1896 if (len > TASK_SIZE)
1897 return -ENOMEM;
1898
1899 get_area = current->mm->get_unmapped_area;
1900 if (file && file->f_op->get_unmapped_area)
1901 get_area = file->f_op->get_unmapped_area;
1902 addr = get_area(file, addr, len, pgoff, flags);
1903 if (IS_ERR_VALUE(addr))
1904 return addr;
1905
1906 if (addr > TASK_SIZE - len)
1907 return -ENOMEM;
1908 if (offset_in_page(addr))
1909 return -EINVAL;
1910
1911 error = security_mmap_addr(addr);
1912 return error ? error : addr;
1913 }
1914
1915 EXPORT_SYMBOL(get_unmapped_area);
1916
1917 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1918 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1919 {
1920 struct rb_node *rb_node;
1921 struct vm_area_struct *vma;
1922
1923 /* Check the cache first. */
1924 vma = vmacache_find(mm, addr);
1925 if (likely(vma))
1926 return vma;
1927
1928 rb_node = mm->mm_rb.rb_node;
1929
1930 while (rb_node) {
1931 struct vm_area_struct *tmp;
1932
1933 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1934
1935 if (tmp->vm_end > addr) {
1936 vma = tmp;
1937 if (tmp->vm_start <= addr)
1938 break;
1939 rb_node = rb_node->rb_left;
1940 } else
1941 rb_node = rb_node->rb_right;
1942 }
1943
1944 if (vma)
1945 vmacache_update(addr, vma);
1946 return vma;
1947 }
1948
1949 EXPORT_SYMBOL(find_vma);
1950
1951 /*
1952 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1953 */
1954 struct vm_area_struct *
1955 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1956 struct vm_area_struct **pprev)
1957 {
1958 struct vm_area_struct *vma;
1959
1960 vma = find_vma(mm, addr);
1961 if (vma) {
1962 *pprev = vma->vm_prev;
1963 } else {
1964 struct rb_node *rb_node = mm->mm_rb.rb_node;
1965 *pprev = NULL;
1966 while (rb_node) {
1967 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1968 rb_node = rb_node->rb_right;
1969 }
1970 }
1971 return vma;
1972 }
1973
1974 /*
1975 * Verify that the stack growth is acceptable and
1976 * update accounting. This is shared with both the
1977 * grow-up and grow-down cases.
1978 */
1979 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1980 {
1981 struct mm_struct *mm = vma->vm_mm;
1982 struct rlimit *rlim = current->signal->rlim;
1983 unsigned long new_start, actual_size;
1984
1985 /* address space limit tests */
1986 if (!may_expand_vm(mm, vma->vm_flags, grow))
1987 return -ENOMEM;
1988
1989 /* Stack limit test */
1990 actual_size = size;
1991 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1992 actual_size -= PAGE_SIZE;
1993 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1994 return -ENOMEM;
1995
1996 /* mlock limit tests */
1997 if (vma->vm_flags & VM_LOCKED) {
1998 unsigned long locked;
1999 unsigned long limit;
2000 locked = mm->locked_vm + grow;
2001 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2002 limit >>= PAGE_SHIFT;
2003 if (locked > limit && !capable(CAP_IPC_LOCK))
2004 return -ENOMEM;
2005 }
2006
2007 /* Check to ensure the stack will not grow into a hugetlb-only region */
2008 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2009 vma->vm_end - size;
2010 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2011 return -EFAULT;
2012
2013 /*
2014 * Overcommit.. This must be the final test, as it will
2015 * update security statistics.
2016 */
2017 if (security_vm_enough_memory_mm(mm, grow))
2018 return -ENOMEM;
2019
2020 return 0;
2021 }
2022
2023 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2024 /*
2025 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2026 * vma is the last one with address > vma->vm_end. Have to extend vma.
2027 */
2028 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2029 {
2030 struct mm_struct *mm = vma->vm_mm;
2031 int error = 0;
2032
2033 if (!(vma->vm_flags & VM_GROWSUP))
2034 return -EFAULT;
2035
2036 /* Guard against wrapping around to address 0. */
2037 if (address < PAGE_ALIGN(address+4))
2038 address = PAGE_ALIGN(address+4);
2039 else
2040 return -ENOMEM;
2041
2042 /* We must make sure the anon_vma is allocated. */
2043 if (unlikely(anon_vma_prepare(vma)))
2044 return -ENOMEM;
2045
2046 /*
2047 * vma->vm_start/vm_end cannot change under us because the caller
2048 * is required to hold the mmap_sem in read mode. We need the
2049 * anon_vma lock to serialize against concurrent expand_stacks.
2050 */
2051 anon_vma_lock_write(vma->anon_vma);
2052
2053 /* Somebody else might have raced and expanded it already */
2054 if (address > vma->vm_end) {
2055 unsigned long size, grow;
2056
2057 size = address - vma->vm_start;
2058 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2059
2060 error = -ENOMEM;
2061 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2062 error = acct_stack_growth(vma, size, grow);
2063 if (!error) {
2064 /*
2065 * vma_gap_update() doesn't support concurrent
2066 * updates, but we only hold a shared mmap_sem
2067 * lock here, so we need to protect against
2068 * concurrent vma expansions.
2069 * anon_vma_lock_write() doesn't help here, as
2070 * we don't guarantee that all growable vmas
2071 * in a mm share the same root anon vma.
2072 * So, we reuse mm->page_table_lock to guard
2073 * against concurrent vma expansions.
2074 */
2075 spin_lock(&mm->page_table_lock);
2076 if (vma->vm_flags & VM_LOCKED)
2077 mm->locked_vm += grow;
2078 vm_stat_account(mm, vma->vm_flags, grow);
2079 anon_vma_interval_tree_pre_update_vma(vma);
2080 vma->vm_end = address;
2081 anon_vma_interval_tree_post_update_vma(vma);
2082 if (vma->vm_next)
2083 vma_gap_update(vma->vm_next);
2084 else
2085 mm->highest_vm_end = address;
2086 spin_unlock(&mm->page_table_lock);
2087
2088 perf_event_mmap(vma);
2089 }
2090 }
2091 }
2092 anon_vma_unlock_write(vma->anon_vma);
2093 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2094 validate_mm(mm);
2095 return error;
2096 }
2097 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2098
2099 /*
2100 * vma is the first one with address < vma->vm_start. Have to extend vma.
2101 */
2102 int expand_downwards(struct vm_area_struct *vma,
2103 unsigned long address)
2104 {
2105 struct mm_struct *mm = vma->vm_mm;
2106 int error;
2107
2108 address &= PAGE_MASK;
2109 error = security_mmap_addr(address);
2110 if (error)
2111 return error;
2112
2113 /* We must make sure the anon_vma is allocated. */
2114 if (unlikely(anon_vma_prepare(vma)))
2115 return -ENOMEM;
2116
2117 /*
2118 * vma->vm_start/vm_end cannot change under us because the caller
2119 * is required to hold the mmap_sem in read mode. We need the
2120 * anon_vma lock to serialize against concurrent expand_stacks.
2121 */
2122 anon_vma_lock_write(vma->anon_vma);
2123
2124 /* Somebody else might have raced and expanded it already */
2125 if (address < vma->vm_start) {
2126 unsigned long size, grow;
2127
2128 size = vma->vm_end - address;
2129 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2130
2131 error = -ENOMEM;
2132 if (grow <= vma->vm_pgoff) {
2133 error = acct_stack_growth(vma, size, grow);
2134 if (!error) {
2135 /*
2136 * vma_gap_update() doesn't support concurrent
2137 * updates, but we only hold a shared mmap_sem
2138 * lock here, so we need to protect against
2139 * concurrent vma expansions.
2140 * anon_vma_lock_write() doesn't help here, as
2141 * we don't guarantee that all growable vmas
2142 * in a mm share the same root anon vma.
2143 * So, we reuse mm->page_table_lock to guard
2144 * against concurrent vma expansions.
2145 */
2146 spin_lock(&mm->page_table_lock);
2147 if (vma->vm_flags & VM_LOCKED)
2148 mm->locked_vm += grow;
2149 vm_stat_account(mm, vma->vm_flags, grow);
2150 anon_vma_interval_tree_pre_update_vma(vma);
2151 vma->vm_start = address;
2152 vma->vm_pgoff -= grow;
2153 anon_vma_interval_tree_post_update_vma(vma);
2154 vma_gap_update(vma);
2155 spin_unlock(&mm->page_table_lock);
2156
2157 perf_event_mmap(vma);
2158 }
2159 }
2160 }
2161 anon_vma_unlock_write(vma->anon_vma);
2162 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2163 validate_mm(mm);
2164 return error;
2165 }
2166
2167 /*
2168 * Note how expand_stack() refuses to expand the stack all the way to
2169 * abut the next virtual mapping, *unless* that mapping itself is also
2170 * a stack mapping. We want to leave room for a guard page, after all
2171 * (the guard page itself is not added here, that is done by the
2172 * actual page faulting logic)
2173 *
2174 * This matches the behavior of the guard page logic (see mm/memory.c:
2175 * check_stack_guard_page()), which only allows the guard page to be
2176 * removed under these circumstances.
2177 */
2178 #ifdef CONFIG_STACK_GROWSUP
2179 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2180 {
2181 struct vm_area_struct *next;
2182
2183 address &= PAGE_MASK;
2184 next = vma->vm_next;
2185 if (next && next->vm_start == address + PAGE_SIZE) {
2186 if (!(next->vm_flags & VM_GROWSUP))
2187 return -ENOMEM;
2188 }
2189 return expand_upwards(vma, address);
2190 }
2191
2192 struct vm_area_struct *
2193 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2194 {
2195 struct vm_area_struct *vma, *prev;
2196
2197 addr &= PAGE_MASK;
2198 vma = find_vma_prev(mm, addr, &prev);
2199 if (vma && (vma->vm_start <= addr))
2200 return vma;
2201 if (!prev || expand_stack(prev, addr))
2202 return NULL;
2203 if (prev->vm_flags & VM_LOCKED)
2204 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2205 return prev;
2206 }
2207 #else
2208 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2209 {
2210 struct vm_area_struct *prev;
2211
2212 address &= PAGE_MASK;
2213 prev = vma->vm_prev;
2214 if (prev && prev->vm_end == address) {
2215 if (!(prev->vm_flags & VM_GROWSDOWN))
2216 return -ENOMEM;
2217 }
2218 return expand_downwards(vma, address);
2219 }
2220
2221 struct vm_area_struct *
2222 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2223 {
2224 struct vm_area_struct *vma;
2225 unsigned long start;
2226
2227 addr &= PAGE_MASK;
2228 vma = find_vma(mm, addr);
2229 if (!vma)
2230 return NULL;
2231 if (vma->vm_start <= addr)
2232 return vma;
2233 if (!(vma->vm_flags & VM_GROWSDOWN))
2234 return NULL;
2235 start = vma->vm_start;
2236 if (expand_stack(vma, addr))
2237 return NULL;
2238 if (vma->vm_flags & VM_LOCKED)
2239 populate_vma_page_range(vma, addr, start, NULL);
2240 return vma;
2241 }
2242 #endif
2243
2244 EXPORT_SYMBOL_GPL(find_extend_vma);
2245
2246 /*
2247 * Ok - we have the memory areas we should free on the vma list,
2248 * so release them, and do the vma updates.
2249 *
2250 * Called with the mm semaphore held.
2251 */
2252 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2253 {
2254 unsigned long nr_accounted = 0;
2255
2256 /* Update high watermark before we lower total_vm */
2257 update_hiwater_vm(mm);
2258 do {
2259 long nrpages = vma_pages(vma);
2260
2261 if (vma->vm_flags & VM_ACCOUNT)
2262 nr_accounted += nrpages;
2263 vm_stat_account(mm, vma->vm_flags, -nrpages);
2264 vma = remove_vma(vma);
2265 } while (vma);
2266 vm_unacct_memory(nr_accounted);
2267 validate_mm(mm);
2268 }
2269
2270 /*
2271 * Get rid of page table information in the indicated region.
2272 *
2273 * Called with the mm semaphore held.
2274 */
2275 static void unmap_region(struct mm_struct *mm,
2276 struct vm_area_struct *vma, struct vm_area_struct *prev,
2277 unsigned long start, unsigned long end)
2278 {
2279 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2280 struct mmu_gather tlb;
2281
2282 lru_add_drain();
2283 tlb_gather_mmu(&tlb, mm, start, end);
2284 update_hiwater_rss(mm);
2285 unmap_vmas(&tlb, vma, start, end);
2286 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2287 next ? next->vm_start : USER_PGTABLES_CEILING);
2288 tlb_finish_mmu(&tlb, start, end);
2289 }
2290
2291 /*
2292 * Create a list of vma's touched by the unmap, removing them from the mm's
2293 * vma list as we go..
2294 */
2295 static void
2296 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2297 struct vm_area_struct *prev, unsigned long end)
2298 {
2299 struct vm_area_struct **insertion_point;
2300 struct vm_area_struct *tail_vma = NULL;
2301
2302 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2303 vma->vm_prev = NULL;
2304 do {
2305 vma_rb_erase(vma, &mm->mm_rb);
2306 mm->map_count--;
2307 tail_vma = vma;
2308 vma = vma->vm_next;
2309 } while (vma && vma->vm_start < end);
2310 *insertion_point = vma;
2311 if (vma) {
2312 vma->vm_prev = prev;
2313 vma_gap_update(vma);
2314 } else
2315 mm->highest_vm_end = prev ? prev->vm_end : 0;
2316 tail_vma->vm_next = NULL;
2317
2318 /* Kill the cache */
2319 vmacache_invalidate(mm);
2320 }
2321
2322 /*
2323 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2324 * munmap path where it doesn't make sense to fail.
2325 */
2326 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2327 unsigned long addr, int new_below)
2328 {
2329 struct vm_area_struct *new;
2330 int err;
2331
2332 if (is_vm_hugetlb_page(vma) && (addr &
2333 ~(huge_page_mask(hstate_vma(vma)))))
2334 return -EINVAL;
2335
2336 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2337 if (!new)
2338 return -ENOMEM;
2339
2340 /* most fields are the same, copy all, and then fixup */
2341 *new = *vma;
2342
2343 INIT_LIST_HEAD(&new->anon_vma_chain);
2344
2345 if (new_below)
2346 new->vm_end = addr;
2347 else {
2348 new->vm_start = addr;
2349 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2350 }
2351
2352 err = vma_dup_policy(vma, new);
2353 if (err)
2354 goto out_free_vma;
2355
2356 err = anon_vma_clone(new, vma);
2357 if (err)
2358 goto out_free_mpol;
2359
2360 if (new->vm_file)
2361 get_file(new->vm_file);
2362
2363 if (new->vm_ops && new->vm_ops->open)
2364 new->vm_ops->open(new);
2365
2366 if (new_below)
2367 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2368 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2369 else
2370 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2371
2372 /* Success. */
2373 if (!err)
2374 return 0;
2375
2376 /* Clean everything up if vma_adjust failed. */
2377 if (new->vm_ops && new->vm_ops->close)
2378 new->vm_ops->close(new);
2379 if (new->vm_file)
2380 fput(new->vm_file);
2381 unlink_anon_vmas(new);
2382 out_free_mpol:
2383 mpol_put(vma_policy(new));
2384 out_free_vma:
2385 kmem_cache_free(vm_area_cachep, new);
2386 return err;
2387 }
2388
2389 /*
2390 * Split a vma into two pieces at address 'addr', a new vma is allocated
2391 * either for the first part or the tail.
2392 */
2393 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2394 unsigned long addr, int new_below)
2395 {
2396 if (mm->map_count >= sysctl_max_map_count)
2397 return -ENOMEM;
2398
2399 return __split_vma(mm, vma, addr, new_below);
2400 }
2401
2402 /* Munmap is split into 2 main parts -- this part which finds
2403 * what needs doing, and the areas themselves, which do the
2404 * work. This now handles partial unmappings.
2405 * Jeremy Fitzhardinge <jeremy@goop.org>
2406 */
2407 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2408 {
2409 unsigned long end;
2410 struct vm_area_struct *vma, *prev, *last;
2411
2412 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2413 return -EINVAL;
2414
2415 len = PAGE_ALIGN(len);
2416 if (len == 0)
2417 return -EINVAL;
2418
2419 /* Find the first overlapping VMA */
2420 vma = find_vma(mm, start);
2421 if (!vma)
2422 return 0;
2423 prev = vma->vm_prev;
2424 /* we have start < vma->vm_end */
2425
2426 /* if it doesn't overlap, we have nothing.. */
2427 end = start + len;
2428 if (vma->vm_start >= end)
2429 return 0;
2430
2431 /*
2432 * If we need to split any vma, do it now to save pain later.
2433 *
2434 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2435 * unmapped vm_area_struct will remain in use: so lower split_vma
2436 * places tmp vma above, and higher split_vma places tmp vma below.
2437 */
2438 if (start > vma->vm_start) {
2439 int error;
2440
2441 /*
2442 * Make sure that map_count on return from munmap() will
2443 * not exceed its limit; but let map_count go just above
2444 * its limit temporarily, to help free resources as expected.
2445 */
2446 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2447 return -ENOMEM;
2448
2449 error = __split_vma(mm, vma, start, 0);
2450 if (error)
2451 return error;
2452 prev = vma;
2453 }
2454
2455 /* Does it split the last one? */
2456 last = find_vma(mm, end);
2457 if (last && end > last->vm_start) {
2458 int error = __split_vma(mm, last, end, 1);
2459 if (error)
2460 return error;
2461 }
2462 vma = prev ? prev->vm_next : mm->mmap;
2463
2464 /*
2465 * unlock any mlock()ed ranges before detaching vmas
2466 */
2467 if (mm->locked_vm) {
2468 struct vm_area_struct *tmp = vma;
2469 while (tmp && tmp->vm_start < end) {
2470 if (tmp->vm_flags & VM_LOCKED) {
2471 mm->locked_vm -= vma_pages(tmp);
2472 munlock_vma_pages_all(tmp);
2473 }
2474 tmp = tmp->vm_next;
2475 }
2476 }
2477
2478 /*
2479 * Remove the vma's, and unmap the actual pages
2480 */
2481 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2482 unmap_region(mm, vma, prev, start, end);
2483
2484 arch_unmap(mm, vma, start, end);
2485
2486 /* Fix up all other VM information */
2487 remove_vma_list(mm, vma);
2488
2489 return 0;
2490 }
2491
2492 int vm_munmap(unsigned long start, size_t len)
2493 {
2494 int ret;
2495 struct mm_struct *mm = current->mm;
2496
2497 if (down_write_killable(&mm->mmap_sem))
2498 return -EINTR;
2499
2500 ret = do_munmap(mm, start, len);
2501 up_write(&mm->mmap_sem);
2502 return ret;
2503 }
2504 EXPORT_SYMBOL(vm_munmap);
2505
2506 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2507 {
2508 int ret;
2509 struct mm_struct *mm = current->mm;
2510
2511 profile_munmap(addr);
2512 if (down_write_killable(&mm->mmap_sem))
2513 return -EINTR;
2514 ret = do_munmap(mm, addr, len);
2515 up_write(&mm->mmap_sem);
2516 return ret;
2517 }
2518
2519
2520 /*
2521 * Emulation of deprecated remap_file_pages() syscall.
2522 */
2523 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2524 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2525 {
2526
2527 struct mm_struct *mm = current->mm;
2528 struct vm_area_struct *vma;
2529 unsigned long populate = 0;
2530 unsigned long ret = -EINVAL;
2531 struct file *file;
2532
2533 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2534 current->comm, current->pid);
2535
2536 if (prot)
2537 return ret;
2538 start = start & PAGE_MASK;
2539 size = size & PAGE_MASK;
2540
2541 if (start + size <= start)
2542 return ret;
2543
2544 /* Does pgoff wrap? */
2545 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2546 return ret;
2547
2548 if (down_write_killable(&mm->mmap_sem))
2549 return -EINTR;
2550
2551 vma = find_vma(mm, start);
2552
2553 if (!vma || !(vma->vm_flags & VM_SHARED))
2554 goto out;
2555
2556 if (start < vma->vm_start)
2557 goto out;
2558
2559 if (start + size > vma->vm_end) {
2560 struct vm_area_struct *next;
2561
2562 for (next = vma->vm_next; next; next = next->vm_next) {
2563 /* hole between vmas ? */
2564 if (next->vm_start != next->vm_prev->vm_end)
2565 goto out;
2566
2567 if (next->vm_file != vma->vm_file)
2568 goto out;
2569
2570 if (next->vm_flags != vma->vm_flags)
2571 goto out;
2572
2573 if (start + size <= next->vm_end)
2574 break;
2575 }
2576
2577 if (!next)
2578 goto out;
2579 }
2580
2581 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2582 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2583 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2584
2585 flags &= MAP_NONBLOCK;
2586 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2587 if (vma->vm_flags & VM_LOCKED) {
2588 struct vm_area_struct *tmp;
2589 flags |= MAP_LOCKED;
2590
2591 /* drop PG_Mlocked flag for over-mapped range */
2592 for (tmp = vma; tmp->vm_start >= start + size;
2593 tmp = tmp->vm_next) {
2594 munlock_vma_pages_range(tmp,
2595 max(tmp->vm_start, start),
2596 min(tmp->vm_end, start + size));
2597 }
2598 }
2599
2600 file = get_file(vma->vm_file);
2601 ret = do_mmap_pgoff(vma->vm_file, start, size,
2602 prot, flags, pgoff, &populate);
2603 fput(file);
2604 out:
2605 up_write(&mm->mmap_sem);
2606 if (populate)
2607 mm_populate(ret, populate);
2608 if (!IS_ERR_VALUE(ret))
2609 ret = 0;
2610 return ret;
2611 }
2612
2613 static inline void verify_mm_writelocked(struct mm_struct *mm)
2614 {
2615 #ifdef CONFIG_DEBUG_VM
2616 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2617 WARN_ON(1);
2618 up_read(&mm->mmap_sem);
2619 }
2620 #endif
2621 }
2622
2623 /*
2624 * this is really a simplified "do_mmap". it only handles
2625 * anonymous maps. eventually we may be able to do some
2626 * brk-specific accounting here.
2627 */
2628 static int do_brk(unsigned long addr, unsigned long len)
2629 {
2630 struct mm_struct *mm = current->mm;
2631 struct vm_area_struct *vma, *prev;
2632 unsigned long flags;
2633 struct rb_node **rb_link, *rb_parent;
2634 pgoff_t pgoff = addr >> PAGE_SHIFT;
2635 int error;
2636
2637 len = PAGE_ALIGN(len);
2638 if (!len)
2639 return 0;
2640
2641 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2642
2643 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2644 if (offset_in_page(error))
2645 return error;
2646
2647 error = mlock_future_check(mm, mm->def_flags, len);
2648 if (error)
2649 return error;
2650
2651 /*
2652 * mm->mmap_sem is required to protect against another thread
2653 * changing the mappings in case we sleep.
2654 */
2655 verify_mm_writelocked(mm);
2656
2657 /*
2658 * Clear old maps. this also does some error checking for us
2659 */
2660 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2661 &rb_parent)) {
2662 if (do_munmap(mm, addr, len))
2663 return -ENOMEM;
2664 }
2665
2666 /* Check against address space limits *after* clearing old maps... */
2667 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2668 return -ENOMEM;
2669
2670 if (mm->map_count > sysctl_max_map_count)
2671 return -ENOMEM;
2672
2673 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2674 return -ENOMEM;
2675
2676 /* Can we just expand an old private anonymous mapping? */
2677 vma = vma_merge(mm, prev, addr, addr + len, flags,
2678 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2679 if (vma)
2680 goto out;
2681
2682 /*
2683 * create a vma struct for an anonymous mapping
2684 */
2685 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2686 if (!vma) {
2687 vm_unacct_memory(len >> PAGE_SHIFT);
2688 return -ENOMEM;
2689 }
2690
2691 INIT_LIST_HEAD(&vma->anon_vma_chain);
2692 vma->vm_mm = mm;
2693 vma->vm_start = addr;
2694 vma->vm_end = addr + len;
2695 vma->vm_pgoff = pgoff;
2696 vma->vm_flags = flags;
2697 vma->vm_page_prot = vm_get_page_prot(flags);
2698 vma_link(mm, vma, prev, rb_link, rb_parent);
2699 out:
2700 perf_event_mmap(vma);
2701 mm->total_vm += len >> PAGE_SHIFT;
2702 mm->data_vm += len >> PAGE_SHIFT;
2703 if (flags & VM_LOCKED)
2704 mm->locked_vm += (len >> PAGE_SHIFT);
2705 vma->vm_flags |= VM_SOFTDIRTY;
2706 return 0;
2707 }
2708
2709 int vm_brk(unsigned long addr, unsigned long len)
2710 {
2711 struct mm_struct *mm = current->mm;
2712 int ret;
2713 bool populate;
2714
2715 if (down_write_killable(&mm->mmap_sem))
2716 return -EINTR;
2717
2718 ret = do_brk(addr, len);
2719 populate = ((mm->def_flags & VM_LOCKED) != 0);
2720 up_write(&mm->mmap_sem);
2721 if (populate && !ret)
2722 mm_populate(addr, len);
2723 return ret;
2724 }
2725 EXPORT_SYMBOL(vm_brk);
2726
2727 /* Release all mmaps. */
2728 void exit_mmap(struct mm_struct *mm)
2729 {
2730 struct mmu_gather tlb;
2731 struct vm_area_struct *vma;
2732 unsigned long nr_accounted = 0;
2733
2734 /* mm's last user has gone, and its about to be pulled down */
2735 mmu_notifier_release(mm);
2736
2737 if (mm->locked_vm) {
2738 vma = mm->mmap;
2739 while (vma) {
2740 if (vma->vm_flags & VM_LOCKED)
2741 munlock_vma_pages_all(vma);
2742 vma = vma->vm_next;
2743 }
2744 }
2745
2746 arch_exit_mmap(mm);
2747
2748 vma = mm->mmap;
2749 if (!vma) /* Can happen if dup_mmap() received an OOM */
2750 return;
2751
2752 lru_add_drain();
2753 flush_cache_mm(mm);
2754 tlb_gather_mmu(&tlb, mm, 0, -1);
2755 /* update_hiwater_rss(mm) here? but nobody should be looking */
2756 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2757 unmap_vmas(&tlb, vma, 0, -1);
2758
2759 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2760 tlb_finish_mmu(&tlb, 0, -1);
2761
2762 /*
2763 * Walk the list again, actually closing and freeing it,
2764 * with preemption enabled, without holding any MM locks.
2765 */
2766 while (vma) {
2767 if (vma->vm_flags & VM_ACCOUNT)
2768 nr_accounted += vma_pages(vma);
2769 vma = remove_vma(vma);
2770 }
2771 vm_unacct_memory(nr_accounted);
2772 }
2773
2774 /* Insert vm structure into process list sorted by address
2775 * and into the inode's i_mmap tree. If vm_file is non-NULL
2776 * then i_mmap_rwsem is taken here.
2777 */
2778 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2779 {
2780 struct vm_area_struct *prev;
2781 struct rb_node **rb_link, *rb_parent;
2782
2783 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2784 &prev, &rb_link, &rb_parent))
2785 return -ENOMEM;
2786 if ((vma->vm_flags & VM_ACCOUNT) &&
2787 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2788 return -ENOMEM;
2789
2790 /*
2791 * The vm_pgoff of a purely anonymous vma should be irrelevant
2792 * until its first write fault, when page's anon_vma and index
2793 * are set. But now set the vm_pgoff it will almost certainly
2794 * end up with (unless mremap moves it elsewhere before that
2795 * first wfault), so /proc/pid/maps tells a consistent story.
2796 *
2797 * By setting it to reflect the virtual start address of the
2798 * vma, merges and splits can happen in a seamless way, just
2799 * using the existing file pgoff checks and manipulations.
2800 * Similarly in do_mmap_pgoff and in do_brk.
2801 */
2802 if (vma_is_anonymous(vma)) {
2803 BUG_ON(vma->anon_vma);
2804 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2805 }
2806
2807 vma_link(mm, vma, prev, rb_link, rb_parent);
2808 return 0;
2809 }
2810
2811 /*
2812 * Copy the vma structure to a new location in the same mm,
2813 * prior to moving page table entries, to effect an mremap move.
2814 */
2815 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2816 unsigned long addr, unsigned long len, pgoff_t pgoff,
2817 bool *need_rmap_locks)
2818 {
2819 struct vm_area_struct *vma = *vmap;
2820 unsigned long vma_start = vma->vm_start;
2821 struct mm_struct *mm = vma->vm_mm;
2822 struct vm_area_struct *new_vma, *prev;
2823 struct rb_node **rb_link, *rb_parent;
2824 bool faulted_in_anon_vma = true;
2825
2826 /*
2827 * If anonymous vma has not yet been faulted, update new pgoff
2828 * to match new location, to increase its chance of merging.
2829 */
2830 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2831 pgoff = addr >> PAGE_SHIFT;
2832 faulted_in_anon_vma = false;
2833 }
2834
2835 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2836 return NULL; /* should never get here */
2837 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2838 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2839 vma->vm_userfaultfd_ctx);
2840 if (new_vma) {
2841 /*
2842 * Source vma may have been merged into new_vma
2843 */
2844 if (unlikely(vma_start >= new_vma->vm_start &&
2845 vma_start < new_vma->vm_end)) {
2846 /*
2847 * The only way we can get a vma_merge with
2848 * self during an mremap is if the vma hasn't
2849 * been faulted in yet and we were allowed to
2850 * reset the dst vma->vm_pgoff to the
2851 * destination address of the mremap to allow
2852 * the merge to happen. mremap must change the
2853 * vm_pgoff linearity between src and dst vmas
2854 * (in turn preventing a vma_merge) to be
2855 * safe. It is only safe to keep the vm_pgoff
2856 * linear if there are no pages mapped yet.
2857 */
2858 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2859 *vmap = vma = new_vma;
2860 }
2861 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2862 } else {
2863 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2864 if (!new_vma)
2865 goto out;
2866 *new_vma = *vma;
2867 new_vma->vm_start = addr;
2868 new_vma->vm_end = addr + len;
2869 new_vma->vm_pgoff = pgoff;
2870 if (vma_dup_policy(vma, new_vma))
2871 goto out_free_vma;
2872 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2873 if (anon_vma_clone(new_vma, vma))
2874 goto out_free_mempol;
2875 if (new_vma->vm_file)
2876 get_file(new_vma->vm_file);
2877 if (new_vma->vm_ops && new_vma->vm_ops->open)
2878 new_vma->vm_ops->open(new_vma);
2879 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2880 *need_rmap_locks = false;
2881 }
2882 return new_vma;
2883
2884 out_free_mempol:
2885 mpol_put(vma_policy(new_vma));
2886 out_free_vma:
2887 kmem_cache_free(vm_area_cachep, new_vma);
2888 out:
2889 return NULL;
2890 }
2891
2892 /*
2893 * Return true if the calling process may expand its vm space by the passed
2894 * number of pages
2895 */
2896 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2897 {
2898 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2899 return false;
2900
2901 if (is_data_mapping(flags) &&
2902 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2903 /* Workaround for Valgrind */
2904 if (rlimit(RLIMIT_DATA) == 0 &&
2905 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2906 return true;
2907 if (!ignore_rlimit_data) {
2908 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2909 current->comm, current->pid,
2910 (mm->data_vm + npages) << PAGE_SHIFT,
2911 rlimit(RLIMIT_DATA));
2912 return false;
2913 }
2914 }
2915
2916 return true;
2917 }
2918
2919 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2920 {
2921 mm->total_vm += npages;
2922
2923 if (is_exec_mapping(flags))
2924 mm->exec_vm += npages;
2925 else if (is_stack_mapping(flags))
2926 mm->stack_vm += npages;
2927 else if (is_data_mapping(flags))
2928 mm->data_vm += npages;
2929 }
2930
2931 static int special_mapping_fault(struct vm_area_struct *vma,
2932 struct vm_fault *vmf);
2933
2934 /*
2935 * Having a close hook prevents vma merging regardless of flags.
2936 */
2937 static void special_mapping_close(struct vm_area_struct *vma)
2938 {
2939 }
2940
2941 static const char *special_mapping_name(struct vm_area_struct *vma)
2942 {
2943 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2944 }
2945
2946 static const struct vm_operations_struct special_mapping_vmops = {
2947 .close = special_mapping_close,
2948 .fault = special_mapping_fault,
2949 .name = special_mapping_name,
2950 };
2951
2952 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2953 .close = special_mapping_close,
2954 .fault = special_mapping_fault,
2955 };
2956
2957 static int special_mapping_fault(struct vm_area_struct *vma,
2958 struct vm_fault *vmf)
2959 {
2960 pgoff_t pgoff;
2961 struct page **pages;
2962
2963 if (vma->vm_ops == &legacy_special_mapping_vmops) {
2964 pages = vma->vm_private_data;
2965 } else {
2966 struct vm_special_mapping *sm = vma->vm_private_data;
2967
2968 if (sm->fault)
2969 return sm->fault(sm, vma, vmf);
2970
2971 pages = sm->pages;
2972 }
2973
2974 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2975 pgoff--;
2976
2977 if (*pages) {
2978 struct page *page = *pages;
2979 get_page(page);
2980 vmf->page = page;
2981 return 0;
2982 }
2983
2984 return VM_FAULT_SIGBUS;
2985 }
2986
2987 static struct vm_area_struct *__install_special_mapping(
2988 struct mm_struct *mm,
2989 unsigned long addr, unsigned long len,
2990 unsigned long vm_flags, void *priv,
2991 const struct vm_operations_struct *ops)
2992 {
2993 int ret;
2994 struct vm_area_struct *vma;
2995
2996 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2997 if (unlikely(vma == NULL))
2998 return ERR_PTR(-ENOMEM);
2999
3000 INIT_LIST_HEAD(&vma->anon_vma_chain);
3001 vma->vm_mm = mm;
3002 vma->vm_start = addr;
3003 vma->vm_end = addr + len;
3004
3005 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3006 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3007
3008 vma->vm_ops = ops;
3009 vma->vm_private_data = priv;
3010
3011 ret = insert_vm_struct(mm, vma);
3012 if (ret)
3013 goto out;
3014
3015 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3016
3017 perf_event_mmap(vma);
3018
3019 return vma;
3020
3021 out:
3022 kmem_cache_free(vm_area_cachep, vma);
3023 return ERR_PTR(ret);
3024 }
3025
3026 /*
3027 * Called with mm->mmap_sem held for writing.
3028 * Insert a new vma covering the given region, with the given flags.
3029 * Its pages are supplied by the given array of struct page *.
3030 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3031 * The region past the last page supplied will always produce SIGBUS.
3032 * The array pointer and the pages it points to are assumed to stay alive
3033 * for as long as this mapping might exist.
3034 */
3035 struct vm_area_struct *_install_special_mapping(
3036 struct mm_struct *mm,
3037 unsigned long addr, unsigned long len,
3038 unsigned long vm_flags, const struct vm_special_mapping *spec)
3039 {
3040 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3041 &special_mapping_vmops);
3042 }
3043
3044 int install_special_mapping(struct mm_struct *mm,
3045 unsigned long addr, unsigned long len,
3046 unsigned long vm_flags, struct page **pages)
3047 {
3048 struct vm_area_struct *vma = __install_special_mapping(
3049 mm, addr, len, vm_flags, (void *)pages,
3050 &legacy_special_mapping_vmops);
3051
3052 return PTR_ERR_OR_ZERO(vma);
3053 }
3054
3055 static DEFINE_MUTEX(mm_all_locks_mutex);
3056
3057 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3058 {
3059 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3060 /*
3061 * The LSB of head.next can't change from under us
3062 * because we hold the mm_all_locks_mutex.
3063 */
3064 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3065 /*
3066 * We can safely modify head.next after taking the
3067 * anon_vma->root->rwsem. If some other vma in this mm shares
3068 * the same anon_vma we won't take it again.
3069 *
3070 * No need of atomic instructions here, head.next
3071 * can't change from under us thanks to the
3072 * anon_vma->root->rwsem.
3073 */
3074 if (__test_and_set_bit(0, (unsigned long *)
3075 &anon_vma->root->rb_root.rb_node))
3076 BUG();
3077 }
3078 }
3079
3080 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3081 {
3082 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3083 /*
3084 * AS_MM_ALL_LOCKS can't change from under us because
3085 * we hold the mm_all_locks_mutex.
3086 *
3087 * Operations on ->flags have to be atomic because
3088 * even if AS_MM_ALL_LOCKS is stable thanks to the
3089 * mm_all_locks_mutex, there may be other cpus
3090 * changing other bitflags in parallel to us.
3091 */
3092 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3093 BUG();
3094 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3095 }
3096 }
3097
3098 /*
3099 * This operation locks against the VM for all pte/vma/mm related
3100 * operations that could ever happen on a certain mm. This includes
3101 * vmtruncate, try_to_unmap, and all page faults.
3102 *
3103 * The caller must take the mmap_sem in write mode before calling
3104 * mm_take_all_locks(). The caller isn't allowed to release the
3105 * mmap_sem until mm_drop_all_locks() returns.
3106 *
3107 * mmap_sem in write mode is required in order to block all operations
3108 * that could modify pagetables and free pages without need of
3109 * altering the vma layout. It's also needed in write mode to avoid new
3110 * anon_vmas to be associated with existing vmas.
3111 *
3112 * A single task can't take more than one mm_take_all_locks() in a row
3113 * or it would deadlock.
3114 *
3115 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3116 * mapping->flags avoid to take the same lock twice, if more than one
3117 * vma in this mm is backed by the same anon_vma or address_space.
3118 *
3119 * We take locks in following order, accordingly to comment at beginning
3120 * of mm/rmap.c:
3121 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3122 * hugetlb mapping);
3123 * - all i_mmap_rwsem locks;
3124 * - all anon_vma->rwseml
3125 *
3126 * We can take all locks within these types randomly because the VM code
3127 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3128 * mm_all_locks_mutex.
3129 *
3130 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3131 * that may have to take thousand of locks.
3132 *
3133 * mm_take_all_locks() can fail if it's interrupted by signals.
3134 */
3135 int mm_take_all_locks(struct mm_struct *mm)
3136 {
3137 struct vm_area_struct *vma;
3138 struct anon_vma_chain *avc;
3139
3140 BUG_ON(down_read_trylock(&mm->mmap_sem));
3141
3142 mutex_lock(&mm_all_locks_mutex);
3143
3144 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3145 if (signal_pending(current))
3146 goto out_unlock;
3147 if (vma->vm_file && vma->vm_file->f_mapping &&
3148 is_vm_hugetlb_page(vma))
3149 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3150 }
3151
3152 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3153 if (signal_pending(current))
3154 goto out_unlock;
3155 if (vma->vm_file && vma->vm_file->f_mapping &&
3156 !is_vm_hugetlb_page(vma))
3157 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3158 }
3159
3160 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3161 if (signal_pending(current))
3162 goto out_unlock;
3163 if (vma->anon_vma)
3164 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3165 vm_lock_anon_vma(mm, avc->anon_vma);
3166 }
3167
3168 return 0;
3169
3170 out_unlock:
3171 mm_drop_all_locks(mm);
3172 return -EINTR;
3173 }
3174
3175 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3176 {
3177 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3178 /*
3179 * The LSB of head.next can't change to 0 from under
3180 * us because we hold the mm_all_locks_mutex.
3181 *
3182 * We must however clear the bitflag before unlocking
3183 * the vma so the users using the anon_vma->rb_root will
3184 * never see our bitflag.
3185 *
3186 * No need of atomic instructions here, head.next
3187 * can't change from under us until we release the
3188 * anon_vma->root->rwsem.
3189 */
3190 if (!__test_and_clear_bit(0, (unsigned long *)
3191 &anon_vma->root->rb_root.rb_node))
3192 BUG();
3193 anon_vma_unlock_write(anon_vma);
3194 }
3195 }
3196
3197 static void vm_unlock_mapping(struct address_space *mapping)
3198 {
3199 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3200 /*
3201 * AS_MM_ALL_LOCKS can't change to 0 from under us
3202 * because we hold the mm_all_locks_mutex.
3203 */
3204 i_mmap_unlock_write(mapping);
3205 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3206 &mapping->flags))
3207 BUG();
3208 }
3209 }
3210
3211 /*
3212 * The mmap_sem cannot be released by the caller until
3213 * mm_drop_all_locks() returns.
3214 */
3215 void mm_drop_all_locks(struct mm_struct *mm)
3216 {
3217 struct vm_area_struct *vma;
3218 struct anon_vma_chain *avc;
3219
3220 BUG_ON(down_read_trylock(&mm->mmap_sem));
3221 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3222
3223 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3224 if (vma->anon_vma)
3225 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3226 vm_unlock_anon_vma(avc->anon_vma);
3227 if (vma->vm_file && vma->vm_file->f_mapping)
3228 vm_unlock_mapping(vma->vm_file->f_mapping);
3229 }
3230
3231 mutex_unlock(&mm_all_locks_mutex);
3232 }
3233
3234 /*
3235 * initialise the VMA slab
3236 */
3237 void __init mmap_init(void)
3238 {
3239 int ret;
3240
3241 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3242 VM_BUG_ON(ret);
3243 }
3244
3245 /*
3246 * Initialise sysctl_user_reserve_kbytes.
3247 *
3248 * This is intended to prevent a user from starting a single memory hogging
3249 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3250 * mode.
3251 *
3252 * The default value is min(3% of free memory, 128MB)
3253 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3254 */
3255 static int init_user_reserve(void)
3256 {
3257 unsigned long free_kbytes;
3258
3259 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3260
3261 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3262 return 0;
3263 }
3264 subsys_initcall(init_user_reserve);
3265
3266 /*
3267 * Initialise sysctl_admin_reserve_kbytes.
3268 *
3269 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3270 * to log in and kill a memory hogging process.
3271 *
3272 * Systems with more than 256MB will reserve 8MB, enough to recover
3273 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3274 * only reserve 3% of free pages by default.
3275 */
3276 static int init_admin_reserve(void)
3277 {
3278 unsigned long free_kbytes;
3279
3280 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3281
3282 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3283 return 0;
3284 }
3285 subsys_initcall(init_admin_reserve);
3286
3287 /*
3288 * Reinititalise user and admin reserves if memory is added or removed.
3289 *
3290 * The default user reserve max is 128MB, and the default max for the
3291 * admin reserve is 8MB. These are usually, but not always, enough to
3292 * enable recovery from a memory hogging process using login/sshd, a shell,
3293 * and tools like top. It may make sense to increase or even disable the
3294 * reserve depending on the existence of swap or variations in the recovery
3295 * tools. So, the admin may have changed them.
3296 *
3297 * If memory is added and the reserves have been eliminated or increased above
3298 * the default max, then we'll trust the admin.
3299 *
3300 * If memory is removed and there isn't enough free memory, then we
3301 * need to reset the reserves.
3302 *
3303 * Otherwise keep the reserve set by the admin.
3304 */
3305 static int reserve_mem_notifier(struct notifier_block *nb,
3306 unsigned long action, void *data)
3307 {
3308 unsigned long tmp, free_kbytes;
3309
3310 switch (action) {
3311 case MEM_ONLINE:
3312 /* Default max is 128MB. Leave alone if modified by operator. */
3313 tmp = sysctl_user_reserve_kbytes;
3314 if (0 < tmp && tmp < (1UL << 17))
3315 init_user_reserve();
3316
3317 /* Default max is 8MB. Leave alone if modified by operator. */
3318 tmp = sysctl_admin_reserve_kbytes;
3319 if (0 < tmp && tmp < (1UL << 13))
3320 init_admin_reserve();
3321
3322 break;
3323 case MEM_OFFLINE:
3324 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3325
3326 if (sysctl_user_reserve_kbytes > free_kbytes) {
3327 init_user_reserve();
3328 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3329 sysctl_user_reserve_kbytes);
3330 }
3331
3332 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3333 init_admin_reserve();
3334 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3335 sysctl_admin_reserve_kbytes);
3336 }
3337 break;
3338 default:
3339 break;
3340 }
3341 return NOTIFY_OK;
3342 }
3343
3344 static struct notifier_block reserve_mem_nb = {
3345 .notifier_call = reserve_mem_notifier,
3346 };
3347
3348 static int __meminit init_reserve_notifier(void)
3349 {
3350 if (register_hotmemory_notifier(&reserve_mem_nb))
3351 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3352
3353 return 0;
3354 }
3355 subsys_initcall(init_reserve_notifier);
This page took 0.100482 seconds and 5 git commands to generate.