Restartable sequences: self-tests
[deliverable/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53
54 /*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
58 static void __page_cache_release(struct page *page)
59 {
60 if (PageLRU(page)) {
61 struct zone *zone = page_zone(page);
62 struct lruvec *lruvec;
63 unsigned long flags;
64
65 spin_lock_irqsave(&zone->lru_lock, flags);
66 lruvec = mem_cgroup_page_lruvec(page, zone);
67 VM_BUG_ON_PAGE(!PageLRU(page), page);
68 __ClearPageLRU(page);
69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 spin_unlock_irqrestore(&zone->lru_lock, flags);
71 }
72 mem_cgroup_uncharge(page);
73 }
74
75 static void __put_single_page(struct page *page)
76 {
77 __page_cache_release(page);
78 free_hot_cold_page(page, false);
79 }
80
81 static void __put_compound_page(struct page *page)
82 {
83 compound_page_dtor *dtor;
84
85 /*
86 * __page_cache_release() is supposed to be called for thp, not for
87 * hugetlb. This is because hugetlb page does never have PageLRU set
88 * (it's never listed to any LRU lists) and no memcg routines should
89 * be called for hugetlb (it has a separate hugetlb_cgroup.)
90 */
91 if (!PageHuge(page))
92 __page_cache_release(page);
93 dtor = get_compound_page_dtor(page);
94 (*dtor)(page);
95 }
96
97 void __put_page(struct page *page)
98 {
99 if (unlikely(PageCompound(page)))
100 __put_compound_page(page);
101 else
102 __put_single_page(page);
103 }
104 EXPORT_SYMBOL(__put_page);
105
106 /**
107 * put_pages_list() - release a list of pages
108 * @pages: list of pages threaded on page->lru
109 *
110 * Release a list of pages which are strung together on page.lru. Currently
111 * used by read_cache_pages() and related error recovery code.
112 */
113 void put_pages_list(struct list_head *pages)
114 {
115 while (!list_empty(pages)) {
116 struct page *victim;
117
118 victim = list_entry(pages->prev, struct page, lru);
119 list_del(&victim->lru);
120 put_page(victim);
121 }
122 }
123 EXPORT_SYMBOL(put_pages_list);
124
125 /*
126 * get_kernel_pages() - pin kernel pages in memory
127 * @kiov: An array of struct kvec structures
128 * @nr_segs: number of segments to pin
129 * @write: pinning for read/write, currently ignored
130 * @pages: array that receives pointers to the pages pinned.
131 * Should be at least nr_segs long.
132 *
133 * Returns number of pages pinned. This may be fewer than the number
134 * requested. If nr_pages is 0 or negative, returns 0. If no pages
135 * were pinned, returns -errno. Each page returned must be released
136 * with a put_page() call when it is finished with.
137 */
138 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
139 struct page **pages)
140 {
141 int seg;
142
143 for (seg = 0; seg < nr_segs; seg++) {
144 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
145 return seg;
146
147 pages[seg] = kmap_to_page(kiov[seg].iov_base);
148 get_page(pages[seg]);
149 }
150
151 return seg;
152 }
153 EXPORT_SYMBOL_GPL(get_kernel_pages);
154
155 /*
156 * get_kernel_page() - pin a kernel page in memory
157 * @start: starting kernel address
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointer to the page pinned.
160 * Must be at least nr_segs long.
161 *
162 * Returns 1 if page is pinned. If the page was not pinned, returns
163 * -errno. The page returned must be released with a put_page() call
164 * when it is finished with.
165 */
166 int get_kernel_page(unsigned long start, int write, struct page **pages)
167 {
168 const struct kvec kiov = {
169 .iov_base = (void *)start,
170 .iov_len = PAGE_SIZE
171 };
172
173 return get_kernel_pages(&kiov, 1, write, pages);
174 }
175 EXPORT_SYMBOL_GPL(get_kernel_page);
176
177 static void pagevec_lru_move_fn(struct pagevec *pvec,
178 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
179 void *arg)
180 {
181 int i;
182 struct zone *zone = NULL;
183 struct lruvec *lruvec;
184 unsigned long flags = 0;
185
186 for (i = 0; i < pagevec_count(pvec); i++) {
187 struct page *page = pvec->pages[i];
188 struct zone *pagezone = page_zone(page);
189
190 if (pagezone != zone) {
191 if (zone)
192 spin_unlock_irqrestore(&zone->lru_lock, flags);
193 zone = pagezone;
194 spin_lock_irqsave(&zone->lru_lock, flags);
195 }
196
197 lruvec = mem_cgroup_page_lruvec(page, zone);
198 (*move_fn)(page, lruvec, arg);
199 }
200 if (zone)
201 spin_unlock_irqrestore(&zone->lru_lock, flags);
202 release_pages(pvec->pages, pvec->nr, pvec->cold);
203 pagevec_reinit(pvec);
204 }
205
206 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
207 void *arg)
208 {
209 int *pgmoved = arg;
210
211 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
212 enum lru_list lru = page_lru_base_type(page);
213 list_move_tail(&page->lru, &lruvec->lists[lru]);
214 (*pgmoved)++;
215 }
216 }
217
218 /*
219 * pagevec_move_tail() must be called with IRQ disabled.
220 * Otherwise this may cause nasty races.
221 */
222 static void pagevec_move_tail(struct pagevec *pvec)
223 {
224 int pgmoved = 0;
225
226 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
227 __count_vm_events(PGROTATED, pgmoved);
228 }
229
230 /*
231 * Writeback is about to end against a page which has been marked for immediate
232 * reclaim. If it still appears to be reclaimable, move it to the tail of the
233 * inactive list.
234 */
235 void rotate_reclaimable_page(struct page *page)
236 {
237 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
238 !PageUnevictable(page) && PageLRU(page)) {
239 struct pagevec *pvec;
240 unsigned long flags;
241
242 get_page(page);
243 local_irq_save(flags);
244 pvec = this_cpu_ptr(&lru_rotate_pvecs);
245 if (!pagevec_add(pvec, page) || PageCompound(page))
246 pagevec_move_tail(pvec);
247 local_irq_restore(flags);
248 }
249 }
250
251 static void update_page_reclaim_stat(struct lruvec *lruvec,
252 int file, int rotated)
253 {
254 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
255
256 reclaim_stat->recent_scanned[file]++;
257 if (rotated)
258 reclaim_stat->recent_rotated[file]++;
259 }
260
261 static void __activate_page(struct page *page, struct lruvec *lruvec,
262 void *arg)
263 {
264 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
265 int file = page_is_file_cache(page);
266 int lru = page_lru_base_type(page);
267
268 del_page_from_lru_list(page, lruvec, lru);
269 SetPageActive(page);
270 lru += LRU_ACTIVE;
271 add_page_to_lru_list(page, lruvec, lru);
272 trace_mm_lru_activate(page);
273
274 __count_vm_event(PGACTIVATE);
275 update_page_reclaim_stat(lruvec, file, 1);
276 }
277 }
278
279 #ifdef CONFIG_SMP
280 static void activate_page_drain(int cpu)
281 {
282 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
283
284 if (pagevec_count(pvec))
285 pagevec_lru_move_fn(pvec, __activate_page, NULL);
286 }
287
288 static bool need_activate_page_drain(int cpu)
289 {
290 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
291 }
292
293 void activate_page(struct page *page)
294 {
295 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
296 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
297
298 get_page(page);
299 if (!pagevec_add(pvec, page) || PageCompound(page))
300 pagevec_lru_move_fn(pvec, __activate_page, NULL);
301 put_cpu_var(activate_page_pvecs);
302 }
303 }
304
305 #else
306 static inline void activate_page_drain(int cpu)
307 {
308 }
309
310 static bool need_activate_page_drain(int cpu)
311 {
312 return false;
313 }
314
315 void activate_page(struct page *page)
316 {
317 struct zone *zone = page_zone(page);
318
319 spin_lock_irq(&zone->lru_lock);
320 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
321 spin_unlock_irq(&zone->lru_lock);
322 }
323 #endif
324
325 static void __lru_cache_activate_page(struct page *page)
326 {
327 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
328 int i;
329
330 /*
331 * Search backwards on the optimistic assumption that the page being
332 * activated has just been added to this pagevec. Note that only
333 * the local pagevec is examined as a !PageLRU page could be in the
334 * process of being released, reclaimed, migrated or on a remote
335 * pagevec that is currently being drained. Furthermore, marking
336 * a remote pagevec's page PageActive potentially hits a race where
337 * a page is marked PageActive just after it is added to the inactive
338 * list causing accounting errors and BUG_ON checks to trigger.
339 */
340 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
341 struct page *pagevec_page = pvec->pages[i];
342
343 if (pagevec_page == page) {
344 SetPageActive(page);
345 break;
346 }
347 }
348
349 put_cpu_var(lru_add_pvec);
350 }
351
352 /*
353 * Mark a page as having seen activity.
354 *
355 * inactive,unreferenced -> inactive,referenced
356 * inactive,referenced -> active,unreferenced
357 * active,unreferenced -> active,referenced
358 *
359 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
360 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
361 */
362 void mark_page_accessed(struct page *page)
363 {
364 page = compound_head(page);
365 if (!PageActive(page) && !PageUnevictable(page) &&
366 PageReferenced(page)) {
367
368 /*
369 * If the page is on the LRU, queue it for activation via
370 * activate_page_pvecs. Otherwise, assume the page is on a
371 * pagevec, mark it active and it'll be moved to the active
372 * LRU on the next drain.
373 */
374 if (PageLRU(page))
375 activate_page(page);
376 else
377 __lru_cache_activate_page(page);
378 ClearPageReferenced(page);
379 if (page_is_file_cache(page))
380 workingset_activation(page);
381 } else if (!PageReferenced(page)) {
382 SetPageReferenced(page);
383 }
384 if (page_is_idle(page))
385 clear_page_idle(page);
386 }
387 EXPORT_SYMBOL(mark_page_accessed);
388
389 static void __lru_cache_add(struct page *page)
390 {
391 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
392
393 get_page(page);
394 if (!pagevec_add(pvec, page) || PageCompound(page))
395 __pagevec_lru_add(pvec);
396 put_cpu_var(lru_add_pvec);
397 }
398
399 /**
400 * lru_cache_add: add a page to the page lists
401 * @page: the page to add
402 */
403 void lru_cache_add_anon(struct page *page)
404 {
405 if (PageActive(page))
406 ClearPageActive(page);
407 __lru_cache_add(page);
408 }
409
410 void lru_cache_add_file(struct page *page)
411 {
412 if (PageActive(page))
413 ClearPageActive(page);
414 __lru_cache_add(page);
415 }
416 EXPORT_SYMBOL(lru_cache_add_file);
417
418 /**
419 * lru_cache_add - add a page to a page list
420 * @page: the page to be added to the LRU.
421 *
422 * Queue the page for addition to the LRU via pagevec. The decision on whether
423 * to add the page to the [in]active [file|anon] list is deferred until the
424 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
425 * have the page added to the active list using mark_page_accessed().
426 */
427 void lru_cache_add(struct page *page)
428 {
429 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
430 VM_BUG_ON_PAGE(PageLRU(page), page);
431 __lru_cache_add(page);
432 }
433
434 /**
435 * add_page_to_unevictable_list - add a page to the unevictable list
436 * @page: the page to be added to the unevictable list
437 *
438 * Add page directly to its zone's unevictable list. To avoid races with
439 * tasks that might be making the page evictable, through eg. munlock,
440 * munmap or exit, while it's not on the lru, we want to add the page
441 * while it's locked or otherwise "invisible" to other tasks. This is
442 * difficult to do when using the pagevec cache, so bypass that.
443 */
444 void add_page_to_unevictable_list(struct page *page)
445 {
446 struct zone *zone = page_zone(page);
447 struct lruvec *lruvec;
448
449 spin_lock_irq(&zone->lru_lock);
450 lruvec = mem_cgroup_page_lruvec(page, zone);
451 ClearPageActive(page);
452 SetPageUnevictable(page);
453 SetPageLRU(page);
454 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
455 spin_unlock_irq(&zone->lru_lock);
456 }
457
458 /**
459 * lru_cache_add_active_or_unevictable
460 * @page: the page to be added to LRU
461 * @vma: vma in which page is mapped for determining reclaimability
462 *
463 * Place @page on the active or unevictable LRU list, depending on its
464 * evictability. Note that if the page is not evictable, it goes
465 * directly back onto it's zone's unevictable list, it does NOT use a
466 * per cpu pagevec.
467 */
468 void lru_cache_add_active_or_unevictable(struct page *page,
469 struct vm_area_struct *vma)
470 {
471 VM_BUG_ON_PAGE(PageLRU(page), page);
472
473 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
474 SetPageActive(page);
475 lru_cache_add(page);
476 return;
477 }
478
479 if (!TestSetPageMlocked(page)) {
480 /*
481 * We use the irq-unsafe __mod_zone_page_stat because this
482 * counter is not modified from interrupt context, and the pte
483 * lock is held(spinlock), which implies preemption disabled.
484 */
485 __mod_zone_page_state(page_zone(page), NR_MLOCK,
486 hpage_nr_pages(page));
487 count_vm_event(UNEVICTABLE_PGMLOCKED);
488 }
489 add_page_to_unevictable_list(page);
490 }
491
492 /*
493 * If the page can not be invalidated, it is moved to the
494 * inactive list to speed up its reclaim. It is moved to the
495 * head of the list, rather than the tail, to give the flusher
496 * threads some time to write it out, as this is much more
497 * effective than the single-page writeout from reclaim.
498 *
499 * If the page isn't page_mapped and dirty/writeback, the page
500 * could reclaim asap using PG_reclaim.
501 *
502 * 1. active, mapped page -> none
503 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
504 * 3. inactive, mapped page -> none
505 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
506 * 5. inactive, clean -> inactive, tail
507 * 6. Others -> none
508 *
509 * In 4, why it moves inactive's head, the VM expects the page would
510 * be write it out by flusher threads as this is much more effective
511 * than the single-page writeout from reclaim.
512 */
513 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
514 void *arg)
515 {
516 int lru, file;
517 bool active;
518
519 if (!PageLRU(page))
520 return;
521
522 if (PageUnevictable(page))
523 return;
524
525 /* Some processes are using the page */
526 if (page_mapped(page))
527 return;
528
529 active = PageActive(page);
530 file = page_is_file_cache(page);
531 lru = page_lru_base_type(page);
532
533 del_page_from_lru_list(page, lruvec, lru + active);
534 ClearPageActive(page);
535 ClearPageReferenced(page);
536 add_page_to_lru_list(page, lruvec, lru);
537
538 if (PageWriteback(page) || PageDirty(page)) {
539 /*
540 * PG_reclaim could be raced with end_page_writeback
541 * It can make readahead confusing. But race window
542 * is _really_ small and it's non-critical problem.
543 */
544 SetPageReclaim(page);
545 } else {
546 /*
547 * The page's writeback ends up during pagevec
548 * We moves tha page into tail of inactive.
549 */
550 list_move_tail(&page->lru, &lruvec->lists[lru]);
551 __count_vm_event(PGROTATED);
552 }
553
554 if (active)
555 __count_vm_event(PGDEACTIVATE);
556 update_page_reclaim_stat(lruvec, file, 0);
557 }
558
559
560 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
561 void *arg)
562 {
563 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
564 int file = page_is_file_cache(page);
565 int lru = page_lru_base_type(page);
566
567 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
568 ClearPageActive(page);
569 ClearPageReferenced(page);
570 add_page_to_lru_list(page, lruvec, lru);
571
572 __count_vm_event(PGDEACTIVATE);
573 update_page_reclaim_stat(lruvec, file, 0);
574 }
575 }
576
577 /*
578 * Drain pages out of the cpu's pagevecs.
579 * Either "cpu" is the current CPU, and preemption has already been
580 * disabled; or "cpu" is being hot-unplugged, and is already dead.
581 */
582 void lru_add_drain_cpu(int cpu)
583 {
584 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
585
586 if (pagevec_count(pvec))
587 __pagevec_lru_add(pvec);
588
589 pvec = &per_cpu(lru_rotate_pvecs, cpu);
590 if (pagevec_count(pvec)) {
591 unsigned long flags;
592
593 /* No harm done if a racing interrupt already did this */
594 local_irq_save(flags);
595 pagevec_move_tail(pvec);
596 local_irq_restore(flags);
597 }
598
599 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
600 if (pagevec_count(pvec))
601 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
602
603 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
604 if (pagevec_count(pvec))
605 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
606
607 activate_page_drain(cpu);
608 }
609
610 /**
611 * deactivate_file_page - forcefully deactivate a file page
612 * @page: page to deactivate
613 *
614 * This function hints the VM that @page is a good reclaim candidate,
615 * for example if its invalidation fails due to the page being dirty
616 * or under writeback.
617 */
618 void deactivate_file_page(struct page *page)
619 {
620 /*
621 * In a workload with many unevictable page such as mprotect,
622 * unevictable page deactivation for accelerating reclaim is pointless.
623 */
624 if (PageUnevictable(page))
625 return;
626
627 if (likely(get_page_unless_zero(page))) {
628 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
629
630 if (!pagevec_add(pvec, page) || PageCompound(page))
631 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
632 put_cpu_var(lru_deactivate_file_pvecs);
633 }
634 }
635
636 /**
637 * deactivate_page - deactivate a page
638 * @page: page to deactivate
639 *
640 * deactivate_page() moves @page to the inactive list if @page was on the active
641 * list and was not an unevictable page. This is done to accelerate the reclaim
642 * of @page.
643 */
644 void deactivate_page(struct page *page)
645 {
646 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
647 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
648
649 get_page(page);
650 if (!pagevec_add(pvec, page) || PageCompound(page))
651 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
652 put_cpu_var(lru_deactivate_pvecs);
653 }
654 }
655
656 void lru_add_drain(void)
657 {
658 lru_add_drain_cpu(get_cpu());
659 put_cpu();
660 }
661
662 static void lru_add_drain_per_cpu(struct work_struct *dummy)
663 {
664 lru_add_drain();
665 }
666
667 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
668
669 /*
670 * lru_add_drain_wq is used to do lru_add_drain_all() from a WQ_MEM_RECLAIM
671 * workqueue, aiding in getting memory freed.
672 */
673 static struct workqueue_struct *lru_add_drain_wq;
674
675 static int __init lru_init(void)
676 {
677 lru_add_drain_wq = alloc_workqueue("lru-add-drain", WQ_MEM_RECLAIM, 0);
678
679 if (WARN(!lru_add_drain_wq,
680 "Failed to create workqueue lru_add_drain_wq"))
681 return -ENOMEM;
682
683 return 0;
684 }
685 early_initcall(lru_init);
686
687 void lru_add_drain_all(void)
688 {
689 static DEFINE_MUTEX(lock);
690 static struct cpumask has_work;
691 int cpu;
692
693 mutex_lock(&lock);
694 get_online_cpus();
695 cpumask_clear(&has_work);
696
697 for_each_online_cpu(cpu) {
698 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
699
700 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
701 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
702 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
703 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
704 need_activate_page_drain(cpu)) {
705 INIT_WORK(work, lru_add_drain_per_cpu);
706 queue_work_on(cpu, lru_add_drain_wq, work);
707 cpumask_set_cpu(cpu, &has_work);
708 }
709 }
710
711 for_each_cpu(cpu, &has_work)
712 flush_work(&per_cpu(lru_add_drain_work, cpu));
713
714 put_online_cpus();
715 mutex_unlock(&lock);
716 }
717
718 /**
719 * release_pages - batched put_page()
720 * @pages: array of pages to release
721 * @nr: number of pages
722 * @cold: whether the pages are cache cold
723 *
724 * Decrement the reference count on all the pages in @pages. If it
725 * fell to zero, remove the page from the LRU and free it.
726 */
727 void release_pages(struct page **pages, int nr, bool cold)
728 {
729 int i;
730 LIST_HEAD(pages_to_free);
731 struct zone *zone = NULL;
732 struct lruvec *lruvec;
733 unsigned long uninitialized_var(flags);
734 unsigned int uninitialized_var(lock_batch);
735
736 for (i = 0; i < nr; i++) {
737 struct page *page = pages[i];
738
739 /*
740 * Make sure the IRQ-safe lock-holding time does not get
741 * excessive with a continuous string of pages from the
742 * same zone. The lock is held only if zone != NULL.
743 */
744 if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
745 spin_unlock_irqrestore(&zone->lru_lock, flags);
746 zone = NULL;
747 }
748
749 if (is_huge_zero_page(page)) {
750 put_huge_zero_page();
751 continue;
752 }
753
754 page = compound_head(page);
755 if (!put_page_testzero(page))
756 continue;
757
758 if (PageCompound(page)) {
759 if (zone) {
760 spin_unlock_irqrestore(&zone->lru_lock, flags);
761 zone = NULL;
762 }
763 __put_compound_page(page);
764 continue;
765 }
766
767 if (PageLRU(page)) {
768 struct zone *pagezone = page_zone(page);
769
770 if (pagezone != zone) {
771 if (zone)
772 spin_unlock_irqrestore(&zone->lru_lock,
773 flags);
774 lock_batch = 0;
775 zone = pagezone;
776 spin_lock_irqsave(&zone->lru_lock, flags);
777 }
778
779 lruvec = mem_cgroup_page_lruvec(page, zone);
780 VM_BUG_ON_PAGE(!PageLRU(page), page);
781 __ClearPageLRU(page);
782 del_page_from_lru_list(page, lruvec, page_off_lru(page));
783 }
784
785 /* Clear Active bit in case of parallel mark_page_accessed */
786 __ClearPageActive(page);
787
788 list_add(&page->lru, &pages_to_free);
789 }
790 if (zone)
791 spin_unlock_irqrestore(&zone->lru_lock, flags);
792
793 mem_cgroup_uncharge_list(&pages_to_free);
794 free_hot_cold_page_list(&pages_to_free, cold);
795 }
796 EXPORT_SYMBOL(release_pages);
797
798 /*
799 * The pages which we're about to release may be in the deferred lru-addition
800 * queues. That would prevent them from really being freed right now. That's
801 * OK from a correctness point of view but is inefficient - those pages may be
802 * cache-warm and we want to give them back to the page allocator ASAP.
803 *
804 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
805 * and __pagevec_lru_add_active() call release_pages() directly to avoid
806 * mutual recursion.
807 */
808 void __pagevec_release(struct pagevec *pvec)
809 {
810 lru_add_drain();
811 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
812 pagevec_reinit(pvec);
813 }
814 EXPORT_SYMBOL(__pagevec_release);
815
816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
817 /* used by __split_huge_page_refcount() */
818 void lru_add_page_tail(struct page *page, struct page *page_tail,
819 struct lruvec *lruvec, struct list_head *list)
820 {
821 const int file = 0;
822
823 VM_BUG_ON_PAGE(!PageHead(page), page);
824 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
825 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
826 VM_BUG_ON(NR_CPUS != 1 &&
827 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
828
829 if (!list)
830 SetPageLRU(page_tail);
831
832 if (likely(PageLRU(page)))
833 list_add_tail(&page_tail->lru, &page->lru);
834 else if (list) {
835 /* page reclaim is reclaiming a huge page */
836 get_page(page_tail);
837 list_add_tail(&page_tail->lru, list);
838 } else {
839 struct list_head *list_head;
840 /*
841 * Head page has not yet been counted, as an hpage,
842 * so we must account for each subpage individually.
843 *
844 * Use the standard add function to put page_tail on the list,
845 * but then correct its position so they all end up in order.
846 */
847 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
848 list_head = page_tail->lru.prev;
849 list_move_tail(&page_tail->lru, list_head);
850 }
851
852 if (!PageUnevictable(page))
853 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
854 }
855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
856
857 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
858 void *arg)
859 {
860 int file = page_is_file_cache(page);
861 int active = PageActive(page);
862 enum lru_list lru = page_lru(page);
863
864 VM_BUG_ON_PAGE(PageLRU(page), page);
865
866 SetPageLRU(page);
867 add_page_to_lru_list(page, lruvec, lru);
868 update_page_reclaim_stat(lruvec, file, active);
869 trace_mm_lru_insertion(page, lru);
870 }
871
872 /*
873 * Add the passed pages to the LRU, then drop the caller's refcount
874 * on them. Reinitialises the caller's pagevec.
875 */
876 void __pagevec_lru_add(struct pagevec *pvec)
877 {
878 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
879 }
880 EXPORT_SYMBOL(__pagevec_lru_add);
881
882 /**
883 * pagevec_lookup_entries - gang pagecache lookup
884 * @pvec: Where the resulting entries are placed
885 * @mapping: The address_space to search
886 * @start: The starting entry index
887 * @nr_entries: The maximum number of entries
888 * @indices: The cache indices corresponding to the entries in @pvec
889 *
890 * pagevec_lookup_entries() will search for and return a group of up
891 * to @nr_entries pages and shadow entries in the mapping. All
892 * entries are placed in @pvec. pagevec_lookup_entries() takes a
893 * reference against actual pages in @pvec.
894 *
895 * The search returns a group of mapping-contiguous entries with
896 * ascending indexes. There may be holes in the indices due to
897 * not-present entries.
898 *
899 * pagevec_lookup_entries() returns the number of entries which were
900 * found.
901 */
902 unsigned pagevec_lookup_entries(struct pagevec *pvec,
903 struct address_space *mapping,
904 pgoff_t start, unsigned nr_pages,
905 pgoff_t *indices)
906 {
907 pvec->nr = find_get_entries(mapping, start, nr_pages,
908 pvec->pages, indices);
909 return pagevec_count(pvec);
910 }
911
912 /**
913 * pagevec_remove_exceptionals - pagevec exceptionals pruning
914 * @pvec: The pagevec to prune
915 *
916 * pagevec_lookup_entries() fills both pages and exceptional radix
917 * tree entries into the pagevec. This function prunes all
918 * exceptionals from @pvec without leaving holes, so that it can be
919 * passed on to page-only pagevec operations.
920 */
921 void pagevec_remove_exceptionals(struct pagevec *pvec)
922 {
923 int i, j;
924
925 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
926 struct page *page = pvec->pages[i];
927 if (!radix_tree_exceptional_entry(page))
928 pvec->pages[j++] = page;
929 }
930 pvec->nr = j;
931 }
932
933 /**
934 * pagevec_lookup - gang pagecache lookup
935 * @pvec: Where the resulting pages are placed
936 * @mapping: The address_space to search
937 * @start: The starting page index
938 * @nr_pages: The maximum number of pages
939 *
940 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
941 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
942 * reference against the pages in @pvec.
943 *
944 * The search returns a group of mapping-contiguous pages with ascending
945 * indexes. There may be holes in the indices due to not-present pages.
946 *
947 * pagevec_lookup() returns the number of pages which were found.
948 */
949 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
950 pgoff_t start, unsigned nr_pages)
951 {
952 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
953 return pagevec_count(pvec);
954 }
955 EXPORT_SYMBOL(pagevec_lookup);
956
957 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
958 pgoff_t *index, int tag, unsigned nr_pages)
959 {
960 pvec->nr = find_get_pages_tag(mapping, index, tag,
961 nr_pages, pvec->pages);
962 return pagevec_count(pvec);
963 }
964 EXPORT_SYMBOL(pagevec_lookup_tag);
965
966 /*
967 * Perform any setup for the swap system
968 */
969 void __init swap_setup(void)
970 {
971 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
972 #ifdef CONFIG_SWAP
973 int i;
974
975 for (i = 0; i < MAX_SWAPFILES; i++)
976 spin_lock_init(&swapper_spaces[i].tree_lock);
977 #endif
978
979 /* Use a smaller cluster for small-memory machines */
980 if (megs < 16)
981 page_cluster = 2;
982 else
983 page_cluster = 3;
984 /*
985 * Right now other parts of the system means that we
986 * _really_ don't want to cluster much more
987 */
988 }
This page took 0.050771 seconds and 5 git commands to generate.