Restartable sequences: self-tests
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
97
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
105
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
108 };
109
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
137
138 /*
139 * From 0 .. 100. Higher means more swappy.
140 */
141 int vm_swappiness = 60;
142 /*
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
145 */
146 unsigned long vm_total_pages;
147
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
150
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
153 {
154 return !sc->target_mem_cgroup;
155 }
156
157 /**
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
160 *
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
166 *
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
169 */
170 static bool sane_reclaim(struct scan_control *sc)
171 {
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
173
174 if (!memcg)
175 return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 return true;
179 #endif
180 return false;
181 }
182 #else
183 static bool global_reclaim(struct scan_control *sc)
184 {
185 return true;
186 }
187
188 static bool sane_reclaim(struct scan_control *sc)
189 {
190 return true;
191 }
192 #endif
193
194 unsigned long zone_reclaimable_pages(struct zone *zone)
195 {
196 unsigned long nr;
197
198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
206
207 return nr;
208 }
209
210 bool zone_reclaimable(struct zone *zone)
211 {
212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
213 zone_reclaimable_pages(zone) * 6;
214 }
215
216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
217 {
218 if (!mem_cgroup_disabled())
219 return mem_cgroup_get_lru_size(lruvec, lru);
220
221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
222 }
223
224 /*
225 * Add a shrinker callback to be called from the vm.
226 */
227 int register_shrinker(struct shrinker *shrinker)
228 {
229 size_t size = sizeof(*shrinker->nr_deferred);
230
231 if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 size *= nr_node_ids;
233
234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 if (!shrinker->nr_deferred)
236 return -ENOMEM;
237
238 down_write(&shrinker_rwsem);
239 list_add_tail(&shrinker->list, &shrinker_list);
240 up_write(&shrinker_rwsem);
241 return 0;
242 }
243 EXPORT_SYMBOL(register_shrinker);
244
245 /*
246 * Remove one
247 */
248 void unregister_shrinker(struct shrinker *shrinker)
249 {
250 down_write(&shrinker_rwsem);
251 list_del(&shrinker->list);
252 up_write(&shrinker_rwsem);
253 kfree(shrinker->nr_deferred);
254 }
255 EXPORT_SYMBOL(unregister_shrinker);
256
257 #define SHRINK_BATCH 128
258
259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 struct shrinker *shrinker,
261 unsigned long nr_scanned,
262 unsigned long nr_eligible)
263 {
264 unsigned long freed = 0;
265 unsigned long long delta;
266 long total_scan;
267 long freeable;
268 long nr;
269 long new_nr;
270 int nid = shrinkctl->nid;
271 long batch_size = shrinker->batch ? shrinker->batch
272 : SHRINK_BATCH;
273
274 freeable = shrinker->count_objects(shrinker, shrinkctl);
275 if (freeable == 0)
276 return 0;
277
278 /*
279 * copy the current shrinker scan count into a local variable
280 * and zero it so that other concurrent shrinker invocations
281 * don't also do this scanning work.
282 */
283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
284
285 total_scan = nr;
286 delta = (4 * nr_scanned) / shrinker->seeks;
287 delta *= freeable;
288 do_div(delta, nr_eligible + 1);
289 total_scan += delta;
290 if (total_scan < 0) {
291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
292 shrinker->scan_objects, total_scan);
293 total_scan = freeable;
294 }
295
296 /*
297 * We need to avoid excessive windup on filesystem shrinkers
298 * due to large numbers of GFP_NOFS allocations causing the
299 * shrinkers to return -1 all the time. This results in a large
300 * nr being built up so when a shrink that can do some work
301 * comes along it empties the entire cache due to nr >>>
302 * freeable. This is bad for sustaining a working set in
303 * memory.
304 *
305 * Hence only allow the shrinker to scan the entire cache when
306 * a large delta change is calculated directly.
307 */
308 if (delta < freeable / 4)
309 total_scan = min(total_scan, freeable / 2);
310
311 /*
312 * Avoid risking looping forever due to too large nr value:
313 * never try to free more than twice the estimate number of
314 * freeable entries.
315 */
316 if (total_scan > freeable * 2)
317 total_scan = freeable * 2;
318
319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
320 nr_scanned, nr_eligible,
321 freeable, delta, total_scan);
322
323 /*
324 * Normally, we should not scan less than batch_size objects in one
325 * pass to avoid too frequent shrinker calls, but if the slab has less
326 * than batch_size objects in total and we are really tight on memory,
327 * we will try to reclaim all available objects, otherwise we can end
328 * up failing allocations although there are plenty of reclaimable
329 * objects spread over several slabs with usage less than the
330 * batch_size.
331 *
332 * We detect the "tight on memory" situations by looking at the total
333 * number of objects we want to scan (total_scan). If it is greater
334 * than the total number of objects on slab (freeable), we must be
335 * scanning at high prio and therefore should try to reclaim as much as
336 * possible.
337 */
338 while (total_scan >= batch_size ||
339 total_scan >= freeable) {
340 unsigned long ret;
341 unsigned long nr_to_scan = min(batch_size, total_scan);
342
343 shrinkctl->nr_to_scan = nr_to_scan;
344 ret = shrinker->scan_objects(shrinker, shrinkctl);
345 if (ret == SHRINK_STOP)
346 break;
347 freed += ret;
348
349 count_vm_events(SLABS_SCANNED, nr_to_scan);
350 total_scan -= nr_to_scan;
351
352 cond_resched();
353 }
354
355 /*
356 * move the unused scan count back into the shrinker in a
357 * manner that handles concurrent updates. If we exhausted the
358 * scan, there is no need to do an update.
359 */
360 if (total_scan > 0)
361 new_nr = atomic_long_add_return(total_scan,
362 &shrinker->nr_deferred[nid]);
363 else
364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
365
366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
367 return freed;
368 }
369
370 /**
371 * shrink_slab - shrink slab caches
372 * @gfp_mask: allocation context
373 * @nid: node whose slab caches to target
374 * @memcg: memory cgroup whose slab caches to target
375 * @nr_scanned: pressure numerator
376 * @nr_eligible: pressure denominator
377 *
378 * Call the shrink functions to age shrinkable caches.
379 *
380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381 * unaware shrinkers will receive a node id of 0 instead.
382 *
383 * @memcg specifies the memory cgroup to target. If it is not NULL,
384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
385 * objects from the memory cgroup specified. Otherwise, only unaware
386 * shrinkers are called.
387 *
388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
389 * the available objects should be scanned. Page reclaim for example
390 * passes the number of pages scanned and the number of pages on the
391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
392 * when it encountered mapped pages. The ratio is further biased by
393 * the ->seeks setting of the shrink function, which indicates the
394 * cost to recreate an object relative to that of an LRU page.
395 *
396 * Returns the number of reclaimed slab objects.
397 */
398 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
399 struct mem_cgroup *memcg,
400 unsigned long nr_scanned,
401 unsigned long nr_eligible)
402 {
403 struct shrinker *shrinker;
404 unsigned long freed = 0;
405
406 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
407 return 0;
408
409 if (nr_scanned == 0)
410 nr_scanned = SWAP_CLUSTER_MAX;
411
412 if (!down_read_trylock(&shrinker_rwsem)) {
413 /*
414 * If we would return 0, our callers would understand that we
415 * have nothing else to shrink and give up trying. By returning
416 * 1 we keep it going and assume we'll be able to shrink next
417 * time.
418 */
419 freed = 1;
420 goto out;
421 }
422
423 list_for_each_entry(shrinker, &shrinker_list, list) {
424 struct shrink_control sc = {
425 .gfp_mask = gfp_mask,
426 .nid = nid,
427 .memcg = memcg,
428 };
429
430 /*
431 * If kernel memory accounting is disabled, we ignore
432 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
433 * passing NULL for memcg.
434 */
435 if (memcg_kmem_enabled() &&
436 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
437 continue;
438
439 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
440 sc.nid = 0;
441
442 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
443 }
444
445 up_read(&shrinker_rwsem);
446 out:
447 cond_resched();
448 return freed;
449 }
450
451 void drop_slab_node(int nid)
452 {
453 unsigned long freed;
454
455 do {
456 struct mem_cgroup *memcg = NULL;
457
458 freed = 0;
459 do {
460 freed += shrink_slab(GFP_KERNEL, nid, memcg,
461 1000, 1000);
462 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
463 } while (freed > 10);
464 }
465
466 void drop_slab(void)
467 {
468 int nid;
469
470 for_each_online_node(nid)
471 drop_slab_node(nid);
472 }
473
474 static inline int is_page_cache_freeable(struct page *page)
475 {
476 /*
477 * A freeable page cache page is referenced only by the caller
478 * that isolated the page, the page cache radix tree and
479 * optional buffer heads at page->private.
480 */
481 return page_count(page) - page_has_private(page) == 2;
482 }
483
484 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
485 {
486 if (current->flags & PF_SWAPWRITE)
487 return 1;
488 if (!inode_write_congested(inode))
489 return 1;
490 if (inode_to_bdi(inode) == current->backing_dev_info)
491 return 1;
492 return 0;
493 }
494
495 /*
496 * We detected a synchronous write error writing a page out. Probably
497 * -ENOSPC. We need to propagate that into the address_space for a subsequent
498 * fsync(), msync() or close().
499 *
500 * The tricky part is that after writepage we cannot touch the mapping: nothing
501 * prevents it from being freed up. But we have a ref on the page and once
502 * that page is locked, the mapping is pinned.
503 *
504 * We're allowed to run sleeping lock_page() here because we know the caller has
505 * __GFP_FS.
506 */
507 static void handle_write_error(struct address_space *mapping,
508 struct page *page, int error)
509 {
510 lock_page(page);
511 if (page_mapping(page) == mapping)
512 mapping_set_error(mapping, error);
513 unlock_page(page);
514 }
515
516 /* possible outcome of pageout() */
517 typedef enum {
518 /* failed to write page out, page is locked */
519 PAGE_KEEP,
520 /* move page to the active list, page is locked */
521 PAGE_ACTIVATE,
522 /* page has been sent to the disk successfully, page is unlocked */
523 PAGE_SUCCESS,
524 /* page is clean and locked */
525 PAGE_CLEAN,
526 } pageout_t;
527
528 /*
529 * pageout is called by shrink_page_list() for each dirty page.
530 * Calls ->writepage().
531 */
532 static pageout_t pageout(struct page *page, struct address_space *mapping,
533 struct scan_control *sc)
534 {
535 /*
536 * If the page is dirty, only perform writeback if that write
537 * will be non-blocking. To prevent this allocation from being
538 * stalled by pagecache activity. But note that there may be
539 * stalls if we need to run get_block(). We could test
540 * PagePrivate for that.
541 *
542 * If this process is currently in __generic_file_write_iter() against
543 * this page's queue, we can perform writeback even if that
544 * will block.
545 *
546 * If the page is swapcache, write it back even if that would
547 * block, for some throttling. This happens by accident, because
548 * swap_backing_dev_info is bust: it doesn't reflect the
549 * congestion state of the swapdevs. Easy to fix, if needed.
550 */
551 if (!is_page_cache_freeable(page))
552 return PAGE_KEEP;
553 if (!mapping) {
554 /*
555 * Some data journaling orphaned pages can have
556 * page->mapping == NULL while being dirty with clean buffers.
557 */
558 if (page_has_private(page)) {
559 if (try_to_free_buffers(page)) {
560 ClearPageDirty(page);
561 pr_info("%s: orphaned page\n", __func__);
562 return PAGE_CLEAN;
563 }
564 }
565 return PAGE_KEEP;
566 }
567 if (mapping->a_ops->writepage == NULL)
568 return PAGE_ACTIVATE;
569 if (!may_write_to_inode(mapping->host, sc))
570 return PAGE_KEEP;
571
572 if (clear_page_dirty_for_io(page)) {
573 int res;
574 struct writeback_control wbc = {
575 .sync_mode = WB_SYNC_NONE,
576 .nr_to_write = SWAP_CLUSTER_MAX,
577 .range_start = 0,
578 .range_end = LLONG_MAX,
579 .for_reclaim = 1,
580 };
581
582 SetPageReclaim(page);
583 res = mapping->a_ops->writepage(page, &wbc);
584 if (res < 0)
585 handle_write_error(mapping, page, res);
586 if (res == AOP_WRITEPAGE_ACTIVATE) {
587 ClearPageReclaim(page);
588 return PAGE_ACTIVATE;
589 }
590
591 if (!PageWriteback(page)) {
592 /* synchronous write or broken a_ops? */
593 ClearPageReclaim(page);
594 }
595 trace_mm_vmscan_writepage(page);
596 inc_zone_page_state(page, NR_VMSCAN_WRITE);
597 return PAGE_SUCCESS;
598 }
599
600 return PAGE_CLEAN;
601 }
602
603 /*
604 * Same as remove_mapping, but if the page is removed from the mapping, it
605 * gets returned with a refcount of 0.
606 */
607 static int __remove_mapping(struct address_space *mapping, struct page *page,
608 bool reclaimed)
609 {
610 unsigned long flags;
611
612 BUG_ON(!PageLocked(page));
613 BUG_ON(mapping != page_mapping(page));
614
615 spin_lock_irqsave(&mapping->tree_lock, flags);
616 /*
617 * The non racy check for a busy page.
618 *
619 * Must be careful with the order of the tests. When someone has
620 * a ref to the page, it may be possible that they dirty it then
621 * drop the reference. So if PageDirty is tested before page_count
622 * here, then the following race may occur:
623 *
624 * get_user_pages(&page);
625 * [user mapping goes away]
626 * write_to(page);
627 * !PageDirty(page) [good]
628 * SetPageDirty(page);
629 * put_page(page);
630 * !page_count(page) [good, discard it]
631 *
632 * [oops, our write_to data is lost]
633 *
634 * Reversing the order of the tests ensures such a situation cannot
635 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
636 * load is not satisfied before that of page->_refcount.
637 *
638 * Note that if SetPageDirty is always performed via set_page_dirty,
639 * and thus under tree_lock, then this ordering is not required.
640 */
641 if (!page_ref_freeze(page, 2))
642 goto cannot_free;
643 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
644 if (unlikely(PageDirty(page))) {
645 page_ref_unfreeze(page, 2);
646 goto cannot_free;
647 }
648
649 if (PageSwapCache(page)) {
650 swp_entry_t swap = { .val = page_private(page) };
651 mem_cgroup_swapout(page, swap);
652 __delete_from_swap_cache(page);
653 spin_unlock_irqrestore(&mapping->tree_lock, flags);
654 swapcache_free(swap);
655 } else {
656 void (*freepage)(struct page *);
657 void *shadow = NULL;
658
659 freepage = mapping->a_ops->freepage;
660 /*
661 * Remember a shadow entry for reclaimed file cache in
662 * order to detect refaults, thus thrashing, later on.
663 *
664 * But don't store shadows in an address space that is
665 * already exiting. This is not just an optizimation,
666 * inode reclaim needs to empty out the radix tree or
667 * the nodes are lost. Don't plant shadows behind its
668 * back.
669 *
670 * We also don't store shadows for DAX mappings because the
671 * only page cache pages found in these are zero pages
672 * covering holes, and because we don't want to mix DAX
673 * exceptional entries and shadow exceptional entries in the
674 * same page_tree.
675 */
676 if (reclaimed && page_is_file_cache(page) &&
677 !mapping_exiting(mapping) && !dax_mapping(mapping))
678 shadow = workingset_eviction(mapping, page);
679 __delete_from_page_cache(page, shadow);
680 spin_unlock_irqrestore(&mapping->tree_lock, flags);
681
682 if (freepage != NULL)
683 freepage(page);
684 }
685
686 return 1;
687
688 cannot_free:
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 return 0;
691 }
692
693 /*
694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
695 * someone else has a ref on the page, abort and return 0. If it was
696 * successfully detached, return 1. Assumes the caller has a single ref on
697 * this page.
698 */
699 int remove_mapping(struct address_space *mapping, struct page *page)
700 {
701 if (__remove_mapping(mapping, page, false)) {
702 /*
703 * Unfreezing the refcount with 1 rather than 2 effectively
704 * drops the pagecache ref for us without requiring another
705 * atomic operation.
706 */
707 page_ref_unfreeze(page, 1);
708 return 1;
709 }
710 return 0;
711 }
712
713 /**
714 * putback_lru_page - put previously isolated page onto appropriate LRU list
715 * @page: page to be put back to appropriate lru list
716 *
717 * Add previously isolated @page to appropriate LRU list.
718 * Page may still be unevictable for other reasons.
719 *
720 * lru_lock must not be held, interrupts must be enabled.
721 */
722 void putback_lru_page(struct page *page)
723 {
724 bool is_unevictable;
725 int was_unevictable = PageUnevictable(page);
726
727 VM_BUG_ON_PAGE(PageLRU(page), page);
728
729 redo:
730 ClearPageUnevictable(page);
731
732 if (page_evictable(page)) {
733 /*
734 * For evictable pages, we can use the cache.
735 * In event of a race, worst case is we end up with an
736 * unevictable page on [in]active list.
737 * We know how to handle that.
738 */
739 is_unevictable = false;
740 lru_cache_add(page);
741 } else {
742 /*
743 * Put unevictable pages directly on zone's unevictable
744 * list.
745 */
746 is_unevictable = true;
747 add_page_to_unevictable_list(page);
748 /*
749 * When racing with an mlock or AS_UNEVICTABLE clearing
750 * (page is unlocked) make sure that if the other thread
751 * does not observe our setting of PG_lru and fails
752 * isolation/check_move_unevictable_pages,
753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
754 * the page back to the evictable list.
755 *
756 * The other side is TestClearPageMlocked() or shmem_lock().
757 */
758 smp_mb();
759 }
760
761 /*
762 * page's status can change while we move it among lru. If an evictable
763 * page is on unevictable list, it never be freed. To avoid that,
764 * check after we added it to the list, again.
765 */
766 if (is_unevictable && page_evictable(page)) {
767 if (!isolate_lru_page(page)) {
768 put_page(page);
769 goto redo;
770 }
771 /* This means someone else dropped this page from LRU
772 * So, it will be freed or putback to LRU again. There is
773 * nothing to do here.
774 */
775 }
776
777 if (was_unevictable && !is_unevictable)
778 count_vm_event(UNEVICTABLE_PGRESCUED);
779 else if (!was_unevictable && is_unevictable)
780 count_vm_event(UNEVICTABLE_PGCULLED);
781
782 put_page(page); /* drop ref from isolate */
783 }
784
785 enum page_references {
786 PAGEREF_RECLAIM,
787 PAGEREF_RECLAIM_CLEAN,
788 PAGEREF_KEEP,
789 PAGEREF_ACTIVATE,
790 };
791
792 static enum page_references page_check_references(struct page *page,
793 struct scan_control *sc)
794 {
795 int referenced_ptes, referenced_page;
796 unsigned long vm_flags;
797
798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
799 &vm_flags);
800 referenced_page = TestClearPageReferenced(page);
801
802 /*
803 * Mlock lost the isolation race with us. Let try_to_unmap()
804 * move the page to the unevictable list.
805 */
806 if (vm_flags & VM_LOCKED)
807 return PAGEREF_RECLAIM;
808
809 if (referenced_ptes) {
810 if (PageSwapBacked(page))
811 return PAGEREF_ACTIVATE;
812 /*
813 * All mapped pages start out with page table
814 * references from the instantiating fault, so we need
815 * to look twice if a mapped file page is used more
816 * than once.
817 *
818 * Mark it and spare it for another trip around the
819 * inactive list. Another page table reference will
820 * lead to its activation.
821 *
822 * Note: the mark is set for activated pages as well
823 * so that recently deactivated but used pages are
824 * quickly recovered.
825 */
826 SetPageReferenced(page);
827
828 if (referenced_page || referenced_ptes > 1)
829 return PAGEREF_ACTIVATE;
830
831 /*
832 * Activate file-backed executable pages after first usage.
833 */
834 if (vm_flags & VM_EXEC)
835 return PAGEREF_ACTIVATE;
836
837 return PAGEREF_KEEP;
838 }
839
840 /* Reclaim if clean, defer dirty pages to writeback */
841 if (referenced_page && !PageSwapBacked(page))
842 return PAGEREF_RECLAIM_CLEAN;
843
844 return PAGEREF_RECLAIM;
845 }
846
847 /* Check if a page is dirty or under writeback */
848 static void page_check_dirty_writeback(struct page *page,
849 bool *dirty, bool *writeback)
850 {
851 struct address_space *mapping;
852
853 /*
854 * Anonymous pages are not handled by flushers and must be written
855 * from reclaim context. Do not stall reclaim based on them
856 */
857 if (!page_is_file_cache(page)) {
858 *dirty = false;
859 *writeback = false;
860 return;
861 }
862
863 /* By default assume that the page flags are accurate */
864 *dirty = PageDirty(page);
865 *writeback = PageWriteback(page);
866
867 /* Verify dirty/writeback state if the filesystem supports it */
868 if (!page_has_private(page))
869 return;
870
871 mapping = page_mapping(page);
872 if (mapping && mapping->a_ops->is_dirty_writeback)
873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
874 }
875
876 /*
877 * shrink_page_list() returns the number of reclaimed pages
878 */
879 static unsigned long shrink_page_list(struct list_head *page_list,
880 struct zone *zone,
881 struct scan_control *sc,
882 enum ttu_flags ttu_flags,
883 unsigned long *ret_nr_dirty,
884 unsigned long *ret_nr_unqueued_dirty,
885 unsigned long *ret_nr_congested,
886 unsigned long *ret_nr_writeback,
887 unsigned long *ret_nr_immediate,
888 bool force_reclaim)
889 {
890 LIST_HEAD(ret_pages);
891 LIST_HEAD(free_pages);
892 int pgactivate = 0;
893 unsigned long nr_unqueued_dirty = 0;
894 unsigned long nr_dirty = 0;
895 unsigned long nr_congested = 0;
896 unsigned long nr_reclaimed = 0;
897 unsigned long nr_writeback = 0;
898 unsigned long nr_immediate = 0;
899
900 cond_resched();
901
902 while (!list_empty(page_list)) {
903 struct address_space *mapping;
904 struct page *page;
905 int may_enter_fs;
906 enum page_references references = PAGEREF_RECLAIM_CLEAN;
907 bool dirty, writeback;
908 bool lazyfree = false;
909 int ret = SWAP_SUCCESS;
910
911 cond_resched();
912
913 page = lru_to_page(page_list);
914 list_del(&page->lru);
915
916 if (!trylock_page(page))
917 goto keep;
918
919 VM_BUG_ON_PAGE(PageActive(page), page);
920 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
921
922 sc->nr_scanned++;
923
924 if (unlikely(!page_evictable(page)))
925 goto cull_mlocked;
926
927 if (!sc->may_unmap && page_mapped(page))
928 goto keep_locked;
929
930 /* Double the slab pressure for mapped and swapcache pages */
931 if (page_mapped(page) || PageSwapCache(page))
932 sc->nr_scanned++;
933
934 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
936
937 /*
938 * The number of dirty pages determines if a zone is marked
939 * reclaim_congested which affects wait_iff_congested. kswapd
940 * will stall and start writing pages if the tail of the LRU
941 * is all dirty unqueued pages.
942 */
943 page_check_dirty_writeback(page, &dirty, &writeback);
944 if (dirty || writeback)
945 nr_dirty++;
946
947 if (dirty && !writeback)
948 nr_unqueued_dirty++;
949
950 /*
951 * Treat this page as congested if the underlying BDI is or if
952 * pages are cycling through the LRU so quickly that the
953 * pages marked for immediate reclaim are making it to the
954 * end of the LRU a second time.
955 */
956 mapping = page_mapping(page);
957 if (((dirty || writeback) && mapping &&
958 inode_write_congested(mapping->host)) ||
959 (writeback && PageReclaim(page)))
960 nr_congested++;
961
962 /*
963 * If a page at the tail of the LRU is under writeback, there
964 * are three cases to consider.
965 *
966 * 1) If reclaim is encountering an excessive number of pages
967 * under writeback and this page is both under writeback and
968 * PageReclaim then it indicates that pages are being queued
969 * for IO but are being recycled through the LRU before the
970 * IO can complete. Waiting on the page itself risks an
971 * indefinite stall if it is impossible to writeback the
972 * page due to IO error or disconnected storage so instead
973 * note that the LRU is being scanned too quickly and the
974 * caller can stall after page list has been processed.
975 *
976 * 2) Global or new memcg reclaim encounters a page that is
977 * not marked for immediate reclaim, or the caller does not
978 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
979 * not to fs). In this case mark the page for immediate
980 * reclaim and continue scanning.
981 *
982 * Require may_enter_fs because we would wait on fs, which
983 * may not have submitted IO yet. And the loop driver might
984 * enter reclaim, and deadlock if it waits on a page for
985 * which it is needed to do the write (loop masks off
986 * __GFP_IO|__GFP_FS for this reason); but more thought
987 * would probably show more reasons.
988 *
989 * 3) Legacy memcg encounters a page that is already marked
990 * PageReclaim. memcg does not have any dirty pages
991 * throttling so we could easily OOM just because too many
992 * pages are in writeback and there is nothing else to
993 * reclaim. Wait for the writeback to complete.
994 */
995 if (PageWriteback(page)) {
996 /* Case 1 above */
997 if (current_is_kswapd() &&
998 PageReclaim(page) &&
999 test_bit(ZONE_WRITEBACK, &zone->flags)) {
1000 nr_immediate++;
1001 goto keep_locked;
1002
1003 /* Case 2 above */
1004 } else if (sane_reclaim(sc) ||
1005 !PageReclaim(page) || !may_enter_fs) {
1006 /*
1007 * This is slightly racy - end_page_writeback()
1008 * might have just cleared PageReclaim, then
1009 * setting PageReclaim here end up interpreted
1010 * as PageReadahead - but that does not matter
1011 * enough to care. What we do want is for this
1012 * page to have PageReclaim set next time memcg
1013 * reclaim reaches the tests above, so it will
1014 * then wait_on_page_writeback() to avoid OOM;
1015 * and it's also appropriate in global reclaim.
1016 */
1017 SetPageReclaim(page);
1018 nr_writeback++;
1019 goto keep_locked;
1020
1021 /* Case 3 above */
1022 } else {
1023 unlock_page(page);
1024 wait_on_page_writeback(page);
1025 /* then go back and try same page again */
1026 list_add_tail(&page->lru, page_list);
1027 continue;
1028 }
1029 }
1030
1031 if (!force_reclaim)
1032 references = page_check_references(page, sc);
1033
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1036 goto activate_locked;
1037 case PAGEREF_KEEP:
1038 goto keep_locked;
1039 case PAGEREF_RECLAIM:
1040 case PAGEREF_RECLAIM_CLEAN:
1041 ; /* try to reclaim the page below */
1042 }
1043
1044 /*
1045 * Anonymous process memory has backing store?
1046 * Try to allocate it some swap space here.
1047 */
1048 if (PageAnon(page) && !PageSwapCache(page)) {
1049 if (!(sc->gfp_mask & __GFP_IO))
1050 goto keep_locked;
1051 if (!add_to_swap(page, page_list))
1052 goto activate_locked;
1053 lazyfree = true;
1054 may_enter_fs = 1;
1055
1056 /* Adding to swap updated mapping */
1057 mapping = page_mapping(page);
1058 }
1059
1060 /*
1061 * The page is mapped into the page tables of one or more
1062 * processes. Try to unmap it here.
1063 */
1064 if (page_mapped(page) && mapping) {
1065 switch (ret = try_to_unmap(page, lazyfree ?
1066 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1067 (ttu_flags | TTU_BATCH_FLUSH))) {
1068 case SWAP_FAIL:
1069 goto activate_locked;
1070 case SWAP_AGAIN:
1071 goto keep_locked;
1072 case SWAP_MLOCK:
1073 goto cull_mlocked;
1074 case SWAP_LZFREE:
1075 goto lazyfree;
1076 case SWAP_SUCCESS:
1077 ; /* try to free the page below */
1078 }
1079 }
1080
1081 if (PageDirty(page)) {
1082 /*
1083 * Only kswapd can writeback filesystem pages to
1084 * avoid risk of stack overflow but only writeback
1085 * if many dirty pages have been encountered.
1086 */
1087 if (page_is_file_cache(page) &&
1088 (!current_is_kswapd() ||
1089 !test_bit(ZONE_DIRTY, &zone->flags))) {
1090 /*
1091 * Immediately reclaim when written back.
1092 * Similar in principal to deactivate_page()
1093 * except we already have the page isolated
1094 * and know it's dirty
1095 */
1096 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1097 SetPageReclaim(page);
1098
1099 goto keep_locked;
1100 }
1101
1102 if (references == PAGEREF_RECLAIM_CLEAN)
1103 goto keep_locked;
1104 if (!may_enter_fs)
1105 goto keep_locked;
1106 if (!sc->may_writepage)
1107 goto keep_locked;
1108
1109 /*
1110 * Page is dirty. Flush the TLB if a writable entry
1111 * potentially exists to avoid CPU writes after IO
1112 * starts and then write it out here.
1113 */
1114 try_to_unmap_flush_dirty();
1115 switch (pageout(page, mapping, sc)) {
1116 case PAGE_KEEP:
1117 goto keep_locked;
1118 case PAGE_ACTIVATE:
1119 goto activate_locked;
1120 case PAGE_SUCCESS:
1121 if (PageWriteback(page))
1122 goto keep;
1123 if (PageDirty(page))
1124 goto keep;
1125
1126 /*
1127 * A synchronous write - probably a ramdisk. Go
1128 * ahead and try to reclaim the page.
1129 */
1130 if (!trylock_page(page))
1131 goto keep;
1132 if (PageDirty(page) || PageWriteback(page))
1133 goto keep_locked;
1134 mapping = page_mapping(page);
1135 case PAGE_CLEAN:
1136 ; /* try to free the page below */
1137 }
1138 }
1139
1140 /*
1141 * If the page has buffers, try to free the buffer mappings
1142 * associated with this page. If we succeed we try to free
1143 * the page as well.
1144 *
1145 * We do this even if the page is PageDirty().
1146 * try_to_release_page() does not perform I/O, but it is
1147 * possible for a page to have PageDirty set, but it is actually
1148 * clean (all its buffers are clean). This happens if the
1149 * buffers were written out directly, with submit_bh(). ext3
1150 * will do this, as well as the blockdev mapping.
1151 * try_to_release_page() will discover that cleanness and will
1152 * drop the buffers and mark the page clean - it can be freed.
1153 *
1154 * Rarely, pages can have buffers and no ->mapping. These are
1155 * the pages which were not successfully invalidated in
1156 * truncate_complete_page(). We try to drop those buffers here
1157 * and if that worked, and the page is no longer mapped into
1158 * process address space (page_count == 1) it can be freed.
1159 * Otherwise, leave the page on the LRU so it is swappable.
1160 */
1161 if (page_has_private(page)) {
1162 if (!try_to_release_page(page, sc->gfp_mask))
1163 goto activate_locked;
1164 if (!mapping && page_count(page) == 1) {
1165 unlock_page(page);
1166 if (put_page_testzero(page))
1167 goto free_it;
1168 else {
1169 /*
1170 * rare race with speculative reference.
1171 * the speculative reference will free
1172 * this page shortly, so we may
1173 * increment nr_reclaimed here (and
1174 * leave it off the LRU).
1175 */
1176 nr_reclaimed++;
1177 continue;
1178 }
1179 }
1180 }
1181
1182 lazyfree:
1183 if (!mapping || !__remove_mapping(mapping, page, true))
1184 goto keep_locked;
1185
1186 /*
1187 * At this point, we have no other references and there is
1188 * no way to pick any more up (removed from LRU, removed
1189 * from pagecache). Can use non-atomic bitops now (and
1190 * we obviously don't have to worry about waking up a process
1191 * waiting on the page lock, because there are no references.
1192 */
1193 __ClearPageLocked(page);
1194 free_it:
1195 if (ret == SWAP_LZFREE)
1196 count_vm_event(PGLAZYFREED);
1197
1198 nr_reclaimed++;
1199
1200 /*
1201 * Is there need to periodically free_page_list? It would
1202 * appear not as the counts should be low
1203 */
1204 list_add(&page->lru, &free_pages);
1205 continue;
1206
1207 cull_mlocked:
1208 if (PageSwapCache(page))
1209 try_to_free_swap(page);
1210 unlock_page(page);
1211 list_add(&page->lru, &ret_pages);
1212 continue;
1213
1214 activate_locked:
1215 /* Not a candidate for swapping, so reclaim swap space. */
1216 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1217 try_to_free_swap(page);
1218 VM_BUG_ON_PAGE(PageActive(page), page);
1219 SetPageActive(page);
1220 pgactivate++;
1221 keep_locked:
1222 unlock_page(page);
1223 keep:
1224 list_add(&page->lru, &ret_pages);
1225 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1226 }
1227
1228 mem_cgroup_uncharge_list(&free_pages);
1229 try_to_unmap_flush();
1230 free_hot_cold_page_list(&free_pages, true);
1231
1232 list_splice(&ret_pages, page_list);
1233 count_vm_events(PGACTIVATE, pgactivate);
1234
1235 *ret_nr_dirty += nr_dirty;
1236 *ret_nr_congested += nr_congested;
1237 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1238 *ret_nr_writeback += nr_writeback;
1239 *ret_nr_immediate += nr_immediate;
1240 return nr_reclaimed;
1241 }
1242
1243 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1244 struct list_head *page_list)
1245 {
1246 struct scan_control sc = {
1247 .gfp_mask = GFP_KERNEL,
1248 .priority = DEF_PRIORITY,
1249 .may_unmap = 1,
1250 };
1251 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1252 struct page *page, *next;
1253 LIST_HEAD(clean_pages);
1254
1255 list_for_each_entry_safe(page, next, page_list, lru) {
1256 if (page_is_file_cache(page) && !PageDirty(page) &&
1257 !isolated_balloon_page(page)) {
1258 ClearPageActive(page);
1259 list_move(&page->lru, &clean_pages);
1260 }
1261 }
1262
1263 ret = shrink_page_list(&clean_pages, zone, &sc,
1264 TTU_UNMAP|TTU_IGNORE_ACCESS,
1265 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1266 list_splice(&clean_pages, page_list);
1267 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1268 return ret;
1269 }
1270
1271 /*
1272 * Attempt to remove the specified page from its LRU. Only take this page
1273 * if it is of the appropriate PageActive status. Pages which are being
1274 * freed elsewhere are also ignored.
1275 *
1276 * page: page to consider
1277 * mode: one of the LRU isolation modes defined above
1278 *
1279 * returns 0 on success, -ve errno on failure.
1280 */
1281 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1282 {
1283 int ret = -EINVAL;
1284
1285 /* Only take pages on the LRU. */
1286 if (!PageLRU(page))
1287 return ret;
1288
1289 /* Compaction should not handle unevictable pages but CMA can do so */
1290 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1291 return ret;
1292
1293 ret = -EBUSY;
1294
1295 /*
1296 * To minimise LRU disruption, the caller can indicate that it only
1297 * wants to isolate pages it will be able to operate on without
1298 * blocking - clean pages for the most part.
1299 *
1300 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1301 * is used by reclaim when it is cannot write to backing storage
1302 *
1303 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1304 * that it is possible to migrate without blocking
1305 */
1306 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1307 /* All the caller can do on PageWriteback is block */
1308 if (PageWriteback(page))
1309 return ret;
1310
1311 if (PageDirty(page)) {
1312 struct address_space *mapping;
1313
1314 /* ISOLATE_CLEAN means only clean pages */
1315 if (mode & ISOLATE_CLEAN)
1316 return ret;
1317
1318 /*
1319 * Only pages without mappings or that have a
1320 * ->migratepage callback are possible to migrate
1321 * without blocking
1322 */
1323 mapping = page_mapping(page);
1324 if (mapping && !mapping->a_ops->migratepage)
1325 return ret;
1326 }
1327 }
1328
1329 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1330 return ret;
1331
1332 if (likely(get_page_unless_zero(page))) {
1333 /*
1334 * Be careful not to clear PageLRU until after we're
1335 * sure the page is not being freed elsewhere -- the
1336 * page release code relies on it.
1337 */
1338 ClearPageLRU(page);
1339 ret = 0;
1340 }
1341
1342 return ret;
1343 }
1344
1345 /*
1346 * zone->lru_lock is heavily contended. Some of the functions that
1347 * shrink the lists perform better by taking out a batch of pages
1348 * and working on them outside the LRU lock.
1349 *
1350 * For pagecache intensive workloads, this function is the hottest
1351 * spot in the kernel (apart from copy_*_user functions).
1352 *
1353 * Appropriate locks must be held before calling this function.
1354 *
1355 * @nr_to_scan: The number of pages to look through on the list.
1356 * @lruvec: The LRU vector to pull pages from.
1357 * @dst: The temp list to put pages on to.
1358 * @nr_scanned: The number of pages that were scanned.
1359 * @sc: The scan_control struct for this reclaim session
1360 * @mode: One of the LRU isolation modes
1361 * @lru: LRU list id for isolating
1362 *
1363 * returns how many pages were moved onto *@dst.
1364 */
1365 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1366 struct lruvec *lruvec, struct list_head *dst,
1367 unsigned long *nr_scanned, struct scan_control *sc,
1368 isolate_mode_t mode, enum lru_list lru)
1369 {
1370 struct list_head *src = &lruvec->lists[lru];
1371 unsigned long nr_taken = 0;
1372 unsigned long scan;
1373
1374 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1375 !list_empty(src); scan++) {
1376 struct page *page;
1377
1378 page = lru_to_page(src);
1379 prefetchw_prev_lru_page(page, src, flags);
1380
1381 VM_BUG_ON_PAGE(!PageLRU(page), page);
1382
1383 switch (__isolate_lru_page(page, mode)) {
1384 case 0:
1385 nr_taken += hpage_nr_pages(page);
1386 list_move(&page->lru, dst);
1387 break;
1388
1389 case -EBUSY:
1390 /* else it is being freed elsewhere */
1391 list_move(&page->lru, src);
1392 continue;
1393
1394 default:
1395 BUG();
1396 }
1397 }
1398
1399 *nr_scanned = scan;
1400 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1401 nr_taken, mode, is_file_lru(lru));
1402 return nr_taken;
1403 }
1404
1405 /**
1406 * isolate_lru_page - tries to isolate a page from its LRU list
1407 * @page: page to isolate from its LRU list
1408 *
1409 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1410 * vmstat statistic corresponding to whatever LRU list the page was on.
1411 *
1412 * Returns 0 if the page was removed from an LRU list.
1413 * Returns -EBUSY if the page was not on an LRU list.
1414 *
1415 * The returned page will have PageLRU() cleared. If it was found on
1416 * the active list, it will have PageActive set. If it was found on
1417 * the unevictable list, it will have the PageUnevictable bit set. That flag
1418 * may need to be cleared by the caller before letting the page go.
1419 *
1420 * The vmstat statistic corresponding to the list on which the page was
1421 * found will be decremented.
1422 *
1423 * Restrictions:
1424 * (1) Must be called with an elevated refcount on the page. This is a
1425 * fundamentnal difference from isolate_lru_pages (which is called
1426 * without a stable reference).
1427 * (2) the lru_lock must not be held.
1428 * (3) interrupts must be enabled.
1429 */
1430 int isolate_lru_page(struct page *page)
1431 {
1432 int ret = -EBUSY;
1433
1434 VM_BUG_ON_PAGE(!page_count(page), page);
1435 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1436
1437 if (PageLRU(page)) {
1438 struct zone *zone = page_zone(page);
1439 struct lruvec *lruvec;
1440
1441 spin_lock_irq(&zone->lru_lock);
1442 lruvec = mem_cgroup_page_lruvec(page, zone);
1443 if (PageLRU(page)) {
1444 int lru = page_lru(page);
1445 get_page(page);
1446 ClearPageLRU(page);
1447 del_page_from_lru_list(page, lruvec, lru);
1448 ret = 0;
1449 }
1450 spin_unlock_irq(&zone->lru_lock);
1451 }
1452 return ret;
1453 }
1454
1455 /*
1456 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1457 * then get resheduled. When there are massive number of tasks doing page
1458 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1459 * the LRU list will go small and be scanned faster than necessary, leading to
1460 * unnecessary swapping, thrashing and OOM.
1461 */
1462 static int too_many_isolated(struct zone *zone, int file,
1463 struct scan_control *sc)
1464 {
1465 unsigned long inactive, isolated;
1466
1467 if (current_is_kswapd())
1468 return 0;
1469
1470 if (!sane_reclaim(sc))
1471 return 0;
1472
1473 if (file) {
1474 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1475 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1476 } else {
1477 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1478 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1479 }
1480
1481 /*
1482 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1483 * won't get blocked by normal direct-reclaimers, forming a circular
1484 * deadlock.
1485 */
1486 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1487 inactive >>= 3;
1488
1489 return isolated > inactive;
1490 }
1491
1492 static noinline_for_stack void
1493 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1494 {
1495 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1496 struct zone *zone = lruvec_zone(lruvec);
1497 LIST_HEAD(pages_to_free);
1498
1499 /*
1500 * Put back any unfreeable pages.
1501 */
1502 while (!list_empty(page_list)) {
1503 struct page *page = lru_to_page(page_list);
1504 int lru;
1505
1506 VM_BUG_ON_PAGE(PageLRU(page), page);
1507 list_del(&page->lru);
1508 if (unlikely(!page_evictable(page))) {
1509 spin_unlock_irq(&zone->lru_lock);
1510 putback_lru_page(page);
1511 spin_lock_irq(&zone->lru_lock);
1512 continue;
1513 }
1514
1515 lruvec = mem_cgroup_page_lruvec(page, zone);
1516
1517 SetPageLRU(page);
1518 lru = page_lru(page);
1519 add_page_to_lru_list(page, lruvec, lru);
1520
1521 if (is_active_lru(lru)) {
1522 int file = is_file_lru(lru);
1523 int numpages = hpage_nr_pages(page);
1524 reclaim_stat->recent_rotated[file] += numpages;
1525 }
1526 if (put_page_testzero(page)) {
1527 __ClearPageLRU(page);
1528 __ClearPageActive(page);
1529 del_page_from_lru_list(page, lruvec, lru);
1530
1531 if (unlikely(PageCompound(page))) {
1532 spin_unlock_irq(&zone->lru_lock);
1533 mem_cgroup_uncharge(page);
1534 (*get_compound_page_dtor(page))(page);
1535 spin_lock_irq(&zone->lru_lock);
1536 } else
1537 list_add(&page->lru, &pages_to_free);
1538 }
1539 }
1540
1541 /*
1542 * To save our caller's stack, now use input list for pages to free.
1543 */
1544 list_splice(&pages_to_free, page_list);
1545 }
1546
1547 /*
1548 * If a kernel thread (such as nfsd for loop-back mounts) services
1549 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1550 * In that case we should only throttle if the backing device it is
1551 * writing to is congested. In other cases it is safe to throttle.
1552 */
1553 static int current_may_throttle(void)
1554 {
1555 return !(current->flags & PF_LESS_THROTTLE) ||
1556 current->backing_dev_info == NULL ||
1557 bdi_write_congested(current->backing_dev_info);
1558 }
1559
1560 /*
1561 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1562 * of reclaimed pages
1563 */
1564 static noinline_for_stack unsigned long
1565 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1566 struct scan_control *sc, enum lru_list lru)
1567 {
1568 LIST_HEAD(page_list);
1569 unsigned long nr_scanned;
1570 unsigned long nr_reclaimed = 0;
1571 unsigned long nr_taken;
1572 unsigned long nr_dirty = 0;
1573 unsigned long nr_congested = 0;
1574 unsigned long nr_unqueued_dirty = 0;
1575 unsigned long nr_writeback = 0;
1576 unsigned long nr_immediate = 0;
1577 isolate_mode_t isolate_mode = 0;
1578 int file = is_file_lru(lru);
1579 struct zone *zone = lruvec_zone(lruvec);
1580 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1581
1582 while (unlikely(too_many_isolated(zone, file, sc))) {
1583 congestion_wait(BLK_RW_ASYNC, HZ/10);
1584
1585 /* We are about to die and free our memory. Return now. */
1586 if (fatal_signal_pending(current))
1587 return SWAP_CLUSTER_MAX;
1588 }
1589
1590 lru_add_drain();
1591
1592 if (!sc->may_unmap)
1593 isolate_mode |= ISOLATE_UNMAPPED;
1594 if (!sc->may_writepage)
1595 isolate_mode |= ISOLATE_CLEAN;
1596
1597 spin_lock_irq(&zone->lru_lock);
1598
1599 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1600 &nr_scanned, sc, isolate_mode, lru);
1601
1602 update_lru_size(lruvec, lru, -nr_taken);
1603 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1604 reclaim_stat->recent_scanned[file] += nr_taken;
1605
1606 if (global_reclaim(sc)) {
1607 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1608 if (current_is_kswapd())
1609 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1610 else
1611 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1612 }
1613 spin_unlock_irq(&zone->lru_lock);
1614
1615 if (nr_taken == 0)
1616 return 0;
1617
1618 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1619 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1620 &nr_writeback, &nr_immediate,
1621 false);
1622
1623 spin_lock_irq(&zone->lru_lock);
1624
1625 if (global_reclaim(sc)) {
1626 if (current_is_kswapd())
1627 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1628 nr_reclaimed);
1629 else
1630 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1631 nr_reclaimed);
1632 }
1633
1634 putback_inactive_pages(lruvec, &page_list);
1635
1636 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1637
1638 spin_unlock_irq(&zone->lru_lock);
1639
1640 mem_cgroup_uncharge_list(&page_list);
1641 free_hot_cold_page_list(&page_list, true);
1642
1643 /*
1644 * If reclaim is isolating dirty pages under writeback, it implies
1645 * that the long-lived page allocation rate is exceeding the page
1646 * laundering rate. Either the global limits are not being effective
1647 * at throttling processes due to the page distribution throughout
1648 * zones or there is heavy usage of a slow backing device. The
1649 * only option is to throttle from reclaim context which is not ideal
1650 * as there is no guarantee the dirtying process is throttled in the
1651 * same way balance_dirty_pages() manages.
1652 *
1653 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1654 * of pages under pages flagged for immediate reclaim and stall if any
1655 * are encountered in the nr_immediate check below.
1656 */
1657 if (nr_writeback && nr_writeback == nr_taken)
1658 set_bit(ZONE_WRITEBACK, &zone->flags);
1659
1660 /*
1661 * Legacy memcg will stall in page writeback so avoid forcibly
1662 * stalling here.
1663 */
1664 if (sane_reclaim(sc)) {
1665 /*
1666 * Tag a zone as congested if all the dirty pages scanned were
1667 * backed by a congested BDI and wait_iff_congested will stall.
1668 */
1669 if (nr_dirty && nr_dirty == nr_congested)
1670 set_bit(ZONE_CONGESTED, &zone->flags);
1671
1672 /*
1673 * If dirty pages are scanned that are not queued for IO, it
1674 * implies that flushers are not keeping up. In this case, flag
1675 * the zone ZONE_DIRTY and kswapd will start writing pages from
1676 * reclaim context.
1677 */
1678 if (nr_unqueued_dirty == nr_taken)
1679 set_bit(ZONE_DIRTY, &zone->flags);
1680
1681 /*
1682 * If kswapd scans pages marked marked for immediate
1683 * reclaim and under writeback (nr_immediate), it implies
1684 * that pages are cycling through the LRU faster than
1685 * they are written so also forcibly stall.
1686 */
1687 if (nr_immediate && current_may_throttle())
1688 congestion_wait(BLK_RW_ASYNC, HZ/10);
1689 }
1690
1691 /*
1692 * Stall direct reclaim for IO completions if underlying BDIs or zone
1693 * is congested. Allow kswapd to continue until it starts encountering
1694 * unqueued dirty pages or cycling through the LRU too quickly.
1695 */
1696 if (!sc->hibernation_mode && !current_is_kswapd() &&
1697 current_may_throttle())
1698 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1699
1700 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1701 sc->priority, file);
1702 return nr_reclaimed;
1703 }
1704
1705 /*
1706 * This moves pages from the active list to the inactive list.
1707 *
1708 * We move them the other way if the page is referenced by one or more
1709 * processes, from rmap.
1710 *
1711 * If the pages are mostly unmapped, the processing is fast and it is
1712 * appropriate to hold zone->lru_lock across the whole operation. But if
1713 * the pages are mapped, the processing is slow (page_referenced()) so we
1714 * should drop zone->lru_lock around each page. It's impossible to balance
1715 * this, so instead we remove the pages from the LRU while processing them.
1716 * It is safe to rely on PG_active against the non-LRU pages in here because
1717 * nobody will play with that bit on a non-LRU page.
1718 *
1719 * The downside is that we have to touch page->_refcount against each page.
1720 * But we had to alter page->flags anyway.
1721 */
1722
1723 static void move_active_pages_to_lru(struct lruvec *lruvec,
1724 struct list_head *list,
1725 struct list_head *pages_to_free,
1726 enum lru_list lru)
1727 {
1728 struct zone *zone = lruvec_zone(lruvec);
1729 unsigned long pgmoved = 0;
1730 struct page *page;
1731 int nr_pages;
1732
1733 while (!list_empty(list)) {
1734 page = lru_to_page(list);
1735 lruvec = mem_cgroup_page_lruvec(page, zone);
1736
1737 VM_BUG_ON_PAGE(PageLRU(page), page);
1738 SetPageLRU(page);
1739
1740 nr_pages = hpage_nr_pages(page);
1741 update_lru_size(lruvec, lru, nr_pages);
1742 list_move(&page->lru, &lruvec->lists[lru]);
1743 pgmoved += nr_pages;
1744
1745 if (put_page_testzero(page)) {
1746 __ClearPageLRU(page);
1747 __ClearPageActive(page);
1748 del_page_from_lru_list(page, lruvec, lru);
1749
1750 if (unlikely(PageCompound(page))) {
1751 spin_unlock_irq(&zone->lru_lock);
1752 mem_cgroup_uncharge(page);
1753 (*get_compound_page_dtor(page))(page);
1754 spin_lock_irq(&zone->lru_lock);
1755 } else
1756 list_add(&page->lru, pages_to_free);
1757 }
1758 }
1759
1760 if (!is_active_lru(lru))
1761 __count_vm_events(PGDEACTIVATE, pgmoved);
1762 }
1763
1764 static void shrink_active_list(unsigned long nr_to_scan,
1765 struct lruvec *lruvec,
1766 struct scan_control *sc,
1767 enum lru_list lru)
1768 {
1769 unsigned long nr_taken;
1770 unsigned long nr_scanned;
1771 unsigned long vm_flags;
1772 LIST_HEAD(l_hold); /* The pages which were snipped off */
1773 LIST_HEAD(l_active);
1774 LIST_HEAD(l_inactive);
1775 struct page *page;
1776 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1777 unsigned long nr_rotated = 0;
1778 isolate_mode_t isolate_mode = 0;
1779 int file = is_file_lru(lru);
1780 struct zone *zone = lruvec_zone(lruvec);
1781
1782 lru_add_drain();
1783
1784 if (!sc->may_unmap)
1785 isolate_mode |= ISOLATE_UNMAPPED;
1786 if (!sc->may_writepage)
1787 isolate_mode |= ISOLATE_CLEAN;
1788
1789 spin_lock_irq(&zone->lru_lock);
1790
1791 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1792 &nr_scanned, sc, isolate_mode, lru);
1793
1794 update_lru_size(lruvec, lru, -nr_taken);
1795 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1796 reclaim_stat->recent_scanned[file] += nr_taken;
1797
1798 if (global_reclaim(sc))
1799 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1800 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1801
1802 spin_unlock_irq(&zone->lru_lock);
1803
1804 while (!list_empty(&l_hold)) {
1805 cond_resched();
1806 page = lru_to_page(&l_hold);
1807 list_del(&page->lru);
1808
1809 if (unlikely(!page_evictable(page))) {
1810 putback_lru_page(page);
1811 continue;
1812 }
1813
1814 if (unlikely(buffer_heads_over_limit)) {
1815 if (page_has_private(page) && trylock_page(page)) {
1816 if (page_has_private(page))
1817 try_to_release_page(page, 0);
1818 unlock_page(page);
1819 }
1820 }
1821
1822 if (page_referenced(page, 0, sc->target_mem_cgroup,
1823 &vm_flags)) {
1824 nr_rotated += hpage_nr_pages(page);
1825 /*
1826 * Identify referenced, file-backed active pages and
1827 * give them one more trip around the active list. So
1828 * that executable code get better chances to stay in
1829 * memory under moderate memory pressure. Anon pages
1830 * are not likely to be evicted by use-once streaming
1831 * IO, plus JVM can create lots of anon VM_EXEC pages,
1832 * so we ignore them here.
1833 */
1834 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1835 list_add(&page->lru, &l_active);
1836 continue;
1837 }
1838 }
1839
1840 ClearPageActive(page); /* we are de-activating */
1841 list_add(&page->lru, &l_inactive);
1842 }
1843
1844 /*
1845 * Move pages back to the lru list.
1846 */
1847 spin_lock_irq(&zone->lru_lock);
1848 /*
1849 * Count referenced pages from currently used mappings as rotated,
1850 * even though only some of them are actually re-activated. This
1851 * helps balance scan pressure between file and anonymous pages in
1852 * get_scan_count.
1853 */
1854 reclaim_stat->recent_rotated[file] += nr_rotated;
1855
1856 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1857 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1858 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1859 spin_unlock_irq(&zone->lru_lock);
1860
1861 mem_cgroup_uncharge_list(&l_hold);
1862 free_hot_cold_page_list(&l_hold, true);
1863 }
1864
1865 /*
1866 * The inactive anon list should be small enough that the VM never has
1867 * to do too much work.
1868 *
1869 * The inactive file list should be small enough to leave most memory
1870 * to the established workingset on the scan-resistant active list,
1871 * but large enough to avoid thrashing the aggregate readahead window.
1872 *
1873 * Both inactive lists should also be large enough that each inactive
1874 * page has a chance to be referenced again before it is reclaimed.
1875 *
1876 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1877 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1878 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1879 *
1880 * total target max
1881 * memory ratio inactive
1882 * -------------------------------------
1883 * 10MB 1 5MB
1884 * 100MB 1 50MB
1885 * 1GB 3 250MB
1886 * 10GB 10 0.9GB
1887 * 100GB 31 3GB
1888 * 1TB 101 10GB
1889 * 10TB 320 32GB
1890 */
1891 static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1892 {
1893 unsigned long inactive_ratio;
1894 unsigned long inactive;
1895 unsigned long active;
1896 unsigned long gb;
1897
1898 /*
1899 * If we don't have swap space, anonymous page deactivation
1900 * is pointless.
1901 */
1902 if (!file && !total_swap_pages)
1903 return false;
1904
1905 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1906 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1907
1908 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1909 if (gb)
1910 inactive_ratio = int_sqrt(10 * gb);
1911 else
1912 inactive_ratio = 1;
1913
1914 return inactive * inactive_ratio < active;
1915 }
1916
1917 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1918 struct lruvec *lruvec, struct scan_control *sc)
1919 {
1920 if (is_active_lru(lru)) {
1921 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1922 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1923 return 0;
1924 }
1925
1926 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1927 }
1928
1929 enum scan_balance {
1930 SCAN_EQUAL,
1931 SCAN_FRACT,
1932 SCAN_ANON,
1933 SCAN_FILE,
1934 };
1935
1936 /*
1937 * Determine how aggressively the anon and file LRU lists should be
1938 * scanned. The relative value of each set of LRU lists is determined
1939 * by looking at the fraction of the pages scanned we did rotate back
1940 * onto the active list instead of evict.
1941 *
1942 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1943 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1944 */
1945 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1946 struct scan_control *sc, unsigned long *nr,
1947 unsigned long *lru_pages)
1948 {
1949 int swappiness = mem_cgroup_swappiness(memcg);
1950 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1951 u64 fraction[2];
1952 u64 denominator = 0; /* gcc */
1953 struct zone *zone = lruvec_zone(lruvec);
1954 unsigned long anon_prio, file_prio;
1955 enum scan_balance scan_balance;
1956 unsigned long anon, file;
1957 bool force_scan = false;
1958 unsigned long ap, fp;
1959 enum lru_list lru;
1960 bool some_scanned;
1961 int pass;
1962
1963 /*
1964 * If the zone or memcg is small, nr[l] can be 0. This
1965 * results in no scanning on this priority and a potential
1966 * priority drop. Global direct reclaim can go to the next
1967 * zone and tends to have no problems. Global kswapd is for
1968 * zone balancing and it needs to scan a minimum amount. When
1969 * reclaiming for a memcg, a priority drop can cause high
1970 * latencies, so it's better to scan a minimum amount there as
1971 * well.
1972 */
1973 if (current_is_kswapd()) {
1974 if (!zone_reclaimable(zone))
1975 force_scan = true;
1976 if (!mem_cgroup_online(memcg))
1977 force_scan = true;
1978 }
1979 if (!global_reclaim(sc))
1980 force_scan = true;
1981
1982 /* If we have no swap space, do not bother scanning anon pages. */
1983 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
1984 scan_balance = SCAN_FILE;
1985 goto out;
1986 }
1987
1988 /*
1989 * Global reclaim will swap to prevent OOM even with no
1990 * swappiness, but memcg users want to use this knob to
1991 * disable swapping for individual groups completely when
1992 * using the memory controller's swap limit feature would be
1993 * too expensive.
1994 */
1995 if (!global_reclaim(sc) && !swappiness) {
1996 scan_balance = SCAN_FILE;
1997 goto out;
1998 }
1999
2000 /*
2001 * Do not apply any pressure balancing cleverness when the
2002 * system is close to OOM, scan both anon and file equally
2003 * (unless the swappiness setting disagrees with swapping).
2004 */
2005 if (!sc->priority && swappiness) {
2006 scan_balance = SCAN_EQUAL;
2007 goto out;
2008 }
2009
2010 /*
2011 * Prevent the reclaimer from falling into the cache trap: as
2012 * cache pages start out inactive, every cache fault will tip
2013 * the scan balance towards the file LRU. And as the file LRU
2014 * shrinks, so does the window for rotation from references.
2015 * This means we have a runaway feedback loop where a tiny
2016 * thrashing file LRU becomes infinitely more attractive than
2017 * anon pages. Try to detect this based on file LRU size.
2018 */
2019 if (global_reclaim(sc)) {
2020 unsigned long zonefile;
2021 unsigned long zonefree;
2022
2023 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2024 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2025 zone_page_state(zone, NR_INACTIVE_FILE);
2026
2027 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2028 scan_balance = SCAN_ANON;
2029 goto out;
2030 }
2031 }
2032
2033 /*
2034 * If there is enough inactive page cache, i.e. if the size of the
2035 * inactive list is greater than that of the active list *and* the
2036 * inactive list actually has some pages to scan on this priority, we
2037 * do not reclaim anything from the anonymous working set right now.
2038 * Without the second condition we could end up never scanning an
2039 * lruvec even if it has plenty of old anonymous pages unless the
2040 * system is under heavy pressure.
2041 */
2042 if (!inactive_list_is_low(lruvec, true) &&
2043 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2044 scan_balance = SCAN_FILE;
2045 goto out;
2046 }
2047
2048 scan_balance = SCAN_FRACT;
2049
2050 /*
2051 * With swappiness at 100, anonymous and file have the same priority.
2052 * This scanning priority is essentially the inverse of IO cost.
2053 */
2054 anon_prio = swappiness;
2055 file_prio = 200 - anon_prio;
2056
2057 /*
2058 * OK, so we have swap space and a fair amount of page cache
2059 * pages. We use the recently rotated / recently scanned
2060 * ratios to determine how valuable each cache is.
2061 *
2062 * Because workloads change over time (and to avoid overflow)
2063 * we keep these statistics as a floating average, which ends
2064 * up weighing recent references more than old ones.
2065 *
2066 * anon in [0], file in [1]
2067 */
2068
2069 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2070 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2071 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2072 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2073
2074 spin_lock_irq(&zone->lru_lock);
2075 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2076 reclaim_stat->recent_scanned[0] /= 2;
2077 reclaim_stat->recent_rotated[0] /= 2;
2078 }
2079
2080 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2081 reclaim_stat->recent_scanned[1] /= 2;
2082 reclaim_stat->recent_rotated[1] /= 2;
2083 }
2084
2085 /*
2086 * The amount of pressure on anon vs file pages is inversely
2087 * proportional to the fraction of recently scanned pages on
2088 * each list that were recently referenced and in active use.
2089 */
2090 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2091 ap /= reclaim_stat->recent_rotated[0] + 1;
2092
2093 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2094 fp /= reclaim_stat->recent_rotated[1] + 1;
2095 spin_unlock_irq(&zone->lru_lock);
2096
2097 fraction[0] = ap;
2098 fraction[1] = fp;
2099 denominator = ap + fp + 1;
2100 out:
2101 some_scanned = false;
2102 /* Only use force_scan on second pass. */
2103 for (pass = 0; !some_scanned && pass < 2; pass++) {
2104 *lru_pages = 0;
2105 for_each_evictable_lru(lru) {
2106 int file = is_file_lru(lru);
2107 unsigned long size;
2108 unsigned long scan;
2109
2110 size = lruvec_lru_size(lruvec, lru);
2111 scan = size >> sc->priority;
2112
2113 if (!scan && pass && force_scan)
2114 scan = min(size, SWAP_CLUSTER_MAX);
2115
2116 switch (scan_balance) {
2117 case SCAN_EQUAL:
2118 /* Scan lists relative to size */
2119 break;
2120 case SCAN_FRACT:
2121 /*
2122 * Scan types proportional to swappiness and
2123 * their relative recent reclaim efficiency.
2124 */
2125 scan = div64_u64(scan * fraction[file],
2126 denominator);
2127 break;
2128 case SCAN_FILE:
2129 case SCAN_ANON:
2130 /* Scan one type exclusively */
2131 if ((scan_balance == SCAN_FILE) != file) {
2132 size = 0;
2133 scan = 0;
2134 }
2135 break;
2136 default:
2137 /* Look ma, no brain */
2138 BUG();
2139 }
2140
2141 *lru_pages += size;
2142 nr[lru] = scan;
2143
2144 /*
2145 * Skip the second pass and don't force_scan,
2146 * if we found something to scan.
2147 */
2148 some_scanned |= !!scan;
2149 }
2150 }
2151 }
2152
2153 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2154 static void init_tlb_ubc(void)
2155 {
2156 /*
2157 * This deliberately does not clear the cpumask as it's expensive
2158 * and unnecessary. If there happens to be data in there then the
2159 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2160 * then will be cleared.
2161 */
2162 current->tlb_ubc.flush_required = false;
2163 }
2164 #else
2165 static inline void init_tlb_ubc(void)
2166 {
2167 }
2168 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2169
2170 /*
2171 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2172 */
2173 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2174 struct scan_control *sc, unsigned long *lru_pages)
2175 {
2176 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2177 unsigned long nr[NR_LRU_LISTS];
2178 unsigned long targets[NR_LRU_LISTS];
2179 unsigned long nr_to_scan;
2180 enum lru_list lru;
2181 unsigned long nr_reclaimed = 0;
2182 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2183 struct blk_plug plug;
2184 bool scan_adjusted;
2185
2186 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2187
2188 /* Record the original scan target for proportional adjustments later */
2189 memcpy(targets, nr, sizeof(nr));
2190
2191 /*
2192 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2193 * event that can occur when there is little memory pressure e.g.
2194 * multiple streaming readers/writers. Hence, we do not abort scanning
2195 * when the requested number of pages are reclaimed when scanning at
2196 * DEF_PRIORITY on the assumption that the fact we are direct
2197 * reclaiming implies that kswapd is not keeping up and it is best to
2198 * do a batch of work at once. For memcg reclaim one check is made to
2199 * abort proportional reclaim if either the file or anon lru has already
2200 * dropped to zero at the first pass.
2201 */
2202 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2203 sc->priority == DEF_PRIORITY);
2204
2205 init_tlb_ubc();
2206
2207 blk_start_plug(&plug);
2208 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2209 nr[LRU_INACTIVE_FILE]) {
2210 unsigned long nr_anon, nr_file, percentage;
2211 unsigned long nr_scanned;
2212
2213 for_each_evictable_lru(lru) {
2214 if (nr[lru]) {
2215 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2216 nr[lru] -= nr_to_scan;
2217
2218 nr_reclaimed += shrink_list(lru, nr_to_scan,
2219 lruvec, sc);
2220 }
2221 }
2222
2223 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2224 continue;
2225
2226 /*
2227 * For kswapd and memcg, reclaim at least the number of pages
2228 * requested. Ensure that the anon and file LRUs are scanned
2229 * proportionally what was requested by get_scan_count(). We
2230 * stop reclaiming one LRU and reduce the amount scanning
2231 * proportional to the original scan target.
2232 */
2233 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2234 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2235
2236 /*
2237 * It's just vindictive to attack the larger once the smaller
2238 * has gone to zero. And given the way we stop scanning the
2239 * smaller below, this makes sure that we only make one nudge
2240 * towards proportionality once we've got nr_to_reclaim.
2241 */
2242 if (!nr_file || !nr_anon)
2243 break;
2244
2245 if (nr_file > nr_anon) {
2246 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2247 targets[LRU_ACTIVE_ANON] + 1;
2248 lru = LRU_BASE;
2249 percentage = nr_anon * 100 / scan_target;
2250 } else {
2251 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2252 targets[LRU_ACTIVE_FILE] + 1;
2253 lru = LRU_FILE;
2254 percentage = nr_file * 100 / scan_target;
2255 }
2256
2257 /* Stop scanning the smaller of the LRU */
2258 nr[lru] = 0;
2259 nr[lru + LRU_ACTIVE] = 0;
2260
2261 /*
2262 * Recalculate the other LRU scan count based on its original
2263 * scan target and the percentage scanning already complete
2264 */
2265 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2266 nr_scanned = targets[lru] - nr[lru];
2267 nr[lru] = targets[lru] * (100 - percentage) / 100;
2268 nr[lru] -= min(nr[lru], nr_scanned);
2269
2270 lru += LRU_ACTIVE;
2271 nr_scanned = targets[lru] - nr[lru];
2272 nr[lru] = targets[lru] * (100 - percentage) / 100;
2273 nr[lru] -= min(nr[lru], nr_scanned);
2274
2275 scan_adjusted = true;
2276 }
2277 blk_finish_plug(&plug);
2278 sc->nr_reclaimed += nr_reclaimed;
2279
2280 /*
2281 * Even if we did not try to evict anon pages at all, we want to
2282 * rebalance the anon lru active/inactive ratio.
2283 */
2284 if (inactive_list_is_low(lruvec, false))
2285 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2286 sc, LRU_ACTIVE_ANON);
2287
2288 throttle_vm_writeout(sc->gfp_mask);
2289 }
2290
2291 /* Use reclaim/compaction for costly allocs or under memory pressure */
2292 static bool in_reclaim_compaction(struct scan_control *sc)
2293 {
2294 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2295 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2296 sc->priority < DEF_PRIORITY - 2))
2297 return true;
2298
2299 return false;
2300 }
2301
2302 /*
2303 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2304 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2305 * true if more pages should be reclaimed such that when the page allocator
2306 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2307 * It will give up earlier than that if there is difficulty reclaiming pages.
2308 */
2309 static inline bool should_continue_reclaim(struct zone *zone,
2310 unsigned long nr_reclaimed,
2311 unsigned long nr_scanned,
2312 struct scan_control *sc)
2313 {
2314 unsigned long pages_for_compaction;
2315 unsigned long inactive_lru_pages;
2316
2317 /* If not in reclaim/compaction mode, stop */
2318 if (!in_reclaim_compaction(sc))
2319 return false;
2320
2321 /* Consider stopping depending on scan and reclaim activity */
2322 if (sc->gfp_mask & __GFP_REPEAT) {
2323 /*
2324 * For __GFP_REPEAT allocations, stop reclaiming if the
2325 * full LRU list has been scanned and we are still failing
2326 * to reclaim pages. This full LRU scan is potentially
2327 * expensive but a __GFP_REPEAT caller really wants to succeed
2328 */
2329 if (!nr_reclaimed && !nr_scanned)
2330 return false;
2331 } else {
2332 /*
2333 * For non-__GFP_REPEAT allocations which can presumably
2334 * fail without consequence, stop if we failed to reclaim
2335 * any pages from the last SWAP_CLUSTER_MAX number of
2336 * pages that were scanned. This will return to the
2337 * caller faster at the risk reclaim/compaction and
2338 * the resulting allocation attempt fails
2339 */
2340 if (!nr_reclaimed)
2341 return false;
2342 }
2343
2344 /*
2345 * If we have not reclaimed enough pages for compaction and the
2346 * inactive lists are large enough, continue reclaiming
2347 */
2348 pages_for_compaction = (2UL << sc->order);
2349 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2350 if (get_nr_swap_pages() > 0)
2351 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2352 if (sc->nr_reclaimed < pages_for_compaction &&
2353 inactive_lru_pages > pages_for_compaction)
2354 return true;
2355
2356 /* If compaction would go ahead or the allocation would succeed, stop */
2357 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2358 case COMPACT_PARTIAL:
2359 case COMPACT_CONTINUE:
2360 return false;
2361 default:
2362 return true;
2363 }
2364 }
2365
2366 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2367 bool is_classzone)
2368 {
2369 struct reclaim_state *reclaim_state = current->reclaim_state;
2370 unsigned long nr_reclaimed, nr_scanned;
2371 bool reclaimable = false;
2372
2373 do {
2374 struct mem_cgroup *root = sc->target_mem_cgroup;
2375 struct mem_cgroup_reclaim_cookie reclaim = {
2376 .zone = zone,
2377 .priority = sc->priority,
2378 };
2379 unsigned long zone_lru_pages = 0;
2380 struct mem_cgroup *memcg;
2381
2382 nr_reclaimed = sc->nr_reclaimed;
2383 nr_scanned = sc->nr_scanned;
2384
2385 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2386 do {
2387 unsigned long lru_pages;
2388 unsigned long reclaimed;
2389 unsigned long scanned;
2390
2391 if (mem_cgroup_low(root, memcg)) {
2392 if (!sc->may_thrash)
2393 continue;
2394 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2395 }
2396
2397 reclaimed = sc->nr_reclaimed;
2398 scanned = sc->nr_scanned;
2399
2400 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2401 zone_lru_pages += lru_pages;
2402
2403 if (memcg && is_classzone)
2404 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2405 memcg, sc->nr_scanned - scanned,
2406 lru_pages);
2407
2408 /* Record the group's reclaim efficiency */
2409 vmpressure(sc->gfp_mask, memcg, false,
2410 sc->nr_scanned - scanned,
2411 sc->nr_reclaimed - reclaimed);
2412
2413 /*
2414 * Direct reclaim and kswapd have to scan all memory
2415 * cgroups to fulfill the overall scan target for the
2416 * zone.
2417 *
2418 * Limit reclaim, on the other hand, only cares about
2419 * nr_to_reclaim pages to be reclaimed and it will
2420 * retry with decreasing priority if one round over the
2421 * whole hierarchy is not sufficient.
2422 */
2423 if (!global_reclaim(sc) &&
2424 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2425 mem_cgroup_iter_break(root, memcg);
2426 break;
2427 }
2428 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2429
2430 /*
2431 * Shrink the slab caches in the same proportion that
2432 * the eligible LRU pages were scanned.
2433 */
2434 if (global_reclaim(sc) && is_classzone)
2435 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2436 sc->nr_scanned - nr_scanned,
2437 zone_lru_pages);
2438
2439 if (reclaim_state) {
2440 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2441 reclaim_state->reclaimed_slab = 0;
2442 }
2443
2444 /* Record the subtree's reclaim efficiency */
2445 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2446 sc->nr_scanned - nr_scanned,
2447 sc->nr_reclaimed - nr_reclaimed);
2448
2449 if (sc->nr_reclaimed - nr_reclaimed)
2450 reclaimable = true;
2451
2452 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2453 sc->nr_scanned - nr_scanned, sc));
2454
2455 return reclaimable;
2456 }
2457
2458 /*
2459 * Returns true if compaction should go ahead for a high-order request, or
2460 * the high-order allocation would succeed without compaction.
2461 */
2462 static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
2463 {
2464 unsigned long balance_gap, watermark;
2465 bool watermark_ok;
2466
2467 /*
2468 * Compaction takes time to run and there are potentially other
2469 * callers using the pages just freed. Continue reclaiming until
2470 * there is a buffer of free pages available to give compaction
2471 * a reasonable chance of completing and allocating the page
2472 */
2473 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2474 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2475 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2476 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
2477
2478 /*
2479 * If compaction is deferred, reclaim up to a point where
2480 * compaction will have a chance of success when re-enabled
2481 */
2482 if (compaction_deferred(zone, order))
2483 return watermark_ok;
2484
2485 /*
2486 * If compaction is not ready to start and allocation is not likely
2487 * to succeed without it, then keep reclaiming.
2488 */
2489 if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
2490 return false;
2491
2492 return watermark_ok;
2493 }
2494
2495 /*
2496 * This is the direct reclaim path, for page-allocating processes. We only
2497 * try to reclaim pages from zones which will satisfy the caller's allocation
2498 * request.
2499 *
2500 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2501 * Because:
2502 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2503 * allocation or
2504 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2505 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2506 * zone defense algorithm.
2507 *
2508 * If a zone is deemed to be full of pinned pages then just give it a light
2509 * scan then give up on it.
2510 */
2511 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2512 {
2513 struct zoneref *z;
2514 struct zone *zone;
2515 unsigned long nr_soft_reclaimed;
2516 unsigned long nr_soft_scanned;
2517 gfp_t orig_mask;
2518 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2519
2520 /*
2521 * If the number of buffer_heads in the machine exceeds the maximum
2522 * allowed level, force direct reclaim to scan the highmem zone as
2523 * highmem pages could be pinning lowmem pages storing buffer_heads
2524 */
2525 orig_mask = sc->gfp_mask;
2526 if (buffer_heads_over_limit)
2527 sc->gfp_mask |= __GFP_HIGHMEM;
2528
2529 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2530 gfp_zone(sc->gfp_mask), sc->nodemask) {
2531 enum zone_type classzone_idx;
2532
2533 if (!populated_zone(zone))
2534 continue;
2535
2536 classzone_idx = requested_highidx;
2537 while (!populated_zone(zone->zone_pgdat->node_zones +
2538 classzone_idx))
2539 classzone_idx--;
2540
2541 /*
2542 * Take care memory controller reclaiming has small influence
2543 * to global LRU.
2544 */
2545 if (global_reclaim(sc)) {
2546 if (!cpuset_zone_allowed(zone,
2547 GFP_KERNEL | __GFP_HARDWALL))
2548 continue;
2549
2550 if (sc->priority != DEF_PRIORITY &&
2551 !zone_reclaimable(zone))
2552 continue; /* Let kswapd poll it */
2553
2554 /*
2555 * If we already have plenty of memory free for
2556 * compaction in this zone, don't free any more.
2557 * Even though compaction is invoked for any
2558 * non-zero order, only frequent costly order
2559 * reclamation is disruptive enough to become a
2560 * noticeable problem, like transparent huge
2561 * page allocations.
2562 */
2563 if (IS_ENABLED(CONFIG_COMPACTION) &&
2564 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2565 zonelist_zone_idx(z) <= requested_highidx &&
2566 compaction_ready(zone, sc->order, requested_highidx)) {
2567 sc->compaction_ready = true;
2568 continue;
2569 }
2570
2571 /*
2572 * This steals pages from memory cgroups over softlimit
2573 * and returns the number of reclaimed pages and
2574 * scanned pages. This works for global memory pressure
2575 * and balancing, not for a memcg's limit.
2576 */
2577 nr_soft_scanned = 0;
2578 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2579 sc->order, sc->gfp_mask,
2580 &nr_soft_scanned);
2581 sc->nr_reclaimed += nr_soft_reclaimed;
2582 sc->nr_scanned += nr_soft_scanned;
2583 /* need some check for avoid more shrink_zone() */
2584 }
2585
2586 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
2587 }
2588
2589 /*
2590 * Restore to original mask to avoid the impact on the caller if we
2591 * promoted it to __GFP_HIGHMEM.
2592 */
2593 sc->gfp_mask = orig_mask;
2594 }
2595
2596 /*
2597 * This is the main entry point to direct page reclaim.
2598 *
2599 * If a full scan of the inactive list fails to free enough memory then we
2600 * are "out of memory" and something needs to be killed.
2601 *
2602 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2603 * high - the zone may be full of dirty or under-writeback pages, which this
2604 * caller can't do much about. We kick the writeback threads and take explicit
2605 * naps in the hope that some of these pages can be written. But if the
2606 * allocating task holds filesystem locks which prevent writeout this might not
2607 * work, and the allocation attempt will fail.
2608 *
2609 * returns: 0, if no pages reclaimed
2610 * else, the number of pages reclaimed
2611 */
2612 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2613 struct scan_control *sc)
2614 {
2615 int initial_priority = sc->priority;
2616 unsigned long total_scanned = 0;
2617 unsigned long writeback_threshold;
2618 retry:
2619 delayacct_freepages_start();
2620
2621 if (global_reclaim(sc))
2622 count_vm_event(ALLOCSTALL);
2623
2624 do {
2625 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2626 sc->priority);
2627 sc->nr_scanned = 0;
2628 shrink_zones(zonelist, sc);
2629
2630 total_scanned += sc->nr_scanned;
2631 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2632 break;
2633
2634 if (sc->compaction_ready)
2635 break;
2636
2637 /*
2638 * If we're getting trouble reclaiming, start doing
2639 * writepage even in laptop mode.
2640 */
2641 if (sc->priority < DEF_PRIORITY - 2)
2642 sc->may_writepage = 1;
2643
2644 /*
2645 * Try to write back as many pages as we just scanned. This
2646 * tends to cause slow streaming writers to write data to the
2647 * disk smoothly, at the dirtying rate, which is nice. But
2648 * that's undesirable in laptop mode, where we *want* lumpy
2649 * writeout. So in laptop mode, write out the whole world.
2650 */
2651 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2652 if (total_scanned > writeback_threshold) {
2653 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2654 WB_REASON_TRY_TO_FREE_PAGES);
2655 sc->may_writepage = 1;
2656 }
2657 } while (--sc->priority >= 0);
2658
2659 delayacct_freepages_end();
2660
2661 if (sc->nr_reclaimed)
2662 return sc->nr_reclaimed;
2663
2664 /* Aborted reclaim to try compaction? don't OOM, then */
2665 if (sc->compaction_ready)
2666 return 1;
2667
2668 /* Untapped cgroup reserves? Don't OOM, retry. */
2669 if (!sc->may_thrash) {
2670 sc->priority = initial_priority;
2671 sc->may_thrash = 1;
2672 goto retry;
2673 }
2674
2675 return 0;
2676 }
2677
2678 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2679 {
2680 struct zone *zone;
2681 unsigned long pfmemalloc_reserve = 0;
2682 unsigned long free_pages = 0;
2683 int i;
2684 bool wmark_ok;
2685
2686 for (i = 0; i <= ZONE_NORMAL; i++) {
2687 zone = &pgdat->node_zones[i];
2688 if (!populated_zone(zone) ||
2689 zone_reclaimable_pages(zone) == 0)
2690 continue;
2691
2692 pfmemalloc_reserve += min_wmark_pages(zone);
2693 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2694 }
2695
2696 /* If there are no reserves (unexpected config) then do not throttle */
2697 if (!pfmemalloc_reserve)
2698 return true;
2699
2700 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2701
2702 /* kswapd must be awake if processes are being throttled */
2703 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2704 pgdat->classzone_idx = min(pgdat->classzone_idx,
2705 (enum zone_type)ZONE_NORMAL);
2706 wake_up_interruptible(&pgdat->kswapd_wait);
2707 }
2708
2709 return wmark_ok;
2710 }
2711
2712 /*
2713 * Throttle direct reclaimers if backing storage is backed by the network
2714 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2715 * depleted. kswapd will continue to make progress and wake the processes
2716 * when the low watermark is reached.
2717 *
2718 * Returns true if a fatal signal was delivered during throttling. If this
2719 * happens, the page allocator should not consider triggering the OOM killer.
2720 */
2721 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2722 nodemask_t *nodemask)
2723 {
2724 struct zoneref *z;
2725 struct zone *zone;
2726 pg_data_t *pgdat = NULL;
2727
2728 /*
2729 * Kernel threads should not be throttled as they may be indirectly
2730 * responsible for cleaning pages necessary for reclaim to make forward
2731 * progress. kjournald for example may enter direct reclaim while
2732 * committing a transaction where throttling it could forcing other
2733 * processes to block on log_wait_commit().
2734 */
2735 if (current->flags & PF_KTHREAD)
2736 goto out;
2737
2738 /*
2739 * If a fatal signal is pending, this process should not throttle.
2740 * It should return quickly so it can exit and free its memory
2741 */
2742 if (fatal_signal_pending(current))
2743 goto out;
2744
2745 /*
2746 * Check if the pfmemalloc reserves are ok by finding the first node
2747 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2748 * GFP_KERNEL will be required for allocating network buffers when
2749 * swapping over the network so ZONE_HIGHMEM is unusable.
2750 *
2751 * Throttling is based on the first usable node and throttled processes
2752 * wait on a queue until kswapd makes progress and wakes them. There
2753 * is an affinity then between processes waking up and where reclaim
2754 * progress has been made assuming the process wakes on the same node.
2755 * More importantly, processes running on remote nodes will not compete
2756 * for remote pfmemalloc reserves and processes on different nodes
2757 * should make reasonable progress.
2758 */
2759 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2760 gfp_zone(gfp_mask), nodemask) {
2761 if (zone_idx(zone) > ZONE_NORMAL)
2762 continue;
2763
2764 /* Throttle based on the first usable node */
2765 pgdat = zone->zone_pgdat;
2766 if (pfmemalloc_watermark_ok(pgdat))
2767 goto out;
2768 break;
2769 }
2770
2771 /* If no zone was usable by the allocation flags then do not throttle */
2772 if (!pgdat)
2773 goto out;
2774
2775 /* Account for the throttling */
2776 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2777
2778 /*
2779 * If the caller cannot enter the filesystem, it's possible that it
2780 * is due to the caller holding an FS lock or performing a journal
2781 * transaction in the case of a filesystem like ext[3|4]. In this case,
2782 * it is not safe to block on pfmemalloc_wait as kswapd could be
2783 * blocked waiting on the same lock. Instead, throttle for up to a
2784 * second before continuing.
2785 */
2786 if (!(gfp_mask & __GFP_FS)) {
2787 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2788 pfmemalloc_watermark_ok(pgdat), HZ);
2789
2790 goto check_pending;
2791 }
2792
2793 /* Throttle until kswapd wakes the process */
2794 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2795 pfmemalloc_watermark_ok(pgdat));
2796
2797 check_pending:
2798 if (fatal_signal_pending(current))
2799 return true;
2800
2801 out:
2802 return false;
2803 }
2804
2805 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2806 gfp_t gfp_mask, nodemask_t *nodemask)
2807 {
2808 unsigned long nr_reclaimed;
2809 struct scan_control sc = {
2810 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2811 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2812 .order = order,
2813 .nodemask = nodemask,
2814 .priority = DEF_PRIORITY,
2815 .may_writepage = !laptop_mode,
2816 .may_unmap = 1,
2817 .may_swap = 1,
2818 };
2819
2820 /*
2821 * Do not enter reclaim if fatal signal was delivered while throttled.
2822 * 1 is returned so that the page allocator does not OOM kill at this
2823 * point.
2824 */
2825 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2826 return 1;
2827
2828 trace_mm_vmscan_direct_reclaim_begin(order,
2829 sc.may_writepage,
2830 gfp_mask);
2831
2832 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2833
2834 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2835
2836 return nr_reclaimed;
2837 }
2838
2839 #ifdef CONFIG_MEMCG
2840
2841 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2842 gfp_t gfp_mask, bool noswap,
2843 struct zone *zone,
2844 unsigned long *nr_scanned)
2845 {
2846 struct scan_control sc = {
2847 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2848 .target_mem_cgroup = memcg,
2849 .may_writepage = !laptop_mode,
2850 .may_unmap = 1,
2851 .may_swap = !noswap,
2852 };
2853 unsigned long lru_pages;
2854
2855 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2856 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2857
2858 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2859 sc.may_writepage,
2860 sc.gfp_mask);
2861
2862 /*
2863 * NOTE: Although we can get the priority field, using it
2864 * here is not a good idea, since it limits the pages we can scan.
2865 * if we don't reclaim here, the shrink_zone from balance_pgdat
2866 * will pick up pages from other mem cgroup's as well. We hack
2867 * the priority and make it zero.
2868 */
2869 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2870
2871 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2872
2873 *nr_scanned = sc.nr_scanned;
2874 return sc.nr_reclaimed;
2875 }
2876
2877 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2878 unsigned long nr_pages,
2879 gfp_t gfp_mask,
2880 bool may_swap)
2881 {
2882 struct zonelist *zonelist;
2883 unsigned long nr_reclaimed;
2884 int nid;
2885 struct scan_control sc = {
2886 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2887 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2888 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2889 .target_mem_cgroup = memcg,
2890 .priority = DEF_PRIORITY,
2891 .may_writepage = !laptop_mode,
2892 .may_unmap = 1,
2893 .may_swap = may_swap,
2894 };
2895
2896 /*
2897 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2898 * take care of from where we get pages. So the node where we start the
2899 * scan does not need to be the current node.
2900 */
2901 nid = mem_cgroup_select_victim_node(memcg);
2902
2903 zonelist = NODE_DATA(nid)->node_zonelists;
2904
2905 trace_mm_vmscan_memcg_reclaim_begin(0,
2906 sc.may_writepage,
2907 sc.gfp_mask);
2908
2909 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2910
2911 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2912
2913 return nr_reclaimed;
2914 }
2915 #endif
2916
2917 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2918 {
2919 struct mem_cgroup *memcg;
2920
2921 if (!total_swap_pages)
2922 return;
2923
2924 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2925 do {
2926 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2927
2928 if (inactive_list_is_low(lruvec, false))
2929 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2930 sc, LRU_ACTIVE_ANON);
2931
2932 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2933 } while (memcg);
2934 }
2935
2936 static bool zone_balanced(struct zone *zone, int order, bool highorder,
2937 unsigned long balance_gap, int classzone_idx)
2938 {
2939 unsigned long mark = high_wmark_pages(zone) + balance_gap;
2940
2941 /*
2942 * When checking from pgdat_balanced(), kswapd should stop and sleep
2943 * when it reaches the high order-0 watermark and let kcompactd take
2944 * over. Other callers such as wakeup_kswapd() want to determine the
2945 * true high-order watermark.
2946 */
2947 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2948 mark += (1UL << order);
2949 order = 0;
2950 }
2951
2952 return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2953 }
2954
2955 /*
2956 * pgdat_balanced() is used when checking if a node is balanced.
2957 *
2958 * For order-0, all zones must be balanced!
2959 *
2960 * For high-order allocations only zones that meet watermarks and are in a
2961 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2962 * total of balanced pages must be at least 25% of the zones allowed by
2963 * classzone_idx for the node to be considered balanced. Forcing all zones to
2964 * be balanced for high orders can cause excessive reclaim when there are
2965 * imbalanced zones.
2966 * The choice of 25% is due to
2967 * o a 16M DMA zone that is balanced will not balance a zone on any
2968 * reasonable sized machine
2969 * o On all other machines, the top zone must be at least a reasonable
2970 * percentage of the middle zones. For example, on 32-bit x86, highmem
2971 * would need to be at least 256M for it to be balance a whole node.
2972 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2973 * to balance a node on its own. These seemed like reasonable ratios.
2974 */
2975 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2976 {
2977 unsigned long managed_pages = 0;
2978 unsigned long balanced_pages = 0;
2979 int i;
2980
2981 /* Check the watermark levels */
2982 for (i = 0; i <= classzone_idx; i++) {
2983 struct zone *zone = pgdat->node_zones + i;
2984
2985 if (!populated_zone(zone))
2986 continue;
2987
2988 managed_pages += zone->managed_pages;
2989
2990 /*
2991 * A special case here:
2992 *
2993 * balance_pgdat() skips over all_unreclaimable after
2994 * DEF_PRIORITY. Effectively, it considers them balanced so
2995 * they must be considered balanced here as well!
2996 */
2997 if (!zone_reclaimable(zone)) {
2998 balanced_pages += zone->managed_pages;
2999 continue;
3000 }
3001
3002 if (zone_balanced(zone, order, false, 0, i))
3003 balanced_pages += zone->managed_pages;
3004 else if (!order)
3005 return false;
3006 }
3007
3008 if (order)
3009 return balanced_pages >= (managed_pages >> 2);
3010 else
3011 return true;
3012 }
3013
3014 /*
3015 * Prepare kswapd for sleeping. This verifies that there are no processes
3016 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3017 *
3018 * Returns true if kswapd is ready to sleep
3019 */
3020 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3021 int classzone_idx)
3022 {
3023 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3024 if (remaining)
3025 return false;
3026
3027 /*
3028 * The throttled processes are normally woken up in balance_pgdat() as
3029 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3030 * race between when kswapd checks the watermarks and a process gets
3031 * throttled. There is also a potential race if processes get
3032 * throttled, kswapd wakes, a large process exits thereby balancing the
3033 * zones, which causes kswapd to exit balance_pgdat() before reaching
3034 * the wake up checks. If kswapd is going to sleep, no process should
3035 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3036 * the wake up is premature, processes will wake kswapd and get
3037 * throttled again. The difference from wake ups in balance_pgdat() is
3038 * that here we are under prepare_to_wait().
3039 */
3040 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3041 wake_up_all(&pgdat->pfmemalloc_wait);
3042
3043 return pgdat_balanced(pgdat, order, classzone_idx);
3044 }
3045
3046 /*
3047 * kswapd shrinks the zone by the number of pages required to reach
3048 * the high watermark.
3049 *
3050 * Returns true if kswapd scanned at least the requested number of pages to
3051 * reclaim or if the lack of progress was due to pages under writeback.
3052 * This is used to determine if the scanning priority needs to be raised.
3053 */
3054 static bool kswapd_shrink_zone(struct zone *zone,
3055 int classzone_idx,
3056 struct scan_control *sc)
3057 {
3058 unsigned long balance_gap;
3059 bool lowmem_pressure;
3060
3061 /* Reclaim above the high watermark. */
3062 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3063
3064 /*
3065 * We put equal pressure on every zone, unless one zone has way too
3066 * many pages free already. The "too many pages" is defined as the
3067 * high wmark plus a "gap" where the gap is either the low
3068 * watermark or 1% of the zone, whichever is smaller.
3069 */
3070 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3071 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3072
3073 /*
3074 * If there is no low memory pressure or the zone is balanced then no
3075 * reclaim is necessary
3076 */
3077 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3078 if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3079 balance_gap, classzone_idx))
3080 return true;
3081
3082 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3083
3084 clear_bit(ZONE_WRITEBACK, &zone->flags);
3085
3086 /*
3087 * If a zone reaches its high watermark, consider it to be no longer
3088 * congested. It's possible there are dirty pages backed by congested
3089 * BDIs but as pressure is relieved, speculatively avoid congestion
3090 * waits.
3091 */
3092 if (zone_reclaimable(zone) &&
3093 zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
3094 clear_bit(ZONE_CONGESTED, &zone->flags);
3095 clear_bit(ZONE_DIRTY, &zone->flags);
3096 }
3097
3098 return sc->nr_scanned >= sc->nr_to_reclaim;
3099 }
3100
3101 /*
3102 * For kswapd, balance_pgdat() will work across all this node's zones until
3103 * they are all at high_wmark_pages(zone).
3104 *
3105 * Returns the highest zone idx kswapd was reclaiming at
3106 *
3107 * There is special handling here for zones which are full of pinned pages.
3108 * This can happen if the pages are all mlocked, or if they are all used by
3109 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3110 * What we do is to detect the case where all pages in the zone have been
3111 * scanned twice and there has been zero successful reclaim. Mark the zone as
3112 * dead and from now on, only perform a short scan. Basically we're polling
3113 * the zone for when the problem goes away.
3114 *
3115 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3116 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3117 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3118 * lower zones regardless of the number of free pages in the lower zones. This
3119 * interoperates with the page allocator fallback scheme to ensure that aging
3120 * of pages is balanced across the zones.
3121 */
3122 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3123 {
3124 int i;
3125 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3126 unsigned long nr_soft_reclaimed;
3127 unsigned long nr_soft_scanned;
3128 struct scan_control sc = {
3129 .gfp_mask = GFP_KERNEL,
3130 .order = order,
3131 .priority = DEF_PRIORITY,
3132 .may_writepage = !laptop_mode,
3133 .may_unmap = 1,
3134 .may_swap = 1,
3135 };
3136 count_vm_event(PAGEOUTRUN);
3137
3138 do {
3139 bool raise_priority = true;
3140
3141 sc.nr_reclaimed = 0;
3142
3143 /*
3144 * Scan in the highmem->dma direction for the highest
3145 * zone which needs scanning
3146 */
3147 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3148 struct zone *zone = pgdat->node_zones + i;
3149
3150 if (!populated_zone(zone))
3151 continue;
3152
3153 if (sc.priority != DEF_PRIORITY &&
3154 !zone_reclaimable(zone))
3155 continue;
3156
3157 /*
3158 * Do some background aging of the anon list, to give
3159 * pages a chance to be referenced before reclaiming.
3160 */
3161 age_active_anon(zone, &sc);
3162
3163 /*
3164 * If the number of buffer_heads in the machine
3165 * exceeds the maximum allowed level and this node
3166 * has a highmem zone, force kswapd to reclaim from
3167 * it to relieve lowmem pressure.
3168 */
3169 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3170 end_zone = i;
3171 break;
3172 }
3173
3174 if (!zone_balanced(zone, order, false, 0, 0)) {
3175 end_zone = i;
3176 break;
3177 } else {
3178 /*
3179 * If balanced, clear the dirty and congested
3180 * flags
3181 */
3182 clear_bit(ZONE_CONGESTED, &zone->flags);
3183 clear_bit(ZONE_DIRTY, &zone->flags);
3184 }
3185 }
3186
3187 if (i < 0)
3188 goto out;
3189
3190 /*
3191 * If we're getting trouble reclaiming, start doing writepage
3192 * even in laptop mode.
3193 */
3194 if (sc.priority < DEF_PRIORITY - 2)
3195 sc.may_writepage = 1;
3196
3197 /*
3198 * Now scan the zone in the dma->highmem direction, stopping
3199 * at the last zone which needs scanning.
3200 *
3201 * We do this because the page allocator works in the opposite
3202 * direction. This prevents the page allocator from allocating
3203 * pages behind kswapd's direction of progress, which would
3204 * cause too much scanning of the lower zones.
3205 */
3206 for (i = 0; i <= end_zone; i++) {
3207 struct zone *zone = pgdat->node_zones + i;
3208
3209 if (!populated_zone(zone))
3210 continue;
3211
3212 if (sc.priority != DEF_PRIORITY &&
3213 !zone_reclaimable(zone))
3214 continue;
3215
3216 sc.nr_scanned = 0;
3217
3218 nr_soft_scanned = 0;
3219 /*
3220 * Call soft limit reclaim before calling shrink_zone.
3221 */
3222 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3223 order, sc.gfp_mask,
3224 &nr_soft_scanned);
3225 sc.nr_reclaimed += nr_soft_reclaimed;
3226
3227 /*
3228 * There should be no need to raise the scanning
3229 * priority if enough pages are already being scanned
3230 * that that high watermark would be met at 100%
3231 * efficiency.
3232 */
3233 if (kswapd_shrink_zone(zone, end_zone, &sc))
3234 raise_priority = false;
3235 }
3236
3237 /*
3238 * If the low watermark is met there is no need for processes
3239 * to be throttled on pfmemalloc_wait as they should not be
3240 * able to safely make forward progress. Wake them
3241 */
3242 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3243 pfmemalloc_watermark_ok(pgdat))
3244 wake_up_all(&pgdat->pfmemalloc_wait);
3245
3246 /* Check if kswapd should be suspending */
3247 if (try_to_freeze() || kthread_should_stop())
3248 break;
3249
3250 /*
3251 * Raise priority if scanning rate is too low or there was no
3252 * progress in reclaiming pages
3253 */
3254 if (raise_priority || !sc.nr_reclaimed)
3255 sc.priority--;
3256 } while (sc.priority >= 1 &&
3257 !pgdat_balanced(pgdat, order, classzone_idx));
3258
3259 out:
3260 /*
3261 * Return the highest zone idx we were reclaiming at so
3262 * prepare_kswapd_sleep() makes the same decisions as here.
3263 */
3264 return end_zone;
3265 }
3266
3267 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3268 int classzone_idx, int balanced_classzone_idx)
3269 {
3270 long remaining = 0;
3271 DEFINE_WAIT(wait);
3272
3273 if (freezing(current) || kthread_should_stop())
3274 return;
3275
3276 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3277
3278 /* Try to sleep for a short interval */
3279 if (prepare_kswapd_sleep(pgdat, order, remaining,
3280 balanced_classzone_idx)) {
3281 /*
3282 * Compaction records what page blocks it recently failed to
3283 * isolate pages from and skips them in the future scanning.
3284 * When kswapd is going to sleep, it is reasonable to assume
3285 * that pages and compaction may succeed so reset the cache.
3286 */
3287 reset_isolation_suitable(pgdat);
3288
3289 /*
3290 * We have freed the memory, now we should compact it to make
3291 * allocation of the requested order possible.
3292 */
3293 wakeup_kcompactd(pgdat, order, classzone_idx);
3294
3295 remaining = schedule_timeout(HZ/10);
3296 finish_wait(&pgdat->kswapd_wait, &wait);
3297 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3298 }
3299
3300 /*
3301 * After a short sleep, check if it was a premature sleep. If not, then
3302 * go fully to sleep until explicitly woken up.
3303 */
3304 if (prepare_kswapd_sleep(pgdat, order, remaining,
3305 balanced_classzone_idx)) {
3306 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3307
3308 /*
3309 * vmstat counters are not perfectly accurate and the estimated
3310 * value for counters such as NR_FREE_PAGES can deviate from the
3311 * true value by nr_online_cpus * threshold. To avoid the zone
3312 * watermarks being breached while under pressure, we reduce the
3313 * per-cpu vmstat threshold while kswapd is awake and restore
3314 * them before going back to sleep.
3315 */
3316 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3317
3318 if (!kthread_should_stop())
3319 schedule();
3320
3321 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3322 } else {
3323 if (remaining)
3324 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3325 else
3326 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3327 }
3328 finish_wait(&pgdat->kswapd_wait, &wait);
3329 }
3330
3331 /*
3332 * The background pageout daemon, started as a kernel thread
3333 * from the init process.
3334 *
3335 * This basically trickles out pages so that we have _some_
3336 * free memory available even if there is no other activity
3337 * that frees anything up. This is needed for things like routing
3338 * etc, where we otherwise might have all activity going on in
3339 * asynchronous contexts that cannot page things out.
3340 *
3341 * If there are applications that are active memory-allocators
3342 * (most normal use), this basically shouldn't matter.
3343 */
3344 static int kswapd(void *p)
3345 {
3346 unsigned long order, new_order;
3347 int classzone_idx, new_classzone_idx;
3348 int balanced_classzone_idx;
3349 pg_data_t *pgdat = (pg_data_t*)p;
3350 struct task_struct *tsk = current;
3351
3352 struct reclaim_state reclaim_state = {
3353 .reclaimed_slab = 0,
3354 };
3355 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3356
3357 lockdep_set_current_reclaim_state(GFP_KERNEL);
3358
3359 if (!cpumask_empty(cpumask))
3360 set_cpus_allowed_ptr(tsk, cpumask);
3361 current->reclaim_state = &reclaim_state;
3362
3363 /*
3364 * Tell the memory management that we're a "memory allocator",
3365 * and that if we need more memory we should get access to it
3366 * regardless (see "__alloc_pages()"). "kswapd" should
3367 * never get caught in the normal page freeing logic.
3368 *
3369 * (Kswapd normally doesn't need memory anyway, but sometimes
3370 * you need a small amount of memory in order to be able to
3371 * page out something else, and this flag essentially protects
3372 * us from recursively trying to free more memory as we're
3373 * trying to free the first piece of memory in the first place).
3374 */
3375 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3376 set_freezable();
3377
3378 order = new_order = 0;
3379 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3380 balanced_classzone_idx = classzone_idx;
3381 for ( ; ; ) {
3382 bool ret;
3383
3384 /*
3385 * While we were reclaiming, there might have been another
3386 * wakeup, so check the values.
3387 */
3388 new_order = pgdat->kswapd_max_order;
3389 new_classzone_idx = pgdat->classzone_idx;
3390 pgdat->kswapd_max_order = 0;
3391 pgdat->classzone_idx = pgdat->nr_zones - 1;
3392
3393 if (order < new_order || classzone_idx > new_classzone_idx) {
3394 /*
3395 * Don't sleep if someone wants a larger 'order'
3396 * allocation or has tigher zone constraints
3397 */
3398 order = new_order;
3399 classzone_idx = new_classzone_idx;
3400 } else {
3401 kswapd_try_to_sleep(pgdat, order, classzone_idx,
3402 balanced_classzone_idx);
3403 order = pgdat->kswapd_max_order;
3404 classzone_idx = pgdat->classzone_idx;
3405 new_order = order;
3406 new_classzone_idx = classzone_idx;
3407 pgdat->kswapd_max_order = 0;
3408 pgdat->classzone_idx = pgdat->nr_zones - 1;
3409 }
3410
3411 ret = try_to_freeze();
3412 if (kthread_should_stop())
3413 break;
3414
3415 /*
3416 * We can speed up thawing tasks if we don't call balance_pgdat
3417 * after returning from the refrigerator
3418 */
3419 if (!ret) {
3420 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3421 balanced_classzone_idx = balance_pgdat(pgdat, order,
3422 classzone_idx);
3423 }
3424 }
3425
3426 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3427 current->reclaim_state = NULL;
3428 lockdep_clear_current_reclaim_state();
3429
3430 return 0;
3431 }
3432
3433 /*
3434 * A zone is low on free memory, so wake its kswapd task to service it.
3435 */
3436 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3437 {
3438 pg_data_t *pgdat;
3439
3440 if (!populated_zone(zone))
3441 return;
3442
3443 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3444 return;
3445 pgdat = zone->zone_pgdat;
3446 if (pgdat->kswapd_max_order < order) {
3447 pgdat->kswapd_max_order = order;
3448 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3449 }
3450 if (!waitqueue_active(&pgdat->kswapd_wait))
3451 return;
3452 if (zone_balanced(zone, order, true, 0, 0))
3453 return;
3454
3455 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3456 wake_up_interruptible(&pgdat->kswapd_wait);
3457 }
3458
3459 #ifdef CONFIG_HIBERNATION
3460 /*
3461 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3462 * freed pages.
3463 *
3464 * Rather than trying to age LRUs the aim is to preserve the overall
3465 * LRU order by reclaiming preferentially
3466 * inactive > active > active referenced > active mapped
3467 */
3468 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3469 {
3470 struct reclaim_state reclaim_state;
3471 struct scan_control sc = {
3472 .nr_to_reclaim = nr_to_reclaim,
3473 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3474 .priority = DEF_PRIORITY,
3475 .may_writepage = 1,
3476 .may_unmap = 1,
3477 .may_swap = 1,
3478 .hibernation_mode = 1,
3479 };
3480 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3481 struct task_struct *p = current;
3482 unsigned long nr_reclaimed;
3483
3484 p->flags |= PF_MEMALLOC;
3485 lockdep_set_current_reclaim_state(sc.gfp_mask);
3486 reclaim_state.reclaimed_slab = 0;
3487 p->reclaim_state = &reclaim_state;
3488
3489 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3490
3491 p->reclaim_state = NULL;
3492 lockdep_clear_current_reclaim_state();
3493 p->flags &= ~PF_MEMALLOC;
3494
3495 return nr_reclaimed;
3496 }
3497 #endif /* CONFIG_HIBERNATION */
3498
3499 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3500 not required for correctness. So if the last cpu in a node goes
3501 away, we get changed to run anywhere: as the first one comes back,
3502 restore their cpu bindings. */
3503 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3504 void *hcpu)
3505 {
3506 int nid;
3507
3508 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3509 for_each_node_state(nid, N_MEMORY) {
3510 pg_data_t *pgdat = NODE_DATA(nid);
3511 const struct cpumask *mask;
3512
3513 mask = cpumask_of_node(pgdat->node_id);
3514
3515 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3516 /* One of our CPUs online: restore mask */
3517 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3518 }
3519 }
3520 return NOTIFY_OK;
3521 }
3522
3523 /*
3524 * This kswapd start function will be called by init and node-hot-add.
3525 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3526 */
3527 int kswapd_run(int nid)
3528 {
3529 pg_data_t *pgdat = NODE_DATA(nid);
3530 int ret = 0;
3531
3532 if (pgdat->kswapd)
3533 return 0;
3534
3535 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3536 if (IS_ERR(pgdat->kswapd)) {
3537 /* failure at boot is fatal */
3538 BUG_ON(system_state == SYSTEM_BOOTING);
3539 pr_err("Failed to start kswapd on node %d\n", nid);
3540 ret = PTR_ERR(pgdat->kswapd);
3541 pgdat->kswapd = NULL;
3542 }
3543 return ret;
3544 }
3545
3546 /*
3547 * Called by memory hotplug when all memory in a node is offlined. Caller must
3548 * hold mem_hotplug_begin/end().
3549 */
3550 void kswapd_stop(int nid)
3551 {
3552 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3553
3554 if (kswapd) {
3555 kthread_stop(kswapd);
3556 NODE_DATA(nid)->kswapd = NULL;
3557 }
3558 }
3559
3560 static int __init kswapd_init(void)
3561 {
3562 int nid;
3563
3564 swap_setup();
3565 for_each_node_state(nid, N_MEMORY)
3566 kswapd_run(nid);
3567 hotcpu_notifier(cpu_callback, 0);
3568 return 0;
3569 }
3570
3571 module_init(kswapd_init)
3572
3573 #ifdef CONFIG_NUMA
3574 /*
3575 * Zone reclaim mode
3576 *
3577 * If non-zero call zone_reclaim when the number of free pages falls below
3578 * the watermarks.
3579 */
3580 int zone_reclaim_mode __read_mostly;
3581
3582 #define RECLAIM_OFF 0
3583 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3584 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3585 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3586
3587 /*
3588 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3589 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3590 * a zone.
3591 */
3592 #define ZONE_RECLAIM_PRIORITY 4
3593
3594 /*
3595 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3596 * occur.
3597 */
3598 int sysctl_min_unmapped_ratio = 1;
3599
3600 /*
3601 * If the number of slab pages in a zone grows beyond this percentage then
3602 * slab reclaim needs to occur.
3603 */
3604 int sysctl_min_slab_ratio = 5;
3605
3606 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3607 {
3608 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3609 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3610 zone_page_state(zone, NR_ACTIVE_FILE);
3611
3612 /*
3613 * It's possible for there to be more file mapped pages than
3614 * accounted for by the pages on the file LRU lists because
3615 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3616 */
3617 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3618 }
3619
3620 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3621 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3622 {
3623 unsigned long nr_pagecache_reclaimable;
3624 unsigned long delta = 0;
3625
3626 /*
3627 * If RECLAIM_UNMAP is set, then all file pages are considered
3628 * potentially reclaimable. Otherwise, we have to worry about
3629 * pages like swapcache and zone_unmapped_file_pages() provides
3630 * a better estimate
3631 */
3632 if (zone_reclaim_mode & RECLAIM_UNMAP)
3633 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3634 else
3635 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3636
3637 /* If we can't clean pages, remove dirty pages from consideration */
3638 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3639 delta += zone_page_state(zone, NR_FILE_DIRTY);
3640
3641 /* Watch for any possible underflows due to delta */
3642 if (unlikely(delta > nr_pagecache_reclaimable))
3643 delta = nr_pagecache_reclaimable;
3644
3645 return nr_pagecache_reclaimable - delta;
3646 }
3647
3648 /*
3649 * Try to free up some pages from this zone through reclaim.
3650 */
3651 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3652 {
3653 /* Minimum pages needed in order to stay on node */
3654 const unsigned long nr_pages = 1 << order;
3655 struct task_struct *p = current;
3656 struct reclaim_state reclaim_state;
3657 struct scan_control sc = {
3658 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3659 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3660 .order = order,
3661 .priority = ZONE_RECLAIM_PRIORITY,
3662 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3663 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3664 .may_swap = 1,
3665 };
3666
3667 cond_resched();
3668 /*
3669 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3670 * and we also need to be able to write out pages for RECLAIM_WRITE
3671 * and RECLAIM_UNMAP.
3672 */
3673 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3674 lockdep_set_current_reclaim_state(gfp_mask);
3675 reclaim_state.reclaimed_slab = 0;
3676 p->reclaim_state = &reclaim_state;
3677
3678 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3679 /*
3680 * Free memory by calling shrink zone with increasing
3681 * priorities until we have enough memory freed.
3682 */
3683 do {
3684 shrink_zone(zone, &sc, true);
3685 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3686 }
3687
3688 p->reclaim_state = NULL;
3689 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3690 lockdep_clear_current_reclaim_state();
3691 return sc.nr_reclaimed >= nr_pages;
3692 }
3693
3694 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3695 {
3696 int node_id;
3697 int ret;
3698
3699 /*
3700 * Zone reclaim reclaims unmapped file backed pages and
3701 * slab pages if we are over the defined limits.
3702 *
3703 * A small portion of unmapped file backed pages is needed for
3704 * file I/O otherwise pages read by file I/O will be immediately
3705 * thrown out if the zone is overallocated. So we do not reclaim
3706 * if less than a specified percentage of the zone is used by
3707 * unmapped file backed pages.
3708 */
3709 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3710 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3711 return ZONE_RECLAIM_FULL;
3712
3713 if (!zone_reclaimable(zone))
3714 return ZONE_RECLAIM_FULL;
3715
3716 /*
3717 * Do not scan if the allocation should not be delayed.
3718 */
3719 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3720 return ZONE_RECLAIM_NOSCAN;
3721
3722 /*
3723 * Only run zone reclaim on the local zone or on zones that do not
3724 * have associated processors. This will favor the local processor
3725 * over remote processors and spread off node memory allocations
3726 * as wide as possible.
3727 */
3728 node_id = zone_to_nid(zone);
3729 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3730 return ZONE_RECLAIM_NOSCAN;
3731
3732 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3733 return ZONE_RECLAIM_NOSCAN;
3734
3735 ret = __zone_reclaim(zone, gfp_mask, order);
3736 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3737
3738 if (!ret)
3739 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3740
3741 return ret;
3742 }
3743 #endif
3744
3745 /*
3746 * page_evictable - test whether a page is evictable
3747 * @page: the page to test
3748 *
3749 * Test whether page is evictable--i.e., should be placed on active/inactive
3750 * lists vs unevictable list.
3751 *
3752 * Reasons page might not be evictable:
3753 * (1) page's mapping marked unevictable
3754 * (2) page is part of an mlocked VMA
3755 *
3756 */
3757 int page_evictable(struct page *page)
3758 {
3759 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3760 }
3761
3762 #ifdef CONFIG_SHMEM
3763 /**
3764 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3765 * @pages: array of pages to check
3766 * @nr_pages: number of pages to check
3767 *
3768 * Checks pages for evictability and moves them to the appropriate lru list.
3769 *
3770 * This function is only used for SysV IPC SHM_UNLOCK.
3771 */
3772 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3773 {
3774 struct lruvec *lruvec;
3775 struct zone *zone = NULL;
3776 int pgscanned = 0;
3777 int pgrescued = 0;
3778 int i;
3779
3780 for (i = 0; i < nr_pages; i++) {
3781 struct page *page = pages[i];
3782 struct zone *pagezone;
3783
3784 pgscanned++;
3785 pagezone = page_zone(page);
3786 if (pagezone != zone) {
3787 if (zone)
3788 spin_unlock_irq(&zone->lru_lock);
3789 zone = pagezone;
3790 spin_lock_irq(&zone->lru_lock);
3791 }
3792 lruvec = mem_cgroup_page_lruvec(page, zone);
3793
3794 if (!PageLRU(page) || !PageUnevictable(page))
3795 continue;
3796
3797 if (page_evictable(page)) {
3798 enum lru_list lru = page_lru_base_type(page);
3799
3800 VM_BUG_ON_PAGE(PageActive(page), page);
3801 ClearPageUnevictable(page);
3802 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3803 add_page_to_lru_list(page, lruvec, lru);
3804 pgrescued++;
3805 }
3806 }
3807
3808 if (zone) {
3809 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3810 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3811 spin_unlock_irq(&zone->lru_lock);
3812 }
3813 }
3814 #endif /* CONFIG_SHMEM */
This page took 0.149329 seconds and 5 git commands to generate.