mempool: Receive mempool type (percpu/global) as attribute
[librseq.git] / src / rseq-mempool.c
1 // SPDX-License-Identifier: MIT
2 // SPDX-FileCopyrightText: 2024 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
3
4 #include <rseq/mempool.h>
5 #include <sys/mman.h>
6 #include <assert.h>
7 #include <string.h>
8 #include <pthread.h>
9 #include <unistd.h>
10 #include <stdlib.h>
11 #include <rseq/compiler.h>
12 #include <errno.h>
13 #include <stdint.h>
14 #include <stdbool.h>
15 #include <stdio.h>
16
17 #ifdef HAVE_LIBNUMA
18 # include <numa.h>
19 # include <numaif.h>
20 #endif
21
22 #include "rseq-utils.h"
23 #include "smp.h"
24
25 /*
26 * rseq-mempool.c: rseq CPU-Local Storage (CLS) memory allocator.
27 *
28 * The rseq per-CPU memory allocator allows the application the request
29 * memory pools of CPU-Local memory each of containing objects of a
30 * given size (rounded to next power of 2), reserving a given virtual
31 * address size per CPU, for a given maximum number of CPUs.
32 *
33 * The per-CPU memory allocator is analogous to TLS (Thread-Local
34 * Storage) memory: TLS is Thread-Local Storage, whereas the per-CPU
35 * memory allocator provides CPU-Local Storage.
36 */
37
38 #define POOL_SET_NR_ENTRIES RSEQ_BITS_PER_LONG
39
40 /*
41 * Smallest allocation should hold enough space for a free list pointer.
42 */
43 #if RSEQ_BITS_PER_LONG == 64
44 # define POOL_SET_MIN_ENTRY 3 /* Smallest item_len=8 */
45 #else
46 # define POOL_SET_MIN_ENTRY 2 /* Smallest item_len=4 */
47 #endif
48
49 /*
50 * Skip pool index 0 to ensure allocated entries at index 0 do not match
51 * a NULL pointer.
52 */
53 #define FIRST_POOL 1
54
55 #define BIT_PER_ULONG (8 * sizeof(unsigned long))
56
57 #define MOVE_PAGES_BATCH_SIZE 4096
58
59 #define RANGE_HEADER_OFFSET sizeof(struct rseq_mempool_range)
60
61 struct free_list_node;
62
63 struct free_list_node {
64 struct free_list_node *next;
65 };
66
67 enum mempool_type {
68 MEMPOOL_TYPE_PERCPU = 0, /* Default */
69 MEMPOOL_TYPE_GLOBAL = 1,
70 };
71
72 struct rseq_mempool_attr {
73 bool mmap_set;
74 void *(*mmap_func)(void *priv, size_t len);
75 int (*munmap_func)(void *priv, void *ptr, size_t len);
76 void *mmap_priv;
77
78 bool robust_set;
79
80 enum mempool_type type;
81 size_t stride;
82 int max_nr_cpus;
83 };
84
85 struct rseq_mempool_range;
86
87 struct rseq_mempool_range {
88 struct rseq_mempool_range *next;
89 struct rseq_mempool *pool; /* Backward ref. to container pool. */
90 void *header;
91 void *base;
92 size_t next_unused;
93 /* Track alloc/free. */
94 unsigned long *alloc_bitmap;
95 };
96
97 struct rseq_mempool {
98 /* Linked-list of ranges. */
99 struct rseq_mempool_range *ranges;
100
101 size_t item_len;
102 int item_order;
103
104 /*
105 * The free list chains freed items on the CPU 0 address range.
106 * We should rethink this decision if false sharing between
107 * malloc/free from other CPUs and data accesses from CPU 0
108 * becomes an issue. This is a NULL-terminated singly-linked
109 * list.
110 */
111 struct free_list_node *free_list_head;
112
113 /* This lock protects allocation/free within the pool. */
114 pthread_mutex_t lock;
115
116 struct rseq_mempool_attr attr;
117 char *name;
118 };
119
120 /*
121 * Pool set entries are indexed by item_len rounded to the next power of
122 * 2. A pool set can contain NULL pool entries, in which case the next
123 * large enough entry will be used for allocation.
124 */
125 struct rseq_mempool_set {
126 /* This lock protects add vs malloc/zmalloc within the pool set. */
127 pthread_mutex_t lock;
128 struct rseq_mempool *entries[POOL_SET_NR_ENTRIES];
129 };
130
131 static
132 void *__rseq_pool_percpu_ptr(struct rseq_mempool *pool, int cpu,
133 uintptr_t item_offset, size_t stride)
134 {
135 /* TODO: Implement multi-ranges support. */
136 return pool->ranges->base + (stride * cpu) + item_offset;
137 }
138
139 static
140 void rseq_percpu_zero_item(struct rseq_mempool *pool, uintptr_t item_offset)
141 {
142 int i;
143
144 for (i = 0; i < pool->attr.max_nr_cpus; i++) {
145 char *p = __rseq_pool_percpu_ptr(pool, i,
146 item_offset, pool->attr.stride);
147 memset(p, 0, pool->item_len);
148 }
149 }
150
151 //TODO: this will need to be reimplemented for ranges,
152 //which cannot use __rseq_pool_percpu_ptr.
153 #if 0 //#ifdef HAVE_LIBNUMA
154 static
155 int rseq_mempool_range_init_numa(struct rseq_mempool *pool, struct rseq_mempool_range *range, int numa_flags)
156 {
157 unsigned long nr_pages, page_len;
158 long ret;
159 int cpu;
160
161 if (!numa_flags)
162 return 0;
163 page_len = rseq_get_page_len();
164 nr_pages = pool->attr.stride >> rseq_get_count_order_ulong(page_len);
165 for (cpu = 0; cpu < pool->attr.max_nr_cpus; cpu++) {
166
167 int status[MOVE_PAGES_BATCH_SIZE];
168 int nodes[MOVE_PAGES_BATCH_SIZE];
169 void *pages[MOVE_PAGES_BATCH_SIZE];
170
171 nodes[0] = numa_node_of_cpu(cpu);
172 for (size_t k = 1; k < RSEQ_ARRAY_SIZE(nodes); ++k) {
173 nodes[k] = nodes[0];
174 }
175
176 for (unsigned long page = 0; page < nr_pages;) {
177
178 size_t max_k = RSEQ_ARRAY_SIZE(pages);
179 size_t left = nr_pages - page;
180
181 if (left < max_k) {
182 max_k = left;
183 }
184
185 for (size_t k = 0; k < max_k; ++k, ++page) {
186 pages[k] = __rseq_pool_percpu_ptr(pool, cpu, page * page_len);
187 status[k] = -EPERM;
188 }
189
190 ret = move_pages(0, max_k, pages, nodes, status, numa_flags);
191
192 if (ret < 0)
193 return ret;
194
195 if (ret > 0) {
196 fprintf(stderr, "%lu pages were not migrated\n", ret);
197 for (size_t k = 0; k < max_k; ++k) {
198 if (status[k] < 0)
199 fprintf(stderr,
200 "Error while moving page %p to numa node %d: %u\n",
201 pages[k], nodes[k], -status[k]);
202 }
203 }
204 }
205 }
206 return 0;
207 }
208
209 int rseq_mempool_init_numa(struct rseq_mempool *pool, int numa_flags)
210 {
211 struct rseq_mempool_range *range;
212 int ret;
213
214 if (!numa_flags)
215 return 0;
216 for (range = pool->ranges; range; range = range->next) {
217 ret = rseq_mempool_range_init_numa(pool, range, numa_flags);
218 if (ret)
219 return ret;
220 }
221 return 0;
222 }
223 #else
224 int rseq_mempool_init_numa(struct rseq_mempool *pool __attribute__((unused)),
225 int numa_flags __attribute__((unused)))
226 {
227 return 0;
228 }
229 #endif
230
231 static
232 void *default_mmap_func(void *priv __attribute__((unused)), size_t len)
233 {
234 void *base;
235
236 base = mmap(NULL, len, PROT_READ | PROT_WRITE,
237 MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
238 if (base == MAP_FAILED)
239 return NULL;
240 return base;
241 }
242
243 static
244 int default_munmap_func(void *priv __attribute__((unused)), void *ptr, size_t len)
245 {
246 return munmap(ptr, len);
247 }
248
249 static
250 int create_alloc_bitmap(struct rseq_mempool *pool, struct rseq_mempool_range *range)
251 {
252 size_t count;
253
254 count = ((pool->attr.stride >> pool->item_order) + BIT_PER_ULONG - 1) / BIT_PER_ULONG;
255
256 /*
257 * Not being able to create the validation bitmap is an error
258 * that needs to be reported.
259 */
260 range->alloc_bitmap = calloc(count, sizeof(unsigned long));
261 if (!range->alloc_bitmap)
262 return -1;
263 return 0;
264 }
265
266 static
267 const char *get_pool_name(const struct rseq_mempool *pool)
268 {
269 return pool->name ? : "<anonymous>";
270 }
271
272 static
273 bool addr_in_pool(const struct rseq_mempool *pool, void *addr)
274 {
275 struct rseq_mempool_range *range;
276
277 for (range = pool->ranges; range; range = range->next) {
278 if (addr >= range->base && addr < range->base + range->next_unused)
279 return true;
280 }
281 return false;
282 }
283
284 /* Always inline for __builtin_return_address(0). */
285 static inline __attribute__((always_inline))
286 void check_free_list(const struct rseq_mempool *pool)
287 {
288 size_t total_item = 0, total_never_allocated = 0, total_freed = 0,
289 max_list_traversal = 0, traversal_iteration = 0;
290 struct rseq_mempool_range *range;
291
292 if (!pool->attr.robust_set)
293 return;
294
295 for (range = pool->ranges; range; range = range->next) {
296 total_item += pool->attr.stride >> pool->item_order;
297 total_never_allocated += (pool->attr.stride - range->next_unused) >> pool->item_order;
298 }
299 max_list_traversal = total_item - total_never_allocated;
300
301 for (struct free_list_node *node = pool->free_list_head, *prev = NULL;
302 node;
303 prev = node,
304 node = node->next) {
305
306 void *node_addr = node;
307
308 if (traversal_iteration >= max_list_traversal) {
309 fprintf(stderr, "%s: Corrupted free-list; Possibly infinite loop in pool \"%s\" (%p), caller %p.\n",
310 __func__, get_pool_name(pool), pool, __builtin_return_address(0));
311 abort();
312 }
313
314 /* Node is out of range. */
315 if (!addr_in_pool(pool, node_addr)) {
316 if (prev)
317 fprintf(stderr, "%s: Corrupted free-list node %p -> [out-of-range %p] in pool \"%s\" (%p), caller %p.\n",
318 __func__, prev, node, get_pool_name(pool), pool, __builtin_return_address(0));
319 else
320 fprintf(stderr, "%s: Corrupted free-list node [out-of-range %p] in pool \"%s\" (%p), caller %p.\n",
321 __func__, node, get_pool_name(pool), pool, __builtin_return_address(0));
322 abort();
323 }
324
325 traversal_iteration++;
326 total_freed++;
327 }
328
329 if (total_never_allocated + total_freed != total_item) {
330 fprintf(stderr, "%s: Corrupted free-list in pool \"%s\" (%p); total-item: %zu total-never-used: %zu total-freed: %zu, caller %p.\n",
331 __func__, get_pool_name(pool), pool, total_item, total_never_allocated, total_freed, __builtin_return_address(0));
332 abort();
333 }
334 }
335
336 /* Always inline for __builtin_return_address(0). */
337 static inline __attribute__((always_inline))
338 void destroy_alloc_bitmap(struct rseq_mempool *pool, struct rseq_mempool_range *range)
339 {
340 unsigned long *bitmap = range->alloc_bitmap;
341 size_t count, total_leaks = 0;
342
343 if (!bitmap)
344 return;
345
346 count = ((pool->attr.stride >> pool->item_order) + BIT_PER_ULONG - 1) / BIT_PER_ULONG;
347
348 /* Assert that all items in the pool were freed. */
349 for (size_t k = 0; k < count; ++k)
350 total_leaks += rseq_hweight_ulong(bitmap[k]);
351 if (total_leaks) {
352 fprintf(stderr, "%s: Pool \"%s\" (%p) has %zu leaked items on destroy, caller: %p.\n",
353 __func__, get_pool_name(pool), pool, total_leaks, (void *) __builtin_return_address(0));
354 abort();
355 }
356
357 free(bitmap);
358 }
359
360 /* Always inline for __builtin_return_address(0). */
361 static inline __attribute__((always_inline))
362 int rseq_mempool_range_destroy(struct rseq_mempool *pool,
363 struct rseq_mempool_range *range)
364 {
365 destroy_alloc_bitmap(pool, range);
366 /* range is a header located one page before the aligned mapping. */
367 return pool->attr.munmap_func(pool->attr.mmap_priv, range->header,
368 (pool->attr.stride * pool->attr.max_nr_cpus) + rseq_get_page_len());
369 }
370
371 /*
372 * Allocate a memory mapping aligned on @alignment, with an optional
373 * @pre_header before the mapping.
374 */
375 static
376 void *aligned_mmap_anonymous(struct rseq_mempool *pool,
377 size_t page_size, size_t len, size_t alignment,
378 void **pre_header, size_t pre_header_len)
379 {
380 size_t minimum_page_count, page_count, extra, total_allocate = 0;
381 int page_order;
382 void *ptr;
383
384 if (len < page_size || alignment < page_size ||
385 !is_pow2(len) || !is_pow2(alignment)) {
386 errno = EINVAL;
387 return NULL;
388 }
389 page_order = rseq_get_count_order_ulong(page_size);
390 if (page_order < 0) {
391 errno = EINVAL;
392 return NULL;
393 }
394 if (pre_header_len && (pre_header_len & (page_size - 1))) {
395 errno = EINVAL;
396 return NULL;
397 }
398
399 minimum_page_count = (pre_header_len + len) >> page_order;
400 page_count = (pre_header_len + len + alignment - page_size) >> page_order;
401
402 assert(page_count >= minimum_page_count);
403
404 ptr = pool->attr.mmap_func(pool->attr.mmap_priv, page_count << page_order);
405 if (!ptr)
406 goto alloc_error;
407
408 total_allocate = page_count << page_order;
409
410 if (!(((uintptr_t) ptr + pre_header_len) & (alignment - 1))) {
411 /* Pointer is already aligned. ptr points to pre_header. */
412 goto out;
413 }
414
415 /* Unmap extra before. */
416 extra = offset_align((uintptr_t) ptr + pre_header_len, alignment);
417 assert(!(extra & (page_size - 1)));
418 if (pool->attr.munmap_func(pool->attr.mmap_priv, ptr, extra)) {
419 perror("munmap");
420 abort();
421 }
422 total_allocate -= extra;
423 ptr += extra; /* ptr points to pre_header */
424 page_count -= extra >> page_order;
425 out:
426 assert(page_count >= minimum_page_count);
427
428 if (page_count > minimum_page_count) {
429 void *extra_ptr;
430
431 /* Unmap extra after. */
432 extra_ptr = ptr + (minimum_page_count << page_order);
433 extra = (page_count - minimum_page_count) << page_order;
434 if (pool->attr.munmap_func(pool->attr.mmap_priv, extra_ptr, extra)) {
435 perror("munmap");
436 abort();
437 }
438 total_allocate -= extra;
439 }
440
441 assert(!(((uintptr_t)ptr + pre_header_len) & (alignment - 1)));
442 assert(total_allocate == len + pre_header_len);
443
444 alloc_error:
445 if (ptr) {
446 if (pre_header)
447 *pre_header = ptr;
448 ptr += pre_header_len;
449 }
450 return ptr;
451 }
452
453 static
454 struct rseq_mempool_range *rseq_mempool_range_create(struct rseq_mempool *pool)
455 {
456 struct rseq_mempool_range *range;
457 unsigned long page_size;
458 void *header;
459 void *base;
460
461 page_size = rseq_get_page_len();
462
463 base = aligned_mmap_anonymous(pool, page_size,
464 pool->attr.stride * pool->attr.max_nr_cpus,
465 pool->attr.stride,
466 &header, page_size);
467 if (!base)
468 return NULL;
469 range = (struct rseq_mempool_range *) (base - RANGE_HEADER_OFFSET);
470 range->pool = pool;
471 range->base = base;
472 range->header = header;
473 if (pool->attr.robust_set) {
474 if (create_alloc_bitmap(pool, range))
475 goto error_alloc;
476 }
477 return range;
478
479 error_alloc:
480 (void) rseq_mempool_range_destroy(pool, range);
481 return NULL;
482 }
483
484 int rseq_mempool_destroy(struct rseq_mempool *pool)
485 {
486 struct rseq_mempool_range *range, *next_range;
487 int ret = 0;
488
489 if (!pool)
490 return 0;
491 check_free_list(pool);
492 /* Iteration safe against removal. */
493 for (range = pool->ranges; range && (next_range = range->next, 1); range = next_range) {
494 if (rseq_mempool_range_destroy(pool, range))
495 goto end;
496 /* Update list head to keep list coherent in case of partial failure. */
497 pool->ranges = next_range;
498 }
499 pthread_mutex_destroy(&pool->lock);
500 free(pool->name);
501 memset(pool, 0, sizeof(*pool));
502 end:
503 return ret;
504 }
505
506 struct rseq_mempool *rseq_mempool_create(const char *pool_name,
507 size_t item_len, const struct rseq_mempool_attr *_attr)
508 {
509 struct rseq_mempool *pool;
510 struct rseq_mempool_attr attr = {};
511 int order;
512
513 /* Make sure each item is large enough to contain free list pointers. */
514 if (item_len < sizeof(void *))
515 item_len = sizeof(void *);
516
517 /* Align item_len on next power of two. */
518 order = rseq_get_count_order_ulong(item_len);
519 if (order < 0) {
520 errno = EINVAL;
521 return NULL;
522 }
523 item_len = 1UL << order;
524
525 if (_attr)
526 memcpy(&attr, _attr, sizeof(attr));
527 if (!attr.mmap_set) {
528 attr.mmap_func = default_mmap_func;
529 attr.munmap_func = default_munmap_func;
530 attr.mmap_priv = NULL;
531 }
532
533 switch (attr.type) {
534 case MEMPOOL_TYPE_PERCPU:
535 if (attr.max_nr_cpus < 0) {
536 errno = EINVAL;
537 return NULL;
538 }
539 if (attr.max_nr_cpus == 0) {
540 /* Auto-detect */
541 attr.max_nr_cpus = get_possible_cpus_array_len();
542 if (attr.max_nr_cpus == 0) {
543 errno = EINVAL;
544 return NULL;
545 }
546 }
547 break;
548 case MEMPOOL_TYPE_GLOBAL:
549 break;
550 }
551 if (!attr.stride)
552 attr.stride = RSEQ_MEMPOOL_STRIDE; /* Use default */
553 if (item_len > attr.stride || attr.stride < (size_t) rseq_get_page_len() ||
554 !is_pow2(attr.stride)) {
555 errno = EINVAL;
556 return NULL;
557 }
558
559 pool = calloc(1, sizeof(struct rseq_mempool));
560 if (!pool)
561 return NULL;
562
563 memcpy(&pool->attr, &attr, sizeof(attr));
564 pthread_mutex_init(&pool->lock, NULL);
565 pool->item_len = item_len;
566 pool->item_order = order;
567
568 //TODO: implement multi-range support.
569 pool->ranges = rseq_mempool_range_create(pool);
570 if (!pool->ranges)
571 goto error_alloc;
572
573 if (pool_name) {
574 pool->name = strdup(pool_name);
575 if (!pool->name)
576 goto error_alloc;
577 }
578 return pool;
579
580 error_alloc:
581 rseq_mempool_destroy(pool);
582 errno = ENOMEM;
583 return NULL;
584 }
585
586 /* Always inline for __builtin_return_address(0). */
587 static inline __attribute__((always_inline))
588 void set_alloc_slot(struct rseq_mempool *pool, size_t item_offset)
589 {
590 unsigned long *bitmap = pool->ranges->alloc_bitmap;
591 size_t item_index = item_offset >> pool->item_order;
592 unsigned long mask;
593 size_t k;
594
595 if (!bitmap)
596 return;
597
598 k = item_index / BIT_PER_ULONG;
599 mask = 1ULL << (item_index % BIT_PER_ULONG);
600
601 /* Print error if bit is already set. */
602 if (bitmap[k] & mask) {
603 fprintf(stderr, "%s: Allocator corruption detected for pool: \"%s\" (%p), item offset: %zu, caller: %p.\n",
604 __func__, get_pool_name(pool), pool, item_offset, (void *) __builtin_return_address(0));
605 abort();
606 }
607 bitmap[k] |= mask;
608 }
609
610 static
611 void __rseq_percpu *__rseq_percpu_malloc(struct rseq_mempool *pool, bool zeroed)
612 {
613 struct free_list_node *node;
614 uintptr_t item_offset;
615 void __rseq_percpu *addr;
616
617 pthread_mutex_lock(&pool->lock);
618 /* Get first entry from free list. */
619 node = pool->free_list_head;
620 if (node != NULL) {
621 /* Remove node from free list (update head). */
622 pool->free_list_head = node->next;
623 item_offset = (uintptr_t) ((void *) node - pool->ranges->base);
624 addr = (void __rseq_percpu *) (pool->ranges->base + item_offset);
625 goto end;
626 }
627 if (pool->ranges->next_unused + pool->item_len > pool->attr.stride) {
628 errno = ENOMEM;
629 addr = NULL;
630 goto end;
631 }
632 item_offset = pool->ranges->next_unused;
633 addr = (void __rseq_percpu *) (pool->ranges->base + item_offset);
634 pool->ranges->next_unused += pool->item_len;
635 end:
636 if (addr)
637 set_alloc_slot(pool, item_offset);
638 pthread_mutex_unlock(&pool->lock);
639 if (zeroed && addr)
640 rseq_percpu_zero_item(pool, item_offset);
641 return addr;
642 }
643
644 void __rseq_percpu *rseq_mempool_percpu_malloc(struct rseq_mempool *pool)
645 {
646 return __rseq_percpu_malloc(pool, false);
647 }
648
649 void __rseq_percpu *rseq_mempool_percpu_zmalloc(struct rseq_mempool *pool)
650 {
651 return __rseq_percpu_malloc(pool, true);
652 }
653
654 /* Always inline for __builtin_return_address(0). */
655 static inline __attribute__((always_inline))
656 void clear_alloc_slot(struct rseq_mempool *pool, size_t item_offset)
657 {
658 unsigned long *bitmap = pool->ranges->alloc_bitmap;
659 size_t item_index = item_offset >> pool->item_order;
660 unsigned long mask;
661 size_t k;
662
663 if (!bitmap)
664 return;
665
666 k = item_index / BIT_PER_ULONG;
667 mask = 1ULL << (item_index % BIT_PER_ULONG);
668
669 /* Print error if bit is not set. */
670 if (!(bitmap[k] & mask)) {
671 fprintf(stderr, "%s: Double-free detected for pool: \"%s\" (%p), item offset: %zu, caller: %p.\n",
672 __func__, get_pool_name(pool), pool, item_offset,
673 (void *) __builtin_return_address(0));
674 abort();
675 }
676 bitmap[k] &= ~mask;
677 }
678
679 void librseq_mempool_percpu_free(void __rseq_percpu *_ptr, size_t stride)
680 {
681 uintptr_t ptr = (uintptr_t) _ptr;
682 void *range_base = (void *) (ptr & (~(stride - 1)));
683 struct rseq_mempool_range *range = (struct rseq_mempool_range *) (range_base - RANGE_HEADER_OFFSET);
684 struct rseq_mempool *pool = range->pool;
685 uintptr_t item_offset = ptr & (stride - 1);
686 struct free_list_node *head, *item;
687
688 pthread_mutex_lock(&pool->lock);
689 clear_alloc_slot(pool, item_offset);
690 /* Add ptr to head of free list */
691 head = pool->free_list_head;
692 /* Free-list is in CPU 0 range. */
693 item = (struct free_list_node *) ptr;
694 item->next = head;
695 pool->free_list_head = item;
696 pthread_mutex_unlock(&pool->lock);
697 }
698
699 struct rseq_mempool_set *rseq_mempool_set_create(void)
700 {
701 struct rseq_mempool_set *pool_set;
702
703 pool_set = calloc(1, sizeof(struct rseq_mempool_set));
704 if (!pool_set)
705 return NULL;
706 pthread_mutex_init(&pool_set->lock, NULL);
707 return pool_set;
708 }
709
710 int rseq_mempool_set_destroy(struct rseq_mempool_set *pool_set)
711 {
712 int order, ret;
713
714 for (order = POOL_SET_MIN_ENTRY; order < POOL_SET_NR_ENTRIES; order++) {
715 struct rseq_mempool *pool = pool_set->entries[order];
716
717 if (!pool)
718 continue;
719 ret = rseq_mempool_destroy(pool);
720 if (ret)
721 return ret;
722 pool_set->entries[order] = NULL;
723 }
724 pthread_mutex_destroy(&pool_set->lock);
725 free(pool_set);
726 return 0;
727 }
728
729 /* Ownership of pool is handed over to pool set on success. */
730 int rseq_mempool_set_add_pool(struct rseq_mempool_set *pool_set, struct rseq_mempool *pool)
731 {
732 size_t item_order = pool->item_order;
733 int ret = 0;
734
735 pthread_mutex_lock(&pool_set->lock);
736 if (pool_set->entries[item_order]) {
737 errno = EBUSY;
738 ret = -1;
739 goto end;
740 }
741 pool_set->entries[pool->item_order] = pool;
742 end:
743 pthread_mutex_unlock(&pool_set->lock);
744 return ret;
745 }
746
747 static
748 void __rseq_percpu *__rseq_mempool_set_malloc(struct rseq_mempool_set *pool_set, size_t len, bool zeroed)
749 {
750 int order, min_order = POOL_SET_MIN_ENTRY;
751 struct rseq_mempool *pool;
752 void __rseq_percpu *addr;
753
754 order = rseq_get_count_order_ulong(len);
755 if (order > POOL_SET_MIN_ENTRY)
756 min_order = order;
757 again:
758 pthread_mutex_lock(&pool_set->lock);
759 /* First smallest present pool where @len fits. */
760 for (order = min_order; order < POOL_SET_NR_ENTRIES; order++) {
761 pool = pool_set->entries[order];
762
763 if (!pool)
764 continue;
765 if (pool->item_len >= len)
766 goto found;
767 }
768 pool = NULL;
769 found:
770 pthread_mutex_unlock(&pool_set->lock);
771 if (pool) {
772 addr = __rseq_percpu_malloc(pool, zeroed);
773 if (addr == NULL && errno == ENOMEM) {
774 /*
775 * If the allocation failed, try again with a
776 * larger pool.
777 */
778 min_order = order + 1;
779 goto again;
780 }
781 } else {
782 /* Not found. */
783 errno = ENOMEM;
784 addr = NULL;
785 }
786 return addr;
787 }
788
789 void __rseq_percpu *rseq_mempool_set_percpu_malloc(struct rseq_mempool_set *pool_set, size_t len)
790 {
791 return __rseq_mempool_set_malloc(pool_set, len, false);
792 }
793
794 void __rseq_percpu *rseq_mempool_set_percpu_zmalloc(struct rseq_mempool_set *pool_set, size_t len)
795 {
796 return __rseq_mempool_set_malloc(pool_set, len, true);
797 }
798
799 struct rseq_mempool_attr *rseq_mempool_attr_create(void)
800 {
801 return calloc(1, sizeof(struct rseq_mempool_attr));
802 }
803
804 void rseq_mempool_attr_destroy(struct rseq_mempool_attr *attr)
805 {
806 free(attr);
807 }
808
809 int rseq_mempool_attr_set_mmap(struct rseq_mempool_attr *attr,
810 void *(*mmap_func)(void *priv, size_t len),
811 int (*munmap_func)(void *priv, void *ptr, size_t len),
812 void *mmap_priv)
813 {
814 if (!attr) {
815 errno = EINVAL;
816 return -1;
817 }
818 attr->mmap_set = true;
819 attr->mmap_func = mmap_func;
820 attr->munmap_func = munmap_func;
821 attr->mmap_priv = mmap_priv;
822 return 0;
823 }
824
825 int rseq_mempool_attr_set_robust(struct rseq_mempool_attr *attr)
826 {
827 if (!attr) {
828 errno = EINVAL;
829 return -1;
830 }
831 attr->robust_set = true;
832 return 0;
833 }
834
835 int rseq_mempool_attr_set_percpu(struct rseq_mempool_attr *attr,
836 size_t stride, int max_nr_cpus)
837 {
838 if (!attr) {
839 errno = EINVAL;
840 return -1;
841 }
842 attr->type = MEMPOOL_TYPE_PERCPU;
843 attr->stride = stride;
844 attr->max_nr_cpus = max_nr_cpus;
845 return 0;
846 }
847
848 int rseq_mempool_attr_set_global(struct rseq_mempool_attr *attr,
849 size_t stride)
850 {
851 if (!attr) {
852 errno = EINVAL;
853 return -1;
854 }
855 attr->type = MEMPOOL_TYPE_GLOBAL;
856 attr->stride = stride;
857 attr->max_nr_cpus = 1;
858 return 0;
859 }
This page took 0.072292 seconds and 4 git commands to generate.