Documentation: gpiolib: document new interface
[deliverable/linux.git] / Documentation / gpio / consumer.txt
CommitLineData
fd8e198c
AC
1GPIO Descriptor Consumer Interface
2==================================
3
4This document describes the consumer interface of the GPIO framework. Note that
5it describes the new descriptor-based interface. For a description of the
6deprecated integer-based GPIO interface please refer to gpio-legacy.txt.
7
8
9Guidelines for GPIOs consumers
10==============================
11
12Drivers that can't work without standard GPIO calls should have Kconfig entries
13that depend on GPIOLIB. The functions that allow a driver to obtain and use
14GPIOs are available by including the following file:
15
16 #include <linux/gpio/consumer.h>
17
18All the functions that work with the descriptor-based GPIO interface are
19prefixed with gpiod_. The gpio_ prefix is used for the legacy interface. No
20other function in the kernel should use these prefixes.
21
22
23Obtaining and Disposing GPIOs
24=============================
25
26With the descriptor-based interface, GPIOs are identified with an opaque,
27non-forgeable handler that must be obtained through a call to one of the
28gpiod_get() functions. Like many other kernel subsystems, gpiod_get() takes the
29device that will use the GPIO and the function the requested GPIO is supposed to
30fulfill:
31
32 struct gpio_desc *gpiod_get(struct device *dev, const char *con_id)
33
34If a function is implemented by using several GPIOs together (e.g. a simple LED
35device that displays digits), an additional index argument can be specified:
36
37 struct gpio_desc *gpiod_get_index(struct device *dev,
38 const char *con_id, unsigned int idx)
39
40Both functions return either a valid GPIO descriptor, or an error code checkable
41with IS_ERR(). They will never return a NULL pointer.
42
43Device-managed variants of these functions are also defined:
44
45 struct gpio_desc *devm_gpiod_get(struct device *dev, const char *con_id)
46
47 struct gpio_desc *devm_gpiod_get_index(struct device *dev,
48 const char *con_id,
49 unsigned int idx)
50
51A GPIO descriptor can be disposed of using the gpiod_put() function:
52
53 void gpiod_put(struct gpio_desc *desc)
54
55It is strictly forbidden to use a descriptor after calling this function. The
56device-managed variant is, unsurprisingly:
57
58 void devm_gpiod_put(struct device *dev, struct gpio_desc *desc)
59
60
61Using GPIOs
62===========
63
64Setting Direction
65-----------------
66The first thing a driver must do with a GPIO is setting its direction. This is
67done by invoking one of the gpiod_direction_*() functions:
68
69 int gpiod_direction_input(struct gpio_desc *desc)
70 int gpiod_direction_output(struct gpio_desc *desc, int value)
71
72The return value is zero for success, else a negative errno. It should be
73checked, since the get/set calls don't return errors and since misconfiguration
74is possible. You should normally issue these calls from a task context. However,
75for spinlock-safe GPIOs it is OK to use them before tasking is enabled, as part
76of early board setup.
77
78For output GPIOs, the value provided becomes the initial output value. This
79helps avoid signal glitching during system startup.
80
81A driver can also query the current direction of a GPIO:
82
83 int gpiod_get_direction(const struct gpio_desc *desc)
84
85This function will return either GPIOF_DIR_IN or GPIOF_DIR_OUT.
86
87Be aware that there is no default direction for GPIOs. Therefore, **using a GPIO
88without setting its direction first is illegal and will result in undefined
89behavior!**
90
91
92Spinlock-Safe GPIO Access
93-------------------------
94Most GPIO controllers can be accessed with memory read/write instructions. Those
95don't need to sleep, and can safely be done from inside hard (non-threaded) IRQ
96handlers and similar contexts.
97
98Use the following calls to access GPIOs from an atomic context:
99
100 int gpiod_get_value(const struct gpio_desc *desc);
101 void gpiod_set_value(struct gpio_desc *desc, int value);
102
103The values are boolean, zero for low, nonzero for high. When reading the value
104of an output pin, the value returned should be what's seen on the pin. That
105won't always match the specified output value, because of issues including
106open-drain signaling and output latencies.
107
108The get/set calls do not return errors because "invalid GPIO" should have been
109reported earlier from gpiod_direction_*(). However, note that not all platforms
110can read the value of output pins; those that can't should always return zero.
111Also, using these calls for GPIOs that can't safely be accessed without sleeping
112(see below) is an error.
113
114
115GPIO Access That May Sleep
116--------------------------
117Some GPIO controllers must be accessed using message based buses like I2C or
118SPI. Commands to read or write those GPIO values require waiting to get to the
119head of a queue to transmit a command and get its response. This requires
120sleeping, which can't be done from inside IRQ handlers.
121
122Platforms that support this type of GPIO distinguish them from other GPIOs by
123returning nonzero from this call:
124
125 int gpiod_cansleep(const struct gpio_desc *desc)
126
127To access such GPIOs, a different set of accessors is defined:
128
129 int gpiod_get_value_cansleep(const struct gpio_desc *desc)
130 void gpiod_set_value_cansleep(struct gpio_desc *desc, int value)
131
132Accessing such GPIOs requires a context which may sleep, for example a threaded
133IRQ handler, and those accessors must be used instead of spinlock-safe
134accessors without the cansleep() name suffix.
135
136Other than the fact that these accessors might sleep, and will work on GPIOs
137that can't be accessed from hardIRQ handlers, these calls act the same as the
138spinlock-safe calls.
139
140
141Active-low State and Raw GPIO Values
142------------------------------------
143Device drivers like to manage the logical state of a GPIO, i.e. the value their
144device will actually receive, no matter what lies between it and the GPIO line.
145In some cases, it might make sense to control the actual GPIO line value. The
146following set of calls ignore the active-low property of a GPIO and work on the
147raw line value:
148
149 int gpiod_get_raw_value(const struct gpio_desc *desc)
150 void gpiod_set_raw_value(struct gpio_desc *desc, int value)
151 int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc)
152 void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value)
153
154The active-low state of a GPIO can also be queried using the following call:
155
156 int gpiod_is_active_low(const struct gpio_desc *desc)
157
158Note that these functions should only be used with great moderation ; a driver
159should not have to care about the physical line level.
160
161GPIOs mapped to IRQs
162--------------------
163GPIO lines can quite often be used as IRQs. You can get the IRQ number
164corresponding to a given GPIO using the following call:
165
166 int gpiod_to_irq(const struct gpio_desc *desc)
167
168It will return an IRQ number, or an negative errno code if the mapping can't be
169done (most likely because that particular GPIO cannot be used as IRQ). It is an
170unchecked error to use a GPIO that wasn't set up as an input using
171gpiod_direction_input(), or to use an IRQ number that didn't originally come
172from gpiod_to_irq(). gpiod_to_irq() is not allowed to sleep.
173
174Non-error values returned from gpiod_to_irq() can be passed to request_irq() or
175free_irq(). They will often be stored into IRQ resources for platform devices,
176by the board-specific initialization code. Note that IRQ trigger options are
177part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are system wakeup
178capabilities.
179
180
181Interacting With the Legacy GPIO Subsystem
182==========================================
183Many kernel subsystems still handle GPIOs using the legacy integer-based
184interface. Although it is strongly encouraged to upgrade them to the safer
185descriptor-based API, the following two functions allow you to convert a GPIO
186descriptor into the GPIO integer namespace and vice-versa:
187
188 int desc_to_gpio(const struct gpio_desc *desc)
189 struct gpio_desc *gpio_to_desc(unsigned gpio)
190
191The GPIO number returned by desc_to_gpio() can be safely used as long as the
192GPIO descriptor has not been freed. All the same, a GPIO number passed to
193gpio_to_desc() must have been properly acquired, and usage of the returned GPIO
194descriptor is only possible after the GPIO number has been released.
195
196Freeing a GPIO obtained by one API with the other API is forbidden and an
197unchecked error.
This page took 0.035142 seconds and 5 git commands to generate.