Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
a8ab26fe 15 * This code is released under the GNU General Public License version 2
1da177e4
LT
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
a8ab26fe
AK
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
76e4f660 37 * Ashok Raj : CPU hotplug support
1da177e4
LT
38 */
39
a8ab26fe 40
1da177e4
LT
41#include <linux/init.h>
42
43#include <linux/mm.h>
44#include <linux/kernel_stat.h>
45#include <linux/smp_lock.h>
1da177e4
LT
46#include <linux/bootmem.h>
47#include <linux/thread_info.h>
48#include <linux/module.h>
1da177e4
LT
49#include <linux/delay.h>
50#include <linux/mc146818rtc.h>
a3bc0dbc
AM
51#include <linux/smp.h>
52
1da177e4
LT
53#include <asm/mtrr.h>
54#include <asm/pgalloc.h>
55#include <asm/desc.h>
56#include <asm/kdebug.h>
57#include <asm/tlbflush.h>
58#include <asm/proto.h>
75152114 59#include <asm/nmi.h>
9cdd304b
AV
60#include <asm/irq.h>
61#include <asm/hw_irq.h>
488fc08d 62#include <asm/numa.h>
1da177e4
LT
63
64/* Number of siblings per CPU package */
65int smp_num_siblings = 1;
2ee60e17 66EXPORT_SYMBOL(smp_num_siblings);
1da177e4 67
1e9f28fa
SS
68/* Last level cache ID of each logical CPU */
69u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
2ee60e17 70EXPORT_SYMBOL(cpu_llc_id);
1e9f28fa 71
1da177e4 72/* Bitmask of currently online CPUs */
6c231b7b 73cpumask_t cpu_online_map __read_mostly;
1da177e4 74
a8ab26fe
AK
75EXPORT_SYMBOL(cpu_online_map);
76
77/*
78 * Private maps to synchronize booting between AP and BP.
79 * Probably not needed anymore, but it makes for easier debugging. -AK
80 */
1da177e4
LT
81cpumask_t cpu_callin_map;
82cpumask_t cpu_callout_map;
2ee60e17 83EXPORT_SYMBOL(cpu_callout_map);
a8ab26fe
AK
84
85cpumask_t cpu_possible_map;
86EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
87
88/* Per CPU bogomips and other parameters */
89struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
2ee60e17 90EXPORT_SYMBOL(cpu_data);
1da177e4 91
a8ab26fe
AK
92/* Set when the idlers are all forked */
93int smp_threads_ready;
94
94605eff 95/* representing HT siblings of each logical CPU */
6c231b7b 96cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
2ee60e17 97EXPORT_SYMBOL(cpu_sibling_map);
94605eff
SS
98
99/* representing HT and core siblings of each logical CPU */
6c231b7b 100cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
2df9fa36 101EXPORT_SYMBOL(cpu_core_map);
1da177e4
LT
102
103/*
104 * Trampoline 80x86 program as an array.
105 */
106
a8ab26fe
AK
107extern unsigned char trampoline_data[];
108extern unsigned char trampoline_end[];
1da177e4 109
76e4f660
AR
110/* State of each CPU */
111DEFINE_PER_CPU(int, cpu_state) = { 0 };
112
113/*
114 * Store all idle threads, this can be reused instead of creating
115 * a new thread. Also avoids complicated thread destroy functionality
116 * for idle threads.
117 */
118struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
119
120#define get_idle_for_cpu(x) (idle_thread_array[(x)])
121#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
122
1da177e4
LT
123/*
124 * Currently trivial. Write the real->protected mode
125 * bootstrap into the page concerned. The caller
126 * has made sure it's suitably aligned.
127 */
128
a8ab26fe 129static unsigned long __cpuinit setup_trampoline(void)
1da177e4
LT
130{
131 void *tramp = __va(SMP_TRAMPOLINE_BASE);
132 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
133 return virt_to_phys(tramp);
134}
135
136/*
137 * The bootstrap kernel entry code has set these up. Save them for
138 * a given CPU
139 */
140
a8ab26fe 141static void __cpuinit smp_store_cpu_info(int id)
1da177e4
LT
142{
143 struct cpuinfo_x86 *c = cpu_data + id;
144
145 *c = boot_cpu_data;
146 identify_cpu(c);
dda50e71 147 print_cpu_info(c);
1da177e4
LT
148}
149
150/*
dda50e71
AK
151 * New Funky TSC sync algorithm borrowed from IA64.
152 * Main advantage is that it doesn't reset the TSCs fully and
153 * in general looks more robust and it works better than my earlier
154 * attempts. I believe it was written by David Mosberger. Some minor
155 * adjustments for x86-64 by me -AK
1da177e4 156 *
dda50e71
AK
157 * Original comment reproduced below.
158 *
159 * Synchronize TSC of the current (slave) CPU with the TSC of the
160 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
161 * eliminate the possibility of unaccounted-for errors (such as
162 * getting a machine check in the middle of a calibration step). The
163 * basic idea is for the slave to ask the master what itc value it has
164 * and to read its own itc before and after the master responds. Each
165 * iteration gives us three timestamps:
166 *
167 * slave master
168 *
169 * t0 ---\
170 * ---\
171 * --->
172 * tm
173 * /---
174 * /---
175 * t1 <---
176 *
177 *
178 * The goal is to adjust the slave's TSC such that tm falls exactly
179 * half-way between t0 and t1. If we achieve this, the clocks are
180 * synchronized provided the interconnect between the slave and the
181 * master is symmetric. Even if the interconnect were asymmetric, we
182 * would still know that the synchronization error is smaller than the
183 * roundtrip latency (t0 - t1).
184 *
185 * When the interconnect is quiet and symmetric, this lets us
186 * synchronize the TSC to within one or two cycles. However, we can
187 * only *guarantee* that the synchronization is accurate to within a
188 * round-trip time, which is typically in the range of several hundred
189 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
190 * are usually almost perfectly synchronized, but we shouldn't assume
191 * that the accuracy is much better than half a micro second or so.
192 *
193 * [there are other errors like the latency of RDTSC and of the
194 * WRMSR. These can also account to hundreds of cycles. So it's
195 * probably worse. It claims 153 cycles error on a dual Opteron,
196 * but I suspect the numbers are actually somewhat worse -AK]
1da177e4
LT
197 */
198
dda50e71
AK
199#define MASTER 0
200#define SLAVE (SMP_CACHE_BYTES/8)
201
202/* Intentionally don't use cpu_relax() while TSC synchronization
203 because we don't want to go into funky power save modi or cause
204 hypervisors to schedule us away. Going to sleep would likely affect
205 latency and low latency is the primary objective here. -AK */
206#define no_cpu_relax() barrier()
207
a8ab26fe 208static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
dda50e71
AK
209static volatile __cpuinitdata unsigned long go[SLAVE + 1];
210static int notscsync __cpuinitdata;
211
212#undef DEBUG_TSC_SYNC
1da177e4 213
dda50e71
AK
214#define NUM_ROUNDS 64 /* magic value */
215#define NUM_ITERS 5 /* likewise */
1da177e4 216
dda50e71
AK
217/* Callback on boot CPU */
218static __cpuinit void sync_master(void *arg)
1da177e4 219{
dda50e71
AK
220 unsigned long flags, i;
221
dda50e71
AK
222 go[MASTER] = 0;
223
224 local_irq_save(flags);
225 {
226 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
227 while (!go[MASTER])
228 no_cpu_relax();
229 go[MASTER] = 0;
230 rdtscll(go[SLAVE]);
231 }
232 }
233 local_irq_restore(flags);
a8ab26fe 234}
1da177e4 235
a8ab26fe 236/*
dda50e71
AK
237 * Return the number of cycles by which our tsc differs from the tsc
238 * on the master (time-keeper) CPU. A positive number indicates our
239 * tsc is ahead of the master, negative that it is behind.
a8ab26fe 240 */
dda50e71
AK
241static inline long
242get_delta(long *rt, long *master)
a8ab26fe 243{
dda50e71
AK
244 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
245 unsigned long tcenter, t0, t1, tm;
246 int i;
a8ab26fe 247
dda50e71
AK
248 for (i = 0; i < NUM_ITERS; ++i) {
249 rdtscll(t0);
250 go[MASTER] = 1;
251 while (!(tm = go[SLAVE]))
252 no_cpu_relax();
253 go[SLAVE] = 0;
254 rdtscll(t1);
255
256 if (t1 - t0 < best_t1 - best_t0)
257 best_t0 = t0, best_t1 = t1, best_tm = tm;
258 }
259
260 *rt = best_t1 - best_t0;
261 *master = best_tm - best_t0;
262
263 /* average best_t0 and best_t1 without overflow: */
264 tcenter = (best_t0/2 + best_t1/2);
265 if (best_t0 % 2 + best_t1 % 2 == 2)
266 ++tcenter;
267 return tcenter - best_tm;
1da177e4
LT
268}
269
3d483f47 270static __cpuinit void sync_tsc(unsigned int master)
1da177e4 271{
dda50e71
AK
272 int i, done = 0;
273 long delta, adj, adjust_latency = 0;
274 unsigned long flags, rt, master_time_stamp, bound;
44456d37 275#ifdef DEBUG_TSC_SYNC
dda50e71
AK
276 static struct syncdebug {
277 long rt; /* roundtrip time */
278 long master; /* master's timestamp */
279 long diff; /* difference between midpoint and master's timestamp */
280 long lat; /* estimate of tsc adjustment latency */
281 } t[NUM_ROUNDS] __cpuinitdata;
282#endif
283
3d483f47
EB
284 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
285 smp_processor_id(), master);
286
dda50e71
AK
287 go[MASTER] = 1;
288
3d483f47
EB
289 /* It is dangerous to broadcast IPI as cpus are coming up,
290 * as they may not be ready to accept them. So since
291 * we only need to send the ipi to the boot cpu direct
292 * the message, and avoid the race.
293 */
294 smp_call_function_single(master, sync_master, NULL, 1, 0);
dda50e71
AK
295
296 while (go[MASTER]) /* wait for master to be ready */
297 no_cpu_relax();
298
299 spin_lock_irqsave(&tsc_sync_lock, flags);
300 {
301 for (i = 0; i < NUM_ROUNDS; ++i) {
302 delta = get_delta(&rt, &master_time_stamp);
303 if (delta == 0) {
304 done = 1; /* let's lock on to this... */
305 bound = rt;
306 }
307
308 if (!done) {
309 unsigned long t;
310 if (i > 0) {
311 adjust_latency += -delta;
312 adj = -delta + adjust_latency/4;
313 } else
314 adj = -delta;
315
316 rdtscll(t);
317 wrmsrl(MSR_IA32_TSC, t + adj);
318 }
44456d37 319#ifdef DEBUG_TSC_SYNC
dda50e71
AK
320 t[i].rt = rt;
321 t[i].master = master_time_stamp;
322 t[i].diff = delta;
323 t[i].lat = adjust_latency/4;
324#endif
325 }
326 }
327 spin_unlock_irqrestore(&tsc_sync_lock, flags);
328
44456d37 329#ifdef DEBUG_TSC_SYNC
dda50e71
AK
330 for (i = 0; i < NUM_ROUNDS; ++i)
331 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
332 t[i].rt, t[i].master, t[i].diff, t[i].lat);
333#endif
334
335 printk(KERN_INFO
336 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
337 "maxerr %lu cycles)\n",
3d483f47 338 smp_processor_id(), master, delta, rt);
a8ab26fe 339}
1da177e4 340
dda50e71 341static void __cpuinit tsc_sync_wait(void)
a8ab26fe 342{
737c5c3b
AK
343 /*
344 * When the CPU has synchronized TSCs assume the BIOS
345 * or the hardware already synced. Otherwise we could
346 * mess up a possible perfect synchronization with a
347 * not-quite-perfect algorithm.
348 */
349 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
a8ab26fe 350 return;
349188f6 351 sync_tsc(0);
a8ab26fe 352}
1da177e4 353
dda50e71 354static __init int notscsync_setup(char *s)
a8ab26fe 355{
dda50e71 356 notscsync = 1;
9b41046c 357 return 1;
1da177e4 358}
dda50e71 359__setup("notscsync", notscsync_setup);
1da177e4 360
a8ab26fe 361static atomic_t init_deasserted __cpuinitdata;
1da177e4 362
a8ab26fe
AK
363/*
364 * Report back to the Boot Processor.
365 * Running on AP.
366 */
367void __cpuinit smp_callin(void)
1da177e4
LT
368{
369 int cpuid, phys_id;
370 unsigned long timeout;
371
372 /*
373 * If waken up by an INIT in an 82489DX configuration
374 * we may get here before an INIT-deassert IPI reaches
375 * our local APIC. We have to wait for the IPI or we'll
376 * lock up on an APIC access.
377 */
a8ab26fe
AK
378 while (!atomic_read(&init_deasserted))
379 cpu_relax();
1da177e4
LT
380
381 /*
382 * (This works even if the APIC is not enabled.)
383 */
384 phys_id = GET_APIC_ID(apic_read(APIC_ID));
385 cpuid = smp_processor_id();
386 if (cpu_isset(cpuid, cpu_callin_map)) {
387 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
388 phys_id, cpuid);
389 }
390 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
391
392 /*
393 * STARTUP IPIs are fragile beasts as they might sometimes
394 * trigger some glue motherboard logic. Complete APIC bus
395 * silence for 1 second, this overestimates the time the
396 * boot CPU is spending to send the up to 2 STARTUP IPIs
397 * by a factor of two. This should be enough.
398 */
399
400 /*
401 * Waiting 2s total for startup (udelay is not yet working)
402 */
403 timeout = jiffies + 2*HZ;
404 while (time_before(jiffies, timeout)) {
405 /*
406 * Has the boot CPU finished it's STARTUP sequence?
407 */
408 if (cpu_isset(cpuid, cpu_callout_map))
409 break;
a8ab26fe 410 cpu_relax();
1da177e4
LT
411 }
412
413 if (!time_before(jiffies, timeout)) {
414 panic("smp_callin: CPU%d started up but did not get a callout!\n",
415 cpuid);
416 }
417
418 /*
419 * the boot CPU has finished the init stage and is spinning
420 * on callin_map until we finish. We are free to set up this
421 * CPU, first the APIC. (this is probably redundant on most
422 * boards)
423 */
424
425 Dprintk("CALLIN, before setup_local_APIC().\n");
426 setup_local_APIC();
427
1da177e4
LT
428 /*
429 * Get our bogomips.
b4452218
AK
430 *
431 * Need to enable IRQs because it can take longer and then
432 * the NMI watchdog might kill us.
1da177e4 433 */
b4452218 434 local_irq_enable();
1da177e4 435 calibrate_delay();
b4452218 436 local_irq_disable();
1da177e4
LT
437 Dprintk("Stack at about %p\n",&cpuid);
438
439 disable_APIC_timer();
440
441 /*
442 * Save our processor parameters
443 */
444 smp_store_cpu_info(cpuid);
445
1da177e4
LT
446 /*
447 * Allow the master to continue.
448 */
449 cpu_set(cpuid, cpu_callin_map);
1da177e4
LT
450}
451
1e9f28fa
SS
452/* maps the cpu to the sched domain representing multi-core */
453cpumask_t cpu_coregroup_map(int cpu)
454{
455 struct cpuinfo_x86 *c = cpu_data + cpu;
456 /*
457 * For perf, we return last level cache shared map.
5c45bf27 458 * And for power savings, we return cpu_core_map
1e9f28fa 459 */
5c45bf27
SS
460 if (sched_mc_power_savings || sched_smt_power_savings)
461 return cpu_core_map[cpu];
462 else
463 return c->llc_shared_map;
1e9f28fa
SS
464}
465
94605eff
SS
466/* representing cpus for which sibling maps can be computed */
467static cpumask_t cpu_sibling_setup_map;
468
cb0cd8d4
AR
469static inline void set_cpu_sibling_map(int cpu)
470{
471 int i;
94605eff
SS
472 struct cpuinfo_x86 *c = cpu_data;
473
474 cpu_set(cpu, cpu_sibling_setup_map);
cb0cd8d4
AR
475
476 if (smp_num_siblings > 1) {
94605eff 477 for_each_cpu_mask(i, cpu_sibling_setup_map) {
f3fa8ebc
RS
478 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
479 c[cpu].cpu_core_id == c[i].cpu_core_id) {
cb0cd8d4
AR
480 cpu_set(i, cpu_sibling_map[cpu]);
481 cpu_set(cpu, cpu_sibling_map[i]);
94605eff
SS
482 cpu_set(i, cpu_core_map[cpu]);
483 cpu_set(cpu, cpu_core_map[i]);
1e9f28fa
SS
484 cpu_set(i, c[cpu].llc_shared_map);
485 cpu_set(cpu, c[i].llc_shared_map);
cb0cd8d4
AR
486 }
487 }
488 } else {
489 cpu_set(cpu, cpu_sibling_map[cpu]);
490 }
491
1e9f28fa
SS
492 cpu_set(cpu, c[cpu].llc_shared_map);
493
94605eff 494 if (current_cpu_data.x86_max_cores == 1) {
cb0cd8d4 495 cpu_core_map[cpu] = cpu_sibling_map[cpu];
94605eff
SS
496 c[cpu].booted_cores = 1;
497 return;
498 }
499
500 for_each_cpu_mask(i, cpu_sibling_setup_map) {
1e9f28fa
SS
501 if (cpu_llc_id[cpu] != BAD_APICID &&
502 cpu_llc_id[cpu] == cpu_llc_id[i]) {
503 cpu_set(i, c[cpu].llc_shared_map);
504 cpu_set(cpu, c[i].llc_shared_map);
505 }
f3fa8ebc 506 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
94605eff
SS
507 cpu_set(i, cpu_core_map[cpu]);
508 cpu_set(cpu, cpu_core_map[i]);
509 /*
510 * Does this new cpu bringup a new core?
511 */
512 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
513 /*
514 * for each core in package, increment
515 * the booted_cores for this new cpu
516 */
517 if (first_cpu(cpu_sibling_map[i]) == i)
518 c[cpu].booted_cores++;
519 /*
520 * increment the core count for all
521 * the other cpus in this package
522 */
523 if (i != cpu)
524 c[i].booted_cores++;
525 } else if (i != cpu && !c[cpu].booted_cores)
526 c[cpu].booted_cores = c[i].booted_cores;
527 }
cb0cd8d4
AR
528 }
529}
530
1da177e4 531/*
a8ab26fe 532 * Setup code on secondary processor (after comming out of the trampoline)
1da177e4 533 */
a8ab26fe 534void __cpuinit start_secondary(void)
1da177e4
LT
535{
536 /*
537 * Dont put anything before smp_callin(), SMP
538 * booting is too fragile that we want to limit the
539 * things done here to the most necessary things.
540 */
541 cpu_init();
5bfb5d69 542 preempt_disable();
1da177e4
LT
543 smp_callin();
544
545 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
546 barrier();
547
1da177e4
LT
548 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
549 setup_secondary_APIC_clock();
550
a8ab26fe 551 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
1da177e4
LT
552
553 if (nmi_watchdog == NMI_IO_APIC) {
554 disable_8259A_irq(0);
555 enable_NMI_through_LVT0(NULL);
556 enable_8259A_irq(0);
557 }
558
a8ab26fe 559 enable_APIC_timer();
1da177e4 560
cb0cd8d4
AR
561 /*
562 * The sibling maps must be set before turing the online map on for
563 * this cpu
564 */
565 set_cpu_sibling_map(smp_processor_id());
566
1eecd73c
AK
567 /*
568 * Wait for TSC sync to not schedule things before.
569 * We still process interrupts, which could see an inconsistent
570 * time in that window unfortunately.
571 * Do this here because TSC sync has global unprotected state.
572 */
573 tsc_sync_wait();
574
884d9e40
AR
575 /*
576 * We need to hold call_lock, so there is no inconsistency
577 * between the time smp_call_function() determines number of
578 * IPI receipients, and the time when the determination is made
579 * for which cpus receive the IPI in genapic_flat.c. Holding this
580 * lock helps us to not include this cpu in a currently in progress
581 * smp_call_function().
582 */
583 lock_ipi_call_lock();
584
1da177e4 585 /*
a8ab26fe 586 * Allow the master to continue.
1da177e4 587 */
1da177e4 588 cpu_set(smp_processor_id(), cpu_online_map);
884d9e40
AR
589 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
590 unlock_ipi_call_lock();
591
1da177e4
LT
592 cpu_idle();
593}
594
a8ab26fe 595extern volatile unsigned long init_rsp;
1da177e4
LT
596extern void (*initial_code)(void);
597
44456d37 598#ifdef APIC_DEBUG
a8ab26fe 599static void inquire_remote_apic(int apicid)
1da177e4
LT
600{
601 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
602 char *names[] = { "ID", "VERSION", "SPIV" };
603 int timeout, status;
604
605 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
606
607 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
608 printk("... APIC #%d %s: ", apicid, names[i]);
609
610 /*
611 * Wait for idle.
612 */
613 apic_wait_icr_idle();
614
c1507eb2
AK
615 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
616 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
1da177e4
LT
617
618 timeout = 0;
619 do {
620 udelay(100);
621 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
622 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
623
624 switch (status) {
625 case APIC_ICR_RR_VALID:
626 status = apic_read(APIC_RRR);
627 printk("%08x\n", status);
628 break;
629 default:
630 printk("failed\n");
631 }
632 }
633}
634#endif
635
a8ab26fe
AK
636/*
637 * Kick the secondary to wake up.
638 */
639static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
1da177e4
LT
640{
641 unsigned long send_status = 0, accept_status = 0;
642 int maxlvt, timeout, num_starts, j;
643
644 Dprintk("Asserting INIT.\n");
645
646 /*
647 * Turn INIT on target chip
648 */
c1507eb2 649 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
650
651 /*
652 * Send IPI
653 */
c1507eb2 654 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
1da177e4
LT
655 | APIC_DM_INIT);
656
657 Dprintk("Waiting for send to finish...\n");
658 timeout = 0;
659 do {
660 Dprintk("+");
661 udelay(100);
662 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
663 } while (send_status && (timeout++ < 1000));
664
665 mdelay(10);
666
667 Dprintk("Deasserting INIT.\n");
668
669 /* Target chip */
c1507eb2 670 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
671
672 /* Send IPI */
c1507eb2 673 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
1da177e4
LT
674
675 Dprintk("Waiting for send to finish...\n");
676 timeout = 0;
677 do {
678 Dprintk("+");
679 udelay(100);
680 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
681 } while (send_status && (timeout++ < 1000));
682
f2ecfab9 683 mb();
1da177e4
LT
684 atomic_set(&init_deasserted, 1);
685
5a40b7c2 686 num_starts = 2;
1da177e4
LT
687
688 /*
689 * Run STARTUP IPI loop.
690 */
691 Dprintk("#startup loops: %d.\n", num_starts);
692
693 maxlvt = get_maxlvt();
694
695 for (j = 1; j <= num_starts; j++) {
696 Dprintk("Sending STARTUP #%d.\n",j);
1da177e4
LT
697 apic_write(APIC_ESR, 0);
698 apic_read(APIC_ESR);
699 Dprintk("After apic_write.\n");
700
701 /*
702 * STARTUP IPI
703 */
704
705 /* Target chip */
c1507eb2 706 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
707
708 /* Boot on the stack */
709 /* Kick the second */
c1507eb2 710 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
1da177e4
LT
711
712 /*
713 * Give the other CPU some time to accept the IPI.
714 */
715 udelay(300);
716
717 Dprintk("Startup point 1.\n");
718
719 Dprintk("Waiting for send to finish...\n");
720 timeout = 0;
721 do {
722 Dprintk("+");
723 udelay(100);
724 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
725 } while (send_status && (timeout++ < 1000));
726
727 /*
728 * Give the other CPU some time to accept the IPI.
729 */
730 udelay(200);
731 /*
732 * Due to the Pentium erratum 3AP.
733 */
734 if (maxlvt > 3) {
1da177e4
LT
735 apic_write(APIC_ESR, 0);
736 }
737 accept_status = (apic_read(APIC_ESR) & 0xEF);
738 if (send_status || accept_status)
739 break;
740 }
741 Dprintk("After Startup.\n");
742
743 if (send_status)
744 printk(KERN_ERR "APIC never delivered???\n");
745 if (accept_status)
746 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
747
748 return (send_status | accept_status);
749}
750
76e4f660
AR
751struct create_idle {
752 struct task_struct *idle;
753 struct completion done;
754 int cpu;
755};
756
757void do_fork_idle(void *_c_idle)
758{
759 struct create_idle *c_idle = _c_idle;
760
761 c_idle->idle = fork_idle(c_idle->cpu);
762 complete(&c_idle->done);
763}
764
a8ab26fe
AK
765/*
766 * Boot one CPU.
767 */
768static int __cpuinit do_boot_cpu(int cpu, int apicid)
1da177e4 769{
1da177e4 770 unsigned long boot_error;
a8ab26fe 771 int timeout;
1da177e4 772 unsigned long start_rip;
76e4f660
AR
773 struct create_idle c_idle = {
774 .cpu = cpu,
f86bf9b7 775 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
76e4f660
AR
776 };
777 DECLARE_WORK(work, do_fork_idle, &c_idle);
778
c11efdf9
RT
779 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
780 if (!cpu_gdt_descr[cpu].address &&
781 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
782 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
783 return -1;
784 }
785
365ba917
RT
786 /* Allocate node local memory for AP pdas */
787 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
788 struct x8664_pda *newpda, *pda;
789 int node = cpu_to_node(cpu);
790 pda = cpu_pda(cpu);
791 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
792 node);
793 if (newpda) {
794 memcpy(newpda, pda, sizeof (struct x8664_pda));
795 cpu_pda(cpu) = newpda;
796 } else
797 printk(KERN_ERR
798 "Could not allocate node local PDA for CPU %d on node %d\n",
799 cpu, node);
800 }
801
802
d167a518
GH
803 alternatives_smp_switch(1);
804
76e4f660
AR
805 c_idle.idle = get_idle_for_cpu(cpu);
806
807 if (c_idle.idle) {
808 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
57eafdc2 809 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
76e4f660
AR
810 init_idle(c_idle.idle, cpu);
811 goto do_rest;
812 }
813
1da177e4 814 /*
76e4f660
AR
815 * During cold boot process, keventd thread is not spun up yet.
816 * When we do cpu hot-add, we create idle threads on the fly, we should
817 * not acquire any attributes from the calling context. Hence the clean
818 * way to create kernel_threads() is to do that from keventd().
819 * We do the current_is_keventd() due to the fact that ACPI notifier
820 * was also queuing to keventd() and when the caller is already running
821 * in context of keventd(), we would end up with locking up the keventd
822 * thread.
1da177e4 823 */
76e4f660
AR
824 if (!keventd_up() || current_is_keventd())
825 work.func(work.data);
826 else {
827 schedule_work(&work);
828 wait_for_completion(&c_idle.done);
829 }
830
831 if (IS_ERR(c_idle.idle)) {
a8ab26fe 832 printk("failed fork for CPU %d\n", cpu);
76e4f660 833 return PTR_ERR(c_idle.idle);
a8ab26fe 834 }
1da177e4 835
76e4f660
AR
836 set_idle_for_cpu(cpu, c_idle.idle);
837
838do_rest:
839
df79efde 840 cpu_pda(cpu)->pcurrent = c_idle.idle;
1da177e4
LT
841
842 start_rip = setup_trampoline();
843
76e4f660 844 init_rsp = c_idle.idle->thread.rsp;
1da177e4
LT
845 per_cpu(init_tss,cpu).rsp0 = init_rsp;
846 initial_code = start_secondary;
e4f17c43 847 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
1da177e4 848
de04f322
AK
849 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
850 cpus_weight(cpu_present_map),
851 apicid);
1da177e4
LT
852
853 /*
854 * This grunge runs the startup process for
855 * the targeted processor.
856 */
857
858 atomic_set(&init_deasserted, 0);
859
860 Dprintk("Setting warm reset code and vector.\n");
861
862 CMOS_WRITE(0xa, 0xf);
863 local_flush_tlb();
864 Dprintk("1.\n");
865 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
866 Dprintk("2.\n");
867 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
868 Dprintk("3.\n");
869
870 /*
871 * Be paranoid about clearing APIC errors.
872 */
11a8e778
AK
873 apic_write(APIC_ESR, 0);
874 apic_read(APIC_ESR);
1da177e4
LT
875
876 /*
877 * Status is now clean
878 */
879 boot_error = 0;
880
881 /*
882 * Starting actual IPI sequence...
883 */
a8ab26fe 884 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
1da177e4
LT
885
886 if (!boot_error) {
887 /*
888 * allow APs to start initializing.
889 */
890 Dprintk("Before Callout %d.\n", cpu);
891 cpu_set(cpu, cpu_callout_map);
892 Dprintk("After Callout %d.\n", cpu);
893
894 /*
895 * Wait 5s total for a response
896 */
897 for (timeout = 0; timeout < 50000; timeout++) {
898 if (cpu_isset(cpu, cpu_callin_map))
899 break; /* It has booted */
900 udelay(100);
901 }
902
903 if (cpu_isset(cpu, cpu_callin_map)) {
904 /* number CPUs logically, starting from 1 (BSP is 0) */
1da177e4
LT
905 Dprintk("CPU has booted.\n");
906 } else {
907 boot_error = 1;
908 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
909 == 0xA5)
910 /* trampoline started but...? */
911 printk("Stuck ??\n");
912 else
913 /* trampoline code not run */
914 printk("Not responding.\n");
44456d37 915#ifdef APIC_DEBUG
1da177e4
LT
916 inquire_remote_apic(apicid);
917#endif
918 }
919 }
920 if (boot_error) {
921 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
922 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
488fc08d 923 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
a8ab26fe
AK
924 cpu_clear(cpu, cpu_present_map);
925 cpu_clear(cpu, cpu_possible_map);
1da177e4
LT
926 x86_cpu_to_apicid[cpu] = BAD_APICID;
927 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
a8ab26fe 928 return -EIO;
1da177e4 929 }
a8ab26fe
AK
930
931 return 0;
1da177e4
LT
932}
933
a8ab26fe
AK
934cycles_t cacheflush_time;
935unsigned long cache_decay_ticks;
936
1da177e4 937/*
a8ab26fe 938 * Cleanup possible dangling ends...
1da177e4 939 */
a8ab26fe 940static __cpuinit void smp_cleanup_boot(void)
1da177e4 941{
a8ab26fe
AK
942 /*
943 * Paranoid: Set warm reset code and vector here back
944 * to default values.
945 */
946 CMOS_WRITE(0, 0xf);
1da177e4 947
a8ab26fe
AK
948 /*
949 * Reset trampoline flag
950 */
951 *((volatile int *) phys_to_virt(0x467)) = 0;
a8ab26fe
AK
952}
953
954/*
955 * Fall back to non SMP mode after errors.
956 *
957 * RED-PEN audit/test this more. I bet there is more state messed up here.
958 */
e6982c67 959static __init void disable_smp(void)
a8ab26fe
AK
960{
961 cpu_present_map = cpumask_of_cpu(0);
962 cpu_possible_map = cpumask_of_cpu(0);
963 if (smp_found_config)
964 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
965 else
966 phys_cpu_present_map = physid_mask_of_physid(0);
967 cpu_set(0, cpu_sibling_map[0]);
968 cpu_set(0, cpu_core_map[0]);
969}
970
61b1b2d0 971#ifdef CONFIG_HOTPLUG_CPU
420f8f68
AK
972
973int additional_cpus __initdata = -1;
974
61b1b2d0
AK
975/*
976 * cpu_possible_map should be static, it cannot change as cpu's
977 * are onlined, or offlined. The reason is per-cpu data-structures
978 * are allocated by some modules at init time, and dont expect to
979 * do this dynamically on cpu arrival/departure.
980 * cpu_present_map on the other hand can change dynamically.
981 * In case when cpu_hotplug is not compiled, then we resort to current
982 * behaviour, which is cpu_possible == cpu_present.
61b1b2d0 983 * - Ashok Raj
420f8f68
AK
984 *
985 * Three ways to find out the number of additional hotplug CPUs:
986 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
420f8f68 987 * - The user can overwrite it with additional_cpus=NUM
f62a91f6 988 * - Otherwise don't reserve additional CPUs.
420f8f68
AK
989 * We do this because additional CPUs waste a lot of memory.
990 * -AK
61b1b2d0 991 */
421c7ce6 992__init void prefill_possible_map(void)
61b1b2d0
AK
993{
994 int i;
420f8f68
AK
995 int possible;
996
997 if (additional_cpus == -1) {
f62a91f6 998 if (disabled_cpus > 0)
420f8f68 999 additional_cpus = disabled_cpus;
f62a91f6
AK
1000 else
1001 additional_cpus = 0;
420f8f68
AK
1002 }
1003 possible = num_processors + additional_cpus;
1004 if (possible > NR_CPUS)
1005 possible = NR_CPUS;
1006
1007 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1008 possible,
1009 max_t(int, possible - num_processors, 0));
1010
1011 for (i = 0; i < possible; i++)
61b1b2d0
AK
1012 cpu_set(i, cpu_possible_map);
1013}
1014#endif
1015
a8ab26fe
AK
1016/*
1017 * Various sanity checks.
1018 */
e6982c67 1019static int __init smp_sanity_check(unsigned max_cpus)
a8ab26fe 1020{
1da177e4
LT
1021 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1022 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1023 hard_smp_processor_id());
1024 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1025 }
1026
1027 /*
1028 * If we couldn't find an SMP configuration at boot time,
1029 * get out of here now!
1030 */
1031 if (!smp_found_config) {
1032 printk(KERN_NOTICE "SMP motherboard not detected.\n");
a8ab26fe 1033 disable_smp();
1da177e4
LT
1034 if (APIC_init_uniprocessor())
1035 printk(KERN_NOTICE "Local APIC not detected."
1036 " Using dummy APIC emulation.\n");
a8ab26fe 1037 return -1;
1da177e4
LT
1038 }
1039
1040 /*
1041 * Should not be necessary because the MP table should list the boot
1042 * CPU too, but we do it for the sake of robustness anyway.
1043 */
1044 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1045 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1046 boot_cpu_id);
1047 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1048 }
1049
1050 /*
1051 * If we couldn't find a local APIC, then get out of here now!
1052 */
11a8e778 1053 if (!cpu_has_apic) {
1da177e4
LT
1054 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1055 boot_cpu_id);
1056 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
a8ab26fe
AK
1057 nr_ioapics = 0;
1058 return -1;
1da177e4
LT
1059 }
1060
1da177e4
LT
1061 /*
1062 * If SMP should be disabled, then really disable it!
1063 */
1064 if (!max_cpus) {
1da177e4 1065 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
a8ab26fe
AK
1066 nr_ioapics = 0;
1067 return -1;
1da177e4
LT
1068 }
1069
a8ab26fe
AK
1070 return 0;
1071}
1da177e4 1072
a8ab26fe
AK
1073/*
1074 * Prepare for SMP bootup. The MP table or ACPI has been read
1075 * earlier. Just do some sanity checking here and enable APIC mode.
1076 */
e6982c67 1077void __init smp_prepare_cpus(unsigned int max_cpus)
a8ab26fe 1078{
a8ab26fe
AK
1079 nmi_watchdog_default();
1080 current_cpu_data = boot_cpu_data;
1081 current_thread_info()->cpu = 0; /* needed? */
94605eff 1082 set_cpu_sibling_map(0);
1da177e4 1083
a8ab26fe
AK
1084 if (smp_sanity_check(max_cpus) < 0) {
1085 printk(KERN_INFO "SMP disabled\n");
1086 disable_smp();
1087 return;
1da177e4
LT
1088 }
1089
a8ab26fe 1090
1da177e4 1091 /*
a8ab26fe 1092 * Switch from PIC to APIC mode.
1da177e4 1093 */
a8ab26fe 1094 setup_local_APIC();
1da177e4 1095
a8ab26fe
AK
1096 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1097 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1098 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1099 /* Or can we switch back to PIC here? */
1da177e4 1100 }
1da177e4
LT
1101
1102 /*
a8ab26fe 1103 * Now start the IO-APICs
1da177e4
LT
1104 */
1105 if (!skip_ioapic_setup && nr_ioapics)
1106 setup_IO_APIC();
1107 else
1108 nr_ioapics = 0;
1109
1da177e4 1110 /*
a8ab26fe 1111 * Set up local APIC timer on boot CPU.
1da177e4 1112 */
1da177e4 1113
a8ab26fe 1114 setup_boot_APIC_clock();
1da177e4
LT
1115}
1116
a8ab26fe
AK
1117/*
1118 * Early setup to make printk work.
1119 */
1120void __init smp_prepare_boot_cpu(void)
1da177e4 1121{
a8ab26fe
AK
1122 int me = smp_processor_id();
1123 cpu_set(me, cpu_online_map);
1124 cpu_set(me, cpu_callout_map);
884d9e40 1125 per_cpu(cpu_state, me) = CPU_ONLINE;
1da177e4
LT
1126}
1127
a8ab26fe
AK
1128/*
1129 * Entry point to boot a CPU.
a8ab26fe
AK
1130 */
1131int __cpuinit __cpu_up(unsigned int cpu)
1da177e4 1132{
a8ab26fe
AK
1133 int err;
1134 int apicid = cpu_present_to_apicid(cpu);
1da177e4 1135
a8ab26fe 1136 WARN_ON(irqs_disabled());
1da177e4 1137
a8ab26fe
AK
1138 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1139
1140 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1141 !physid_isset(apicid, phys_cpu_present_map)) {
1142 printk("__cpu_up: bad cpu %d\n", cpu);
1143 return -EINVAL;
1144 }
a8ab26fe 1145
76e4f660
AR
1146 /*
1147 * Already booted CPU?
1148 */
1149 if (cpu_isset(cpu, cpu_callin_map)) {
1150 Dprintk("do_boot_cpu %d Already started\n", cpu);
1151 return -ENOSYS;
1152 }
1153
884d9e40 1154 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
a8ab26fe
AK
1155 /* Boot it! */
1156 err = do_boot_cpu(cpu, apicid);
1157 if (err < 0) {
a8ab26fe
AK
1158 Dprintk("do_boot_cpu failed %d\n", err);
1159 return err;
1da177e4 1160 }
a8ab26fe 1161
1da177e4
LT
1162 /* Unleash the CPU! */
1163 Dprintk("waiting for cpu %d\n", cpu);
1164
1da177e4 1165 while (!cpu_isset(cpu, cpu_online_map))
a8ab26fe 1166 cpu_relax();
76e4f660
AR
1167 err = 0;
1168
1169 return err;
1da177e4
LT
1170}
1171
a8ab26fe
AK
1172/*
1173 * Finish the SMP boot.
1174 */
e6982c67 1175void __init smp_cpus_done(unsigned int max_cpus)
1da177e4 1176{
a8ab26fe 1177 smp_cleanup_boot();
1da177e4 1178 setup_ioapic_dest();
75152114 1179 check_nmi_watchdog();
a670fad0 1180 time_init_gtod();
a8ab26fe 1181}
76e4f660
AR
1182
1183#ifdef CONFIG_HOTPLUG_CPU
1184
cb0cd8d4 1185static void remove_siblinginfo(int cpu)
76e4f660
AR
1186{
1187 int sibling;
94605eff 1188 struct cpuinfo_x86 *c = cpu_data;
76e4f660 1189
94605eff
SS
1190 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1191 cpu_clear(cpu, cpu_core_map[sibling]);
1192 /*
1193 * last thread sibling in this cpu core going down
1194 */
1195 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1196 c[sibling].booted_cores--;
1197 }
1198
76e4f660
AR
1199 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1200 cpu_clear(cpu, cpu_sibling_map[sibling]);
76e4f660
AR
1201 cpus_clear(cpu_sibling_map[cpu]);
1202 cpus_clear(cpu_core_map[cpu]);
f3fa8ebc
RS
1203 c[cpu].phys_proc_id = 0;
1204 c[cpu].cpu_core_id = 0;
94605eff 1205 cpu_clear(cpu, cpu_sibling_setup_map);
76e4f660
AR
1206}
1207
1208void remove_cpu_from_maps(void)
1209{
1210 int cpu = smp_processor_id();
1211
1212 cpu_clear(cpu, cpu_callout_map);
1213 cpu_clear(cpu, cpu_callin_map);
1214 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
488fc08d 1215 clear_node_cpumask(cpu);
76e4f660
AR
1216}
1217
1218int __cpu_disable(void)
1219{
1220 int cpu = smp_processor_id();
1221
1222 /*
1223 * Perhaps use cpufreq to drop frequency, but that could go
1224 * into generic code.
1225 *
1226 * We won't take down the boot processor on i386 due to some
1227 * interrupts only being able to be serviced by the BSP.
1228 * Especially so if we're not using an IOAPIC -zwane
1229 */
1230 if (cpu == 0)
1231 return -EBUSY;
1232
4038f901
SL
1233 if (nmi_watchdog == NMI_LOCAL_APIC)
1234 stop_apic_nmi_watchdog(NULL);
5e9ef02e 1235 clear_local_APIC();
76e4f660
AR
1236
1237 /*
1238 * HACK:
1239 * Allow any queued timer interrupts to get serviced
1240 * This is only a temporary solution until we cleanup
1241 * fixup_irqs as we do for IA64.
1242 */
1243 local_irq_enable();
1244 mdelay(1);
1245
1246 local_irq_disable();
1247 remove_siblinginfo(cpu);
1248
1249 /* It's now safe to remove this processor from the online map */
1250 cpu_clear(cpu, cpu_online_map);
1251 remove_cpu_from_maps();
1252 fixup_irqs(cpu_online_map);
1253 return 0;
1254}
1255
1256void __cpu_die(unsigned int cpu)
1257{
1258 /* We don't do anything here: idle task is faking death itself. */
1259 unsigned int i;
1260
1261 for (i = 0; i < 10; i++) {
1262 /* They ack this in play_dead by setting CPU_DEAD */
884d9e40
AR
1263 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1264 printk ("CPU %d is now offline\n", cpu);
d167a518
GH
1265 if (1 == num_online_cpus())
1266 alternatives_smp_switch(0);
76e4f660 1267 return;
884d9e40 1268 }
ef6e5253 1269 msleep(100);
76e4f660
AR
1270 }
1271 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1272}
1273
2c8c0e6b 1274static __init int setup_additional_cpus(char *s)
420f8f68 1275{
2c8c0e6b 1276 return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL;
420f8f68 1277}
2c8c0e6b 1278early_param("additional_cpus", setup_additional_cpus);
420f8f68 1279
76e4f660
AR
1280#else /* ... !CONFIG_HOTPLUG_CPU */
1281
1282int __cpu_disable(void)
1283{
1284 return -ENOSYS;
1285}
1286
1287void __cpu_die(unsigned int cpu)
1288{
1289 /* We said "no" in __cpu_disable */
1290 BUG();
1291}
1292#endif /* CONFIG_HOTPLUG_CPU */
This page took 0.243729 seconds and 5 git commands to generate.