Merge branch 'master'
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
a8ab26fe 15 * This code is released under the GNU General Public License version 2
1da177e4
LT
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
a8ab26fe
AK
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
76e4f660 37 * Ashok Raj : CPU hotplug support
1da177e4
LT
38 */
39
a8ab26fe 40
1da177e4
LT
41#include <linux/init.h>
42
43#include <linux/mm.h>
44#include <linux/kernel_stat.h>
45#include <linux/smp_lock.h>
1da177e4
LT
46#include <linux/bootmem.h>
47#include <linux/thread_info.h>
48#include <linux/module.h>
49
50#include <linux/delay.h>
51#include <linux/mc146818rtc.h>
52#include <asm/mtrr.h>
53#include <asm/pgalloc.h>
54#include <asm/desc.h>
55#include <asm/kdebug.h>
56#include <asm/tlbflush.h>
57#include <asm/proto.h>
75152114 58#include <asm/nmi.h>
9cdd304b
AV
59#include <asm/irq.h>
60#include <asm/hw_irq.h>
488fc08d 61#include <asm/numa.h>
1da177e4
LT
62
63/* Number of siblings per CPU package */
64int smp_num_siblings = 1;
2ee60e17 65EXPORT_SYMBOL(smp_num_siblings);
1da177e4 66
1e9f28fa
SS
67/* Last level cache ID of each logical CPU */
68u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
2ee60e17 69EXPORT_SYMBOL(cpu_llc_id);
1e9f28fa 70
1da177e4 71/* Bitmask of currently online CPUs */
6c231b7b 72cpumask_t cpu_online_map __read_mostly;
1da177e4 73
a8ab26fe
AK
74EXPORT_SYMBOL(cpu_online_map);
75
76/*
77 * Private maps to synchronize booting between AP and BP.
78 * Probably not needed anymore, but it makes for easier debugging. -AK
79 */
1da177e4
LT
80cpumask_t cpu_callin_map;
81cpumask_t cpu_callout_map;
2ee60e17 82EXPORT_SYMBOL(cpu_callout_map);
a8ab26fe
AK
83
84cpumask_t cpu_possible_map;
85EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
86
87/* Per CPU bogomips and other parameters */
88struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
2ee60e17 89EXPORT_SYMBOL(cpu_data);
1da177e4 90
a8ab26fe
AK
91/* Set when the idlers are all forked */
92int smp_threads_ready;
93
94605eff 94/* representing HT siblings of each logical CPU */
6c231b7b 95cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
2ee60e17 96EXPORT_SYMBOL(cpu_sibling_map);
94605eff
SS
97
98/* representing HT and core siblings of each logical CPU */
6c231b7b 99cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
2df9fa36 100EXPORT_SYMBOL(cpu_core_map);
1da177e4
LT
101
102/*
103 * Trampoline 80x86 program as an array.
104 */
105
a8ab26fe
AK
106extern unsigned char trampoline_data[];
107extern unsigned char trampoline_end[];
1da177e4 108
76e4f660
AR
109/* State of each CPU */
110DEFINE_PER_CPU(int, cpu_state) = { 0 };
111
112/*
113 * Store all idle threads, this can be reused instead of creating
114 * a new thread. Also avoids complicated thread destroy functionality
115 * for idle threads.
116 */
117struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
118
119#define get_idle_for_cpu(x) (idle_thread_array[(x)])
120#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
121
1da177e4
LT
122/*
123 * Currently trivial. Write the real->protected mode
124 * bootstrap into the page concerned. The caller
125 * has made sure it's suitably aligned.
126 */
127
a8ab26fe 128static unsigned long __cpuinit setup_trampoline(void)
1da177e4
LT
129{
130 void *tramp = __va(SMP_TRAMPOLINE_BASE);
131 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
132 return virt_to_phys(tramp);
133}
134
135/*
136 * The bootstrap kernel entry code has set these up. Save them for
137 * a given CPU
138 */
139
a8ab26fe 140static void __cpuinit smp_store_cpu_info(int id)
1da177e4
LT
141{
142 struct cpuinfo_x86 *c = cpu_data + id;
143
144 *c = boot_cpu_data;
145 identify_cpu(c);
dda50e71 146 print_cpu_info(c);
1da177e4
LT
147}
148
149/*
dda50e71
AK
150 * New Funky TSC sync algorithm borrowed from IA64.
151 * Main advantage is that it doesn't reset the TSCs fully and
152 * in general looks more robust and it works better than my earlier
153 * attempts. I believe it was written by David Mosberger. Some minor
154 * adjustments for x86-64 by me -AK
1da177e4 155 *
dda50e71
AK
156 * Original comment reproduced below.
157 *
158 * Synchronize TSC of the current (slave) CPU with the TSC of the
159 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
160 * eliminate the possibility of unaccounted-for errors (such as
161 * getting a machine check in the middle of a calibration step). The
162 * basic idea is for the slave to ask the master what itc value it has
163 * and to read its own itc before and after the master responds. Each
164 * iteration gives us three timestamps:
165 *
166 * slave master
167 *
168 * t0 ---\
169 * ---\
170 * --->
171 * tm
172 * /---
173 * /---
174 * t1 <---
175 *
176 *
177 * The goal is to adjust the slave's TSC such that tm falls exactly
178 * half-way between t0 and t1. If we achieve this, the clocks are
179 * synchronized provided the interconnect between the slave and the
180 * master is symmetric. Even if the interconnect were asymmetric, we
181 * would still know that the synchronization error is smaller than the
182 * roundtrip latency (t0 - t1).
183 *
184 * When the interconnect is quiet and symmetric, this lets us
185 * synchronize the TSC to within one or two cycles. However, we can
186 * only *guarantee* that the synchronization is accurate to within a
187 * round-trip time, which is typically in the range of several hundred
188 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
189 * are usually almost perfectly synchronized, but we shouldn't assume
190 * that the accuracy is much better than half a micro second or so.
191 *
192 * [there are other errors like the latency of RDTSC and of the
193 * WRMSR. These can also account to hundreds of cycles. So it's
194 * probably worse. It claims 153 cycles error on a dual Opteron,
195 * but I suspect the numbers are actually somewhat worse -AK]
1da177e4
LT
196 */
197
dda50e71
AK
198#define MASTER 0
199#define SLAVE (SMP_CACHE_BYTES/8)
200
201/* Intentionally don't use cpu_relax() while TSC synchronization
202 because we don't want to go into funky power save modi or cause
203 hypervisors to schedule us away. Going to sleep would likely affect
204 latency and low latency is the primary objective here. -AK */
205#define no_cpu_relax() barrier()
206
a8ab26fe 207static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
dda50e71
AK
208static volatile __cpuinitdata unsigned long go[SLAVE + 1];
209static int notscsync __cpuinitdata;
210
211#undef DEBUG_TSC_SYNC
1da177e4 212
dda50e71
AK
213#define NUM_ROUNDS 64 /* magic value */
214#define NUM_ITERS 5 /* likewise */
1da177e4 215
dda50e71
AK
216/* Callback on boot CPU */
217static __cpuinit void sync_master(void *arg)
1da177e4 218{
dda50e71
AK
219 unsigned long flags, i;
220
dda50e71
AK
221 go[MASTER] = 0;
222
223 local_irq_save(flags);
224 {
225 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
226 while (!go[MASTER])
227 no_cpu_relax();
228 go[MASTER] = 0;
229 rdtscll(go[SLAVE]);
230 }
231 }
232 local_irq_restore(flags);
a8ab26fe 233}
1da177e4 234
a8ab26fe 235/*
dda50e71
AK
236 * Return the number of cycles by which our tsc differs from the tsc
237 * on the master (time-keeper) CPU. A positive number indicates our
238 * tsc is ahead of the master, negative that it is behind.
a8ab26fe 239 */
dda50e71
AK
240static inline long
241get_delta(long *rt, long *master)
a8ab26fe 242{
dda50e71
AK
243 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
244 unsigned long tcenter, t0, t1, tm;
245 int i;
a8ab26fe 246
dda50e71
AK
247 for (i = 0; i < NUM_ITERS; ++i) {
248 rdtscll(t0);
249 go[MASTER] = 1;
250 while (!(tm = go[SLAVE]))
251 no_cpu_relax();
252 go[SLAVE] = 0;
253 rdtscll(t1);
254
255 if (t1 - t0 < best_t1 - best_t0)
256 best_t0 = t0, best_t1 = t1, best_tm = tm;
257 }
258
259 *rt = best_t1 - best_t0;
260 *master = best_tm - best_t0;
261
262 /* average best_t0 and best_t1 without overflow: */
263 tcenter = (best_t0/2 + best_t1/2);
264 if (best_t0 % 2 + best_t1 % 2 == 2)
265 ++tcenter;
266 return tcenter - best_tm;
1da177e4
LT
267}
268
3d483f47 269static __cpuinit void sync_tsc(unsigned int master)
1da177e4 270{
dda50e71
AK
271 int i, done = 0;
272 long delta, adj, adjust_latency = 0;
273 unsigned long flags, rt, master_time_stamp, bound;
44456d37 274#ifdef DEBUG_TSC_SYNC
dda50e71
AK
275 static struct syncdebug {
276 long rt; /* roundtrip time */
277 long master; /* master's timestamp */
278 long diff; /* difference between midpoint and master's timestamp */
279 long lat; /* estimate of tsc adjustment latency */
280 } t[NUM_ROUNDS] __cpuinitdata;
281#endif
282
3d483f47
EB
283 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
284 smp_processor_id(), master);
285
dda50e71
AK
286 go[MASTER] = 1;
287
3d483f47
EB
288 /* It is dangerous to broadcast IPI as cpus are coming up,
289 * as they may not be ready to accept them. So since
290 * we only need to send the ipi to the boot cpu direct
291 * the message, and avoid the race.
292 */
293 smp_call_function_single(master, sync_master, NULL, 1, 0);
dda50e71
AK
294
295 while (go[MASTER]) /* wait for master to be ready */
296 no_cpu_relax();
297
298 spin_lock_irqsave(&tsc_sync_lock, flags);
299 {
300 for (i = 0; i < NUM_ROUNDS; ++i) {
301 delta = get_delta(&rt, &master_time_stamp);
302 if (delta == 0) {
303 done = 1; /* let's lock on to this... */
304 bound = rt;
305 }
306
307 if (!done) {
308 unsigned long t;
309 if (i > 0) {
310 adjust_latency += -delta;
311 adj = -delta + adjust_latency/4;
312 } else
313 adj = -delta;
314
315 rdtscll(t);
316 wrmsrl(MSR_IA32_TSC, t + adj);
317 }
44456d37 318#ifdef DEBUG_TSC_SYNC
dda50e71
AK
319 t[i].rt = rt;
320 t[i].master = master_time_stamp;
321 t[i].diff = delta;
322 t[i].lat = adjust_latency/4;
323#endif
324 }
325 }
326 spin_unlock_irqrestore(&tsc_sync_lock, flags);
327
44456d37 328#ifdef DEBUG_TSC_SYNC
dda50e71
AK
329 for (i = 0; i < NUM_ROUNDS; ++i)
330 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
331 t[i].rt, t[i].master, t[i].diff, t[i].lat);
332#endif
333
334 printk(KERN_INFO
335 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
336 "maxerr %lu cycles)\n",
3d483f47 337 smp_processor_id(), master, delta, rt);
a8ab26fe 338}
1da177e4 339
dda50e71 340static void __cpuinit tsc_sync_wait(void)
a8ab26fe 341{
737c5c3b
AK
342 /*
343 * When the CPU has synchronized TSCs assume the BIOS
344 * or the hardware already synced. Otherwise we could
345 * mess up a possible perfect synchronization with a
346 * not-quite-perfect algorithm.
347 */
348 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
a8ab26fe 349 return;
349188f6 350 sync_tsc(0);
a8ab26fe 351}
1da177e4 352
dda50e71 353static __init int notscsync_setup(char *s)
a8ab26fe 354{
dda50e71 355 notscsync = 1;
9b41046c 356 return 1;
1da177e4 357}
dda50e71 358__setup("notscsync", notscsync_setup);
1da177e4 359
a8ab26fe 360static atomic_t init_deasserted __cpuinitdata;
1da177e4 361
a8ab26fe
AK
362/*
363 * Report back to the Boot Processor.
364 * Running on AP.
365 */
366void __cpuinit smp_callin(void)
1da177e4
LT
367{
368 int cpuid, phys_id;
369 unsigned long timeout;
370
371 /*
372 * If waken up by an INIT in an 82489DX configuration
373 * we may get here before an INIT-deassert IPI reaches
374 * our local APIC. We have to wait for the IPI or we'll
375 * lock up on an APIC access.
376 */
a8ab26fe
AK
377 while (!atomic_read(&init_deasserted))
378 cpu_relax();
1da177e4
LT
379
380 /*
381 * (This works even if the APIC is not enabled.)
382 */
383 phys_id = GET_APIC_ID(apic_read(APIC_ID));
384 cpuid = smp_processor_id();
385 if (cpu_isset(cpuid, cpu_callin_map)) {
386 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
387 phys_id, cpuid);
388 }
389 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
390
391 /*
392 * STARTUP IPIs are fragile beasts as they might sometimes
393 * trigger some glue motherboard logic. Complete APIC bus
394 * silence for 1 second, this overestimates the time the
395 * boot CPU is spending to send the up to 2 STARTUP IPIs
396 * by a factor of two. This should be enough.
397 */
398
399 /*
400 * Waiting 2s total for startup (udelay is not yet working)
401 */
402 timeout = jiffies + 2*HZ;
403 while (time_before(jiffies, timeout)) {
404 /*
405 * Has the boot CPU finished it's STARTUP sequence?
406 */
407 if (cpu_isset(cpuid, cpu_callout_map))
408 break;
a8ab26fe 409 cpu_relax();
1da177e4
LT
410 }
411
412 if (!time_before(jiffies, timeout)) {
413 panic("smp_callin: CPU%d started up but did not get a callout!\n",
414 cpuid);
415 }
416
417 /*
418 * the boot CPU has finished the init stage and is spinning
419 * on callin_map until we finish. We are free to set up this
420 * CPU, first the APIC. (this is probably redundant on most
421 * boards)
422 */
423
424 Dprintk("CALLIN, before setup_local_APIC().\n");
425 setup_local_APIC();
426
1da177e4
LT
427 /*
428 * Get our bogomips.
b4452218
AK
429 *
430 * Need to enable IRQs because it can take longer and then
431 * the NMI watchdog might kill us.
1da177e4 432 */
b4452218 433 local_irq_enable();
1da177e4 434 calibrate_delay();
b4452218 435 local_irq_disable();
1da177e4
LT
436 Dprintk("Stack at about %p\n",&cpuid);
437
438 disable_APIC_timer();
439
440 /*
441 * Save our processor parameters
442 */
443 smp_store_cpu_info(cpuid);
444
1da177e4
LT
445 /*
446 * Allow the master to continue.
447 */
448 cpu_set(cpuid, cpu_callin_map);
1da177e4
LT
449}
450
1e9f28fa
SS
451/* maps the cpu to the sched domain representing multi-core */
452cpumask_t cpu_coregroup_map(int cpu)
453{
454 struct cpuinfo_x86 *c = cpu_data + cpu;
455 /*
456 * For perf, we return last level cache shared map.
5c45bf27 457 * And for power savings, we return cpu_core_map
1e9f28fa 458 */
5c45bf27
SS
459 if (sched_mc_power_savings || sched_smt_power_savings)
460 return cpu_core_map[cpu];
461 else
462 return c->llc_shared_map;
1e9f28fa
SS
463}
464
94605eff
SS
465/* representing cpus for which sibling maps can be computed */
466static cpumask_t cpu_sibling_setup_map;
467
cb0cd8d4
AR
468static inline void set_cpu_sibling_map(int cpu)
469{
470 int i;
94605eff
SS
471 struct cpuinfo_x86 *c = cpu_data;
472
473 cpu_set(cpu, cpu_sibling_setup_map);
cb0cd8d4
AR
474
475 if (smp_num_siblings > 1) {
94605eff 476 for_each_cpu_mask(i, cpu_sibling_setup_map) {
f3fa8ebc
RS
477 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
478 c[cpu].cpu_core_id == c[i].cpu_core_id) {
cb0cd8d4
AR
479 cpu_set(i, cpu_sibling_map[cpu]);
480 cpu_set(cpu, cpu_sibling_map[i]);
94605eff
SS
481 cpu_set(i, cpu_core_map[cpu]);
482 cpu_set(cpu, cpu_core_map[i]);
1e9f28fa
SS
483 cpu_set(i, c[cpu].llc_shared_map);
484 cpu_set(cpu, c[i].llc_shared_map);
cb0cd8d4
AR
485 }
486 }
487 } else {
488 cpu_set(cpu, cpu_sibling_map[cpu]);
489 }
490
1e9f28fa
SS
491 cpu_set(cpu, c[cpu].llc_shared_map);
492
94605eff 493 if (current_cpu_data.x86_max_cores == 1) {
cb0cd8d4 494 cpu_core_map[cpu] = cpu_sibling_map[cpu];
94605eff
SS
495 c[cpu].booted_cores = 1;
496 return;
497 }
498
499 for_each_cpu_mask(i, cpu_sibling_setup_map) {
1e9f28fa
SS
500 if (cpu_llc_id[cpu] != BAD_APICID &&
501 cpu_llc_id[cpu] == cpu_llc_id[i]) {
502 cpu_set(i, c[cpu].llc_shared_map);
503 cpu_set(cpu, c[i].llc_shared_map);
504 }
f3fa8ebc 505 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
94605eff
SS
506 cpu_set(i, cpu_core_map[cpu]);
507 cpu_set(cpu, cpu_core_map[i]);
508 /*
509 * Does this new cpu bringup a new core?
510 */
511 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
512 /*
513 * for each core in package, increment
514 * the booted_cores for this new cpu
515 */
516 if (first_cpu(cpu_sibling_map[i]) == i)
517 c[cpu].booted_cores++;
518 /*
519 * increment the core count for all
520 * the other cpus in this package
521 */
522 if (i != cpu)
523 c[i].booted_cores++;
524 } else if (i != cpu && !c[cpu].booted_cores)
525 c[cpu].booted_cores = c[i].booted_cores;
526 }
cb0cd8d4
AR
527 }
528}
529
1da177e4 530/*
a8ab26fe 531 * Setup code on secondary processor (after comming out of the trampoline)
1da177e4 532 */
a8ab26fe 533void __cpuinit start_secondary(void)
1da177e4
LT
534{
535 /*
536 * Dont put anything before smp_callin(), SMP
537 * booting is too fragile that we want to limit the
538 * things done here to the most necessary things.
539 */
540 cpu_init();
5bfb5d69 541 preempt_disable();
1da177e4
LT
542 smp_callin();
543
544 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
545 barrier();
546
1da177e4
LT
547 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
548 setup_secondary_APIC_clock();
549
a8ab26fe 550 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
1da177e4
LT
551
552 if (nmi_watchdog == NMI_IO_APIC) {
553 disable_8259A_irq(0);
554 enable_NMI_through_LVT0(NULL);
555 enable_8259A_irq(0);
556 }
557
a8ab26fe 558 enable_APIC_timer();
1da177e4 559
cb0cd8d4
AR
560 /*
561 * The sibling maps must be set before turing the online map on for
562 * this cpu
563 */
564 set_cpu_sibling_map(smp_processor_id());
565
1eecd73c
AK
566 /*
567 * Wait for TSC sync to not schedule things before.
568 * We still process interrupts, which could see an inconsistent
569 * time in that window unfortunately.
570 * Do this here because TSC sync has global unprotected state.
571 */
572 tsc_sync_wait();
573
884d9e40
AR
574 /*
575 * We need to hold call_lock, so there is no inconsistency
576 * between the time smp_call_function() determines number of
577 * IPI receipients, and the time when the determination is made
578 * for which cpus receive the IPI in genapic_flat.c. Holding this
579 * lock helps us to not include this cpu in a currently in progress
580 * smp_call_function().
581 */
582 lock_ipi_call_lock();
583
1da177e4 584 /*
a8ab26fe 585 * Allow the master to continue.
1da177e4 586 */
1da177e4 587 cpu_set(smp_processor_id(), cpu_online_map);
884d9e40
AR
588 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
589 unlock_ipi_call_lock();
590
1da177e4
LT
591 cpu_idle();
592}
593
a8ab26fe 594extern volatile unsigned long init_rsp;
1da177e4
LT
595extern void (*initial_code)(void);
596
44456d37 597#ifdef APIC_DEBUG
a8ab26fe 598static void inquire_remote_apic(int apicid)
1da177e4
LT
599{
600 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
601 char *names[] = { "ID", "VERSION", "SPIV" };
602 int timeout, status;
603
604 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
605
606 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
607 printk("... APIC #%d %s: ", apicid, names[i]);
608
609 /*
610 * Wait for idle.
611 */
612 apic_wait_icr_idle();
613
c1507eb2
AK
614 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
615 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
1da177e4
LT
616
617 timeout = 0;
618 do {
619 udelay(100);
620 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
621 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
622
623 switch (status) {
624 case APIC_ICR_RR_VALID:
625 status = apic_read(APIC_RRR);
626 printk("%08x\n", status);
627 break;
628 default:
629 printk("failed\n");
630 }
631 }
632}
633#endif
634
a8ab26fe
AK
635/*
636 * Kick the secondary to wake up.
637 */
638static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
1da177e4
LT
639{
640 unsigned long send_status = 0, accept_status = 0;
641 int maxlvt, timeout, num_starts, j;
642
643 Dprintk("Asserting INIT.\n");
644
645 /*
646 * Turn INIT on target chip
647 */
c1507eb2 648 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
649
650 /*
651 * Send IPI
652 */
c1507eb2 653 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
1da177e4
LT
654 | APIC_DM_INIT);
655
656 Dprintk("Waiting for send to finish...\n");
657 timeout = 0;
658 do {
659 Dprintk("+");
660 udelay(100);
661 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
662 } while (send_status && (timeout++ < 1000));
663
664 mdelay(10);
665
666 Dprintk("Deasserting INIT.\n");
667
668 /* Target chip */
c1507eb2 669 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
670
671 /* Send IPI */
c1507eb2 672 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
1da177e4
LT
673
674 Dprintk("Waiting for send to finish...\n");
675 timeout = 0;
676 do {
677 Dprintk("+");
678 udelay(100);
679 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
680 } while (send_status && (timeout++ < 1000));
681
f2ecfab9 682 mb();
1da177e4
LT
683 atomic_set(&init_deasserted, 1);
684
5a40b7c2 685 num_starts = 2;
1da177e4
LT
686
687 /*
688 * Run STARTUP IPI loop.
689 */
690 Dprintk("#startup loops: %d.\n", num_starts);
691
692 maxlvt = get_maxlvt();
693
694 for (j = 1; j <= num_starts; j++) {
695 Dprintk("Sending STARTUP #%d.\n",j);
1da177e4
LT
696 apic_write(APIC_ESR, 0);
697 apic_read(APIC_ESR);
698 Dprintk("After apic_write.\n");
699
700 /*
701 * STARTUP IPI
702 */
703
704 /* Target chip */
c1507eb2 705 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
706
707 /* Boot on the stack */
708 /* Kick the second */
c1507eb2 709 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
1da177e4
LT
710
711 /*
712 * Give the other CPU some time to accept the IPI.
713 */
714 udelay(300);
715
716 Dprintk("Startup point 1.\n");
717
718 Dprintk("Waiting for send to finish...\n");
719 timeout = 0;
720 do {
721 Dprintk("+");
722 udelay(100);
723 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
724 } while (send_status && (timeout++ < 1000));
725
726 /*
727 * Give the other CPU some time to accept the IPI.
728 */
729 udelay(200);
730 /*
731 * Due to the Pentium erratum 3AP.
732 */
733 if (maxlvt > 3) {
1da177e4
LT
734 apic_write(APIC_ESR, 0);
735 }
736 accept_status = (apic_read(APIC_ESR) & 0xEF);
737 if (send_status || accept_status)
738 break;
739 }
740 Dprintk("After Startup.\n");
741
742 if (send_status)
743 printk(KERN_ERR "APIC never delivered???\n");
744 if (accept_status)
745 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
746
747 return (send_status | accept_status);
748}
749
76e4f660
AR
750struct create_idle {
751 struct task_struct *idle;
752 struct completion done;
753 int cpu;
754};
755
756void do_fork_idle(void *_c_idle)
757{
758 struct create_idle *c_idle = _c_idle;
759
760 c_idle->idle = fork_idle(c_idle->cpu);
761 complete(&c_idle->done);
762}
763
a8ab26fe
AK
764/*
765 * Boot one CPU.
766 */
767static int __cpuinit do_boot_cpu(int cpu, int apicid)
1da177e4 768{
1da177e4 769 unsigned long boot_error;
a8ab26fe 770 int timeout;
1da177e4 771 unsigned long start_rip;
76e4f660
AR
772 struct create_idle c_idle = {
773 .cpu = cpu,
774 .done = COMPLETION_INITIALIZER(c_idle.done),
775 };
776 DECLARE_WORK(work, do_fork_idle, &c_idle);
777
60be6b9a
IM
778 lockdep_set_class(&c_idle.done.wait.lock, &waitqueue_lock_key);
779
c11efdf9
RT
780 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
781 if (!cpu_gdt_descr[cpu].address &&
782 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
783 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
784 return -1;
785 }
786
365ba917
RT
787 /* Allocate node local memory for AP pdas */
788 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
789 struct x8664_pda *newpda, *pda;
790 int node = cpu_to_node(cpu);
791 pda = cpu_pda(cpu);
792 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
793 node);
794 if (newpda) {
795 memcpy(newpda, pda, sizeof (struct x8664_pda));
796 cpu_pda(cpu) = newpda;
797 } else
798 printk(KERN_ERR
799 "Could not allocate node local PDA for CPU %d on node %d\n",
800 cpu, node);
801 }
802
803
d167a518
GH
804 alternatives_smp_switch(1);
805
76e4f660
AR
806 c_idle.idle = get_idle_for_cpu(cpu);
807
808 if (c_idle.idle) {
809 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
57eafdc2 810 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
76e4f660
AR
811 init_idle(c_idle.idle, cpu);
812 goto do_rest;
813 }
814
1da177e4 815 /*
76e4f660
AR
816 * During cold boot process, keventd thread is not spun up yet.
817 * When we do cpu hot-add, we create idle threads on the fly, we should
818 * not acquire any attributes from the calling context. Hence the clean
819 * way to create kernel_threads() is to do that from keventd().
820 * We do the current_is_keventd() due to the fact that ACPI notifier
821 * was also queuing to keventd() and when the caller is already running
822 * in context of keventd(), we would end up with locking up the keventd
823 * thread.
1da177e4 824 */
76e4f660
AR
825 if (!keventd_up() || current_is_keventd())
826 work.func(work.data);
827 else {
828 schedule_work(&work);
829 wait_for_completion(&c_idle.done);
830 }
831
832 if (IS_ERR(c_idle.idle)) {
a8ab26fe 833 printk("failed fork for CPU %d\n", cpu);
76e4f660 834 return PTR_ERR(c_idle.idle);
a8ab26fe 835 }
1da177e4 836
76e4f660
AR
837 set_idle_for_cpu(cpu, c_idle.idle);
838
839do_rest:
840
df79efde 841 cpu_pda(cpu)->pcurrent = c_idle.idle;
1da177e4
LT
842
843 start_rip = setup_trampoline();
844
76e4f660 845 init_rsp = c_idle.idle->thread.rsp;
1da177e4
LT
846 per_cpu(init_tss,cpu).rsp0 = init_rsp;
847 initial_code = start_secondary;
e4f17c43 848 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
1da177e4 849
de04f322
AK
850 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
851 cpus_weight(cpu_present_map),
852 apicid);
1da177e4
LT
853
854 /*
855 * This grunge runs the startup process for
856 * the targeted processor.
857 */
858
859 atomic_set(&init_deasserted, 0);
860
861 Dprintk("Setting warm reset code and vector.\n");
862
863 CMOS_WRITE(0xa, 0xf);
864 local_flush_tlb();
865 Dprintk("1.\n");
866 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
867 Dprintk("2.\n");
868 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
869 Dprintk("3.\n");
870
871 /*
872 * Be paranoid about clearing APIC errors.
873 */
11a8e778
AK
874 apic_write(APIC_ESR, 0);
875 apic_read(APIC_ESR);
1da177e4
LT
876
877 /*
878 * Status is now clean
879 */
880 boot_error = 0;
881
882 /*
883 * Starting actual IPI sequence...
884 */
a8ab26fe 885 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
1da177e4
LT
886
887 if (!boot_error) {
888 /*
889 * allow APs to start initializing.
890 */
891 Dprintk("Before Callout %d.\n", cpu);
892 cpu_set(cpu, cpu_callout_map);
893 Dprintk("After Callout %d.\n", cpu);
894
895 /*
896 * Wait 5s total for a response
897 */
898 for (timeout = 0; timeout < 50000; timeout++) {
899 if (cpu_isset(cpu, cpu_callin_map))
900 break; /* It has booted */
901 udelay(100);
902 }
903
904 if (cpu_isset(cpu, cpu_callin_map)) {
905 /* number CPUs logically, starting from 1 (BSP is 0) */
1da177e4
LT
906 Dprintk("CPU has booted.\n");
907 } else {
908 boot_error = 1;
909 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
910 == 0xA5)
911 /* trampoline started but...? */
912 printk("Stuck ??\n");
913 else
914 /* trampoline code not run */
915 printk("Not responding.\n");
44456d37 916#ifdef APIC_DEBUG
1da177e4
LT
917 inquire_remote_apic(apicid);
918#endif
919 }
920 }
921 if (boot_error) {
922 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
923 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
488fc08d 924 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
a8ab26fe
AK
925 cpu_clear(cpu, cpu_present_map);
926 cpu_clear(cpu, cpu_possible_map);
1da177e4
LT
927 x86_cpu_to_apicid[cpu] = BAD_APICID;
928 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
a8ab26fe 929 return -EIO;
1da177e4 930 }
a8ab26fe
AK
931
932 return 0;
1da177e4
LT
933}
934
a8ab26fe
AK
935cycles_t cacheflush_time;
936unsigned long cache_decay_ticks;
937
1da177e4 938/*
a8ab26fe 939 * Cleanup possible dangling ends...
1da177e4 940 */
a8ab26fe 941static __cpuinit void smp_cleanup_boot(void)
1da177e4 942{
a8ab26fe
AK
943 /*
944 * Paranoid: Set warm reset code and vector here back
945 * to default values.
946 */
947 CMOS_WRITE(0, 0xf);
1da177e4 948
a8ab26fe
AK
949 /*
950 * Reset trampoline flag
951 */
952 *((volatile int *) phys_to_virt(0x467)) = 0;
a8ab26fe
AK
953}
954
955/*
956 * Fall back to non SMP mode after errors.
957 *
958 * RED-PEN audit/test this more. I bet there is more state messed up here.
959 */
e6982c67 960static __init void disable_smp(void)
a8ab26fe
AK
961{
962 cpu_present_map = cpumask_of_cpu(0);
963 cpu_possible_map = cpumask_of_cpu(0);
964 if (smp_found_config)
965 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
966 else
967 phys_cpu_present_map = physid_mask_of_physid(0);
968 cpu_set(0, cpu_sibling_map[0]);
969 cpu_set(0, cpu_core_map[0]);
970}
971
61b1b2d0 972#ifdef CONFIG_HOTPLUG_CPU
420f8f68
AK
973
974int additional_cpus __initdata = -1;
975
61b1b2d0
AK
976/*
977 * cpu_possible_map should be static, it cannot change as cpu's
978 * are onlined, or offlined. The reason is per-cpu data-structures
979 * are allocated by some modules at init time, and dont expect to
980 * do this dynamically on cpu arrival/departure.
981 * cpu_present_map on the other hand can change dynamically.
982 * In case when cpu_hotplug is not compiled, then we resort to current
983 * behaviour, which is cpu_possible == cpu_present.
61b1b2d0 984 * - Ashok Raj
420f8f68
AK
985 *
986 * Three ways to find out the number of additional hotplug CPUs:
987 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
420f8f68 988 * - The user can overwrite it with additional_cpus=NUM
f62a91f6 989 * - Otherwise don't reserve additional CPUs.
420f8f68
AK
990 * We do this because additional CPUs waste a lot of memory.
991 * -AK
61b1b2d0 992 */
421c7ce6 993__init void prefill_possible_map(void)
61b1b2d0
AK
994{
995 int i;
420f8f68
AK
996 int possible;
997
998 if (additional_cpus == -1) {
f62a91f6 999 if (disabled_cpus > 0)
420f8f68 1000 additional_cpus = disabled_cpus;
f62a91f6
AK
1001 else
1002 additional_cpus = 0;
420f8f68
AK
1003 }
1004 possible = num_processors + additional_cpus;
1005 if (possible > NR_CPUS)
1006 possible = NR_CPUS;
1007
1008 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1009 possible,
1010 max_t(int, possible - num_processors, 0));
1011
1012 for (i = 0; i < possible; i++)
61b1b2d0
AK
1013 cpu_set(i, cpu_possible_map);
1014}
1015#endif
1016
a8ab26fe
AK
1017/*
1018 * Various sanity checks.
1019 */
e6982c67 1020static int __init smp_sanity_check(unsigned max_cpus)
a8ab26fe 1021{
1da177e4
LT
1022 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1023 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1024 hard_smp_processor_id());
1025 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1026 }
1027
1028 /*
1029 * If we couldn't find an SMP configuration at boot time,
1030 * get out of here now!
1031 */
1032 if (!smp_found_config) {
1033 printk(KERN_NOTICE "SMP motherboard not detected.\n");
a8ab26fe 1034 disable_smp();
1da177e4
LT
1035 if (APIC_init_uniprocessor())
1036 printk(KERN_NOTICE "Local APIC not detected."
1037 " Using dummy APIC emulation.\n");
a8ab26fe 1038 return -1;
1da177e4
LT
1039 }
1040
1041 /*
1042 * Should not be necessary because the MP table should list the boot
1043 * CPU too, but we do it for the sake of robustness anyway.
1044 */
1045 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1046 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1047 boot_cpu_id);
1048 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1049 }
1050
1051 /*
1052 * If we couldn't find a local APIC, then get out of here now!
1053 */
11a8e778 1054 if (!cpu_has_apic) {
1da177e4
LT
1055 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1056 boot_cpu_id);
1057 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
a8ab26fe
AK
1058 nr_ioapics = 0;
1059 return -1;
1da177e4
LT
1060 }
1061
1da177e4
LT
1062 /*
1063 * If SMP should be disabled, then really disable it!
1064 */
1065 if (!max_cpus) {
1da177e4 1066 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
a8ab26fe
AK
1067 nr_ioapics = 0;
1068 return -1;
1da177e4
LT
1069 }
1070
a8ab26fe
AK
1071 return 0;
1072}
1da177e4 1073
a8ab26fe
AK
1074/*
1075 * Prepare for SMP bootup. The MP table or ACPI has been read
1076 * earlier. Just do some sanity checking here and enable APIC mode.
1077 */
e6982c67 1078void __init smp_prepare_cpus(unsigned int max_cpus)
a8ab26fe 1079{
a8ab26fe
AK
1080 nmi_watchdog_default();
1081 current_cpu_data = boot_cpu_data;
1082 current_thread_info()->cpu = 0; /* needed? */
94605eff 1083 set_cpu_sibling_map(0);
1da177e4 1084
a8ab26fe
AK
1085 if (smp_sanity_check(max_cpus) < 0) {
1086 printk(KERN_INFO "SMP disabled\n");
1087 disable_smp();
1088 return;
1da177e4
LT
1089 }
1090
a8ab26fe 1091
1da177e4 1092 /*
a8ab26fe 1093 * Switch from PIC to APIC mode.
1da177e4 1094 */
a8ab26fe
AK
1095 connect_bsp_APIC();
1096 setup_local_APIC();
1da177e4 1097
a8ab26fe
AK
1098 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1099 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1100 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1101 /* Or can we switch back to PIC here? */
1da177e4 1102 }
1da177e4
LT
1103
1104 /*
a8ab26fe 1105 * Now start the IO-APICs
1da177e4
LT
1106 */
1107 if (!skip_ioapic_setup && nr_ioapics)
1108 setup_IO_APIC();
1109 else
1110 nr_ioapics = 0;
1111
1da177e4 1112 /*
a8ab26fe 1113 * Set up local APIC timer on boot CPU.
1da177e4 1114 */
1da177e4 1115
a8ab26fe 1116 setup_boot_APIC_clock();
1da177e4
LT
1117}
1118
a8ab26fe
AK
1119/*
1120 * Early setup to make printk work.
1121 */
1122void __init smp_prepare_boot_cpu(void)
1da177e4 1123{
a8ab26fe
AK
1124 int me = smp_processor_id();
1125 cpu_set(me, cpu_online_map);
1126 cpu_set(me, cpu_callout_map);
884d9e40 1127 per_cpu(cpu_state, me) = CPU_ONLINE;
1da177e4
LT
1128}
1129
a8ab26fe
AK
1130/*
1131 * Entry point to boot a CPU.
a8ab26fe
AK
1132 */
1133int __cpuinit __cpu_up(unsigned int cpu)
1da177e4 1134{
a8ab26fe
AK
1135 int err;
1136 int apicid = cpu_present_to_apicid(cpu);
1da177e4 1137
a8ab26fe 1138 WARN_ON(irqs_disabled());
1da177e4 1139
a8ab26fe
AK
1140 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1141
1142 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1143 !physid_isset(apicid, phys_cpu_present_map)) {
1144 printk("__cpu_up: bad cpu %d\n", cpu);
1145 return -EINVAL;
1146 }
a8ab26fe 1147
76e4f660
AR
1148 /*
1149 * Already booted CPU?
1150 */
1151 if (cpu_isset(cpu, cpu_callin_map)) {
1152 Dprintk("do_boot_cpu %d Already started\n", cpu);
1153 return -ENOSYS;
1154 }
1155
884d9e40 1156 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
a8ab26fe
AK
1157 /* Boot it! */
1158 err = do_boot_cpu(cpu, apicid);
1159 if (err < 0) {
a8ab26fe
AK
1160 Dprintk("do_boot_cpu failed %d\n", err);
1161 return err;
1da177e4 1162 }
a8ab26fe 1163
1da177e4
LT
1164 /* Unleash the CPU! */
1165 Dprintk("waiting for cpu %d\n", cpu);
1166
1da177e4 1167 while (!cpu_isset(cpu, cpu_online_map))
a8ab26fe 1168 cpu_relax();
76e4f660
AR
1169 err = 0;
1170
1171 return err;
1da177e4
LT
1172}
1173
a8ab26fe
AK
1174/*
1175 * Finish the SMP boot.
1176 */
e6982c67 1177void __init smp_cpus_done(unsigned int max_cpus)
1da177e4 1178{
a8ab26fe
AK
1179 smp_cleanup_boot();
1180
1da177e4
LT
1181#ifdef CONFIG_X86_IO_APIC
1182 setup_ioapic_dest();
1183#endif
1da177e4 1184
75152114 1185 check_nmi_watchdog();
a8ab26fe 1186}
76e4f660
AR
1187
1188#ifdef CONFIG_HOTPLUG_CPU
1189
cb0cd8d4 1190static void remove_siblinginfo(int cpu)
76e4f660
AR
1191{
1192 int sibling;
94605eff 1193 struct cpuinfo_x86 *c = cpu_data;
76e4f660 1194
94605eff
SS
1195 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1196 cpu_clear(cpu, cpu_core_map[sibling]);
1197 /*
1198 * last thread sibling in this cpu core going down
1199 */
1200 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1201 c[sibling].booted_cores--;
1202 }
1203
76e4f660
AR
1204 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1205 cpu_clear(cpu, cpu_sibling_map[sibling]);
76e4f660
AR
1206 cpus_clear(cpu_sibling_map[cpu]);
1207 cpus_clear(cpu_core_map[cpu]);
f3fa8ebc
RS
1208 c[cpu].phys_proc_id = 0;
1209 c[cpu].cpu_core_id = 0;
94605eff 1210 cpu_clear(cpu, cpu_sibling_setup_map);
76e4f660
AR
1211}
1212
1213void remove_cpu_from_maps(void)
1214{
1215 int cpu = smp_processor_id();
1216
1217 cpu_clear(cpu, cpu_callout_map);
1218 cpu_clear(cpu, cpu_callin_map);
1219 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
488fc08d 1220 clear_node_cpumask(cpu);
76e4f660
AR
1221}
1222
1223int __cpu_disable(void)
1224{
1225 int cpu = smp_processor_id();
1226
1227 /*
1228 * Perhaps use cpufreq to drop frequency, but that could go
1229 * into generic code.
1230 *
1231 * We won't take down the boot processor on i386 due to some
1232 * interrupts only being able to be serviced by the BSP.
1233 * Especially so if we're not using an IOAPIC -zwane
1234 */
1235 if (cpu == 0)
1236 return -EBUSY;
1237
5e9ef02e 1238 clear_local_APIC();
76e4f660
AR
1239
1240 /*
1241 * HACK:
1242 * Allow any queued timer interrupts to get serviced
1243 * This is only a temporary solution until we cleanup
1244 * fixup_irqs as we do for IA64.
1245 */
1246 local_irq_enable();
1247 mdelay(1);
1248
1249 local_irq_disable();
1250 remove_siblinginfo(cpu);
1251
1252 /* It's now safe to remove this processor from the online map */
1253 cpu_clear(cpu, cpu_online_map);
1254 remove_cpu_from_maps();
1255 fixup_irqs(cpu_online_map);
1256 return 0;
1257}
1258
1259void __cpu_die(unsigned int cpu)
1260{
1261 /* We don't do anything here: idle task is faking death itself. */
1262 unsigned int i;
1263
1264 for (i = 0; i < 10; i++) {
1265 /* They ack this in play_dead by setting CPU_DEAD */
884d9e40
AR
1266 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1267 printk ("CPU %d is now offline\n", cpu);
d167a518
GH
1268 if (1 == num_online_cpus())
1269 alternatives_smp_switch(0);
76e4f660 1270 return;
884d9e40 1271 }
ef6e5253 1272 msleep(100);
76e4f660
AR
1273 }
1274 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1275}
1276
e2c03888 1277__init int setup_additional_cpus(char *s)
420f8f68
AK
1278{
1279 return get_option(&s, &additional_cpus);
1280}
1281__setup("additional_cpus=", setup_additional_cpus);
1282
76e4f660
AR
1283#else /* ... !CONFIG_HOTPLUG_CPU */
1284
1285int __cpu_disable(void)
1286{
1287 return -ENOSYS;
1288}
1289
1290void __cpu_die(unsigned int cpu)
1291{
1292 /* We said "no" in __cpu_disable */
1293 BUG();
1294}
1295#endif /* CONFIG_HOTPLUG_CPU */
This page took 0.219314 seconds and 5 git commands to generate.